CO 446: Matroid Theory

Typeset by Kevin Matthews

Spring 2015

Why study matroids

We will generalize:

- Menger's Theorem (disjoint paths)
- König's Theorem (matching)
- Tutte's Wheels Theorem (3-connected graphs)
- Kuratowski's Theorem (planarity)
- Matrix Tree Theorem (counting spanning trees)

We will prove:

- Tutte-Berge Formula (matching)
- Jaeger's 8-flow theorem
- Nash-William's Tree Theorem (disjoint spanning trees)

We will prove analogues of:

- Turan's Theorem
- Ramsey's Theorem
- Erdös-Stone Theorem

1 Introduction

DEFINITION 1. A matroid consists of a pair (E, \mathcal{I}) where E is a finite ground set and \mathcal{I} is a collection of *independent* subsets of E such that:

- (I0) the empty set is independent;
- (I1) subsets of independent sets are independent; and

(I2) For $X \subseteq E$, all maximal independent subsets of X have the same size.

If $M = (E, \mathcal{I})$ is a matroid, then

- $E(M) \coloneqq E;$
- $\mathcal{I}(M) \coloneqq \mathcal{I};$
- $|M| \coloneqq |E|$; and
- $r(M) \coloneqq \max\{|I|; I \in \mathcal{I}\}.$

EXAMPLE 2. [GRAPHIC MATROIDS] For a graph G = (V, E) we define $M(G) := (E, \mathcal{F})$ where $\mathcal{F} := \{F \subseteq E; G[V, F] \text{ is a forest}\}$. Note that M(G) is a matroid; we call this the *cycle* matroid of G. A matroid is graphic if it is the cycle matroid of a graph.

EXAMPLE 3. [REPRESENTABLE MATROIDS] Let $A \in \mathbb{F}^{r \times E}$ where \mathbb{F} is a field. Define $M(A) := (E, \mathcal{I})$ where

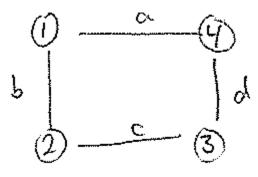
 $\mathcal{I} := \{ I \subseteq E; A | I \text{ has linearly independent columns} \}.$

Note that M(A) is a matroid; we call this the *column matroid* of A. A matroid M is \mathbb{F} -*representable* if M is the column matroid of a matrix over \mathbb{F} . A GF(2)-representable matroid
is called *binary*.

EXAMPLE 4. [MATCHING] Let \mathcal{M} denote the set of all matchings of a graph G = (V, E).

CLAIM. If G is a graph then (E, \mathcal{M}) is not necessarily a matroid.

Proof. Consider the following graph G:



Note (E, \mathcal{M}) satisfies (I0) and (I1). However, it does not satisfy (I2), as we show now. Let $X = \{a, b, c\}$, $I_1 = \{a, c\}$, and $I_2 = \{b\}$. Then I_1 and I_2 are maximal independent subsets of X but $|I_1| \neq |I_2|$. DEFINITION 5. In a graph G, a set $Z \subseteq V(G)$ is called *matchable* if there is a matching M of G such that each vertex in Z is incident with an edge of M. Let $MSM(G) := (V, \mathcal{I})$ where \mathcal{I} is the collection of all matchable subsets of V. This is called the *matchable set matroid*.

LEMMA 6. [1.1] If G is a graph then MSM(G) is a matroid.

Proof. Exercise.

REMARK 7. Note that MSM(G) is representable; the representation is the Tutte Matrix of G.

EXAMPLE 8. [UNIFORM MATROIDS] We define $U_{r,n} := (E, \mathcal{I})$ where

$$E = \{1, \ldots, n\}$$

and

$$\mathcal{I} = \{ S \subseteq E; |X| \le r \}$$

This is called a *uniform matroid*.

Note that $U_{r,n}$ is \mathbb{R} -representable and hence $U_{r,n}$ is a matroid. (Take an $r \times n$ matrix with algebraically independent entries.)

LEMMA 9. [1.2] For any n, $U_{2,n}$ is \mathbb{F} -representable if and only if $|\mathbb{F}| \ge n-1$.

Proof. Suppose $U_{r,n} = M(A)$. By row operations and column scaling we may assume that

$$A = \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & a_2 & a_3 & \cdots & a_n \end{bmatrix}$$

where $a_2, \ldots, a_n \in \mathbb{F}$ are distinct. So $|\mathbb{F}| \ge n - 1$. The converse is similar.

OPEN PROBLEM 10. Given a finite field \mathbb{F} , which uniform matroids are representable over \mathbb{F} .

CONJECTURE 11. [1.3] We have $U_{r,n}$ is \mathbb{F} -representable if and only if either:

- (i) $r \in \{0, 1, n-1, n\},\$
- (ii) $n \leq |\mathbb{F}| + 1$, or
- (iii) $|\mathbb{F}|$ is even, $r \in \{3, n-3\}$, and n = |F| + 2.

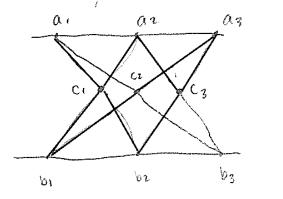
REMARK 12. The "if" direction holds. The "only if" direction holds for:

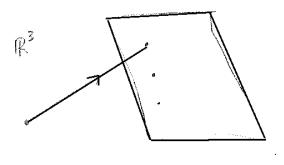
• $r \le 5 (1947 - 1970)$

• $|\mathbb{F}|$ prime (Ball 2010)

EXERCISE 13. Show that if $|\mathbb{F}|$ is odd and $n \ge |\mathbb{F}| + 2$, then $U_{3,n}$ is not \mathbb{F} -representable.

EXAMPLE 14. [NON-PAPPUS MATROID]





The Non-Pappus matroid is $M = (E, \mathcal{I})$, where $E = \{a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3\}$ and $I \in \mathcal{I}$ if and only if $|I| \leq 3$ and no three elements in I are on a common line in the diagram.

THEOREM 15. [1.4 - PAPPUS CIRCA 340 AD] The Non-Pappus matroid is not representable.

Proof. Exercise.

CONJECTURE 16. [1.5] The proportion of *n*-element matroids that are representable tends to zero as $n \to \infty$.

DEFINITION 17. A matroid M is paving if all subsets of E(M) of size $\leq R(M) - 1$ are independent.

CONJECTURE 18. [1.6] The proportion of *n*-element matroids that are paving tends to one as $n \to \infty$.

There are several other perspectives one may take to look at matroids.

1.1 Circuits

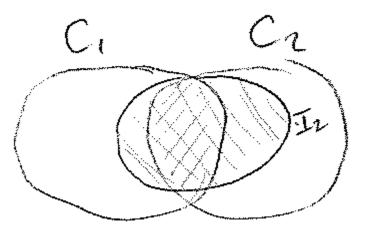
REMARK 19. For a graph G, a minimal dependent set in M(G) is the edge-set of a *circuit*. Graphs motivate the following definitions.

DEFINITION **20.** A *circuit* of a matroid is a minimal dependent set. A *loop* is a circuit of size 1 and a *parallel pair* is a circuit of size 2. A matroid is *simple* if it has no loops or parallel pairs.

LEMMA 21. [1.7] Let C denote the collection of circuits of a matroid M. Then

- (C0) $\emptyset \notin C$;
- (C1) If $C_1, C_2 \in \mathcal{C}$ are distinct, then $C_1 \notin C_2$; and
- (C2) If $C_1, C_2 \in \mathcal{C}$ are distinct and $e \in C_1 \cap C_2$, then there exist $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) \{e\}$.

Proof. Note (C0) and (C1) are trivial. We show (C2). Consider distinct circuits C_1, C_2 and $e \in C_2 \cap C_2$. By (C1), $C_1 \cap C_2$ is independent. Let $X = C_1 \cup C_2$, let $I_1 = X - \{e\}$, and let I_2 be a maximal independent set such that $C_1 \cap C_2 \subseteq I_2 \subseteq X$.



Assume, for a contradiction, that I_1 is independent. By (I2), $|I_2| = |I_1| = |X| - 1$. But then either $C_1 \subseteq I_2$ or $C_2 \subseteq I_2$ — a contradiction.

THEOREM 22. [1.8] Let C be a collection of subsets of a finite set E. Then C is the collection of circuits of a matroid if and only if C satisfies (C0), (C1), (C2).

Proof. Exercise.

1.2 Bases

DEFINITION 23. For a matroid M, a maximal independent subset of E(M) is a basis.

REMARK 24. By (I2), each basis of a matroid M has size r(M).

REMARK 25. For a connected graph G, the bases of M(G) are the edge sets of spanning trees.

LEMMA 26. [1.9] Let \mathcal{B} denote the set of bases of a matroid M. Then

 $(B0) \ \mathcal{B} \neq \emptyset$

(B1) For each $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 - B_2$ there exists $f \in B_2 - B_1$ such that $(B_1 - \{e\}) \cup \{f\} \in \mathcal{B}$.

Proof. Note (B0) follows from (I0). We check (B1) now. Consider $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 - B_2$. Let $X = (B_1 - \{e\}) \cup B_2$. Now $B_1 - \{e\}$ and B_2 are independent subsets of X and $|B_1 - \{e\}| < |B_2|$. So by (I2), there exists $f \in X - (B_1 - \{e\})$ such that $(B_1 - \{e\}) \cup \{f\}$ is independent. Note that $f \in B_2 - B_1$ and $(B_1 - \{e\}) \cup \{f\}$ is a basis.

THEOREM 27. [1.10] Let \mathcal{B} be a collection of subsets of a finite set E. Then \mathcal{B} is the collection of bases of a matroid if and only if it satisfies (B0) and (B1).

Proof. Exercise.

1.3 Rank

DEFINITION 28. For a matroid M and $X \subseteq E(M)$ we define the rank of X in M to be

$$r_M(X) \coloneqq \max(|I|; I \in \mathcal{I}(M), I \subseteq X).$$

We sometimes abbreviate $r_M(X)$ to r(X).

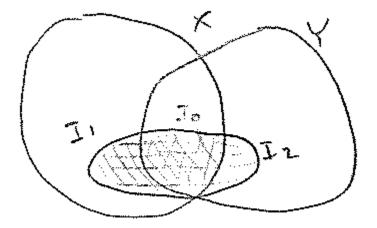
LEMMA 29. [1.11] For a matroid $M = (E, \mathcal{I})$

(R0) $0 \le r(X) \le |X|$ for each $X \subseteq E$;

(R1) $r(X) \leq r(Y)$ for each $X \subseteq Y \subseteq E$; and

(R2) $r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y)$ for each $x, y \subseteq E$.

Proof. Note (R0) and (R1) are obvious. We check (R2) now. Consider $X, Y \subseteq E$.



Let I_0, I_1, I_2 be maximal independent sets subject to $I_0 \subseteq X \cap Y$, $I_0 \subseteq I_1 \subseteq X$, and $I_1 \subseteq I_2 \subseteq X \cup Y$. Thus $|I_0| = r(X \cap Y)$, $|I_1| = r(X)$, $|I_2| = r(X \cup Y)$. Let $I_3 = Y \cap I_2$. Thus $|I_3| \leq r(Y)$. Now $r(X \cap Y) + r(X \cup Y) = |I_0| + |I_2| = |I_1| + |I_3| \leq r(X) + r(Y)$.

REMARK **30.** Condition (R2) is called *submodularity*.

THEOREM **31.** [1.12] Let E be a finite set and let $r: 2^E \to \mathbb{Z}$. Then r is the rank function of a matroid if and only if it satisfies (R0), (R1), (R2).

Proof. Exercise.

1.4 Ingleton's Inequality

EXAMPLE **32.** [INGLETON'S INEQUALITY] For $X_1, X_2, X_3, X_4 \subseteq E$ consider

(1)
$$r(X_1) + r(X_2) + r(X_1 \cup X_2 \cup X_3) + r(X_1 \cup X_2 \cup X_4) + r(X_3 \cup X_4)$$
$$\leq r(X_1 \cup X_2) + r(X_1 \cup X_3) + r(X_1 \cup X_4) + r(X_2 \cup X_3) + r(X_2 \cup X_4).$$

Ingleton showed that:

- (1) all representable matroids satisfy (1); and
- (2) there are matroids that do not satisfy (1).

1.5 Local Connectivity

DEFINITION 33. For $X, Y \subseteq E(M)$, we define the *local connectivity* of X and Y to be

$$\sqcap_M(X,Y) \coloneqq r(X) + r(Y) - r(X \cup Y).$$

REMARK 34. Note that submodularity, (R2), can be written as

$$\sqcap_M(X,Y) \ge r(X \cap Y).$$

LEMMA **35.** [1.13] Let $A \in \mathbb{F}^{r \times E}$ and for each $X \subseteq E$ let $\langle X \rangle$ denote the subspace of \mathbb{F}^r spanned by the columns of A|X. Then, for $X, Y \subseteq E$,

$$\dim \langle X \rangle \cap \langle Y \rangle = \sqcap_M (X, Y).$$

Proof. By the dimension theorem

$$\dim \langle X \rangle + \dim \langle Y \rangle = \dim \langle X \rangle \cap \langle Y \rangle + \dim \langle X \rangle \cup \langle Y \rangle.$$

Now dim $\langle X \rangle = r(X)$, dim $\langle Y \rangle = r(Y)$, and dim $\langle X \rangle \cup \langle Y \rangle = r(X \cup Y)$. So

$$\dim \langle X \rangle \cap \langle Y \rangle = r(X) + r(Y) - r(X \cup Y) = \sqcap_M (X, Y).$$

REMARK **36.** Note that dim $\langle X \rangle \cap \langle Y \rangle \ge r(X \cap Y)$. So representable matroids satisfy $\sqcap_M(X,Y) \ge r(X \cap Y)$ (as do all matroids — this is just another way to see this inequality in the particular case of representable matroids).

1.6 Closure

LEMMA 37. [1.14] For a matroid M let $X, X_1, X_2 \subseteq E(M)$ with $X \subseteq X_1$ and $X \subseteq X_2$. If $r(X_1) = r(X_2) = r(X)$, then $r(X_1 \cup X_2) = r(X)$.

Proof. By submodularity,

$$2r(X) = r(X_1) + r(X_2) \ge r(X_1 \cap X_2) + r(X_1 \cup X_2) \ge 2r(X).$$

Equality holds throughout; in particular, $r(X_1 \cup X_2) = r(X)$.

DEFINITION 38. Given a matroid M and $X \subseteq E(M)$, by Lemma 1.14 there is a unique maximal set $\hat{X} \subseteq E$ such that $X \subseteq \hat{X}$ and $r(\hat{X}) = r(X)$; \hat{X} is the called the *closure* of X and is denoted $cl_M(X)$.

REMARK **39.** Note that:

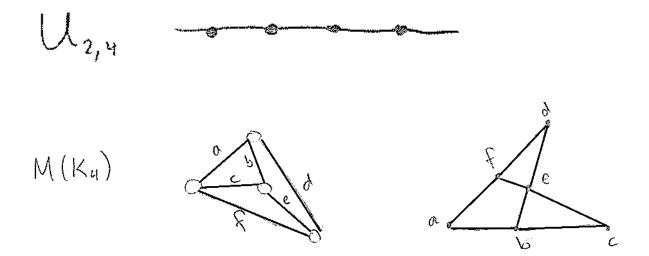
- (1) for $e \in E X$, $e \in cl_M(X)$ if and only if there is a circuit C such that $e \in C$ and $C X = \{e\}$; and
- (2) if $X \subseteq Y$, then $\operatorname{cl}_M(X) \subseteq \operatorname{cl}_M(Y)$.

DEFINITION 40. For a matroid M, a set $F \subseteq E(M)$ is called a *flat* if cl(F) = F.

EXERCISE 41. Show that the intersection of two flats is a flat.

DEFINITION 42. Let M be a matroid. A *point* is a rank-one flat. A *line* is a rank-two flat. A *plane* is a rank-three flat. A *hyperplane* is a rank-(r(M) - 1) flat.

1.7 Geometric drawings of matroids



Page 8 of 90

DEFINITION 43. Let M be a matroid. For each $k \in \{0, \ldots, r(M)\}$, let W_k denote the number of rank-k flats in M.

CONJECTURE 44. [1.15 - ROTA, 1971] For a matroid M and $k \in \{1, ..., r(M) - 1\},$ $W_k \ge \min(W_{k-1}, W_{k+1}).$

CONJECTURE 45. [POINTS-LINES-PLANES CONJECTURE - MASON 1972] In a rank-4 matroid we have

$$W_2^2 \ge W_1 W_3.$$

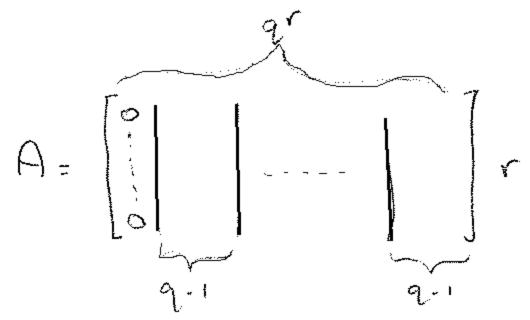
1.8 Simplification

DEFINITION 46. Let L be the collection of loops of a matroid M. Now let (P_1, \ldots, P_k) be the points of M. Note that $L \subseteq P_i$ $(i = 1, \ldots, k)$ and that $(P_1 - L, \ldots, P_k - L)$ is a partition E(M) - L. Note that $\{e, f\}$ is a parallel-pair if and only if $e, f \in P_i - L$ for some i. The sets (P_1, \ldots, P_k) are called the *parallel* classes of M. If $e_i \in P_i - L$, for $i \in \{1, \ldots, k\}$, then we call the restriction N of M to $\{e_1, \ldots, e_k\}$ "the" simplification of M.

- EXERCISE 47. (1) Show that the simplification of a matroid is uniquely determined up to isomorphism.
 - (2) Show that a matroid is \mathbb{F} -representable if and only if its simplification is.

1.9 Projective Geometries

DEFINITION 48. Let $r \in \mathbb{Z}_+$ and \mathbb{F} be a finite field with $q = |\mathbb{F}|$. Now let $A \in \mathbb{F}^{r \times q^r}$ have distinct columns.



Page 9 of 90

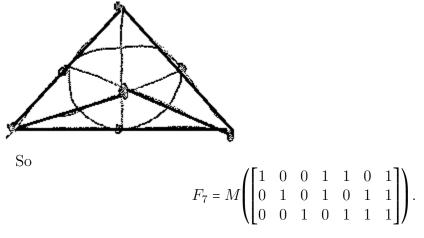
We denote the simplification of M(A) by $PG(r-1,\mathbb{F})$ or PG(r-1,q). This is called a *projective geometry*.

REMARK 49. Note that:

(1) $|PG(r-1,q)| = \frac{q^r-1}{q-1};$

- (2) every simple rank- $r \mathbb{F}$ -representable matroid is isomorphic to a restriction of PG $(r 1, \mathbb{F})$;
- (3) each line of $PG(r-1, \mathbb{F})$ has length q + 1; and
- (4) each pair of distinct lines in $P(2,\mathbb{F})$ intersect in a point.

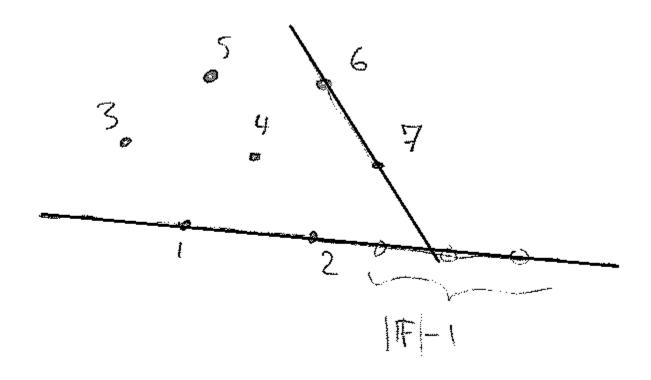
EXAMPLE 50. The Fano matroid is $F_7 := PG(2, 2)$.



Recall the following exercise.

EXERCISE 51. Show that if $|\mathbb{F}|$ is odd and $n \ge |\mathbb{F}| + 2$, then $U_{3,n}$ is not \mathbb{F} -representable.

Hint: Consider $U_{3,n}$ as a restriction of $PG(2,\mathbb{F})$ and consider a line through two points of $U_{3,n}$.



1.10 Duality

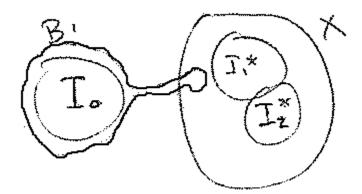
DEFINITION 52. Given a matroid $M = (E, \mathcal{I})$ we define $M^* := (E, \mathcal{I}^*)$ where

$$\mathcal{I}^* \coloneqq \{I^* \subseteq E; r(E - I^*) = r(M)\}.$$

This is called the dual of M.

THEOREM 53. [1.16] If M is a matroid then M^* is a matroid.

Proof. Note M^* clearly satisfies (I0), (I1). So we need only check (I2). Let $X \subseteq E$ and let I_1^*, I_2^* be maximal M^* -independent subsets of X.



Let I_0 be a maximal *M*-independent subset of E - X. Let B_1 and B_2 be bases of *M* such that $I_0 \subseteq B_1 \subseteq E - I_1^*$ and $I_0 \subseteq B_2 \subseteq E - I_2^*$. Since $I_0 \subseteq E - X$ is maximal:

$$B_1 - X = I_0$$
 and $B_2 - X = I_0$.

Moreover, by the maximality of I_1^* and I_2^* :

$$I_1^* = X - B_1$$
 and $I_2^* = X - B_2$.

Note that $|B_1| = |B_2|$. So

$$|I_1^*| = |X - B_1| = |X - B_2| = |I_2^*|$$

as required.

REMARK 54. Note that:

- (1) B is a basis of M if and only if E B is a basis of M^* . Hence $M^{**} = M$.
- (2) C^* is a circuit of M^* if and only if $E C^*$ is a hyperplane of M.
- (3) $r(M) + r(M^*) = |E|.$
- (4) For $X \subseteq E$,

$$r_{M^*}(X) = |X| - (r(M) - r_M(E - X)).$$

DEFINITION 55. Let M be a matroid. Circuits of M^* are called *cocircuits* of M. Independent sets of M^* are called *co-independent* sets of M. More generally, we can append "co" in front of other terms to get analogous definitions.

1.11 Representability and duality

DEFINITION 56. Let \mathbb{F} be a field, E be a finite set, and U be a subspace of \mathbb{F}^{E} . We define

$$U^{\perp} \coloneqq \left\{ x \in \mathbb{F}^{E}; \, x^{t}y = 0 \text{ for each } y \in E \right\}.$$

We call U^{\perp} the orthogonal space of U.

REMARK 57. Note that:

- (1) $\dim(U) + \dim(U^{\perp}) = |E|$; and
- (2) U and U^{\perp} need not be disjoint.

EXERCISE 58. Let $B \subseteq E$, $A \in \mathbb{F}^{B \times E - B}$, $A_1 = [I, A]$, and $A_2 = [-A^t, I]$. Prove that rowspace $(A_1)^{\perp} = \text{rowspace}(A_2)$.

THEOREM 59. [1.17] Let $A_1 \in \mathbb{F}^{r_1 \times E}$ and $A_2 \in \mathbb{F}^{r_2 \times E}$. If $\operatorname{rowspace}(A_1)^{\perp} = \operatorname{rowspace}(A_2)$, then $M(A_1)^* = M(A_2)$.

Proof. It suffices to prove that, if B is a basis of $M(A_1)$, then E - B is a basis of $M(A_2)$. By row operations we may assume that $A_1 = [I, A]$. Now consider the matrix $A'_2 = [-A^t, I]$. By the exercise,

rowspace(A'_2) = rowspace(A_1)^{\perp} = rowspace(A_2).

Thus $M(A'_2) = M(A_2)$. Now E - B is a basis of $M(A'_2)$ and hence also of $M(A_2)$.

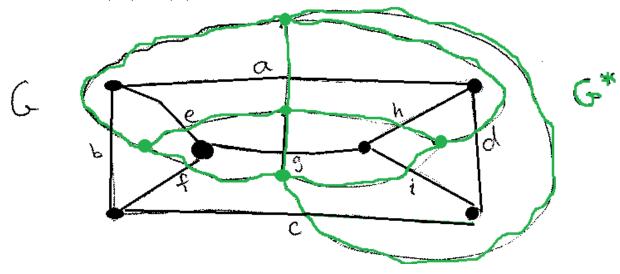
COROLLARY 60. [1.18] A matroid M is \mathbb{F} -representable if and only if M^* is \mathbb{F} -representable.

1.12 Graphicness and duality

THEOREM 61. [1.19] If G is a plane graph, then $M(G^*) = M(G)^*$.

REMARK 62. We prove Theorem 1.19 after the Lemma 1.20.

Note that $E(G^*) = E(G)$.



LEMMA 63. [1.20] For a graph G and $X \subseteq E(G)$, G[X] is a forest if and only if $G^* - X$ is connected.

Proof sketch. If X contains a circuit, then $\mathbb{R}^2 - X$ is not connected and hence $G^* - X$ is not connected.

On the other hand, if G[X] is a forest, then $\mathbb{R}^2 - X$ is connected.

Proof of Theorem 1.19. By lemma 1.20, $M(G) = M(G^*)^*$.

1.13 Euler's Formula

THEOREM 64. [EULER'S FORMULA] Let F be the set of faces of a connected plane graph G = (V, E). Then

$$|E| = |V| + |F| - 2.$$

Proof. Let T be the edge set of a spanning tree of G. Then E-T is the edge-set of a spanning tree in G^{*}. So |E| = |T| + |E - T| = |V| - 1 + |F| - 1. ■

CLAIM. The matroid $M(K_5)^*$ is not graphic.

Proof. Suppose that $M(K_5)^* = M(G)$. We may assume that G is connected. Now

$$|V(G)| = r(M(K_5)^*) + 1 = |E(K_5)| - r(M(K_5)) + 1 = 10 - 4 + 1.$$

Now $3|V(G)| > 2|E(G)| = \sum_{v \in V(G)} \deg(v)$. So G has a vertex v with degree at most two. So M(G) has a cocircuit $C \subseteq \delta_G(v)$ of size at most two. Hence $M(K_5) = M(G)^*$ has a circuit of size at most two — contradiction.

EXERCISE 65. Prove that $M(K_{3,3})^*$ is not graphic.

THEOREM 66. [1.21 - WHITNEY] A graph G is planar if and only if $M(G)^*$ is graphic.

REMARK 67. We will return to the proof of Theorem 1.21 later in the course. We could prove it now but it would take considerable time.

1.14 Minors

DEFINITION 68. For a matroid M and $D \subseteq E(M)$ we define

$$M \smallsetminus D \coloneqq (E - D, \mathcal{I}')$$

where

$$\mathcal{I}' \coloneqq \{ I \subseteq E - D; I \in \mathcal{I}(M) \}.$$

This is called *deletion*.

REMARK **69.** Note that:

- (1) $M \smallsetminus D$ is a matroid;
- (2) If M is \mathbb{F} -representable, then so is $M \times D$; and
- (3) $M(G \setminus D) = M(G) \setminus D$.

DEFINITION 70. For a matroid M and $C \subseteq E(M)$ we define

$$M/C \coloneqq (M^* \smallsetminus C)^*.$$

This is called *contraction*.

REMARK 71. Note that:

- (1) M/C is a matroid; and
- (2) If M is \mathbb{F} -representable then so is M/C.

LEMMA 72. [1.22] For a matroid M and $S \subseteq E - C$ we have

$$r_{M/C}(X) = r_M(X \cup C) - r_M(C).$$

Proof. Exercise.

REMARK 73. By Lemma 1.22 we see

(2)
$$r_{M/C}(X) = r_M(X) - \sqcap_M(X,C).$$

EXERCISE 74. Let $X', X, Y \subseteq E(M)$ in a matroid M, with $X' \subseteq X$ and r(X') = r(X). Then $\sqcap_M(X',Y) = \sqcap_M(X,Y)$.

By (2) and the exercise we get the following lemma.

LEMMA 75. [1.23] Let $X \subseteq E$ and let I be a maximum independent set of C. Then

$$M/C = M \smallsetminus (C - I)/I.$$

REMARK 76. For $I \subseteq E - C$, I is independent in M/C if and only if $|I| = r_M(I) - \prod_M(I,C)$. That is, $r_M(I) = |I|$ and $\prod_M(I,C) = 0$.

DEFINITION 77. Let M be a matroid. We say that $X, Y \subseteq E(M)$ are skew if $\sqcap_M(X, Y) = 0$.

The above proves the following lemma.

LEMMA 78. [1.24] In a matroid $M, I \subseteq E(M/C)$ is independent in M/C if and only if I is independent in M and I is skew to C.

EXERCISE **79.** Let M be a matroid.

- (1) Let $X, Y \subseteq E(M)$ be disjoint sets. Prove that X is skew to Y if and only if there is no circuit $C \subseteq X \cup Y$ such that $C \cap X$ and $X \cap Y$ are both non-empty.
- (2) Prove that, if $C \subseteq E(G)$ then

$$M(G/C) = M(G)/C.$$

1.15 Minors

DEFINITION 80. Let M and N be matroids. If $C, D \subseteq E(M)$ are disjoint, then we call $M \setminus D/C$ a *minor* of M. We say that M has an N-minor if M has a minor that is isomorphic to N.

LEMMA 81. [1.25 - SCUM THEOREM] If N is a minor of a matroid M, then there is a partition (C, D) of E(M) - E(N) into an independent set C and a co-independent set D such that $N = M/C \setminus D$.

Proof. Exercise.

REMARK 82. Consider a representable matroid $M(A) = (E, \mathcal{I})$. Let $C, D \subseteq E$ be disjoint sets such that C is independent and D is co-independent. So there is a basis B such that $C \subseteq B \subseteq E - D$. By row operations we may assume that A = [I, A'].

Now suppose that

$$A' = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}.$$

That is

$$A = \begin{bmatrix} I & 0 & A_1 & A_2 \\ 0 & I & A_3 & A_4 \end{bmatrix}.$$

Then $M(A) \smallsetminus D/C = M([I, A_1]).$

1.16 Regular Matroids

DEFINITION 83. A matroid is *regular* if it is representable over every field.

DEFINITION 84. A matrix A is totally unimodular if each square submatrix of A has determinant in $\{-1, 0, 1\}$.

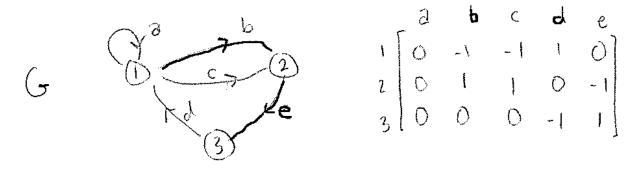
THEOREM 85. [TUTTE] For a matroid M, the following are equivalent:

- (1) M is regular;
- (2) M is representable over both GF(2) and GF(3); and
- (3) $M = M_{\mathbb{R}}(A)$ where A is totally unimodular.

Proof. That (1) implies (2) is trivial. That (3) implies (1) is obvious. The proof that (2) implies (3) is straightforward, however it is omitted.

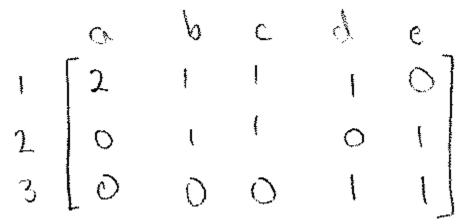
1.17 Signed Incidence Matrix

DEFINITION 86.



1.18 Incidence matrix

DEFINITION 87.



LEMMA 88. [1.26] Let A be a signed incidence matrix of G = (V, E) and let \mathbb{F} be a field. Then

$$r(M_{\mathbb{F}}(A)) = |V| - comps(G).$$

Proof. For $x \in \mathbb{F}^V$, $x^t A = 0$ if and only if $x_u = x_v$ for two vertices u, v in the same component of G. So

$$r(M_{\mathbb{F}}(A)) = \operatorname{rank} A = |V| - comps(G).$$

LEMMA 89. [1.27] Let A be the signed incidence matrix of G = (V, E) and let \mathbb{F} be a field. Then $M_{\mathbb{F}}(A) = M(G)$.

Proof. Apply Lemma 1.26 to G[V, X] for each $X \subseteq E$.

REMARK 90. Note that over GF(2) we can ignore signs. That is, $M(G) = M_{GF(2)}(\tilde{A})$ where \tilde{A} is the incidence matrix of G.

THEOREM 91. [1.28] Graphic matroids are regular.

Proof.

EXERCISE 92. Prove that signed incidence matrices are totally unimodular.

1.19 Counting bases

PROBLEM 93. Given a TU matrix A, how many bases does M(A) have?

PROPOSITION 94. [1.29] Let R, E be finite ordered sets and let $A \in \mathbb{F}^{R \times E}$. Then

$$\det AB^{t} = \sum_{X \subseteq E, |X| = |R|} (\det A|X) (\det B|X).$$

Proof sketch. Use:

(1)

$$\det \begin{bmatrix} I & B^t \\ -A & 0 \end{bmatrix} = \det AB^t; \text{ and }$$

(2) for $D, A \in \mathbb{F}^{V \times V}$, D diagonal, we have

$$\det(D+A) = \sum_{X \subseteq V} \det D[X,X] \det A[V-X,V-X].$$

THEOREM 95. [1.30] If $A \in \{-1, 0, 1\}^{R \times E}$ is totally unimodular and has rank |R|, then the number of bases of M(A) is det AA^t .

Proof. We have

$$\det AA^{t} = \sum_{X \subseteq E, |X| = |R|} \det(A|X)^{2} = \sum_{X \text{ a basis of } M(A)} 1.$$

1.20 Counting Spanning Trees

DEFINITION **96.** Let A be the signed incidence matrix of a graph G and let $L \coloneqq AA^t$. Note that $L \in \mathbb{R}^{V \times V}$ and

$$L_{uv} = \begin{cases} \deg(u); & u = v \\ -n_{uv}; & u \neq v \end{cases}$$

where n_{uv} is the number of edges connecting u and v. We call L the Laplacian of G.

THEOREM 97. [MATRIX TREE THEOREM] Suppose G is a graph. Let $u \in V(G)$ and let $L_{\bar{u}}$ be obtained from the Laplacian L by deleting both the row and column indexed by u. Then the number of spanning trees of G is equal to det $(L_{\bar{u}})$.

Proof.

EXERCISE 98. For a graph G, let $u, v \in V(G)$ and let $L_{\bar{u},\bar{v}}$ be obtained from L by deleting the u^{th} row and the v^{th} column. Then the number of spanning trees of G is det $L_{\bar{u},\bar{v}}$.

1.21 Excluded Minors

THEOREM 99. [KURATOWSKI'S THEOREM] A graph G is planar if and only if it has no minor isomorphic to $K_{3,3}$ or K_5 .

DEFINITION 100. A class of matroids \mathcal{M} is called *minor-closed* if for each matroid $M \in \mathcal{M}$, all minors of M are in \mathcal{M} .

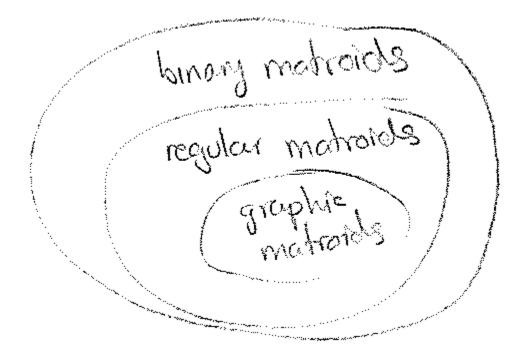
EXAMPLE 101. The following classes are examples of minor-closed classes of matroids:

- (1) \mathbb{F} -representable matroids;
- (2) graphic matroids;
- (3) regular matroids; and
- (4) uniform matroids.

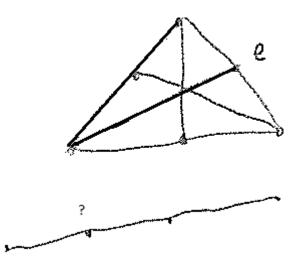
DEFINITION 102. Let \mathcal{M} be a minor-closed class of matroids. An *excluded-minor* for \mathcal{M} is a matroid $M \notin \mathcal{M}$ whose proper minors are all contained in \mathcal{M} .

THEOREM 103. [KURATOWSKI'S THEOREM] The excluded-minors for the class of planar graphs are $K_{3,3}$ and K_5 .

EXERCISE 104. Determine the excluded minors for the class of uniform matroids.



- THEOREM 105. [TUTTE'S EXCLUDED-MINOR THEOREMS] (1) The matroid $U_{2,4}$ is the only excluded minor for the class of binary matroids;
 - (2) The excluded-minors for the class of regular matroids are $U_{2,4}$, F_7 , F_7^* ; and



(3) The excluded minors for the class of graphic matroids are $U_{2,4}$, F_7 , F_7^* , $M(K_5)^*$, $M(K_{3,3})^*$.

REMARK 106. (a) We will prove (1) and (2).

(b) Item (2) has a short proof due to Gerards.

(c) Item (3) implies Kuratowski's theorem.

CONJECTURE 107. [ROTA'S CONJECTURE] For each finite field \mathbb{F} , there are, up to isomorphism, only finitely many excluded minors for the class of \mathbb{F} -representable matroids.

REMARK 108. (1) Rota's conjecture is claimed to be true (Geelen, Gerards, Whittle).

(2) Rota's conjecture is false for infinite fields (Lazarson).

THEOREM 109. [GRAPH MINORS THEOREM - ROBERTSON, SEYMOUR] Each minor-closed class of graphs has, up to isomorphism, only finitely many excluded minors.

REMARK 110. By (2) of the previous remark, the Graph Minors Theorem does not extend to all matroids.

REMARK 111. The set $\{PG(2, p); p \text{ prime}\}$ is an "infinite antichain" (that is, no one plane contains another as a minor).

1.22 Matching

DEFINITION 112. Let G be a graph. We define $\nu(G)$ to be the size of a maximum matching of G, the *deficiency* of G to be def(G) := $|V(G)| - 2\nu(G)$, and odd(G) to be the number of components of G of odd size.

REMARK 113. Note that

$$def(G) \ge def(G - X) - |X| \ge odd(G - X) - |X|.$$

THEOREM 114. [TUTTE-BERGE FORMULA] In a graph G,

$$def(G) = \max_{X \subseteq V(G)} (odd(G - X) - |X|).$$

DEFINITION 115. A vertex v in a graph G is avoidable if $\nu(G - v) = \nu(G)$.

REMARK 116. Note that

$$def(G - v) = \begin{cases} def(G) - 1, & v \text{ is avoidable} \\ def(G) + 1, & v \text{ is not avoidable.} \end{cases}$$

DEFINITION 117. A graph G is hypomatchable if

(1) $V(G) \neq \emptyset;$

- (2) G is connected; and
- (3) each vertex of G is avoidable.

LEMMA 118. [GALLAI'S LEMMA] If a graph G is hypomatchable then def(G) = 1 and, hence, |V(G)| is odd.

1.23 Coloops and series-pairs

DEFINITION **119.** Let M be a matroid. We call e a coloop of M if $r(E - \{e\}) < r(M)$. We call $\{e, f\}$ a series-pair if neither e nor f is a coloop, but $r(E - \{e, f\}) < r(M)$.

REMARK 120. (1) Thus e is a coloop of M if and only if e is a loop of M^* .

(2) Thus a series-pair of M is a parallel pair of M^* .

Recall the first problem on the first assignment: If $\{e, f\}, \{f, g\}$ are series-pairs, then so is $\{e, g\}$.

Proof of Gallai's Lemma. Recall that $MSM(G) = (V, \mathcal{I})$ where \mathcal{I} is the set of matchable sets. Since each vertex is avoidable, MSM(G) has no coloops. For an edge e = uv of G, $\nu(G - u - v) < \nu(G)$. Hence $\{u, v\}$ is a series pair of MSM(G). However G is connected, so by Assignment 1 Problem 1, each pair of vertices of G is a series-pair of MSM(G). Hence def(G) = 1.

Proof of Tutte-Berge Formula. For each $X \subseteq V(G)$,

$$def(G) \ge def(G - X) - |X| \ge odd(G - X) - |X|.$$

It remains to find $X \subseteq V(G)$ for which equality holds. Choose $X \subseteq V(G)$ maximal such that

$$def(G) = def(G - X) - |X|.$$

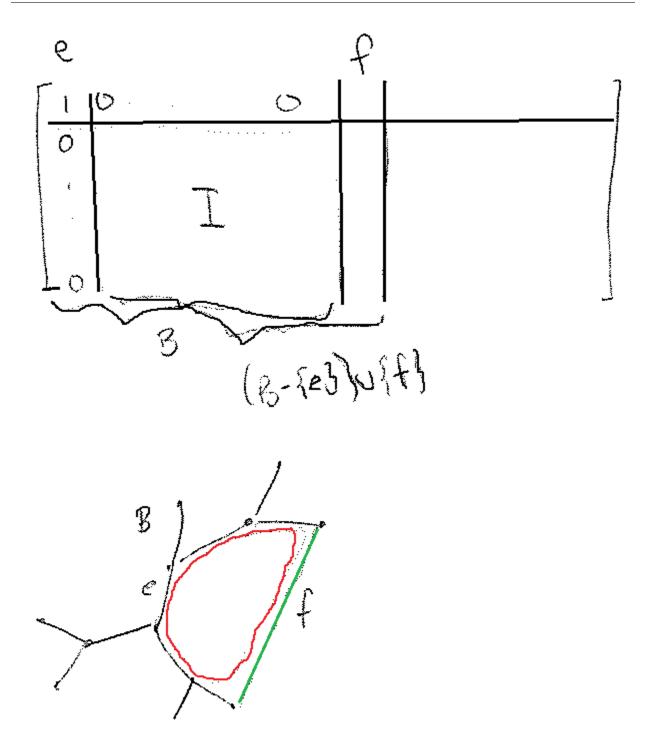
By our choice of X each component of G - X is hypomatchable. Hence def(G) = odd(G - X) - |X|.

2 Binary Matroids

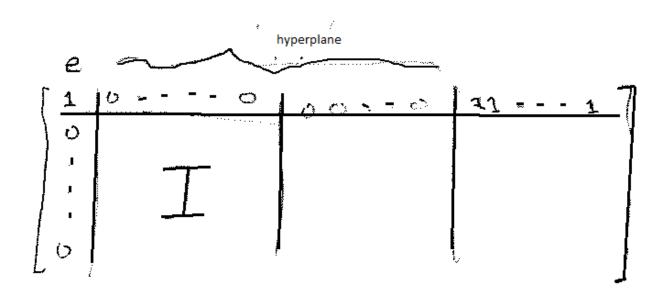
DEFINITION 121. Let B be a basis of a matroid $M = (E, \mathcal{I})$. Define $F(M, B) \in GF(2)^{B \times (E-B)}$ such that

$$F(M,B)_{e,f} \coloneqq \begin{cases} 1, & (B-\{e\}) \cup \{f\} \text{ is a basis} \\ 0, & \text{otherwise.} \end{cases}$$

We call F(M, B) the fundamental matrix of (M, B).



DEFINITION 122. For $e \in B$, $E - cl_M(B - \{e\})$ is the unique cocircuit of M that is disjoint from $B - \{e\}$; we call $E - cl_M(B - \{e\})$ the fundamental cocircuit of e in (M, B).



EXERCISE 123. Prove that

$$E - cl_M(B - \{e\}) = \{e\} \cup \{f \in E - B; F(M, B)_{e,f} = 1\}.$$

DEFINITION 124. By duality, if $f \in E - B$ then there exists a unique circuit C in $B \cup \{f\}$; we call C the fundamental circuit of f in (M, B).

REMARK 125. By the exercise,

$$C = \{f\} \cup \{e \in B; F(M, B)_{e,f} = 1\}$$

LEMMA 126. [2.1] Let B be a basis of a binary matroid M(A). Then

rowspace(A) = rowspace($\begin{bmatrix} I & F(M(A), B) \end{bmatrix}$).

Proof. Up to row operations, we may assume that

$$A = \begin{bmatrix} I & A' \end{bmatrix}.$$

For each $E \in B$ and $f \notin B$, $(B - \{e\}) \cup \{f\}$ is a basis of M if and only if $A'_{e,f} = 1$. Thus A' = F.

LEMMA 127. [2.2] Let B be a basis of a matroid M. Then M is binary if and only if $M = M([I \ F])$.

Proof. This follows from Lemma 2.1.

LEMMA 128. [2.3] Suppose that $M(A_1)$ is a binary matroid and $M(A_1)^* = M(A_2)$. Then rowspace $(A_1)^{\perp} = \text{rowspace}(A_2)$.

Proof. Note that $F(M(A_2), E - B) = F(M(A_1), B)^*$. By an assignment problem, rowspace($\begin{bmatrix} I & F(M(A_1), B) \end{bmatrix}$)^{\perp} = rowspace($\begin{bmatrix} F(M(A_1), B)^t & I \end{bmatrix}$).

Hence, by Lemma 2.1,

rowspace
$$(A_1)^{\perp}$$
 = rowspace $(\begin{bmatrix} I & F(M(A_1), B) \end{bmatrix})^{\perp}$
= rowspace $(\begin{bmatrix} F(M(A_1), B)^t & I \end{bmatrix})$
= rowspace (A_2) .

REMARK 129. (1) Lemma 2.3 is a partial converse of Theorem 1.17.

(2) We see rowspace(A_1) and rowspace(A_2) are invariants of the binary matroid $M(A_1)$. That is, they are determined by the matroid and are independent of the representation. In particular, the following definition is well-defined.

2.1 Cycles and Cocyles

DEFINITION 130. Let $M = M(A_1) = M(A_2)^*$ be a binary matroid. We call rowspace (A_1) the *cocycle space* of M and denote it by $\mathcal{C}^*(M)$. We call rowspace (A_2) the *cycle space* of M and denote it by $\mathcal{C}(M)$.

DEFINITION 131. Let M = M(A) be a binary matroid. We call $C \subseteq E(M)$ a cycle of M if the columns of A|C sum to zero. Equivalently, $C \subseteq E(M)$ is a cycle of M if the characteristic vector of C is in $\mathcal{C}(M)$.

LEMMA 132. [2.4] In a binary matroid $M, C \subseteq E(M)$ is a cycle if and only if C is a disjoint union of circuits.

Proof. We may assume that $C \neq \emptyset$. Now C is dependent, and, hence, C contains a circuit C'. Note that C' is itself a cycle and hence C - C' is a cycle. Now the result follows inductively.

DEFINITION 133. Let M = M(A) be a binary matroid. We call $C^* \subseteq E(M)$ a cocycle of M(A) if C^* is a cycle of $M(A)^*$. Equivalently, $C^* \subseteq E(M)$ is a cocycle of M(A) if the characteristic vector of C^* is in $\mathcal{C}^*(M)$.

2.2 Graphs

DEFINITION 134. We say a graph G is *even* if each vertex has even degree.

REMARK 135. Let G be a graph. Then $C^* \subseteq E(G)$ is a cocycle of M(G) if and only if C^* is a cut of G, and $C \subseteq M(G)$ is a cycle of M(G) if and only if G[V,C] is even.

REMARK 136. By Lemma 2.3, if C is a cycle and C^* is a cocycle in a binary matroid, then $|C \cap C^*|$ is even. In particular, this holds when C is a circuit and C^* is a cocircuit.

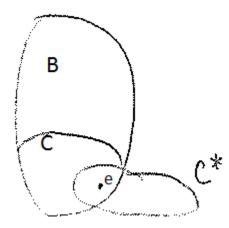
EXERCISE 137. Let C be a circuit and C^* be a cocircuit of a matroid M. Prove that $|C \cap C^*| \neq 1$.

LEMMA 138. [2.5] Let M, N be matroids on a common ground set E. If

- (1) each circuit of M is a circuit of N, and
- (2) each cocircuit of M is a cocircuit of N, then

M = N.

Proof. Suppose that $M \neq N$. Then there is a circuit C of N that is independent in M. Let B be a basis of M containing C. Let $e \in C$, and let C^* be the fundamental cocircuit of e in (M, B).



By (2), C^* is a cocircuit of N. However $|C \cap C^*| = 1$ Contradiction.

THEOREM 139. [2.6] A matroid M is binary if and only if for each circuit C and cocircuit C^* , $|C \cap C^*|$ is even.

Proof. If M is binary, C is a circuit of M, and C^* is a cocircuit of M, then by Lemma 2.3, $|C \cap C^*|$ is even.

Conversely, suppose that $|C \cap C^*|$ is even for each circuit C and cocircuit C^* of M.

$$A_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} C^{*} \qquad A_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} C$$

Let \mathcal{C} denote the set of circuits of M and \mathcal{C}^* denote the set of cocircuits of M. Let A_1 be the " (\mathcal{C}^*, E) -incidence matrix" and A_2 be the " (\mathcal{C}, E) -incidence matrix."

CLAIM. We have $M(A_1^*) = M(A_2)$.

Proof of Claim. The rows of A_1 are orthogonal to the rows of A_2 ; it suffices to prove that

 $\operatorname{rank}(A_1) + \operatorname{rank}(A_2) \ge |E|.$

Let B be a basis of M. Now $\begin{bmatrix} I & F(M,B) \end{bmatrix}$ is a submatrix of A_1 , so rank $(A_1) \ge r(M)$. Similarly $\begin{bmatrix} F(M,B)^t & I \end{bmatrix}$ is a submatrix of A_2 , so rank $(A_2) \ge r(M^*) = |E| - r(M)$. Thus, rank $(A_1) + \operatorname{rank}(A_2) \ge |E|$ as required.

Now each circuit of M is a circuit of $M(A_1)$ and, by the claim, each circuit of M is a circuit of $M(A_1)$. By Lemma 2.5, $M = M(A_1)$.

THEOREM 140. [2.7 - TUTTE] A matroid M is binary if and only if it has no $U_{2,4}$ -minor. Proof. Let M be an excluded minor for the class of binary matroids. By Assignment 1, Problem 6, M is simple. By Lemma 1.2, if $r(M) \leq 2$, then $M \cong U_{2,4}$. Hence we may assume that $r(M) \geq 3$. By Theorem 2.6, there is a circuit C and cocircuit C^* with $|C \cap C^*|$ odd.

CLAIM (1). We have $C = C^*$.

Proof of Claim 1. Suppose not, then, up to duality, there exists $e \in C - C^*$. Now $C - \{e\}$ is a circuit in M/e and C^* is a cocircuit in M/e. Since $|C^* \cap (C - \{e\})|$ is odd, M/e is not binary — contradiction.

Note that, since $r(M) \ge 3$,

$$|E - C^*| \ge r(M \setminus C^*) = r(M) - 1 \ge 2.$$

Let $e \in E - C^*$.

CLAIM (2). There is a cocircuit \tilde{C} of $M \setminus e$ with $\tilde{C} \subseteq C^*$ and $|\tilde{C}|$ odd.

Proof of Claim 2. Let $f \in E - (C^* \cup \{e\})$. Now C^* is a cocircuit in M/f, and M/f is binary. So C^* is a cocycle in $M/f \setminus e$. By Lemma 2.4 and duality, we can partition C^* into cocircuits of $M/f \setminus e$; one of these, say \tilde{C} , is odd. Now \tilde{C} is a cocircuit of $M/f \setminus e = (M \setminus e)/f$ and, hence, also of $M \setminus e$.

Now C is a circuit in $M \\ e$, \tilde{C} is a cocircuit in $M \\ e$, and $|C \cap \tilde{C}| = |\tilde{C}|$ is odd. Hence $M \\ e$ is non-binary — contradiction.

2.3 Affine Matroids

DEFINITION 141. A binary matroid $M = (E, \mathcal{I})$ is affine if E is a cocycle of M.

REMARK 142. Note that, for a graph G,

- (1) M(G) is affine if and only if G is bipartite, and
- (2) $M(G)^*$ is affine if and only if G is even.

REMARK 143. Given $A \in GF(2)^{r \times E}$, M(A) is affine if and only if there exists $x \in GF(2)^r$ such that

$$x^t A = \mathbf{1}^t;$$

this can be checked efficiently.

THEOREM 144. [2.8] A binary matroid M is affine if and only if it has no odd-circuits.

Proof. Suppose that M has an odd circuit C. Note that M|C = M(G) where G is an odd circuit. Since G is not bipartite, M(G) = M|C is not affine. Hence M is not affine.

Conversely suppose that M is not affine. Then there is no solution to

$$x^t A = \mathbf{1}^t.$$

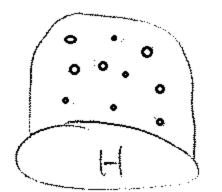
By the Fundamental Theorem of Linear Algebra, there exists $y \in GF(2)^E$ such that

$$Ay = 0$$
 and $\mathbf{1}^t y = 1$.

Let C = support(y). Since Ay = 0, C is a cycle of M(A) and, since $\mathbf{1}^t y = 1$, |C| is odd. By Lemma 2.4, C is a disjoint union of circuits, one of which must be odd.

2.4 Affine Geometries

DEFINITION 145. Let H be a hyperplane of PG(n-1,2). We denote $PG(n-1,2) \setminus H$ by AG(n-2,2).

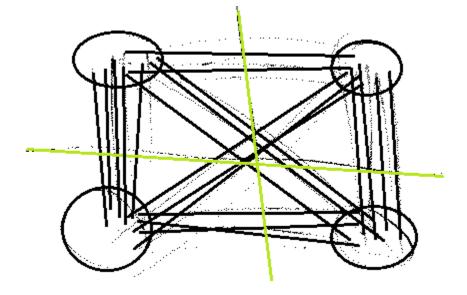


$$AG(r-1,2)$$

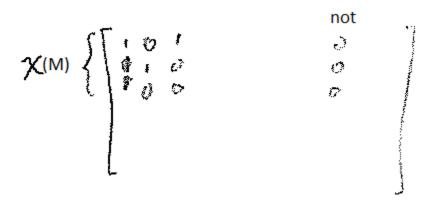
EXERCISE 146. Let M be a simple rank-r binary matroid. Prove that M is affine if and only if M is isomorphic to a restriction of AG(r-1,2).

2.5 Critical Number

REMARK 147. Note that G is 4-colourable if and only if there exist cocycles C_1, C_2 of M(G) such that $E(G) = C_1 \cup C_2$.



DEFINITION 148. The *critical number*, $\chi(M)$, of a matroid M, is the minimum number of cocycles required to cover E(M).



REMARK 149. This is well-defined if M has no loops, as in this case every element of M is in a cocycle and hence we may cover M with cocycles. Any loop of a matroid, on the other hand, is not contained in a cocycle, and hence we would not be able to cover M with cocycles.

Recall that $\chi(G)$ denotes the chromatic number of a graph G.

REMARK 150. Note that:

- (1) $\chi(G) \leq 2^k$ if and only if $\chi(M(G)) \leq k$;
- (2) $\chi(M(G)) = \lceil \log_2(\chi(G)) \rceil$.

2.6 Bose-Burton Geometries

DEFINITION 151. Let F be a rank-(r-c) flat of PG(r-1,2). We denote $PG(r-1,2) \\ \lor F$ by BB(r-1,2,c).

REMARK 152. It follows immediately from the definitions that BB(r-1,2,1) = AG(r-1,2).

EXERCISE 153. Let M be a simple rank-r binary matroid. Prove that $\chi(M) \leq c$ if and only if M is isomorphic to a restriction of BB(r-1,2,c).

2.7 Reformulations of the Four Colour Theorem

THEOREM 154. (1) If G = (V, E) is a loopless planar graph, then E is the union of two cocycles of M(G).

(2) If G = (V, E) is a bridgeless planar graph, then G is the union of two even subgraphs.

THEOREM 155. [2.9] If $M = (E, \mathcal{I})$ is a binary matroid, then there is a partition (C, C^*) of E into a cycle C and a cocycle C^* .

Proof. Exercise. Hint: Suppose $M = M(A_1)$ and $M^* = M(A_2)$. Is $\mathbf{1}^t \in \operatorname{rowspace}\left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \right)$? Apply the Fundamental Theorem of Linear Algebra.

COROLLARY 156. Every graph has a cut whose removal leaves an even subgraph.

3 Extremal Matroid Theory

Much of what we do in this section will be motivated by, and a generalization of, graph theory.

t-1 times

3.1 Turan

THEOREM 157. [TURAN'S THEOREM] If G = (V, E) is a simple n-vertex graph with no subgraph isomorphic to K_t , then

$$|E| \le \frac{t-2}{t-1} \binom{n}{2}.$$

REMARK 158. Note that, when n = k(t-1), equality is attained by $K_{k,\ldots,k}$.

DEFINITION 159. Let N be a simple binary matroid. A binary matroid M is N-free if no restriction of M is isomorphic to N. We let ex(N,r) denote the maximum number of elements in a simple N-free rank-r binary matroid. We denote ex(PG(t-1,2),r) by ex(t,r).

PROBLEM 160. Determine ex(t, r).

3.2 Triangle-free binary matroids

REMARK 161. Note that $PG(1,2) = U_{2,3} = M(K_3)$.



DEFINITION 162. A 3-element circuit in a matroid is called a *triangle*.

REMARK 163. Note that AG(r-1,2) has no odd-circuit, and so is triangle-free. Now

$$|AG(r-1,2)| = |PG(r-1,2)| - |PG(r-2,2)|$$
$$= (2^{r}-1) - (2^{r-1}-1)$$
$$= 2^{r-1}.$$

Hence $ex(2, r) \ge 2^{r-1}$.

THEOREM 164. [3.1] For any r, $ex(2, r) = 2^{r-1}$.

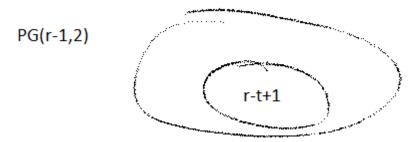
Proof. Let M be a simple rank-r triangle-free binary matroid considered as a restriction of PG(r-1,2). Let $e \in E(M)$. The number of lines of PG(r-1,2) that contain e is

$$\frac{1}{2}(|\mathrm{PG}(r-1,2)-1|) = 2^{r-1} - 1.$$

Each of these lines contains at most one other element of M, so

$$|M| \le 1 + (2^{r-1} - 1) = 2^{r-1}.$$

3.3 PG(t-1,2)-free binary matroids



Recall that BB(r-1,2,c) is obtained from PG(r-1,2) by deleting a rank-(r-c) flat.

LEMMA 165. [3.2] We have that BB(r-1, 2, t-1) is PG(t-1, 2)-free.

Proof. If F_1 is a rank-t flat in PG(r-1,2) and F_2 is a rank-(r-t+1) flat in PG(r-1,2), then

$$\sqcap (F_1, F_2) = r(F_1) + r(F_2) - r(F_1 \cup F_2) \ge t + r - (t - 1) - r = 1.$$

Recall $\sqcap(F_1, F_2) = \dim(F_1 \cap F_2)$. Hence $\operatorname{PG}(r-1, 2) \smallsetminus F_2$ is $\operatorname{PG}(t-1, 2)$ -free.

REMARK 166. Now

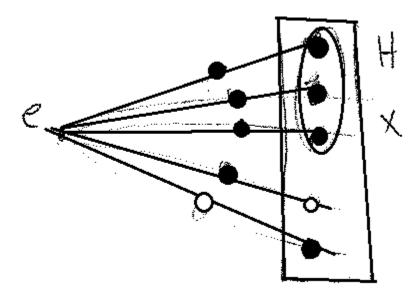
$$|BB(r-1,2,t-1)| = |PG(r-1,2)| - |PG(r-t,2)| = (2^{r}-1) - (2^{r-t+1}-1) = \left(1 - \frac{1}{2^{t-1}}\right)2^{r}.$$

Hence $\exp(t, r) \ge (1 - \frac{1}{2^{t-1}}) 2^r$.

THEOREM 167. [BOSE-BURTON THEOREM] For $r \ge t \ge 1$,

$$\exp(t,r) = \left(1 - \frac{1}{2^{t-1}}\right)2^r.$$

Proof. We proceed by induction on t. When t = 1, ex(1, r) = 0 so the result holds. Suppose that t > 1 and that the result holds for k < t. Let M be a simple PG(t - 1, 2)-free binary matroid considered as a restriction of PG(r - 1, 2).



Let $e \in E(M)$ and let H be a hyperplane of PG(r-1,2) that avoids e. Let X be the set of points $f \in H \cap E(M)$ such that e, f spans a triangle in M. Note that, since M is PG(t-1,2)-free, M|X is PG(t-2,2)-free. By the induction hypothesis,

$$|X| \le \exp(t-1, r-1) = \left(1 - 1\frac{1}{2^{t-2}}\right)2^{r-1}.$$

The number of lines of PG(r-1,2) that contain e is $2^{r-1} - 1$. So

$$|M| \le 1 + \left(2^{r-1} - 1\right) + |X| \le 2^{r-1} + \left(1 - \frac{1}{2^{t-2}}\right)2^{r-1} = \left(1 - \frac{1}{2^{t-1}}\right)2^r.$$

THEOREM 168. [3.3 - BOSE-BURTON] If M is a simple rank-r PG(t-1,2)-free binary matroid with |M| = ex(t,r), then $M \cong BB(r-1,2,t-1)$.

Proof. Exercise.

EXERCISE 169. Let X be a set of points in PG(r-1,2) such that no line of PG(r-1,2) contains exactly two points of X. Prove that X is a flat of PG(r-1,2).

3.4 Ramsey

THEOREM 170. [RAMSEY'S THEOREM] For each t there exists an n such that in any colouring of the edges of K_n with 2 colours, we get a monochromatic copy of K_t .

THEOREM 171. [BIPARTITE RAMSEY THEOREM] For each t there exists an n such that in any colouring of the edges of $K_{n,n}$ with 2 colours, we get a monochromatic copy of $K_{t,t}$. THEOREM 172. [DENSITY BIPARTITE RAMSEY THEOREM] For each integer t and $\epsilon > 0$ there exists an N such that for each $n \ge N$, if G = (V, E) is an n-vertex simple bipartite graph with $|E| \ge \epsilon n^2$, then G has a subgraph isomorphic to $K_{t,t}$.

- **REMARK 173.** (1) The Density Bipartite Ramsey Theorem implies the Bipartite Ramsey Theorem.
 - (2) The Density Bipartite Ramsey Theorem is a "bipartite analogue" of Turan's Theorem.
 - (3) Turan's Theorem does not imply Ramsey's Theorem.

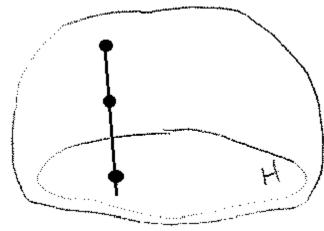
3.5 Hales-Jewett

THEOREM 174. [GEOMETRIC DENSITY HALES-JEWETT THEOREM - BINARY CASE] For each $\epsilon > 0$ and integer $t \ge 2$, there exists $R = \text{DHJ}(t, \epsilon)$ such that for each integer $r \ge R$, if Mis a simple rank-r AG(t - 1, 2)-free affine binary matroid, then $|M| \le \epsilon 2^r$.

Proof. We proceed by induction on t. The result is trivial when t = 2.

Now assume that for each $\epsilon' > 0$ there exists $DHJ(t - 1, \epsilon')$ such that, for each $r' \ge DHJ(t - 1, \epsilon')$ if N is a simple rank-r' AG(t - 2, 2)-free affine binary matroid, then $|N| \le 2^{r'}$.

Let $R \ge \text{DHJ}\left(t-1, \left(\frac{\epsilon}{2}\right)^2\right) + 1$ and be such that the claim below may be proven, and let M be a simple rank- $r \operatorname{AG}(t-1,2)$ -free affine binary matroid with $r \ge R$. Assume that $|M| > \epsilon 2^r$. Consider M as a restriction of $\operatorname{PG}(r-1,2)$ and let H be a hyperplane which is disjoint from M.

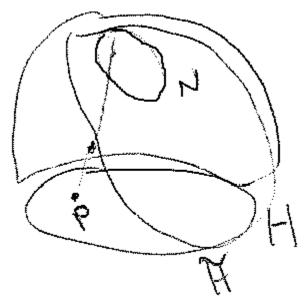


Let \mathcal{L} be the set of all line of PG(r-1,2) that contain two elements of M. Note that each line in \mathcal{L} meets H.

CLAIM. There is a point $p \in H$ that is contained in more than $\left(\frac{\epsilon}{2}\right)^2 2^{r-1}$ lines in \mathcal{L} .

Proof of Claim. Exercise.

Let \tilde{H} be a hyperplane of PG(r-1,2) that does not contain p, and let N be the restriction of \tilde{H} to the points q such that $\{p,q\}$ spans a line in \mathcal{L} .



Now N is a simple affine binary matroid with rank at most (r-1) such that $|N| > \left(\frac{\epsilon}{2}\right)^2 2^{r-1}$ and

$$r-1 \ge \mathrm{DHJ}\left(t-1, \left(\frac{\epsilon}{2}\right)^2\right).$$

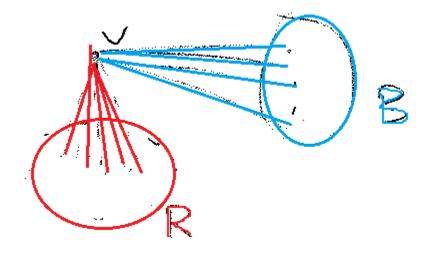
This means that N has an AG(t-2,2)-restriction. Then M has an AG(t-1,2)-restriction.

THEOREM 175. [GEOMETRIC HALES-JEWETT THEOREM] For each $t \in \mathbb{Z}_+$ there exists R = HJ(t) such that, for each integer $r \ge R$ and for each 2-colouring of the elements of AG(r-1,2), there is a monochromatic copy of AG(t-1,2).

Proof. Let R = DHJ(t, 1/4) and let $r \ge R$. Consider a partition (C_1, C_2) of E(AG(r-1, 2)) with $|C_1| \ge |C_2|$. Now $|C_1| \ge \frac{1}{4}r^2 = \frac{1}{2}|\text{AG}(r-1, 2)|$. Then, by the Geometric Density Hales-Jewett Theorem $\text{AG}(r-1, 2)|C_1$ contains a restriction isomorphic to AG(t-1, 2).

3.6 More Ramsey

THEOREM 176. [RAMSEY'S THEOREM] For each $r, b \in \mathbb{Z}_+$ there exists R(r, b) such that for each $n \ge R(r, b)$ if we red/blue colour the edges of K_n then we will get a red K_r or a blue K_b .



Proof. We proceed by induction on r + b. The result is trivial when r = 1 or b = 1.

Assume that if $r', b' \in \mathbb{Z}^+$ with r' + b' < r + b then there exists R(r', b') such that, for each $n \ge R(r', b')$ if we red/blue colour the edges of K_n then we get either a red $K_{r'}$ or a blue $K_{b'}$. Let R(r, b) = R(r - 1, b) + R(r, b - 1) + 1. Consider a red-blue colouring of the edges of K_n where $n \ge R(r, b)$. Let $v \in V(K_n)$. Let $R = \{w \in V(K_n) - \{v\}; vw \text{ is red}\}$ and $B = \{w \in V(K_n) - \{v\}; vw \text{ is blue}\}$. Assume that G has no red K_r or blue K_b . Then

- (1) G[R] has no red K_{r-1} or blue K_b , and
- (2) G[B] has no red K_r or blue K_{b-1} .

Thus inductively we have

$$n \ge (r-1,b) + R(r,b-1) + 1 > |R| + |B| + 1 = n,$$

which is a contradiction.

THEOREM 177. [GEOMETRIC RAMSEY THEOREM] For each $b, r \in \mathbb{Z}_+$ there exists GR(b, r) such that for each $n \ge GR(b, r)$, in any blue/red colouring of the elements of PG(n-1,2) we will find a blue PG(b-1,2) or a red PG(r-1,2).

Proof. Exercise. Hint: Consider a cocircuit C of PG(n-1,2) and apply the Geometric Hales-Jewett Theorem to PG(n-1,2)|C.

3.7 Erdös-Stone

DEFINITION 178. For a simple graph H, we let ex(H, n) be the maximum number of edges in a simple *n*-vertex *H*-free graph.

REMARK 179. Let H be a simple graph with chromatic number at least two. If G has chromatic number less than $\chi(H)$, then G is H-free. Hence, if n is divisible by $\chi(H) - 1$, then

$$\exp(H,n) > \left(\frac{\chi(H)-2}{\chi(H)-1}\right) \binom{n}{2}.$$

THEOREM 180. [ERDÖS-STONE THEOREM - 1946] If H is a simple graph with chromatic number at least two, then

$$\lim_{n\to\infty}\frac{\operatorname{ex}(H,n)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}.$$

REMARK 181. Let N be a simple binary matroid. If M is a binary matroid with $\chi(M) < \chi(N)$, then M is N-free. So

$$\exp(N, r) \ge |BB(r - 1, 2, \chi(N) - 1)| = (1 - 2^{1 - \chi(N)}) 2^r.$$

THEOREM 182. [GEOMETRIC ERDÖS-STONE THEOREM - 2014] If N is a simple binary matroid then

$$\lim_{r \to \infty} \frac{\exp(N, r)}{2^r} = 1 - 2^{1 - \chi(N)}$$

REMARK 183. Note that:

- (1) When $\chi(N) = 1$ (that is, when N is affine), $1 2^{1-\chi(N)} = 0$.
- (2) When $\chi(N) \ge 2$, the theorem gives the asymptotic behaviour of ex(N, r).

LEMMA 184. [3.4] If M is a loopless binary matroid then M has an affine restriction N with $|N| \ge \frac{1}{2}|M|$.

Proof. Let M = M(A) where $A \in GF(2)^{r \times E}$. Choose $x \in GF(2)^r$ uniformly at random and consider the cocycle C^* whose characteristic vector is $x^t A$. Note that for each $e \in E(M)$,

$$\operatorname{Prob}(e \in C^*) = \frac{1}{2}.$$

By linearity of expectation, the expected size of C^* is $\frac{1}{2}|E|$.

So there exists a cocycle C with size $\geq \frac{1}{2}|E|$. By definition, M|C is affine.

REMARK 185. For a loopless graph G, Lemma 3.4 shows that G has a cut of size at least $\frac{1}{2}|E(G)|$.

PROBLEM 186. Given a loopless binary matroid M = M(A), can we find a cocycle C with $|C| \ge \frac{1}{2}|M|$ in polynomial-time?

THEOREM 187. [3.5] For each $m \ge 0$ and $\epsilon > 0$ there exists $GES(m, 1, \epsilon)$ such that

$$\exp(\mathrm{AG}(m-1,2),r) < \epsilon 2^r$$

for all $r \geq \text{GES}(m, 1, \epsilon)$.

Proof. Let GES $(m, 1, \epsilon)$ = DHJ $(m, \epsilon/2)$. Let M be a simple rank-r matroid with $|M| \ge \epsilon 2^r$ and $r \ge \text{GES}(m1, 1\epsilon)$. By Lemma 3.4, M has an affine restriction N with $|N| \ge \frac{\epsilon}{2}2^r$. By the Geometric Density Hales-Jewett Theorem, N has a restriction isomorphic to AG(m-1, 2). ■

REMARK 188. Note that Theorem 3.5 implies the Geometric Erdös-Stone Theorem in the case that N is affine (that is, $\chi(N) = 1$).

THEOREM 189. [3.6] For each $m \ge 0$ and $\epsilon > 0$ there exists $GES(m, 2, \epsilon)$ such that

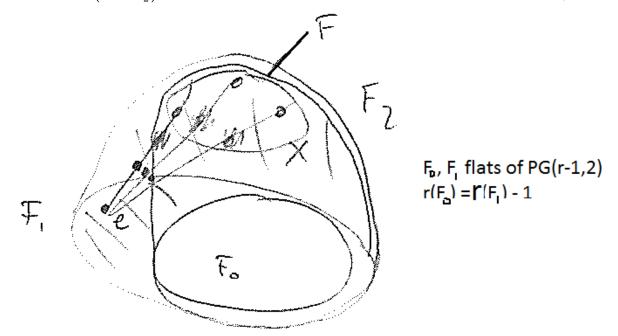
$$\exp(\mathrm{BB}(m-1,2,2),r) \le \left(\frac{1}{2} + \epsilon\right)2^r$$

for all $r \geq \text{GES}(m, 2, \epsilon)$.

Proof. Let $\epsilon > 0$ and $m \in \mathbb{Z}_+$.

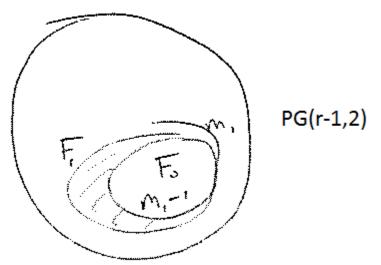
- (1) Let $m_1 = \text{DHJ}\left(m 1, \frac{\epsilon}{2}\right)$
- (2) Choose m_2 minimum such that $2^{m_1} \leq \frac{\epsilon}{2} 2^{m_2}$.

Now let $\operatorname{GES}(m, 2, \epsilon) = \max(m_2, \operatorname{GES}(m_1, 1, \frac{1}{2}))$. Let M be a simple rank-r binary matroid with $|M| \ge (\frac{1}{2} + \epsilon) 2^r$ and $r \ge \operatorname{GES}(m, 2, \epsilon)$. Consider M as a restriction of $\operatorname{PG}(r-1, 2)$. Note that $r \ge \operatorname{GES}(m_1, 1, \frac{1}{2})$, so, by Theorem 3.5, M has a restriction isomorphic to $\operatorname{AG}(m, -1, 2)$.



Page 38 of 90

So there exist flats $F_0 \subseteq F_1$ in PG(r-1,2) such that $r(F_1) = m_1$, $r(F_0) = m_1 - 1$, and $F_1 - F_0 \subseteq E(M)$. Let $M' = M \setminus (F_1 \cap E(M))$. By (2), $|F_1 \cap E(M)| \le \frac{\epsilon}{2}2^r$, so $|M'| \ge (\frac{1}{2} + \frac{\epsilon}{2})2^r$.



CLAIM. There is a rank- $(m_1 + 1)$ flat F_2 with $F_1 \subseteq F_2$, such that $|F_2 \cap M'| \ge \left(\frac{1}{2} + \frac{\epsilon}{2}\right) 2^{m_1}$.

Proof of Claim. Exercise.

Note that $|F_2 - F_1| = 2^{m_1}$. Let $e \in F_1 - F_0$, let F be a rank- m_1 flat with $F_0 \subseteq F \subseteq F_2 - \{e\}$. Let \mathcal{L} denote the lines containing and a point of $F - F_0$. Note that $|\mathcal{L}| = 2^{m_1 - 1}$. Let $Z \subseteq F - F_0$ be the set of points f that the line spanned by $\{e, f\}$ is contained in E(M).

Now

$$\left(\frac{1}{2} + \frac{\epsilon}{2}\right) 2^{m_1} \le |F_2 \cap M'| \le |Z| + |\mathcal{L}| = |Z| + \frac{1}{2} 2^{m_1}.$$

Hence $|Z| \geq \frac{\epsilon}{2} 2^{m_1}$.

Let N = M|Z. Now N is a rank- $(\leq m_1)$ affine matroid with $|N| \geq \frac{\epsilon}{2}2^{m_1}$. Moreover, $m_1 = \text{DHJ}(m-1, \frac{\epsilon}{2})$. Hence N has a restriction N' isomorphic to AG(m-2,2). Let F' be the flat of M' spanned by N' and let F'' be the rank-m flat spanned by $F' \cup \{e\}$. Now $F'' - F_0 \subseteq E(M)$ and $r(F' \cap F_0) = m-2$, so $M|(F'' - F_0) \cong BB(m-1,2,2)$.

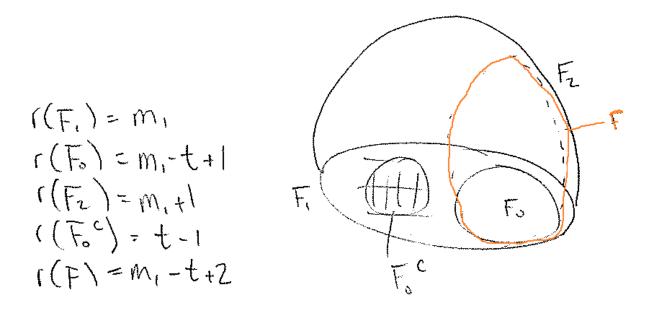
REMARK 190. Note that, if N is a simple rank-m binary matroid with $\chi(N) = 2$, then N is isomorphic to a restriction of BB(m - 1, 2, 2). So Theorem 3.6 implies the Geometric Erdös-Stone Theorem in the case that $\chi(N) = 2$.

THEOREM 191. [3.7] For each $1 \le t < m$ and $\epsilon > 0$, there exists $GES(m, t, \epsilon)$ such that

$$\exp(\mathrm{BB}(m-1,2,t),r) \le (1-2^{1-t}+\epsilon)2^r$$

for all $r \geq \text{GES}(m, t, \epsilon)$.

Proof. Exercise.



4 Matroid Union and Partition

PROBLEM 192. [MATROID PARTITION PROBLEM] Let $M_1 = (E, \mathcal{I}_1), M_2 = (E, \mathcal{I}_2)$ be matroids. Determine

 $\max\left\{\left|I_1\cup I_2\right|;\,I_1\in\mathcal{I}_1,\,I_2\in\mathcal{I}_2\right\}.$

EXAMPLE 193. If we can answer the Matroid Partition Problem, then we can answer the following question: Given a graph G = (V, E) does G have two disjoint spanning trees? Indeed, the answer is yes if and only if the maximum above is 2r(M(G)), where M_1 and M_2 are both taken to be M(G).

DEFINITION 194. Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. Define $M_1 \cup M_2 \coloneqq (E, \mathcal{I})$ where

 $\mathcal{I} \coloneqq \{I_1 \cup I_2; I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2\}.$

An element of \mathcal{I} is called *partitionable*.

THEOREM 195. [4.1] If $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ are matroids then $M_1 \cup M_2$ is a matroid.

We need to prove some preliminary results before we can prove Theorem 4.1.

4.1 Direct Sum

DEFINITION 196. Let $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$ be matroids with $E_1 \cap E_2 = \emptyset$. Define $M_1 \oplus M_2 := (E_1 \cup E_2, \mathcal{I}')$ where

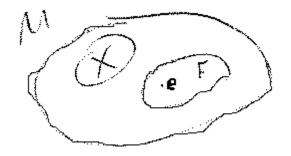
$$\mathcal{I}' \coloneqq \{I_1 \cup I_2; I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2\}.$$

Page 40 of 90

LEMMA 197. [4.2] If $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$ are matroids with $E_1 \cap E_2 = \emptyset$ then $M_1 \oplus M_2$ is a matroid.

Proof. Trivial.

4.2 Extending freely into a flat.



DEFINITION 198. Let F be a flat of a matroid $M = (E, \mathcal{I})$ and let $e \notin E$. Now define $M' := (E \cup \{e\}, \mathcal{I}')$ such that

- (1) $M' \smallsetminus e = M$ and
- (2) for $X \subseteq E$,

$$r_{M'}(X \cup \{e\}) \coloneqq \begin{cases} r_M(X), & F \subseteq \operatorname{cl}_M(X) \\ r_M(X) + 1, & \text{otherwise.} \end{cases}$$

We say that M' is obtained from M by *freely extending* into the flat F.

LEMMA 199. [4.3] If F is a flat of a matroid M and $e \notin E(M)$ then M' is a matroid.

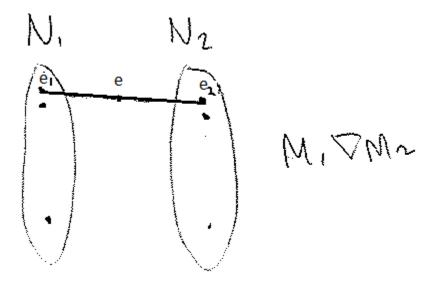
Proof. Exercise.

DEFINITION 200. Let M be a matroid and let $e, f \in E$ be distinct. We say that e is freer than f if for each circuit C of M containing e we have $f \in cl_M(C)$.

REMARK 201. Note that in the above construction, for each $f \in F$, e is freer then f.

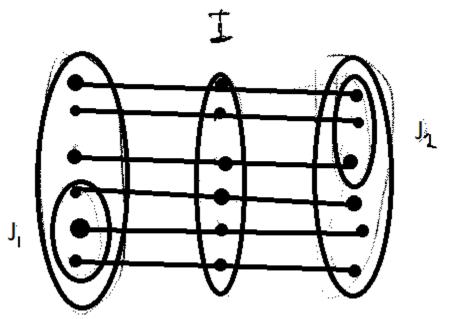
4.3 Constructing $M_1 \cup M_2$

DEFINITION **202.** Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. Take copies $N_1 = (E_1, \mathcal{I}_1)$ and $N_2 = (E_2, \mathcal{I}_2)$ of M_1 and M_2 , respectively, where E, E_1, E_2 are pairwise disjoint. For each $e \in E$, let e_1 and e_2 denote the copies of e in N_1 and N_2 respectively. Now construct $M_1 \nabla M_2$ from $N_2 \oplus N_2$ by, for each element $e \in E$, freely extending into the line $\{e_1, e_2\}$.



LEMMA 203. [4.4] If $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ are matroids then $(M_1 \nabla M_2) | E = M_1 \cup M_2$.

Proof. Let I be an independent set of $M_1 \cup M_2$; let (I_1, I_2) be a partition of I into an M_1 -independent set I_1 and an M_2 -independent set I_2 ; let J_1, J_2 be the copies of I_1, I_2 in N_1, N_2 respectively.



Hence $J_1 \cup J_2$ is independent in $M_1 \nabla M_2$. For each $e \in I$ we will (one element at a time) replace the copy $(e_1 \text{ or } e_2)$ of e in $J_1 \cup J_2$ with e; the resulting set will remain independent since e is freer than e_1 and e_2 . Therefore I is $(M_1 \nabla M_2)$ -independent.

Conversely, consider an $(M_1 \nabla M_2)$ -independent set $I \subseteq E$. It suffices to show that there is a partition (I_1, I_2) of I such that $\{e_1; e \in \mathcal{I}_1\} \cup \{e_2; e \in \mathcal{I}_2\}$ is $(M_1 \nabla M_2)$ -independent. We will find the partition by replacing each element $e \in E$, one at a time, with e_1 or e_2 . Since e is spanned by $\{e_1, e_2\}$, $I - \{e\}$ does not span both e_1 and e_2 . Hence either $(I - \{e\}) \cup \{e_1\}$ or $(I - \{e\}) \cup \{e_2\}$ is $(M_1 \nabla M_2)$ -independent.

Proof of Theorem 4.1. Lemma 4.4 implies Theorem 4.1, because we know $(M_1 \nabla M_2) | E$ is a matroid.

LEMMA 204. [4.5] Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. For $A \subseteq E$,

$$r(M_1 \cup M_2) \le |E - A| + r_{M_1}(A) + r_{M_2}(A)$$

Proof. Note that $(M_1 \cup M_2)|A = (M_1|A) \cup (M_2|A)$. So

$$r(M_{1} \cup M_{2}) \leq |E - A| + r((M_{1} \cup M_{2})|A)$$

= $|E - A| + r((M_{1}|A) \cup (M_{2}|A))$
 $\leq |E - A| + r(M_{1}|A) + r(M_{2}|A)$
= $|E - A| + r_{M_{1}}(A) + r_{M_{2}}(A).$

THEOREM 205. [MATROID PARTITION THEOREM^{*} - EDMONDS] Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. then

$$r(M_1 \cup M_2) = \min_{A \subseteq E} (|E - A| + r_{M_1}(A) + r_{M_2}(A)).$$

(*Here we stated the version for two matroids, while the general theorem applies to any finite number of matroids.)

LEMMA 206. [4.6] Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. If $M_1 \cup M_2$ has no coloops then

$$r(M_1 \cup M_2) = r(M_1) + r(M_2).$$

Proof. Consider the construction of $M_1 \nabla M_2$. For $S \subseteq E$, let $\tilde{S} = (E - S) \cup \{e_1; e \in S\} \cup \{e_2; e \in S\}$. Then $\tilde{E} = E_1 \cup E_2$, which has rank $r(M_1) + r(M_2)$ in $M_1 \nabla M_2$, and $\tilde{\emptyset} = E$.

For a contradiction, suppose that $r_{M_1 \nabla M_2}(\tilde{\emptyset}) < r(M_1) + r(M_2)$. Choose $S \subseteq E$ minimal such that $r(\tilde{S}) = r(M_1) + r(M_2)$ and let $e \in S$. Let $T = S - \{e\}$.

First suppose that e is a coloop of $(M_1 \nabla M_2) | \tilde{T}$. Then e is a coloop of $(M_1 \nabla M_2) | E$. But $(M_1 \nabla M_2) | E = M_1 \cup M_2$ — contradiction.

So it must be the case that e is not a coloop of $(M_1 \nabla M_2) | \tilde{T}$. Then $\tilde{S} - \{e_1, e_2\}$ spans e. However, e is freer than $\{e_1, e_2\}$, so $\tilde{S} - \{e_1, e_2\}$ spans e_1 and e_2 . So

$$r_{M_1 \nabla M_2} (\tilde{S} - \{e_1, e_2\}) = r_{M_1 \nabla M_2} (\tilde{S}) = r(M_1) + r(M_2).$$

But then

$$r_{M_1 \nabla M_2}(\tilde{T}) = r_{M_1 \nabla M_2}(\tilde{T} - \{e\}) = r_{M_1 \nabla M_2}(\tilde{S} - \{e_1, e_2\}) = r(M_1) + r(M_2)$$

- contradiction.

THEOREM 207. [4.7] If X is the set of coloops of $M_1 \cup M_2$, then

$$r(M_1 \cup M_2) = |X| + r_{M_1}(E - X) + r_{M_2}(E - X).$$

Proof. Note that $(M_1 \cup M_2) \setminus X$ has no coloops and $r(M_1 \cup M_2) = |X| + r((M_1 \cup M_2) \setminus X)$. Moreover $(M_1 \cup M_2) \setminus X = (M_1 \setminus X) \cup (M_2 \setminus X)$. By Lemma 4.6,

$$r(M_1 \smallsetminus X \cup (M_2 \smallsetminus X)) = r(M_1 \smallsetminus X) + r(M_2 \smallsetminus X) = r_{M_1}(E_X) + r_{M_2}(E - X).$$

The result follows.

REMARK 208. Note that Theorem 4.7 implies the Matroid Partition Theorem, which we now state in full generality.

THEOREM 209. [MATROID PARTITION THEOREM - EDMONDS] If M_1, \ldots, M_k are matroids on a common ground set E then

$$r(M_1 \cup \dots \cup M_k) = \min_{A \subseteq E} (|E - A| + r_{M_1}(A) + \dots + r_{M_k}(A)).$$

Proof. Exercise.

Matroid Algorithms (Oracle Model) 4.4

DEFINITION 210. A matroid $M = (E, \mathcal{I})$ is given by E and access to an oracle for computing $r_M(X)$ for any given set $X \subseteq E$. Calls to the rank oracle take one time unit.

THEOREM 211. [4.8 - EDMONDS, 1965] There is an algorithm that, given matroids M_1, \ldots, M_k on a common ground set E, computes $r(M_1 \cup \cdots \cup M_k)$ in $O(k^3 |E|^3)$ -time.

Proof. Do CO 450/650.

Packing Bases 4.5

PROBLEM 212. Given a matroid M and an integer k, does M have k disjoint bases?

(1) A matroid M has k disjoint bases if and only if $r(\underbrace{M \cup \cdots \cup M}_{k \text{ copies}}) = kr(M)$. Remark **213**.

(2) If B is a basis of M and $e \in E(M)$, then B contains a basis of M/e.

(3) For $X \subseteq E(M)$, if M has k disjoint bases then so does M/X.

(4) If M has k disjoint bases, then $|M| \ge kr(M)$.

THEOREM 214. [4.9 - TUTTE, NASH-WILLIAMS] A matroid $M = (E, \mathcal{I})$ has k disjoint bases if and only if $|M/X| \ge kr(M/X)$ for each $X \subseteq E$.

Proof. If M has k disjoint bases, then by (2) and (3) above, $|M/X| \ge kr(M/X)$ for each $X \subseteq E(M)$.

Conversely, suppose that M does not have k disjoint bases. Then, by (1) above,

$$r(\underbrace{M \cup \dots \cup M}_{k \text{ copies}}) < kr(M).$$

By the Matroid Partition Theorem, there exists $X \subseteq E$ such that

$$kr(M) > |E - X| + kr_M(X).$$

Thus

$$|M/X| = |E - X| < k(r(M) - r_M(X)) = kr(M/X).$$

COROLLARY **215.** [4.10] If G is (2k)-edge-connected, then G has k edge-disjoint spanning trees.

Proof. If G is (2k)-edge-connected, then G/X is (2k)-edge-connected for each $X \subseteq E(G)$. So, by Theorem 4.9, it suffices to prove that, if H is a (2k)-edge-connected graph, then

$$|E(H)| \ge k(|V(H)| - 1).$$

Now

$$|E(H)| = \frac{1}{2} \sum_{v \in V(H)} \deg_H(v) \ge \frac{1}{2} \sum_{v \in V(H)} 2k = k |V(H)|,$$

as required.

4.6 Covering with independent sets

PROBLEM 216. Given a matroid $M = (E, \mathcal{I})$ and $k \in \mathbb{Z}$, can we cover E with k independent sets?

EXAMPLE 217. Can we cover the edges of a graph G with k forests? This question can be resolved by applying the answer to the above problem to M(G).

REMARK 218. (1) We can cover E with k independent sets if and only if

$$r(\underbrace{M \cup \dots \cup M}_{k \text{ copies}}) = |E|.$$

(2) If we can cover M with k independent sets then we can cover M|A with k independent sets for each $A \subseteq E$.

(3) If we can cover M with k independent sets, then $|M| \leq kr(M)$.

THEOREM **219.** [4.11] A matroid M can be covered with k independent sets if and only if $|A| \leq kr(A)$ for each $A \subseteq E$.

Proof. If M can be covered by k independent sets, then, by (2) and (3) above, $|A| \leq kr(A)$, for each $A \subseteq E(M)$.

Conversely, suppose that M cannot be covered by k independent sets. Then, by (1),

$$r(\underbrace{M \cup \dots \cup M}_{k \text{ copies}}) < |E|.$$

By the Matroid Partition Theorem, there exists $A \subseteq E$ such that

$$|E| > r(\underbrace{M \cup \cdots \cup M}_{k \text{ copies}}) = |E - A| + kr_M(A).$$

Thus $kr_M(A) < |A|$.

COROLLARY 220. [4.12] Each simple planar graph can be covered by three forests.

Proof. By Theorem 4.11, it suffices to prove that, if H is a simple planar graph, then $|E(H)| \leq 3r(M(H))$. By possibly identifying vertices, we may assume that H is connected. We may also assume that $|V(H)| \geq 3$. Then

$$|E(H)| \le 3(|V(H)| - 6) = 3r(M(H)) - 3 < 3r(M(H)),$$

as required.

REMARK 221. Since forests are bipartite, Corollary 4.12 implies that, if G is a loopless planar graph, then

$$\chi(G) \le 8.$$

COROLLARY **222.** [4.13] Let \mathcal{M} be a class of binary matroids that is closed under taking restrictions and let $k \in \mathbb{Z}_+$ such that, for each simple matroid $N \in \mathcal{M}$,

$$|N| \le kr(N).$$

Then, for each loopless $M \in \mathcal{M}, \chi(M) \leq k$.

Proof. Let $M \in \mathcal{M}$ be loopless and let \overline{M} be the simplification of M. Then $\chi(M) = \chi(\overline{M})$. By Theorem 4.11, there is a partition (I_1, \ldots, I_k) of $E(\overline{M})$ into independent sets. Since $M|I_j$ has no odd-circuit, $M|I_j$ is affine. Hence there are cocycles C_1, \ldots, C_k with $I_1 \subseteq C_1, \ldots, I_k \subseteq C_k$. Now $C_1 \cup \cdots \cup C_k = E(\overline{M})$, so $\chi(\overline{M}) \leq k$.

EXERCISE 223. [JAEGER] If M is a cographic matroid without coloops, then $\chi(M) \leq 3$.

_	

REMARK 224. The above exercise be restated as: Each bridgeless graph is the union of three even subgraphs.

EXERCISE **225.** Prove that if G is a 4-edge-connected graph then G is the union of two even subgraphs.

REMARK 226. The above exercise implies that: Planar graphs with girth four are 4-colourable.

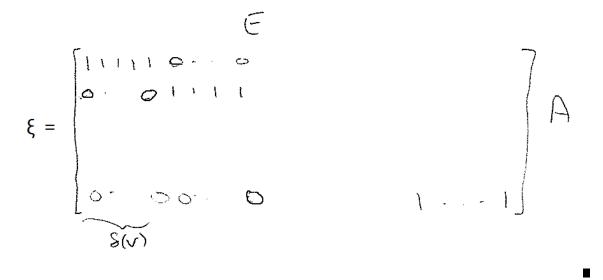
4.7 Matroid Intersection

DEFINITION 227. Let M_1 and M_2 be the matroids on a common ground set. We let $\nu(M_1, M_2)$ denote the maximum size of a common independent set.

DEFINITION 228. Let G = (V, E) be a bipartite graph with bipartition (A, B). Let $M_A := (E, \mathcal{I}_A)$ where $I \in \mathcal{I}_A$ if each vertex in A is incident with at most one edge in I. Let $M_B := (E, \mathcal{I}_B)$ where $I \in \mathcal{I}_B$ if each vertex in B is incident with at most one edge in I.

PROPOSITION 229. If G is a bipartite graph with bipartition (A, B) then M_A and M_B are matroids.

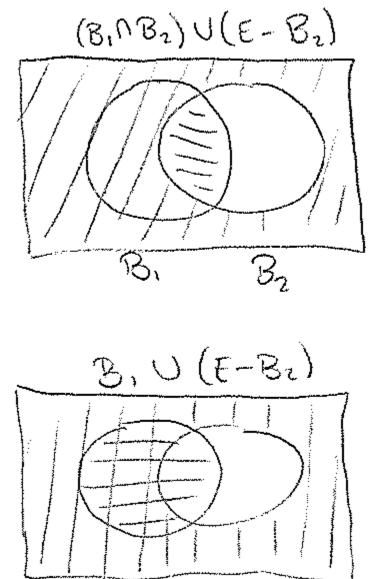
Proof. Simply note that $M_A = M(\xi)$, where ξ is given as follows:



REMARK 230. Now $M \subseteq E$ is a common independent set of M_A and M_B if and only if M is a matching. Hence $\nu(M_A, M_B) = \nu(G)$.

LEMMA 231. [4.14] Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be matroids. Then

$$\nu(M_1, M_2) = r(M_1 \cup M_2^*) - r(M_2^*).$$



Proof. Let \mathcal{B}_1 and \mathcal{B}_2 denote the set of bases of M_1 and M_2 respectively. For $B_1 \in \mathcal{B}_1$ and $B_2 \in \mathcal{B}_2$,

$$|B_1 \cap B_2| + r(M_2^*) = |B_1 \cap B_2| + |E - B_2| = |(B_1 \cap B_2) \cup (E - B_2)| = |B_1 \cup (E - B_2)|.$$

Hence

$$\nu(M_1, M_2) + r(M_2^*) = \left(\max_{(B_1, B_2) \in \mathcal{B}_1 \times \mathcal{B}_2} |B_1 \cap B_2|\right) + r(M_2^*)$$
$$= \max_{(B_1, B_2) \in \mathcal{B}_1 \times \mathcal{B}_2} |B_1 \cup (E - B_2)|$$
$$= r(M_1 \cup M_2^*).$$

THEOREM 232. [MATROID INTERSECTION THEOREM - EDMONDS 1965] For matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$,

$$\nu(M_1, M_2) = \min_{A \subseteq E} (r_{M_1}(A) + r_{M_2}(E - A)).$$

Proof. By Lemma 4.1 and the Matroid Partition Theorem we have

$$\nu(M_1, M_2) = r(M_1 \cup M_2^*) - r(M_2^*)$$

= $\min_{A \subseteq E} (|E - A| + r_{M_1}(A) + r_{M_2^*}(A)) - r(M_2^*)$
= $\min_{A \subseteq E} (|E| - |A| + r_{M_1}(A) + |A| - (r(M_2) - r_{M_2}(E - A)) - (|E| - r(M_2)))$
= $\min_{A \subseteq E} (r_M(A) + r_{M_2}(E - A)).$

4.8 Application to bipartite matching

DEFINITION 233. Recall that for a graph $G = (V, E), C \subseteq V$ is a *cover* of G if G - C has no edges.

THEOREM 234. [KÖNIG'S THEOREM] In a bipartite graph, the maximum size of a matching is equal to the minimum size of a cover.

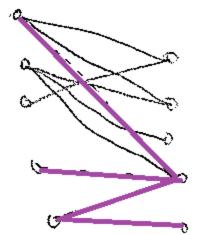
Proof. Let G = (V, E) be bipartite with bipartition (A, B), and let M_A, M_B be the associated matroids. If C is a cover, then

$$\nu(G) \le \nu(G - C) + |C| = |C|.$$

It remains to prove that there is a cover attaining equality.

Recall that $\nu(G) = \nu(M_A, M_B)$. By the Matroid Intersection Theorem, there is a partition (X_A, X_B) of E such that

$$\nu(M_A, M_B) = r_{M_A}(X_A) + r_{M_B}(X_B).$$



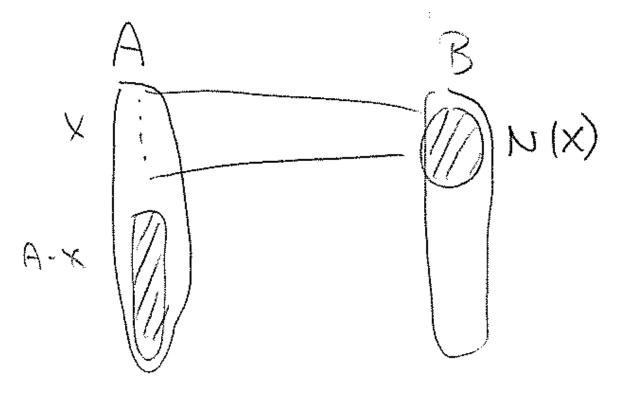
Let C_A be the vertices in A incident with edges in X_A and let C_B be the vertices in B incident with edges in X_B

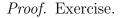
Now let $C = C_A \cup C_B$. Thus C is a cover and

$$|C| = |C_A| + |C_B| = r_{M_A}(X_A) + r_{M_B}(X_B) = \nu(M_A, M_B) = \nu(G),$$

as required.

THEOREM 235. [MENDELSON'S THEOREM] Let G be a bipartite graph with bipartition (A, B). Let X be the set of avoidable vertices in A, and let $C = (A - X) \cup N(X)$. Then C is a cover and $|C| = \nu(G)$.





5 Matroid Connectivity

LEMMA 236. [5.0] Let (X, Y) be a partition of the ground set of a matroid $M = (E, \mathcal{I})$. Then $M = (M|X) \oplus (M|Y)$ if and only if $r_M(X) + r_Y(Y) = r(M)$.

Proof. If $M = (M|X) \oplus (M|Y)$, then

$$r_M(X) + r_M(Y) = r_M(X \cup Y) = r(M).$$

Conversely, suppose that $r_M(X) + r_M(Y) = r(M)$. Thus $\sqcap_M(X, Y) = 0$. By Assignment 1 Problem 8, $\sqcap(X', Y') = 0$ for each $X' \subseteq X$ and $Y' \subseteq Y$. That is $r_M(X' \cup Y') = r_M(X') + r_M(Y')$. Hence $M = (M|X) \oplus (M|Y)$.

DEFINITION 237. A matroid $M = (E, \mathcal{I})$ is *connected* if for each proper partition (X, Y) of $E, r_M(X) + r_M(Y) > r(M)$. Equivalently, $\sqcap_M(X, Y) \ge 1$.

DEFINITION 238. Let $M = (E, \mathcal{I})$ be a matroid. For $X \subseteq E$, the *connectivity* of X in M is

$$\lambda_M(X) \coloneqq \sqcap_M(X, E - X).$$

REMARK **239.** Recalling the definition of \sqcap , we have

 $\lambda_M(X) = r_M(X) + r_M(E - X) - r(M).$

LEMMA 240. [5.1] If M is a matroid then

$$\lambda_M(X) = r_M(X) + r_{M^*}(X) - |X|.$$

Proof. We have

$$r_M(X) + r_{M^*}(X) = r_M(X) + |X| - (r(M) - r_M(E - X)) = \lambda_M(X) + |X|.$$

LEMMA 241. [5.2] (1) $\lambda(X) = \lambda(E - X)$, for each $X \subseteq E$.

- (2) $\lambda(X) + \lambda(Y) \ge \lambda(X \cap Y) + \lambda(X \cup Y)$, for each $X, Y \subseteq E$.
- (3) $\lambda_M(X) = \lambda_{M^*}(X)$ for each $X \subseteq E$.

 $\it Proof.$ Immediate by Lemma 5.1 and the definition.

LEMMA 242. [5.3] For disjoint $X, C \subseteq E$ in a matroid $M = (E, \mathcal{I})$ we have

$$\lambda_{M/C}(X) = \lambda_M(X) - \sqcap_M(X,C).$$

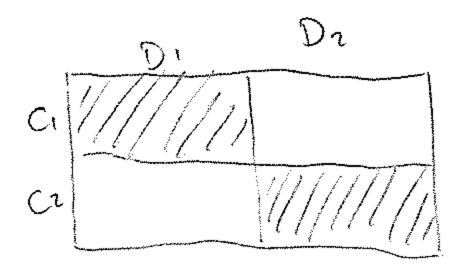
Proof. Note

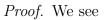
$$\begin{split} \lambda_{M/C}(X) &= r_{M/C}(X) + r_{(M/C)^*}(X) - |X| \\ &= r_M(X) - \sqcap_M(X,C) + r_{M^*}(X) - |X| \\ &= \lambda_M(X) - \sqcap_M(X,C) \,. \end{split}$$

5.1 Bixby-Coullard Inequality

THEOREM 243. [BIXBY-COULLARD INEQUALITY] If $e \in E$ in a matroid $M = (E, \mathcal{I})$, and (C_1, C_2) and (D_1, D_2) are partitions of $E - \{e\}$, then

$$\lambda_{M \setminus e}(C_1) + \lambda_{M/e}(D_1) \ge \lambda_M(C_1 \cap D_1) + \lambda_M(C_2 \cap D_2) - 1.$$

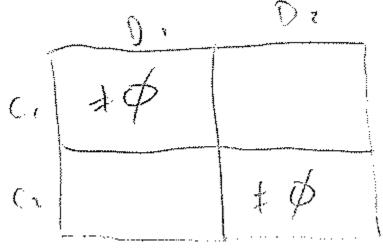




$$\begin{aligned} \lambda_{M/e}(C_1) + r_{M \setminus e}(D_1) \\ &= r_{M/e}(C_1) + r_{M/e}(C_2) - r(M/e) + r_{M \setminus e}(D_1) + r_{M \setminus e}(D_2) - r(M \setminus e) \\ &= r_M(C_1 \cup \{e\}) + r_M(C_2 \cup \{e\}) - r(M) - R_M(\{e\}) + r_M(D_1) + r_M(D_2) - r(M \setminus e) \\ &\geq r_M(C_1 \cap D_1) + r_M(C_1 \cup D_1 \cup \{e\}) + r_M(C_2 \cap D_2) + r_M(C_2 \cup D_2 \cup \{e\}) - \sqcap_M(\{e\}, E - \{e\}) - 2r(M) \\ &= \lambda_{M_1}(C_1 \cap D_1) + \lambda_M(C_2 \cap D_2) - \sqcap_M(\{e\}, E - \{e\}) \\ &\geq \lambda_M(C_1 \cap D_1) + \lambda_M(C_2 \cap D_2) - 1. \end{aligned}$$

THEOREM 244. [5.4 - BIXBY'S LEMMA] If e is an element in a connected matroid M, then either $M \\ e$ or M/e is connected.

Proof. Suppose not. Then there exist proper partitions (C_1, C_2) and (D_1, D_2) of $E - \{e\}$ such that $\lambda_{M/e}(C_1) = 0$ and $\lambda_{M \setminus e}(D_1) = 0$.



Page 52 of 90

By possibly swapping D_1, D_2 we may assume that $C_1 \cap D_1$ and $C_2 \cap D_2$ are both non-empty. By the Bixby-Coullard Inequality,

$$0 = \lambda_{M/e}(C_1) + \lambda_{M \setminus e}(D_1) \ge \lambda_M(C_1 \cap D_1) + \lambda_M(C_2 \cap D_2) - 1.$$

Hence either $\lambda_M(C_1 \cap D_1) = 0$ or $\lambda_M(C_2 \cap D_2) = 0$, contradicting that M is connected.

THEOREM 245. [5.5] A matroid $M = (E, \mathcal{I})$ is connected if and only if, for each distinct $e, f \in E$, there exists a circuit C of M containing both e and f.

Proof. Exercise. Hint: Use Theorem 5.4 and induction.

COROLLARY **246.** [5.6] Let G be a graph. Then M(G) is connected if and only if G is loopless and 2-connected.

Proof. By Menger's Theorem, G is loopless and 2-connected if and only if each pair of distinct edges is contained in a circuit. Now the result follows from Theorem 5.5.

5.2 Fundamental graphs

DEFINITION 247. Let B be a basis of a matroid $M = (V, \mathcal{I})$. The fundamental graph of (M, B) is

$$FG(M,B) \coloneqq (V,E),$$

where

$$E := \{uv; u \in B, v \in V - B, (B - \{u\}) \cup \{v\} \text{ is a basis} \}.$$

THEOREM 248. [5.7] A matroid M, with basis B, is connected if and only if FG(M, B) is connected.

Proof. Exercise.

5.3 Connectivity between two sets

DEFINITION 249. Let $M = (E, \mathcal{I})$ be a matroid. Let $S, T \subseteq E$ be disjoint. We define the *connectivity* between S and T to be

$$\kappa_M(S,T) \coloneqq \min \left\{ \lambda_M(X) ; S \subseteq X \subseteq E - T \right\}.$$

REMARK 250. Note that:

(1) $\kappa_M(S,T) = \kappa_M(T,S)$ since $\lambda_M(X) = \lambda_M(E-X)$.

(2) $\kappa_{M^*}(S,T) = \kappa_M(S,T)$ since $\lambda_{M^*}(X) = \lambda_M(X)$.

LEMMA 251. [5.8] If N is a minor of a matroid M with $S, T \subseteq E(N)$, then

$$\kappa_N(S,T) \leq \kappa_M(S,T) \, .$$

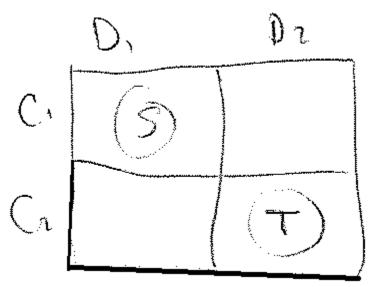
Proof. By (2) above, it suffices to consider the case that $N = M \setminus e$. Let $S \subseteq X \subseteq E - T$ with $\lambda_M(X) = \kappa_M(S,T)$. By (1) we may assume that $e \notin X$. Now $\kappa_M(S,T) = \lambda_M(X) \ge \lambda_N(X) \ge \kappa_N(S,T)$.

THEOREM 252. [TUTTE'S LINKING THEOREM] Let $M = (E, \mathcal{I})$ be a matroid and let $S, T \subseteq E$ be disjoint. Then there exists a minor N of M with $E(N) = S \cup T$ such that $\lambda_N(S) = \kappa_M(S,T)$

Proof. The result is trivial when $S \cup T = E$, so assume that this is not the case. Let $e \in E - (S \cup T)$. The results follows inductively if either $\kappa_{M \setminus e}(S,T) = \kappa_M(S,T)$ or $\kappa_{M/e}(S,T) = \kappa_M(S,T)$. So assume that

$$\kappa_{M \setminus e}(S,T) = \kappa_M(S,T) - 1$$
 and $\kappa_{M/e}(S,T) = \kappa_M(S,T) - 1$.

Let (D_1, D_2) , (C_1, C_2) be partitions of $E - \{e\}$ with $S \subseteq D_1 \cap C_1$ and $T \subseteq D_2 \cap C_2$ such that $\lambda_{M \setminus e}(D_1) \leq \kappa_M(S, T) - 1$ and $\lambda_{M/e}(C_1) \leq \kappa_M(S, T) - 1$.



By the Bixby-Coullard Inequality,

 $2(\kappa_M(S,T)-1) \ge \lambda_{M \setminus e}(D_1) + \lambda_{M/e}(C_1) \ge \lambda_M(D_1 \cap C_1) + \lambda_M(D_2 \cap C_2) - 1.$ Hence either $\lambda_M(D_1 \cap C_1) \le \kappa_M(S,T) - 1$ or $\lambda_M(D_2 \cap C_2) \le \kappa_M(S,T) - 1$. So $\kappa_M(S,T) \le \kappa_M(S,T) - 1$ — contradiction.

EXERCISE **253.** (1) Prove that

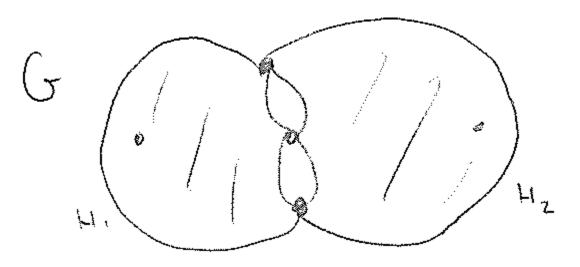
 $\kappa_M(S,T) = \nu(M \setminus S/T, M/S \setminus T) - r(M) + r_M(S) + r_M(T).$

(2) Derive Tutte's Linking Theorem from the Matroid Intersection Theorem.

REMARK 254. By (1) we can compute $\kappa_M(S,T)$ efficiently.

5.4 Application to graphs

DEFINITION 255. Let G = (V, E) be a graph. A separation of G is a pair (H_1, H_2) of edgedisjoint subgraphs of G with $H_1 \cup H_2 = G$. The order of the separation, denoted $\operatorname{ord}(H_1, H_2)$, is $|V(H_1) \cap V(H_2)|$.



LEMMA 256. [5.9] If (H_1, H_2) is a separation in a graph G then

$$\lambda_{M(G)}(E(H_1)) = \operatorname{ord}(H_1, H_2) - \operatorname{comps}(H_1) - \operatorname{comps}(H_2) + \operatorname{comps}(G).$$

Proof. We have

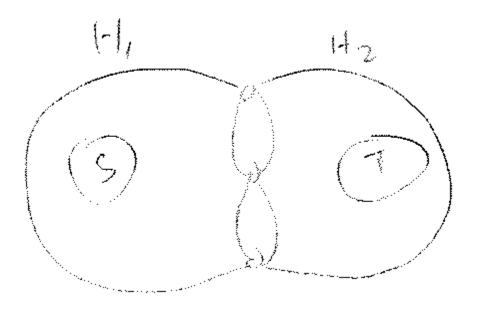
$$\lambda_{M(G)}(E(H_1)) = r(E(H_1)) + r(E(H_2)) - r(E(G))$$

= |V(H_1)| - comps(H_1) + |V(H_2)| - comps(H_2) - (|V| - comps(G))
= ord(H_1, H_2) - comps(H_1) - comps(H_2) + comps(G).

REMARK 257. Note that if H_1 , H_2 , and G are all connected, then we get

$$\lambda_{M(G)}(E(H_1)) = \operatorname{ord}(H_1, H_2) - 1.$$

DEFINITION 258. Let G = be a graph and let $S, T \subseteq V(G)$. We define $\kappa_G(S, T)$ to be the minimum order of a separation (H_1, H_2) of G with $S \subseteq V(H_1)$ and $T \subseteq V(H_2)$.



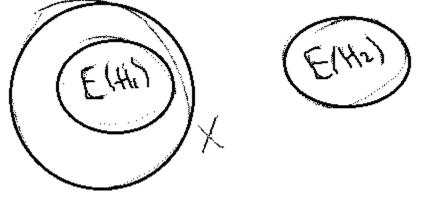
LEMMA **259.** [5.10] Let H_S , H_T be edge-disjoint subgraphs of a graph G. If H_S , H_T and G are all connected, then

$$\kappa_G(V(H_S), V(H_T)) = \kappa_{M(G)}(E(H_S), E(H_T)) + 1.$$

Proof. For each separation (H_1, H_2) of G we have $\lambda_{M(G)}(E(H_1)) \leq \operatorname{ord}(H_1, H_2) - 1$. Hence

$$\kappa_G(V(H_S), V(H_T)) \le \kappa_{M(G)}(E(H_S), E(H_T)) + 1.$$

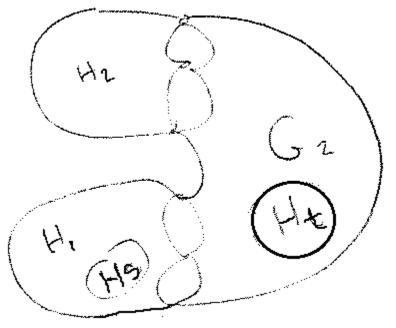
Let $X \subseteq E$ such that $E(H_S) \subseteq X \subseteq E - E(H_T)$ and $\lambda_{M(G)}(X) = \kappa_{M(G)}(E(H_S), E(H_T))$. Let $G_1 = G[X]$ and $G_2 = G[E - X]$.



We assume that X has been chosen to minimize

 $\operatorname{comps}(G_1) + \operatorname{comps}(G_2).$

If G_1 and G_2 are both connected, then we are done. So, up to symmetry, we may assume that G_1 is not connected.



Let H_2 be a component of G_1 that does not contain H_S and let $H_1 = G_1 - V(H_2)$. Note that

$$\operatorname{comps}(G_2 \cup H_2) \ge \operatorname{comps}(G_2) - (\operatorname{ord}(H_2, G_2) - 1)$$

Now

$$\lambda_{M(G)}(E(H_1)) = \operatorname{ord}(H_1, G_2 \cup H_2) - \operatorname{comps}(H_1) - \operatorname{comps}(G_2 \cup H_2) + 1$$

$$\leq \operatorname{ord}(H_1, G_2 \cup H_2) + \operatorname{ord}(H_2, G_2) - (\operatorname{comps}(G_1) - 1) - (\operatorname{comps}(G_2) + 1) + 1$$

$$= \lambda_{M(G)}(E(G)).$$

However

 $\operatorname{comps}(G_1) + \operatorname{comps}(G_2) > \operatorname{comps}(H_1) + \operatorname{comps}(H_2 \cup G_2),$

contradicting our choice of X.

THEOREM 260. [MENGER'S THEOREM] Let G be a graph and let $S, T \subseteq V(G)$. The maximum number of vertex-disjoint (S,T)-paths is equal to $\kappa_G(S,T)$.

Proof. Let k be the maximum number of vertex disjoint (S,T)-paths. Clearly $k \leq \kappa_G(S,T)$.

Note that adding edges into S or into T does not change either $\kappa_G(S,T)$ or the maximum number of vertex disjoint (S,T)-paths. Hence we may assume that G has edgedisjoint connected subgraphs H_S and H_T with $V(H_S) = S$ and $V(H_T) = T$. By lemma 5.10, $\kappa_{M(G)}(E(H_S), E(H_T)) = \kappa_G(S,T) - 1$. By Tutte's Linking Theorem, there exists a minor Nof M(G) with $E(N) = E(H_S) \cup E(H_T)$ such that

$$\lambda_N(E(H_S)) = \kappa_{M(G)}(E(H_S), E(H_T)) = \kappa_G(S, T) - 1.$$

Suppose that $N = M/C \setminus D$. Then

(3)
$$\sqcap_{M(G)}(E(H_S), E(E_T)) = \kappa_G(S, T) - 1.$$

Page 57 of 90

Let H = G[V, C]. By (3), there are $\kappa_G(S, T)$ components of H containing a vertex of both S and T. Hence $k \ge \kappa_G(S, T)$.

5.5 Tutte Connectivity

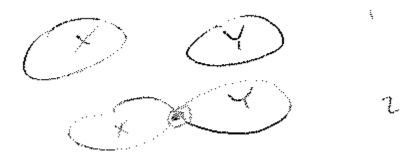
DEFINITION 261. Let $M = (E, \mathcal{I})$ be a matroid. A partition (X, Y) of E is a k-separation of M if

- (i) $\lambda_M(X) \leq k-1$, and
- (ii) $|X|, |Y| \ge k$.

REMARK 262. Note that $\lambda_M(X) \leq \min(|X|, |Y|)$, so (ii) is a nondegeneracy condition.

EXAMPLE 263. A 1-separation is a pair (X, Y) such that X and Y are non-empty and skew.

EXAMPLE 264. A 2-separation is a pair (X, Y) such that $|X|, |Y| \ge 2$ and $\neg (X, Y) \le 1$.



DEFINITION **265.** A matroid is *k*-connected if it has no ℓ -separation for any $\ell < k$.

REMARK 266. (1) A matroid M is 2-connected if and only if it is connected.

(2) A matroid M is k-connected if and only if M^* is k-connected.

(3) If T is a triangle in a matroid M and $|M| \ge 6$ then $\lambda_M(T) = r_M(T) + r_{M^*}(T) - |T| \le r_M(T) = 2$. So (T, E(M) - T) is a 3-separation and, hence, M is not 4-connected. This means that neither $M(K_n)$ nor PG(n-1,2) is 4-connected for any $n \ge 4$.

EXERCISE 267. [CHALLENGE] Show that, for each k there is a graph G such that M(G) is k-connected and $|E(G)| \ge 2k$.

5.6 Vertical connectivity

DEFINITION 268. Let $M = (E, \mathcal{I})$ be a matroid. A partition (X, Y) of E is a vertical k-separation of M if

- (i) $\lambda_M(X) \leq k 1$, and
- (ii) $r_M(X), r_M(E X) \ge k$.

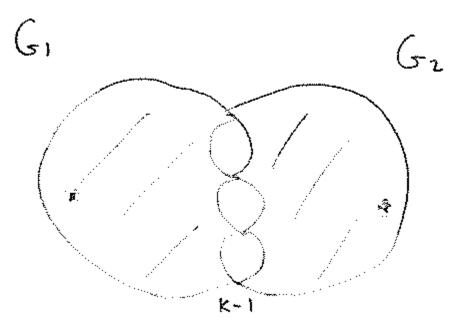
DEFINITION 269. A matroid is vertically k-connected if it has no vertical ℓ -separation for any $\ell < k$.

REMARK 270. Vertical k-connectivity need not be preserved under duality (see, for example, $U_{4,6}$).

THEOREM 271. [5.11 - CUNNINGHAM] Let G be a connected graph and let $k \ge 1$. Then G is k-connected if and only if M(G) is vertically k-connected.

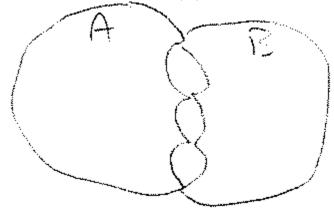
Proof. The result is vacuous for k = 1; suppose $k \ge 2$. Inductively we may assume that G is (k-1)-connected and M(G) is vertically (k-1)-connected.

If G is not k-connected, then G has a separation (G_1, G_2) of order less than k with $V(G_1) - V(G_2) \neq \emptyset$ and $V(G_2) - V(G_1) \neq \emptyset$.



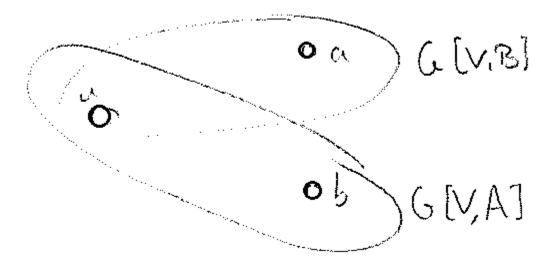
Since G is (k-1)-connected, G_1 and G_2 are connected. So $\lambda_{M(G)}(E(G_1)) = (k-1) - 1 = k-2$. Note that $|V(G_1)|, |V(G_2)| \ge k$, so $r(E(G_1)) \ge k-1$ and $r(E(G_2)) \ge k-1$. Hence $(E(G_1), E(G_2))$ is a vertical (k-1)-separation in M(G), hence, M(G) is not vertically k-connected

Conversely, suppose that M(G) is not vertically (k-1)-connected and let (A, B) be a vertical k-separation of M(G). Suppose that G is k-connected.



CLAIM. There exist $u, v \in V(G)$ such that u, v are in distinct components of both G[V, A] and G[V, B].

Proof of Claim. Since (A, B) is a vertical k-separation, neither G[V, A] nor G[V, B] is connected.



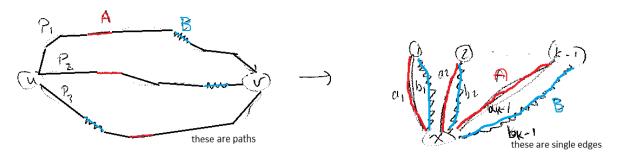
So there exist $u, a, b \in V$ such that

- u, a are in distinct components of G[V, A], and
- u, b are in distinct components of G[V, B].

We may assume that

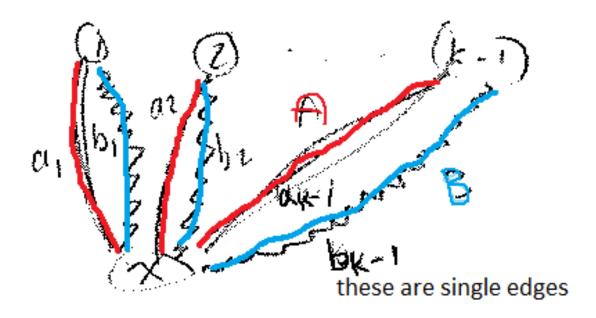
- u, a are in the same component of G[V, B], and
- u, b are in the same component of G[V, A].

Hence a, b are in distinct components of both G[V, A] and G[V, B].



Since G is k-connected, there exist k-internally disjoint (u, v)-paths. Each of these paths contains an edge from both A and B.

So we get the following minor N:



Here, $a_1, \ldots, a_{k-1} \in A$ and $b_1, \ldots, b_{k-1} \in B$. Now

 $k - 2 \ge \lambda_{M(G)}(A)$ $\ge \kappa_{M(G)}(\{a_1, \dots, a_{k-1}\}, \{b_1, \dots, b_{k-1}\})$ $\ge \sqcap_N(\{a_1, \dots, a_{k-1}\}, \{b_1, \dots, b_{k-1}\}) = k - 1.$

This contradiction completes the proof.

DEFINITION 272. Let M be a matroid. The girth of M is the length of a shortest circuit.

EXERCISE 273. Let M be a matroid with $|E(M)| \ge 2k$. Show that M is (Tutte) k-connected if and only if M is vertically k-connected and M has girth at least k.

THEOREM 274. [5.12] For a connected graph G, M(G) is k-connected if and only if G is k-connected and G has girth at least k.

Proof. Immediate by the exercise and Theorem 5.11.

5.7 3-connectivity

REMARK 275. By Theorem 5.12, for a connected graph G, M(G) is 3-connected if and only if G is simple and 3-connected.

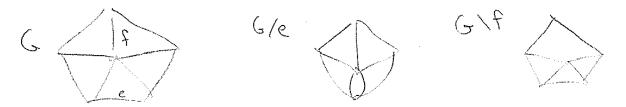
DEFINITION **276.** A matroid M is *internally* 3-connected if M is connected and, for each 2-separation (X, Y) of M either |X| = 2 or |Y| = 2.

Recall that the simplification of a matroid is uniquely determined up to isomorphism.

DEFINITION 277. Let M be a matroid. We let si(M) denote the *simplification* of M, and we let co(M) denote the *cosimplification* of M. In particular, $co(M) = (si(M^*))^*$.

- REMARK 278. (1) If M is internally 3-connected and (X, Y) is a 2-separation with |X| = 2, then X is a series-pair or a parallel pair. (Indeed, we see $1 = \lambda_M(X) = r_M(X) + r_{M^*}(X) - 2$.)
 - (2) If M is 3-connected with $|M| \ge 4$ and $M \smallsetminus e$ is internally 3-connected, then $M \smallsetminus e$ has no parallel pairs, so $co(M \smallsetminus e)$ is 3-connected.
 - (3) Dually, if M is 3-connected with $|M| \ge 4$, and M/e is internally 3-connected, then si(M/e) is 3-connected.

LEMMA **279.** Let e be an element of 3-connected matroid M. Then $M \\e$ or M/e is internally 3-connected.



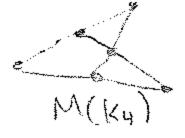
Proof. Suppose otherwise. Then, there exist 2-separations (D_1, D_2) and (C_1, C_2) in $M \\ e$ and M/e, respectively, with $|D_1|, |D_2|, |C_1|, |C_2| \\ \ge 3$. By possibly swapping C_1 and C_2 , we may assume that $|C_1 \cap D_1| \\ \ge 2, |C_2 \cap D_2| \\ \ge 2$.

By the Bixby-Coullard Inequality,

$$2 \ge \lambda_{M \setminus e}(D_1) + \lambda_{M/e}(C_1) \ge \lambda_M(D_1 \cap C_1) + \lambda_M(D_2 \cap C_2) - 1.$$

So either $\lambda_M(D_1 \cap C_1) \leq 1$ or $\lambda_M(D_2 \cap C_2) \leq 1$. However, this contradicts the fact that M is 3-connected.

COROLLARY **280.** [5.13] If M is a 3-connected matroid with $|M| \ge 4$, then M has a $U_{2,4}$ -or $M(K_4)$ -minor.



Proof. Exercise.

THEOREM **281.** Let e be an element of a matroid M. Then there exists $N \in \{M \setminus e, M/e\}$ such that for each partition (X_1, X_2) of E(N) there is a partition (A, B) of either X_1 or X_2 such that

$$\lambda_M(A), \lambda_M(B) \leq \lambda_N(X_1).$$

Proof. Exercise.

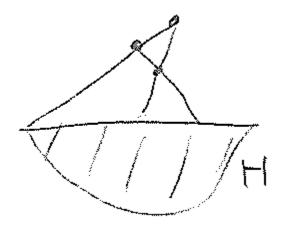
PROBLEM 282. Given a 3-connected matroid M, does there exist an element $e \in E(M)$ such that M/e or $M \setminus e$ is 3-connected?

Recall that a 3-element circuit in a matroid is called a triangle.

DEFINITION 283. A 3-element cocircuit in a matroid is called a *triad*.

REMARK 284. Note that:

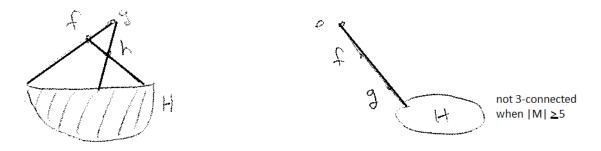
- (1) If M/e is internally 3-connected, but not 3-connected, then e is in a triangle.
- (2) If $M \\ e$ is internally 3-connected, but not 3-connected, then e is in a triad.



LEMMA 285. [5.14] Let e be an element in a 3-connected matroid M. If e is in neither a triangle nor a triad, then $M \\ e$ or M/e is 3-connected.

Proof. By Bixby's Lemma and the discussion above.

REMARK **286.** Up to duality we may now assume, in answering our problem above, that M has a triangle $\{e, f, g\}$.



LEMMA 287. [5.15] Let e, f, g, h be distinct elements in a 3-connected matroid M. If $\{e, f, g\}$ is a triangle and $\{f, g, h\}$ is a triad, then $M \\ e$ is internally 3-connected.

Proof. Exercise. Hint: Consider M/e.

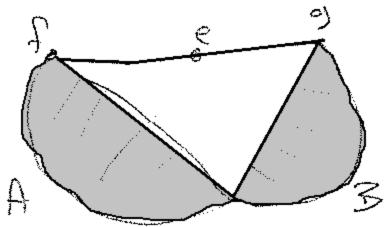
LEMMA 288. [TUTTE'S TRIANGLE LEMMA] Let $T = \{e, f, g\}$ be a triangle in a 3-connected matroid M with $|M| \ge 4$. If e is not contained in a triad, then either $M \smallsetminus e$, $M \backsim f$, or $M \backsim g$ is 3-connected.

Proof. Suppose that none of $M \\ e, M \\ f, M \\ g$ is 3-connected.

CLAIM (1). We have $|M| \ge 8$.

Proof of Claim 1. Exercise. Hint: If $|M| \leq 7$ then $r(M) \leq 3$ or $r(M^*) \leq 3$.

Now consider a 2-separation (A, B) in $M \\ e$ with $f \\ \epsilon A$.



Page 65 of 90

CLAIM (2). $f \in A - cl_M(B)$ and $g \in B - cl_M(A)$. *Proof of Claim 2.* If $g \in A$, then since $\{f, g\}$ spans e

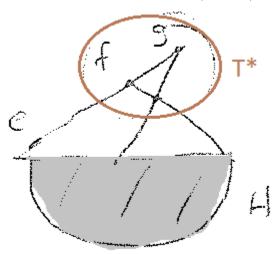
 $\lambda_M(B) = r_M(A \cup \{e\}) + r_M(B) - r(M) = r_M(A) + r_M(B) - r(M \setminus e) = \lambda_{M \setminus e}(A) = 1.$

Contradicting that M is 3-connected; thus $g \in B$. Similarly, if $f \in cl_M(B)$, then $\lambda_M(B \cup \{e, f\}) = \lambda_{M \setminus e}(B) = 1$, which is again a contradiction, unless |A| = 2 and $f \in cl_M(B)$ then the element in $A - \{f\}$ is a coloop in $M \setminus e$. However since M is 3-connected, $M \setminus e$ is connected, and we again have a contradiction. Thus $f \notin cl_M(B)$ and, similarly, $g \notin cl_M(A)$.

Since $|M| \ge 8$, max $(|A|, |B|) \ge 4$. Up to symmetry we may assume that $|A| \ge 4$. Note that

$$\lambda_{M/f}(B \cup \{e\}) = \lambda_M(B \cup \{e\}) - \sqcap_M(\{f\}, B \cup \{e\})$$
$$= \lambda_M(B \cup \{e\}) - 1$$
$$\leq (\lambda_{M \searrow e}(B) + 1) - 1 = 1.$$

Hence $(A - \{f\}, B \cup \{e\})$ is a 2-separation in M/f, so M/f is not internally 3-connected. Then, by Bixby's Lemma $M \setminus f$ is internally 3-connected. Since $M \setminus f$ is not 3-connected, f is contained in a triad T^* . Now $|T \cap T^*| \neq 1$. By hypothesis, $e \notin T^*$, so $T \cap T^* = \{f, g\}$.



Then, by Lemma 5.15, $M \smallsetminus e$ is internally 3-connected. But $M \smallsetminus e$ is not 3-connected, so e is in a triad — contradiction.

REMARK 289. In fact, Tutte showed that either $M \\ e$ or $M \\ f$ is 3-connected.

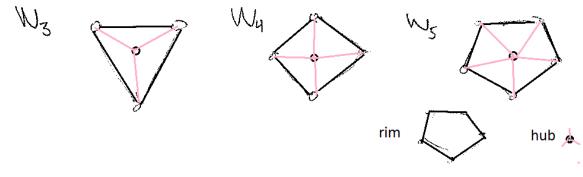
REMARK 290. By Lemma 5.14 and Tutte's Triangle Lemma, either

- (1) there is an element e such that $M \\ e$ or M/e is 3-connected, or
- (2) each element of M is in both a triangle and a triad.

PROBLEM **291.** Which 3-connected matroids have the property that each element is in both a triangle and a triad?

5.8 Wheels

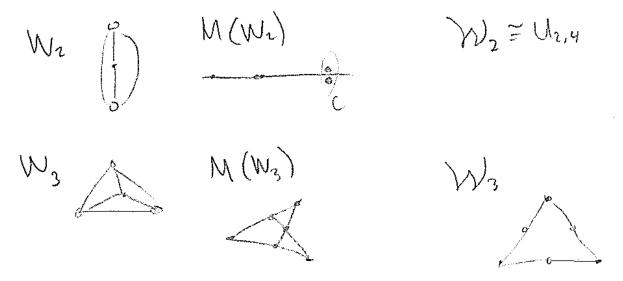
DEFINITION 292.



REMARK 293. Note that each edge in a wheel is in both a triangle and a triad.

DEFINITION **294.** Let W_n be a wheel with hub h and rim C. Note that C is a circuithyperplane of $M(W_n)$. Let W_n be the matroid obtained from $M(W_n)$ by relaxing C. Precisely, $E(W_n) \coloneqq E(W_n)$ and $\mathcal{I}(W_n) \coloneqq \mathcal{I}(M(W_n)) \cup \{C\}$. We call W_n the rank-n whirl.

REMARK **295.** By Assignment 1, question 9, \mathcal{W}_n is a matroid.



REMARK 296. Whirls are not binary. Why?

LEMMA 297. [5.16] Let M be a 3-connected matroid with $|M| \ge 4$. IF each element of M is contained in both a triangle and a triad, then M is a wheel or a whirl. Proof Sketch. Recall that if X is a circuit and C^* is a cocircuit, then $|C \cap C^*| \ne 1$.

CLAIM (1). We may assume that $|M| \ge 7$.

CLAIM (2). Our matroid M has no $U_{2,4}$ -restriction.

Let $B \subseteq E(M)$ be the set of elements in at least two triangles, and let B^* be the set of elements in at least two triads.

CLAIM (3). (a) For each triangle T we have $|t \cap B^*| = 1$.

(b) For each triad T^* we have $|T^* \cap B| = 1$.

CLAIM (4). The pair (B, B^*) is a partition of E(M).

CLAIM (5). The set B is a basis of M.

CLAIM (6). The fundamental graph FG(M, B) is a circuit.

CLAIM (7). Either M is a wheel or M is a whirl.

THEOREM **298.** [TUTTE'S WHEEL AND WHIRLS THEOREM] Let M be a 3-connected matroid with $|M| \ge 4$. If M is not a wheel or a whirl, then there exists $e \in E(M)$ such that $M \setminus e$ or M/e is 3-connected.

Proof. This follows from Lemma 5.14, duality, Tutte's Triangle Lemma, and Lemma 5.16. ■

COROLLARY **299.** [5.17] If M is a 3-connected matroid with $|M| \ge 4$ then there is a sequence (N_0, \ldots, N_k) of 3-connected matroids such that

- (i) N_0 is a wheel or a whirl,
- (ii) $N_k = M$, and
- (iii) $N_i = N_{i+1} \setminus e \text{ or } N_i = N_{i+1}/e \text{ for each } i \in \{0, \dots, k\} \text{ and some } e \in E(M).$

Proof. Follows immediately from the above.

EXERCISE **300.** Let M be a 3-connected matroid with $|M| \neq 1$. Prove that there exists $e \in E(M)$ such that si(M/e) is 3-connected.

6 Graphic Matroids

Recall the following theorem.

THEOREM 301. [1.19] If G is a plane graph, then $M(G^*) = M(G)^*$.

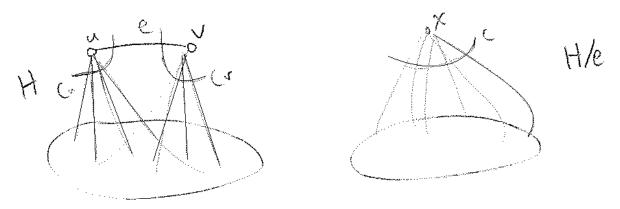
-

LEMMA **302.** [6.1] Let $G = (V_G, E)$ and $H = (V_H, E)$ be graphs with no isolated vertices. If M(G) is connected and $M(G)^* = M(H)$, then there are planar embeddings of G and H so that $G^* = H$.

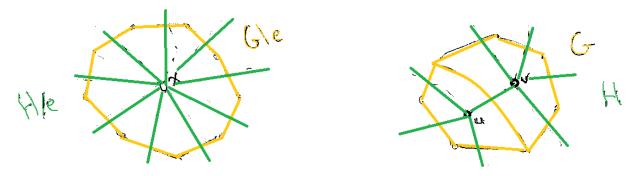
Proof. Since M(G) is connected and $M(G)^* = M(H)$, G and H are both loopless and 2-connected. The result is trivial if $E = \emptyset$; assume otherwise and let $e \in E$. Note that

- (1) By theorem 5.4 either M(G)/e or $M(G) \\ e$ is connected.
- (2) $M(G \setminus e)^* = M(H/e), M(G/e)^* = M(H \setminus e),$
- (3) M is connected if and only if M^* is connected.

By possibly swapping G and H, we may assume $M(G \setminus e)$ and M(H/e) are connected. Since $M(G \setminus e) = M(H/e)^*$, we inductively have dual planar embeddings of $G \setminus e$, H/e.



Let $C = \delta_{H/e}(x)$ where e has ends $u, v \in V_H$ that are identified to a vertex x of H/e. Since H and H/e are 2-connected, $\delta_H(u)$ and $\delta_H(v)$ are cocircuits of M(H) and C is a cocircuit of M(H/e). In our dual planar embedding of $M(G \setminus e)$, the set C is a facial circuit (because it is a vertex neighbourhood of the dual graph). Moreover, $\delta_H(u)$, $\delta_H(v)$ are circuits of $M(G \setminus e)$ with $C = (\delta_H(u) \cup \delta_H(v)) - \{e\}$.



Since $\delta_H(u)$ and $\delta_H(v)$ are circuits of G and $(\delta_H(u) \cup \delta_H(v)) - \{e\}$ is a facial circuit of $G \setminus e$, the edge e must join two vertices in this face. This gives a consistent way to extend our dual embeddings of H/e, $G \setminus e$ to dual embeddings of G, H.

COROLLARY 303. [1.24] A graph G is planar if and only if $M(G)^*$ is graphic.

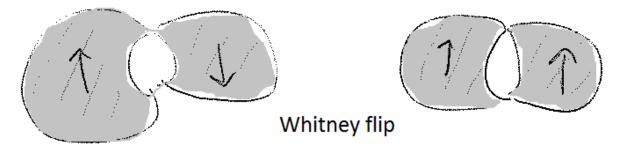
Proof. Exercise.

REMARK **304.** Graphicness testing generalizes planarity testing.

PROBLEM **305.** Does a graphic matroid determine the graph?

SOLUTION. No!

PROBLEM **306.** Does a 2-connected graphic matroid determine the graph?



SOLUTION. No! If a graphic matroid is not 3-connected, it does not determine the graph (Whitney flips).

DEFINITION **307.** A cocircuit C of a matroid M is *separating* if $M \\ C$ is disconnected.

THEOREM 308. If G and H are loopless 3-connected graphs and M(G) = M(H), then G = H up to vertex labels.

Proof.

CLAIM. If G is 3-connected, loopless, then a cocircuit C of M(G) is non-separating if and only if there exists $v \in V(G)$ so that $C = \delta_G(v)$.

Proof of Claim. Since G is 3-connected, G - v is 2-connected so $\delta_G(v)$ is a non-separating cocircuit.

Conversely, consider a non-separating cocircuit C. Now $C = \deg_G(X)$ for some $X \subseteq V(G)$ such that G[X] and G[V - X] are connected. Since C is non-separating, either G[X] or G[V - X] contains no edges. So X or V - X is a single vertex w and $C = \delta_G(w)$.

Now since M(H) = M(G) by the claim, for each $v \in V(G)$ there exists $w \in V(H)$ such that $\delta_H(w) = \delta_G(v)$ and vice versa. So G = H up to vertex labels.

REMARK 309. By this theorem, simple 3-connected planar graphs have "unique" planar embeddings. That is, the facial cycles are independent of the embedding.

6.1 Recognizing graphic matroids

PROBLEM **310.** Given a matroid M, is M graphic?

PROBLEM **311.** [1] Given a binary matroid M, is M graphic?

Algorithm **312.** [Algorithm Overview for Problem 1]

STEP (1). Reduce to 3-connected case.

STEP (2). Find a sequence of 3-connected matroids $N_0, N_1, \ldots, N_k = M$ where N_0 is a wheel and for each i, $N_i = N_{i+1}/e$ or $N_{i+1} \\ \sim e$ for some $e \in E(M)$.

STEP (3). Inductively try to find graphs G_0, G_1, \ldots, G_k so that $N_i = M(G_i)$ for each *i*.

REMARK **313.** Testing whether M is 3-connected reduces to the problem of computing $\kappa_M(X,Y)$ for all X, Y with |X| = |Y| = 2. This can be solved with Edmonds' matroid intersection algorithm.

STEP (1). We may assume M is connected, because M is graphic if and only if each of its components is graphic.

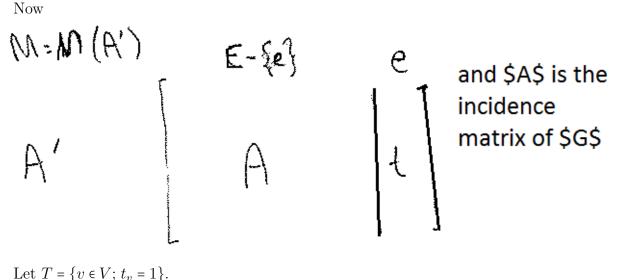
Suppose M = M(A), and (X, Y) is a 2-separation Since $\sqcap_M(X, Y) = 1$, there is a unique non-zero vector $v \in \operatorname{colspace}(A|X) \cap \operatorname{colspace}(A|Y)$. Let $M^+ = M([A|v])$, and $M_X = M^+|(X \cup \{e\}), M_Y = M^+|(Y \cup \{e\})$.

EXERCISE **314.** Show that M_X, M_Y are isomorphic to minors of M.

EXERCISE **315.** Show that M is graphic if and only if M_X and M_Y are graphic.

6.2 Extensions

PROBLEM **316.** [2A] Let M be a 3-connected binary matroid and let $M \\ e = M(G)$ be 3-connected, graphic. Is M graphic?



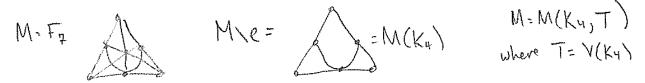
Let $I = \{v \in V ; t_v = 1\}.$

DEFINITION **317.** A pair (G, T), where G is a graph and $T \subseteq V(G)$, is called a *graft*.

REMARK **318.** A binary extension of a graphic matroid can be described by a graft.

DEFINITION **319.** We write M(G,T) for the associated matroid of a graft (G,T), and call the new element the *graft element*.

EXAMPLE 320.



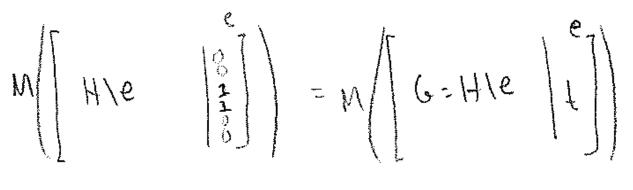
LEMMA **321.** [6.3] For a graft (G, T), if |T| is odd then the graft element e is a coloop.

Proof. Each column of the incidence matrix sums to zero.

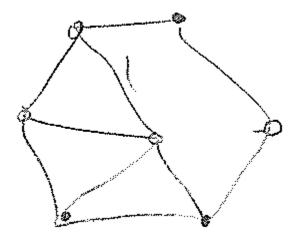
LEMMA **322.** [6.4] Let (G,T) be a graft where G is a 3-connected graph and |T| is even. Then M(G,T) is graphic if and only if $|T| \le 2$.

Proof. If $|T| \leq 2$ then M is clearly graphic. Conversely, suppose that M(G,T) = M(H). We may assume M(G,T) has no loops.

By Theorem 6.2, we may relabel the vertices of H so that $H \smallsetminus e = G$:



REMARK **323.** Note that this lemma solves problem 2a.



6.3 Coextensions

PROBLEM **324.** [2B] Let M be a 3-connected binary matroid and let M/e = M(G) be 3-connected and graphic. Is M graphic?

Now M = M(A') where

$$A' = \begin{bmatrix} 1 & s \\ 0 & A \end{bmatrix}$$

where A is the incidence matrix of a graph G and $s \in GF(2)^{E(G)}$. Let

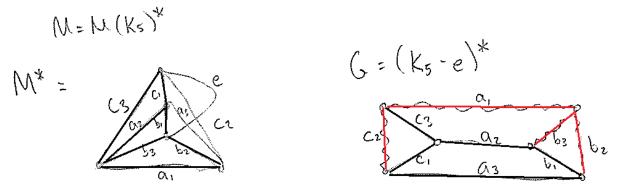
$$\Sigma = \{f \in E(G); s_f = 1\}.$$

DEFINITION **325.** A pair (G, Σ) where G is a graph and $\Sigma \subseteq E(G)$ is called a *signed graph*, with *signature* Σ .

REMARK **326.** A binary coextension of a graphic matroid can be described by signed graph.

DEFINITION **327.** We write $M(G, \Sigma)$ for the associated matroid of a signed graph (G, Σ) . An edge in Σ is called *odd*.

EXAMPLE 328.



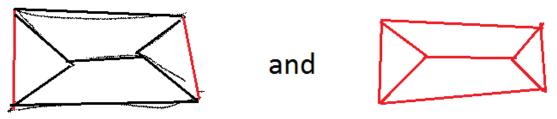
LEMMA **329.** [6.5] Let G be a graph and let, $\Sigma_1, \Sigma_2 \subseteq E(G)$. Then $M(G, \Sigma_1) = M(G, \Sigma_2)$ if and only if $\Sigma_1 \Delta \Sigma_2$ is a cut of G.

Proof. By lemma 2.1 $M(G, \Sigma_1) = M(G, \Sigma_2)$ if and only if

$$\operatorname{rowspace} \begin{pmatrix} 1 & s_1 \\ 0 & A \end{pmatrix} = \operatorname{rowspace} \begin{pmatrix} 1 & s_2 \\ 0 & A \end{pmatrix},$$

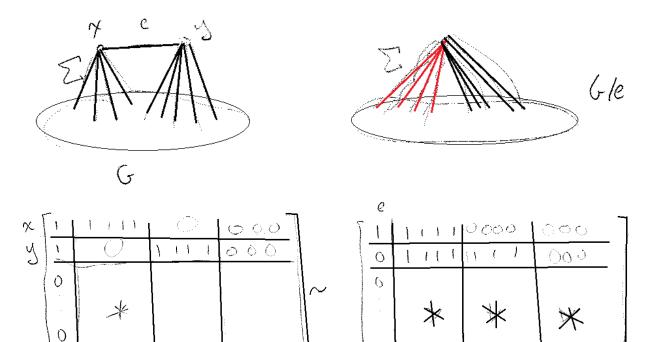
which in turn holds if and only if $s_1 + s_2 \in \text{rowspace}(A)$.

EXAMPLE 330.



LEMMA **331.** [6.6] Let G be a graph, let $e = xy \in E(G)$, and let $\Sigma = \delta_G(x) - \{e\}$. Then $M(G) = M(G/e, \Sigma)$.

Proof.



DEFINITION **332.** Let (G, Σ) be a signed graph. A circuit C of G is called Σ -odd if $|C \cap \Sigma|$ is odd. Otherwise C is called Σ -even.

()

REMARK 333. • We see Σ -parity is not affected by resigning Σ across a cut.

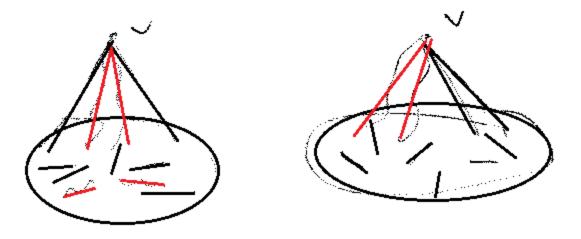
- If C is Σ -even circuit of G, then C is a circuit of $M(G, \Sigma)$.
- If C is Σ -odd circuit of G, then $C \cup \{e\}$ is a circuit of $M(G, \Sigma)$.

DEFINITION **334.** Let (G, Σ) be a signed graph. A vertex $v \in V(G)$ is a *block node* if it is contained in each Σ -odd circuit.

THEOREM **335.** [6.7] Let (G, Σ) be a signed graph where G is loopless and 3-connected. Then $M(G, \Sigma)$ is graphic if and only if (G, Σ) has a block node.

Proof. Suppose that $M(G, \Sigma) = M(H)$ is graphic. Let x be an end of e in H and let $\Sigma_H = \delta_H(x) - \{e\}$. By Lemma 6.6, $M(G, \Sigma) = M(H/e, \Sigma_H)$, so M(G) = M(H/e), and thus G = H/e up to vertex labels. So (G, Σ) and $(H/e, \Sigma_H)$ are equivalent so we may assume $\Sigma = \Sigma_H$. Therefore (G, Σ) has a block node.

Conversely, suppose that v is a block node of (G, Σ) .



Now $(G, \Sigma) - v$ has no odd circuit, so by resigning we may assume that each edge in Σ is incident with v. By Lemma 6.6 it follows that (G, Σ) is graphic.

REMARK **336.** We can efficiently check the existence of a block node (check, for each vertex v, if e is a coloop of $M(G, \Sigma) - \delta_G(v)$), so Theorem 6.7 solves problem 2b.

Recall our first problem of this section.

PROBLEM **337.** [1] Given a matroid M by a rank oracle, is M graphic?

REMARK 338. Note:

- (1) If M is graphic, M is binary;
- (2) Let B be a basis of M and let f = F(M, B). If M is binary, then $M = M([I_B \ F]);$
- (3) There is no efficient algorithm for testing if $M = M([I_B, F])$.

Algorithm **339.** [Algorithm for Problem 1]

STEP (1). Test if the binary matroid $M(\begin{bmatrix} I & F \end{bmatrix})$ is graphic. If not, then stop because M is not graphic. If so, then find G so that $M(\begin{bmatrix} I & F \end{bmatrix}) = M(G)$.

STEP (2). Test if M = M(G).

THEOREM **340.** [6.8 - SEYMOUR] Let $M = (E, \mathcal{I})$ be a matroid and G be a connected graph. Then M = M(G) if and only if

(1) r(M) = |V| - 1, and

(2) for each $v \in V(G)$ and $e \in \delta_G(v)$, there is a cocircuit C of G with $e \in C \subseteq \delta_G(v)$.

Proof. Exercise.

6.4 Excluded minors for graphic matroids

THEOREM **341.** [6.9 - TUTTE] If M is a binary excluded minor for the class of graphic matroids, then $M \in \{F_7, F_7^*, M(K_{3,3})^*, M(K_5)^*\}$.

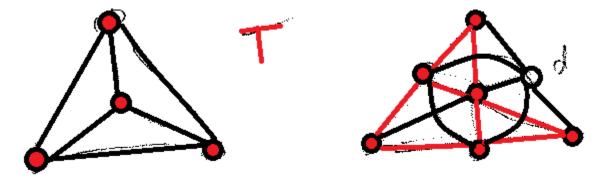
Proof outline. Well M is 3-connected and M is not a wheel (because wheels are graphic) or a whirl (since whirls are not binary). So there exists $e \in E(M)$ such that either $M \setminus e$ is 3-connected or M/e is 3-connected. In the former case, use grafts. In the latter case, use signed graphs.

DEFINITION **342.** Let G be a graph, let $T \subseteq V(G)$, and let $J \subseteq E(G)$. We say that J is a *T*-join if T is the set of odd-degree vertices of G[V, J].

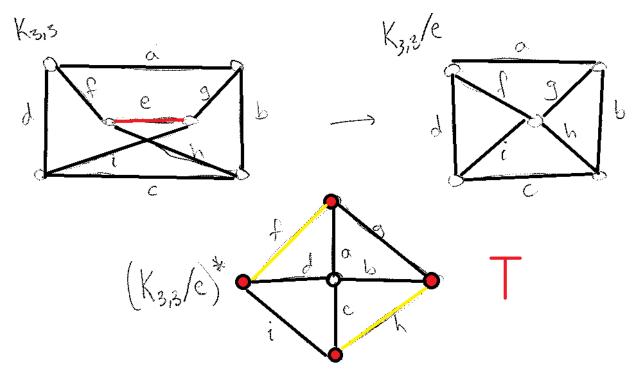
REMARK **343.** Let (G, T) be a graft with graft element e and let $J \subseteq E(G)$. Then $J \cup \{e\}$ is a cycle of M(G, T) if and only if J is a T-join.

From this observation it follows that if |T| is odd, then e is a coloop of M(G,T), and hence M(G,T) is graphic.

EXAMPLE **344.** Recall that $F_7 = M(K_4, V(K_4))$.



EXAMPLE **345.** Also recall that $M(K_{3,3})^*$.



Note that $\{e, f, h\}$ is a cycle of $M(K_{3,3})^*$.

6.5 Graft Minors

DEFINITION **346.** Let (G, T) be a graft. For $f \in E(G)$, we define

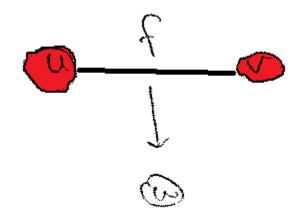
$$M(G,T) \setminus f \coloneqq M(G \setminus f,T)$$
$$M(G,T)/f \coloneqq M(G/f,T')$$

to be graft deletion and graft contraction respectively, where $T' - \{w\} \coloneqq T - \{u, v\}$ and $w \in T$ if and only if $|T \cap \{u, v\}| = 1$.

THEOREM **347.** [6.10] If M is a binary matroid excluded minor for the class of graphic matroids and $e \in E(M)$ is such that $M \setminus e$ is 3-connected, then $M \in \{F_7, M(K_{3,3})^*\}$.

Proof. We can represent M by a graft (G, T) where G is a 3-connected graph and |T| is even and at least four.

CLAIM (1). Let $f = uv \in E(G)$. If G/f is 3-connected, then |T| = 4 and $u, v \in T$.

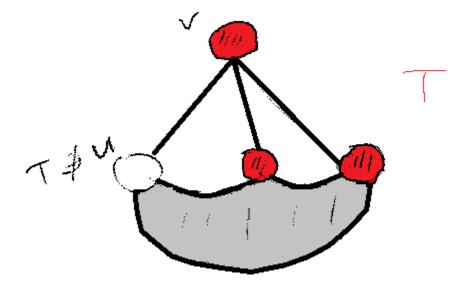


Proof of Claim 1. Well M/f = M(G/f, T') where |T'| is even and $T \cap V(G - u - v) = T \cap V(G - u - v)$. Since M is an excluded minor, M/f is graphic. So, by Lemma 6.4, |T'| = 2. Hence |T| = 4 and $u, v \in T$.

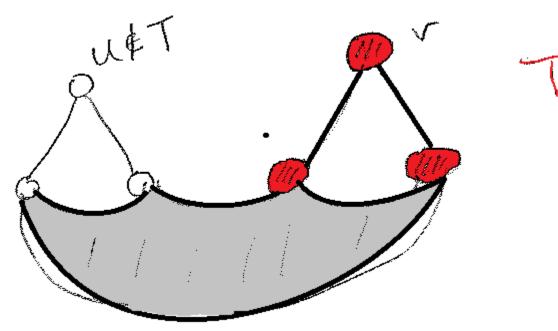
CLAIM (2). We have |T| = 4.

Proof of Claim 2. By an exercise, there exists $f \in E(G)$ such that si(M(G)/f) is 3-connected. Hence G/f is 3-connected. Apply Claim 1 and the desired result follows.

CLAIM (3). If $f = uv \in E(G)$ and $u \notin T$, then $v \in T$, $\deg(v) = 3$, and $N(v) \subseteq T \cup \{u\}$.



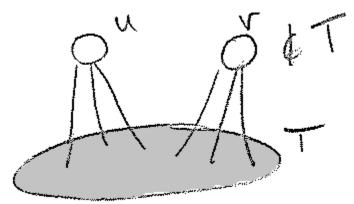
Proof of Claim 3. By Claim 1, G/f is not 3-connected. So M(G)/f is not internally 3-connected. Then, by Bixby's Lemma, $M(G) \\f$ is internally 3-connected. The only possible degree two nodes in $G \\f$ are u and v.



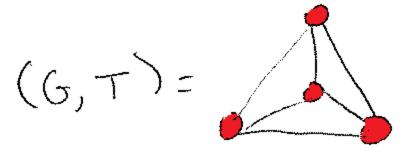
If $w \in \{u, v\}$ has degree two and $f' \in ww' \in E(G) - \{f\}$, then consider $(G', T') = (G, T) \land f/f'$. Now |T| = |T'| unless $w, w' \in T$. So, unless $\deg_{G \smallsetminus f}(v) = 2$, $v \in T$, and $N_{G \smallsetminus f}(v) \subseteq T$, we can get a minor (G'', T'') of $(G, T) \smallsetminus f$ such that G'' is 3-connected and |T''| = 4 — contradicting that $M(G, T) \smallsetminus f$ is graphic.

CLAIM (4). We have $|V(G)| \leq 5$.

Proof of Claim 4. If not, then there are two vertices $u, v \in V(G) - T$. By Claim 3, $N(u) \subseteq T$, $N(v) \subseteq T$, and $N(u) \cap N(v) = \emptyset$. However G is 3-connected and |T| = 4 — contradiction.

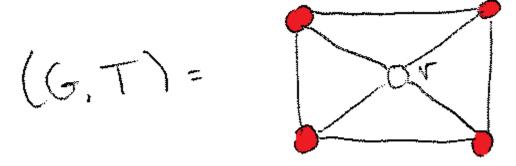


Now we are left with two cases. First suppose that |V(G)| = 4. This means:

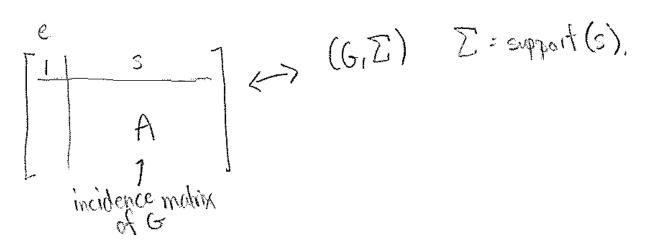


So $M(G,T) = F_7$.

Otherwise we have |V(G)| = 5 Let $v \in V(G) - T$. Since |V(G)| is odd, G has a vertex w of even degree. Thus deg(w) = 4. By Claim 3, v = w and each vertex in T has degree 3. Hence:

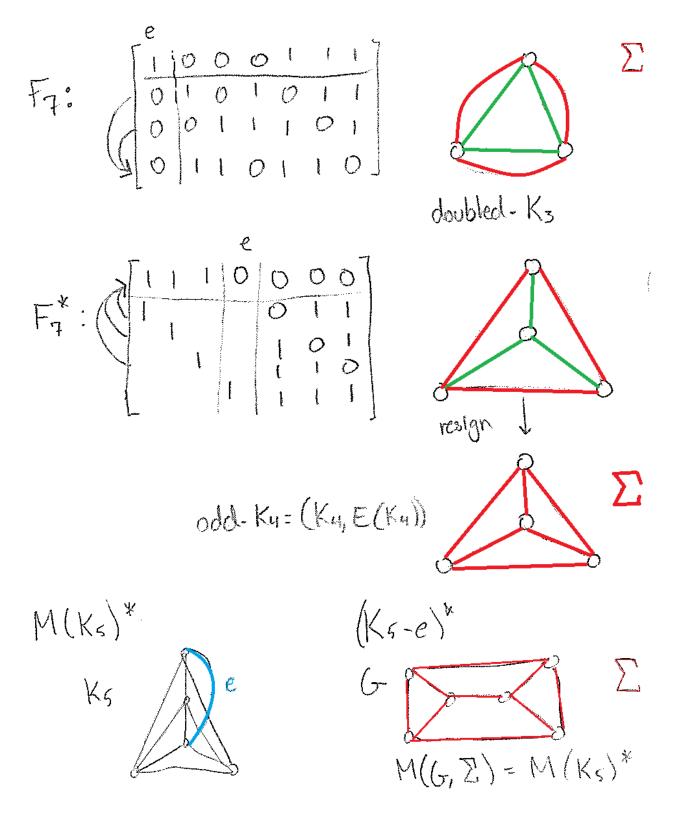


Thus $M = M(K_{3,3})^*$.



REMARK 348. Let (G, Σ) be a signed graph, with $M/e = M(G, \Sigma)$. Note

- (1) $\Sigma \cup \{e\}$ is a cocycle of M, and
- (2) if C^* is a cocycle of M that contains e then $M(G, C^* \{e\}) = M(G, \Sigma) = M$.



REMARK **349.** Note that $E(K_5)$ is a cocycle of $M(K_5)^*$.

6.6 Signed graph Minors

DEFINITION **350.** Let (G, Σ) be a signed graph and let $f = uv \in E(G)$. We define

 $M(G,\Sigma) \smallsetminus f \coloneqq M(G \smallsetminus f,\Sigma)$

to be signed graph deletion. If $f \notin \Sigma$, then we define

$$M(G,\Sigma)/f \coloneqq M(G/f,\Sigma)$$

to be signed graph contraction. If $f \in \Sigma$ and $u \neq v$, then we define

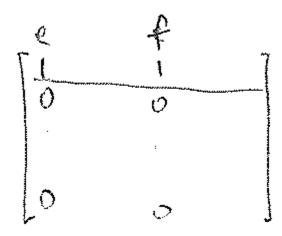
 $M(G,\Sigma)/f \coloneqq M(G,\Sigma\Delta\delta(u))/f$

to be signed graph contraction.

REMARK **351.** If $f \in \Sigma$ and $u \neq v$, then

$$M(G, \Sigma)/f = M(G/f, \Sigma \Delta \delta \cup u).$$

Moreover, note that we do not define contraction by f if $f \in \Sigma$ and u = v (in which case e and f are parallel in $M(G, \Sigma)$).

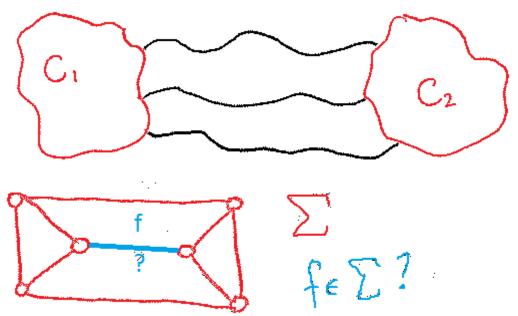


DEFINITION **352.** Let (G, Σ) and (G', Σ') be signed graphs. We say (G', Σ') is a *minor* of (G, Σ) if there exist disjoint edge sets $D, C \subseteq E(G)$ and $X \subseteq V(G)$ such that

- (1) $C \cap (\Sigma \Delta \delta(X)) = \emptyset$, and
- (2) $(G', \Sigma') = (G \setminus D/C, \Sigma'\Delta\delta(X)).$

LEMMA **353.** [6.11] If (G, Σ) has two disjoint odd circuits and G is simple and 3-connected, then $M(G, \Sigma)$ has an F_7^* - or $M(K_5)^*$ -minor.

Proof sketch.



There are two cases. First, if $f \in \Sigma'$ then $M(G', \Sigma') = M(K_5)^*$. Second, if $f \notin \Sigma'$, then resign to get:

Now $M(G', \Sigma') \setminus d/c_1, c_2 \cong F_7^*$.

Recall the following facts and definitions.

REMARK 354. (1) A circuit C of G is a circuit of $M(G, \Sigma)$ if and only if $|C \cap \Sigma|$ is even.

(2) A set of edges X of (G, Σ) is odd if $|X \cap \Sigma|$ is odd.

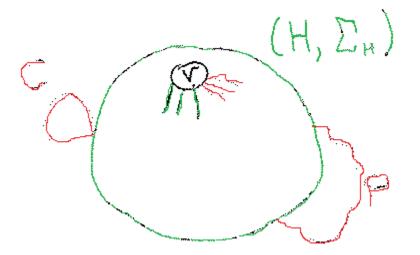
(3) A vertex $v \in V(G)$ is a blocknode of (G, Σ) if each odd circuit of (G, Σ) contains v.

THEOREM **355.** [6.7] Let (G, Σ) be a signed graph where G is a loopless and 3-connected graph. Then $M(G, \Sigma)$ is graphic if and only if (G, Σ) has a blocknode.

THEOREM **356.** [6.12 - GERARDS] Let (G, Σ) be a signed graph where G is a simple 3connected graph. Then either

(1) (G, Σ) has a blocknode, or

- (2) (G, Σ) has two disjoint odd circuits, or
- (3) (G, Σ) has one of the following minors: odd- K_4 , doubled- K_3 . (See previous diagrams.) Proof. Suppose for a contradiction that the result is false. Consider a counterexample (G, Σ) .
- CLAIM (1). Let (H, Σ_H) be a subgraph of (G, Σ) and $v \in V(H)$ such that
 - (i) (H, Σ_H) has an odd circuit, and
 - (ii) $\Sigma_H \subseteq \delta_H(v)$.



Then either

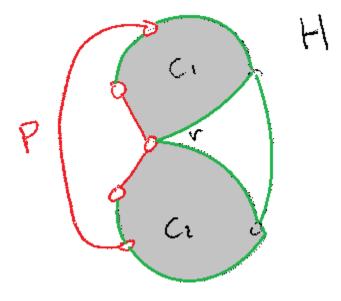
- (1) there is an odd circuit C of (G, Σ) such that $v \notin V(C)$ and $|V(C) \cap V(H)| = 1$, or
- (2) there is an odd path P of (G, Σ) with ends u and w such that $v \notin \{u, w\}$ and $V(P) \cap V(H) = \{u, w\}$. (We call such a P an odd-ear of (H, Σ_H) avoiding v).

Proof of Claim 1 Sketch. Since (G, Σ) has no blocknode, there is an odd circuit C of (G, Σ) avoiding v. Since (H, Σ_H) has an odd circuit and (G, Σ) has no two disjoint odd circuits, we get $V(C) \cap V(H) \neq \emptyset$.

We may assume that $|V(H) \cap V(C)| \ge 2$ since otherwise the claim holds. Now, since $(H, \Sigma_H) - v$ has no odd edges and C is odd, we easily find an odd ear in C for (H, Σ_H) avoiding v.

CLAIM (2). If C_1 and C_2 are odd-circuits, then $|V(C_1) \cap V(C_2)| \ge 2$.

Proof of Claim 2 Sketch. Suppose that $V(C_1) \cap V(C_2) = \{v\}$. Let $(H, \Sigma_H) = C_1 \cup C_2 \cup Q$ where Q is a shortest $(V(C_1) - v, V(C_2) - v)$ -path in $(G, \Sigma) - v$. By resigning we may assume that $\Sigma_H \subseteq \delta(v)$.

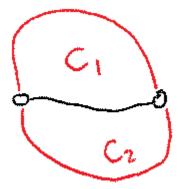


Now we apply Claim 1, and hence have two cases to consider. Firstly, suppose that there is an odd circuit C of (G, Σ) with $v \notin V(C)$ and $|V(C) \cap V(H)| \leq 1$. Then C is disjoint from C_1 or C_2 — contradiction.

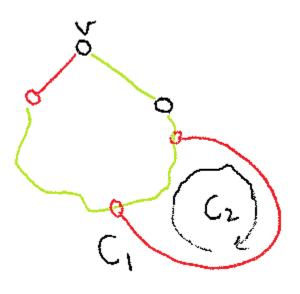
Secondly, suppose that there is an odd ear P' of (H, Σ_H) avoiding v. Then since (G, Σ) has no disjoint odd circuits, P has an end $u \in V(C_1) - v$ and an end $w \in V(C_2) - v$. Then (G, Σ) has a doubled- K_3 minor.

Note that Claim 2 precludes outcome (1) of Claim 1.

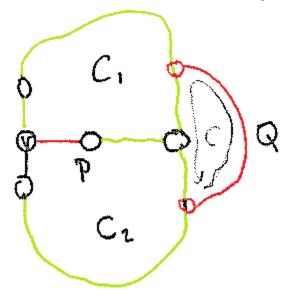
CLAIM (3). There are odd circuits C_1 and C_2 such that $C_1 \cap C_2$ is a path.



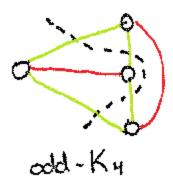
Proof of Claim 3. Let C_1 be an odd circuit and let $v \in C_1$. Resign (G, Σ) so that all odd edges of C_1 are incident with v. By Claims 1 and 2, there is an odd ear P of C_1 avoiding v. Let C_2 be the unique circuit in $(C_1 - v) \cup P$. Then C_1 and C_2 satisfy the claim.



Choose C_1 and C_2 satisfying Claim 3 and with $|V(C_1) \cap V(C_2)|$ as small as possible. Let $P = C_1 \cap C_2$ and let v be an end of P. Resign (G, Σ) so that all odd edges of $C_1 \cup C_2$ are incident with v and so that there is only on odd edge (that edge is in P).



By Claims 1 and 2, there is an odd ear Q of $C_1 \cup C_2$ that avoids v. Let C be the unique circuit in $((C_1 \cup C_2) - v) \cup Q$. Note that C is odd and $C \cap C_1$ and $C \cap C_2$ are both paths. So, by the minimality of P, Q cannot have an end on P. Since (G, Σ) has no disjoint odd circuits, Q has an end in $V(C_1) - V(P)$ and an end in $V(C_2) - V(P)$. So (G, Σ) has an odd- K_4 minor.



COROLLARY **357.** [6.13] If M is a binary excluded minor for the class of graphic matroids and there exists $e \in E(M)$ such that M/e is 3-connected, then $M \cong F_7^*$ or $M \cong M(K_5)^*$.

Proof. There is no element $e \in E(F_7)$ such that F_7/e is 3-connected. It suffices to prove that M has a minor isomorphic to F_7 , F_7^* , or $M(K_5)$. Suppose otherwise.

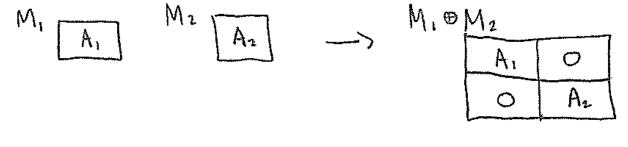
We can represent M by a signed graph (G, Σ) where G is simple and 3-connected. Since M is not graphic (G, Σ) has no block node. By Lemma 6.11, (G, Σ) has no two disjoint odd circuits. Then, by Theorem 6.12, (G, Σ) has a minor isomorphic to odd- K_4 or doubled- K_3 . Then M has a minor isomorphic to F_7^* or F_7 — contradiction.

Theorem 6.10 and Corollary 6.13 together prove that the binary excluded minors for the class of graphic matroids are F_7 , F_7^* , $M(K_5^*)$, and $M(K_{3,3})^*$. Thus the excluded minors for the class of graphic matroids are $U_{2,4}$, F_7 , F_7^* , $M(K_5^*)$, and $M(K_{3,3})^*$.

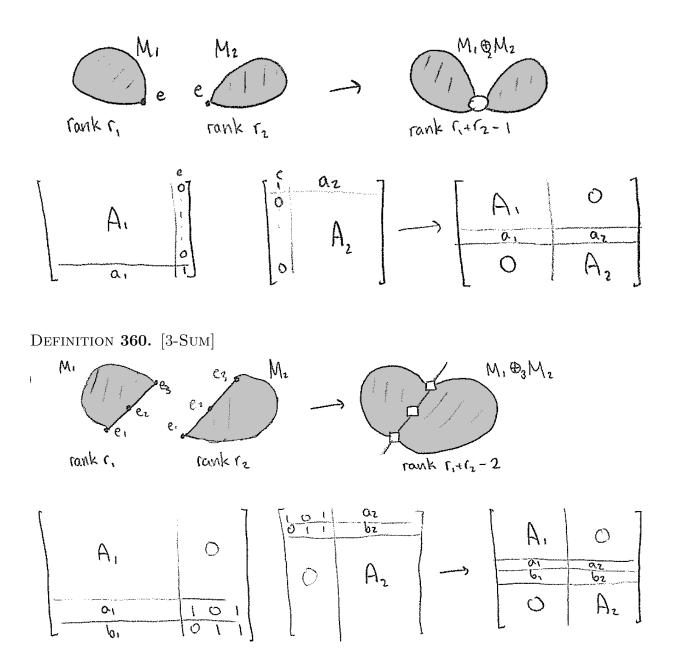
7 Regular Matroid Decomposition

7.1 Sums of binary matroids

DEFINITION 358. [1-SUM (OR DIRECT SUM)]



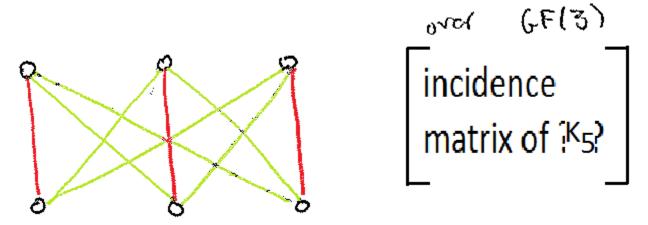
Definition 359. [2-Sum]



REMARK 361. The class of regular matroids is closed under 1-, 2-, and 3-sums.

7.2 Seymour's Decomposition Theorem

DEFINITION **362.** We define $R_{10} := M(G, \Sigma)$ where



THEOREM **363.** [SEYMOUR'S DECOMPOSITION THEOREM] Every regular matroid can be constructed by 1-, 2-, and 3-sums from graphic matroids, cographic matroids, and copies of R_{10} .