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Why study matroids

We will generalize:

� Menger’s Theorem (disjoint paths)

� König’s Theorem (matching)

� Tutte’s Wheels Theorem (3-connected graphs)

� Kuratowski’s Theorem (planarity)

� Matrix Tree Theorem (counting spanning trees)

We will prove:

� Tutte-Berge Formula (matching)

� Jaeger’s 8-flow theorem

� Nash-William’s Tree Theorem (disjoint spanning trees)

We will prove analogues of:

� Turan’s Theorem

� Ramsey’s Theorem

� Erdös-Stone Theorem

1 Introduction

Definition 1. A matroid consists of a pair (E,I) where E is a finite ground set and I is
a collection of independent subsets of E such that:

(I0) the empty set is independent;

(I1) subsets of independent sets are independent; and
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(I2) For X ⊆ E, all maximal independent subsets of X have the same size.

If M = (E,I) is a matroid, then

� E(M) ∶= E;

� I(M) ∶= I;

� ∣M ∣ ∶= ∣E∣; and

� r(M) ∶= max{∣I ∣ ; I ∈ I}.

Example 2. [Graphic Matroids] For a graph G = (V,E) we define M(G) ∶= (E,F)
where F ∶= {F ⊆ E; G[V,F ] is a forest}. Note that M(G) is a matroid; we call this the cycle
matroid of G. A matroid is graphic if it is the cycle matroid of a graph.

Example 3. [Representable matroids] Let A ∈ Fr×E where F is a field. Define M(A) ∶=
(E,I) where

I ∶= {I ⊆ E; A∣I has linearly independent columns} .

Note that M(A) is a matroid; we call this the column matroid of A. A matroid M is F-
representable if M is the column matroid of a matrix over F. A GF(2)-representable matroid
is called binary.

Example 4. [Matching] Let M denote the set of all matchings of a graph G = (V,E).

Claim. If G is a graph then (E,M) is not necessarily a matroid.

Proof. Consider the following graph G:

Note (E,M) satisfies (I0) and (I1). However, it does not satisfy (I2), as we show now.
Let X = {a, b, c}, I1 = {a, c}, and I2 = {b}. Then I1 and I2 are maximal independent subsets
of X but ∣I1∣ ≠ ∣I2∣.
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Definition 5. In a graph G, a set Z ⊆ V (G) is called matchable if there is a matching M
of G such that each vertex in Z is incident with an edge of M . Let MSM(G) ∶= (V,I) where
I is the collection of all matchable subsets of V . This is called the matchable set matroid.

Lemma 6. [1.1] If G is a graph then MSM(G) is a matroid.

Proof. Exercise.

Remark 7. Note that MSM(G) is representable; the representation is the Tutte Matrix of
G.

Example 8. [Uniform matroids] We define Ur,n ∶= (E,I) where

E = {1, . . . , n}

and
I = {S ⊆ E; ∣X ∣ ≤ r}.

This is called a uniform matroid.
Note that Ur,n is R-representable and hence Ur,n is a matroid. (Take an r×n matrix with

algebraically independent entries.)

Lemma 9. [1.2] For any n, U2,n is F-representable if and only if ∣F∣ ≥ n − 1.

Proof. Suppose Ur,n =M(A). By row operations and column scaling we may assume that

A = [0 1 1 ⋯ 1
1 a2 a3 ⋯ an

]

where a2, . . . , an ∈ F are distinct. So ∣F∣ ≥ n − 1. The converse is similar.

Open Problem 10. Given a finite field F, which uniform matroids are representable over
F.

Conjecture 11. [1.3] We have Ur,n is F-representable if and only if either:

(i) r ∈ {0,1, n − 1, n},

(ii) n ≤ ∣F∣ + 1, or

(iii) ∣F∣ is even, r ∈ {3, n − 3}, and n = ∣F ∣ + 2.

Remark 12. The “if” direction holds. The “only if” direction holds for:

� r ≤ 5 (1947-1970)

Page 3 of 90



CO 446 Revised Lecture Notes

� ∣F∣ prime (Ball 2010)

Exercise 13. Show that if ∣F∣ is odd and n ≥ ∣F∣ + 2, then U3,n is not F-representable.

Example 14. [Non-Pappus matroid]

The Non-Pappus matroid is M = (E,I), where E = {a1, a2, a3, b1, b2, b3, c1, c2, c3} and
I ∈ I if and only if ∣I ∣ ≤ 3 and no three elements in I are on a common line in the diagram.

Theorem 15. [1.4 - Pappus circa 340 AD] The Non-Pappus matroid is not repre-
sentable.

Proof. Exercise.

Conjecture 16. [1.5] The proportion of n-element matroids that are representable tends
to zero as n→∞.

Definition 17. A matroid M is paving if all subsets of E(M) of size ≤ R(M) − 1 are
independent.

Conjecture 18. [1.6] The proportion of n-element matroids that are paving tends to one
as n→∞.

There are several other perspectives one may take to look at matroids.

1.1 Circuits

Remark 19. For a graph G, a minimal dependent set in M(G) is the edge-set of a circuit.
Graphs motivate the following definitions.

Definition 20. A circuit of a matroid is a minimal dependent set. A loop is a circuit of
size 1 and a parallel pair is a circuit of size 2. A matroid is simple if it has no loops or
parallel pairs.
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Lemma 21. [1.7] Let C denote the collection of circuits of a matroid M . Then

(C0) ∅ ∉ C;

(C1) If C1,C2 ∈ C are distinct, then C1 /⊆ C2; and

(C2) If C1,C2 ∈ C are distinct and e ∈ C1 ∩ C2, then there exist C3 ∈ C such that C3 ⊆
(C1 ∪C2) − {e}.

Proof. Note (C0) and (C1) are trivial. We show (C2). Consider distinct circuits C1,C2 and
e ∈ C2 ∩C2. By (C1), C1 ∩C2 is independent. Let X = C1 ∪C2, let I1 = X − {e}, and let I2

be a maximal independent set such that C1 ∩C2 ⊆ I2 ⊆X.

Assume, for a contradiction, that I1 is independent. By (I2), ∣I2∣ = ∣I1∣ = ∣X ∣−1. But then
either C1 ⊆ I2 or C2 ⊆ I2 — a contradiction.

Theorem 22. [1.8] Let C be a collection of subsets of a finite set E. Then C is the collection
of circuits of a matroid if and only if C satisfies (C0), (C1), (C2).

Proof. Exercise.

1.2 Bases

Definition 23. For a matroid M , a maximal independent subset of E(M) is a basis.

Remark 24. By (I2), each basis of a matroid M has size r(M).

Remark 25. For a connected graph G, the bases of M(G) are the edge sets of spanning
trees.

Lemma 26. [1.9] Let B denote the set of bases of a matroid M . Then

(B0) B ≠ ∅
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(B1) For each B1,B2 ∈ B and e ∈ B1−B2 there exists f ∈ B2−B1 such that (B1−{e})∪{f} ∈ B.

Proof. Note (B0) follows from (I0). We check (B1) now. Consider B1,B2 ∈ B and e ∈ B1−B2.
Let X = (B1−{e})∪B2. Now B1−{e} and B2 are independent subsets of X and ∣B1 − {e}∣ <
∣B2∣. So by (I2), there exists f ∈ X − (B1 − {e}) such that (B1 − {e}) ∪ {f} is independent.
Note that f ∈ B2 −B1 and (B1 − {e}) ∪ {f} is a basis.

Theorem 27. [1.10] Let B be a collection of subsets of a finite set E. Then B is the
collection of bases of a matroid if and only if it satisfies (B0) and (B1).

Proof. Exercise.

1.3 Rank

Definition 28. For a matroid M and X ⊆ E(M) we define the rank of X in M to be

rM(X) ∶= max(∣I ∣ ; I ∈ I(M), I ⊆X) .

We sometimes abbreviate rM(X) to r(X).

Lemma 29. [1.11] For a matroid M = (E,I)

(R0) 0 ≤ r(X) ≤ ∣X ∣ for each X ⊆ E;

(R1) r(X) ≤ r(Y ) for each X ⊆ Y ⊆ E; and

(R2) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ) for each x, y ⊆ E.

Proof. Note (R0) and (R1) are obvious. We check (R2) now. Consider X,Y ⊆ E.

Let I0, I1, I2 be maximal independent sets subject to I0 ⊆ X ∩ Y , I0 ⊆ I1 ⊆ X, and
I1 ⊆ I2 ⊆ X ∪ Y . Thus ∣I0∣ = r(X ∩ Y ), ∣I1∣ = r(X), ∣I2∣ = r(X ∪ Y ). Let I3 = Y ∩ I2. Thus
∣I3∣ ≤ r(Y ). Now r(X ∩ Y ) + r(X ∪ Y ) = ∣I0∣ + ∣I2∣ = ∣I1∣ + ∣I3∣ ≤ r(X) + r(Y ).

Remark 30. Condition (R2) is called submodularity.
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Theorem 31. [1.12] Let E be a finite set and let r ∶ 2E → Z. Then r is the rank function
of a matroid if and only if it satisfies (R0), (R1), (R2).

Proof. Exercise.

1.4 Ingleton’s Inequality

Example 32. [Ingleton’s Inequality] For X1,X2,X3,X4 ⊆ E consider

r(X1) + r(X2) + r(X1 ∪X2 ∪X3) + r(X1 ∪X2 ∪X4) + r(X3 ∪X4)
≤r(X1 ∪X2) + r(X1 ∪X3) + r(X1 ∪X4) + r(X2 ∪X3) + r(X2 ∪X4) .(1)

Ingleton showed that:

(1) all representable matroids satisfy (1); and

(2) there are matroids that do not satisfy (1).

1.5 Local Connectivity

Definition 33. For X,Y ⊆ E(M), we define the local connectivity of X and Y to be

⊓M(X,Y ) ∶= r(X) + r(Y ) − r(X ∪ Y ).

Remark 34. Note that submodularity, (R2), can be written as

⊓M(X,Y ) ≥ r(X ∩ Y ).

Lemma 35. [1.13] Let A ∈ Fr×E and for each X ⊆ E let ⟨X⟩ denote the subspace of Fr
spanned by the columns of A∣X. Then, for X,Y ⊆ E,

dim ⟨X⟩ ∩ ⟨Y ⟩ = ⊓M(X,Y ).

Proof. By the dimension theorem

dim ⟨X⟩ + dim ⟨Y ⟩ = dim ⟨X⟩ ∩ ⟨Y ⟩ + dim ⟨X⟩ ∪ ⟨Y ⟩ .

Now dim ⟨X⟩ = r(X), dim ⟨Y ⟩ = r(Y ), and dim ⟨X⟩ ∪ ⟨Y ⟩ = r(X ∪ Y ). So

dim ⟨X⟩ ∩ ⟨Y ⟩ = r(X) + r(Y ) − r(X ∪ Y ) = ⊓M(X,Y ).

Remark 36. Note that dim ⟨X⟩ ∩ ⟨Y ⟩ ≥ r(X ∩ Y ). So representable matroids satisfy
⊓M(X,Y ) ≥ r(X ∩ Y ) (as do all matroids — this is just another way to see this inequality
in the particular case of representable matroids).
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1.6 Closure

Lemma 37. [1.14] For a matroid M let X,X1,X2 ⊆ E(M) with X ⊆ X1 and X ⊆ X2. If
r(X1) = r(X2) = r(X), then r(X1 ∪X2) = r(X).

Proof. By submodularity,

2r(X) = r(X1) + r(X2) ≥ r(X1 ∩X2) + r(X1 ∪X2) ≥ 2r(X).

Equality holds throughout; in particular, r(X1 ∪X2) = r(X).

Definition 38. Given a matroid M and X ⊆ E(M), by Lemma 1.14 there is a unique
maximal set X̂ ⊆ E such that X ⊆ X̂ and r(X̂) = r(X); X̂ is the called the closure of X and
is denoted clM(X).

Remark 39. Note that:

(1) for e ∈ E − X, e ∈ clM(X) if and only if there is a circuit C such that e ∈ C and
C −X = {e}; and

(2) if X ⊆ Y , then clM(X) ⊆ clM(Y ).

Definition 40. For a matroid M , a set F ⊆ E(M) is called a flat if cl(F ) = F .

Exercise 41. Show that the intersection of two flats is a flat.

Definition 42. Let M be a matroid. A point is a rank-one flat. A line is a rank-two flat.
A plane is a rank-three flat. A hyperplane is a rank-(r(M) − 1) flat.

1.7 Geometric drawings of matroids
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Definition 43. Let M be a matroid. For each k ∈ {0, . . . , r(M)}, let Wk denote the number
of rank-k flats in M .

Conjecture 44. [1.15 - Rota, 1971] For a matroid M and k ∈ {1, . . . , r(M) − 1},

Wk ≥ min(Wk−1,Wk+1) .

Conjecture 45. [Points-Lines-Planes Conjecture - Mason 1972] In a rank-4
matroid we have

W 2
2 ≥W1W3.

1.8 Simplification

Definition 46. Let L be the collection of loops of a matroid M . Now let (P1, . . . , Pk) be
the points of M . Note that L ⊆ Pi (i = 1, . . . , k) and that (P1 − L, . . . , Pk − L) is a partition
E(M) −L. Note that {e, f} is a parallel-pair if and only if e, f ∈ Pi −L for some i. The sets
(P1, . . . , Pk) are called the parallel classes of M . If ei ∈ Pi −L, for i ∈ {1, . . . , k}, then we call
the restriction N of M to {e1, . . . , ek} “the” simplification of M .

Exercise 47. (1) Show that the simplification of a matroid is uniquely determined up to
isomorphism.

(2) Show that a matroid is F-representable if and only if its simplification is.

1.9 Projective Geometries

Definition 48. Let r ∈ Z+ and F be a finite field with q = ∣F∣. Now let A ∈ Fr×qr have
distinct columns.
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We denote the simplification of M(A) by PG(r − 1,F) or PG(r − 1, q). This is called a
projective geometry.

Remark 49. Note that:

(1) ∣PG(r − 1, q)∣ = qr−1
q−1 ;

(2) every simple rank-r F-representable matroid is isomorphic to a restriction of PG(r −
1,F);

(3) each line of PG(r − 1,F) has length q + 1; and

(4) each pair of distinct lines in P (2,F) intersect in a point.

Example 50. The Fano matroid is F7 ∶= PG(2,2).

So

F7 =M
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

.

Recall the following exercise.

Exercise 51. Show that if ∣F∣ is odd and n ≥ ∣F∣ + 2, then U3,n is not F-representable.

Hint: Consider U3,n as a restriction of PG(2,F) and consider a line through two points
of U3,n.
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1.10 Duality

Definition 52. Given a matroid M = (E,I) we define M∗ ∶= (E,I∗) where

I∗ ∶= {I∗ ⊆ E; r(E − I∗) = r(M)} .

This is called the dual of M .

Theorem 53. [1.16] If M is a matroid then M∗ is a matroid.

Proof. Note M∗ clearly satisfies (I0), (I1). So we need only check (I2). Let X ⊆ E and let
I∗1 , I

∗
2 be maximal M∗-independent subsets of X.
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Let I0 be a maximal M -independent subset of E −X. Let B1 and B2 be bases of M such
that I0 ⊆ B1 ⊆ E − I∗1 and I0 ⊆ B2 ⊆ E − I∗2 . Since I0 ⊆ E −X is maximal:

B1 −X = I0 and B2 −X = I0.

Moreover, by the maximality of I∗1 and I∗2 :

I∗1 =X −B1 and I∗2 =X −B2.

Note that ∣B1∣ = ∣B2∣. So
∣I∗1 ∣ = ∣X −B1∣ = ∣X −B2∣ = ∣I∗2 ∣

as required.

Remark 54. Note that:

(1) B is a basis of M if and only if E −B is a basis of M∗. Hence M∗∗ =M .

(2) C∗ is a circuit of M∗ if and only if E −C∗ is a hyperplane of M .

(3) r(M) + r(M∗) = ∣E∣.

(4) For X ⊆ E,
rM∗(X) = ∣X ∣ −(r(M) − rM(E −X)) .

Definition 55. Let M be a matroid. Circuits of M∗ are called cocircuits of M . Independent
sets of M∗ are called co-independent sets of M . More generally, we can append “co” in front
of other terms to get analogous definitions.

1.11 Representability and duality

Definition 56. Let F be a field, E be a finite set, and U be a subspace of FE. We define

U⊥ ∶= {x ∈ FE; xty = 0 for each y ∈ E} .

We call U⊥ the orthogonal space of U .

Remark 57. Note that:

(1) dim(U) + dim(U⊥) = ∣E∣; and

(2) U and U⊥ need not be disjoint.

Exercise 58. Let B ⊆ E, A ∈ FB×E−B, A1 = [I,A], and A2 = [−At, I]. Prove that
rowspace(A1)⊥ = rowspace(A2).

Theorem 59. [1.17] Let A1 ∈ Fr1×E and A2 ∈ Fr2×E. If rowspace(A1)⊥ = rowspace(A2),
then M(A1)∗ =M(A2).
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Proof. It suffices to prove that, if B is a basis of M(A1), then E −B is a basis of M(A2).
By row operations we may assume that A1 = [I,A]. Now consider the matrix A′

2 = [−At, I].
By the exercise,

rowspace(A′
2) = rowspace(A1)⊥ = rowspace(A2).

Thus M(A′
2) =M(A2). Now E −B is a basis of M(A′

2) and hence also of M(A2).

Corollary 60. [1.18] A matroid M is F-representable if and only if M∗ is F-representable.

1.12 Graphicness and duality

Theorem 61. [1.19] If G is a plane graph, then M(G∗) =M(G)∗.

Remark 62. We prove Theorem 1.19 after the Lemma 1.20.
Note that E(G∗) = E(G).

Lemma 63. [1.20] For a graph G and X ⊆ E(G), G[X] is a forest if and only if G∗ −X is
connected.

Proof sketch. If X contains a circuit, then R2 −X is not connected and hence G∗ −X is not
connected.

On the other hand, if G[X] is a forest, then R2 −X is connected.

Proof of Theorem 1.19. By lemma 1.20, M(G) =M(G∗)∗.

1.13 Euler’s Formula

Theorem 64. [Euler’s Formula] Let F be the set of faces of a connected plane graph
G = (V,E). Then

∣E∣ = ∣V ∣ + ∣F ∣ − 2.
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Proof. Let T be the edge set of a spanning tree of G. Then E−T is the edge-set of a spanning
tree in G∗. So ∣E∣ = ∣T ∣ + ∣E − T ∣ = ∣V ∣ − 1 + ∣F ∣ − 1.

Claim. The matroid M(K5)∗ is not graphic.

Proof. Suppose that M(K5)∗ =M(G). We may assume that G is connected. Now

∣V (G)∣ = r(M(K5)∗) + 1 = ∣E(K5)∣ − r(M(K5)) + 1 = 10 − 4 + 1.

Now 3 ∣V (G)∣ > 2 ∣E(G)∣ = ∑v∈V (G) deg(v). So G has a vertex v with degree at most two. So
M(G) has a cocircuit C ⊆ δG(v) of size at most two. Hence M(K5) =M(G)∗ has a circuit
of size at most two — contradiction.

Exercise 65. Prove that M(K3,3)∗ is not graphic.

Theorem 66. [1.21 - Whitney] A graph G is planar if and only if M(G)∗ is graphic.

Remark 67. We will return to the proof of Theorem 1.21 later in the course. We could
prove it now but it would take considerable time.

1.14 Minors

Definition 68. For a matroid M and D ⊆ E(M) we define

M ∖D ∶= (E −D,I ′)

where
I ′ ∶= {I ⊆ E −D; I ∈ I(M)} .

This is called deletion.

Remark 69. Note that:

(1) M ∖D is a matroid;

(2) If M is F-representable, then so is M ∖D; and

(3) M(G ∖D) =M(G) ∖D.

Definition 70. For a matroid M and C ⊆ E(M) we define

M/C ∶= (M∗ ∖C)∗.

This is called contraction.

Remark 71. Note that:
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(1) M/C is a matroid; and

(2) If M is F-representable then so is M/C.

Lemma 72. [1.22] For a matroid M and S ⊆ E −C we have

rM/C(X) = rM(X ∪C) − rM(C).

Proof. Exercise.

Remark 73. By Lemma 1.22 we see

(2) rM/C(X) = rM(X) − ⊓M(X,C).

Exercise 74. Let X ′,X,Y ⊆ E(M) in a matroid M , with X ′ ⊆X and r(X ′) = r(X). Then
⊓M(X ′, Y ) = ⊓M(X,Y ).

By (2) and the exercise we get the following lemma.

Lemma 75. [1.23] Let X ⊆ E and let I be a maximum independent set of C. Then

M/C =M ∖(C − I) /I.

Remark 76. For I ⊆ E −C, I is independent in M/C if and only if ∣I ∣ = rM(I) − ⊓M(I,C).
That is, rM(I) = ∣I ∣ and ⊓M(I,C) = 0.

Definition 77. Let M be a matroid. We say that X,Y ⊆ E(M) are skew if ⊓M(X,Y ) = 0.

The above proves the following lemma.

Lemma 78. [1.24] In a matroid M , I ⊆ E(M/C) is independent in M/C if and only if I
is independent in M and I is skew to C.

Exercise 79. Let M be a matroid.

(1) Let X,Y ⊆ E(M) be disjoint sets. Prove that X is skew to Y if and only if there is no
circuit C ⊆X ∪ Y such that C ∩X and X ∩ Y are both non-empty.

(2) Prove that, if C ⊆ E(G) then

M(G/C) =M(G)/C.
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1.15 Minors

Definition 80. Let M and N be matroids. If C,D ⊆ E(M) are disjoint, then we call
M∖D/C a minor of M . We say that M has an N-minor if M has a minor that is isomorphic
to N .

Lemma 81. [1.25 - Scum Theorem] If N is a minor of a matroid M , then there is a
partition (C,D) of E(M) − E(N) into an independent set C and a co-independent set D
such that N =M/C ∖D.

Proof. Exercise.

Remark 82. Consider a representable matroid M(A) = (E,I). Let C,D ⊆ E be disjoint
sets such that C is independent and D is co-independent. So there is a basis B such that
C ⊆ B ⊆ E −D. By row operations we may assume that A = [I,A′].

Now suppose that

A′ = [A1 A2

A3 A4
] .

That is

A = [I 0 A1 A2

0 I A3 A4
] .

Then M(A) ∖D/C =M([I,A1]).

1.16 Regular Matroids

Definition 83. A matroid is regular if it is representable over every field.

Definition 84. A matrix A is totally unimodular if each square submatrix of A has deter-
minant in {−1,0,1}.

Theorem 85. [Tutte] For a matroid M , the following are equivalent:

(1) M is regular;

(2) M is representable over both GF(2) and GF(3); and

(3) M =MR(A) where A is totally unimodular.

Proof. That (1) implies (2) is trivial. That (3) implies (1) is obvious. The proof that (2)
implies (3) is straightforward, however it is omitted.
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1.17 Signed Incidence Matrix

Definition 86.

1.18 Incidence matrix

Definition 87.

Lemma 88. [1.26] Let A be a signed incidence matrix of G = (V,E) and let F be a field.
Then

r(MF(A)) = ∣V ∣ − comps(G).

Proof. For x ∈ FV , xtA = 0 if and only if xu = xv for two vertices u, v in the same component
of G. So

r(MF(A)) = rankA = ∣V ∣ − comps(G).

Lemma 89. [1.27] Let A be the signed incidence matrix of G = (V,E) and let F be a field.
Then MF(A) =M(G).

Proof. Apply Lemma 1.26 to G[V,X] for each X ⊆ E.
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Remark 90. Note that over GF(2) we can ignore signs. That is, M(G) =MGF(2)(Ã) where

Ã is the incidence matrix of G.

Theorem 91. [1.28] Graphic matroids are regular.

Proof.

Exercise 92. Prove that signed incidence matrices are totally unimodular.

1.19 Counting bases

Problem 93. Given a TU matrix A, how many bases does M(A) have?

Proposition 94. [1.29] Let R,E be finite ordered sets and let A ∈ FR×E. Then

detABt = ∑
X⊆E, ∣X ∣=∣R∣

(detA∣X)(detB∣X) .

Proof sketch. Use:

(1)

det [ I Bt

−A 0
] = detABt; and

(2) for D,A ∈ FV ×V , D diagonal, we have

det(D +A) = ∑
X⊆V

detD[X,X]detA[V −X,V −X].

Theorem 95. [1.30] If A ∈ {−1,0,1}R×E is totally unimodular and has rank ∣R∣, then the
number of bases of M(A) is detAAt.

Proof. We have
detAAt = ∑

X⊆E, ∣X ∣=∣R∣
det(A∣X)2 = ∑

X a basis of M(A)
1.

1.20 Counting Spanning Trees

Definition 96. Let A be the signed incidence matrix of a graph G and let L ∶= AAt. Note
that L ∈ RV ×V and

Luv =
⎧⎪⎪⎨⎪⎪⎩

deg(u); u = v
−nuv; u ≠ v

where nuv is the number of edges connecting u and v. We call L the Laplacian of G.
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Theorem 97. [Matrix Tree Theorem] Suppose G is a graph. Let u ∈ V (G) and let Lū
be obtained from the Laplacian L by deleting both the row and column indexed by u. Then
the number of spanning trees of G is equal to det(Lū).

Proof.

Exercise 98. For a graph G, let u, v ∈ V (G) and let Lū,v̄ be obtained from L by deleting
the uth row and the vth column. Then the number of spanning trees of G is detLū,v̄.

1.21 Excluded Minors

Theorem 99. [Kuratowski’s Theorem] A graph G is planar if and only if it has no
minor isomorphic to K3,3 or K5.

Definition 100. A class of matroidsM is called minor-closed if for each matroid M ∈M,
all minors of M are in M.

Example 101. The following classes are examples of minor-closed classes of matroids:

(1) F-representable matroids;

(2) graphic matroids;

(3) regular matroids; and

(4) uniform matroids.

Definition 102. Let M be a minor-closed class of matroids. An excluded-minor for M is
a matroid M ∉M whose proper minors are all contained in M.

Theorem 103. [Kuratowski’s Theorem] The excluded-minors for the class of planar
graphs are K3,3 and K5.

Exercise 104. Determine the excluded minors for the class of uniform matroids.
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Theorem 105. [Tutte’s Excluded-Minor Theorems] (1) The matroid U2,4 is the
only excluded minor for the class of binary matroids;

(2) The excluded-minors for the class of regular matroids are U2,4, F7, F ∗
7 ; and

(3) The excluded minors for the class of graphic matroids are U2,4, F7, F ∗
7 , M(K5)∗,

M(K3,3)∗.

Remark 106. (a) We will prove (1) and (2).

(b) Item (2) has a short proof due to Gerards.
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(c) Item (3) implies Kuratowski’s theorem.

Conjecture 107. [Rota’s Conjecture] For each finite field F, there are, up to isomor-
phism, only finitely many excluded minors for the class of F-representable matroids.

Remark 108. (1) Rota’s conjecture is claimed to be true (Geelen, Gerards, Whittle).

(2) Rota’s conjecture is false for infinite fields (Lazarson).

Theorem 109. [Graph Minors Theorem - Robertson, Seymour] Each minor-closed
class of graphs has, up to isomorphism, only finitely many excluded minors.

Remark 110. By (2) of the previous remark, the Graph Minors Theorem does not extend
to all matroids.

Remark 111. The set {PG(2, p); p prime} is an “infinite antichain” (that is, no one plane
contains another as a minor).

1.22 Matching

Definition 112. Let G be a graph. We define ν(G) to be the size of a maximum matching
of G, the deficiency of G to be def(G) ∶= ∣V (G)∣ − 2ν(G), and odd(G) to be the number of
components of G of odd size.

Remark 113. Note that

def(G) ≥ def(G −X) − ∣X ∣ ≥ odd(G −X) − ∣X ∣ .

Theorem 114. [Tutte-Berge Formula] In a graph G,

def(G) = max
X⊆V (G)

(odd(G −X) − ∣X ∣) .

Definition 115. A vertex v in a graph G is avoidable if ν(G − v) = ν(G).

Remark 116. Note that

def(G − v) =
⎧⎪⎪⎨⎪⎪⎩

def(G) − 1, v is avoidable

def(G) + 1, v is not avoidable.

Definition 117. A graph G is hypomatchable if

(1) V (G) ≠ ∅;
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(2) G is connected; and

(3) each vertex of G is avoidable.

Lemma 118. [Gallai’s Lemma] If a graph G is hypomatchable then def(G) = 1 and,
hence, ∣V (G)∣ is odd.

1.23 Coloops and series-pairs

Definition 119. Let M be a matroid. We call e a coloop of M if r(E − {e}) < r(M). We
call {e, f} a series-pair if neither e nor f is a coloop, but r(E − {e, f}) < r(M).

Remark 120. (1) Thus e is a coloop of M if and only if e is a loop of M∗.

(2) Thus a series-pair of M is a parallel pair of M∗.

Recall the first problem on the first assignment: If {e, f} ,{f, g} are series-pairs, then so
is {e, g}.

Proof of Gallai’s Lemma. Recall that MSM(G) = (V,I) where I is the set of matchable
sets. Since each vertex is avoidable, MSM(G) has no coloops. For an edge e = uv of G,
ν(G − u − v) < ν(G). Hence {u, v} is a series pair of MSM(G). However G is connected, so
by Assignment 1 Problem 1, each pair of vertices of G is a series-pair of MSM(G). Hence
def(G) = 1.

Proof of Tutte-Berge Formula. For each X ⊆ V (G),

def(G) ≥ def(G −X) − ∣X ∣ ≥ odd(G −X) − ∣X ∣ .

It remains to find X ⊆ V (G) for which equality holds. Choose X ⊆ V (G) maximal such that

def(G) = def(G −X) − ∣X ∣ .

By our choice of X each component of G −X is hypomatchable. Hence def(G) = odd(G −
X) − ∣X ∣.

2 Binary Matroids

Definition 121. LetB be a basis of a matroidM = (E,I). Define F (M,B) ∈ GF(2)B×(E−B)
such that

F (M,B)e,f ∶=
⎧⎪⎪⎨⎪⎪⎩

1, (B − {e}) ∪ {f} is a basis

0, otherwise.

We call F (M,B) the fundamental matrix of (M,B).
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Definition 122. For e ∈ B, E − clM(B − {e}) is the unique cocircuit of M that is disjoint
from B − {e}; we call E − clM(B − {e}) the fundamental cocircuit of e in (M,B).
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Exercise 123. Prove that

E − clM(B − {e}) = {e} ∪ {f ∈ E −B; F (M,B)e,f = 1} .

Definition 124. By duality, if f ∈ E −B then there exists a unique circuit C in B ∪ {f};
we call C the fundamental circuit of f in (M,B).

Remark 125. By the exercise,

C = {f} ∪ {e ∈ B; F (M,B)e,f = 1} .

Lemma 126. [2.1] Let B be a basis of a binary matroid M(A). Then

rowspace(A) = rowspace([I F (M(A),B)]) .

Proof. Up to row operations, we may assume that

A = [I A′] .

For each E ∈ B and f ∉ B, (B − {e}) ∪ {f} is a basis of M if and only if A′
e,f = 1. Thus

A′ = F .
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Lemma 127. [2.2] Let B be a basis of a matroid M . Then M is binary if and only if
M =M([I F ]).

Proof. This follows from Lemma 2.1.

Lemma 128. [2.3] Suppose that M(A1) is a binary matroid and M(A1)∗ =M(A2). Then

rowspace(A1)⊥ = rowspace(A2).

Proof. Note that F (M(A2),E −B) = F (M(A1),B)∗. By an assignment problem,

rowspace([I F (M(A1),B)])⊥ = rowspace([F (M(A1),B)t I]) .

Hence, by Lemma 2.1,

rowspace(A1)⊥ = rowspace([I F (M(A1),B)])⊥

= rowspace([F (M(A1),B)t I])
= rowspace(A2).

Remark 129. (1) Lemma 2.3 is a partial converse of Theorem 1.17.

(2) We see rowspace(A1) and rowspace(A2) are invariants of the binary matroid M(A1).
That is, they are determined by the matroid and are independent of the representation.
In particular, the following definition is well-defined.

2.1 Cycles and Cocyles

Definition 130. Let M = M(A1) = M(A2)∗ be a binary matroid. We call rowspace(A1)
the cocycle space of M and denote it by C∗(M). We call rowspace(A2) the cycle space of M
and denote it by C(M).

Definition 131. Let M =M(A) be a binary matroid. We call C ⊆ E(M) a cycle of M if
the columns of A∣C sum to zero. Equivalently, C ⊆ E(M) is a cycle of M if the characteristic
vector of C is in C(M).

Lemma 132. [2.4] In a binary matroid M , C ⊆ E(M) is a cycle if and only if C is a
disjoint union of circuits.

Proof. We may assume that C ≠ ∅. Now C is dependent, and, hence, C contains a circuit
C ′. Note that C ′ is itself a cycle and hence C − C ′ is a cycle. Now the result follows
inductively.

Definition 133. Let M = M(A) be a binary matroid. We call C∗ ⊆ E(M) a cocycle of
M(A) if C∗ is a cycle of M(A)∗. Equivalently, C∗ ⊆ E(M) is a cocycle of M(A) if the
characteristic vector of C∗ is in C∗(M).

Page 25 of 90



CO 446 Revised Lecture Notes

2.2 Graphs

Definition 134. We say a graph G is even if each vertex has even degree.

Remark 135. Let G be a graph. Then C∗ ⊆ E(G) is a cocycle of M(G) if and only if C∗

is a cut of G, and C ⊆M(G) is a cycle of M(G) if and only if G[V,C] is even.

Remark 136. By Lemma 2.3, if C is a cycle and C∗ is a cocycle in a binary matroid, then
∣C ∩C∗∣ is even. In particular, this holds when C is a circuit and C∗ is a cocircuit.

Exercise 137. Let C be a circuit and C∗ be a cocircuit of a matroid M . Prove that
∣C ∩C∗∣ ≠ 1.

Lemma 138. [2.5] Let M,N be matroids on a common ground set E. If

(1) each circuit of M is a circuit of N , and

(2) each cocircuit of M is a cocircuit of N , then

M = N .

Proof. Suppose that M ≠ N . Then there is a circuit C of N that is independent in M . Let
B be a basis of M containing C. Let e ∈ C, and let C∗ be the fundamental cocircuit of e in
(M,B).

By (2), C∗ is a cocircuit of N . However ∣C ∩C∗∣ = 1 Contradiction.

Theorem 139. [2.6] A matroid M is binary if and only if for each circuit C and cocircuit
C∗, ∣C ∩C∗∣ is even.

Proof. If M is binary, C is a circuit of M , and C∗ is a cocircuit of M , then by Lemma 2.3,
∣C ∩C∗∣ is even.

Conversely, suppose that ∣C ∩C∗∣ is even for each circuit C and cocircuit C∗ of M .
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Let C denote the set of circuits of M and C∗ denote the set of cocircuits of M . Let A1

be the “(C∗,E)-incidence matrix” and A2 be the “(C,E)-incidence matrix.”

Claim. We have M(A∗
1) =M(A2).

Proof of Claim. The rows of A1 are orthogonal to the rows of A2; it suffices to prove that

rank(A1) + rank(A2) ≥ ∣E∣ .
Let B be a basis of M . Now [I F (M,B)] is a submatrix of A1, so rank(A1) ≥ r(M).
Similarly [F (M,B)t I] is a submatrix of A2, so rank(A2) ≥ r(M∗) = ∣E∣ − r(M). Thus,
rank(A1) + rank(A2) ≥ ∣E∣ as required.

Now each circuit of M is a circuit of M(A1) and, by the claim, each circuit of M is a
circuit of M(A1). By Lemma 2.5, M =M(A1).

Theorem 140. [2.7 - Tutte] A matroid M is binary if and only if it has no U2,4-minor.

Proof. Let M be an excluded minor for the class of binary matroids. By Assignment 1,
Problem 6, M is simple. By Lemma 1.2, if r(M) ≤ 2, then M ≅ U2,4. Hence we may assume
that r(M) ≥ 3. By Theorem 2.6, there is a circuit C and cocircuit C∗ with ∣C ∩C∗∣ odd.

Claim (1). We have C = C∗.

Proof of Claim 1. Suppose not, then, up to duality, there exists e ∈ C − C∗. Now C − {e}
is a circuit in M/e and C∗ is a cocircuit in M/e. Since ∣C∗ ∩ (C − {e})∣ is odd, M/e is not
binary — contradiction.

Note that, since r(M) ≥ 3,

∣E −C∗∣ ≥ r(M ∖C∗) = r(M) − 1 ≥ 2.

Let e ∈ E −C∗.

Claim (2). There is a cocircuit C̃ of M ∖ e with C̃ ⊆ C∗ and ∣C̃ ∣ odd.

Proof of Claim 2. Let f ∈ E − (C∗ ∪{e}). Now C∗ is a cocircuit in M/f , and M/f is binary.
So C∗ is a cocycle in M/f ∖e. By Lemma 2.4 and duality, we can partition C∗ into cocircuits
of M/f ∖ e; one of these, say C̃, is odd. Now C̃ is a cocircuit of M/f ∖ e = (M ∖ e)/f and,
hence, also of M ∖ e.

Now C is a circuit in M ∖ e, C̃ is a cocircuit in M ∖ e, and ∣C ∩ C̃ ∣ = ∣C̃ ∣ is odd. Hence
M ∖ e is non-binary — contradiction.
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2.3 Affine Matroids

Definition 141. A binary matroid M = (E,I) is affine if E is a cocycle of M .

Remark 142. Note that, for a graph G,

(1) M(G) is affine if and only if G is bipartite, and

(2) M(G)∗ is affine if and only if G is even.

Remark 143. Given A ∈ GF(2)r×E, M(A) is affine if and only if there exists x ∈ GF(2)r
such that

xtA = 1t;

this can be checked efficiently.

Theorem 144. [2.8] A binary matroid M is affine if and only if it has no odd-circuits.

Proof. Suppose that M has an odd circuit C. Note that M ∣C = M(G) where G is an odd
circuit. Since G is not bipartite, M(G) =M ∣C is not affine. Hence M is not affine.

Conversely suppose that M is not affine. Then there is no solution to

xtA = 1t.

By the Fundamental Theorem of Linear Algebra, there exists y ∈ GF(2)E such that

Ay = 0 and 1ty = 1.

Let C = support(y). Since Ay = 0, C is a cycle of M(A) and, since 1ty = 1, ∣C ∣ is odd. By
Lemma 2.4, C is a disjoint union of circuits, one of which must be odd.

2.4 Affine Geometries

Definition 145. Let H be a hyperplane of PG(n − 1,2). We denote PG(n − 1,2) ∖H by
AG(n − 2,2).
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Exercise 146. Let M be a simple rank-r binary matroid. Prove that M is affine if and
only if M is isomorphic to a restriction of AG(r − 1,2).

2.5 Critical Number

Remark 147. Note that G is 4-colourable if and only if there exist cocycles C1,C2 of M(G)
such that E(G) = C1 ∪C2.

Definition 148. The critical number, χ(M), of a matroid M , is the minimum number of
cocycles required to cover E(M).

Remark 149. This is well-defined if M has no loops, as in this case every element of M
is in a cocycle and hence we may cover M with cocycles. Any loop of a matroid, on the
other hand, is not contained in a cocycle, and hence we would not be able to cover M with
cocycles.

Recall that χ(G) denotes the chromatic number of a graph G.
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Remark 150. Note that:

(1) χ(G) ≤ 2k if and only if χ(M(G)) ≤ k;

(2) χ(M(G)) = ⌈log2(χ(G))⌉.

2.6 Bose-Burton Geometries

Definition 151. Let F be a rank-(r − c) flat of PG(r − 1,2). We denote PG(r − 1,2) ∖ F
by BB(r − 1,2, c).

Remark 152. It follows immediately from the definitions that BB(r−1,2,1) = AG(r−1,2).

Exercise 153. Let M be a simple rank-r binary matroid. Prove that χ(M) ≤ c if and only
if M is isomorphic to a restriction of BB(r − 1,2, c).

2.7 Reformulations of the Four Colour Theorem

Theorem 154. (1) If G = (V,E) is a loopless planar graph, then E is the union of two
cocycles of M(G).

(2) If G = (V,E) is a bridgeless planar graph, then G is the union of two even subgraphs.

Theorem 155. [2.9] If M = (E,I) is a binary matroid, then there is a partition (C,C∗)
of E into a cycle C and a cocycle C∗.

Proof. Exercise. Hint: Suppose M = M(A1) and M∗ = M(A2). Is 1t ∈ rowspace([A1

A2
])?

Apply the Fundamental Theorem of Linear Algebra.

Corollary 156. Every graph has a cut whose removal leaves an even subgraph.

3 Extremal Matroid Theory

Much of what we do in this section will be motivated by, and a generalization of, graph
theory.
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3.1 Turan

Theorem 157. [Turan’s Theorem] If G = (V,E) is a simple n-vertex graph with no
subgraph isomorphic to Kt, then

∣E∣ ≤ t − 2

t − 1
(n

2
).

Remark 158. Note that, when n = k(t − 1), equality is attained by Kk, . . . , k
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
t − 1 times

.

Definition 159. Let N be a simple binary matroid. A binary matroid M is N-free if
no restriction of M is isomorphic to N . We let ex(N,r) denote the maximum number of
elements in a simple N -free rank-r binary matroid. We denote ex(PG(t−1,2), r) by ex(t, r).

Problem 160. Determine ex(t, r).

3.2 Triangle-free binary matroids

Remark 161. Note that PG(1,2) = U2,3 =M(K3).

Definition 162. A 3-element circuit in a matroid is called a triangle.

Remark 163. Note that AG(r − 1,2) has no odd-circuit, and so is triangle-free. Now

∣AG(r − 1,2)∣ = ∣PG(r − 1,2)∣ − ∣PG(r − 2,2)∣
= (2r − 1) −(2r−1 − 1)
= 2r−1.

Hence ex(2, r) ≥ 2r−1.

Theorem 164. [3.1] For any r, ex(2, r) = 2r−1.

Proof. Let M be a simple rank-r triangle-free binary matroid considered as a restriction of
PG(r − 1,2). Let e ∈ E(M). The number of lines of PG(r − 1,2) that contain e is

1
2(∣PG(r − 1,2) − 1∣) = 2r−1 − 1.

Each of these lines contains at most one other element of M , so

∣M ∣ ≤ 1 + (2r−1 − 1) = 2r−1.
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3.3 PG(t − 1,2)-free binary matroids

Recall that BB(r − 1,2, c) is obtained from PG(r − 1,2) by deleting a rank-(r − c) flat.

Lemma 165. [3.2] We have that BB(r − 1,2, t − 1) is PG(t − 1,2)-free.

Proof. If F1 is a rank-t flat in PG(r − 1,2) and F2 is a rank-(r − t + 1) flat in PG(r − 1,2),
then

⊓(F1, F2) = r(F1) + r(F2) − r(F1 ∪ F2) ≥ t + r − (t − 1) − r = 1.

Recall ⊓(F1, F2) = dim(F1 ∩ F2). Hence PG(r − 1,2) ∖ F2 is PG(t − 1,2)-free.

Remark 166. Now

∣BB(r − 1,2, t − 1)∣ = ∣PG(r − 1,2)∣ − ∣PG(r − t,2)∣ =(2r − 1) −(2r−t+1 − 1) =(1 − 1

2t−1
)2r.

Hence ex(t, r) ≥(1 − 1
2t−1

)2r.

Theorem 167. [Bose-Burton Theorem] For r ≥ t ≥ 1,

ex(t, r) =(1 − 1

2t−1
)2r.

Proof. We proceed by induction on t. When t = 1, ex(1, r) = 0 so the result holds. Suppose
that t > 1 and that the result holds for k < t. Let M be a simple PG(t − 1,2)-free binary
matroid considered as a restriction of PG(r − 1,2).
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Let e ∈ E(M) and let H be a hyperplane of PG(r − 1,2) that avoids e. Let X be the
set of points f ∈ H ∩ E(M) such that e, f spans a triangle in M . Note that, since M is
PG(t − 1,2)-free, M ∣X is PG(t − 2,2)-free. By the induction hypothesis,

∣X ∣ ≤ ex(t − 1, r − 1) =(1 − 1
1

2t−2
)2r−1.

The number of lines of PG(r − 1,2) that contain e is 2r−1 − 1. So

∣M ∣ ≤ 1 +(2r−1 − 1) + ∣X ∣ ≤ 2r−1 +(1 − 1

2t−2
)2r−1 =(1 − 1

2t−1
)2r.

Theorem 168. [3.3 - Bose-Burton] If M is a simple rank-r PG(t − 1,2)-free binary
matroid with ∣M ∣ = ex(t, r), then M ≅ BB(r − 1,2, t − 1).

Proof. Exercise.

Exercise 169. Let X be a set of points in PG(r − 1,2) such that no line of PG(r − 1,2)
contains exactly two points of X. Prove that X is a flat of PG(r − 1,2).

3.4 Ramsey

Theorem 170. [Ramsey’s Theorem] For each t there exists an n such that in any
colouring of the edges of Kn with 2 colours, we get a monochromatic copy of Kt.

Theorem 171. [Bipartite Ramsey Theorem] For each t there exists an n such that in
any colouring of the edges of Kn,n with 2 colours, we get a monochromatic copy of Kt,t.
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Theorem 172. [Density Bipartite Ramsey Theorem] For each integer t and ε > 0
there exists an N such that for each n ≥ N , if G = (V,E) is an n-vertex simple bipartite
graph with ∣E∣ ≥ εn2, then G has a subgraph isomorphic to Kt,t.

Remark 173. (1) The Density Bipartite Ramsey Theorem implies the Bipartite Ramsey
Theorem.

(2) The Density Bipartite Ramsey Theorem is a “bipartite analogue” of Turan’s Theorem.

(3) Turan’s Theorem does not imply Ramsey’s Theorem.

3.5 Hales-Jewett

Theorem 174. [Geometric Density Hales-Jewett Theorem - Binary Case] For
each ε > 0 and integer t ≥ 2, there exists R = DHJ(t, ε) such that for each integer r ≥ R, if M
is a simple rank-r AG(t − 1,2)-free affine binary matroid, then ∣M ∣ ≤ ε2r.

Proof. We proceed by induction on t. The result is trivial when t = 2.
Now assume that for each ε′ > 0 there exists DHJ(t − 1, ε′) such that, for each r′ ≥

DHJ(t − 1, ε′) if N is a simple rank-r′ AG(t − 2,2)-free affine binary matroid, then ∣N ∣ ≤ 2r
′

.

Let R ≥ DHJ(t − 1,( ε2)
2)+ 1 and be such that the claim below may be proven, and let M

be a simple rank-r AG(t−1,2)-free affine binary matroid with r ≥ R. Assume that ∣M ∣ > ε2r.
Consider M as a restriction of PG(r−1,2) and let H be a hyperplane which is disjoint from
M .

Let L be the set of all line of PG(r − 1,2) that contain two elements of M . Note that
each line in L meets H.

Claim. There is a point p ∈H that is contained in more than ( ε
2
)2

2r−1 lines in L.

Proof of Claim. Exercise.

Let H̃ be a hyperplane of PG(r−1,2) that does not contain p, and let N be the restriction
of H̃ to the points q such that {p, q} spans a line in L.
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Now N is a simple affine binary matroid with rank at most(r − 1) such that ∣N ∣ >( ε2)
2
2r−1

and
r − 1 ≥ DHJ(t − 1,( ε2)

2) .

This means that N has an AG(t−2,2)-restriction. Then M has an AG(t−1,2)-restriction.

Theorem 175. [Geometric Hales-Jewett Theorem] For each t ∈ Z+ there exists
R = HJ(t) such that, for each integer r ≥ R and for each 2-colouring of the elements of
AG(r − 1,2), there is a monochromatic copy of AG(t − 1,2).

Proof. Let R = DHJ(t,1/4) and let r ≥ R. Consider a partition (C1,C2) of E(AG(r − 1,2))
with ∣C1∣ ≥ ∣C2∣. Now ∣C1∣ ≥ 1

4r
2 = 1

2 ∣AG(r − 1,2)∣. Then, by the Geometric Density Hales-
Jewett Theorem AG(r − 1,2)∣C1 contains a restriction isomorphic to AG(t − 1,2).

3.6 More Ramsey

Theorem 176. [Ramsey’s Theorem] For each r, b ∈ Z+ there exists R(r, b) such that for
each n ≥ R(r, b) if we red/blue colour the edges of Kn then we will get a red Kr or a blue Kb.
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Proof. We proceed by induction on r + b. The result is trivial when r = 1 or b = 1.
Assume that if r′, b′ ∈ Z+ with r′ + b′ < r + b then there exists R(r′, b′) such that, for

each n ≥ R(r′, b′) if we red/blue colour the edges of Kn then we get either a red Kr′ or a
blue Kb′ . Let R(r, b) = R(r − 1, b) + R(r, b − 1) + 1. Consider a red-blue colouring of the
edges of Kn where n ≥ R(r, b). Let v ∈ V (Kn). Let R = {w ∈ V (Kn) − {v} ; vw is red} and
B = {w ∈ V (Kn) − {v} ; vw is blue}. Assume that G has no red Kr or blue Kb. Then

(1) G[R] has no red Kr−1 or blue Kb, and

(2) G[B] has no red Kr or blue Kb−1.

Thus inductively we have

n ≥ (r − 1, b) +R(r, b − 1) + 1 > ∣R∣ + ∣B∣ + 1 = n,

which is a contradiction.

Theorem 177. [Geometric Ramsey Theorem] For each b, r ∈ Z+ there exists GR(b, r)
such that for each n ≥ GR(b, r), in any blue/red colouring of the elements of PG(n−1,2) we
will find a blue PG(b − 1,2) or a red PG(r − 1,2).

Proof. Exercise. Hint: Consider a cocircuit C of PG(n − 1,2) and apply the Geometric
Hales-Jewett Theorem to PG(n − 1,2)∣C.

3.7 Erdös-Stone

Definition 178. For a simple graph H, we let ex(H,n) be the maximum number of edges
in a simple n-vertex H-free graph.
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Remark 179. Let H be a simple graph with chromatic number at least two. If G has
chromatic number less than χ(H), then G is H-free. Hence, if n is divisible by χ(H) − 1,
then

ex(H,n) >(χ(H) − 2

χ(H) − 1
)(n

2
).

Theorem 180. [Erdös-Stone Theorem - 1946] If H is a simple graph with chromatic
number at least two, then

lim
n→∞

ex(H,n)
(n

2
)

= χ(H) − 2

χ(H) − 1
.

Remark 181. Let N be a simple binary matroid. If M is a binary matroid with χ(M) <
χ(N), then M is N -free. So

ex(N,r) ≥ ∣BB(r − 1,2, χ(N) − 1)∣ =(1 − 21−χ(N))2r.

Theorem 182. [Geometric Erdös-Stone Theorem - 2014] If N is a simple binary
matroid then

lim
r→∞

ex(N,r)
2r

= 1 − 21−χ(N).

Remark 183. Note that:

(1) When χ(N) = 1 (that is, when N is affine), 1 − 21−χ(N) = 0.

(2) When χ(N) ≥ 2, the theorem gives the asymptotic behaviour of ex(N,r).

Lemma 184. [3.4] If M is a loopless binary matroid then M has an affine restriction N
with ∣N ∣ ≥ 1

2 ∣M ∣.

Proof. Let M = M(A) where A ∈ GF(2)r×E. Choose x ∈ GF(2)r uniformly at random and
consider the cocycle C∗ whose characteristic vector is xtA. Note that for each e ∈ E(M),

Prob(e ∈ C∗) = 1
2 .

By linearity of expectation, the expected size of C∗ is 1
2 ∣E∣.

So there exists a cocycle C with size ≥ 1
2 ∣E∣. By definition, M ∣C is affine.

Remark 185. For a loopless graph G, Lemma 3.4 shows that G has a cut of size at least
1
2 ∣E(G)∣.

Problem 186. Given a loopless binary matroid M =M(A), can we find a cocycle C with
∣C ∣ ≥ 1

2 ∣M ∣ in polynomial-time?
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Theorem 187. [3.5] For each m ≥ 0 and ε > 0 there exists GES(m,1, ε) such that

ex(AG(m − 1,2), r) < ε2r

for all r ≥ GES(m,1, ε).

Proof. Let GES(m,1, ε) = DHJ(m, ε/2). Let M be a simple rank-r matroid with ∣M ∣ ≥ ε2r
and r ≥ GES(m1,1ε). By Lemma 3.4, M has an affine restriction N with ∣N ∣ ≥ ε

22r. By the
Geometric Density Hales-Jewett Theorem, N has a restriction isomorphic to AG(m−1,2).

Remark 188. Note that Theorem 3.5 implies the Geometric Erdös-Stone Theorem in the
case that N is affine (that is, χ(N) = 1).

Theorem 189. [3.6] For each m ≥ 0 and ε > 0 there exists GES(m,2, ε) such that

ex(BB(m − 1,2,2), r) ≤(1
2 + ε)2r

for all r ≥ GES(m,2, ε).

Proof. Let ε > 0 and m ∈ Z+.

(1) Let m1 = DHJ(m − 1, ε2)

(2) Choose m2 minimum such that 2m1 ≤ ε
22m2 .

Now let GES(m,2, ε) = max(m2,GES(m1,1,
1
2
)). Let M be a simple rank-r binary matroid

with ∣M ∣ ≥(1
2 + ε)2r and r ≥ GES(m,2, ε). Consider M as a restriction of PG(r − 1,2). Note

that r ≥ GES(m1,1,
1
2
), so, by Theorem 3.5, M has a restriction isomorphic to AG(m,−1,2).
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So there exist flats F0 ⊆ F1 in PG(r − 1,2) such that r(F1) = m1, r(F0) = m1 − 1, and
F1 −F0 ⊆ E(M). Let M ′ =M ∖ (F1 ∩E(M)). By (2), ∣F1 ∩E(M)∣ ≤ ε

22r, so ∣M ′∣ ≥(1
2 + ε

2
)2r.

Claim. There is a rank-(m1 + 1) flat F2 with F1 ⊆ F2, such that ∣F2 ∩M ′∣ ≥(1
2 + ε

2
)2m1 .

Proof of Claim. Exercise.

Note that ∣F2 − F1∣ = 2m1 . Let e ∈ F1 −F0, let F be a rank-m1 flat with F0 ⊆ F ⊆ F2 − {e}.
Let L denote the lines containing and a point of F −F0. Note that ∣L∣ = 2m1−1. Let Z ⊆ F −F0

be the set of points f that the line spanned by {e, f} is contained in E(M).
Now

(1
2 + ε

2
)2m1 ≤ ∣F2 ∩M ′∣ ≤ ∣Z ∣ + ∣L∣ = ∣Z ∣ + 1

22m1 .

Hence ∣Z ∣ ≥ ε
22m1 .

Let N = M ∣Z. Now N is a rank-(≤ m1) affine matroid with ∣N ∣ ≥ ε
22m1 . Moreover,

m1 = DHJ(m − 1, ε2). Hence N has a restriction N ′ isomorphic to AG(m − 2,2). Let F ′

be the flat of M ′ spanned by N ′ and let F ′′ be the rank-m flat spanned by F ′ ∪ {e}. Now
F ′′ − F0 ⊆ E(M) and r(F ′ ∩ F0) =m − 2, so M ∣(F ′′ − F0) ≅ BB(m − 1,2,2).

Remark 190. Note that, if N is a simple rank-m binary matroid with χ(N) = 2, then
N is isomorphic to a restriction of BB(m − 1,2,2). So Theorem 3.6 implies the Geometric
Erdös-Stone Theorem in the case that χ(N) = 2.

Theorem 191. [3.7] For each 1 ≤ t <m and ε > 0, there exists GES(m, t, ε) such that

ex(BB(m − 1,2, t), r) ≤(1 − 21−t + ε)2r

for all r ≥ GES(m, t, ε).

Proof. Exercise.
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4 Matroid Union and Partition

Problem 192. [Matroid Partition Problem] Let M1 = (E,I1), M2 = (E,I2) be
matroids. Determine

max{∣I1 ∪ I2∣ ; I1 ∈ I1, I2 ∈ I2} .

Example 193. If we can answer the Matroid Partition Problem, then we can answer the
following question: Given a graph G = (V,E) does G have two disjoint spanning trees?
Indeed, the answer is yes if and only if the maximum above is 2r(M(G)), where M1 and M2

are both taken to be M(G).

Definition 194. Let M1 = (E,I1) and M2 = (E,I2) be matroids. Define M1 ∪M2 ∶= (E,I)
where

I ∶= {I1 ∪ I2; I1 ∈ I1, I2 ∈ I2} .

An element of I is called partitionable.

Theorem 195. [4.1] If M1 = (E,I1) and M2 = (E,I2) are matroids then M1 ∪M2 is a
matroid.

We need to prove some preliminary results before we can prove Theorem 4.1.

4.1 Direct Sum

Definition 196. Let M1 = (E1,I1) and M2 = (E2,I2) be matroids with E1∩E2 = ∅. Define
M1 ⊕M2 ∶=(E1 ∪E2,I ′) where

I ′ ∶= {I1 ∪ I2; I1 ∈ I1, I2 ∈ I2} .
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Lemma 197. [4.2] If M1 = (E1,I1) and M2 = (E2,I2) are matroids with E1 ∩E2 = ∅ then
M1 ⊕M2 is a matroid.

Proof. Trivial.

4.2 Extending freely into a flat.

Definition 198. Let F be a flat of a matroid M = (E,I) and let e ∉ E. Now define
M ′ ∶= (E ∪ {e} ,I ′) such that

(1) M ′ ∖ e =M and

(2) for X ⊆ E,

rM ′(X ∪ {e}) ∶=
⎧⎪⎪⎨⎪⎪⎩

rM(X), F ⊆ clM(X)
rM(X) + 1, otherwise.

We say that M ′ is obtained from M by freely extending into the flat F .

Lemma 199. [4.3] If F is a flat of a matroid M and e ∉ E(M) then M ′ is a matroid.

Proof. Exercise.

Definition 200. Let M be a matroid and let e, f ∈ E be distinct. We say that e is freer
than f if for each circuit C of M containing e we have f ∈ clM(C).

Remark 201. Note that in the above construction, for each f ∈ F , e is freer then f .

4.3 Constructing M1 ∪M2

Definition 202. Let M1 = (E,I1) and M2 = (E,I2) be matroids. Take copies N1 = (E1,I1)
and N2 = (E2,I2) of M1 and M2, respectively, where E,E1,E2 are pairwise disjoint. For
each e ∈ E, let e1 and e2 denote the copies of e in N1 and N2 respectively. Now construct
M1∇M2 from N2 ⊕N2 by, for each element e ∈ E, freely extending into the line {e1, e2}.
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Lemma 203. [4.4] If M1 = (E,I1) and M2 = (E,I2) are matroids then (M1∇M2) ∣E =
M1 ∪M2.

Proof. Let I be an independent set of M1 ∪M2; let (I1, I2) be a partition of I into an M1-
independent set I1 and an M2-independent set I2; let J1, J2 be the copies of I1, I2 in N1,N2

respectively.

Hence J1 ∪ J2 is independent in M1∇M2. For each e ∈ I we will (one element at a time)
replace the copy (e1 or e2) of e in J1 ∪ J2 with e; the resulting set will remain independent
since e is freer than e1 and e2. Therefore I is (M1∇M2)-independent.

Conversely, consider an (M1∇M2)-independent set I ⊆ E. It suffices to show that there
is a partition (I1, I2) of I such that {e1; e ∈ I1} ∪ {e2; e ∈ I2} is (M1∇M2)-independent. We
will find the partition by replacing each element e ∈ E, one at a time, with e1 or e2.
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Since e is spanned by {e1, e2}, I − {e} does not span both e1 and e2. Hence either
(I − {e}) ∪ {e1} or (I − {e}) ∪ {e2} is (M1∇M2)-independent.

Proof of Theorem 4.1. Lemma 4.4 implies Theorem 4.1, because we know (M1∇M2) ∣E is a
matroid.

Lemma 204. [4.5] Let M1 = (E,I1) and M2 = (E,I2) be matroids. For A ⊆ E,

r(M1 ∪M2) ≤ ∣E −A∣ + rM1(A) + rM2(A).

Proof. Note that (M1 ∪M2)∣A = (M1∣A) ∪(M2∣A). So

r(M1 ∪M2) ≤ ∣E −A∣ + r((M1 ∪M2) ∣A)
= ∣E −A∣ + r((M1∣A) ∪(M2∣A))
≤ ∣E −A∣ + r(M1∣A) + r(M2∣A)
= ∣E −A∣ + rM1(A) + rM2(A).

Theorem 205. [Matroid Partition Theorem∗ - Edmonds] Let M1 = (E,I1) and
M2 = (E,I2) be matroids. then

r(M1 ∪M2) = min
A⊆E

(∣E −A∣ + rM1(A) + rM2(A)) .

(∗Here we stated the version for two matroids, while the general theorem applies to any finite
number of matroids.)

Lemma 206. [4.6] Let M1 = (E,I1) and M2 = (E,I2) be matroids. If M1 ∪M2 has no
coloops then

r(M1 ∪M2) = r(M1) + r(M2).

Proof. Consider the construction of M1∇M2. For S ⊆ E, let S̃ = (E − S) ∪ {e1; e ∈ S} ∪
{e2; e ∈ S}. Then Ẽ = E1 ∪E2, which has rank r(M1) + r(M2) in M1∇M2, and ∅̃ = E.

For a contradiction, suppose that rM1∇M2(∅̃) < r(M1) + r(M2). Choose S ⊆ E minimal
such that r(S̃) = r(M1) + r(M2) and let e ∈ S. Let T = S − {e}.

First suppose that e is a coloop of (M1∇M2) ∣T̃ . Then e is a coloop of (M1∇M2) ∣E. But
(M1∇M2) ∣E =M1 ∪M2 — contradiction.

So it must be the case that e is not a coloop of (M1∇M2) ∣T̃ . Then S̃ − {e1, e2} spans e.
However, e is freer than {e1, e2}, so S̃ − {e1, e2} spans e1 and e2. So

rM1∇M2
(S̃ − {e1, e2}) = rM1∇M2

(S̃) = r(M1) + r(M2) .

But then

rM1∇M2
(T̃ ) = rM1∇M2

(T̃ − {e}) = rM1∇M2
(S̃ − {e1, e2}) = r(M1) + r(M2)

— contradiction.
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Theorem 207. [4.7] If X is the set of coloops of M1 ∪M2, then

r(M1 ∪M2) = ∣X ∣ + rM1(E −X) + rM2(E −X) .

Proof. Note that (M1 ∪M2) ∖X has no coloops and r(M1 ∪M2) = ∣X ∣ + r((M1 ∪M2) ∖X).
Moreover (M1 ∪M2) ∖X =(M1 ∖X) ∪(M2 ∖X). By Lemma 4.6,

r(M1 ∖X ∪(M2 ∖X)) = r(M1 ∖X) + r(M2 ∖X) = rM1(EX) + rM2(E −X) .

The result follows.

Remark 208. Note that Theorem 4.7 implies the Matroid Partition Theorem, which we
now state in full generality.

Theorem 209. [Matroid Partition Theorem - Edmonds] If M1, . . . ,Mk are matroids
on a common ground set E then

r(M1 ∪⋯ ∪Mk) = min
A⊆E

(∣E −A∣ + rM1(A) +⋯ + rMk
(A)) .

Proof. Exercise.

4.4 Matroid Algorithms (Oracle Model)

Definition 210. A matroid M =(E,I) is given by E and access to an oracle for computing
rM(X) for any given set X ⊆ E. Calls to the rank oracle take one time unit.

Theorem 211. [4.8 - Edmonds, 1965] There is an algorithm that, given matroids
M1, . . . ,Mk on a common ground set E, computes r(M1 ∪⋯ ∪Mk) in O(k3 ∣E∣3)-time.

Proof. Do CO 450/650.

4.5 Packing Bases

Problem 212. Given a matroid M and an integer k, does M have k disjoint bases?

Remark 213. (1) A matroid M has k disjoint bases if and only if r(M ∪⋯ ∪M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

) = kr(M).

(2) If B is a basis of M and e ∈ E(M), then B contains a basis of M/e.

(3) For X ⊆ E(M), if M has k disjoint bases then so does M/X.

(4) If M has k disjoint bases, then ∣M ∣ ≥ kr(M).

Theorem 214. [4.9 - Tutte, Nash-Williams] A matroid M = (E,I) has k disjoint
bases if and only if ∣M/X ∣ ≥ kr(M/X) for each X ⊆ E.
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Proof. If M has k disjoint bases, then by (2) and (3) above, ∣M/X ∣ ≥ kr(M/X) for each
X ⊆ E(M).

Conversely, suppose that M does not have k disjoint bases. Then, by (1) above,

r(M ∪⋯ ∪M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

) < kr(M).

By the Matroid Partition Theorem, there exists X ⊆ E such that

kr(M) > ∣E −X ∣ + krM(X).

Thus
∣M/X ∣ = ∣E −X ∣ < k(r(M) − rM(X)) = kr(M/X).

Corollary 215. [4.10] If G is (2k)-edge-connected, then G has k edge-disjoint spanning
trees.

Proof. If G is (2k)-edge-connected, then G/X is (2k)-edge-connected for each X ⊆ E(G).
So, by Theorem 4.9, it suffices to prove that, if H is a (2k)-edge-connected graph, then

∣E(H)∣ ≥ k(∣V (H)∣ − 1) .

Now

∣E(H)∣ = 1
2 ∑
v∈V (H)

degH(v) ≥ 1
2 ∑
v∈V (H)

2k = k ∣V (H)∣ ,

as required.

4.6 Covering with independent sets

Problem 216. Given a matroid M = (E,I) and k ∈ Z, can we cover E with k independent
sets?

Example 217. Can we cover the edges of a graph G with k forests? This question can be
resolved by applying the answer to the above problem to M(G).

Remark 218. (1) We can cover E with k independent sets if and only if

r(M ∪⋯ ∪M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

) = ∣E∣ .

(2) If we can cover M with k independent sets then we can cover M ∣A with k independent
sets for each A ⊆ E.
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(3) If we can cover M with k independent sets, then ∣M ∣ ≤ kr(M).

Theorem 219. [4.11] A matroid M can be covered with k independent sets if and only if
∣A∣ ≤ kr(A) for each A ⊆ E.

Proof. If M can be covered by k independent sets, then, by (2) and (3) above, ∣A∣ ≤ kr(A),
for each A ⊆ E(M).

Conversely, suppose that M cannot be covered by k independent sets. Then, by (1),

r(M ∪⋯ ∪M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

) < ∣E∣ .

By the Matroid Partition Theorem, there exists A ⊆ E such that

∣E∣ > r(M ∪⋯ ∪M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

) = ∣E −A∣ + krM(A).

Thus krM(A) < ∣A∣.

Corollary 220. [4.12] Each simple planar graph can be covered by three forests.

Proof. By Theorem 4.11, it suffices to prove that, if H is a simple planar graph, then
∣E(H)∣ ≤ 3r(M(H)). By possibly identifying vertices, we may assume that H is connected.
We may also assume that ∣V (H)∣ ≥ 3. Then

∣E(H)∣ ≤ 3(∣V (H)∣ − 6) = 3r(M(H)) − 3 < 3r(M(H)),

as required.

Remark 221. Since forests are bipartite, Corollary 4.12 implies that, if G is a loopless
planar graph, then

χ(G) ≤ 8.

Corollary 222. [4.13] Let M be a class of binary matroids that is closed under taking
restrictions and let k ∈ Z+ such that, for each simple matroid N ∈M,

∣N ∣ ≤ kr(N).

Then, for each loopless M ∈M, χ(M) ≤ k.

Proof. LetM ∈M be loopless and let M̄ be the simplification ofM . Then χ(M) = χ(M̄). By

Theorem 4.11, there is a partition (I1, . . . , Ik) of E(M̄) into independent sets. Since M ∣Ij has
no odd-circuit, M ∣Ij is affine. Hence there are cocycles C1, . . . ,Ck with I1 ⊆ C1, . . . , Ik ⊆ Ck.
Now C1 ∪⋯ ∪Ck = E(M̄), so χ(M̄) ≤ k.

Exercise 223. [Jaeger] If M is a cographic matroid without coloops, then χ(M) ≤ 3.
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Remark 224. The above exercise be restated as: Each bridgeless graph is the union of three
even subgraphs.

Exercise 225. Prove that if G is a 4-edge-connected graph then G is the union of two even
subgraphs.

Remark 226. The above exercise implies that: Planar graphs with girth four are 4-colourable.

4.7 Matroid Intersection

Definition 227. Let M1 and M2 be the matroids on a common ground set. We let
ν(M1,M2) denote the maximum size of a common independent set.

Definition 228. Let G = (V,E) be a bipartite graph with bipartition (A,B). Let MA ∶=
(E,IA) where I ∈ IA if each vertex in A is incident with at most one edge in I. Let
MB ∶= (E,IB) where I ∈ IB if each vertex in B is incident with at most one edge in I.

Proposition 229. If G is a bipartite graph with bipartition (A,B) then MA and MB are
matroids.

Proof. Simply note that MA =M(ξ), where ξ is given as follows:

Remark 230. Now M ⊆ E is a common independent set of MA and MB if and only if M is
a matching. Hence ν(MA,MB) = ν(G).

Lemma 231. [4.14] Let M1 = (E,I1) and M2 = (E,I2) be matroids. Then

ν(M1,M2) = r(M1 ∪M∗
2 ) − r(M∗

2 ) .
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Proof. Let B1 and B2 denote the set of bases of M1 and M2 respectively. For B1 ∈ B1 and
B2 ∈ B2,

∣B1 ∩B2∣ + r(M∗
2 ) = ∣B1 ∩B2∣ + ∣E −B2∣ = ∣(B1 ∩B2) ∪(E −B2)∣ = ∣B1 ∪(E −B2)∣ .

Hence

ν(M1,M2) + r(M∗
2 ) =( max

(B1,B2)∈B1×B2
∣B1 ∩B2∣) + r(M∗

2 )

= max
(B1,B2)∈B1×B2

∣B1 ∪(E −B2)∣

= r(M1 ∪M∗
2 ) .
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Theorem 232. [Matroid Intersection Theorem - Edmonds 1965] For matroids
M1 = (E,I1) and M2 = (E,I2),

ν(M1,M2) = min
A⊆E

(rM1(A) + rM2(E −A)) .

Proof. By Lemma 4.1 and the Matroid Partition Theorem we have

ν(M1,M2) = r(M1 ∪M∗
2 ) − r(M∗

2 )
= min
A⊆E

(∣E −A∣ + rM1(A) + rM∗

2
(A)) − r(M∗

2 )

= min
A⊆E

(∣E∣ − ∣A∣ + rM1(A) + ∣A∣ −(r(M2) − rM2(E −A)) −(∣E∣ − r(M2)))

= min
A⊆E

(rM(A) + rM2(E −A)) .

4.8 Application to bipartite matching

Definition 233. Recall that for a graph G =(V,E), C ⊆ V is a cover of G if G −C has no
edges.

Theorem 234. [König’s Theorem] In a bipartite graph, the maximum size of a matching
is equal to the minimum size of a cover.

Proof. Let G = (V,E) be bipartite with bipartition (A,B), and let MA,MB be the associated
matroids. If C is a cover, then

ν(G) ≤ ν(G −C) + ∣C ∣ = ∣C ∣.

It remains to prove that there is a cover attaining equality.
Recall that ν(G) = ν(MA,MB). By the Matroid Intersection Theorem, there is a partition

(XA,XB) of E such that

ν(MA,MB) = rMA
(XA) + rMB

(XB) .
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Let CA be the vertices in A incident with edges in XA and let CB be the vertices in B
incident with edges in XB

Now let C = CA ∪CB. Thus C is a cover and

∣C ∣ = ∣CA∣ + ∣CB ∣ = rMA
(XA) + rMB

(XB) = ν(MA,MB) = ν(G),

as required.

Theorem 235. [Mendelson’s Theorem] Let G be a bipartite graph with bipartition
(A,B). Let X be the set of avoidable vertices in A, and let C = (A −X) ∪N(X). Then C
is a cover and ∣C ∣ = ν(G).

Proof. Exercise.

5 Matroid Connectivity

Lemma 236. [5.0] Let (X,Y ) be a partition of the ground set of a matroid M = (E,I).
Then M =(M ∣X)⊕(M ∣Y ) if and only if rM(X) + rY (Y ) = r(M).

Proof. If M =(M ∣X)⊕(M ∣Y ), then

rM(X) + rM(Y ) = rM(X ∪ Y ) = r(M) .

Conversely, suppose that rM(X) + rM(Y ) = r(M). Thus ⊓M(X,Y ) = 0. By Assignment
1 Problem 8, ⊓(X ′, Y ′) = 0 for each X ′ ⊆ X and Y ′ ⊆ Y . That is rM(X ′ ∪ Y ′) = rM(X ′) +
rM(Y ′). Hence M =(M ∣X)⊕(M ∣Y ).
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Definition 237. A matroid M = (E,I) is connected if for each proper partition (X,Y ) of
E, rM(X) + rM(Y ) > r(M). Equivalently, ⊓M(X,Y ) ≥ 1.

Definition 238. Let M =(E,I) be a matroid. For X ⊆ E, the connectivity of X in M is

λM(X) ∶= ⊓M(X,E −X) .

Remark 239. Recalling the definition of ⊓, we have

λM(X) = rM(X) + rM(E −X) − r(M) .

Lemma 240. [5.1] If M is a matroid then

λM(X) = rM(X) + rM∗(X) − ∣X ∣ .

Proof. We have

rM(X) + rM∗(X) = rM(X) + ∣X ∣ −(r(M) − rM(E −X)) = λM(X) + ∣X ∣ .

Lemma 241. [5.2] (1) λ(X) = λ(E −X), for each X ⊆ E.

(2) λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ), for each X,Y ⊆ E.

(3) λM(X) = λM∗(X) for each X ⊆ E.

Proof. Immediate by Lemma 5.1 and the definition.

Lemma 242. [5.3] For disjoint X,C ⊆ E in a matroid M =(E,I) we have

λM/C(X) = λM(X) − ⊓M(X,C) .

Proof. Note

λM/C(X) = rM/C(X) + r(M/C)∗(X) − ∣X ∣
= rM(X) − ⊓M(X,C) + rM∗(X) − ∣X ∣
= λM(X) − ⊓M(X,C) .

5.1 Bixby-Coullard Inequality

Theorem 243. [Bixby-Coullard Inequality] If e ∈ E in a matroid M = (E,I), and
(C1,C2) and (D1,D2) are partitions of E − {e}, then

λM∖e(C1) + λM/e(D1) ≥ λM(C1 ∩D1) + λM(C2 ∩D2) − 1.

Page 51 of 90



CO 446 Revised Lecture Notes

Proof. We see

λM/e(C1) + rM∖e(D1)
= rM/e(C1) + rM/e(C2) − r(M/e) + rM∖e(D1) + rM∖e(D2) − r(M ∖ e)
= rM(C1 ∪ {e}) + rM(C2 ∪ {e}) − r(M) −RM({e}) + rM(D1) + rM(D2) − r(M ∖ e)
≥ rM(C1 ∩D1) + rM(C1 ∪D1 ∪ {e}) + rM(C2 ∩D2) + rM(C2 ∪D2 ∪ {e}) − ⊓M({e} ,E − {e}) − 2r(M)
= λM1(C1 ∩D1) + λM(C2 ∩D2) − ⊓M({e} ,E − {e})
≥ λM(C1 ∩D1) + λM(C2 ∩D2) − 1.

Theorem 244. [5.4 - Bixby’s Lemma] If e is an element in a connected matroid M , then
either M ∖ e or M/e is connected.

Proof. Suppose not. Then there exist proper partitions(C1,C2) and(D1,D2) of E−{e} such
that λM/e(C1) = 0 and λM∖e(D1) = 0.
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By possibly swapping D1,D2 we may assume that C1∩D1 and C2∩D2 are both non-empty.
By the Bixby-Coullard Inequality,

0 = λM/e(C1) + λM∖e(D1) ≥ λM(C1 ∩D1) + λM(C2 ∩D2) − 1.

Hence either λM(C1 ∩D1) = 0 or λM(C2 ∩D2) = 0, contradicting that M is connected.

Theorem 245. [5.5] A matroid M = (E,I) is connected if and only if, for each distinct
e, f ∈ E, there exists a circuit C of M containing both e and f .

Proof. Exercise. Hint: Use Theorem 5.4 and induction.

Corollary 246. [5.6] Let G be a graph. Then M(G) is connected if and only if G is
loopless and 2-connected.

Proof. By Menger’s Theorem, G is loopless and 2-connected if and only if each pair of distinct
edges is contained in a circuit. Now the result follows from Theorem 5.5.

5.2 Fundamental graphs

Definition 247. Let B be a basis of a matroid M = (V,I). The fundamental graph of
(M,B) is

FG(M,B) ∶= (V,E),
where

E ∶= {uv; u ∈ B, v ∈ V −B, (B − {u}) ∪ {v} is a basis} .

Theorem 248. [5.7] A matroid M , with basis B, is connected if and only if FG(M,B) is
connected.

Proof. Exercise.

5.3 Connectivity between two sets

Definition 249. Let M = (E,I) be a matroid. Let S,T ⊆ E be disjoint. We define the
connectivity between S and T to be

κM(S,T ) ∶= min{λM(X) ; S ⊆X ⊆ E − T} .

Remark 250. Note that:

(1) κM(S,T ) = κM(T,S) since λM(X) = λM(E −X).

(2) κM∗(S,T ) = κM(S,T ) since λM∗(X) = λM(X).
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Lemma 251. [5.8] If N is a minor of a matroid M with S,T ⊆ E(N), then

κN(S,T ) ≤ κM(S,T ) .

Proof. By (2) above, it suffices to consider the case that N =M ∖ e. Let S ⊆X ⊆ E −T with
λM(X) = κM(S,T ). By (1) we may assume that e ∉ X. Now κM(S,T ) = λM(X) ≥ λN(X) ≥
κN(S,T ).

Theorem 252. [Tutte’s Linking Theorem] Let M =(E,I) be a matroid and let S,T ⊆
E be disjoint. Then there exists a minor N of M with E(N) = S ∪ T such that λN(S) =
κM(S,T )
Proof. The result is trivial when S ∪ T = E, so assume that this is not the case. Let e ∈
E −(S ∪ T ). The results follows inductively if either κM∖e(S,T ) = κM(S,T ) or κM/e(S,T ) =
κM(S,T ). So assume that

κM∖e(S,T ) = κM(S,T ) − 1 and κM/e(S,T ) = κM(S,T ) − 1.

Let (D1,D2), (C1,C2) be partitions of E − {e} with S ⊆ D1 ∩C1 and T ⊆ D2 ∩C2 such that
λM∖e(D1) ≤ κM(S,T ) − 1 and λM/e(C1) ≤ κM(S,T ) − 1.

By the Bixby-Coullard Inequality,

2(κM(S,T ) − 1) ≥ λM∖e(D1) + λM/e(C1) ≥ λM(D1 ∩C1) + λM(D2 ∩C2) − 1.

Hence either λM(D1 ∩C1) ≤ κM(S,T ) − 1 or λM(D2 ∩C2) ≤ κM(S,T ) − 1. So κM(S,T ) ≤
κM(S,T ) − 1 — contradiction.

Exercise 253. (1) Prove that

κM(S,T ) = ν(M ∖ S/T,M/S ∖ T ) − r(M) + rM(S) + rM(T ) .

(2) Derive Tutte’s Linking Theorem from the Matroid Intersection Theorem.

Remark 254. By (1) we can compute κM(S,T ) efficiently.
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5.4 Application to graphs

Definition 255. Let G = (V,E) be a graph. A separation of G is a pair (H1,H2) of edge-
disjoint subgraphs of G with H1∪H2 = G. The order of the separation, denoted ord(H1,H2),
is ∣V (H1) ∩ V (H2)∣.

Lemma 256. [5.9] If (H1,H2) is a separation in a graph G then

λM(G)(E(H1)) = ord(H1,H2) − comps(H1) − comps(H2) + comps(G) .

Proof. We have

λM(G)(E(H1)) = r(E(H1)) + r(E(H2)) − r(E(G))
= ∣V (H1)∣ − comps(H1) + ∣V (H2)∣ − comps(H2) −(∣V ∣ − comps(G))
= ord(H1,H2) − comps(H1) − comps(H2) + comps(G) .

Remark 257. Note that if H1, H2, and G are all connected, then we get

λM(G)(E(H1)) = ord(H1,H2) − 1.

Definition 258. Let G = be a graph and let S,T ⊆ V (G). We define κG(S,T ) to be the
minimum order of a separation (H1,H2) of G with S ⊆ V (H1) and T ⊆ V (H2).
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Lemma 259. [5.10] Let HS,HT be edge-disjoint subgraphs of a graph G. If HS, HT and G
are all connected, then

κG(V (HS) , V (HT )) = κM(G)(E(HS) ,E(HT )) + 1.

Proof. For each separation (H1,H2) of G we have λM(G)(E(H1)) ≤ ord(H1,H2) − 1. Hence

κG(V (HS) , V (HT )) ≤ κM(G)(E(HS) ,E(HT )) + 1.

Let X ⊆ E such that E(HS) ⊆ X ⊆ E −E(HT ) and λM(G)(X) = κM(G)(E(HS) ,E(HT )).
Let G1 = G[X] and G2 = G[E −X].

We assume that X has been chosen to minimize

comps(G1) + comps(G2) .

If G1 and G2 are both connected, then we are done. So, up to symmetry, we may assume
that G1 is not connected.
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Let H2 be a component of G1 that does not contain HS and let H1 = G1 − V (H2). Note
that

comps(G2 ∪H2) ≥ comps(G2) −(ord(H2,G2) − 1)
Now

λM(G)(E(H1)) = ord(H1,G2 ∪H2) − comps(H1) − comps(G2 ∪H2) + 1

≤ ord(H1,G2 ∪H2) + ord(H2,G2) −(comps(G1) − 1) −(comps(G2) + 1) + 1

= λM(G)(E(G)) .

However
comps(G1) + comps(G2) > comps(H1) + comps(H2 ∪G2) ,

contradicting our choice of X.

Theorem 260. [Menger’s Theorem] Let G be a graph and let S,T ⊆ V (G). The
maximum number of vertex-disjoint (S,T )-paths is equal to κG(S,T ).

Proof. Let k be the maximum number of vertex disjoint (S,T )-paths. Clearly k ≤ κG(S,T ).
Note that adding edges into S or into T does not change either κG(S,T ) or the max-

imum number of vertex disjoint (S,T )-paths. Hence we may assume that G has edge-
disjoint connected subgraphs HS and HT with V (HS) = S and V (HT ) = T . By lemma 5.10,
κM(G)(E(HS) ,E(HT )) = κG(S,T )−1. By Tutte’s Linking Theorem, there exists a minor N
of M(G) with E(N) = E(HS) ∪E(HT ) such that

λN(E(HS)) = κM(G)(E(HS) ,E(HT )) = κG(S,T ) − 1.

Suppose that N =M/C ∖D. Then

(3) ⊓M(G)(E(HS) ,E(ET )) = κG(S,T ) − 1.
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Let H = G[V,C]. By (3), there are κG(S,T ) components of H containing a vertex of
both S and T . Hence k ≥ κG(S,T ).

5.5 Tutte Connectivity

Definition 261. Let M =(E,I) be a matroid. A partition (X,Y ) of E is a k-separation of
M if

(i) λM(X) ≤ k − 1, and

(ii) ∣X ∣ , ∣Y ∣ ≥ k.

Remark 262. Note that λM(X) ≤ min(∣X ∣ , ∣Y ∣), so (ii) is a nondegeneracy condition.

Example 263. A 1-separation is a pair (X,Y ) such that X and Y are non-empty and skew.

Example 264. A 2-separation is a pair (X,Y ) such that ∣X ∣ , ∣Y ∣ ≥ 2 and ⊓(X,Y ) ≤ 1.

Definition 265. A matroid is k-connected if it has no `-separation for any ` < k.

Remark 266. (1) A matroid M is 2-connected if and only if it is connected.

(2) A matroid M is k-connected if and only if M∗ is k-connected.
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(3) If T is a triangle in a matroid M and ∣M ∣ ≥ 6 then λM(T ) = rM(T ) + rM∗(T ) − ∣T ∣ ≤
rM(T ) = 2. So (T,E(M)−T ) is a 3-separation and, hence, M is not 4-connected. This
means that neither M(Kn) nor PG(n − 1,2) is 4-connected for any n ≥ 4.

Exercise 267. [Challenge] Show that, for each k there is a graph G such that M(G) is
k-connected and ∣E(G)∣ ≥ 2k.

5.6 Vertical connectivity

Definition 268. Let M = (E,I) be a matroid. A partition (X,Y ) of E is a vertical k-
separation of M if

(i) λM(X) ≤ k − 1, and

(ii) rM(X) , rM(E −X) ≥ k.

Definition 269. A matroid is vertically k-connected if it has no vertical `-separation for
any ` < k.

Remark 270. Vertical k-connectivity need not be preserved under duality (see, for example,
U4,6).

Theorem 271. [5.11 - Cunningham] Let G be a connected graph and let k ≥ 1. Then G
is k-connected if and only if M(G) is vertically k-connected.

Proof. The result is vacuous for k = 1; suppose k ≥ 2. Inductively we may assume that G is
(k − 1)-connected and M(G) is vertically (k − 1)-connected.

If G is not k-connected, then G has a separation (G1,G2) of order less than k with
V (G1) − V (G2) ≠ ∅ and V (G2) − V (G1) ≠ ∅.
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Since G is (k − 1)-connected, G1 and G2 are connected. So λM(G)(E(G1)) =(k − 1) − 1 =
k − 2. Note that ∣V (G1)∣ , ∣V (G2)∣ ≥ k, so r(E(G1)) ≥ k − 1 and r(E(G2)) ≥ k − 1. Hence
(E(G1) ,E(G2)) is a vertical (k − 1)-separation in M(G), hence, M(G) is not vertically
k-connected

Conversely, suppose that M(G) is not vertically (k − 1)-connected and let (A,B) be a
vertical k-separation of M(G). Suppose that G is k-connected.

Claim. There exist u, v ∈ V (G) such that u, v are in distinct components of both G[V,A]
and G[V,B].

Proof of Claim. Since (A,B) is a vertical k-separation, neither G[V,A] nor G[V,B] is con-
nected.
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So there exist u, a, b ∈ V such that

� u, a are in distinct components of G[V,A], and

� u, b are in distinct components of G[V,B].

We may assume that

� u, a are in the same component of G[V,B], and

� u, b are in the same component of G[V,A].

Hence a, b are in distinct components of both G[V,A] and G[V,B].

Since G is k-connected, there exist k-internally disjoint (u, v)-paths. Each of these paths
contains an edge from both A and B.

So we get the following minor N :
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Here, a1, . . . , ak−1 ∈ A and b1, . . . , bk−1 ∈ B. Now

k − 2 ≥ λM(G)(A)
≥ κM(G)({a1, . . . , ak−1} ,{b1, . . . , bk−1})
≥ ⊓N({a1, . . . , ak−1} ,{b1, . . . , bk−1}) = k − 1.

This contradiction completes the proof.

Definition 272. Let M be a matroid. The girth of M is the length of a shortest circuit.

Exercise 273. Let M be a matroid with ∣E(M)∣ ≥ 2k. Show that M is (Tutte) k-connected
if and only if M is vertically k-connected and M has girth at least k.

Theorem 274. [5.12] For a connected graph G, M(G) is k-connected if and only if G is
k-connected and G has girth at least k.

Proof. Immediate by the exercise and Theorem 5.11.

5.7 3-connectivity

Remark 275. By Theorem 5.12, for a connected graph G, M(G) is 3-connected if and only
if G is simple and 3-connected.
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Definition 276. A matroid M is internally 3-connected if M is connected and, for each
2-separation (X,Y ) of M either ∣X ∣ = 2 or ∣Y ∣ = 2.

Recall that the simplification of a matroid is uniquely determined up to isomorphism.

Definition 277. Let M be a matroid. We let si(M) denote the simplification of M , and
we let co(M) denote the cosimplification of M . In particular, co(M) =(si(M∗))∗.

Remark 278. (1) If M is internally 3-connected and(X,Y ) is a 2-separation with ∣X ∣ = 2,
thenX is a series-pair or a parallel pair. (Indeed, we see 1 = λM(X) = rM(X)+rM∗(X)−
2.)

(2) If M is 3-connected with ∣M ∣ ≥ 4 and M ∖ e is internally 3-connected, then M ∖ e has
no parallel pairs, so co(M ∖ e) is 3-connected.

(3) Dually, if M is 3-connected with ∣M ∣ ≥ 4, and M/e is internally 3-connected, then
si(M/e)is 3-connected.

Lemma 279. Let e be an element of 3-connected matroid M . Then M∖e or M/e is internally
3-connected.

Proof. Suppose otherwise. Then, there exist 2-separations (D1,D2) and (C1,C2) in M ∖ e
and M/e, respectively, with ∣D1∣ , ∣D2∣ , ∣C1∣ , ∣C2∣ ≥ 3. By possibly swapping C1 and C2, we
may assume that ∣C1 ∩D1∣ ≥ 2, ∣C2 ∩D2∣ ≥ 2.

By the Bixby-Coullard Inequality,

2 ≥ λM∖e(D1) + λM/e(C1) ≥ λM(D1 ∩C1) + λM(D2 ∩C2) − 1.

So either λM(D1 ∩C1) ≤ 1 or λM(D2 ∩C2) ≤ 1. However, this contradicts the fact that M is
3-connected.

Corollary 280. [5.13] If M is a 3-connected matroid with ∣M ∣ ≥ 4, then M has a U2,4-
or M(K4)-minor.
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Proof. Exercise.

Theorem 281. Let e be an element of a matroid M . Then there exists N ∈ {M ∖ e,M/e}
such that for each partition (X1,X2) of E(N) there is a partition (A,B) of either X1 or X2

such that
λM(A) , λM(B) ≤ λN(X1) .

Proof. Exercise.

Problem 282. Given a 3-connected matroid M , does there exist an element e ∈ E(M) such
that M/e or M ∖ e is 3-connected?

Recall that a 3-element circuit in a matroid is called a triangle.

Definition 283. A 3-element cocircuit in a matroid is called a triad.

Remark 284. Note that:

(1) If M/e is internally 3-connected, but not 3-connected, then e is in a triangle.

(2) If M ∖ e is internally 3-connected, but not 3-connected, then e is in a triad.
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Lemma 285. [5.14] Let e be an element in a 3-connected matroid M . If e is in neither a
triangle nor a triad, then M ∖ e or M/e is 3-connected.

Proof. By Bixby’s Lemma and the discussion above.

Remark 286. Up to duality we may now assume, in answering our problem above, that M
has a triangle {e, f, g}.

Lemma 287. [5.15] Let e, f, g, h be distinct elements in a 3-connected matroid M . If
{e, f, g} is a triangle and {f, g, h} is a triad, then M ∖ e is internally 3-connected.

Proof. Exercise. Hint: Consider M/e.

Lemma 288. [Tutte’s Triangle Lemma] Let T = {e, f, g} be a triangle in a 3-connected
matroid M with ∣M ∣ ≥ 4. If e is not contained in a triad, then either M ∖ e, M ∖ f , or M ∖ g
is 3-connected.

Proof. Suppose that none of M ∖ e, M ∖ f , M ∖ g is 3-connected.

Claim (1). We have ∣M ∣ ≥ 8.

Proof of Claim 1. Exercise. Hint: If ∣M ∣ ≤ 7 then r(M) ≤ 3 or r(M∗) ≤ 3.

Now consider a 2-separation (A,B) in M ∖ e with f ∈ A.
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Claim (2). f ∈ A − clM(B) and g ∈ B − clM(A).
Proof of Claim 2. If g ∈ A, then since {f, g} spans e

λM(B) = rM(A ∪ {e}) + rM(B) − r(M) = rM(A) + rM(B) − r(M ∖ e) = λM∖e(A) = 1.

Contradicting thatM is 3-connected; thus g ∈ B. Similarly, if f ∈ clM(B), then λM(B ∪ {e, f}) =
λM∖e(B) = 1, which is again a contradiction, unless ∣A∣ = 2 and f ∈ clM(B) then the element
in A − {f} is a coloop in M ∖ e. However since M is 3-connected, M ∖ e is connected, and
we again have a contradiction. Thus f ∉ clM(B) and, similarly, g ∉ clM(A).

Since ∣M ∣ ≥ 8, max(∣A∣ , ∣B∣) ≥ 4. Up to symmetry we may assume that ∣A∣ ≥ 4.
Note that

λM/f(B ∪ {e}) = λM(B ∪ {e}) − ⊓M({f} ,B ∪ {e})
= λM(B ∪ {e}) − 1

≤(λM∖e(B) + 1) − 1 = 1.

Hence (A − {f} ,B ∪ {e}) is a 2-separation in M/f , so M/f is not internally 3-connected.
Then, by Bixby’s Lemma M ∖f is internally 3-connected. Since M ∖f is not 3-connected,

f is contained in a triad T ∗. Now ∣T ∩ T ∗∣ ≠ 1. By hypothesis, e ∉ T ∗, so T ∩ T ∗ = {f, g}.

Then, by Lemma 5.15, M ∖ e is internally 3-connected. But M ∖ e is not 3-connected, so
e is in a triad — contradiction.

Remark 289. In fact, Tutte showed that either M ∖ e or M ∖ f is 3-connected.

Remark 290. By Lemma 5.14 and Tutte’s Triangle Lemma, either

(1) there is an element e such that M ∖ e or M/e is 3-connected, or

(2) each element of M is in both a triangle and a triad.

Problem 291. Which 3-connected matroids have the property that each element is in both
a triangle and a triad?
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5.8 Wheels

Definition 292.

Remark 293. Note that each edge in a wheel is in both a triangle and a triad.

Definition 294. Let Wn be a wheel with hub h and rim C. Note that C is a circuit-
hyperplane of M(Wn). Let Wn be the matroid obtained from M(Wn) by relaxing C. Pre-
cisely, E(Wn) ∶= E(Wn) and I(Wn) ∶= I(M(Wn)) ∪ {C}. We call Wn the rank-n whirl.

Remark 295. By Assignment 1, question 9, Wn is a matroid.

Remark 296. Whirls are not binary. Why?

Lemma 297. [5.16] Let M be a 3-connected matroid with ∣M ∣ ≥ 4. IF each element of M
is contained in both a triangle and a triad, then M is a wheel or a whirl.

Proof Sketch. Recall that if X is a circuit and C∗ is a cocircuit, then ∣C ∩C∗∣ ≠ 1.

Claim (1). We may assume that ∣M ∣ ≥ 7.
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Claim (2). Our matroid M has no U2,4-restriction.

Let B ⊆ E(M) be the set of elements in at least two triangles, and let B∗ be the set of
elements in at least two triads.

Claim (3). (a) For each triangle T we have ∣t ∩B∗∣ = 1.

(b) For each triad T ∗ we have ∣T ∗ ∩B∣ = 1.

Claim (4). The pair (B,B∗) is a partition of E(M).

Claim (5). The set B is a basis of M .

Claim (6). The fundamental graph FG(M,B) is a circuit.

Claim (7). Either M is a wheel or M is a whirl.

Theorem 298. [Tutte’s Wheel and Whirls Theorem] Let M be a 3-connected
matroid with ∣M ∣ ≥ 4. If M is not a wheel or a whirl, then there exists e ∈ E(M) such that
M ∖ e or M/e is 3-connected.

Proof. This follows from Lemma 5.14, duality, Tutte’s Triangle Lemma, and Lemma 5.16.

Corollary 299. [5.17] If M is a 3-connected matroid with ∣M ∣ ≥ 4 then there is a sequence
(N0, . . . ,Nk) of 3-connected matroids such that

(i) N0 is a wheel or a whirl,

(ii) Nk =M , and

(iii) Ni = Ni+1 ∖ e or Ni = Ni+1/e for each i ∈ {0, . . . , k} and some e ∈ E(M).

Proof. Follows immediately from the above.

Exercise 300. Let M be a 3-connected matroid with ∣M ∣ ≠ 1. Prove that there exists
e ∈ E(M) such that si(M/e) is 3-connected.

6 Graphic Matroids

Recall the following theorem.

Theorem 301. [1.19] If G is a plane graph, then M(G∗) =M(G)∗.
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Lemma 302. [6.1] Let G =(VG,E) and H =(VH ,E) be graphs with no isolated vertices. If
M(G) is connected and M(G)∗ =M(H), then there are planar embeddings of G and H so
that G∗ =H.

Proof. Since M(G) is connected and M(G)∗ = M(H), G and H are both loopless and
2-connected. The result is trivial if E = ∅; assume otherwise and let e ∈ E. Note that

(1) By theorem 5.4 either M(G)/e or M(G) ∖ e is connected.

(2) M(G ∖ e)∗ =M(H/e), M(G/e)∗ =M(H ∖ e),

(3) M is connected if and only if M∗ is connected.

By possibly swapping G and H, we may assume M(G ∖ e) and M(H/e) are connected. Since
M(G ∖ e) =M(H/e)∗, we inductively have dual planar embeddings of G ∖ e, H/e.

Let C = δH/e(x) where e has ends u, v ∈ VH that are identified to a vertex x of H/e. Since
H and H/e are 2-connected, δH(u) and δH(v) are cocircuits of M(H) and C is a cocircuit of
M(H/e). In our dual planar embedding of M(G ∖ e), the set C is a facial circuit (because
it is a vertex neighbourhood of the dual graph). Moreover, δH(u), δH(v) are circuits of
M(G ∖ e) with C =(δH(u) ∪ δH(v)) − {e}.

Since δH(u) and δH(v) are circuits of G and (δH(u) ∪ δH(v)) − {e} is a facial circuit of
G ∖ e, the edge e must join two vertices in this face. This gives a consistent way to extend
our dual embeddings of H/e, G ∖ e to dual embeddings of G,H.

Corollary 303. [1.24] A graph G is planar if and only if M(G)∗ is graphic.
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Proof. Exercise.

Remark 304. Graphicness testing generalizes planarity testing.

Problem 305. Does a graphic matroid determine the graph?

Solution. No!

Problem 306. Does a 2-connected graphic matroid determine the graph?

Solution. No! If a graphic matroid is not 3-connected, it does not determine the graph
(Whitney flips).

Definition 307. A cocircuit C of a matroid M is separating if M ∖C is disconnected.

Theorem 308. If G and H are loopless 3-connected graphs and M(G) =M(H), then G =H
up to vertex labels.

Proof.

Claim. If G is 3-connected, loopless, then a cocircuit C of M(G) is non-separating if and
only if there exists v ∈ V (G) so that C = δG(v).

Proof of Claim. Since G is 3-connected, G − v is 2-connected so δG(v) is a non-separating
cocircuit.
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Conversely, consider a non-separating cocircuit C. Now C = degG(X) for some X ⊆ V (G)
such that G[X] and G[V −X] are connected. Since C is non-separating, either G[X] or
G[V −X] contains no edges. So X or V −X is a single vertex w and C = δG(w).

Now since M(H) = M(G) by the claim, for each v ∈ V (G) there exists w ∈ V (H) such
that δH(w) = δG(v) and vice versa. So G =H up to vertex labels.

Remark 309. By this theorem, simple 3-connected planar graphs have “unique” planar
embeddings. That is, the facial cycles are independent of the embedding.

6.1 Recognizing graphic matroids

Problem 310. Given a matroid M , is M graphic?

Problem 311. [1] Given a binary matroid M , is M graphic?

Algorithm 312. [Algorithm Overview for Problem 1]

Step (1). Reduce to 3-connected case.

Step (2). Find a sequence of 3-connected matroids N0,N1, . . . ,Nk =M where N0 is a wheel
and for each i, Ni = Ni+1/e or Ni+1 ∖ e for some e ∈ E(M).

Step (3). Inductively try to find graphs G0,G1, . . . ,Gk so that Ni =M(Gi) for each i.

Remark 313. Testing whether M is 3-connected reduces to the problem of computing
κM(X,Y ) for all X,Y with ∣X ∣ = ∣Y ∣ = 2. This can be solved with Edmonds’ matroid
intersection algorithm.

Step (1). We may assume M is connected, because M is graphic if and only if each of its
components is graphic.

Suppose M = M(A), and (X,Y ) is a 2-separation Since ⊓M(X,Y ) = 1, there is a
unique non-zero vector v ∈ colspace(A∣X) ∩ colspace(A∣Y ). Let M+ = M([A∣v]), and
MX =M+∣(X ∪ {e}), MY =M+∣(Y ∪ {e}).

Exercise 314. Show that MX ,MY are isomorphic to minors of M .

Exercise 315. Show that M is graphic if and only if MX and MY are graphic.
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6.2 Extensions

Problem 316. [2a] Let M be a 3-connected binary matroid and let M ∖ e = M(G) be
3-connected, graphic. Is M graphic?

Now

Let T = {v ∈ V ; tv = 1}.

Definition 317. A pair (G,T ), where G is a graph and T ⊆ V (G), is called a graft.

Remark 318. A binary extension of a graphic matroid can be described by a graft.

Definition 319. We write M(G,T ) for the associated matroid of a graft (G,T ), and call
the new element the graft element.

Example 320.

Lemma 321. [6.3] For a graft (G,T ), if ∣T ∣ is odd then the graft element e is a coloop.

Proof. Each column of the incidence matrix sums to zero.

Lemma 322. [6.4] Let (G,T ) be a graft where G is a 3-connected graph and ∣T ∣ is even.
Then M(G,T ) is graphic if and only if ∣T ∣ ≤ 2.

Proof. If ∣T ∣ ≤ 2 then M is clearly graphic. Conversely, suppose that M(G,T ) =M(H). We
may assume M(G,T ) has no loops.

By Theorem 6.2, we may relabel the vertices of H so that H ∖ e = G:
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So ∣T ∣ ≤ 2.

Remark 323. Note that this lemma solves problem 2a.

6.3 Coextensions

Problem 324. [2b] Let M be a 3-connected binary matroid and let M/e = M(G) be
3-connected and graphic. Is M graphic?

Now M =M(A′) where

A′ = [1 s
0 A

]

where A is the incidence matrix of a graph G and s ∈ GF(2)E(G). Let

Σ = {f ∈ E(G); sf = 1} .

Definition 325. A pair (G,Σ) where G is a graph and Σ ⊆ E(G) is called a signed graph,
with signature Σ.
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Remark 326. A binary coextension of a graphic matroid can be described by signed graph.

Definition 327. We write M(G,Σ) for the associated matroid of a signed graph (G,Σ).
An edge in Σ is called odd.

Example 328.

Lemma 329. [6.5] Let G be a graph and let, Σ1,Σ2 ⊆ E(G). Then M(G,Σ1) =M(G,Σ2)
if and only if Σ1∆Σ2 is a cut of G.

Proof. By lemma 2.1 M(G,Σ1) =M(G,Σ2) if and only if

rowspace(1 s1

0 A
) = rowspace(1 s2

0 A
) ,

which in turn holds if and only if s1 + s2 ∈ rowspace(A).

Example 330.

Lemma 331. [6.6] Let G be a graph, let e = xy ∈ E(G), and let Σ = δG(x) − {e}. Then
M(G) =M(G/e,Σ).

Proof.
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Definition 332. Let (G,Σ) be a signed graph. A circuit C of G is called Σ-odd if ∣C ∩Σ∣
is odd. Otherwise C is called Σ-even.

Remark 333. � We see Σ-parity is not affected by resigning Σ across a cut.

� If C is Σ-even circuit of G, then C is a circuit of M(G,Σ).

� If C is Σ-odd circuit of G, then C ∪ {e} is a circuit of M(G,Σ).

Definition 334. Let (G,Σ) be a signed graph. A vertex v ∈ V (G) is a block node if it is
contained in each Σ-odd circuit.

Theorem 335. [6.7] Let (G,Σ) be a signed graph where G is loopless and 3-connected.
Then M(G,Σ) is graphic if and only if (G,Σ) has a block node.

Proof. Suppose that M(G,Σ) = M(H) is graphic. Let x be an end of e in H and let
ΣH = δH(x) − {e}. By Lemma 6.6, M(G,Σ) =M(H/e,ΣH), so M(G) =M(H/e), and thus
G = H/e up to vertex labels. So (G,Σ) and (H/e,ΣH) are equivalent so we may assume
Σ = ΣH . Therefore (G,Σ) has a block node.

Conversely, suppose that v is a block node of (G,Σ).
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Now (G,Σ)− v has no odd circuit, so by resigning we may assume that each edge in Σ is
incident with v. By Lemma 6.6 it follows that (G,Σ) is graphic.

Remark 336. We can efficiently check the existence of a block node (check, for each vertex
v, if e is a coloop of M(G,Σ) − δG(v)), so Theorem 6.7 solves problem 2b.

Recall our first problem of this section.

Problem 337. [1] Given a matroid M by a rank oracle, is M graphic?

Remark 338. Note:

(1) If M is graphic, M is binary;

(2) Let B be a basis of M and let f = F (M,B). If M is binary, then M =M([IB F ]);

(3) There is no efficient algorithm for testing if M =M([IB, F ]).

Algorithm 339. [Algorithm for Problem 1]

Step (1). Test if the binary matroid M([I F ]) is graphic. If not, then stop because M is

not graphic. If so, then find G so that M([I F ]) =M(G).

Step (2). Test if M =M(G).

Theorem 340. [6.8 - Seymour] Let M =(E,I) be a matroid and G be a connected graph.
Then M =M(G) if and only if

(1) r(M) = ∣V ∣ − 1, and

(2) for each v ∈ V (G) and e ∈ δG(v), there is a cocircuit C of G with e ∈ C ⊆ δG(v).

Proof. Exercise.
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6.4 Excluded minors for graphic matroids

Theorem 341. [6.9 - Tutte] If M is a binary excluded minor for the class of graphic
matroids, then M ∈ {F7, F ∗

7 ,M(K3,3)∗ ,M(K5)∗}.

Proof outline. Well M is 3-connected and M is not a wheel (because wheels are graphic) or
a whirl (since whirls are not binary). So there exists e ∈ E(M) such that either M ∖ e is
3-connected or M/e is 3-connected. In the former case, use grafts. In the latter case, use
signed graphs.

Definition 342. Let G be a graph, let T ⊆ V (G), and let J ⊆ E(G). We say that J is a
T -join if T is the set of odd-degree vertices of G[V, J].

Remark 343. Let (G,T ) be a graft with graft element e and let J ⊆ E(G). Then J ∪ {e} is
a cycle of M(G,T ) if and only if J is a T -join.

From this observation it follows that if ∣T ∣ is odd, then e is a coloop of M(G,T ), and
hence M(G,T ) is graphic.

Example 344. Recall that F7 =M(K4, V (K4)).

Example 345. Also recall that M(K3,3)∗.
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Note that {e, f, h} is a cycle of M(K3,3)∗.

6.5 Graft Minors

Definition 346. Let (G,T ) be a graft. For f ∈ E(G), we define

M(G,T ) ∖ f ∶=M(G ∖ f, T )
M(G,T ) /f ∶=M(G/f, T ′)

to be graft deletion and graft contraction respectively, where T ′−{w} ∶= T −{u, v} and w ∈ T
if and only if ∣T ∩ {u, v}∣ = 1.

Theorem 347. [6.10] If M is a binary matroid excluded minor for the class of graphic
matroids and e ∈ E(M) is such that M ∖ e is 3-connected, then M ∈ {F7,M(K3,3)∗}.

Proof. We can represent M by a graft (G,T ) where G is a 3-connected graph and ∣T ∣ is even
and at least four.
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Claim (1). Let f = uv ∈ E(G). If G/f is 3-connected, then ∣T ∣ = 4 and u, v ∈ T .

Proof of Claim 1. Well M/f = M(G/f, T ′) where ∣T ′∣ is even and T ∩ V (G − u − v) = T ∩
V (G − u − v). Since M is an excluded minor, M/f is graphic. So, by Lemma 6.4, ∣T ′∣ = 2.
Hence ∣T ∣ = 4 and u, v ∈ T .

Claim (2). We have ∣T ∣ = 4.

Proof of Claim 2. By an exercise, there exists f ∈ E(G) such that si(M(G) /f) is 3-connected.
Hence G/f is 3-connected. Apply Claim 1 and the desired result follows.

Claim (3). If f = uv ∈ E(G) and u ∉ T , then v ∈ T , deg(v) = 3, and N(v) ⊆ T ∪ {u}.

Proof of Claim 3. By Claim 1, G/f is not 3-connected. So M(G) /f is not internally 3-
connected. Then, by Bixby’s Lemma, M(G)∖f is internally 3-connected. The only possible
degree two nodes in G ∖ f are u and v.
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If w ∈ {u, v} has degree two and f ′ ∈ ww′ ∈ E(G) − {f}, then consider (G′, T ′) =(G,T ) ∖
f/f ′. Now ∣T ∣ = ∣T ′∣ unless w,w′ ∈ T . So, unless degG∖f(v) = 2, v ∈ T , and NG∖f(v) ⊆ T ,
we can get a minor (G′′, T ′′) of (G,T ) ∖ f such that G′′ is 3-connected and ∣T ′′∣ = 4 —
contradicting that M(G,T ) ∖ f is graphic.

Claim (4). We have ∣V (G)∣ ≤ 5.

Proof of Claim 4. If not, then there are two vertices u, v ∈ V (G)−T . By Claim 3, N(u) ⊆ T ,
N(v) ⊆ T , and N(u) ∩N(v) = ∅. However G is 3-connected and ∣T ∣ = 4 — contradiction.

Now we are left with two cases. First suppose that ∣V (G)∣ = 4. This means:
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So M(G,T ) = F7.
Otherwise we have ∣V (G)∣ = 5 Let v ∈ V (G)−T . Since ∣V (G)∣ is odd, G has a vertex w of

even degree. Thus deg(w) = 4. By Claim 3, v = w and each vertex in T has degree 3. Hence:

Thus M =M(K3,3)∗.

Remark 348. Let (G,Σ) be a signed graph, with M/e =M(G,Σ). Note

(1) Σ ∪ {e} is a cocycle of M , and

(2) if C∗ is a cocycle of M that contains e then M(G,C∗ − {e}) =M(G,Σ) =M .
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Remark 349. Note that E(K5) is a cocycle of M(K5)∗.
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6.6 Signed graph Minors

Definition 350. Let (G,Σ) be a signed graph and let f = uv ∈ E(G). We define

M(G,Σ) ∖ f ∶=M(G ∖ f,Σ)

to be signed graph deletion. If f ∉ Σ, then we define

M(G,Σ) /f ∶=M(G/f,Σ)

to be signed graph contraction. If f ∈ Σ and u ≠ v, then we define

M(G,Σ) /f ∶=M(G,Σ∆δ(u)) /f

to be signed graph contraction.

Remark 351. If f ∈ Σ and u ≠ v, then

M(G,Σ) /f =M(G/f,Σ∆δ ∪ u) .

Moreover, note that we do not define contraction by f if f ∈ Σ and u = v (in which case e
and f are parallel in M(G,Σ)).

Definition 352. Let (G,Σ) and (G′,Σ′) be signed graphs. We say (G′,Σ′) is a minor of
(G,Σ) if there exist disjoint edge sets D,C ⊆ E(G) and X ⊆ V (G) such that

(1) C ∩(Σ∆δ(X)) = ∅, and

(2) (G′,Σ′) =(G ∖D/C,Σ′∆δ(X)).

Lemma 353. [6.11] If (G,Σ) has two disjoint odd circuits and G is simple and 3-connected,
then M(G,Σ) has an F ∗

7 - or M(K5)∗-minor.
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Proof sketch.

There are two cases. First, if f ∈ Σ′ then M(G′,Σ′) = M(K5)∗. Second, if f ∉ Σ′, then
resign to get:

Now M(G′,Σ′) ∖ d/c1, c2 ≅ F ∗
7 .

Recall the following facts and definitions.

Remark 354. (1) A circuit C of G is a circuit of M(G,Σ) if and only if ∣C ∩Σ∣ is even.

(2) A set of edges X of (G,Σ) is odd if ∣X ∩Σ∣ is odd.

(3) A vertex v ∈ V (G) is a blocknode of (G,Σ) if each odd circuit of (G,Σ) contains v.

Theorem 355. [6.7] Let (G,Σ) be a signed graph where G is a loopless and 3-connected
graph. Then M(G,Σ) is graphic if and only if (G,Σ) has a blocknode.

Theorem 356. [6.12 - Gerards] Let (G,Σ) be a signed graph where G is a simple 3-
connected graph. Then either

(1) (G,Σ) has a blocknode, or
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(2) (G,Σ) has two disjoint odd circuits, or

(3) (G,Σ) has one of the following minors: odd-K4, doubled-K3. (See previous diagrams.)

Proof. Suppose for a contradiction that the result is false. Consider a counterexample(G,Σ).

Claim (1). Let (H,ΣH) be a subgraph of (G,Σ) and v ∈ V (H) such that

(i) (H,ΣH) has an odd circuit, and

(ii) ΣH ⊆ δH(v).

Then either

(1) there is an odd circuit C of (G,Σ) such that v ∉ V (C) and ∣V (C) ∩ V (H)∣ = 1, or

(2) there is an odd path P of (G,Σ) with ends u and w such that v ∉ {u,w} and V (P ) ∩
V (H) = {u,w}. (We call such a P an odd-ear of (H,ΣH) avoiding v).

Proof of Claim 1 Sketch. Since (G,Σ) has no blocknode, there is an odd circuit C of (G,Σ)
avoiding v. Since (H,ΣH) has an odd circuit and (G,Σ) has no two disjoint odd circuits, we
get V (C) ∩ V (H) ≠ ∅.

We may assume that ∣V (H) ∩ V (C)∣ ≥ 2 since otherwise the claim holds. Now, since
(H,ΣH) − v has no odd edges and C is odd, we easily find an odd ear in C for (H,ΣH)
avoiding v.

Claim (2). If C1 and C2 are odd-circuits, then ∣V (C1) ∩ V (C2)∣ ≥ 2.

Proof of Claim 2 Sketch. Suppose that V (C1) ∩ V (C2) = {v}. Let (H,ΣH) = C1 ∪ C2 ∪ Q
where Q is a shortest(V (C1) − v, V (C2) − v)-path in(G,Σ)−v. By resigning we may assume
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that ΣH ⊆ δ(v).

Now we apply Claim 1, and hence have two cases to consider. Firstly, suppose that there
is an odd circuit C of (G,Σ) with v ∉ V (C) and ∣V (C) ∩ V (H)∣ ≤ 1. Then C is disjoint from
C1 or C2 — contradiction.

Secondly, suppose that there is an odd ear P ′ of (H,ΣH) avoiding v. Then since (G,Σ)
has no disjoint odd circuits, P has an end u ∈ V (C1) − v and an end w ∈ V (C2) − v. Then
(G,Σ) has a doubled-K3 minor.

Note that Claim 2 precludes outcome (1) of Claim 1.

Claim (3). There are odd circuits C1 and C2 such that C1 ∩C2 is a path.

Proof of Claim 3. Let C1 be an odd circuit and let v ∈ C1. Resign (G,Σ) so that all odd
edges of C1 are incident with v. By Claims 1 and 2, there is an odd ear P of C1 avoiding v.
Let C2 be the unique circuit in (C1 − v) ∪ P . Then C1 and C2 satisfy the claim.
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Choose C1 and C2 satisfying Claim 3 and with ∣V (C1) ∩ V (C2)∣ as small as possible. Let
P = C1 ∩ C2 and let v be an end of P . Resign (G,Σ) so that all odd edges of C1 ∪ C2 are
incident with v and so that there is only on odd edge (that edge is in P ).

By Claims 1 and 2, there is an odd ear Q of C1 ∪C2 that avoids v. Let C be the unique
circuit in ((C1 ∪C2) − v) ∪Q. Note that C is odd and C ∩ C1 and C ∩ C2 are both paths.
So, by the minimality of P , Q cannot have an end on P . Since (G,Σ) has no disjoint odd
circuits, Q has an end in V (C1) − V (P ) and an end in V (C2) − V (P ). So (G,Σ) has an
odd-K4 minor.
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Corollary 357. [6.13] If M is a binary excluded minor for the class of graphic matroids
and there exists e ∈ E(M) such that M/e is 3-connected, then M ≅ F ∗

7 or M ≅M(K5)∗.

Proof. There is no element e ∈ E(F7) such that F7/e is 3-connected. It suffices to prove that
M has a minor isomorphic to F7, F ∗

7 , or M(K5). Suppose otherwise.
We can represent M by a signed graph (G,Σ) where G is simple and 3-connected. Since

M is not graphic (G,Σ) has no block node. By Lemma 6.11, (G,Σ) has no two disjoint odd
circuits. Then, by Theorem 6.12, (G,Σ) has a minor isomorphic to odd-K4 or doubled-K3.
Then M has a minor isomorphic to F ∗

7 or F7 — contradiction.

Theorem 6.10 and Corollary 6.13 together prove that the binary excluded minors for the
class of graphic matroids are F7, F ∗

7 , M(K∗
5 ), and M(K3,3)∗. Thus the excluded minors for

the class of graphic matroids are U2,4, F7, F ∗
7 , M(K∗

5 ), and M(K3,3)∗.

7 Regular Matroid Decomposition

7.1 Sums of binary matroids

Definition 358. [1-Sum (or Direct Sum)]

Definition 359. [2-Sum]
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Definition 360. [3-Sum]

Remark 361. The class of regular matroids is closed under 1-, 2-, and 3-sums.

Page 89 of 90



CO 446 Revised Lecture Notes

7.2 Seymour’s Decomposition Theorem

Definition 362. We define R10 ∶=M(G,Σ) where

.

Theorem 363. [Seymour’s Decomposition Theorem] Every regular matroid can be
constructed by 1-, 2-, and 3-sums from graphic matroids, cographic matroids, and copies of
R10.
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