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API: Application Programming Interface

● What the heck does that mean?!
● Interface: allows a user to interact with a system

– Graphical User Interface (GUI): interact with a program using 
a point/click/type interface

– Command-Line Interface (CLI): interact with a program via 
the command line: for example, cd /home/downloads

● API: interact with an existing program programmatically
● e.g. The Twitter API allows you to interact with Twitter 

(write programs that post tweets, mine tweets for data, 
or look at social structures)



  

APIs, continued

● How do they work?

● You are provided with resources
– Software modules: Allows you to call functions that have been 

written for you!
– Documentation: Tells you how to use the software modules 

and different function calls
– Authentication: Allows you to prove you are authorized to 

interact with the software

Other Software Your Program
API



  

Web APIs



  

Web APIs

● Gives you a way to ask for and receive data over the 
internet

● How? Using hyper-text transfer protocol (HTTP)
● Web APIs are “universal”

– All programming languages know how to use HTTP!

● HTTP “Methods” (actions)
– GET: asks for data from a server
– POST: sends data to a server



 

Asking for data
● When you type a URL into the navigation bar of your 

browser, you are requesting data for that webpage



 

Asking for data with URLs

● We will be asking for data with URLs (Universal 
Resource Locator)

● If you want to see a specific YouTube video, you 
ask YouTube for the video by encoding its ID in 
the URL:

https://www.youtube.com/watch?v=1wnE4vF9CQ4 

HTTP GET URL --> server returns 200 OK and data



 

Receiving data

● When requesting to view a webpage in your 
browser, the information is sent back to you as 
HTML

● Your browser parses and displays the page based 
on the HTML it receives!

● APIs often return data in JSON format, as it is 
easy to parse and display information (like a 
Python map)



 

Sample JSON: Wikipedia Web API

HTTP GET http://en.wikipedia.org/w/api.php?
format=json&action=query&titles=Main%20Page 

{

"query": {

"pages": {
"15580374": {

"pageid": 15580374,
"ns":     0,
"title":  "Main Page"

}
}

}

}



 

API Documentation

● Every API is different: no “one true way”
● Luckily, every API is documented!

– Use your favorite web search engine for “$software 
API documentation”

● For Wikipedia web API example:
– http://www.mediawiki.org/wiki/API:Main_page



 

Using an API to build a data set

● What do we need?
– All the Python tools we learned last time (e.g. 

variables, lists, loops)
– Ability to open URLs on the Web
– Ability to create custom URLs
– Ability to save files
– Ability to understand the data the API gives us
– A few new tools...



 

urllib2 library

● Libraries are python modules written by others 
that perform common tasks

● The functions in these modules can be used by 
anyone

● urllib2 is a python library for opening URLs
– There is also an urllib, but urllib2 is better.

>>> import urllib2



 

urlopen

● Function that allows you to open urls
>>> page = urllib2.urlopen('https://uwaterloo.ca')

● All information for the page we opened is now 
saved in our 'page' variable as a special object
>>> data = page.read()

● The HTML for the page is now stored in data



 

Formatting Strings

>>> name = "Spongebob Squarepants"

>>> print "Who lives in a

    pineapple under the sea?\n%s!" 

    % name

Who lives in a pineapple under the 
sea?

Spongebob Squarepants!



 

Formatting Strings, continued

>>> howmany = 101

>>> print "I have %s dalmations!" 

    % int

I have 101 dalmations!

>>> print "I have %s dalmations! 

    %s!!!" % (int,int)

I have 101 dalmations! 101!!!



 

File Operations

● You may have seen this already if you attended 
the Shakespeare session!

● Idea: files allow us to store and process a lot 
more data (GBs+)

● We will cover opening files for reading and 
writing



 

Create new files

>>> newfile = open('myfile', 'w')

● No need to include any modules, this is a 
standard Python function like print

● 'w' stands for “write” mode



 

Writing to files

>>> newfile.write("Hello, world!")

>>> str = "We like files"

>>> newfile.write(str)

● Writes the data to our newly created file

>>> newfile.close()

● Closing files when you're done is “polite,” like closing the 
door behind you

● (Real reasoning for this is beyond the scope of these 
workshops)



 

Read from existing files

>>> file = open('myfile', 'r')

● 'r' stands for “read” mode

>>> line = file.readline()

>>> line

Some text from the file



 

Read file in other ways

>>> for line in file:

...   ((do something))

● Iterate over lines in a file

>>> file_as_string = file.read()

>>> print(file_as_string)

'Lots of text from the file in 
string form...'

● Read file into Python all at once as a single string



  

Live Web API Demo!



 



 

Requesting kittehs!

● The documentation for placekitten is very simple! 
We've just read all of it.

● We specify size by putting it in the URL request 
(height/width):

http://placekitten.com/250/350
● We specify grayscale by adding a 'g' to the URL:

http://placekitten.com/g/200/300

http://placekitten.com/250/350
http://placekitten.com/g/200/300


 

Exercise: Try placekitten for yourself!

● First import urllib2
>>> from urllib2 import urlopen

● Then, request data by opening the URL
● >>> site = urlopen('http://placekitten.com/250/350')

● Now read the data into a variable
>>> data = site.read()



 

Saving our kitten to a file

● We've successfully requested our data, so let's 
save it
>>> kitten_file = open('kitteh.jpg','w')

>>> kitten_file.write(data)

>>> kitten_file.close()

● Find your file, and see what it is in it!



 

placekitten exercise

● Write a program that asks for a image dimensions and 
retrieves a kitten of that size and save your solution in the 
file 'getkitten.py'.

● Toolkit
– raw_input()

– String formatting:
'ninjapants123%spineapples456%s' % (var1,var2)

– Open file for writing (don't forget to close it!)
file = open('myfilename', 'w')

file.write(content)



  

Other Loose Ends



 

Other APIs

● Each API is different: be sure to read 
documentation!

● Examples:
– Facebook
– Twitter
– Dropbox
– Wikipedia
– Basically any of your favorite websites



 

Rate Limiting

● If we request too much data too often, the 
servers can't handle all the requests

● Requesting too much information is known as a 
Denial Of Service (DoS) attack
– This affects everyone who is using the site

● Popular APIs limit the amount of requests you 
can make in a time window

● e.g. Twitter may allow 15 requests every 15 
minutes from a single program



 

Authentication

● You may need to establish your identity to an API
– e.g. Twitter doesn't want just anyone to be able to 

programmatically access your direct (private) messages!
● You will often be provided with a “secret” to prove 

the identity of your program
– Also called “development token”, “access token”, etc.

● For the afternoon, Twitter session attendees need 
to provide authentication data to talk to the 
Twitter API



 

Text Encoding

● Not required knowledge, but may help you understand bugs
● What is text encoding?

– Text is stored as 0's and 1's in your computer, so we have special 
– English alphabet: “encoded” in a small alphabet called ASCII that 

uses 7 “bits” per character
● Types of encodings:

– Many special characters: extended ASCII
– Very large alphabet, including Chinese, Arabic, Hindi, etc.: UTF-8

● We had encoding issues with the Twitter exercises and the 
Windows console!
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