
Weighted Capacitated, Priority, and Geometric Set Cover via

Improved Quasi-Uniform Sampling

Timothy M. Chan∗ Elyot Grant†. Jochen Könemann† Malcolm Sharpe†

October 4, 2011

Abstract

The minimum-weight set cover problem is widely known
to be O(log n)-approximable, with no improvement pos-
sible in the general case. We take the approach of ex-
ploiting problem structure to achieve better results, by
providing a geometry-inspired algorithm whose approxi-
mation guarantee depends solely on an instance-specific
combinatorial property known as shallow cell complex-
ity (SCC). Roughly speaking, a set cover instance has
low SCC if any column-induced submatrix of the corre-
sponding element-set incidence matrix has few distinct
rows. By adapting and improving Varadarajan’s recent
quasi-uniform random sampling method for weighted ge-
ometric covering problems, we obtain strong approxima-
tion algorithms for a structurally rich class of weighted
covering problems with low SCC. We also show how to
derandomize our algorithm.

Our main result has several immediate conse-
quences. Among them, we settle an open question of
Chakrabarty et al. [8] by showing that weighted in-
stances of the capacitated covering problem with un-
derlying network structure have O(1)-approximations.
Additionally, our improvements to Varadarajan’s sam-
pling framework yield several new results for weighted
geometric set cover, hitting set, and dominating set
problems. In particular, for weighted covering prob-
lems exhibiting linear (or near-linear) union complexity,
we obtain approximability results agreeing with those
known for the unweighted case. For example, we obtain
a constant approximation for the weighted disk cover
problem, improving upon the 2O(log∗ n)-approximation
known prior to our work and matching the O(1)-
approximation known for the unweighted variant.

∗Cheriton School of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada, tmchan@uwaterloo.ca
†Department of Combinatorics and Optimization, Univer-

sity of Waterloo, Waterloo, Ontario N2L 3G1, Canada,

{egrant,jochen,masharpe}@uwaterloo.ca. Work supported by
NSERC Discovery Grant 277224.

1 Introduction

In an instance of the classical set cover problem, we are
given a ground setX ofM elements, and a family S ofN
subsets of X. Each set S ∈ S has a non-negative weight
wS , and the goal is to find a collection C ⊆ S of sets of
minimum total weight such that each element e ∈ X is
contained in at least one of the sets in C. Equivalently, if
we let A be the element–set incidence matrix, then we
are looking for a solution to the following 0, 1-integer
program:

(SC) min{wTx : Ax ≥ 1, x ≥ 0, x integer}.

The set cover problem is rather well understood in
terms of approximability; it admits efficient O(logM)
approximation algorithms and this is best possible un-
less NP = P [15]. Nevertheless, there are many cases
where one can get better approximations by exploiting
the structure of matrix A. A classical example for this
is given by the case where matrix A is totally unimodu-
lar [26], or where A exhibits other useful combinatorial
structure (e.g., sparsity [18, 22, 27]).

Another relevant example for this paper is when
(SC) encodes a geometric covering problem. Here X
usually consists of points in some fixed-dimensional
Euclidean space, S contains geometric objects (e.g.,
disks, triangles, or squares), and the goal is to pick a
minimum cost collection of these objects to cover all
points. The study of geometric covering problems is a
vibrant area in itself, and much progress has been made
in the last 20 years (e.g., see [1, 6, 9, 10, 13, 11, 29, 30]).

Until recently, much of the work in this area has
focused on the unweighted setting, where wS = 1 for all
sets S. A key insight here links the integrality gap of
the canonical linear programming relaxation (SC-LP) of
(SC) to the existence of small ε-nets; C ⊆ S is an L/N -
net if it covers all points that are at least L-deep (i.e.,
that are contained in at least L sets in S). Brönnimann
and Goodrich [6] (see also [13]) showed that (SC-LP)
has an integrality gap of O(g(opt)) if there are L/N -
nets of size O(N/L · g(N/L)), for some function g (opt

is the optimum value of (SC-LP)). Hence, improving
bounds on the size of ε-nets is a central theme in the
area of geometric covering.

Clarkson [9] and Haussler and Welzl [17] showed
that L/N -nets of size O(N/L · logN/L) exist for fairly
general set families, including triangles, rectangles, and
disks among others. A few years ago, Clarkson and
Varadarajan [11] exhibited a connection between the
existence of small ε-nets and the combinatorial com-
plexity of the union of the corresponding geometric
objects—the so-called union complexity. The authors
showed that if the union complexity of any n objects
is O(n · h(n)) for some function h, then L/N -nets of
size O(N/L · h(N/L)) exist [11]; a recent improvement
of this bound to O(N/L · log h(N/L)) can be found in
[1, 29]1.

Recently, Varadarajan [30] gave an elegant algo-
rithm that extends some of the unweighted results
above to the weighted setting. The algorithm pro-
duces randomized L/N -nets that contain each set in
S with (roughly) equal probability. This property,
known as quasi-uniformity, yields a method for ob-
taining good approximation for weighted set cover in-
stances. Specifically, when given a weighted covering
problem in which any n objects have union complex-
ity O(n · h(n)), Varadarajan’s algorithm produces a
quasi-uniform L/N -net containing O(2O(log∗ L) · N/L ·
log h(N/L)) sets (where the leading exponential factor

can be dropped if h(n) ∈ ω(log(j) n) for some constant
j.)

The results in this paper are inspired by Varadara-
jan’s [30]. We present an improvement of his result, and
also extend the scope of his technique to more general,
not necessarily geometric, set cover instances. In the
following, we present a purely combinatorial property
for set cover instances, under which improved approxi-
mations exist.

1.1 Cell complexity: geometric and combi-
natorial One of the key technical concepts used by
Varadarajan [30] is the cell complexity of a given config-
uration of geometric objects. Informally, in a configu-
ration of objects in Euclidean space, a cell is a maximal
connected region consisting of points that all lie within
precisely the same set of objects. The depth of a cell is
the number of objects that define the cell. In his algo-
rithm, Varadarajan uses an earlier result by Clarkson
and Shor [10] that shows that geometric set cover in-
stances with low union complexity have a small number

1Technically, for the result in [29] to hold, we need h(n) ∈
ω(log(j) n) for some constant j, where log(j) is the logarithm
iterated j times .

of cells of large depth.

A =

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0

For our purposes, we shall

strip away the topological de-
tails underpinning the formal
geometric definition of cells,
leaving us with a purely com-
binatorial notion of “cell” for
the matrix world. We call
two rows Ai and Aj of a 0, 1-
matrix A equivalent if they contain ones in precisely the
same columns. The cells of A are then defined to be
the resulting equivalence classes, and the depth of a cell
is the number of ones in any one of its rows. For ex-
ample, the first and third row of matrix A on the right
are equivalent and have depth two. There are two more
cells formed by rows two and four, of depth two and
one, respectively. We define the key property used in
our algorithm.

Definition 1.1. (Cell Complexity) Let f(n, k) be
a function that is non-decreasing in both n and k.
A binary matrix A with N columns has shallow cell
complexity (SCC) f if for all 1 ≤ k ≤ n ≤ N and for
all sub-matrices A∗ of A containing exactly n columns,
the number of cells of A∗ of depth k or fewer is at most
f(n, k). A set cover instance has SCC f if and only if
its element–set incidence matrix does.

For example, general binary matrices have SCC at
most

(
n
k

)
. Binary matrices that do not contain the

submatrix [0, 1] have SCC at most k + 1. A set cover
matrix has SCC at most O(nd) whenever its underlying
set system has VC-codimension [28] at most d (see [17]).
Finally, binary network matrices (a subclass of totally
unimodular matrices [26]) have SCC O(n) as we show
in Lemma 4.1. Our main result shows that set cover
instances with small SCC are well approximable:

Theorem 1.1. Let φ(n) be a non-decreasing function
of n, and let c ≥ 0 be a constant. Suppose I is
a class of set cover instances with SCC f(n, k) =
nφ(n)kc. Then there is a randomized polynomial-
time O(max{1, log φ(n)})-approximation algorithm for
the weighted set cover problem for I.

The performance guarantees stated in the above
theorem are LP-relative, and hence provide upper
bounds on the integrality gap of (SC-LP). As men-
tioned, our algorithm follows Varadarajan’s general
sampling framework [30], and it therefore reduces
the problem of computing an approximate solution
to a weighted set cover instance to that of comput-
ing small weighted ε-nets for an appropriately de-
fined set system. Just like in [30], our algorithm en-
sures quasi-uniformity. Varadarajan’s analysis gives

an O(log φ(n))-approximation when φ(n) ∈ ω(log(j) n)
for some constant j, but obtains only a 2O(log∗ n)-
approximation in the case of φ(n) = O(1). We provide a
refined analysis that eliminates the 2O(log∗ n) factor. At
the same time, our algorithm also simplifies Varadara-
jan’s in several ways. In Section 3 we also show how our
algorithm can be derandomized.

1.2 Applications
Capacitated Covering. One of the main implica-

tions of Theorem 1.1 pertains to capacitated (or column-
restricted) covering problems. This class of problems
naturally generalizes the standard, 0, 1 set cover prob-
lem defined before. In a typical instance, we are given
the usual parameters of a set cover instance, and in ad-
dition have a supply sS and upper bound uS for each
set S ∈ S, and a demand be for each element e ∈ X.
We then define matrix A[s] by letting A[s]eS = AeS · sS
for all e and S. The goal is to solve

(CSC) min{cTx : A[s]x ≥ b, 0 ≤ x ≤ u, x integer}.

Chakrabarty et al. [8] recently considered this class of
covering problems, and asked how their approximabil-
ity relates to that of their underlying standard set cover
problems. In particular, can one use the structure of A
to find good approximations for CSC? The authors re-
duce the approximability of a given capacitated covering
problem to the problem of bounding the integrality gaps
of the standard LP relaxations of 0, 1-covering problems
from two classes.

Underlying 0, 1-Multicover Problem This is sim-
ply the family of weighted set-multicover instances
defined by matrix A, any positive right-hand side
vector b, and upper-bounds u.

Priority Covering Problem A problem in this class
is obtained from the given capacitated covering
instance, and priorities πS and πe for all sets S ∈ S,
and elements e ∈ X. A set S now covers element e
if e ∈ S, and if πS ≥ πe. The goal is to find a min-
weight solution to the resulting set cover instance.

The main result in [8] shows that if the integrality
gaps of the two families above are bounded by α and β,
then there is an O(α + β) approximation for the given
capacitated covering instance.

Bansal et al. [3] very recently showed that if the
integrality gap bound α of the underlying multicover
family is hereditary in the sense that it also holds for
row-induced sub-systems, then the integrality gap of the
LP relaxations of the corresponding priority instances is
O(α log2 k), where k is the number of distinct priorities.
In addition, the authors show the hereditary multicover

gap is α whenever a given instance has hereditary
discrepancy at most α.

One of the main specific questions left open in [8]
concerns the case where the set-cover matrix A is a
network matrix. Does the addition of capacities make
the problem harder in this case? The work in [3] implies
an O((log log smax)2) approximation for the capacitated
set-cover problem in this case, where smax is the largest
supply. We improve over [3] and settle the open question
in [8].

Theorem 1.2. There is a constant-factor approxima-
tion for the capacitated covering problem whenever the
underlying set-cover matrix A is a network matrix.

Whenever A is a network matrix, the LP for the
underlying multicover problem is exact, and hence we
only need to focus on the class of priority problems that
arise. Here we first show that 0, 1 network matrices
have SCC O(n), and that adding priorities creates cover
matrices whose SCC is larger by a factor k. The result
then follows from Theorem 1.1. Unfortunately, the
same argument does not work for all totally unimodular
matrices, as shown by Example 1. Note also not all
matrices with SCC O(n) are network matrices. We
obtain the following more general result.

Theorem 1.3. There is an O(log logN)-
approximation for the capacitated covering problem
whenever the underlying set-cover matrix has SCC O(n).

The proof is similar to that of Theorem 1.2,
and makes the additional observation that the in-
duced multicover instances have integrality gap at most
O(log logN), using a trick from [4, §5].

Geometric Covering. Our results refine the sam-
pling algorithm by Varadarajan [30], and thus there are
naturally numerous consequences for geometric cover-
ing problems. A standard technique by Clarkson and
Shor [10] links the shallow cell complexity to union com-
plexity: for a family of objects in a constant dimension d
with constant description complexity, if the union com-
plexity is O(nφ(n)), then the shallow cell complexity is
bounded by O((n/k)φ(n/k) · kd) ≤ O(nφ(n)kd−1). We
immediately obtain the following corollary of Theorem
1.1, which matches and generalizes previous results for
the unweighted case [1, 29]:

Corollary 1.1. Let I be a class of geometric set cover
instances where the union of n objects has complexity
O(nφ(n)). Then there is a randomized polynomial-time
LP-based O(max{1, log φ(n)})-approximation algorithm
for the weighted set cover problem for I.

This corollary enables us to resolve several of the
open questions posed in [30] pertaining to weighted

geometric set cover for objects with linear or near
linear union complexity. It is, for example, well-known
that a collection of n disks (or pseudodisks) has union
complexity O(n) [21]. Corollary 1.1 thus gives us
an O(1) approximation for weighted disk cover, and
improving the 2O(log∗ n)-approximation obtained in [30]:

Corollary 1.2. There is a randomized polynomial-
time O(1)-approximation algorithm for weighted geo-
metric disk (or pseudodisk) cover in R

2.

Similarly, fat triangles are known to have union
complexity O(n · 2α(n) log∗ n) by a recent result of
Ezra, Aronov, and Sharir [14] (with de Berg, these
authors have apparently improved the bound to
O(n log∗ n)). Applying Varadarajan’s result readily
gives a 2O(log∗ n)-approximation for the weighted fat tri-
angle cover. Corollary 1.1 immediately implies the fol-
lowing strengthening:

Corollary 1.3. There is a randomized polynomial-
time O(log log∗ n)-approximation algorithm for weighted
fat triangle cover in R

2.

Axis-aligned octants and unit cubes in R
3 have lin-

ear union complexity [5]. Halfspaces in R
3 have lin-

ear union complexity, since the union is the comple-
ment of a convex polyhedron. We thus obtain O(1)-
approximations for octants, unit cubes, and halfspaces
in R

3. Points and halfspaces can be mapped to halfs-
paces and points by duality [12], and so we also get an
O(1)-approximation for the weighted hitting set prob-
lem for halfspaces in R

3. Disks in R
2 can be mapped

to halfspaces in R
3 by a well-known lifting transfor-

mation [12], and so we get an O(1)-approximation for
weighted hitting set for disks in the plane.

Corollary 1.4. There is a randomized polynomial-
time O(1)-approximation algorithm for weighted set
cover for axis-aligned octants and unit cubes in R

3, and
halfspaces in R

3, as well as for weighted hitting set for
disks in R

2.

Recently, Gibson and Pirwani [16] have applied
Varadarajan’s technique to the weighted dominating
set problem in the intersection graph of a set of disks
in R

2. We can map a disk σ with center (a, b) and
radius c to a point pσ = (a, b, c), and a disk σ′

with center (a′, b′) and radius c′ to a region Sσ′ =
{(x, y, z) :

√
(x− a′)2 + (y − b′)2 ≤ z + c′}, so that

the two disks intersect if and only if pσ is covered by
Sσ′ . The union of the Sσ′ ’s corresponds to a planar
additively weighted Voronoi diagram, which is known to
have linear complexity [2]. We immediately obtain the
following improvement to Gibson and Pirwani’s result:

Corollary 1.5. There is a randomized polynomial-
time O(1)-approximation algorithm for weighted dom-
inating set for disks in R

2.

2 Proof of Theorem 1.1

We say that a set cover matrix A is k-deep if all rows of
A contain at least k ones. Our goal is to approximate
the minimum weight set cover problem on an M ×N0

set cover matrix A0. To this aim, we first reduce this to
the problem of computing a small quasi-uniform cover of
a related M/2-deep unweighted covering instance. This
reduction is standard (e.g., see [30]), and we include it
here only for completeness.

Suppose we are given the weights w and the ma-
trix A0 having SCC at most f(n, k) = nφ(n)kc for a
fixed c ≥ 0. We first solve the LP relaxation (SC-LP)
of the problem, and let x∗ be the optimal basic solu-
tion. Standard properties of basic solutions immedi-
ately imply that the support of x∗ (the set of positive
entries) has size at most M . We create a set family S∗,
by including b2M · x∗Sc copies of each set S ∈ S with
x∗S ≥ 1/(2M); small sets S with x∗S < 1/(2M) are not
included. For each element e ∈ X we now have
(2.1) ∑
S : x∗S≥

1
2M ,e∈S

b2M · x∗Sc ≥M
∑

S : x∗S≥
1

2M ,e∈S

x∗S ≥
M

2
,

where the second inequality uses the fact that small sets
supply at most a 1/2 unit of coverage for each element
e. Let A∗ be the set cover matrix for set family S∗ and
elements X, and assume that it has N columns. It is
not hard to see that A∗ has the same SCC f(n, k) as A0,
and (2.1) shows that A∗ is M/2-deep. We henceforth
let L := M/2 so that A∗ is L-deep.

The key step of our method is to employ an effi-
cient randomized algorithm that produces a covering
of X in which each set in S∗ is included with proba-

bility O
(
`(N)
L

)
, where `(N) = max{1, log φ(N)}. The

expected weight of the covering is then

O

(
`(N)

L

)
· w(S∗) = O(`(N)) · wTx∗,

completing the proof of Theorem 1.1. We now fill in the
details for the key step.

2.1 Improved quasi-uniform sampling Here, we
provide a polynomial algorithm to produce a small,
quasi-uniform L/N -net of an L-deep M × N set cover
matrix A∗ of SCC f(n, k) = nφ(n)kc. Throughout this
section, we let `(N) = max{1, log φ(N)}. For simplicity,
we shall assume that f(n, k) is known a priori, although
this is unnecessary if standard binary search techniques
are employed to guess c and `(N).

The algorithm proceeds in a series of sequential
phases. At the start of a phase, we are given a k-
deep m × n submatrix A of A∗ with SCC f(n, k) as
inherited from A∗. The eventual goal is to produce a
set cover for the subproblem induced by A, but much
of the work will be put off until future phases, which
operate on increasingly small nested sub-matrices of A.
The purpose of a single phase is simply to partition the
columns of A into three categories:

• Forced columns: those that will definitely be taken
in our set cover;

• Rejected columns: those that will definitely not be
taken in our set cover;

• Retained columns: those for which the decision to
force or reject will be deferred until a future phase
of the algorithm.

Given such a partition, we define B to be the submatrix
of A obtained by deleting all forced columns, rejected
columns, and rows with a one in any forced column
(rows covered by a forced column). The subsequent
phase of the algorithm operates on B.

The algorithm we present reduces the size and
depth of A by a factor of approximately 1

2 during
each phase. Reducing by 1

2 is a somewhat arbitrary
choice that we make to optimize the simplicity of
our presentation. We contrast our algorithm with
that of Varadarajan [30], who reduces the depth of
A from k to log k during each phase, picking up an
unavoidable 2O(log∗ n) in the approximation factor when
the shallow cell complexity of A is very low. We avoid
this by employing a forcing scheme that is somewhat
simpler than Varadarajan’s original “forced addition”
scheme [30].

Roughly speaking, in each phase, we randomly and
independently mark each column of A with probability
1
2 + h(N, k) for a carefully-chosen function h(N, k). We
then force some columns of A in order to cover rows
that contain ones in fewer than k

2 marked columns,
and retain the marked columns that remain. The exact
manner in which we force will be described later; the key
trick is to use low SCC to obtain a forcing rule in which
no column is forced with high probability. Formally,
our marking and forcing rules will achieve the following
during each phase:

1. The output B is k
2 -deep (each row of B contains at

least k
2 ones).

2. Each column of A is retained with probability at
most 1

2 + h(N, k).

3. Each column of A is forced with probability at most
k−2.

We will see later that it suffices to take h(N, k) =

O

(√
log k+`(N)

k

)
. Our analysis exploits the following

key property of shallow cell complexity:

Lemma 2.1. Suppose A is k-deep, has n columns, and
has shallow cell complexity f(n, k) = nφ(n)kc. Then
there is a column S of A such that the number of cells
of depth exactly k that contain a one in S is at most
φ(n)kc+1.

Proof. Let A′ be the submatrix of A obtained by
deleting all rows that have more than k ones and
eliminating duplicate copies of rows. Since A has
shallow cell complexity f , so does A′ and thus there are
at most nφ(n)kc rows in A′. Each row of A′ contains
exactly k ones, so A′ contains at most nφ(n)kc+1 ones.
Thus the average number of ones per column in A′ is
φ(n)kc+1 and it follows that some column of A′ contains
at most φ(n)kc+1 ones. The corresponding column of A
then contains at most φ(n)kc+1 ones in cells of A having
depth exactly k.

We now use this result to develop a procedure that
takes a k-deep set system (X,R) of low shallow cell
complexity and returns a highly structured partition of
X into clusters of points, each of which lies within the
common intersection of some k sets in R. We wish to
assign each cluster to be the responsibility of some set
containing it such that no set is responsible for too many
clusters. In our full algorithm, we will force sets when
the clusters they are responsible for are insufficiently
covered, and the fact that no column is responsible for
too many clusters will enable us to obtain an upper
bound on the probability that a column is forced. We
first give a definition:

Definition 2.1. In a set cover matrix A, a group of
rows R is called a k-cluster if there exists a set C of k
columns of A that each contain a one in all rows of R.
In such a case, C is said to support R.

A =

1 1 0 0
0 1 1 1
1 1 0 0
0 1 1 0

For example, rows 2 and

4 of matrix A to the right
form a 2-cluster supported by
columns 2 and 3. The next
result follows immediately:

Proposition 2.1. Let A be a set cover matrix and let
A′ be a submatrix f A. Suppose R is a cell of depth
k in A′ (that is, a collection of identical rows in A′,
each containing k ones). Then the rows in R form a k-
cluster when regarded as rows of A (note that they are
not necessarily identical in A).

We now state our key lemma:

Lemma 2.2. Suppose a set cover matrix A is k-deep,
has n columns, and has shallow cell complexity f(n, k) =
nφ(n)kc. Denote by X and S the rows and columns of
A respectively. Then there exists a function γ : X → S
such that:

• γ(x) is a column containing a one in row x, and

• for each S ∈ S, the pre-image γ−1(S) = {x ∈
X : γ(x) = S} can be partitioned into φ(n)kc+1

k-clusters of A.

Moreover, such a function γ can be computed in poly-
nomial time.

Proof. Figure 1 shows a polynomial-time iterative pro-
cedure to assign γ(x) for each x ∈ X.

Figure 1 An iterative method to compute γ.

1: Initialize A1 ← A and i← 1.
2: Find a column Si ∈ S such that at most φ(n)kc+1

cells of Ai having depth exactly k contain a one in
Si (one exists by Lemma 2.1). Let Yi ⊆ X be all
rows of Ai that are members of the φ(n)kc+1 cells.

3: Set γ(x) = Si for each row x ∈ Yi.
4: Ai+1 ← submatrix of Ai obtained by deleting the

column Si and all rows in Yi from Ai.
5: If Ai+1 contains no rows, γ(x) is defined for all rows
x ∈ X and we may terminate.

6: Otherwise, increment i and go back to step 2.

We note that after the deletions in step 4, Ai+1

is still k-deep because rows in X \ Yi either contain
more than k ones or contain a zero in column Si; in
either case, their depth after the deletion of column
Si cannot be less than k. Additionally, the shallow
cell complexity of A is inherited by sub-matrices, so
Ai+1 always has shallow cell complexity f(n, k) =
nφ(n)kc throughout the procedure. This permits the
application of Lemma 2.1 throughout the iterations of
the procedure, implying that our procedure terminates
and thus assigns a value to γ(x) for each x ∈ X.
Additionally, γ(x) is always a column containing a one
in row x, as we require.

Additionally, the pre-image Yi = γ−1(Si) is a col-
lection of at most φ(n)kc+1 cells of Ai. Proposition 2.1
then implies that γ−1(Si) can be partitioned into at
most φ(n)kc+1 k-clusters of A, completing the proof.

Formally, we say that S is responsible for x when-
ever γ(x) = S. With our key lemma in hand, we can
finally provide a formal description of a phase in Fig-
ure 2. It is clear that, after a single phase, B will be

k
2 -deep, as any row x of A that does not lie in k

2 marked
columns is deleted when γ(x) is forced. It follows that
each phase halves the depth ofA, and thus the algorithm
will terminate in at most dlogLe phases when given a
set cover matrix of depth L; hence, the algorithm runs
in polynomial time.

Figure 2 A phase of the random sampling procedure.

1: Input: m by n set cover matrix A of depth k with
SCC nφ(n)kc

2: if log k ≥ k
12(c+3) or `(N) ≥ k

12(c+3) then

3: Force every column of A and terminate
4: else
5: Mark each column of A independently with prob-

ability 1
2 + h(N, k)

6: Obtain a function γ as described in Lemma 2.2
7: for all rows x of A do
8: if x does not contain at least k

2 ones in marked
columns then

9: Force γ(x)
10: end if
11: end for
12: Reject the remaining columns of A that have been

neither forced nor marked
13: end if
14: Obtain matrix B from A by deleting forced columns,

rejected columns, and rows with a one in a forced
column

15: Output: B

We also verify that the final output does indeed
form a set cover of A. Rows of A are deleted during
the algorithm if and only if they contain a one in a
forced column, and thus are covered. Rows that are
never deleted are covered in the final phase when all
remaining columns of A are forced.

To ensure that our algorithm is feasible, we must
verify that the marking probability h(N, k) + 1

2 is at
most one. This is easy from our choice of terminating
condition. During non-terminating phases of the algo-
rithm, we have both log k < k

12(c+3) and `(N) < k
12(c+3) ,

and thus:

log k + `(N) <
k

6(c+ 3)

=⇒ 3(c+ 3)

2

log k + `(N)

k
<

1

4

=⇒
√

3(c+ 3)

2

log k + `(N)

k
+

1

2
< 1.

The final technical challenge remaining is to bound the
probability that a column is forced at some point during
the algorithm. We begin by bounding the probability
that a single column is forced during a single phase:

Claim 1. In a single non-terminating phase of the
algorithm, each column S of A is forced with probability
at most k−2.

Proof. We recall by Lemma 2.2 that the pre-image
γ−1(S) = {x ∈ X : γ(x) = S} can be partitioned
into φ(n)kc+1 k-clusters of A. Fix such a partition
as obtained in Lemma 2.2. With this partition under
consideration, suppose a row x of A has γ(x) = S and
lies in a k-cluster R supported by a set of columns C.
A row in R can only cause S to be forced if fewer
than k

2 columns in C are marked. We shall bound
the probability of this happening in order to bound the
probability that any row in R is insufficiently covered
by the marked columns. We let Z be a random variable
indicating the number of columns of C that are marked.
Define

µ = E[Z] = k

[
1

2
+ h(N, k)

]
.

Then applying the Chernoff bound yields:

Pr

[
Fewer than

k

2
columns in C marked

]
≤ Pr

[
Z ≤ k

2

]
= Pr

[
Z ≤

(
1− kh(N, k)

k
2 + kh(N, k)

)
µ

]

≤ Exp

−1

3

(
kh(N, k)

k
2 + kh(N, k)

)2(
k

2
+ kh(N, k)

)
≤ Exp

(
−2

3
kh(N, k)2

)
.

Since γ−1(S) can be partitioned into φ(n)kc+1 k-
clusters of A, by the union bound, the probability that
S is forced during an individual phase is at most

φ(n)kc+1Exp

(
−2

3
kh(N, k)2

)
.

Taking h(N, k) =
√

3
2
(c+3) log k+`(N)

k and recalling

that n ≤ N during all phases of the algorithm, this is
at most

φ(n)kc+1Exp (−(c+ 3) log k − log(φ(n))) = k−2.

The previous claim essentially proves that our ad-
ditional sampling probability h(N, k) is big enough to
cause the forcing probability in each phase to be rela-
tively low. Our next claim shows us that h(N, k) is still
small enough for the probability of a column surviving
t phases of sampling to decay exponentially in t. The
function h(N, k) is indeed quite finely tuned in order to
exhibit both of these features.

Claim 2. After t ≥ 1 phases of our algorithm, the
probability of any given column of the original M by

N matrix A∗ still remaining is O(1)
2t .

Proof. This is clearly true after the terminating con-
dition has occurred. Before that happens, A is still at
least L

2i -deep after i phases, so the probability that a row

is retained during phase i + 1 is at most 1
2 + h(N, L2i).

Multiplying over all phases yields an upper bound of

Pt =

t−1∏
i=0

(
1

2
+ h

(
N,

L

2i

))

=

t−1∏
i=0

(
1

2
+O(1)

√
(2i)(logL− i+ `(N))

L

)
.

We recall that at a phase in which the initial depth is
k, we must always have `(N) < k

12(c+3) , otherwise we

terminate. If we have not yet terminated in phase t, we
may take k = L

2t , the depth after t phases, and obtain

`(N) < L
12(c+3)2t . Combining with the above yields:

Pt ≤
t−1∏
i=0

(
1

2
+O(1)

√
(2i)(logL− i)

L
+
O(1)

2t−i

)

=
1

2t

logL∏
j=logL−t

(
1 +O(1)

√
j

2j
+ 2logL−t−j

)

≤ O(1)

2t
Exp

 logL∑
j=logL−t

(√
j

2j
+ 2logL−t−j

)
≤ O(1)

2t
Exp (O(1)) =

O(1)

2t
.

The final inequality follows from the fact that∫ ∞
0

√
x

2x
dx =

√
2π

(log(2))3/2
≈ 4.34362 ∈ O(1).

Claim 3. A column is forced during the final phase of

the algorithm with probability O
(
`(N)
L

)
, where `(N) =

max{1, log φ(N)}.

Proof. The algorithm terminates when either log k ≥
k

12(c+3) or `(N) ≥ k
12(c+3) . In particular, during

the terminating phase of the algorithm in which ev-
ery column is forced, we must have log k + `(N) ≥

k
12(c+3) from which it follows that k ≤ O(1)`(N). Thus

at least O(1) log
(

L
`(N)

)
phases are required to reach

the terminating condition. Consequently, taking t =

O(1) log
(

L
`(N)

)
in the previous claim yields the desired

result.

We finally prove that our algorithm returns a quasi-
uniform cover:

Claim 4. Throughout all phases of the algorithm, a

given column is forced with probability at most O
(
`(n)
L

)
,

where `(n) = max{1, log φ(n)}.

Proof. By the previous claim, it is sufficient to obtain
the stated bound for non-terminating phases of the
algorithm. After phase i, the depth is L

2i and thus the
probability of a column both remaining after i phases
and being forced during phase i+ 1 is

O(1)

2i

(
L

2i

)−2
=
O(1)

L

2i

L
.

Summing over all phases yields a bound of at most

O(1)

L

logL∑
i=0

2i

L
≤ O(1)

L
(2) =

O(1)

L
.

This completes the proof that our algorithm com-
putes a quasi-uniform cover.

3 Remark on derandomization

In this subsection, we note that our algorithm can be
derandomized, and thus all the results in this paper hold
deterministically. To our knowledge, derandomization
of Varadarajan’s technique [30] has not been observed
before.

The idea is to replace the need for totally indepen-
dent random choices with b-wise independent random
choices for some constant b. Specifically, at the begin-
ning of the algorithm, we generate a b-wise indepen-
dent sequence of N integers X1, . . . , XN which are uni-
formly distributed in the range [0, U) for a sufficiently
large universe size U (for example, U = Θ(N) would
suffice). The subset of columns that are retained dur-
ing phase i is supposedly a uniform sample of the set
of original columns, with a certain sampling probabil-
ity Pi. To produce this sample, we take the subset
of all columns S such that XS ∈ [0, PiU). By a well
known construction [20, 23], a b-wise independent se-
quence X1, . . . , XN ∈ [0, U) can be generated from b
truly random integers in [0, U) for a given prime U ≥ N .
Deterministically, we can try all O(U b) possible choices
for these b integers and thus simulate the randomized
algorithm by brute force in polynomial time.

It remains to show that this version of the algo-
rithm using X1, . . . , XN still achieves the same expected
bound on the weight of the computed set cover. For the
analysis, we use the following alternative to the Chernoff
bound (e.g., see [25, Theorem 4(III)]): if Z is a sum of

b-wise independent 0-1 random variables with E[Z] = µ
for an even b, then

Pr[|Z − µ| ≥ t] ≤
(
b ·max{b, µ}

e2/3t2

)b/2
.

In the proof of Claim 1, our application has µ =
k · (1/2 + h(N, k)) and t = kh(N, k). Thus,

Pr[Z ≤ k/2] ≤ O

(
1

kh(N, k)2

)b/2
.

Taking h(N, k) = 1/k1/3, for example, we can bound the
right-hand side by O(1/kb/6). Choosing b sufficiently
large (as a function of c), we see that Claim 1 remains
true. Claim 2 also remains true for our new choice
of h(N, k), by suitably replacing square roots with
cube roots in the calculations. The final expected
weight bound on the set cover follows by linearity of
expectation, which does not require independence.

4 Proof of Theorem 1.2

In the tree cover problem, we are given an undirected
graph G = (V,E), and a spanning tree T ⊆ E; each of
the edges e ∈ E \ T has an associated cost ce ≥ 0. The
goal is to select a minimum-cost set of edges C ⊆ E \ T
such that each e ∈ T is on the fundamental cycle
of at least one edge in C. The incidence-matrices of
the resulting covering problem are the so-called tree-
fundamental-cycle (TFC) matrices.

Definition 4.1. [7, 24, §6.4] Let G = (V,E) be a
connected graph and let T ⊆ E be a tree spanning G.
The TFC matrix for T and G is the T × (E \T) matrix
A where Aef is 1 if e lies on the fundamental cycle of
f in T and 0 otherwise.

Note that 0, 1-network matrices are TFC matrices,
but not all TFC matrices are network matrices. The
motivation for defining TFC matrices is that the notion
more precisely captures the combinatorial structure
leading to low SCC than does the notion of 0,1-network
matrices. The importance of network matrices is that
they are totally unimodular, but as we show later in
Example 1, total unimodular matrices do not generally
share the favourable SCC properties of network matrices.

The following lemma is known to matroid theorists
[19, 24, §14.10], but we prove it here for completeness
without reference to matroids.

Lemma 4.1. Let G = (V,E) be a graph, let T ⊆ E be a
tree spanning G, let A be the TFC matrix for T and G,
and let n be the number of columns of A. Then A has at
most max {3n− 3, n+ 1} distinct rows. In particular,
tree cover has O(n) SCC.

Proof. If every row of A has at most a single 1, then
A has at most n + 1 distinct rows, and we are done.
Suppose A has some row with at least two 1’s. i.e.
Some two fundamental cycles intersect.

Suppose that G has a vertex v of degree at most 2.
Then we are in one of the following two cases.

(i) v is incident to exactly one edge e of T . In this
case, v is a leaf, and the other incident edge is
the only edge whose fundamental cycle contains e.
Thus e’s row in the TFC matrix has a single 1.

(ii) v is incident to two edges e and f of T . This means
that a non-tree edge contains e on its fundamental
cycle iff it contains f , and hence the rows of e and
f are identical in the TFC matrix.

We create a new graph G̃ = (Ṽ , Ẽ) and a new tree
T̃ ⊆ Ẽ spanning Ẽ in the follow way. While G has
a vertex v ∈ V of degree at most 2, contract one
of its incident T edges. In matrix terms, contracting
edge e of T corresponds to deleting e’s row in the TFC
matrix. Note that each contraction operation decreases
the number of vertices in G by 1, and it decreases the
number of distinct rows by at most 1. Moreover, the
final TFC matrix Ã has at least one row, and G̃ therefore
has at least two vertices.

The resulting graph G̃ has minimum degree at least
3, and we therefore have 3|Ṽ | ≤ 2|Ẽ|. Hence,

|Ṽ | − 1 ≤ 2[|Ẽ| − (|Ṽ | − 1)]− 3 = 2n− 3,

which shows Ã has at most 2n − 3 rows. Therefore, A
has at most 3n− 2 distinct rows.

When a SCC bound holds independently of k, we
may add priorities at loss of a factor of k in the SCC:

Lemma 4.2. Priority tree cover has O(nk) SCC.

Proof. Let Ã be the incidence matrix of the priority tree
cover problem with columns ordered by non-increasing
priority, and let A be the incidence matrix of the
underlying tree cover problem.

Consider a tree edge e. The effect of adding a
priority to e is to set some suffix of its corresponding
row to zero. Thus, each cell of A induces at most one
cell of each depth in Ã—in particular, at most k+1 cells
of depth k or fewer. Since A has O(n) SCC, it follows
that Ã has O(nk) SCC.

This completes the proof of Theorem 1.2. Unfortu-
nately, not all totally-unimodular 0, 1 matrices have low
SCC after adding priorities:

Example 1. Even transposes of 0, 1 network matrices,
which are totally unimodular, can have SCC Ω(n2) after
adding priorities. We show this using a set cover
problem where the elements are vertical paths in a rooted
tree and each set consists of the paths meeting at a
specified edge and not exceeding the priority of the edge.

Fix ` ≥ 1. Let v0, v1, . . . , v` be a path with ` edges,
and let w1, . . . , w` be leaves, each adjacent to v0. For
each 1 ≤ i ≤ `, assign priority i to edge vi−1vi, and
assign priority ` to edge wiv0. Root the tree at v`.

The resulting set cover problem has n = 2` sets,
and we claim the number of cells of depth 2 is at least

`2 = n2

4 . Indeed, let 1 ≤ i, j ≤ `, and consider the
path Pij from wi to vj having priority j. The only two
edges whose corresponding sets contain Pij are wiv0 and
vj−1vj. Thus, each Pij lies in a distinct depth-2 cell.

5 Acknowledgements

We thank Jim Geelen for pointing out the connection
between Lemma 4.1 and matroid growth rates.

References

[1] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets
for axis-parallel rectangles and boxes. SIAM Journal
on Computing, 39(7):3248–3282, 2010.

[2] F. Aurenhammer. Voronoi diagrams: A survey of a
fundamental geometric data structure. ACM Comput.
Surv., 23(3):345–405, September 1991.

[3] N. Bansal, R. Krishnaswamy, and B. Saha. On
capacitated set cover problems. In Proceedings of
International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, 2011.

[4] N. Bansal and K. Pruhs. The geometry of scheduling.
In Proceedings of IEEE Symposium on Foundations of
Computer Science, pages 407–414, 2010.

[5] J.-D. Boissonnat, M. Sharir, B. Tagansky, and
M. Yvinec. Voronoi diagrams in higher dimensions
under certain polyhedral distance functions. Discrete
Comput. Geom., 19(4):473–484, 1998.

[6] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete Comput.
Geom., 14(4):463–479, 1995.

[7] T. H. Brylawski and D. Lucas. Uniquely representable
combinatorial geometries. In Proceedings, Colloquio
Internazionale sulle Teorie Combinatorie, pages 83–
104, 1973.

[8] D. Chakrabarty, E. Grant, and J. Könemann. On
column-restricted and priority covering integer pro-
grams. In Proceedings of MPS Conference on Integer
Programming and Combinatorial Optimization, pages
355–368, 2010.

[9] K. L. Clarkson. New applications of random sampling
in computational geometry. Discrete Comput. Geom.,
2(2):195–222, 1987.

[10] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete
Comput. Geom., 4(1):387–421, 1989.

[11] K. L. Clarkson and K. R. Varadarajan. Improved ap-
proximation algorithms for geometric set cover. Dis-
crete Comput. Geom., 37(1):43–58, 2007.

[12] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars,
and Otfried Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Heidel-
berg, Germany, 3rd edition, 2008.

[13] G. Even, D. Rawitz, and S. Shahar. Hitting sets when
the VC-dimension is small. Inform. Process. Lett.,
95(2):358–362, 2005.

[14] E. Ezra, B. Aronov, and M. Sharir. Improved bound
for the union of fat triangles. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms, pages 1778–
1785, 2011.

[15] U. Feige. A threshold of lnn for approximating set
cover. J. ACM, 45, 1998.

[16] Matt Gibson and Imran A. Pirwani. Algorithms for
dominating set in disk graphs: Breaking the logn
barrier. In Proceedings of European Symposium on
Algorithms, pages 243–254, 2010.

[17] D. Haussler and E. Welzl. ε-nets and simplex range
queries. Discrete Comput. Geom., 2:127–151, 1987.

[18] D. Hochbaum. Approximating covering and packing
problems: Set cover, vertex cover, independent set, and
related problems. In Dorit S. Hochbaum, editor, Ap-
proximation Algorithms for NP-hard Problems. PWS
Publishing, 1997.

[19] F. Jaeger. Flows and generalized coloring theorems in
graphs. J. Combin. Th. Ser. B, 26:205–216, 1979.

[20] A. Joffe. On a set of almost deterministic
k-independent random variables. Ann. Probab.,
2(1):161–162, 1974.

[21] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the
union of Jordan regions and collision-free translational
motion amidst polygonal obstacles. Discrete Comput.
Geom., 1:59–70, 1986.

[22] S. G. Kolliopoulos and N. E. Young. Approxima-
tion algorithms for covering/packing integer programs.
J. Comput. System Sci., 71(4):495–505, 2005.

[23] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge Univ. Press, New York, 1995.

[24] J. Oxley. Matroid Theory. Oxford University Press,
New York, NY, 2011.

[25] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-
Hoeffding bounds for applications with limited inde-
pendence. SIAM J. Discrete Math., 8(2):223–250,
1995.

[26] A. Schrijver. Combinatorial Optimization. Springer,
New York, 2003.

[27] A. Srinivasan. Improved approximation guarantees for
packing and covering integer programs. SIAM Journal
on Computing, 29(2):648–670, 1999.

[28] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probab. and its Applications,
16(2):264–280, 1971.

[29] K. R. Varadarajan. Epsilon nets and union complexity.
In Proceedings of ACM-SIAM Symposium on Compu-
tational Geometry, pages 11–16, 2009.

[30] K. R. Varadarajan. Weighted geometric set cover
via quasi-uniform sampling. In Proceedings of ACM
Symposium on Theory of Computing, pages 641–648,
2010.

