
Self-Approaching Graphs

Soroush Alamdari1, Timothy M. Chan1, Elyot Grant2, Anna Lubiw1, and
Vinayak Pathak1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{s26hosse,tmchan,alubiw,vpathak}@uwaterloo.ca

2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu

Abstract. In this paper we introduce self-approaching graph drawings.
A straight-line drawing of a graph is self-approaching if, for any origin
vertex s and any destination vertex t, there is an st-path in the graph
such that, for any point q on the path, as a point p moves continuously
along the path from the origin to q, the Euclidean distance from p to q
is always decreasing. This is a more stringent condition than a greedy
drawing (where only the distance between vertices on the path and the
destination vertex must decrease), and guarantees that the drawing is a
5.33-spanner.
We study three topics: (1) recognizing self-approaching drawings; (2)
constructing self-approaching drawings of a given graph; (3) constructing
a self-approaching Steiner network connecting a given set of points.
We show that: (1) there are efficient algorithms to test if a polygonal path
is self-approaching in R2 and R3, but it is NP-hard to test if a given graph
drawing in R3 has a self-approaching uv-path; (2) we can characterize
the trees that have self-approaching drawings; (3) for any given set of
terminal points in the plane, we can find a linear sized network that has
a self-approaching path between any ordered pair of terminals.

Keywords: self-approaching, increasing-chord, graph drawing

1 Introduction

A straight-line graph drawing (or “geometric graph”) in the plane has points for
vertices, and straight line segments for edges, where the weight of an edge is its
Euclidean length. The drawing need not be planar. Rao et al. [27] introduced the
idea of greedy drawings. A greedy drawing of a graph is a straight-line drawing in
which, for each origin vertex s and destination vertex t, there is a neighbor of s
that is closer to t than s is, i.e., there is a greedy st-path P = (s = p1, p2, . . . , pk =
t) such that the Euclidean distances D(pi, t) decrease as i increases. This idea has
attracted great interest in recent years (e.g. [1, 5, 16, 21, 24, 26]) mainly because
a greedy drawing of a graph permits greedy local routing.

It is a very natural and desirable property that a path should always get
closer to its destination, but there is more than one way to define this. Although
every vertex along a greedy path gets closer to the destination, the same is not
true of intermediate points along edges. See Figure 1.

2 Self-Approaching Graphs

p

u v

u′

Fig. 1. As we move from u towards u′, distance to v first decreases (until p), then
increases. However, D(u′, v) < D(u, v).

Another disadvantage of greedy paths is that the length of a greedy path is
not bounded in terms of the Euclidean distance between the endpoints. This is
another natural and desirable property for a path to have, and is captured by the
dilation (or “stretch factor”) of a graph drawing—the maximum, over vertices
s and t, of the ratio of their distance in the graph to their Euclidean distance.
The dilation factor of greedy graph drawings can be unbounded.

Icking et al. [22] introduced a stronger notion of “getting closer” to a des-
tination, that addresses both shortcomings of greedy paths. A curve from s to
t is self-approaching if for any three points a, b, c appearing in that order along
the curve, we have D(a, c) ≥ D(b, c). Icking et al. proved that a self-approaching
curve has detour 5.3332, where the detour or geometric dilation of a curve is the
supremum over points p and q on the curve, of the ratio of their distance along
the curve to their Euclidean distance D(p, q). This is stronger than dilation in
that we consider all pairs of points, not just all pairs of vertices.

In this paper we introduce the notion of a self-approaching graph drawing—
a straight-line drawing that contains, for every pair of vertices s and t, a a
self-approaching st-path and a self-approaching ts-path (which need not be the
same). We also explore the related notion of an increasing-chord graph drawing,
which has the stronger property that every pair of vertices is joined by a path
that is self-approaching in both directions. Rote [28] proved that increasing-chord
paths have dilation at most 4.77.

Our first result is a linear time algorithm to recognize a self-approaching
polygonal path in the plane. We do not know the complexity of recognizing
self-approaching graph drawings in the plane. However, we show that in R3,
it is NP-hard to test if a given graph drawing has a self-approaching uv-path,
although we can still determine, in polynomial time, whether a single polygonal
path is self-approaching.

Next, we consider the question of constructing a self-approaching drawing for
a given graph. We give a linear time algorithm to recognize the trees that have
self-approaching drawings. Finally, we consider the problem of connecting a given
set of terminal points in the plane by a network that has a self-approaching path
between every pair of terminals. We show that this can be done with a linear
sized network.

Self-Approaching Graphs 3

2 Background

A spanner is a graph of bounded dilation. Spanners have been very well-studied—
see for example the book by Narasimhan and Smid [25] and the survey by Epp-
stein [14]. A main goal is to efficiently construct a spanner on a given set of
points, with the objective of minimizing dilation while keeping the number or
total length of edges small. For recent results, see, e.g., [2, 15]. If Steiner vertices
are allowed, their number should also be minimized, and different versions of the
problem arise if we include the Steiner points in measuring the dilation, see [13].

The detour of a graph drawing is defined to be the supremum, over all points
p, q of the drawing (whether at vertices, or interior to edges) of the ratio of
their distance in the graph to their Euclidean distance. Note that if two edges
cross in the drawing, then the detour is infinite. By contrast, a self-approaching
drawing may have crossing edges, for example, any complete geometric graph
is self-approaching. Constructing a network to minimize detour has also been
considered [12, 11], though not as extensively as spanners.

Relevant background on greedy drawings is as follows. Answering a conjecture
of Papadimitriou and Ratajczak [26], Leighton and Moitra [24] showed that any
3-connected planar graph has a greedy drawing, and Goodrich and Strash [16]
reduced the number of bits needed for the coordinates in the embedding. Con-
necting the ideas of greedy drawings and spanners, Bose et al. [5] showed that
every triangulation has an embedding in which local routing produces a path of
bounded dilation.

Our problem of constructing a network with a self-approaching path between
every pair of terminals is also related to Manhattan networks. Observe that an
xy-monotone path is self-approaching. Thus, a network with an xy-monotone
path between every pair of terminals is a self-approaching network. A Manhattan
network has horizontal and vertical edges and includes an L1 shortest path be-
tween every pair of terminals. So a Manhattan network is self-approaching. There
is considerable work on finding Manhattan networks of minimum total length
(so-called “minimum Manhattan networks”). There are efficient algorithms with
approximation factor 2, and the problem has been shown to be NP-hard [10].
More relevant to us is the result of Gudmundsson et al. [18] that every point
set admits a Manhattan network of O(n log n) vertices and edges, and there are
point sets for which any Manhattan network has size at least Ω(n log n).

For results on computing the dilation or detour of a path or graph, see the
survey by by Gudmundsson and Knauer [19], and the paper by Wulff-Nilsen [29].

The Delaunay triangulation has several good properties: it has dilation factor
below 2 [30], and is a greedy drawing [6]. However, greedy paths in a Delaunay
triangulation do not necessarily have bounded dilation. We conjecture that every
Delaunay triangulation is self-approaching.

3 Preliminaries

We let D(u, v) denote the Euclidean distance between points u and v in Rd.
A curve is a continuous function f : [0, 1] → Rd, and an st-curve is a curve f

4 Self-Approaching Graphs

with f(0) = s and f(1) = t. An st-curve f is a self-approaching curve iff for all
0 ≤ a ≤ b ≤ c ≤ 1 we have D(f(a), f(c)) ≥ D(f(b), f(c)) (see Figure 2). Note
that this definition is sensitive to the direction of the curve—an st-curve f(x)
may not be self-approaching even if the curve f(1− x) is.

An st-curve f has increasing chords iff for all 0 ≤ a ≤ b ≤ c ≤ d ≤ 1 we
have D(f(a), f(d)) ≥ D(f(b), f(c)), and we call f an increasing-chord curve if
this is the case (see Figure 3 for an example). Note that f(x) has increasing
chords iff f(1 − x) does, and that f(x) and f(1 − x) are both self-approaching
whenever f has increasing chords. The converse also holds: a curve f has increas-
ing chords whenever it is self-approaching in both directions, as we then have
D(f(a), f(d)) >= D(f(a), f(c)) >= D(f(b), f(c)) for 0 <= a <= b <= c <=
d <= 1.

Fig. 2. A self-approaching st-curve in R2.

Fig. 3. An increasing-chord curve in R2.

For convenience, we shall slightly abuse the above definitions for cases involv-
ing straight-line drawings of graphs. We shall say that a straight-line embedding
(in Rd) of a directed path P = {v1, v2, . . . , vn} from v1 to vn is self-approaching
whenever it is the image of a self-approaching curve f with f(0) = v1 and
f(1) = vn. Analogously, we say that the embedding of an undirected path has
increasing chords whenever it is the image of an increasing-chord curve.

For the next series of definitions, let u and v be a pair of distinct points in
R2. We let uv be the line passing through u and v, and we write luv to denote
the line that passes through v and is perpendicular to uv, noting that luv and
lvu are distinct parallel lines. We let l−uv denote the open half-plane containing u
with boundary luv, and let l+uv denote R2 \ l−uv, the closed half-plane that is the
complement of l−uv (see Figure 4). Let slab(uv) be the open strip bounded by luv
and lvu—in other words, the intersection of l−uv and l−vu.

The following characterization of self-approaching curves is straightforward:

Self-Approaching Graphs 5

u

v

Fig. 4. The line luv (dashed) and the area of l−uv (hatched).

Lemma 1. ([22]) A piecewise-smooth curve f is self-approaching iff for each
point f(a), where 0 ≤ a ≤ 1, the line perpendicular to f at f(a) does not
intersect any point f(b) with a < b ≤ 1.

Corollary 1. A piecewise-smooth curve f has increasing chords iff each line
perpendicular to f at a point f(a) intersects f only at f(a).

When dealing with straight-line drawings of graphs, we apply Lemma 1 to
piecewise-linear curves. In this case, the lemma can be stated as follows:

Corollary 2. Let P = {v1, v2, . . . , vn} be a directed path (directed from v1 to
vn), embedded in R2 via straight line segments. Then, P is self-approaching iff for
all 1 < i < j ≤ n, the point vj lies in l+vi−1vi . Equivalently, P is self-approaching

iff for all 1 < i ≤ n, the convex hull of {vi, vi+1, . . . , vn} lies in l+vi−1vi .

Analogous characterizations are also possible in higher dimensions, with the
half-planes l+vi−1vi replaced by half-spaces bounded by hyperplanes orthogonal
to vi−1vi.

4 Testing whether paths are self-approaching

Corollary 2 implicitly suggests an algorithm to determine whether a directed
path embedded in a Euclidean space is self-approaching. In this section, we
provide improved algorithms for this task in two and three dimensions, as well
as a lower bound. We assume a real RAM model in which all simple geometric
operations can be performed in O(1) time, and we assume that all straight-line
drawings of paths P = {v1, v2, . . . , vn} are represented explicitly as lists of n
points (requiring O(n) space).

Theorem 1. Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in the
plane, it is possible to test whether P is self-approaching in linear time.

We prove this theorem by giving an O(n) time algorithm to check that for all
1 < i ≤ n, the convex hull of vi through vn lies in l+vi−1vi . We can do this by
iteratively processing and storing the convex hull. Details are provided in the
appendix.

6 Self-Approaching Graphs

In three dimensions, we can obtain a similar result with slightly worse run-
ning time using an existing convex hull data structure that supports point in-
sertion and half-space range emptiness queries. Again, the proof is deferred to
the appendix.

Theorem 2. Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in R3,
it is possible to test whether P is self-approaching in O(n log2 n/ log log n) time.

Next, we show that Theorem 2 is tight up to a factor of log n/ log log n by
proving a lower bound of Ω(n log n) on the running time of any algorithm for
determining whether a directed path embedded in R3 is self-approaching. We do
this by reducing from the set intersection problem, for which a solution requires
Ω(n log n) time on an input of size n in the algebraic computation tree model
[3]. We can show the following:

Theorem 3. Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in R3,
at least Ω(n log n) time is required to test whether P is self-approaching in the
algebraic computation tree model.

To prove this, we build an embedding of a path in R3 using ‘cannons’ and
‘targets’, where a slab perpendicular to a ‘cannon’ collides with a ‘target’ if and
only if the corresponding elements of the sets A and B are identical. Details are
provided in the appendix.

The same construction also yields the following:

Corollary 3. Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in
R3, at least Ω(n log n) time is required to test whether P has increasing chords
in the algebraic computation tree model.

5 Finding self-approaching paths in graphs

We do not know whether it is possible to determine, in polynomial time, whether
a given source and sink in a planar straight-line drawing can be connected via
a self-approaching path. However, by employing the cannons and targets intro-
duced in Section 4, we can show that the problem is hard in three or more
dimensions:

Theorem 4. Given a straight-line drawing of a graph G in R3, and a pair of
vertices s and t from G, it is NP-hard to determine if a self-approaching st-path
exists. It is also NP-hard to determine if an increasing-chord st-path exists.

To prove this theorem, we reduce from 3SAT. Our proof uses similar ‘cannons’
and ‘targets’ to those used in the proof of Theorem 3, but this time, the cannons
correspond to variable assignments and the targets correspond to literals in
clauses. The full proof is found in the appendix.

Self-Approaching Graphs 7

6 Recognizing graphs having self-approaching drawings

In this section we examine self-approaching drawings of trees. The following
characteriztion is quite natural:

Lemma 2. In a self-approaching drawing of a tree T , for each edge (u, v), there
is no edge or vertex of T \ uv that intersects slab(uv).

Proof. Since there is a unique path connecting vertices s and t in any tree T ,
a drawing of T is self-approaching if and only if it has increasing chords. The
result then follows from Corollary 1. ut

As it turns out, we can quickly determine whether a tree admits a self-
approaching drawing:

Theorem 5. Given a tree T , in linear time we can decide whether or not T
admits a self-approaching drawing.

Proof. To prove this theorem, we completely characterize trees that admit self-
approaching drawings. We require two definitions of special graphs.

A windmill having sweep length k is a tree constructed by subdividing the
edges of K1,3 k−1 times iteratively and then attaching a leaf to each subdivision
vertex. The term sweep shall denote one of the three new disjoint paths of length
k that the replace edges of K1,3 during the subdivision process. A windmill is
depicted in Figure 5.

Fig. 5. A windmill with sweeps of length 2.

The crab graph is the tree with vertices {a, b, a1, a2, b1, b2, a11, a12, a21, a22, b11,
b12, b21, b22} and edges {(a, b), (a, a1), (a, a2), (b, b1), (b, b2), (a1, a11), (a1, a12),
(a2, a21), (a2, a22), (b1, b11), (b1, b12), (b2, b21), (b2, b22)} as depicted in Figure 6.
A graph G is crab-free only if it has no subgraph that is isomorphic to some
subdivision of a crab.

We prove Theorem 5 in two steps. Write ∆T for the maximum degree of a
vertex in T .

1. First we show that T with ∆T ≥ 4 admits a self-approaching drawing if and
only if T is a subdivision of K1,4.

2. Then we show that T with ∆T ≤ 3 admits a self-approaching drawing if and
only if it is a subdivision of a windmill, which happens if and only if T is
crab-free.

8 Self-Approaching Graphs

a22

a21

a12

a11 a1

b11

b12

b
a

b2
a2 b21

b22

b1

Fig. 6. An embedding of the crab.

To establish the first result, we prove the following in the appendix:

Lemma 3. In an increasing-chord drawing of a path, the sum of the sizes of the
angles in any consecutive chain of k left turns (or right turns) is at least π(k−1)
if k > 1 and at least π/2 if k = 1.

Corollary 4. If T admits a self-approaching drawing, then ∆T ≤ 4. Also, if
∆T = 4, then there is only one vertex of degree 4 in T , and the four angles at
the vertex of degree 4 have all size π/2, and the rest of the angles have size π.

This concludes the first step of the proof. For the second step, we prove the
following three structural lemmas, which establish the equivalence of a tree being
a subdivision of a windmill, being crab-free, and admitting a self-approaching
drawing. Proofs are located in the appendix.

Lemma 4. Let T be a tree with ∆T ≤ 3 that is crab-free. Then T is a subdivision
of a windmill.

Lemma 5. Let T be a tree that is a subdivision of a windmill. Then T admits
a self-approaching drawing.

Lemma 6. Let T be a tree that contains a subdivision of the crab. Then T does
not admit a self-approaching drawing.

Combining these results, we obtain the second step of the proof of the theo-
rem. This completes the characterization of all trees that admit self-approaching
drawings. To complete the proof of the Theorem 5, it suffices to observe that it
is possible, in linear time, to check whether a tree T is a subdivision of K1,4 or
is a subdivision of a windmill.

7 Constructing self-approaching Steiner networks

We now turn our attention to the following problem: Given a set P of points in
a plane, draw a graph N with straight edges and P ⊆ V (N) such that for each
ordered pair of points p, q ∈ P there is a self-approaching path from p to q in the
drawing of N . We call the points in V (N)\P Steiner points and the graph N a
self-approaching Steiner network. An increasing-chord Steiner network is defined
similarly.

Self-Approaching Graphs 9

We show that small increasing-chord Steiner networks (and hence small self-
approaching Steiner networks) can always be constructed for any given set of
points in the plane.

Theorem 6. Given a set P of n points in the plane, there exists an increasing-
chord Steiner network having O(n) vertices and edges.

Proof. Given points p and q, let θpq denote the angle between the line pq and the
x-axis (we take the smaller of the two angles formed, so that θpq ∈ [0, π/2]). A
path is xy-monotone if every vertical line intersects the path at most once and
every horizontal line intersects the path at most once. Clearly, an xy-monotone
path is self-approaching. We will construct a linear-size Steiner network G with
the following property:

For every pair of points p, q ∈ P with θpq ∈ [π/8, 3π/8], there is an
xy-monotone path from p to q in G.

To handle the remaining pairs of points, we can rotate the coordinate axes by
π/4 and apply the same construction to obtain another Steiner network G′. We
can then return the union of G and G′.

To construct G, we first build a quadtree [20], defined as follows: The root
stores an initial square enclosing P . At each node, we divide its square into four
congruent subsquares and create a child for each subsquare that is not empty of
points of P . The tree has n leaves.

To ensure that the tree has O(n) internal nodes, we compress each maximal
path of degree-1 nodes by keeping only the first and last node in the path. The
result is a compressed quadtree, denoted T .

For each square B in the compressed quadtree T , we add the four corner
vertices and edges of B to G. (Note that we allow overlapping edges in our
construction; it is not difficult to avoid overlaps by subdividing the edges appro-
priately.) For each leaf square B in T containing a single point p ∈ P , we add
a 2-link xy-monotone path in G from p to each corner of B. For each degree-1
square B in T having a single child square B′, we add a 2-link xy-monotone
path in G from each corner of B′ to the corresponding corner of B. By induc-
tion, it then follows that for every point p ∈ P inside a square B in T , there is
an xy-monotone path in G from p to each corner of B. The number of vertices
and edges in G thus far is O(n).

Given a parameter ε > 0, a well-separated pair decomposition of P is a
collection of pairs of sets {A1, B1}, . . . , {As, Bs}, such that3

1. for every pair of points p, q ∈ P , there is a unique index i with (p, q) ∈ Ai×Bi
or (p, q) ∈ Bi ×Ai;

2. Ai and Bi are well-separated in the sense that both the diameter of Ai and
the diameter of Bi is at most εd(Ai, Bi), where d(Ai, Bi) is the minimum
distance between Ai and Bi.

3 In the original definition [7], Ai and Bi are subsets of P , but for our purposes, we
will take Ai and Bi to be regions in the plane (namely, squares).

10 Self-Approaching Graphs

It is known that a well-separated pair decomposition consisting of s = O(n/ε2)
pairs always exists [7]. Furthermore, such a decomposition can be constructed
by a simple quadtree-based algorithm (for example, see [20] or [8]), where the
sets Ai and Bi are in fact squares appearing in the compressed quadtree T .

To finish the construction of G, we consider each pair {Ai, Bi} in the de-
composition such that Ai and Bi are separated by both a vertical line and a
horizontal line. Without loss of generality, suppose that Ai is to the left of and
below Bi. We add a 2-link xy-monotone path in G from the upper right corner
of Ai to the lower left corner of Bi. The overall number of vertices and edges in
G is O(n/ε2).

To show thatG satisfies the stated property, let p, q ∈ P with θpq ∈ [π/8, 3π/8].
Suppose that (p, q) ∈ Ai × Bi. If Ai and Bi are intersected by a common hor-
izontal line, then θpq must be upper-bounded by O(ε) because Ai and Bi are
well-separated; this is a contradiction if we make the constant ε sufficiently small.
Thus, Ai and Bi must be separated by a horizontal line, and similarly by a ver-
tical line via a symmetric argument. Without loss of generality, suppose that Ai
is to the left of and below Bi. By concatenating xy-monotone paths in G, we
can get from p to the upper right corner of Ai, then to the lower left corner of
Bi, and finally to q. ut

In the above construction, the edges we add for each well-separated pair
{Ai, Bi}may cross other edges, although it is possible to modify the construction
to ensure that the network G is planar (and similarly G′). However, we do not
know how to avoid crossings in the final network obtained by unioning G and
G′, while keeping the number of edges linear.

Whether planar self-approaching Steiner networks of linear size can be con-
structed or not is an interesting question. We consider the Delaunay triangulation
to be a potential candidate, and conjecture the following:

Conjecture 1. The Delaunay triangulation of T is a self-approaching drawing
with zero Steiner points.

Unfortunately, the conjecture does not hold for increasing-chord networks (a
counterexample is presented in the appendix):

Theorem 7. There exists a set of six points in the plane whose Delaunay tri-
angulation is not an increasing-chord drawing.

8 Conclusions

We have introduced the notion of self-approaching and increasing-chord graph
drawings, with rich connections to greedy drawings, spanners, dilation and de-
tour, and minimum Manhattan networks.

Our results are preliminary. We leave open the following questions:

– Can we test, in polynomial time, if a straight-line graph drawing in the plane
is self-approaching [or increasing-chord]? Or is the problem NP-complete?

Self-Approaching Graphs 11

– Given a graph G, can we efficiently produce a self-approaching drawing of
G if one exists? Can we produce a drawing in which a self-approaching path
between any pair of vertices can be found via local routing?

– Does every 3-connected planar graph have a self-approaching [or increasing-
chord] drawing? We have some hope that Goodrich and Strash’s greedy draw-
ing method for 3-connected planar graphs [16] in fact produces an increasing-
chord drawing, and furthermore, that their local routing strategy produces
increasing-chord paths. This would have the significant implication that ev-
ery 3-connected planar graph has an embedding where local routing gives
paths of bounded detour (hence bounded dilation). Bose et al. [5] recently
proved the weaker result that every triangulation has an embedding where
local routing gives paths of bounded dilation.

– Is the Delaunay triangulation self-approaching?

Acknowledgements. Anna Lubiw thanks Marcus Brazil, Victor Chepoi, and
Martin Zachariasen for workshop discussions that inspired this line of enquiry.
This work was done as part of an Algorithms Problem Session at the University
of Waterloo, and we thank the other participants for helpful discussions.

References

1. P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings of
triangulations. J. Graph Algorithms Appl., 14(1):19–51, 2010.

2. B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. Haverkort, M. Smid,
and A. Vigneron. Sparse geometric graphs with small dilation. Computational
Geometry, 40(3):207 – 219, 2008.

3. M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th ACM
Symposium on Theory of Computing, pages 80–86, New York, 1983.

4. J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformations. J. Algorithms, 1:301–358, 1980.

5. P. Bose, R. Fagerberg, A. van Renssen, and S. Verdonschot. Competitive routing in
the half-θ6-graph. In Proc. 23rd ACM–SIAM Symposium on Discrete Algorithms,
pages 1319–1328, 2012.

6. P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comput.,
33(4):937–951, 2004.

7. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995.

8. T. M. Chan. Well-separated pair decomposition in linear time? Inform. Process.
Lett., 107:138–141, 2008.

9. B. Chazelle. An optimal algorithm for intersecting three-dimensional convex poly-
hedra. SIAM J. Comput., 21(4):671–696, 1992.

10. F. Y. L. Chin, Z. Guo, and H. Sun. Minimum Manhattan network is NP-complete.
Discrete & Computational Geometry, 45(4):701–722, 2011.

11. A. Dumitrescu and C. D. Tóth. Light orthogonal networks with constant geometric
dilation. Journal of Discrete Algorithms, 7(1):112–129, 2009.

12. A. Ebbers-Baumann, A. Grune, and R. Klein. The geometric dilation of finite
point sets. Algorithmica, 44:137–149, 2006.

12 Self-Approaching Graphs

13. A. Ebbers-Baumann, A. Grüne, R. Klein, M. Karpinski, C. Knauer, and A. Lingas.
Embedding point sets into plane graphs of small dilation. Int. J. Comput. Geometry
Appl., 17(3):201–230, 2007.

14. D. Eppstein. Spanning trees and spanners. In J. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. North-Holland, 2000.

15. P. Giannopoulos, R. Klein, C. Knauer, M. Kutz, and D. Marx. Computing ge-
ometric minimum-dilation graphs is NP-hard. Int. J. Comput. Geometry Appl.,
20(2):147–173, 2010.

16. M. T. Goodrich and D. Strash. Succinct greedy geometric routing in the Euclidean
plane. In Proc. 20th International Symposium on Algorithms and Computation,
pages 781–791, 2009.

17. R. L. Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Inform. Process. Lett., 1:132–133, 1972.

18. J. Gudmundsson, O. Klein, C. Knauer, and M. Smid. Small Manhattan networks
and algorithmic applications for the earth mover’s distance. In Proc. 23rd European
Workshop on Computational Geometry, pages 174–177, 2007.

19. J. Gudmundsson and C. Knauer. Dilation and detour in geometric networks. In
T. Gonzalez, editor, Handbook on Approximation Algorithms and Metaheuristics.
Chapman & Hall/CRC Press, 2007.

20. S. Har-Peled. Geometric Approximation Algorithms. AMS, 2011.
21. X. He and H. Zhang. On succinct convex greedy drawing of 3-connected plane

graphs. In Proc. 22nd ACM–SIAM Symposium on Discrete Algorithms, pages
1477–1486, 2011.

22. C. Icking, R. Klein, and E. Langetepe. Self-approaching curves. Math. Proc. Camb.
Phil. Soc, 125:441–453, 1995.

23. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28–35, 1983.

24. T. Leighton and A. Moitra. Some results on greedy embeddings in metric spaces.
Discrete and Computational Geometry, 44:686–705, 2010.

25. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

26. C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theor. Comput. Sci., 344:3–14, 2005.

27. A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic
routing without location information. In Proc. 9th International Conference on
Mobile Computing and Networking, pages 96–108, 2003.

28. G. Rote. Curves with increasing chords. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 115:1–12, 1994.

29. C. Wulff-Nilsen. Computing the maximum detour of a plane geometric graph in
subquadratic time. Journal of Computational Geometry, 1(1):101–122, 2010.

30. G. Xia. Improved upper bound on the stretch factor of Delaunay triangulations.
In Proc. 27th ACM Symposium on Computational Geometry, pages 264–273, 2011.

31. A. C. Yao. Lower bounds for algebraic computation trees with integer inputs.
SIAM J. Comput., 20(4):655–668, 1991.

Self-Approaching Graphs 13

A Appendix

A.1 Proof of Theorem 1

Theorem 1 Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in the
plane, it is possible to test whether P is self-approaching in linear time.

Proof. By Corollary 2, we must only check that for all 1 < i ≤ n, the convex
hull of vi through vn lies in l+vi−1vi . We can do all of these checks in O(n) time
by performing them iteratively, beginning with i = n and processing the points
in decreasing order. While doing this, we will either show that P is not self-
approaching, or we will be able to use the properties of self-approaching paths
to construct the convex hull of the traversed vertices incrementally in linear total
time by an algorithm similar to Graham’s scan [17].

We now describe a step of the algorithm. Assume that the directed path
Pi = {vi, . . . , vn} is self-approaching and assume the convex hull C of vertices
vi through vn has already been computed and is stored by keeping track of the
neighbors of each vertex on its boundary. Since Pi is self-approaching, point vi
must lie on the boundary of C. Let v1i and v2i be the neighbors of vi in C. We
can check to see if lvi−1vi intersects C in O(1) time, because it is only necessary

to check if line segments viv1i and viv2i intersect slab(vi−1vi). If an intersection
is found, then P is not self-approaching and we can terminate the algorithm.
Otherwise, we add vi−1 to C and recompute the convex hull. This can be done
by repeatedly removing the vertices of C on both sides of vi until convex angles
are obtained, after which the convex hull of C∪{vi−1} will remain. Each vertex in
P will be removed at most once from a convex hull in some step of the algorithm,
so the total running time for all steps of the algorithm is O(n). ut

A.2 Proof of Theorem 2

Theorem 2 Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in R3,
it is possible to test whether P is self-approaching in O(n log2 n/ log log n) time.

Proof. The proof is analogous to that of Theorem 1, with the only change being
that we must employ a more complicated data structure to store the convex hull
and test whether it intersects a given half-space range. For each edge vi−1vi, we
can ensure that slab(vi−1vi) does not intersect the convex hull C by performing
two half-space range emptiness queries on C. If no intersection is found, then
we may insert point vi−1 to our data structure and perform the next iteration
of the algorithm. If the algorithm successfully inserts all points into C, then the
path P must be self-approaching.

Achieving the stated running time requires a nontrivial data structure com-
bining several known ideas. There is a static data structure for half-space range
emptiness in R3 with O(n) space and O(log n) query time, by reduction to planar
point location in dual space [23]; the preprocessing time is O(n) if we are given
the convex hull. The static data structure can be transformed into a semidynamic

14 Self-Approaching Graphs

data structure with O(b logb n) amortized insertion time and O(logb n log n)
query time for a given parameter b, by known techniques—namely, a b-ary ver-
sion of Bentley and Saxe’s logarithmic method [4], using Chazelle’s linear-time
algorithm for merging two convex hulls [9] as a subroutine. By setting b = log n,
both amortized insertion time and query time are bounded byO(log2 n/ log log n),
yielding the desired result. ut

A.3 Proof of Theorem 3

Theorem 3 Given a straight-line drawing of a path P = {v1, v2, . . . , vn} in R3,
at least Ω(n log n) time is required to test whether P is self-approaching in the
algebraic computation tree model.

Proof. We first need a few gadgets for our reduction. Let β = π/6 and α = 1.
For a point p ∈ R2, we define a cannon c at p to be an embedding of a 3-vertex
path [c0, c1, c2] where the points are located as follows:

– c0 is placed at p,
– c2 is placed at p+ (1, 0), that is, α units to the right of p, and
– c1 is placed at p+ (3/4,

√
3/4), on the line that meets the x-axis at an angle

β and passes through c0, such that the angle ĉ0c1c2 is a right angle.

Similar to a cannon, a target t at point p with respect to the a ` is an embedding
of a 3-vertex path [t0, t1, t2], where the points in t are positioned as follows:

– t0 is placed at p,
– t1 at the intersection of ` and `′, where `′ is the line of slope 1 passing

through t0, and

– t2 is placed on the x-axis such that the angle t̂0t1t2 is a right angle.

With these gadgets in hand, we now present a reduction from the set in-
tersection problem. Let I be an instance of the set intersection problem, where
we are asked to check if there is a common element in sets A and B. Using
Yao’s improvement to Ben-Or’s lower bound constructions for algebraic com-
putation trees [31], it suffices to consider the case where A and B are sets of
non-negative integers. Letting M be the maximum element in A and B, we first
divide each element of A and B by 2M/π so that both A and B are subsets
of [0, π/2], noting that this can be done in linear time. Let ε < π/2M so that
|a − b| > ε for all a, b ∈ A ∪ B with a 6= b, and let γ be a sufficiently large
constant (depending on M). Using the coordinates of A and B, we embed a
path P = {v0, v1, v2, . . . , v1+2|A|+2|B|} in R3 as follows:

1. Start with the vertex v0 placed on the origin.
2. For each 1 ≤ i ≤ |A|, place a cannon ci in the xy-plane, attached to the

current path, with c01 = v0 and c0i = c2i−1 for i ≥ 2. Cannon ci shall represent
the element ai ∈ A. At this stage, the path should appear as a chain of |A|
cannons lined up along the x-axis.

Self-Approaching Graphs 15

3. Place the next vertex v2|A|+1 of the path on (α|A|+ γ, 0).
4. For each 1 ≤ i ≤ |B|, add a target ti in the xy-plane, placed at the end

of the current path with respect to ` = v0v1. Target ti shall represent the
element bi ∈ B and the targets, like the cannons, shall be aligned along the
x-axis (Figure 7 shows what the path looks like at this point).

5. Modify the embedding by rotating each cannon about the x-axis through an
angle ai (in other words, relocate p1i from (x, 3/4, 0) to (x, 3/4 cos(ai), 3/4 sin(ai))).

6. Similarly, rotate each target t1i about the x-axis through an angle bi by
relocating t1i .

7. Let P be the path obtained after these rotations.

β

α

A B

c01
t01

t11

c12c11

t21 = t02

c21 = c02

Fig. 7. The cannons (left) and the targets (right).

Fig. 8. Placement of a target.

The key idea of our proof is that P shall be a self-approaching path (in
the v0 to v1+2|A|+2|B| direction) if and only if A and B do not intersect. More

16 Self-Approaching Graphs

specifically, slab(c1i c
2
i) shall collide with the target tj if and only if element ai

equals element bj .
Only if: Assume ai = bj . It is then easy to see that slab(c1i c

2
i) collides with the

target tj , since both the cannon ci and the target tj are rotated around the x-axis
through the same angle. It follows, by Lemma 1, that P is not self-approaching.

If: By Lemma 1, it suffices to show that if A and B do not intersect, then
for any edge e in P , slab(e) does not intersect any edges in the path after e. It is
straightforward from our construction that the only way such an intersection can
occur is if slab(c1i c

2
i) intersects a point t1j for some i and j. Let s be slab(c1|A|c

2
|A|)

as it is positioned prior to step 5 in the construction. Define θ to be the minimum
amount that we need to rotate the target t1, so that the point t11 does not lie
in s. It is easy to see that θ decreases as γ increases, and more specifically that
limγ→∞θ = 0. Therefore, we can choose γ large enough (with respect to ε), so
that slab(c1i c

2
i) intersects tj if and only if |ai − bj | < ε, which, by construction,

happens only when ai = bj . The result follows. ut

A.4 Proof of Theorem 4

Theorem 4 Given a straight-line drawing of a graph G in R3, and a pair of
vertices s and t from G, it is NP-hard to determine if a self-approaching st-path
exists. It is also NP-hard to determine if an increasing-chord st-path exists.

Proof. We establish the result for the case of self-approaching paths; the proof for
the increasing-chord case is similar. We reduce from 3SAT. Let I be an instance
of 3SAT. Let {x1, x2, . . . , xn} be the variables in I. For any 1 ≤ k ≤ n, let the
literal yk be the negation of the literal zk, both associated with the boolean
variable xk. Let {w1, w2, . . . , wm} be the set of clauses associated with I, where
wi = {w1

i , w
2
i , w

3
i } and each literal wji is either yk or zk for some value of k. Let

ε = π/2n. We draw the graph G as follows:

1. Place the vertex s at the origin.
2. Place two cannons c1 and c2 corresponding to y1 and z1, both at s.
3. For all 1 < i ≤ n, place two cannons c2i−1 and c2i corresponding to yi and
zi, both at the point c22i−2 = c22i−3.

4. Place a vertex s′ at (αn+ γ, 0), adjacent to c22n.

5. Place three targets t1, t2 and t3 at s′ with respect to the line sc11.
6. For all 1 ≤ i ≤ m, place three targets t3i−2, t3i−1 and t3i at t23i−3, with

respect to the line sc11.
7. For all 1 ≤ i ≤ 2n, rotate c1i about x-axis through an angle of iε.

8. For all 1 ≤ i ≤ m and 1 ≤ j ≤ 3, suppose that wji = yk (respectively, zk).
Then rotate t13(i−1)+j about the x-axis through an angle of (2k−1)ε (respec-

tively, 2kε)—in other words, rotate t13(i−1)+j through the same amount that

the cannon corresponding to the value of the literal wji is rotated, so that a
cannon ‘hits’ a target if and only if the cannon and target correspond to the
same literal.

Self-Approaching Graphs 17

The rest of the proof is quite similar to the proof of Lemma 3. In particular,
we shall show that I is satisfiable if and only if there is a self-approaching path
from s to t23m. We will reuse the following statement from the proof of Lemma 3:
for 1 ≤ i ≤ n, slab(c1i c

2
i) intersects the target tj , if and only if t1j and c1i are

rotated by the same amount, hence correspond to the same literal. Let P be a
path from s to t23m. Assume P is a self-approaching path. For each cannon ci
appearing in P , assign the literal corresponding to ci to be false, and its negation
to be true. Then, it is easy to show that in each clause, there is at least one true
literal: the one appearing in P . Similar to this, from a satisfying assignment of
the variables, we can construct a self-approaching path by taking the cannons
corresponding to false literals. For the second part of the path, we use one of
the three targets assigned to each clause: one that corresponds to a true literal.
This way, since each target that is traversed in P corresponds to a cannon that
was not traversed in P , P would be a self-approaching path.

The same proof also works to establish NP-hardness for finding an increasing
chord st-path. Note that this is because the drawing of the graph is constructed
in a way that any increasing-chord path connecting s to t23m is a self-approaching
path in the s-to-t23m direction and vice versa. ut

A.5 Proof of Lemma 3

Lemma 3 In an increasing-chord drawing of a path, the sum of the sizes of the
angles in any consecutive chain of k left turns (or right turns) is at least π(k−1)
if k > 1 and at least π/2 if k = 1.

Proof. There is clearly no angle smaller than π/2 in any increasing-chord drawing
of a path. Let (u′, u) and (v, v′) be the first and last edges of the chain. Let s be

the point in the plain such that ûu′s and v̂v′s are right angles (See Figure 9).
ûsv is greater than π or else either luu′ or lvv′ intersects uv-path. Since the sum
of the angles of a simple polygon of n vertices is π(n− 1), the sum of the angles
of vertices along the uv-path is greater than π(k− 2) if the length of the path is
k. ut

s

u′

v′

v

u

Fig. 9. For proof of Lemma 3.

18 Self-Approaching Graphs

A.6 Proof of Lemma 4

Lemma 4 Let T be crab-free tree with ∆T ≤ 3. Then T is a subdivision of a
windmill.

Proof. We assume there is a vertex s that has three disjoint paths to three
degree-3 vertices. Otherwise the graph is a subgraph of a subdivision of a sweep.
Note that vertices a and b of the crab graph satisfy this property. There is only a
single such vertex s in a tree that admits a self-approaching drawing, otherwise
the graph would have a subdivision of the crab graph as a subgraph. Put s on the
center of the windmill. In each component of the graph obtained by removing
s, there is a path going through all degree-3 vertices (otherwise, there would be
another degree-3 vertex that satisfies the property). Put degree three vertices on
sweeps such that if u is on the path from v to w in G, u is still between v and
w on the sweep. Then add degree two and degree one vertices on the edges. ut

A.7 Proof of Lemma 5

Lemma 5 Let T be a tree that is a subdivision of a windmill. Then T admits
a self-approaching drawing.

Proof. It suffices to show that any windmill admits a self-approaching drawing.
We draw a K1,3 so that each angle is 2π/3 and edges are equal in length. From
each leaf l, draw two rays so that the angle between them is π/2 + επ for some
small ε and each of the angles formed by a ray and the leaf is 3π/2 − επ/2. It
can be easily seen that for each of the two rays at l, the half-plane consisting of
the lines perpendicular to that ray does not intersect any of the other two leaves
of K1,3.

α α

αt l

Fig. 10. Embedding a sweep of length 3. The two rays are drawn using dashed segments
and α here is επ/2t.

Let γ be a number to be set later. For each leaf l of the drawing of K1,3,
we draw the sweep of l as follows: Assume that l has a sweep of length t. We
draw the sweep that contains l inside the two rays extending from l. We do so
in a way that each edge, when translated to have one of its endpoints on l, lies

Self-Approaching Graphs 19

s l0

l1

l2

Fig. 11. The drawing of s and its three neighbors (solid lines) along with the two rays
of the neighbors (dashed) for ε = 0.1. The constructed drawing should be such that
the sweep attached to l0 lies completely inside the area next to l0 that is bounded by
dashed and dotted lines.

entirely inside the area bounded by the two rays. This means if the sweep is small
enough, we can avoid intersection with any strip le of some edge e belonging to
another sweep. To do so, draw the first edge of the sweep so that it has length
γ and makes a επ/2 angle with one of the rays at l. Continue to draw the whole
sweep with each edge having a επ

2t deference of direction with the previous edge
and length γ (See Figure 10). This means that the last edge of the sweep is
parallel to of the two rays at l.

To make sure that the strip parallel to each edge is empty, γ can be set to
sin(π/4− επ/2− π/6)/t.

Draw the leaf attached to l so that it is inside the reflex angle at l and
lies exactly on one of the rays. Then draw rest of the leaves attached to the
vertices of the sweep, in a way that each new edge is exactly in the middle of the
reflex angle of the two edges of the sweep (See Figure 12). The length of each
of these new edges should be small enough so that none of them is inside the
strip induced by another one. To satisfy this, the length of each such leaf can be
γ sin(επ/4t). ut

A.8 Proof of Lemma 6

Lemma 6 Let T be a tree that contains a subdivision of the crab. Then T does
not admit a self-approaching drawing.

20 Self-Approaching Graphs

l

Fig. 12. Embedding the leaves of a sweep. The two rays are drawn using dashed seg-
ments.

Proof. It is easy to see that if a tree admits a self-approaching drawing, then
any connected subgraph of it also admits a self-approaching drawing. There-
fore, we only need to show that no subdivision of the crab graph has a self-
approaching drawing. For contradiction, suppose that the crab graph that has
a self-approaching drawing. By choice of C, there are no vertices of degree 2
adjacent to a leaf of C. By Lemma 3, the total size of the chain of four angles
on path from a1,2 to b1,1 is greater than 3π. By similar arguments, the angles on
the path from a22 to b22 also sum to 3π. Similarly, by Lemma 3, the total size
of the chain of three consecutive angles on the path from a1,1 to a2,1 is greater
than 2π. By similar arguments, the size of the angles on the path from b12 to b21
also sum to 2π. By Lemma 3, each of the four angles formed by the eight leaves
has size at least π/2, summing to 2π. This adds up to a total strictly greater
than 3π + 3π + 2π + 2π + 2π = 12π. Since these angles are the angles around
the 6 vertices a, b, a1, a2, b1, and b2, we have a contradiction.

Now consider C to be the smallest subdivision of the crab graph that admits
a self-approaching drawing. By choice of C, there are no vertices of degree 2
adjacent to a leaf of C. Each subdivision vertex adds a total of 2π to the both
sides of the inequality, hence the contradiction holds. ut

A.9 Proof of Theorem 7

Theorem 7 There exists a set of six points in the plane whose Delaunay tri-
angulation is not an increasing-chord drawing.

We present a counterexample in Figure 13. We have two circles of the same
radius with the one on the right with its center slightly below the one on the
left. The chords AB and A′B′ are vertical and the points C and C ′ are chosen
such that C does not lie inside the circle on the right and C ′ does not lie inside
the circle on the left. The triangles ABC and A′B′C ′ must exist in the Delaunay
triangulation. A simple case analysis then shows that there is no increasing chord
path from B to B′ in the Delaunay triangulation of the set of points shown (an
increasing chord path cannot take any of the edges AB, A′B′, CC ′, AC or A′C ′).
Note that BCA′B′ is a self-approaching path.

Self-Approaching Graphs 21

O
O′

A

B

C

B′

A′

C′

Fig. 13. A Delaunay triangulation that does not contain increasing-chord paths be-
tween all pairs of vertices.

