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Abstract. The School Bus Problem is an NP-hard vehicle routing prob-

lem in which the goal is to route buses that transport children to a school

such that for each child, the distance travelled on the bus does not exceed

the shortest distance from the child’s home to the school by more than a

given regret threshold. Subject to this constraint and bus capacity limit,

the goal is to minimize the number of buses required.

In this paper, we give a polynomial time 4-approximation algorithm when

the children and school are located at vertices of a fixed tree. As a byprod-

uct of our analysis, we show that the integrality gap of the natural set-

cover formulation for this problem is also bounded by 4. We also present

a constant approximation for the variant where we have a fixed number

of buses to use, and the goal is to minimize the maximum regret.

1 Introduction

Vehicle routing is an important and active topic in computer science and opera-
tions research. In the literature, the objective is typically to find a minimum-cost
set of routes in a network that achieve a certain objective subject to a set of
constraints. The constraints and cost are often related to the distance travelled,
number of routes or vehicles used, coverage of the network by the routes, and
so on. Problems of this kind are frequent and crucial in areas such as logistics,
distribution systems, and public transportation (see, e.g., the survey by [13]).

In vehicle routing problems relevant to public transportation, a secondary
objective often must be taken into account beyond minimizing operation cost:
namely, it is crucial to design routes so as to optimize customer satisfaction in
order to motivate customers to use the service. This requirement is essential in
the so-called School Bus Problem (SBP)—the focus of this paper.

In the SBP, we must route buses that pick up children and bring them from
their homes to a school. However, parents do not want their children to spend
too much time on the bus relative to the time required to transport them to
school by car along a shortest path. In fact, if the additional distance travelled
by the bus exceeds a certain regret threshold, the parents would rather drive
their children to school by themselves, which is unacceptable. Subject to this,
the goal is to cover all of the children using a minimum number of buses.

Formally, we are given an undirected network G(V,E) with distances on the
edges d : E → Z+, a node s ∈ V representing the school, and a set W ⊆ V
representing the houses of children. Additionally, we are given a bus capacity



C ∈ Z+, and a regret bound R ∈ Z+. The aim is to construct a minimum
cardinality set P of walks ending at s (bus routes) and assign each child w ∈ W
to be the responsibility of some bus p(w) ∈ P such that (i) for each walk P ∈ P,
the total number of children w with p(w) = P is at most the capacity C; (ii) for
every child the regret bound is respected, that is: dP (w, s) ≤ d(w, s) + R, where
dP (w, s) is the distance from the child w to the school s on the walk p(w), and
d(w, s) is the shortest distance from w to s in the graph G.

An additional variation of the problem is the “symmetric” version, in which
we have a fixed number N of buses we can use to cover the children, and the
goal is to minimize the maximum regret R. We call this variant the School Bus
Problem with Regret minimization (SBP-R).

Like many vehicle routing problems, both SBP and SBP-R are strongly NP-
hard, even on the simplest of graphs. To see this, consider a star centered at
the school s with children located at all other vertices. If k of the edges are very
long, then determining if k buses are sufficient with a regret bound R is precisely
equivalent to solving the bin-packing decision problem with k bins and objects
sized according to the distances from the remaining children to the school. It
follows that bin-packing can be reduced to both SBP and SBP-R on stars.

Many variants of vehicle routing have been studied in the context of exact,
approximate, and heuristic algorithms. For SBP and SBP-R, heuristical methods
for practical applications have been examined (see the survey of [11]), but there
is no literature concerning formal approximability and inapproximability results.
Our goal is to advance the state of the art in this perspective.

To begin, it is easy to see that the SBP can be formulated as a set covering
problem. With this observation, one can easily derive a logarithmic approxima-
tion as well as a logarithmic upper bound on the integrality gap of the natu-
ral set-cover formulation applied to the SBP (see Section 2 for more details).
The SBP is closely related (but not equal) to the Distance Constrained Vehicle
Routing Problem (DVRP), which is well known and widely studied in terms of
approximation. The DVRP can also be approximated within a logarithmic fac-
tor in general graphs, but there is a better 2-approximation on trees, as shown
by [10]. They also show that the set-cover formulation for the DVRP on trees
has integrality gap of at most 20. A natural question is then whether or not
the SBP also admits a constant approximation/integrality gap on such graphs.
Unfortunately, a straightforward adaptation of their methods to the SBP does
not work. Therefore, in order to develop improved approximation results for the
SBP, we need to introduce some new ideas.

1.1 Our results

We first give a simple combinatorial 4-approximation for the SBP on trees.
The algorithm splits the instance into pieces, each of which can each be well-
approximated by greedily cutting an Euler tour into bus routes. Formally:

Theorem 1. There exists a polynomial time 4-approximation for the School Bus
Problem on trees. The approximation factor can be improved to 3 in the case of
unlimited capacity.



In contrast to the results given in [10] for DVRP, our algorithm for SBP
immediately yields an integrality gap bound matching the approximation factor:

Theorem 2. The integrality gap of the natural set-cover formulation of the SBP
on trees is at most 4. In case of unlimited capacity, the gap is at most 3.

Finally, we give a combinatorial 12.5-approximation for the SBP-R on trees.
The algorithm is more involved, relying upon bipartite matching as a subroutine:

Theorem 3. There exists a polynomial time 12.5-approximation algorithm for
the SBP-R on trees in the case of unlimited capacity.

1.2 Related work

There are an enormous number of results concerning vehicle routing problems;
see the survey [13]. We briefly discuss work on the SBP and related problems.

The Capacitated Vehicle Routing Problem (CVRP) enforces a limit C on
the number of visited locations in each route, and the goal is the minimization
of the total length of all the routes. The paper [6] established a strong link to
the underlying Travelling Salesman Problem (TSP) by giving an approximation
algorithm that relies on the approximation algorithms for TSP. Depending on
the capacity bound C, it is possible to obtain a PTAS in the euclidean plane
for some special cases (if the capacity is either small [1], or very large [2]). If
we restrict the input to trees, there is a 2-approximation [7]. Another constraint
considered in literature is a bound D on the length of a vehicle tour, under the
objective of minimizing the number of routes. This is the Distance Constrained
Vehicle Routing Problem (DVRP). It was raised and studied for applications in
[8] and [9]. Routing problems like the DVRP can be directly encoded as instances
of Minimum Set Cover, and thus often admit logarithmic approximations. The
authors of [10] give a careful analysis of the set cover integer programming for-
mulation of the DVRP and bound its integrality gap by O(log D) on general
graphs and by O(1) on a tree. They also obtain a constant approximation for
the DVRP on a tree and a O(log D) approximation in general.

Many practical problems involving school buses have been studied, but pri-
marily within the context of heuristical methods for real-life instances. We refer
to [11] for a thorough survey of possible formulations and heuristical solution
methods. Our notion of regret was first introduced as a vehicle routing objective
in [12]. They considered a more general problem involving timing windows for
customers and applied metaheuristics to produce solutions to real-life instances.

2 Preliminaries

We first observe that the capacity bound can be neglected for a slight loss in the
approximation factor for the SBP. The proof, given in the appendix, is essentially
identical to that of a similar result proven in [10] for the DVRP.



Lemma 1. Given an α-approximation to the SBP with unlimited capacity for
each bus, there is an α + 1-approximation to the SBP that respects a capacity
bound C on each bus.

If P is a walk starting at some vertex v and ending at s, covering a subset
S of nodes, then we say that P has regret R if a regret bound of R is respected
for all children in S. The following useful fact (proved in the appendix) holds for
both the SBP and the SBP-R:

Proposition 1. For all nodes in S the regret bound R is respected if and only
if it is respected for v.

We next give a covering integer programming formulation of the SBP. Let S
be the family of all feasible sets of C or fewer children that can be covered by a
single walk ending at s having regret at most R. We introduce a varaible xS for
each S ∈ S and give the following formulation:

min
∑

S∈S xP (IP)
∑

S:w∈S xS ≥ 1 ∀w ∈ W
xS ∈ {0, 1} ∀S ∈ S.

An O(log |W |)-approximation algorithm easily follows from adapting the
greedy strategy for set cover. Such a greedy algorithm, applied to an SBP in-
stance, repeatedly searches for a feasible walk ending at s that picks up the
maximum number of uncovered children, doing do until every child is picked up.
At each iteration, we could guess the starting point v∗ (by trying all |V |−1 pos-
sibilities). Using Proposition 1, the resulting problem we are left with is to find a
v∗− s walk in G of length at most d(v∗, s)+R visiting the maximum number of
uncovered nodes in W . Such a problem is well known in the literature as the Ori-
enteering Problem, and can be approximated within a constant [3, 4]. Following
the method of [14], we may then obtain an O(log C)-approximation algorithm
for the SBP and show that the integrality gap of (IP) is at most O(log C) (see
the appendix for a rigorous argument.) However, these logarithmic results may
not be tight in general, and as we will show, are not tight for the SBP on trees.

In the remainder of this paper, we will focus on the infinite capacity version
of the SBP on a tree T with root s. We denote by P (u, v) and d(u, v) the unique
path from u to v in T , and its corresponding length. For a subset of edges F ,
we let d(F ) :=

∑

e∈F d(e). We note that subtrees of T that contain no vertices
in W will never be visited by a bus in any optimal solution, and thus we can
assume without loss of generality that all leaves of T contain children. In such an
instance, a feasible solution will simply cover all of T with bus routes and thus
is still feasible if every node of T contains a child (assuming infinite capacities).
We thus will assume, without loss of generality, that W = V .

3 A 4-approximation to the SBP on trees

We prove Theorem 1 by first giving a combinatorial 3-approximation for the SBP
with unlimited capacity on graphs that are trees, and subsequently applying
Lemma 1. Our algorithm is based on the following intuitive observations:



– When the input tree is very short (say, of height at most R
2 on an instance

with regret R), then it is relatively easy to obtain a 2-approximation for
the SBP by simply cutting an Euler tour of the tree into short pieces and
assigning each piece to a bus.

– General trees can be partitioned into smaller pieces (subtrees) such that at
least one bus is required for each piece, but each piece can be solved almost
optimally via a similar Euler tour method.

We begin with some definitions. We call a set of vertices {a1, . . . , am} ⊆ V
R-independent if for all ai 6= aj , we have d(ai, lca(ai, aj)) > R

2 , where lca(ai, aj)
is the lowest common ancestor of the vertices ai and aj in T .

By iteratively marking the lowest leaf in T such that R-independence is main-
tained among marked leaves, we can obtain, in polynomial time, an inclusion-
wise maximal R-independent set of leaves A such that all vertices in T are within
a distance of R

2 from a path P (s, a) for some a ∈ A. We shall call A a set of
anchors. By construction, no two distinct anchors ai and aj can both be covered
by a walk of regret at most R, immediately yielding the following lower bound:

Proposition 2. The size |A| of the set of anchors is a lower bound on the
number of buses that is needed in any feasible solution.

We now give a second useful lower bound. Let Q :=
⋃

a∈A P (s, a). We call Q
the skeleton of T , noting that Q is a subtree of T whose leaves are the anchors.
Observe that all edges in the skeleton Q will automatically be covered if a bus
visits each anchor. Since each anchor must be visited at least once, it suffices to
only consider covering the anchors and the non-skeletal edges of T , i.e. the edges
in T \Q. The edges in T \Q form a collection of disjoint subtrees, each of which
has height at most R

2 . We call these short subtrees.
Suppose that a feasible walk starts at a vertex v in a short subtree T . It will

cover all the edges in P (s, v), and may possibly cover some additional detour
edges having total length at most R

2 . Since T is a short subtree, the non-skeletal

edges in P (s, v) have total length at most R
2 . It follows that:

Observation 1 The set of non-skeletal edges covered by any feasible walk P
must have total length at most R: at most R

2 in length along the path from its

starting vertex to the root, and at most R
2 length in edges covered by detours.

From this, we can observe the following lower bound on the number of buses:

Proposition 3. The number 1
R

∑

e∈T\Q d(e) is a lower bound on the number of
buses that is needed in any feasible solution.

We build our 3-approximation from these two lower bounds by partitioning
the edges of T into a family of subtrees each containing a single anchor, and
approximating the optimal solution well on each of these subtrees. For anchors
A = {a1, . . . , am}, we define associated paths of edges {P1, . . . , Pm} as follows:

– P1 = P (s, a1), and



– Pi = P (s, ai) \
(

⋃i−1
j=1{Pj}

)

for 2 ≤ i ≤ m.

The edges in {P1, . . . , Pm} form a partition of the skeleton Q into paths, each
of which starts at a different anchor.

We then let Ti be the set of all edges in both the path Pi and the set of
all short subtrees attached to Pi. If a short subtree is attached to a junction
point where two paths Pi and Pj meet, we arbitrarily assign it to either Pi or
Pj so that the sets {T1, . . . , Tm} form a partition of all of the edges of T into a
collection of subtrees, each containing a single anchor.

For each 1 ≤ i ≤ m we define a directed walk Wi that starts at the anchor
ai, proceeds along Pi in the direction toward the root s, and collects every edge
in Ti by tracing out an Euler tour around each of the short subtrees in Ti that
are attached to Pi. One may easily verify that it is always possible to quickly
find such a walk such that the following properties are satisfied:

– Wi contains each edge in Pi exactly once and always proceeds in the direction
toward s when collecting each edge in Pi.

– Wi contains each edge in Ti\Pi exactly twice: once proceeding in the direction
away from s, and once in the direction toward s.

We now greedily assign the edges in the short subtrees in Ti to buses by
simply adding edges to buses in the order in which they are visited by Wi. We
first initialize a bus β1 at the anchor ai and have it travel along Wi until the
total length of all of the edges it has traversed in the downward direction (away
from the root s) is exactly R

2 . At this point, we assume it lies on some vertex
v1 (if not, we may imagine adding v1 to the middle of an existing edge in Ti,
although this will not be relevant to our solution as there are then no children
at v1). We send bus β1 from v1 immediately back to the root s and create a new
bus β2 that starts at v1 and continues to follow Wi until it too has traversed
exactly R

2 length in edges of Ti in the downward direction. We assume it then
lies at a vertex v2, create a new bus β3 that starts at v2 and continues to follow
Wi, and so on. Eventually, some bus βk will pick up the last remaining children
and proceed to the root s, possibly with leftover detour to spare. We observe

that the number of buses used is exactly
⌈

2
∑

e∈Ti\Pi
d(e)

R

⌉

since each bus other

than the last one consumes exactly R
2 of the downward directed edges in Wi,

and Wi proceeds downward along each edge in Ti \Pi exactly once. We also note
that this is a feasible solution since a bus travelling a total downward direction
of R

2 must make a detour no greater than R.
Doing this for each edge set Ti yields a feasible solution to the original in-

stance using exactly
m

∑

i=1

⌈2
∑

e∈Ti\Pi
d(e)

R

⌉

buses. This is at most

m +
2

R

m
∑

i=1

∑

e∈Ti\Pi

d(e) = m + 2

∑

e∈T\Q d(e)

R
≤ 3OPT



by Proposition 2 and Proposition 3, where OPT is the optimal number of buses
required in any feasible solution. Together with Lemma 1, this proves Theorem 1.

One may notice that the bounds given in Propositions 2 and 3 are necessarily
also respected by fractional solutions to the LP relaxation of (IP ). Together with
the argument above, this immediately implies that (IP ) has an integrality gap
of at most 4 (and 3 in the case of infinite capacities), proving Theorem 2. In
the appendix, we formally prove Theorem 2 by constructing feasible solutions
of the dual of the LP relaxation of (IP ). We also provide an example yielding a
integrality gap lower bound of 2.

4 A 12.5-approximation to the uncapacitated SBP-R on

trees

In this section, the School Bus Problem with Regret Minimization (SBP-R) is
considered. SBP-R differs from SBP because of the exchanged roles of maxi-
mum regret and number of bus routes. In case of SBP-R, the number of routes
is bounded by a given parameter N ∈ N while the maximum regret is to be
minimized. We present here a proof of Theorem 3 by giving a polynomial time
12.5-approximation algorithm for SBP-R.

Without loss of generality, we may assume the tree T to be binary. Suppose
we can fix a value R for the regret. We will develop an algorithm that, given an
instance and the value R, either outputs a set of at most N bus routes, with a
maximum regret of 12.5R, or asserts that every solution with at most N buses
must have a regret value > R. Then, we can do binary search on the regret
values and output the best solution found.

Suppose to have guessed a value for R. First, we find a set of anchors A with
respect to R as described in section 3. Now, we look for a set of routes which
only start at the anchors. Using the notion introduced for SBP in section 3,
our strategy is to cluster and cut the short subtrees into suitable pieces (called
tickets) that can be collected efficiently by buses. In order to explain the cutting
technique for the short subtrees, we need to introduce some more definitions.

Every vertex v ∈ Q of the skeleton is called a junction point if either it is the
root s or v has degree more than 2 in Q. Let J be the set of junction points. The
skeleton Q can be split at its junction points into a set of edge-disjoint paths,
which we will call core segments. Formally, a path in Q is a core segment if and
only if its endpoints are anchors or junction points and it contains no junction
points in its interior. The next lemma (whose proof is in the appendix) explains
how we will cut a collection of short subtrees to produce suitable tickets.

Lemma 2. There exists a polynomial-time algorithm that, given a path P and
a collection C of short subtrees whose roots lie on P , produces a partition of the

edges of C into tickets EC
0 , EC

1 , . . . , EC
k with k ≤

⌊∑

T ∈C d(T )

R

⌋

such that:

(P1) All of the edges in EC
0 can be collected with an additional regret ≤ 2.5R by a

single bus whose route contains P .



(P2) For all 1 ≤ i ≤ k, all the edges in EC
i can be collected with an additional

regret at most 3R by a single bus whose route contains P .

The next lemma is quite easy and will be useful later:

Lemma 3. One can find a mapping φ : J −→ A from junction points to anchors
in polynomial time with the following properties:
(i) For all j ∈ J , the junction point j lies on the path P (s, φ(j));
(ii) For all a ∈ A, there is at most one junction point j ∈ J with φ(j) = a.

Proof. We construct φ by iteratively considering anchors A = {a1, . . . , am} and
building the skeleton Q using paths from anchors to junction points. We begin
with the path P (s, a1) and set φ(s) = a1. When each new path P (s, ai) is added,
a new junction point ji is formed, namely the lowest intersection point of P (s, ai)
with the previous paths. We set φ(ji) = ai for the remaining i, and we easily see
that the resulting mapping φ satisfies properties (i) and (ii).

S

s

r(S)

t(S)

b(S)

For every core segment S, let t(S) and b(S) be the top and the bottom
junction points in S. Let further r(S) be the highest junction point at distance
at most R/2 from t(S) (see Fig. at side). Our algorithm works as follows.

Algorithm 1

1. Find a maximal R-independent set of anchors A.
2. Initialize a default bus at each anchor a ∈ A.
3. For each junction point j ∈ J in Bottom-Up order do:

Assign an arbitrary left-to-right ordering of the two segments Sl, Sr with
t(Sl) = j = t(Sr).
(a) Let C1 be the collection of short subtrees whose root node lies in the left

core segment Sl at distance ≤ R/2 from j. Let C2 be the collection of
short subtrees whose root node lies in the core segment Sj with b(Sj) = j
at distance > R/2 from t(Sj).

(b) Apply Lemma 2 to C1∪C2 on P = Sl∪Sj , and obtain tickets E0, E1, . . . , Ey.
(c) Let C3 be the collection of short subtrees whose root node lies in the

right core segment Sr at distance ≤ R/2 from j.
(d) Apply Lemma 2 to C3 on path P = Sr, and obtain tickets F0, F1, . . . , Fz.
(e) Assign the tickets E0 and F0 to the default bus at φ(j), and remove these

tickets.
(f) Place the y tickets E1, . . . , Ey and z tickets F1, . . . , Fz at r(Sl) = r(Sr).

4. For each anchor a ∈ A do:
Let Ca be the collection of short subtrees whose root node lies in the core
segment Sa with b(Sa) = a at distance > R/2 from t(Sa).
(a) Apply Lemma 2 to Ca on P = Sa, and obtain tickets K0,K1, . . . ,Kw.
(b) Assign K0 to a and remove this ticket.
(c) Place the w tickets K1, . . . ,Kw at a.

5. Compute a maximum matching between tickets and anchors where a ticket
can be matched to an anchor if and only if that anchor is a descendent of
the node where the ticket is placed.



6. Add a new bus for each unmatched ticket.

Let B be the number of bus routes output by the algorithm. We show:
(i) the regret of each route output by the algorithm is at most 12.5 · R and
(ii) B is a lower bound on the number of buses with regret at most R that are
needed to cover all nodes.

Lemma 4. Algorithm 1 outputs a set of buses with maximum regret 12.5R.

Proof. Any bus starting at an anchor a collects at most 4 different regret amounts:

– at most one ticket from the matching in step 5.
In the worst case, the ticket is placed at a junction point r(S) where S
denotes the segment where the subtrees contributing to the ticket are rooted.
Due to the definition of r(S), the top junction point t(S) is at distance at
most R

2 from r(S). Since the subtrees considered for the ticket are rooted on

S at distance at most R
2 from t(S), every loop of a ticket is rooted at the

skeleton at distance ≤ R from P (s, a). Together with (P2), we can cover a
ticket with a walk of regret at most ≤ 5R.

– at most two remaining pieces of the Euler tour in step 3(e).
There is at most one junction point j with φ(j) = a by (ii) of lemma 3. For
a junction point j, each part E0 and F0 can be covered with regret ≤ 2.5R
by (P2).

– at most one remaining piece of the Euler tour at a assigned in step 4(b).
This ticket K0 can be covered with regret ≤ 2.5R by (P2).

In total, the bus from anchor a collects regret of at most 5R+5R+2.5R = 12.5R.

Lemma 5. B is a lower bound on the number of buses with regret at most R
needed to cover all points.

Proof. Observe that if A is a set of anchors in T , then A ∩ F is a set of anchors
if we restrict ourselves to any subtree F ⊆ T . In particular, proposition 3 can
be strengthened in the following way:

Observation 2 For any subtree F ⊆ T rooted at some node f with skeleton

QF , the number
∑

e∈F\QF
d(e)

R
is a lower bound on the number of buses that is

needed to cover all points in F with routes of regret R that end in f .

We can interpret B as the number of anchors plus the number of tickets that
are not assigned to an anchor by the matching step. In order to show that this
number is a lower bound, we show that every unmatched ticket forces also the
optimal solution to use an additional bus. Consider the lowest unmatched ticket
T at a junction point j. By construction we have that j is the highest junction
point such that a bus starting from an anchor can pick up this ticket T on its
shortest path to the root. Therefore, consider all anchors in the subtree of Q
rooted at j. If there is an anchor that is not yet assigned a ticket, we can match
it to F and obtain a contradiction to the maximality of the matching found in
step 5. If there is an anchor a that is mapped to a ticket T ′ located at a junction



point above j on the path P (s, j), then we can assign T to a and the unmatched
ticket is moved strictly upwards. With this procedure, after at most |J | many
steps we find an unmatched ticket at a junction point j∗ (that might be the root
s) such that each anchor in the subtree F rooted at j∗ is assigned to a ticket
at some junction point within the subtree F . However, we can conclude at this
point from the previous observation that a further bus is needed also for the
optimum solution to cover all points with regret R.
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Appendix

Proof of Lemma 1. The idea is to cut the output of the approximation algorithm
into parts of capacity C and connect them directly to the school. Let APXC

denote the number of buses output in case of capacity C and OPTC , OPT∞ the
optimum solutions of the capacitated and uncapacitated case, respectively. We
obtain

APXC ≤

αOPT∞
∑

i=1

|{w ∈ W : p(w) = Pi}|

C
+ 1 ≤

|W |

C
+ αOPT∞ ≤ (1 + α)OPTC

where Pi are the ≤ αOPT∞ walks output by the given approximation algorithm
for the uncapacitated case.

Proof of Proposition 1. Assume for contradiction that there is a node w ∈ S
with dP (w, s) > d(w, s)+R while dP (v, s) ≤ d(v, s)+R. The triangle inequality
then implies

dP (v, s) ≥ dP (w, s) + d(v, w) > R + d(w, s) + d(v, w) ≥ R + d(v, s),

a contradiction.

Lemma 6. The greedy strategy for Set Cover implies a O(log C)-approximation
to SBP. Using Dual-Fitting, the integrality gap of the LP relaxation of SBP’s
covering integer programming formulation can also be bounded by O(log C).

Proof. The greedy algorithm for SBP picks in every iteration a feasible route
that maximizes the number of newly covered points. This means that we solve
for each node v ∈ V an Orienteering problem between s and v with length bound
d(s, v)+R. Among these routes, we choose the one that visits the most uncovered
nodes. An α-approximation to Orienteering with α ∈ O(1) (e.g. α = 2 + ε, see
[4]) implies that we can find a route that covers at least a 1

α
fraction of the

optimum number of newly covered nodes at each iteration.
Consider now a route P in the optimum solution for SBP and order its nodes
according to the iteration when they are covered by the greedy algorithm such
that the first node was covered first and so on. By the time when vk ∈ P
(1 ≤ k ≤ |P |) is covered, at least |P |−k+1 many nodes on P are still uncovered.
Thus the greedy algorithm covers in this iteration at least 1

α
(|P | − k + 1) many

nodes and the prize assigned to the node vk during the greedy procedure (i.e. the
average cost of a newly covered node) is at most α

|P |−k+1 . We obtain a prize of

at most α · log C for route P , since the number of nodes on a walk is bounded by
the capacity C. Summing up over all routes in the optimum solution for SBP, we
get that the sum of the prizes (i.e. the number of routes selected by the greedy
strategy) is at most O(log C) · OPT , where OPT is the optimum value for the
SBP.

In order to obtain the claimed result on the ratio of the optimal integer
solution OPT and the fractional solution OPTf , consider the dual of the LP



relaxation of SBP’s covering integer programming formulation

max
∑

v∈V \{s} yv
∑

v∈P yv ≤ 1 ∀ feasible walk P
yv ≥ 0 ∀v ∈ V \ {s}.

We construct a feasible dual solution to prove a lower bound on the optimum
value of the LP relaxation. Let

yv :=
price(vk)

α log C

for all v ∈ V . To show the feasibility, consider a walk P of i nodes that are
numbered as above. Note that i ≤ C. In the iteration when the node vk ∈ P
is covered, there are still at least i − k + 1 nodes on P to cover. Since we pick
approximately the best set, we pay at most price(vk) ≤ α

i−k+1 for covering vk.

It follows that yvk
≤ 1

log C(i−k+1) . If we sum over all nodes of P , we obtain

i
∑

k=1

yvk
=

1

log C

i
∑

k=1

1

k
≤ 1.

Thus y is a feasible dual solution and we have

OPT ≤
∑

v∈V

price(v) = α log C
∑

v∈V

yv ≤ O(log C) · OPTf .

Proof of Theorem 2. The dual LP is a packing problem where we have a expo-
nential number of constraints bounding the profits that are collected on each
feasible set of children that can be picked up in a single walk.

max
∑

v∈V \{s} yv (D)
∑

v∈S yv ≤ 1 ∀ feasible sets of children S
yv ≥ 0 ∀v ∈ V \ {s}.

To prove our bound, we need to state the following lemma proven by [10]:

Lemma 7. [Distribution Lemma] For any tree H with root r and distance
function d on the edges, it is possible to distribute a total profit of 1 among the
leaves of H such that the profit contained in any rooted (at r) subtree F is at

most d(F )
d(H) .

There are three things to prove for a feasible fractional solution to the LP re-
laxation of (IP ):

i) The number |V |
C

is a lower bound on the value of any fractional solution.
This lower bound is trivial. We assign a profit of 1

C
to every node v ∈ V \{s}.

Any walk that collects profit > 1 has to visit more than C nodes.



ii) The size |A| of the set of anchors is a lower bound on the value of any
fractional solution.
The profit function that assigns a profit 1 to every anchor and 0 to all other
vertices is a feasible solution to (D), since a feasible walk can never visit
more than one anchor and thus collects profit at most 1.

iii) The lower bound of Proposition 3 holds for all fractional solutions.
In order to show this, we apply the distribution lemma to every short subtree
H from the collection H of short subtrees that form T \Q. On each subtree
H, an amount of d(H)/R is distributed among its leaves. Every other vertex
gets profit 0. Therefore we distribute in total a profit of

∑

e∈T\Q d(e)/R over
the vertices of T .
It remains to prove the feasiblity of this dual solution. Consider a feasible
walk P in T and assume that it collects a profit > 1. This means by the
distribution lemma that P visits the following length among edges of short
subtrees.

∑

e∈(T\Q)∩P

d(e) =
∑

H∈H

∑

e∈H∩P d(e)

d(H)
d(H) ≥ profit(P ) · R > R

This is a contradiction to the Observation 1.

Now we bring the three lower bounds together to obtain the claimed result.
Let APX denote the feasible integer solution that we obtain from combining
theorem 1 with lemma 1. Combining their proofs, we have:

APX ≤
|V |

C
+ |A| + 2

∑

e∈T\Q d(e)

R
≤ 4 · OPTf .

Note that in case of unlimited capacity, the term |V |
C

is omitted and we obtain
an integrality gap of at most 3.

The worst example that we are aware of has integrality gap 2. It consists in a
star with n+1 nodes and edges of unit distance from the center. Set R := 2(n−2)
and the capacity C unlimited. The best integer solution uses exactly two routes
while the fractional solution considers n routes (each possible route that skips
exactly one leaf) with 1

n−1 fraction. This yields a fractional solution close to 1
for n big enough and thus the claimed result.

Proof of Lemma 2. The idea is to cut the Euler tour of all short subtrees in C
into suitable pieces. To do so, we first shift all short subtrees to the lowest node
v of path P . We take then the Euler tour of all subtrees. Starting from v, cut it
at the first node such that the current piece has length > 2R. Continue like this
to obtain k + 1 tickets.
Denote by EC

1 , . . . , EC
k all but the last piece. The last part of the Euler tour

defines EC
0 . Note that k ≤

⌊∑

T ∈C d(T )

R

⌋

, and that every cutting point is covered

by exactly two tickets. Since every node needs to be covered only once in a solu-
tion, we can remove the last edge from each set EC

i (1 ≤ i ≤ k). By construction,



the resulting length is at most 2R. Both the starting and the end point of each
ticket EC

i (1 ≤ i ≤ k) are at distance at most R
2 from v (cf. the definition of a

short subtree). Since the Euler tour goes back to v after one subtree is finished,
we obtain from a ticket a set of loops of total length at most 3R. A bus whose
root walk contains P can cover all edges corresponding to a ticket with regret
at most 3R.
The last piece EC

0 of the Euler tour remaining from the cutting procedure cer-
tainly has length ≤ 2R. Since the Euler tour goes back to v, only the distance to
the starting point of the last piece has to be connected to v in order to obtain a
set of loops. As in the previous case, one bus can cover these loops with regret
2.5R, since the height of each subtree is at most R

2 .
As one can easily see, this strategy fulfills the properties (P1) and (P2) and runs
in polynomial time.
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