

Introduction to APIs
Session 2, Oct. 25

API: Application Programming Interface

● What the heck does that mean?!
● Interface: allows a user to interact with a system

– Graphical User Interface (GUI): interact with a program using
a point/click/type interface

– Command-Line Interface (CLI): interact with a program via
the command line: for example, cd /home/downloads

● API: interact with an existing program programmatically
● e.g. The Twitter API allows you to interact with Twitter

(write programs that post tweets, mine tweets for data,
or look at social structures)

APIs, continued

● How do they work?

● You are provided with resources
– Software modules: Allows you to call functions that have been

written for you!
– Documentation: Tells you how to use the software modules

and different function calls
– Authentication: Allows you to prove you are authorized to

interact with the software

Other Software Your Program
API

Web APIs

Web APIs

● Gives you a way to ask for and receive data over the
internet

● How? Using hyper-text transfer protocol (HTTP)
● Web APIs are “universal”

– All programming languages know how to use HTTP!

● HTTP “Methods” (actions)
– GET: asks for data from a server
– POST: sends data to a server

Asking for data
● When you type a URL into the navigation bar of your

browser, you are requesting data for that webpage

Asking for data with URLs

● We will be asking for data with URLs (Universal
Resource Locator)

● If you want to see a specific YouTube video, you
ask YouTube for the video by encoding its ID in
the URL:

https://www.youtube.com/watch?v=1wnE4vF9CQ4

HTTP GET URL --> server returns 200 OK and data

Receiving data

● When requesting to view a webpage in your
browser, the information is sent back to you as
HTML

● Your browser parses and displays the page based
on the HTML it receives!

● APIs often return data in JSON format, as it is
easy to parse and display information (like a
Python map)

Sample JSON: Wikipedia Web API

HTTP GET http://en.wikipedia.org/w/api.php?
format=json&action=query&titles=Main%20Page

{

"query": {

"pages": {
"15580374": {

"pageid": 15580374,
"ns": 0,
"title": "Main Page"

}
}

}

}

API Documentation

● Every API is different: no “one true way”
● Luckily, every API is documented!

– Use your favorite web search engine for “$software
API documentation”

● For Wikipedia web API example:
– http://www.mediawiki.org/wiki/API:Main_page

Using an API to build a data set

● What do we need?
– All the Python tools we learned last time (e.g.

variables, lists, loops)
– Ability to open URLs on the Web
– Ability to create custom URLs
– Ability to save files
– Ability to understand the data the API gives us
– A few new tools...

urllib2 library

● Libraries are python modules written by others
that perform common tasks

● The functions in these modules can be used by
anyone

● urllib2 is a python library for opening URLs
– There is also an urllib, but urllib2 is better.

>>> import urllib2

urlopen

● Function that allows you to open urls
>>> page = urllib2.urlopen('https://uwaterloo.ca')

● All information for the page we opened is now
saved in our 'page' variable as a special object
>>> data = page.read()

● The HTML for the page is now stored in data

Formatting Strings

>>> name = "Spongebob Squarepants"

>>> print "Who lives in a

 pineapple under the sea?\n%s!"

 % name

Who lives in a pineapple under the
sea?

Spongebob Squarepants!

Formatting Strings, continued

>>> howmany = 101

>>> print "I have %s dalmations!"

 % int

I have 101 dalmations!

>>> print "I have %s dalmations!

 %s!!!" % (int,int)

I have 101 dalmations! 101!!!

File Operations

● You may have seen this already if you attended
the Shakespeare session!

● Idea: files allow us to store and process a lot
more data (GBs+)

● We will cover opening files for reading and
writing

Create new files

>>> newfile = open('myfile', 'w')

● No need to include any modules, this is a
standard Python function like print

● 'w' stands for “write” mode

Writing to files

>>> newfile.write("Hello, world!")

>>> str = "We like files"

>>> newfile.write(str)

● Writes the data to our newly created file

>>> newfile.close()

● Closing files when you're done is “polite,” like closing the
door behind you

● (Real reasoning for this is beyond the scope of these
workshops)

Read from existing files

>>> file = open('myfile', 'r')

● 'r' stands for “read” mode

>>> line = file.readline()

>>> line

Some text from the file

Read file in other ways

>>> for line in file:

... ((do something))

● Iterate over lines in a file

>>> file_as_string = file.read()

>>> print(file_as_string)

'Lots of text from the file in
string form...'

● Read file into Python all at once as a single string

Live Web API Demo!

Requesting kittehs!

● The documentation for placekitten is very simple!
We've just read all of it.

● We specify size by putting it in the URL request
(height/width):

http://placekitten.com/250/350
● We specify grayscale by adding a 'g' to the URL:

http://placekitten.com/g/200/300

http://placekitten.com/250/350
http://placekitten.com/g/200/300

Exercise: Try placekitten for yourself!

● First import urllib2
>>> from urllib2 import urlopen

● Then, request data by opening the URL
● >>> site = urlopen('http://placekitten.com/250/350')

● Now read the data into a variable
>>> data = site.read()

Saving our kitten to a file

● We've successfully requested our data, so let's
save it
>>> kitten_file = open('kitteh.jpg','w')

>>> kitten_file.write(data)

>>> kitten_file.close()

● Find your file, and see what it is in it!

placekitten exercise

● Write a program that asks for a image dimensions and
retrieves a kitten of that size and save your solution in the
file 'getkitten.py'.

● Toolkit
– raw_input()

– String formatting:
'ninjapants123%spineapples456%s' % (var1,var2)

– Open file for writing (don't forget to close it!)
file = open('myfilename', 'w')

file.write(content)

Other Loose Ends

Other APIs

● Each API is different: be sure to read
documentation!

● Examples:
– Facebook
– Twitter
– Dropbox
– Wikipedia
– Basically any of your favorite websites

Rate Limiting

● If we request too much data too often, the
servers can't handle all the requests

● Requesting too much information is known as a
Denial Of Service (DoS) attack
– This affects everyone who is using the site

● Popular APIs limit the amount of requests you
can make in a time window

● e.g. Twitter may allow 15 requests every 15
minutes from a single program

Authentication

● You may need to establish your identity to an API
– e.g. Twitter doesn't want just anyone to be able to

programmatically access your direct (private) messages!
● You will often be provided with a “secret” to prove

the identity of your program
– Also called “development token”, “access token”, etc.

● For the afternoon, Twitter session attendees need
to provide authentication data to talk to the
Twitter API

Text Encoding

● Not required knowledge, but may help you understand bugs
● What is text encoding?

– Text is stored as 0's and 1's in your computer, so we have special
– English alphabet: “encoded” in a small alphabet called ASCII that

uses 7 “bits” per character
● Types of encodings:

– Many special characters: extended ASCII
– Very large alphabet, including Chinese, Arabic, Hindi, etc.: UTF-8

● We had encoding issues with the Twitter exercises and the
Windows console!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

