Exact Algorithms and APX-Hardness Results for Geometric Set Cover

Timothy M. Chan*

Elyot Grant[†]

Abstract

We study several geometric set cover problems in which the goal is to compute a minimum cover of a given set of points in Euclidean space by a family of geometric objects. We give a short proof that this problem is APX-hard when the objects are axis-aligned fat rectangles, even when each rectangle is an ϵ -perturbed copy of a single unit square. We extend this result to several other classes of objects including almost-circular ellipses, axis-aligned slabs, downward shadows of line segments, downward shadows of graphs of cubic functions, 3-dimensional unit balls, and axis-aligned cubes, as well as some related hitting set problems. Our hardness results are all proven by encoding a highly structured minimum vertex cover problem which we believe may be of independent interest.

In contrast, we give a polynomial-time dynamic programming algorithm for 2-dimensional set cover where the objects are pseudodisks containing the origin or are downward shadows of pairwise 2-intersecting *x*-monotone curves. Our algorithm extends to the weighted case where a minimum-cost cover is required.

1 Introduction

In a geometric set cover problem, we are given a range space (X, S)—a universe X of points in Euclidean space and a pre-specified configuration S of regions or geometric objects. The goal is to select a minimum-cardinality subfamily $C \subseteq S$ such that each point in X lies inside at least one region in C. In the weighted generalization, we are also given a vector of positive costs $\mathbf{w} \in \mathbb{R}^S$ and we wish to minimize the total cost of all objects in C. Instances without costs are termed unweighted.

Geometric covering problems have found many applications to real-world engineering and optimization problems in area such as wireless network design, image compression, and circuit-printing [11] [15]. Unfortunately, even for very simple classes of objects such as unit disks or unit squares in the plane, computing the exact minimum set cover is strongly NP-hard [18]. Consequently, much of the research surrounding geometric set cover has focused on approximation algorithms. A large number of constant and almost-constant approximation algorithms have been obtained for various hitting set and set cover problems of low VC-dimension via ϵ -net based methods [8] [13]. These methods have spawned a rich literature concerning techniques for obtaining small ϵ -nets for various weighted and unweighted geometric range spaces [12] [1] [23]. Results include constant-factor linear programming based approximation algorithms for set cover with objects like fat rectangles in the plane and unit cubes in \mathbb{R}^3 .

However, these approaches have limitations. So far, ϵ -net based methods have been unable to produce anything better than constant-factor approximations, and typically the constants involved are quite large. Their application is also limited to problems involving objects with combinatorial restrictions such as low union complexity (see [12] for details). A recent construction due to Pach and Tardos has proven that small ϵ -nets need not always exist for instances of the rectangle cover problem—geometric set cover where the objects are axisaligned rectangles in the plane [21]. In fact, their result implies that the integrality gap of the standard set cover LP for the rectangle cover problem can be as big as $\Theta(\log n)$. Despite this, a constant approximation using other techniques has not been ruled out.

The approximability of problems like rectangle cover also has connections to related capacitated covering problems [10]. Recently, Bansal and Pruhs used these connections, along with a weighted ϵ -net based algorithm of Varadarajan [23], to obtain a breakthrough in approximating a very general class of machine scheduling problems by reducing them to a weighted covering problem involving points 4-sided boxes in \mathbb{R}^3 —axisaligned cuboids abutting the xy and yz planes [9]. The 4-sided box cover problem generalizes the rectangle cover problem in \mathbb{R}^2 and thus inherits its difficulty.

In light of the drawbacks of ϵ -net based methods, Mustafa and Ray recently proposed a different approach. They gave a PTAS for a wide class of unweighted geometric hitting set problems (and consequently, related set cover problems) via a *local search* technique [20]. Their method yields PTASs for:

- Geometric hitting set problems involving halfspaces in ℝ³ and pseudodisks (including disks, axisaligned squares, and more generally homothetic copies of identical convex regions) in the plane.
- By implication, geometric set cover problems with

^{*}David R. Cheriton School of Computer Science, University of Waterloo, tmchan@uwaterloo.ca

[†]Department of Combinatorics and Optimization, University of Waterloo, egrant@uwaterloo.ca

lower half-spaces in \mathbb{R}^3 (by geometric duality, see [5]), disks in \mathbb{R}^2 (by a standard lifting transformation that maps disks to lower halfspaces in \mathbb{R}^3 , see [5]), and translated copies of identical convex regions in the plane (again, by duality).

Their results currently do not seem applicable to set cover with general pseudodisks in the plane. On a related note, Erlebach and van Leeuwen have obtained a PTAS for the weighted version of geometric set cover for the special case of unit squares [14].

1.1 Our Results

We present two main results—a series of APX-hardness proofs for several geometric set cover and related hitting set problems, and a polynomial-time exact algorithm for a different class of geometric set cover problems.

For a set Y of points in the plane, we define the downward shadow of Y to be the set of all points (a, b) such that there is a point $(a, y) \in Y$ with $y \ge b$.

Theorem 1 Unweighted geometric set cover is APXhard with each of the following classes of objects:

- (C1) Axis-aligned rectangles in \mathbb{R}^2 , even when all rectangles have lower-left corner in $[-1, -1+\epsilon] \times [-1, -1+\epsilon]$ and upper-right corner in $[1, 1+\epsilon] \times [1, 1+\epsilon]$ for an arbitrarily small $\epsilon > 0$.
- (C2) Axis-aligned ellipses in \mathbb{R}^2 , even when all ellipses have centers in $[0, \epsilon] \times [0, \epsilon]$ and major and minor axes of length in $[1, 1 + \epsilon]$.
- (C3) Axis-aligned slabs in \mathbb{R}^2 , each of the form $[a_i, b_i] \times [-\infty, \infty]$ or $[-\infty, \infty] \times [a_i, b_i]$.
- (C4) Axis-aligned rectangles in \mathbb{R}^2 , even when the boundaries of each pair of rectangles intersect exactly zero times or four times.
- (C5) Downward shadows of line segments in \mathbb{R}^2 .
- (C6) Downward shadows of (graphs of) univariate cubic functions in ℝ².
- (C7) Unit balls in \mathbb{R}^3 , even when all the balls contain a common point.
- (C8) Axis-aligned cubes in \mathbb{R}^3 , even when all the cubes contain a common point and are of similar size.
- (C9) Half-spaces in \mathbb{R}^4 .

Additionally, unweighted geometric hitting set is APX-hard with each of the following classes of objects:

- (H1) Axis-aligned slabs in \mathbb{R}^2 .
- (H2) Axis-aligned rectangles in R², even when the boundaries of each pair of rectangles intersect exactly zero times or four times.

- (H3) Unit balls in \mathbb{R}^3 .
- (H4) Half-spaces in \mathbb{R}^4 .

Mustafa and Ray ask if their local improvement approach might yield a PTAS for a wider class of instances; Theorem 1 immediately rules this out for all of the covering and hitting set problems listed above by proving that no PTAS exists for them unless P = NP. Item (C1) demonstrates that even tiny perturbations can destroy the behaviour of the local search method. (C2)rules out the possibility of a PTAS for arbitrarily fat ellipses (that is, ellipses that are within ϵ of being perfect circles). (C5) and (C6) stand in contrast to our algorithm below, which proves that geometric set cover is polynomial-time solvable when the objects are downward shadows of horizontal line segments or quadratic functions. In the case of (C4) and (H2), the intersection graph of the rectangles is a comparability graph (and hence a perfect graph); even then, neither set cover nor hitting set admits a PTAS. (C7), (C8), (C9), (H3), and (H4) complement the result of Mustafa and Ray by showing that their algorithm fails in higher dimensions.

All of our hardness results are proven by directly encoding a restricted version of unweighted set cover, which we call *SPECIAL-3SC*:

Definition 2 In an instance of SPECIAL-3SC, we are given a universe $U = A \cup W \cup X \cup Y \cup Z$ comprising disjoint sets $A = \{a_1, \ldots, a_n\}$, $W = \{w_1, \ldots, w_m\}$, $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_m\}$, and $Z = \{z_1, \ldots, z_m\}$ where 2n = 3m. We are also given a family S of 5msubsets of U satisfying the following two conditions:

- For each $1 \leq t \leq m$, there are integers $1 \leq i < j < k \leq n$ such that S contains the sets $\{a_i, w_t\}$, $\{w_t, x_t\}$, $\{a_j, x_t, y_t\}$, $\{y_t, z_t\}$, and $\{a_k, z_t\}$ (summing over all t gives the 5m sets contained in S.)
- For all 1 ≤ t ≤ n, the element a_t is in exactly two sets in S.

In section 2, we show:

Lemma 3 SPECIAL-3SC is APX-hard.

Our second result is a dynamic programming algorithm that exactly solves weighted geometric set cover with various simple classes of objects:

Theorem 4 There exists a polynomial-time exact algorithm for the weighted geometric set cover problem involving downward shadows of pairwise 2-intersecting x-monotone curves in \mathbb{R}^2 . Moreover, it runs in $O(m^2n(m+n))$ time on a set system consisting of n points and m regions.

Our algorithm is a generalization and simplification of a similar algorithm appearing in [10] for a combinatorial problem equivalent to geometric set cover with downward shadows of horizontal line segments in \mathbb{R}^2 . We believe that our current presentation is much shorter and cleaner; in particular, we do not require shortest path as a subroutine. We can also extend our algorithm to some related geometric set systems:

Corollary 5 There exists a polynomial-time exact algorithm for the weighted geometric set cover problem involving a configuration of pseudodisks in \mathbb{R}^2 where the origin lies within the interior of each pseudodisk. Furthermore, it runs in $O(mn^2(m+n))$ time on a set system consisting of n points and m pseudodisks.

Proof. We apply Lemma 2.11 of [4] to transform the arrangement of pseudodisks into a topologically equivalent one where all the psuedodisks are star-shaped about the origin, and then apply a standard polar-to-cartesian transformation, mapping the star-shaped pseudodisks to the downward shadows of 2-intersecting x-monotone functions on $[0, 2\pi)$.

1.2 Related Work

The problem of assembling a given rectilinear polygon from a minimum number of (possibly overlapping) axisaligned rectangles was first proven to be MAX-SNPcomplete by Berman and Dasgupta [6], which rules out the possibility of a PTAS unless P = NP. Since set cover with axis-aligned rectangles can encode these instances, it too is MAX-SNP-complete. However, the proof in [6] cannot be applied to produce an instance using only fat rectangles. The current best approximability for the rectilinear polygon cover problem on a polygon with n edges is $O(\sqrt{\log n})$ via an algorithm of Kumar and Ramesh [19].

In his recent Ph.D. thesis, van Leeuwen proves APXhardness for geometric set cover and dominating set with axis-aligned rectangles and ellipses in the plane [24]. Har-Peled provides a simple proof that set cover with triangles is APX-hard, even when all triangles are fat and of similar size [16]. Har-Peled also notes that set cover with circles (that is, with boundaries of disks) is APX-hard for a similar reason. However, neither the results of van Leeuwen nor Har-Peled can be directly extended to fat axis-aligned rectangles or fat ellipses.

There are few non-trivial examples of geometric set cover problems that are known to be poly-time solvable. Har-Peled and Lee give a dynamic programming algorithm for weighted cover of points in the plane by half-planes [17]; their method runs in $O(n^5)$ time on an instance with n points and half-planes. Our algorithm both generalizes theirs and reduces the run time by a factor of n. Ambühl et al. give a poly-time dynamic programming algorithm for weighted covering of points in a narrow strip using unit disks [3]; their method appears to be unrelated to ours. An interesting PTAS result is that of Har-Peled and Lee, who give a PTAS for minimum weight cover with any class of fat objects, provided that each object is allowed to expand by a small amount. Our results show that without allowing this, a PTAS cannot be obtained.

CCCG 2011, Toronto ON, August 10-12, 2011

2 APX-Hardness of SPECIAL-3SC

In this section, we prove Lemma 3. We recall that a pair of functions (f,g) is an L-reduction from a minimization problem A to a minimization problem B if there are positive constants α and β such that for each instance x of A, the following hold:

- (L1) The function f maps instances of A to instances of B such that $OPT(f(x)) \le \alpha \cdot OPT(x)$.
- (L2) The function g maps feasible solutions of f(x)to feasible solutions of x such that $c_x(g(y)) - OPT(x) \leq \beta \cdot (c_{f(x)}(y) - OPT(f(x)))$, where c_x and $c_{f(x)}$ are the cost functions of the instances xand f(x) respectively.

We exhibit an L-reduction from minimum vertex cover on 3-regular graphs (hereafter known as 3VC) to SPECIAL-3SC. Since 3VC is APX-hard [2], this proves that SPECIAL-3SC is APX-hard (see [22] for details).

Given an instance x of 3VC on edges $\{e_1, \ldots, e_n\}$ with vertices $\{v_1, \ldots, v_m\}$ where 3m = 2n, we define f(x) be the SPECIAL-3SC instance containing the sets $\{a_i, w_t\}$, $\{w_t, x_t\}$, $\{a_j, x_t, y_t\}$, $\{y_t, z_t\}$, and $\{a_k, z_t\}$ for each 4tuple (t, i, j, k) such that v_t is a vertex incident to edges e_i , e_j , and e_k with i < j < k. To define g, we suppose we are given a solution y to the SPECIAL-3SC instance f(x). We take vertex v_t in our solution g(y) of the 3VC instance x if and only if at least one of $\{a_i, w_t\}$, $\{a_j, x_t, y_t\}$, or $\{a_k, z_t\}$ is taken in y. We observe that g maps feasible solutions of f(x) to feasible solutions of x since e_i is covered in g(y) whenever a_i is covered in y. Our key observation is the following:

Proposition 6 OPT(f(x)) = OPT(x) + 2m.

Proof. For $1 \leq t \leq m$, let $\mathcal{P}_t = \{\{w_t, x_t\}, \{y_t, z_t\}\}$ and $\mathcal{Q}_t = \{\{a_i, w_t\}, \{a_j, x_t, y_t\}, \{a_k, z_t\}\}$. Call a solution \mathcal{C} of f(x) segregated if for all $1 \leq t \leq m$, \mathcal{C} either contains all sets in \mathcal{P}_t and no sets in \mathcal{Q}_t , or contains all sets in \mathcal{Q}_t and no sets in \mathcal{P}_t .

Via local interchanging, we observe that there exists an optimal solution to f(x) that is segregated. Additionally, our function g, when restricted to segregated solutions of f(x), forms a bijection between them and feasible solutions of x. We check that g maps segregated solutions of size 2m + k to solutions of x having cost precisely k, and the result follows. \Box

Proposition 6 implies that f satisfies property (L1) with $\alpha = 5$, since $OPT(x) \ge \frac{m}{2}$. Moreover, $c_x(g(y)) + c_x(g(y)) = \frac{m}{2}$

 $2m \leq c_{f(x)}(y)$ since both $\{w_t, x_t\}$ and $\{y_t, z_t\}$ must be taken in y whenever v_t is not taken in g(y), and at least three of $\{\{a_i, w_t\}, \{w_t, x_t\}, \{a_j, x_t, y_t\}, \{y_t, z_t\}, \{a_k, z_t\}\}$ must be taken in y whenever v_t is taken in g(y). Together with Proposition 6, this proves that g satisfies property (L2) with $\beta = 1$, completing the proof that (f, g) is an L-reduction.

3 Encodings of SPECIAL-3SC via Geometric Set Cover

In this section, we prove Theorem 1 using Lemma 3, by encoding instances of various classes of geometric set cover and hitting set problems as instances of SPECIAL-3SC. The beauty of SPECIAL-3SC is that it allows many of our geometric APX-hardness results to follow immediately from simple "proofs by pictures" (see Figure 3). The key property of SPECIAL-3SC is that we can divide the elements into two sets A and $B = W \cup X \cup Y \cup Z$, and linearly order B in such a way that all sets in S are either two adjacent elements from B, one from B and one from A, or two adjacent elements from B and one from A. We need only make $[w_t, x_t, y_t, z_t]$ appear consecutively in the ordering of B.

For (C1), we simply place the elements of A on the line segment $\{(x, x - 2) : x \in [1, 1 + \epsilon]\}$ and place the elements of B, in order, on the line segment $\{(x, x + 2) : x \in [-1, -1 + \epsilon]\}$, for a sufficiently small $\epsilon > 0$. As we can see immediately from Figure 3, each set in S can be encoded as a fat rectangle in the class (C1).

(C2) is similar. It is not difficult to check that each set can be encoded as a fat ellipse in this class.

For (C3), we place the elements of A on a horizontal line (the top row). For each $1 \leq t \leq m$, we create a new row containing $\{w_t, x_t\}$ and another containing $\{y_t, z_t\}$ as shown in Figure 3. This time, we will need the second property in Definition 2—that each a_i appears in two sets. If $\{a_i, w_t\}$ is the first set that a_i appears in, we place w_t slightly to the left of a_i ; if it is the second set instead, we place w_t slightly to the right of a_i . Similarly, the placement of x_t, y_t (resp. w_t) depends on whether a set of the form $\{a_j, x_t, y_t\}$ (resp. $\{a_k, w_t\}$) is the first or second set that a_j (resp. a_k) appears in. As we can see from Figure 3, each set in S can be encoded as a thin vertical or horizontal slab.

(C4) is similar to (C3), with the slabs replaced by thin rectangles. For example, if $\{a_i, w_t\}$ and $\{a_i, w_{t'}\}$ are the two sets that a_i appears in, with w_t located higher than $w_{t'}$, we can make the rectangle for $\{a_i, w_t\}$ slightly wider than the rectangle for $\{a_i, w_t\}$ to ensure that these two rectangles intersect 4 times.

For (C5), we can place the elements of A on the ray $\{(x, -x) : x > 0\}$ and the elements of B, in order, on the ray $\{(x, x) : x < 0\}$. The sets in S can be encoded as downward shadows of line segments as in Figure 3.

(C6) is similar. One way is to place the elements of A on the line segment $\ell_A = \{(x, x) : x \in [-1, -1 + \epsilon]\}$ and the elements of B (in order) on the line segment $\ell_B = \{(x, 0) : x \in [1.5, 1.5 + \epsilon]\}$. For any $a \in [-1, -1 + \epsilon]$ and $b \in [1.5, 1.5 + \epsilon]$, the cubic function $f(x) = (x - b)^2[(a + b)x - 2a^2]/(b - a)^3$ is tangent to ℓ_A and ℓ_B at x = a and x = b. (The function intersects y = 0 also at $x = 2a^2/(a + b) \gg 1.5 + \epsilon$, far to the right of ℓ_B .) Thus, the size-2 sets in S can be encoded as cubics. A size-3 set $\{a_j, x_t, y_t\}$ can also be encoded if we take a cubic with tangents at a_j and x_t , shift it upward slightly, and make x_t and y_t sufficiently close.

For (C7), we place the elements in A on a circular arc $\gamma_A = \{(x, y, 0) : x^2 + y^2 \leq 1, x, y \geq 0\}$ and the elements in B (in order) on the vertical line segment $\ell_B = \{(0, 0, z) : z \in [1-2\epsilon, 1-\epsilon]\}$. (This idea is inspired by a known construction [7], after much simplification.) We can ensure that every two points in A have distance $\Omega(\sqrt{\epsilon})$ if $\epsilon \ll 1/n^2$. The technical lemma below allows us to encode all size-2 sets (by setting b = b') and size-3 sets by unit balls containing a common point.

Lemma 7 Given any $a \in \gamma_A$ and $b, b' \in \ell_B$, there exists a unit ball that (i) intersects γ_A at an arc containing a of angle $O(\sqrt{\epsilon})$, (ii) intersects ℓ_B at precisely the segment from b to b', and (iii) contains $(1/\sqrt{2}, 1/\sqrt{2}, 1)$.

Proof. Say a = (x, y, 0), b = (0, 0, z - h), b' = (0, 0, z + h). Consider the unit ball K centered at $c = ((1 - h^2)x, (1 - h^2)y, z)$. Then (ii) is self-evident and (iii) is straightforward to check. For (i), note that a lies in K since $||a - c||^2 = h^2 + z^2 \le \epsilon^2 + (1 - \epsilon)^2 < 1$. On the other hand, if a point $p \in \gamma_A$ lies in the unit ball, then letting $a' = ((1 - h^2)x, (1 - h^2)y, 0)$, we have $||p - c||^2 = ||p - a'||^2 + z^2 \le 1$, implying $||p - a|| \le ||p - a'|| + ||a' - a|| \le \sqrt{1 - z^2} + h = O(\sqrt{\epsilon})$.

(C8) is similar to (C1); we place the elements in A on the line segment $\ell_A = \{(t,t,0) : t \in (0,1)\}$ and the elements in B on the line segment $\ell_B = \{(0,3-t,t) : t \in (0,1)\}$. For any $(a,a,0) \in \ell_A$ and $(0,3-b,b) \in \ell_B$, the cube $[-3+b+2a,a] \times [a,3-b] \times [-3+a+2b,b]$ is tangent to ℓ_A at (a,a,0), is tangent to ℓ_B at (0,3-b,b), and contains (0,1,0). Size-3 sets $\{a_j, x_t, y_t\}$ can be encoded by taking a cube with tangents at a_j and x_t , expanding it slightly, and making x_t and y_t sufficiently close.

(C9) follows from (C7) by the standard lifting transformation [5].

For (H1), we map each element a_i to a thin vertical slab. For each $1 \leq t \leq m$, we map w_t, x_t, y_t, z_t to a cluster of four thin horizontal slabs as in Figure 3. Each set in S can be encoded as a point in the arrangement of these slabs.

- (H2) is similar; see Figure 3.
- (H3) follows from (C7) by duality.
- (H4) follows from (C9) by duality.

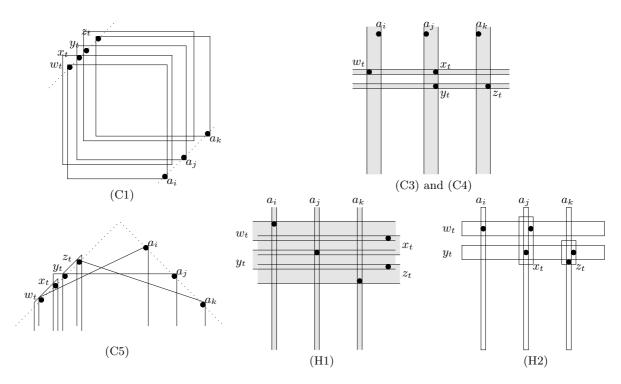


Figure 1: APX-hardness proofs of geometric set cover problems.

4 Algorithm for Weighted Covering by Downward Shadows of 2-Intersecting *x*-Monotone Curves

Here, we prove Theorem 4 by giving a polynomialtime dynamic programming algorithm for the weighted cover of a finite set of points $X \subseteq \mathbb{R}^2$ by a set S of downward shadows of 2-intersecting x-monotone curves C_1, \ldots, C_m . For $1 \leq i \leq m$, define the region $S_i \in S$ to be the downward shadow of the curve C_i and let it have positive cost w_i . Define n = |X|.

We shall assume that each C_i is the graph of a smooth univariate function with domain $[-\infty, \infty]$, that all intersections are transverse (no pair of curves intersect tangentially), and that no points in X lie on any curve C_i . It is not difficult to get around these assumptions, but we retain them to simplify our explanation.

We shall slightly abuse notation by writing $C_i(x)$ for the unique $y \in \mathbb{R}$ such that (x, y) lies on the curve C_i . We say curve C_i is wider than curve C_j (written $C_i \succ C_j$) whenever $C_i(x) > C_j(x)$ for all sufficiently large x. We may also write $S_i \succ S_j$ whenever $C_i \succ C_j$. We note that \succ is a total ordering and thus we can order all curves by width, so we assume without loss of generality that $C_i \succ C_j$ whenever i > j. The width-based ordering of curves is useful because of the following key observation:

Proposition 8 If $C_i \succ C_j$, then $S_j \setminus S_i$ is connected.

Proof. This is clearly true if C_i and C_j intersect once or less. If C_i intersects C_j twice—say, at (x_1, y_1) and (x_2, y_2) with $x_2 > x_1$ —then since all intersections are transverse, the area above C_i but below C_j can only be disconnected if $C_j(x) > C_i(x)$ for $x < x_1$ and $x > x_2$, implying $C_j \succ C_i$.

For all $1 \leq i \leq m$ and all intervals [a, b], define X[a, b] to be all points in X with x-coordinate in [a, b], and define X[a, b, i] to be $X[a, b] \setminus S_i$. Define $S_{<i}$ to be the set $\{S_1, \ldots, S_{i-1}\}$ of all regions of width less than S_i . Let M[a, b, i] denote the minimum cost of a solution to the weighted set cover problem on the set system $(X[a, b, i], S_{<i})$ (with weights inherited from the original problem). If such a covering does not exist, $M[a, b, i] = \infty$. For notational simplicity, we assume that C_m , the widest curve, contains no points in its downward shadow (that is, $X \cap S_m$ is empty). Our goal is then to determine $M[-\infty, \infty, m]$ via dynamic programming; the key structural result we need is the following:

Proposition 9 If X[a, b, i] is non-empty, then

$$M[a, b, i] = \min \left\{ \min_{c \in (a, b)} \{ M[a, c, i] + M[c, b, i] \}, \\ \min_{j \le i} \{ M[a, b, j] + w_j \} \right\}.$$

Proof. Clearly $M[a, b, i] \leq M[a, c, i] + M[c, b, i]$ for all $c \in (a, b)$. Also, for j < i, $M[a, b, j] + w_j$ is the cost of purchasing S_j and then covering the remaining points in X[a, b] using regions less wide than S_j (and hence less wide than S_i). Thus $M[a, b, j] + w_j$ is a cost of a

feasible solution to $(X[a, b, i], S_{< i})$ and hence is at least M[a, b, i]. It follows that M[a, b, i] is bounded above by the right hand side.

To show that M[a, b, i] is bounded below by the right hand side, we let $\mathcal{Z} \subseteq \mathcal{S}_{\langle i \rangle}$ be a feasible set cover for $(X[a, b, i], \mathcal{S}_{\langle i \rangle})$. We consider two cases:

Case 1: There is some $c \in (a, b)$ such that $(c, C_i(c))$ is not covered by \mathcal{Z} . Let $\mathcal{Z}_{<c}$ be the set of all regions in \mathcal{Z} containing a point in X[a, c, i], and let $\mathcal{Z}_{>c}$ be the set of all regions in \mathcal{Z} containing a point in X[c, b, i]. Let $Z \in \mathcal{Z}$. Since $Z \prec S_i$, by Proposition 8, $Z \setminus S_i$ is connected and thus cannot contain points both in X[a, c, i] and X[c, b, i]. Hence $\mathcal{Z}_{<c} \cap \mathcal{Z}_{>c} = \emptyset$ and thus the cost of \mathcal{Z} is at least M[a, c, i] + M[c, b, i].

Case 2: For all $c \in (a, b)$, the point $(c, C_i(c))$ is covered by \mathcal{Z} . Then \mathcal{Z} covers $X[a, b, i] \cup S_i$ and hence covers all points in X[a, b]. Let C_j be the widest curve in \mathcal{Z} , noting that j < i. Then the cost of \mathcal{Z} is at least $w_j + M[a, b, j]$ since $\mathcal{Z} \setminus S_j$ must cover all points in X[a, b, j].

It follows that \mathcal{Z} must cost as much as either $\min_{c \in (a,b)} \{M[a,c,i] + M[c,b,i]\}$ or $\min_{j < i} \{M[a,b,j] + w_j\}$, and the result follows.

Proposition 9 immediately implies the existence of a polynomial-time dynamic programming algorithm to compute $M[-\infty, \infty, m]$ and return a cover having that cost. We note that there are at most n+1 combinatorially relevant values of a and b when computing optimal costs M[a, b, i] for subproblems, so there are $O(mn^2)$ distinct values of M[a, b, i] to compute. Recursively computing M[a, b, i] requires O(m + n) table lookups, so the total runtime of our algorithm is $O(mn^2(m+n))$, assuming a representation allowing primitive operations in O(1) time.

References

- B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes. In ACM Symposium on Theory of Computing (2009), 639648.
- [2] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. *Theoretical Comp. Sci.* 237 (2000) 123-134.
- [3] C. Ambühl, T. Erlebach, M. Mihal'ák, and M. Nunkesser. Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In APPROX and RANDOM (2006) 3-14.
- [4] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky. Lenses in arrangements of pseudocircles and their applications. J. ACM 51(2) (2004), 139-186.
- [5] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications (Third edition). Springer-Verlag, Heidelberg, (2008).

- [6] P. Berman and B. DasGupta. Complexities of efficient solutions of rectilinear polygon cover problems. *Algorithmica* 17(4) (1997), 331356.
- [7] H. Brönnimann and O. Devillers The union of unit balls has quadratic complexity, even if they all contain the origin. arXiv:cs/9907025v1 [cs.CG] (1999).
- [8] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. *Discrete Comput. Geom.* 14 (1995), 263279.
- [9] N. Bansal and K. Pruhs. The geometry of scheduling. IEEE 51st Annual Symposium on Foundations of Computer Science (2010), 407-414.
- [10] D. Chakrabarty, E. Grant, and J. Koenemann. On column-restricted and priority covering integer programs. In *Integer Programming and Combinatorial Optimization* (2010) 355-368.
- [11] Y. Cheng, S.S. Iyengar, and R.L. Kashyap. A new method for image compression using irreducible covers of maximal rectangles. *IEEE Trans. Software Engrg.* 14 (1988), 651658.
- [12] K. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set cover. *Discrete Comput. Geom.* 37 (2007), 4358.
- [13] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small. *Information Processing Let*ters 95(2) (2005), 358362.
- [14] T. Erlebach and E. J. van Leeuwen PTAS for weighted set cover on unit squares. In APPROX and RANDOM (2010), 166-177.
- [15] A. Hegedüs. Algorithms for covering polygons with rectangles. Comput. Aided Geom. Design 14 (1982), 257260.
- [16] S. Har-Peled. Being Fat and Friendly is Not Enough. arXiv:0908.2369v1 [cs.CG] (2009).
- [17] S. Har-Peled and M. Lee. Weighted geometric set cover problems revisited. Unpublished manuscript, (2008).
- [18] D.S. Hochbaum and W. Maass. Fast approximation algorithms for a nonconvex covering problem. J. Algorithms 8(3) (1987), 305323.
- [19] V.S.A. Kumar and H. Ramesh. Covering rectilinear polygons with axis-parallel rectangles. SIAM J. Comput. 32(6) (2003), 1509-1541.
- [20] N.H. Mustafa and S Ray. Improved results on geometric hitting set problems. *Discrete Comput. Geom.* 44(4) (2010), 883895.
- [21] J. Pach, G. Tardos. Tight lower bounds for the size of epsilon-nets. In Proc. 27th ACM Sympos. Comput. Geom. (2011), to appear.
- [22] C.H. Papadimitriou, M. Yannakakis. Optimization, approximation, and complexity classes. J. Comput. Systems Sci. 43 (1991), 425-440.
- [23] K. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In ACM Symposium on Theory of Computing (2010).
- [24] E. J. van Leeuwen. Optimization and Approximation on Systems of Geometric Objects. PhD thesis, Universiteit van Amsterdam, (2009).

Appendix

This will not be in the printed proceedings.