
Exact Algorithms and APX-Hardness Results for

Geometric Packing and Covering Problems∗

Timothy M. Chan† Elyot Grant‡

March 30, 2012

Abstract

We study several geometric set cover and set packing problems involv-
ing configurations of points and geometric objects in Euclidean space. We
show that it is APX-hard to compute a minimum cover of a set of points
in the plane by a family of axis-aligned fat rectangles, even when each
rectangle is an ǫ-perturbed copy of a single unit square. We extend this
result to several other classes of objects including almost-circular ellipses,
axis-aligned slabs, downward shadows of line segments, downward shad-
ows of graphs of cubic functions, fat semi-infinite wedges, 3-dimensional
unit balls, and axis-aligned cubes, as well as some related hitting set prob-
lems. We also prove the APX-hardness of a related family of discrete set
packing problems. Our hardness results are all proven by encoding a
highly structured minimum vertex cover problem which we believe may
be of independent interest.

In contrast, we give a polynomial-time dynamic programming algo-
rithm for geometric set cover where the objects are pseudodisks containing
the origin or are downward shadows of pairwise 2-intersecting x-monotone
curves. Our algorithm extends to the weighted case where a minimum-cost
cover is required. We give similar algorithms for several related hitting
set and discrete packing problems.

1 Introduction

In a geometric set cover problem, we are given a range space (X,S)—a universe
X of points in Euclidean space and a pre-specified configuration S of regions
or geometric objects such as rectangles or half-planes. The goal is to select a
minimum-cardinality subfamily C ⊆ S such that each point in X lies inside at

∗A preliminary version of this paper appeared in the 2011 Canadian Conference on Com-
putational Geometry [11].

†David R. Cheriton School of Computer Science, University of Waterloo,
tmchan@uwaterloo.ca

‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, elyot@mit.edu

1

least one region in C. In the related geometric hitting set problem, the goal
is instead to select a minimum cardinality subset Y ⊆ X such that each set
in S contains at least one point in Y . In the weighted generalizations of these
problems, we are also given a vector of positive costs w ∈ R

S or w ∈ R
X and we

wish to minimize the total cost of all objects in C or Y respectively. Instances
without costs (or with unit costs) are termed unweighted.

Geometric covering problems have found many applications to real-world
engineering and optimization problems in areas such as wireless network design,
image compression, and circuit-printing. Unfortunately, even for very simple
classes of objects such as unit disks or unit squares in the plane, computing
the exact minimum set cover is strongly NP-hard [20]. Consequently, much
of the research surrounding geometric set cover has focused on approximation
algorithms. A large number of constant and almost-constant approximation
algorithms have been obtained for various hitting set and set cover problems
of low VC-dimension via ǫ-net based methods [9] [17]. These methods have
spawned a rich literature concerning techniques for obtaining small ǫ-nets for
various weighted and unweighted geometric range spaces [13] [4] [25]. Results
include constant-factor linear programming based approximation algorithms for
set cover with objects like fat rectangles in the plane and unit cubes in R

3.
However, these approaches have limitations. So far, ǫ-net based methods

have been unable to produce anything better than constant-factor approxima-
tions, and typically the constants involved are quite large. Their application is
also limited to problems involving objects with combinatorial restrictions such
as low union complexity (see [13] for details). A recent construction due to
Pach and Tardos has proven that small ǫ-nets need not always exist for in-
stances of the rectangle cover problem—geometric set cover where the objects
are axis-aligned rectangles in the plane [23]. In fact, their result implies that
the integrality gap of the standard set cover LP for the rectangle cover problem
can be as big as Θ(log n). Despite this, a constant approximation using other
techniques has not been ruled out.

The approximability of problems like rectangle cover also has connections
to related capacitated covering problems [10]. Recently, Bansal and Pruhs used
these connections, along with a weighted ǫ-net based algorithm of Varadarajan
[25], to obtain a breakthrough in approximating a very general class of machine
scheduling problems by reducing them to a weighted covering problem involv-
ing points and 4-sided boxes in R

3—axis-aligned cuboids abutting the xy and
yz planes [5]. The 4-sided box cover problem generalizes the rectangle cover
problem in R

2 and thus inherits its difficulty.
In light of the drawbacks of ǫ-net based methods, Mustafa and Ray recently

proposed a different approach. They gave a PTAS for a wide class of unweighted
geometric hitting set problems (and consequently, related set cover problems)
via a local search technique [22]. Cast in our framework, their algorithm works
roughly as follows: take any feasible set cover C, find a family of k sets in C that
can be replaced by some family of k − 1 sets while still covering every object
in the universe, and make such replacements until no more are possible. For
fixed k, this runs in polynomial time, and as Mustafa and Ray show, produces a

2

1+O
(

1√
k

)

-approximation for range spaces satisfying certain locality conditions.

Their method yields PTASs for:

• Geometric hitting set problems involving half-spaces in R
3 and pseu-

dodisks (including disks, axis-aligned squares, and more generally homo-
thetic copies of identical convex regions) in the plane.

• By implication, geometric set cover problems with lower half-spaces in R
3

(by geometric duality, see [6]), disks in R
2 (by a standard lifting transfor-

mation that maps disks to lower halfspaces in R
3, see [6]), and translated

copies of identical convex regions in the plane (again, by duality).

Their results currently do not seem applicable to set cover with general pseu-
dodisks in the plane. On a related note, Erlebach and van Leeuwen have ob-
tained a PTAS for the weighted version of geometric set cover for the special
case of unit squares [16].

Of additional interest are the related “dual” problems encountered when
attempting to solve the maximum set packing problem on geometric range spaces
such as those described above. Given a geometric range space (X,S), there are
in fact two problems to discuss:

• The pack-points problem—that of finding a maximum cardinality subset
Y ⊆ X of points, no two of which are contained in a single region of S.

• The pack-regions problem—that of finding a maximum-cardinality sub-
family C ⊆ S of regions, no two of which intersect at a point in X.

The pack-points and pack-regions problems can be thought of as the “dual”
problems associated to the set cover and hitting set problems for geometric
range spaces (where by dual, we mean in the sense of packing-covering duality
or linear programming duality). The pack-regions problem sometimes goes by
the name discrete independent set [12], but we avoid this terminology to avoid
confusion between the two packing variations, instead emulating the terminology
of [15].

As with the set cover and hitting set problems, we shall discuss both weighted
and unweighted versions of the pack-points and pack-regions problems. In the
weighted pack-points (pack-regions) problem, we are additionally given a vector
of positive costs w ∈ R

X (w ∈ R
S) and we wish to maximize the total weight

of the subset of points Y (subfamily of regions C).

1.1 Hardness Results

In this article, we present two main classes of results. The first is a series of
APX-hardness proofs for a number of unweighted geometric set cover, hitting
set, pack-points, and pack-regions problems on various range spaces. Here, we
outline these results.

For a set Y of points in the plane, we define the downward shadow of Y to
be the set of all points (a, b) such that there is a point (a, y) ∈ Y with y ≥ b.

3

Theorem 1.1. Unweighted geometric set cover is APX-hard with each of the
following classes of objects:

(C1) Axis-aligned rectangles in R
2, even when all rectangles have lower-left cor-

ner in [−1,−1+ǫ]×[−1,−1+ǫ] and upper-right corner in [1, 1+ǫ]×[1, 1+ǫ]
for an arbitrarily small ǫ > 0.

(C2) Axis-aligned ellipses in R
2, even when all ellipses have centers in [0, ǫ] ×

[0, ǫ] and major and minor axes of length in [1, 1 + ǫ].

(C3) Axis-aligned slabs in R
2, each of the form [ai, bi]× [−∞,∞] or [−∞,∞]×

[ai, bi].

(C4) Axis-aligned rectangles in R
2, even when the boundaries of each pair of

rectangles intersect exactly zero times or four times.

(C5) Downward shadows of line segments in R
2.

(C6) Downward shadows of (graphs of) univariate cubic functions in R
2.

(C7) Unit balls in R
3, even when all the balls contain a common point.

(C8) Axis-aligned cubes in R
3, even when all the cubes contain a common point

and are of similar size.

(C9) Half-spaces in R
4.

(C10) Fat semi-infinite wedges in R
2, each of which has an opening angle in

[π − ǫ, π) and has its vertex within ǫ of a common point.

Additionally, unweighted geometric hitting set is APX-hard with each of the
following classes of objects:

(H1) Axis-aligned slabs in R
2.

(H2) Axis-aligned rectangles in R
2, even when the boundaries of each pair of

rectangles intersect exactly zero times or four times.

(H3) Unit balls in R
3.

(H4) Half-spaces in R
4.

Mustafa and Ray ask if their local improvement approach outlined in [22]
might yield a PTAS for a wider class of instances; Theorem 1.1 immediately
rules this out for all of the covering and hitting set problems listed above by
proving that no PTAS exists for them unless P = NP. Item (C1) demonstrates
that even tiny perturbations in the input regions can destroy the behaviour of
the local search method. (C2) rules out the possibility of a PTAS for arbitrarily
fat ellipses (that is, ellipses that are within ǫ of being perfect circles). (C5)
and (C6) stand in contrast to our dynamic programming algorithms given later
in this paper, which prove that geometric set cover is polynomial-time solvable

4

when the objects are downward shadows of horizontal line segments or quadratic
functions. In the case of (C4) and (H2), the intersection graph of the rectangles
is a comparability graph (and hence a perfect graph); even then, neither set cover
nor hitting set admits a PTAS. (C7), (C8), (C9), (H3), and (H4) complement
the result of Mustafa and Ray by showing that their algorithm fails in higher
dimensions. (C10) stands in contrast to the fact that covering with half-planes
is exactly solvable in polynomial time (this result, alongside many others, is
discussed in Section 1.3).

For unit cubes in R
3, the existence of a PTAS remains an open question

for both set cover and hitting set. Additionally, set cover with arbitrarily sized
disks or squares in R

2 remains open (Mustafa and Ray only provide a PTAS
for the hitting set problem involving arbitrary pseudodisks, which only implies
a PTAS for the covering version involving unit disks or unit squares).

All of our hardness results are proven via reduction from a restricted version
of unweighted set cover, which we call SPECIAL-3SC :

Definition 1.2. In a SPECIAL-3SC range space, we are given a universe U =
A∪W ∪X∪Y ∪Z comprising disjoint sets A = {a1, . . . , an}, W = {w1, . . . , wm},
X = {x1, . . . , xm}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zm} where 2n = 3m.
We are also given a family S of 5m subsets of U satisfying the following two
conditions:

• For each 1 ≤ t ≤ m, there are integers 1 ≤ i < j < k ≤ n such that
S contains the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt}
(summing over all t gives the 5m sets contained in S.)

• For all 1 ≤ t ≤ n, the element at is in exactly two sets in S.

We denote by SPECIAL-3SC the minimum set cover problem on a SPECIAL-
3SC range space.

We note that each element in a SPECIAL-3SC range space is contained in
exactly two sets, so SPECIAL-3SC is a special case of the vertex cover problem
in graphs of degree at most 3. Intuitively, we may think of SPECIAL-3SC as
the problem obtained when one takes a 3-regular graph G, replaces each vertex
v with a path Pv of length 4 (connecting the first, third, and fifth vertices of Pv

to the neighbours of v in any order), and examines the minimum vertex cover
problem in the resulting graph.

In section 2, we show:

Lemma 1.3. SPECIAL-3SC is APX-hard, even in the unweighted case.

We are also able to establish APX-hardness for a packing version of the
SPECIAL-3SC problem:

Lemma 1.4. The pack-regions problem is APX-hard for SPECIAL-3SC range
spaces, even in the unweighted case.

5

The pack-regions problem on SPECIAL-3SC range spaces is equivalent to
the maximum independent set problem on the associated class of graphs of
degree at most 3.

In section 3, we prove Theorem 1.1 by showing that all of the range spaces
listed in the statement of Theorem 1.1 can directly encode SPECIAL-3SC. Via
Lemma 1.4, we immediately obtain the following corollary:

Theorem 1.5. We have the following APX-hardness results:

(1) The unweighted pack-regions problem is APX-hard for range spaces (C1)
through (C10).

(2) The unweighted pack-points problem is APX-hard for range spaces (H1)
through (H4).

Item (2) follows by interchanging the roles of points and sets when switching
from hitting set problems to covering problems.

1.2 Algorithmic Results

Our second main series of results is a collection of dynamic programming algo-
rithms for the set cover, hitting set, pack-regions, and pack-points problems on
a class of geometric range spaces exhibiting somewhat simpler structure. We
show that, for all four problems, it is possible to obtain polynomial-time exact
algorithms for the range space involving downward shadows of horizontal line
segments in the plane (such regions might be called 3-sided rectangles, bottom-
less rectangles, or half-slabs). In some cases, we are able to obtain more general
results. In all cases, our methods work for both the weighted and unweighted
versions of the problem (assuming weights are integers or other representations
supporting fast arithmetic operations).

All proofs of nontrivial theorems in this subsection appear in section 4.

1.2.1 Set Cover

For set cover, our main algorithmic result is the following:

Theorem 1.6. There exists a polynomial-time exact algorithm for the weighted
geometric set cover problem involving downward shadows of pairwise 2-intersecting
x-monotone curves in R

2. Moreover, it runs in O(mn2(m+n)) time on a range
space consisting of n points and m regions.

For the running time guarantees we provide in this and all other theorems,
we assume a model in which O(1) time is sufficient for arithmetic operations
and primitive operations like computing the intersections of two curves. More
details are provided in Section 4.

The algorithm we use for proving Theorem 1.6 is a generalization and sim-
plification of a similar algorithm appearing in [10] for a combinatorial problem
that turns out to be equivalent to geometric set cover with downward shadows

6

of horizontal line segments in R
2. We believe that our current presentation is

much shorter and cleaner; in particular, we do not require shortest path as a
subroutine. We can also extend our algorithm to the set cover problem on some
related geometric range spaces:

Corollary 1.7. There exists a polynomial-time exact algorithm for the weighted
geometric set cover problem involving a configuration of pseudodisks in R

2 where
the origin lies within each pseudodisk. Furthermore, it runs in O(mn2(m + n))
time on a range space consisting of n points and m pseudodisks.

Proof. By perturbing the pseudodisks if necessary, we may assume that the ori-
gin lies in the interior of each pseudodisk (i.e. not on the boundary of any of
the regions). We refer the reader to Lemma 2.11 of [1], which shows us how
to use a topological sweep curve method to transform the arrangement of pseu-
dodisks into a topologically equivalent arrangement where all the pseudodisks
are star-shaped about the origin. By examining the proof of this lemma, we
note that this transformation can be accomplished in O(m2) time since, with
m pseudodisks, the sweep curve must be advanced at most 2

(

m
2

)

times. We
then apply a standard polar-to-cartesian projective transformation about the

origin, sending each point (x, y) to
(

atan2(y, x),
√

x2 + y2
)

1. This transforma-

tion maps each star-shaped pseudodisk to the downward shadow of a positive
valued x-monotone function on [0, 2π), and the resulting family of curves is
still pairwise 2-intersecting. Via the same transformation, we map each point
from the original range space into the appropriate cell of the transformed ar-
rangement to obtain a topologically identical range space involving downward
shadows of pairwise 2-intersecting x-monotone curves in R

2. Since the entire
transformation preserves the element-set incidence relation, it suffices to apply
Theorem 1.6.

A further application is to set cover with lower half-planes in R
2:

Corollary 1.8. There exists a polynomial-time exact algorithm for the weighted
geometric set cover problem involving lower half-planes in R

2, and it runs in
O(mn2(m+n)) time on a range space consisting of n points and m half-planes.

Proof. We first observe that, given a family S of lower half-planes in R
2, there

must exist a circle C that is disjoint from all of the half-planes (such a circle
can be centered at some point P located at coordinates (0, k) for sufficiently
large k). We apply an inversive transformation about the circle C (see [14] for
further information), mapping each half-plane to a disk whose boundary inter-
sects P (and mapping each point to its corresponding location after inversion).
Doing this, we obtain a new range space whose element-set incidence relation is
unchanged, but is now a configuration of disks each containing point P . These
disks are pseudodisks, and thus the previous corollary can be applied to achieve
the desired result (substituting P for the origin).

1By atan2(y, x), we mean, for a nonzero vector (x, y), the unique angle θ in [0, 2π) such

that (x, y) is equal to the vector (
√

x2 + y2, 0) rotated counterclockwise through an angle of
θ about the origin.

7

1.2.2 Hitting Set

For the hitting set problem, we obtain a result for downward shadows of hori-
zontal line segments:

Theorem 1.9. There exists a polynomial-time exact algorithm for the weighted
geometric hitting set problem involving downward shadows of horizontal line
segments in R

2. Moreover, it runs in O(min(m,n)2(m+n)+n log n+m log m)
time on a range space consisting of n points and m regions.

Naive attempts to generalize this to downward shadows of 2-intersecting
curves appear to fail. We leave it as an open problem to determine if the hitting
set problem involving downward shadows of 2-intersecting x-monotone curves
in the plane is APX-hard, has a PTAS, or is poly-time solvable. We remark
that it appears unlikely that the problem can encode SPECIAL-3SC.

As an additional corollary of Theorem 1.6, we are able to deal with hitting
set for lower half-planes:

Corollary 1.10. There exists a polynomial-time exact algorithm for the weighted
geometric hitting set problem involving lower half-planes in R

2, running in
O(m2n(m+n)) time on a range space consisting of n points and m half-planes.

Proof. This follows immediately from Corollary 1.8 and geometric duality [6].
Note that the role of m and n in the running time has been exchanged since
points and regions have been interchanged.

1.2.3 Pack-Points

For the pack-points problem, we are able to get polynomial algorithms for the
same class of range spaces as we did for the set cover problem:

Theorem 1.11. There exists a polynomial-time exact algorithm for the weighted
pack-points problem involving downward shadows of pairwise 2-intersecting x-
monotone curves in R

2. Moreover, it runs in O(mn3) time on a range space
consisting of n points and m regions.

Via the same encoding techniques used previously, we can extend this result
to some related range spaces:

Corollary 1.12. There exist polynomial-time exact algorithms for the weighted
pack-points problems involving the following types of regions, both running in
time O(mn3 + m2) on range spaces consisting of n points and m regions:

• lower half-planes in R
2.

• a configuration of pseudodisks in R
2 where the origin lies within each pseu-

dodisk.

Proof. It suffices to apply precisely the same techniques as in the proofs of
Corollary 1.7 and Corollary 1.8. The O(m2) term must be added to allow for
the time required to perform the topology-preserving transformation described
in the proof of Corollary 1.7.

8

1.2.4 Pack-Regions

Finally, for the pack-regions problem, we obtain an algorithm for shadows of
horizontal line segments:

Theorem 1.13. There exists a polynomial-time exact algorithm for the weighted
pack-regions problem involving downward shadows of horizontal line segments
R

2. Moreover, it runs in O(mmin(m,n)2 + n log n + m log m) time on a range
space consisting of n points and m region

As in the case of the hitting set problem, we leave open the question of
whether this can be generalized to downward shadows of 2-intersecting x-monotone
curves.

Again, we can also get a result for lower half-planes:

Corollary 1.14. There exists a polynomial-time exact algorithm for the weighted
pack-regions problem involving lower half-planes in R

2, running in O(m3n+n2)
time on a range space consisting of n points and m half-planes.

Proof. This follows immediately from Corollary 1.12 and geometric duality [6].

1.3 Related Work

The problem of assembling a given rectilinear polygon from a minimum number
of (possibly overlapping) axis-aligned rectangles was first proven to be MAX-
SNP-complete by Berman and Dasgupta [7], which rules out the possibility
of a PTAS unless P = NP. Since set cover with axis-aligned rectangles can
encode these instances, it too is MAX-SNP-complete. However, the proof in [7]
cannot be applied to produce an instance of geometric set cover using only fat
rectangles.

In his recent Ph.D. thesis, van Leeuwen proves APX-hardness for geometric
set cover and dominating set with axis-aligned rectangles and ellipses in the
plane [21]. Har-Peled provides a simple proof that set cover with triangles is
APX-hard, even when all triangles are fat and of similar size [18]. Har-Peled also
notes that set cover with circles (that is, with boundaries of disks) is APX-hard
for a similar reason. However, neither the results of van Leeuwen nor Har-Peled
can be directly extended to fat axis-aligned rectangles or fat ellipses.

There are few non-trivial examples of geometric covering or hitting set prob-
lems that are known to be poly-time solvable. Har-Peled and Lee give a dynamic
programming algorithm for weighted cover of points in the plane by half-planes
[19]; their method runs in O(n5) time on an instance with n points and half-
planes. Our algorithm reduces the running time by a factor of n in the case of
lower half-planes. Ambühl et al. give a poly-time dynamic programming algo-
rithm for weighted covering of points in a narrow strip using unit disks [3]; their
methods appear to be unrelated to ours.

An interesting PTAS result is that of Har-Peled and Lee, who give a PTAS
for minimum weight cover with any class of fat objects, provided that each

9

object is allowed to expand by a small amount [19]. Our results show that for
many classes of objects, a PTAS cannot be obtained without allowing this.

The literature on geometric packing problems mostly deals with the situation
in which one merely wishes to find a maximum cardinality disjoint family of geo-
metric regions (one may think of this as the special case of pack-regions in which
X consists of all points). The more general pack-points and pack-regions prob-
lems described herein are seen less frequently. Chan and Har-Peled have shown
that the pack-regions problem admits a good approximation in cases of low
union complexity [12]. Ene, Har-Peled, and Raichel have extended this to more
general capacitated geometric packing problems, obtaining several constant and
almost-constant approximations [15]. They also use standard encodings to rule
out a PTAS for both the pack-points and pack-regions problems for the case of
range spaces involving fat triangles in the plane. No PTAS results (via local
search or other techniques) appear to be known.

2 APX-Hardness of Covering and Packing for

SPECIAL-3SC Range Spaces

In this section, we prove the APX-hardness results given in Lemma 1.3 and
Lemma 1.4. We recall that a pair of poly-time computable functions (f, g) is
an L-reduction from an optimization problem A to an optimization problem B
if there are positive constants α and β such that for each instance x of A, the
following hold:

(L1) The function f maps instances of A to instances of B such that OPT(f(x)) ≤
α · OPT(x).

(L2) The function g maps feasible solutions y of f(x) to feasible solutions g(y)
of x such that |cx(g(y)) − OPT(x)| ≤ β ·

∣

∣cf(x)(y) − OPT(f(x))
∣

∣, where cx

and cf(x) are the cost functions of the instances x and f(x) respectively.

To prove Lemma 1.3, we exhibit an L-reduction from minimum vertex cover
on 3-regular graphs (hereafter known as 3VC) to SPECIAL-3SC. Since 3VC is
APX-hard [2], this proves that SPECIAL-3SC is APX-hard (see [24] for details).

Proof of Lemma 1.3. Given an instance x of 3VC on a graph G having edges
{e1, . . . , en} and vertices {v1, . . . , vm} where 3m = 2n, we define f(x) be the
SPECIAL-3SC instance containing the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt},
and {ak, zt} for each 4-tuple (t, i, j, k) such that vt is a vertex incident to edges
ei, ej , and ek with i < j < k. We may think of this as the vertex cover problem
for the graph obtained when we take G and replace each vertex v in G with a
path Pv of length 4, connecting the first, third, and fifth vertices of Pv to the
neighbours of v in an arbitrary order.

To define g, we suppose we are given a solution y to the SPECIAL-3SC
instance f(x). We take vertex vt in our solution g(y) of the 3VC instance x if
and only if at least one of {ai, wt}, {aj , xt, yt}, or {ak, zt} is taken in y. We

10

observe that g maps feasible solutions of f(x) to feasible solutions of x since ei

is covered in g(y) whenever ai is covered in y.
Our key observation is the following:

Proposition 2.1. OPT(f(x)) = OPT(x) + 2m.

Proof. For 1 ≤ t ≤ m, we define the sets Pt = {{wt, xt}, {yt, zt}} and Qt =
{{ai, wt}, {aj , xt, yt}, {ak, zt}}. Call a solution C of f(x) segregated if for all
1 ≤ t ≤ m, C either contains all sets in Pt and no sets in Qt, or contains all sets
in Qt and no sets in Pt.

Via local interchanging, we observe that there exists an optimal solution to
f(x) that is segregated. Specifically, when given an arbitrary optimal solution
C∗ of f(x), we can construct a new solution C′ if, for each t, we simply take all
sets in Qt whenever C∗ contains at least one set in Qt and otherwise take all
sets in Pt. It follows immediately that C′ is feasible if C∗ is, and it is not hard
to see that the cost of C′ cannot exceed that of C∗.

Additionally, our function g, when restricted to segregated solutions of f(x),
forms a bijection between them and feasible solutions of x. We check that g
maps segregated solutions of size 2m + k to solutions of x having cost precisely
k, and the result follows.

Proposition 2.1 implies that f satisfies property (L1) with α = 5, since
OPT(x) ≥ m

2 . Moreover, cx(g(y)) + 2m ≤ cf(x)(y) since both {wt, xt} and
{yt, zt} must be taken in y whenever vt is not taken in g(y), and at least three
of {{ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, {ak, zt}} must be taken in y whenever
vt is taken in g(y). Together with Proposition 2.1, this proves that g satisfies
property (L2) with β = 1. Thus (f, g) is an L-reduction, completing the proof
that SPECIAL-3SC is APX-hard.

To prove APX-hardness of the pack-regions version of SPECIAL-3SC, we
construct an L-reduction from SPECIAL-3SC itself. This is straightforward via
standard methods:

Proof of Lemma 1.4. Let x be a SPECIAL-3SC instance on a range space (U,S)
encoding the vertex cover problem on a graph G having n vertices. We denote
by f(x) the pack-regions problem on (U,S), equivalent to the independent set
problem on G. We let g be a function mapping a pack-regions solution I ⊆ S to
the set S \I. Since I corresponds to an independent set in G, g(I) corresponds
to a vertex cover in G. Consequently, if I is a feasible solution to f(x), then
g(I) is a feasible solution to x.

To prove that (f, g) is an L-reduction, we simply verify the following:

(a) For any solution I to f(x), we have OPT(f(x))−|I| = n−|I|−OPT(x),
since a set of vertices is an independent set in G if and only if its comple-
ment is a vertex cover.

(b) By examining the structure of a SPECIAL-3SC range space, we observe
that the value of OPT(x) is at least 2

5n, and thus the value of OPT(f(x))
is at most 3

5n.

11

ai

aj

ak
wt

xt

yt
zt

aj

ak

ai

akajai

wt

xt

yt

zt

(C1)

(C5)

akajai

wt

(C3) and (C4)

(H2)(H1)

zt

yt

xt

wt

zt

xt
yt

akajai

wt

yt

xt

zt

Figure 1: APX-hardness proofs of geometric set cover problems.

Facts (a) and (b) together imply that (f, g) is an L-reduction with (α, β) =
(3
2 , 1). The desired hardness result then follows.

3 Encodings of SPECIAL-3SC via Geometric Set

Cover

In this section, we prove Theorem 1.1 using Lemma 1.3, by encoding SPECIAL-
3SC using various classes of geometric set cover and hitting set problems. The
beauty of SPECIAL-3SC is that it allows many of our geometric APX-hardness
results to follow immediately from simple “proofs by pictures” (see Figure 1).
The key property of SPECIAL-3SC is that we can divide the elements into two
sets A and B = W ∪X∪Y ∪Z, and linearly order B in such a way that all sets in
S are either two adjacent elements from B, one from B and one from A, or two
adjacent elements from B and one from A. We need only make [wt, xt, yt, zt]
appear consecutively in the ordering of B.

For (C1), we simply place the elements of A on the line segment {(x, x−2) :
x ∈ [1, 1 + ǫ]} and place the elements of B, in order, on the line segment
{(x, x + 2) : x ∈ [−1,−1 + ǫ]}, for a sufficiently small ǫ > 0. As we can see
immediately from Figure 1, each set in S can be encoded as a fat rectangle in
the class (C1).

(C2) is similar. It is not difficult to check that each set can be encoded as a
fat ellipse in this class.

For (C3), we place the elements of A on a horizontal line (the top row). For
each 1 ≤ t ≤ m, we create a new row containing {wt, xt} and another containing
{yt, zt} as shown in Figure 1. This time, we will need the second property in

12

Definition 1.2—that each ai appears in two sets. If {ai, wt} is the first set that
ai appears in, we place wt slightly to the left of ai; if it is the second set instead,
we place wt slightly to the right of ai. Similarly, the placement of xt, yt (resp.
wt) depends on whether a set of the form {aj , xt, yt} (resp. {ak, wt}) is the first
or second set that aj (resp. ak) appears in. As we can see from Figure 1, each
set in S can be encoded as a thin vertical or horizontal slab.

(C4) is similar to (C3), with the slabs replaced by thin rectangles. For
example, if {ai, wt} and {ai, wt′} are the two sets that ai appears in, with wt

located higher than wt′ , we can make the rectangle for {ai, wt} slightly wider
than the rectangle for {ai, wt′} to ensure that these two rectangles intersect 4
times.

For (C5), we can place the elements of A on the ray {(x,−x) : x > 0} and
the elements of B, in order, on the ray {(x, x) : x < 0}. The sets in S can be
encoded as downward shadows of line segments as in Figure 1.

(C6) is similar to (C5). One way is to place the elements of A on the line
segment ℓA = {(x, x) : x ∈ [−1,−1 + ǫ]} and the elements of B (in order) on
the line segment ℓB = {(x, 0) : x ∈ [1.5, 1.5 + ǫ]}. For any a ∈ [−1,−1 + ǫ] and
b ∈ [1.5, 1.5 + ǫ], the cubic function f(x) = (x − b)2[(a + b)x − 2a2]/(b − a)3 is
tangent to ℓA and ℓB at x = a and x = b. (The function intersects y = 0 also
at x = 2a2/(a + b) ≫ 1.5 + ǫ, far to the right of ℓB .) Thus, the size-2 sets in
S can be encoded as cubics. A size-3 set {aj , xt, yt} can also be encoded if we
take a cubic with tangents at aj and xt, shift it upward slightly, and make xt

and yt sufficiently close.
For (C7), we place the elements in A on a circular arc γA = {(x, y, 0) :

x2 + y2 = 1, x, y ≥ 0} and the elements in B (in order) on the vertical line
segment ℓB = {(0, 0, z) : z ∈ [1 − 2ǫ, 1 − ǫ]}. (This idea is inspired by a known
construction [8], after much simplification.) We can ensure that every two points
in A have distance Ω(

√
ǫ) if ǫ ≪ 1/n2. The technical lemma below allows us to

encode all size-2 sets (by setting b = b′) and size-3 sets by unit balls containing
a common point.

Lemma 3.1. Given any a ∈ γA and b, b′ ∈ ℓB, there exists a unit ball that
(i) intersects γA at an arc containing a of angle O(

√
ǫ), (ii) intersects ℓB at

precisely the segment from b to b′, and (iii) contains (1/
√

2, 1/
√

2, 1).

Proof. Say a = (x, y, 0), b = (0, 0, z − h), b′ = (0, 0, z + h). Consider the
unit ball K centered at c = (

√
1 − h2x,

√
1 − h2y, z). Then (ii) is self-evident

and (iii) is straightforward to check. For (i), note that a lies in K since ‖a −
c‖2 = (1 −

√
1 − h2)2 + z2 ≤ ǫ2 + (1 − ǫ)2 < 1. On the other hand, if a point

p ∈ γA lies in the unit ball, then letting a′ = (
√

1 − h2x,
√

1 − h2y, 0), we have
‖p − c‖2 = ‖p − a′‖2 + z2 ≤ 1, implying ‖p − a‖ ≤ ‖p − a′‖ + ‖a′ − a‖ ≤√

1 − z2 + (1 −
√

1 − h2) = O(
√

ǫ).

In order to implement this reduction in polynomial time using a Turing
machine, we must ensure that all points are placed at locations having rational
coordinates of polynomial size. To do this, we employ a standard trick based
upon the Weierstrass substitution; a point (cos t, sin t, 0) on the circular arc can

13

be replaced by a sufficiently close point (1−s2

1+s2 , 2s
1+s2 , 0) for an appropriate value

of s. It is straightforward to verify that the construction can still be carried out
using polynomial-sized rational points of this form.

(C8) is similar to (C1); we place the elements in A on the line segment
ℓA = {(t, t, 0) : t ∈ (0, 1)} and the elements in B on the line segment ℓB =
{(0, 3 − t, t) : t ∈ (0, 1)}. For any (a, a, 0) ∈ ℓA and (0, 3 − b, b) ∈ ℓB , the cube
[−3 + b + 2a, a] × [a, 3 − b] × [−3 + a + 2b, b] is tangent to ℓA at (a, a, 0), is
tangent to ℓB at (0, 3 − b, b), and contains (0, 1, 0). Size-3 sets {aj , xt, yt} can
be encoded by taking a cube with tangents at aj and xt, expanding it slightly,
and making xt and yt sufficiently close.

(C9) follows from (C7) by the standard lifting transformation [6] which maps
points (x, y, z) ∈ R

3 to (x, y, z, x2 + y2 + z2) ∈ R
4 and balls {(x, y, z) : (x −

a)2 +(y− b)2 +(z − c)2 ≤ r2} to halfspaces {(x, y, z, w) : w− 2ax− 2by +2cz ≤
r2 − a2 − b2 − c2}.

For (C10), we shall place the elements of A and B respectively along two
circular arcs ℓA = {(cos t, sin t) : t ∈ (0, ǫ)}, and ℓB = {(cos t, 2 − sin t) : t ∈
(0, ǫ)}. Any point on either arc defines a unique tangent to that arc, and thus
any pair of points, one on ℓA and one on ℓB , define a pair of tangents that meet
at a unique intersection point (which will be close to (1, 1)). It follows that a
wedge of opening angle close to π can be chosen to be tangent to any point on ℓA

and any point on ℓB . Again, for the size-3 sets, it suffices to expand each wedge
slightly and make xt and yt sufficiently close. Additionally, we can employ the
Weierstrass substitution trick, as we did in (C7), to perform this construction
using rational points.

For (H1), we map each element ai to a thin vertical slab. For each 1 ≤ t ≤ m,
we map {wt, xt, yt, zt} to a cluster of four thin horizontal slabs as in Figure 1.
Each set in S can be encoded as a point in the arrangement.

(H2) is similar; see Figure 1.
(H3) follows from (C7) by duality.
(H4) follows from (C9) by duality.

4 Polynomial Time Dynamic Programming Al-

gorithms for Weighted Packing and Covering

Problems

Here, we give four dynamic programming algorithms yielding proofs of Theo-
rems 1.6, 1.9, 1.11, and 1.13. Each proof proceeds by defining a class of sub-
problems, proving a recurrence relation among the optimal solutions to those
subproblems, and constructing a dynamic programming algorithm from this re-
currence relation. The recurrences are somewhat different for each of the four
problems, and the running times of the resulting algorithms differ.

The running time bounds we give assume O(1) time for arithmetic operations
and primitive operations such as computing the intersections of boundaries of
regions, determining whether a point lies inside a region, finding the projection

14

of a point vertically onto the boundary of a region, and so on. Additionally,
in many cases, our subproblems are indexed by the x-coordinates of points.
To reduce the number of subproblems that we must solve, we recognize that
the number of distinct x-coordinates in the input can be reduced by moving
points or regions, so long as the element-set incidence relation of the range
space is unaffected. For range spaces involving downward shadows of horizontal
line segments, it suffices to assume that the input contains only O(min(m,n))
distinct x-coordinates, since the number of distinct x-coordinates can be reduced
unless the points and region boundaries are interleaved. By simply iterating
through the points and regions, such a reduction can be performed in O(m +
n) time if all necessary sorting of the input is done beforehand. If sorting is
required, then O(n log n + m log m) time is sufficient.

Throughout this section, we write wx for the weight of a point x ∈ X, and
wR for the weight of a region R ∈ S.

4.1 Set Cover

Here, we prove Theorem 1.6 by giving a polynomial-time dynamic programming
algorithm for the weighted cover of a finite set of points X ⊆ R

2 by a set
S of downward shadows of 2-intersecting x-monotone curves C1, . . . , Cm. For
1 ≤ i ≤ m, define the region Si ∈ S to be the downward shadow of the curve
Ci and let it have positive cost wi. Define n = |X|.

We shall assume that each Ci is the graph of a smooth univariate function
with domain (−∞,∞), that all intersections are transverse (no pair of curves
intersect tangentially), and that no points in X lie on any curve Ci. It is not
difficult to get around these assumptions, but we retain them to simplify our
explanation.

We shall abuse notation by writing Ci(x) for the unique y ∈ R such that
(x, y) lies on the curve Ci. We say curve Ci is wider than curve Cj (written
Ci ≻ Cj) whenever Ci(x) > Cj(x) for all sufficiently large x. We may also write
Si ≻ Sj whenever Ci ≻ Cj . We note that ≻ is a total ordering and thus we can
order all curves by width, so we assume without loss of generality that Ci ≻ Cj

whenever i > j. The width-based ordering of curves is useful because of the
following key observation:

Proposition 4.1. If Ci ≻ Cj, then Sj \ Si is connected.

Proof. This is clearly true if Ci and Cj intersect once or less. If Ci and Cj

intersect transversely twice—say, at (x1, y1) and (x2, y2) with x2 > x1—then
the area above Ci but below Cj can only be disconnected if Cj(x) > Ci(x) for
x < x1 and x > x2, implying Cj ≻ Ci.

For all 1 ≤ i ≤ m and all intervals [a, b], define X[a, b] to be all points in
X with x-coordinate in [a, b], and define X[a, b, i] to be X[a, b] \ Si. Define S<i

to be the set {S1, . . . , Si−1} of all regions of width less than Si. Let M [a, b, i]
denote the minimum cost of a solution to the weighted set cover problem on the
range space (X[a, b, i],S<i) (with weights inherited from the original problem).

15

If such a covering does not exist, M [a, b, i] = ∞. For simplicity, we assume
that Cm, the widest curve, contains no points in its downward shadow (that is,
X ∩ Sm is empty). Our goal is then to determine M [−∞,∞,m] via dynamic
programming; the key structural result we need is the following:

Claim 4.2. If X[a, b, i] is non-empty, then

M [a, b, i] = min
{

min
c∈(a,b)

{M [a, c, i] + M [c, b, i]},

min
j<i

{M [a, b, j] + wj}
}

.

Proof. Clearly M [a, b, i] ≤ M [a, c, i]+M [c, b, i] for all c ∈ (a, b). Also, for j < i,
M [a, b, j] + wj is the cost of purchasing Sj and then covering the remaining
points in X[a, b] using regions less wide than Sj (and hence less wide than Si).
Thus M [a, b, j] + wj is a cost of a feasible solution to (X[a, b, i],S<i) and hence
is at least M [a, b, i]. It follows that M [a, b, i] is bounded above by the right hand
side.

To show that M [a, b, i] is bounded below by the right hand side, we let
Z ⊆ S<i be a feasible set cover for (X[a, b, i],S<i). We consider two cases:

Case 1: There is some c ∈ (a, b) such that (c, Ci(c)) is not covered by Z. Let
Z<c be the set of all regions in Z containing a point in X[a, c, i], and let Z>c

be the set of all regions in Z containing a point in X[c, b, i]. Let Z ∈ Z. Since
Z ≺ Si, by Proposition 4.1, Z \ Si is connected and thus cannot contain points
both in X[a, c, i] and X[c, b, i]. Hence Z<c ∩ Z>c = ∅ and thus the cost of Z is
at least M [a, c, i] + M [c, b, i].

Case 2: For all c ∈ (a, b), the point (c, Ci(c)) is covered by Z. Then Z covers
X[a, b, i] ∪ Si and hence covers all points in X[a, b]. Let Cj be the widest curve
in Z, noting that j < i. Then the cost of Z is at least wj + M [a, b, j] since
Z \ Sj must cover all points in X[a, b, j].

It follows that Z must cost as much as either minc∈(a,b){M [a, c, i]+M [c, b, i]}
or minj<i{M [a, b, j] + wj}, and the result follows.

Claim 4.2 immediately implies the existence of a dynamic programming al-
gorithm to compute M [−∞,∞,m] and return a cover having that cost. There
are at most n + 1 combinatorially relevant values of a and b when computing
optimal costs M [a, b, i] for subproblems, so there are O(mn2) distinct values of
M [a, b, i] to compute. Recursively computing M [a, b, i] requires O(m + n) table
lookups, so the total running time of our algorithm is O(mn2(m+n)), assuming
a representation allowing primitive operations in O(1) time.

4.2 Hitting Set

We next prove Theorem 1.9, giving a very simple and clean dynamic program-
ming algorithm for weighted hitting set with shadows of horizontal line segments
in the plane (bottomless rectangles, or simply rectangles for short). We sup-
pose we are given a range space consisting of a set X of n points and a family
S of m rectangles. We assume that the number of distinct x-coordinates in

16

the input is O(min(m,n)), sorting the input if necessary to rewrite it (taking
O(n log n + m log m) time).

Define S[a, b] to be the family of all rectangles lying entirely inside (a, b) ×
(−∞,∞), and define M [a, b] to be the minimum cost of hitting all rectangles
in S[a, b]. Define y[a, b] to be the minimum y-coordinate of a top edge of a
rectangle in S[a, b], or ∞ if S[a, b] is empty. Finally, define X[a, b] to be the set
of all x ∈ X lying in (a, b) × (−∞, y[a, b]].

Whenever S[a, b] is non-empty, hitting all rectangles in S[a, b] requires choos-
ing at least one point in X[a, b] (otherwise the lowest rectangle in S[a, b] will
not be hit). However, any x = (x1, y1) ∈ X[a, b] will hit all rectangles in S[a, b]
whose horizontal range contains x1, since x is lower than the top edge of all rect-
angles in S[a, b]. After choosing such an x, it thus only remains to cover those
rectangles in S[a, x1] and S[x1, b]. Via this argument, the following recurrence
is immediate:

Claim 4.3. We have

M [a, b] = min
x=(x1,y1)∈X[a,b]

{M [a, x1] + M [x1, b] + wx}.

Via this claim, it is simple to implement a dynamic programming algorithm
that computes M [−∞,∞] and returns a hitting set having that cost. There are
at most O(min(m,n)) combinatorially relevant values of a and b for which sub-
problems must be computed, for a total of O(min(m,n)2) subproblems. More-
over, each subproblem requires at most O(m) time to find y[a, b] and then O(n)
time to iterate through X and perform table lookups, so the total running time
of the algorithm is O((m + n)min(m,n)2 + n log n + m log m). This completes
the proof of Theorem 1.9.

4.3 Pack-Points

Here, we prove Theorem 1.11 by giving an algorithm for the weighted pack-
points problem involving downward shadows of 2-intersecting x-monotone curves.
We borrow the notation from the proof of Theorem 1.6, letting X be the set
of n points and {C1, . . . , Cm} be the family of curves with downward shadows
{S1, . . . , Sm}. Again, for simplicity, we assume that each Ci is the graph of
a smooth univariate function with domain (−∞,∞), that all intersections are
transverse, and that no points in X lie on any curve Ci. We again assume with-
out loss of generality that Ci ≻ Cj whenever i > j, where ≻ is a total ordering
based on the width notion introduced in the proof of Theorem 1.6. We assume
that each point is contained in at least one region (otherwise we simply take all
points contained in no regions and consider the problem that remains).

We define a set of points to be independent whenever no region Si contains
two or more of them. For real numbers a and b, we denote by X[a, b] the set of
all points in X with x-coordinate in [a, b]. For a, b ∈ R ∪ {−∞,∞}, we define
X[a, b, i] to be the set of all points in X[a, b] that are independent from the
point (x,Ci(x)) for all x ∈ ({a, b} \ {−∞,∞}).

17

For a point x ∈ X, we let the lowness ℓ(x) of x be the largest value of i
such that x ∈ Si (noting that this is well defined since each point is assumed
to lie in at least one region). Observe that no independent set of points may
ever contain two points having the same lowness. Immediately, we observe the
following:

Proposition 4.4. If x ∈ X[a, b, i], then we have:

(1) ℓ(x) ≤ i, and

(2) X[a, b, ℓ(x)] ⊆ X[a, b, i].

Proof. Write x = (x1, y1). Suppose ℓ(x) = j. Then Sj contains x but neither
Ci(a) nor Ci(b) since x ∈ X[a, b, i]. From this it follows that Cj(a) < Ci(a),
Cj(x1) > Ci(x1), and Cj(b) < Ci(b), so Si \ Sj is disconnected and thus j ≤ i
by Proposition 4.1, implying item (1). For item (2), since Cj(a) < Ci(a) and
Cj(b) < Ci(b), any point independent from (a,Cj(a)) and (b, Cj(b)) is also
independent from (a,Ci(a)) and (b, Ci(b)), so X[a, b, j] ⊆ X[a, b, i].

For a, b ∈ R∪{−∞,∞}, we define M [a, b, i] to be the maximum total weight
of an independent subset of X[a, b, i]. We denote by M the maximum weight of
an independent subset of X. Our dynamic programming algorithm shall follow
immediately from the following recurrence:

Claim 4.5. We have the following:

(1) If X[a, b, i] is non-empty, then

M [a, b, i] = max
x=(x1,y1)∈X[a,b,i]

{M [a, x1, ℓ(x)] + M [x1, b, ℓ(x)] + wx}.

(2) We have

M = max
x=(x1,y1)∈X

{M [−∞, x1, ℓ(x)] + M [x1,∞, ℓ(x)] + wx}.

Proof. We give a full proof of (1); item (2) is similar. We first show that

M [a, b, i] ≥ max
x=(x1,y1)∈X[a,b,i]

{M [a, x1, ℓ(x)] + M [x1, b, ℓ(x)] + wx}.

We let x = (x1, y1) ∈ X[a, b, i], and shall prove that M [a, b, i] ≥ M [a, x1, ℓ(x)]+
M [x1, b, ℓ(x)] + wx. Suppose Y1 ⊆ X[a, x1, ℓ(x)] and Y2 ⊆ X[x1, b, ℓ(x)] with
Y1 having total weight M [a, x1, ℓ(x)] and Y2 having total weight M [x1, b, ℓ(x)].
Observe that {x}∪Y1 and {x}∪Y2 are independent sets since X[a, x1, ℓ(x)] and
X[x1, b, ℓ(x)] contain only points independent from x. Moreover, Y1∪Y2 is neces-
sarily independent, since any region Sj containing a point in Y1 must necessarily
have j ≤ i by Proposition 4.4 (and hence Sj\Si connected), and thus Sj\Si must
lie entirely to the left of point x and Sj may then contain no point in Y2. From
this, it follows that Y1∪Y2∪{x} is an independent set and so must lie in X[a, b, i].

18

Finally, since Y1 ∪Y2 ∪{x} has total weight M [a, x1, ℓ(x)] + M [x1, b, ℓ(x)] + wx,
we must necessarily have M [a, b, i] ≥ M [a, x1, ℓ(x)] + M [x1, b, ℓ(x)] + wx.

To prove that

M [a, b, i] ≤ max
x=(x1,y1)∈X[a,b,i]

{M [a, x1, ℓ(x)] + M [x1, b, ℓ(x)] + wx},

we suppose we are given an independent set Y ⊆ X[a, b, i] having total weight
M [a, b, i]. Let x = (x1, y1) be any point in Y . Then all other points in Y \{x} are
independent from (x1, y1) and are thus independent from (x1, Cℓ(x)). Therefore
all points in Y that are left of x lie in X[a, x1, ℓ(x)], and all points in Y that
are right of x lie in X[x1, b, ℓ(x)]. It follows that Y has total weight at most
{M [a, x1, ℓ(x)]+M [x1, b, ℓ(x)]+wx. This completes the proof of the claim.

Claim 4.5 implies the existence of a dynamic programming algorithm to
compute M and return an independent set having that cost. As in the proof of
Theorem 1.6, there are O(mn2) distinct values of M [a, b, i] to compute. Each
M [a, b, i] value can be recursively computed using O(n) table lookups, so the
total running time of our algorithm is O(mn3) under the usual assumptions.

4.4 Pack-Regions

Finally, we give a proof of Theorem 1.13 via a dynamic programming algorithm
for the pack-regions problem on downward shadows of horizontal line segments
(again, we shall refer to these regions as rectangles in what follows). As usual, we
assume we have a set X of n points and a family S of m rectangles and assume
that the number of distinct x-coordinates in the input is O(min(m,n)), sorting
and rewriting the input to guarantee this. We shall say that a set of rectangles
is independent if no pair of them intersect at a point in X. We again define
S[a, b] to be the family of all rectangles lying entirely inside (a, b) × (−∞,∞),
and this time define M [a, b] to be the maximum weight of an independent set
of rectangles in S[a, b] (that is, a set of rectangles, no two of which intersect
at a point in X). Furthermore, for a rectangle R ∈ S, we define LR to be the
set of all points (x, y) such that there is a point (x, z) ∈ X ∩ R, and define
S[a, b,R] to the the set of rectangles in S[a, b] that do not intersect LR (that is,
rectangles in S[a, b] that are not stabbed by any vertical lines passing through
the points in X ∩ R). Finally, we define M [a, b,R] to be the maximum weight
of an independent set in S[a, b,R].

To improve the running time of our dynamic program, we use two interde-
pendent recurrences this time. Both are relatively straightforward.

Claim 4.6. We have

M [a, b] = max
R∈S[a,b]

{M [a, b,R] + wR} .

Proof. It is clear that M [a, b] ≥ M [a, b,R] + wR for any R ∈ S[a, b], since any
independent set in S[a, b,R] is, with the addition of R, still an independent set

19

in S[a, b]. To prove that M [a, b] is at most the right hand side, it suffices to let
Z ⊆ S[a, b] be an independent set of rectangles of total weight M [a, b], and take
R to be the rectangle in Z whose top edge is lowest. None of the rectangles in
Z \ {R} can intersect LR, because they all have a higher top edge than R and
would thus intersect R at a point in X if ever they are stabbed by a line in LR.
Thus the remaining weight of the rectangles in Z \ {R} is at most M [a, b,R],
and hence the total weight of all the rectangles in Z is at most M [a, b,R] +wR.
The result follows.

For the next result, we let X[a, b] be the set of all points in X whose x-
coordinate is in (a, b). Our second recurrence follows:

Claim 4.7. Let R ∈ S[a, b]. We have the following:

(1) If X[a, b] ∩ R is empty, then M [a, b,R] = M [a, b].

(2) If X[a, b]∩R is non-empty and (x1, y1) is the leftmost point in X[a, b]∩R,
then M [a, b,R] = M [a, x1] + M [x1, b, R].

Proof. The first statement is immediate from the definitions. For the second
statement, we simply observe that an independent set of rectangles in S[a, b,R]
of weight M [a, b,R] can always be partitioned into rectangles entirely left of
(x1, y1) (having weight M [a, x1]) and those entirely right of (x1, y1) (having
weight M [x1, b, R]).

Via our two recurrence relations, it is simple to implement a dynamic pro-
gramming algorithm that computes M [−∞,∞] and returns a packing having
that cost. As in the proof of Theorem 1.9, there are at most min(m,n) com-
binatorially relevant values of a and b for which subproblems must be com-
puted. Computing each of the O(min(m,n)2) subproblems of the form M [a, b]
requires O(m) table lookups, for a total of O(mmin(m,n)2) time. For the
O(mmin(m,n)2) subproblems of the form M [a, b,R], we observe that each can
be completed in O(1) time with sufficient precomputation. To achieve the de-
sired running time, it suffices to build a table containing, for each relevant a
and b, the leftmost point in X[a, b] ∩ R for each R (or a note that X[a, b] ∩ R
is empty). Such a table can easily be built in O(mmin(m,n)2) time. The total
running time of our algorithm is then O(mmin(m,n)2 + n log n + m log m).

Acknowledgements

We thank Esther Ezra for discussions on set cover and hitting set for rect-
angles whose boundaries intersect pairwise exactly zero times or four times;
and Sariel Har-Peled for discussions on the hardness of the pack-points and
pack-regions problems.

20

References

[1] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky.
Lenses in arrangements of pseudo-circles and their applications. J. ACM 51(2)
(2004), 139-186.

[2] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.
Theoretical Comp. Sci. 237 (2000) 123-134.

[3] C. Ambühl, T. Erlebach, M. Mihalák, and M. Nunkesser. Constant-factor approx-
imation for minimum-weight (connected) dominating sets in unit disk graphs. In
APPROX and RANDOM (2006) 3-14.

[4] B. Aronov, E. Ezra, and M. Sharir. Small-size ǫ-nets for axis-parallel rectangles
and boxes. SIAM Journal on Computing 39(7) (2010), 3248-3282.

[5] N. Bansal and K. Pruhs. The geometry of scheduling. IEEE 51st Annual Sym-
posium on Foundations of Computer Science (2010), 407-414.

[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geom-
etry: Algorithms and Applications (Third edition). Springer-Verlag, Heidelberg,
(2008).

[7] P. Berman and B. DasGupta. Complexities of efficient solutions of rectilinear
polygon cover problems. Algorithmica 17(4) (1997), 331-356.

[8] H. Brönnimann and O. Devillers. The union of unit balls has quadratic complex-
ity, even if they all contain the origin. arXiv:cs/9907025v1 [cs.CG] (1999).

[9] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-
dimension. Discrete Comput. Geom. 14 (1995), 263-279.

[10] D. Chakrabarty, E. Grant, and J. Koenemann. On column-restricted and priority
covering integer programs. In Integer Programming and Combinatorial Optimiza-
tion (2010) 355-368.

[11] T. M. Chan and E. Grant. Exact Algorithms and APX-Hardness Results for
Geometric Set Cover. In Proc. 23rd Canadian Conference on Computational
Geometry (2011) 431-436.

[12] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. In Proc. 25th Annu. ACM Sympos. Comput. Geom.
(2009) 333-340.

[13] K. Clarkson and K. Varadarajan. Improved approximation algorithms for geo-
metric set cover. Discrete Comput. Geom. 37 (2007), 43-58.

[14] H. S. M. Coxeter. Introduction to geometry, second edition. John Wiley & Sons
Inc., New York, 1969.

[15] A. Ene, S. Har-Peled, and B. Raichel. Geometric packing under non-uniform
constraints. arXiv:1107.2949v1 [cs.CG] (2011).

[16] T. Erlebach and E. J. van Leeuwen. PTAS for weighted set cover on unit squares.
In APPROX and RANDOM (2010), 166-177.

[17] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small.
Information Processing Letters 95(2) (2005), 358-362.

[18] S. Har-Peled. Being Fat and Friendly is Not Enough. arXiv:0908.2369v1 [cs.CG]
(2009).

21

[19] S. Har-Peled and M. Lee. Weighted geometric set cover problems revisited. Un-
published manuscript, (2008).

[20] D.S. Hochbaum and W. Maass. Fast approximation algorithms for a nonconvex
covering problem. J. Algorithms 8(3) (1987), 305-323.

[21] E. J. van Leeuwen. Optimization and Approximation on Systems of Geometric
Objects. PhD thesis, Universiteit van Amsterdam, (2009).

[22] N.H. Mustafa and S Ray. Improved results on geometric hitting set problems.
Discrete Comput. Geom. 44(4) (2010), 883-895.

[23] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Proc.
27th ACM Sympos. Comput. Geom. (2011) 458-463.

[24] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. Systems Sci. 43 (1991), 425-440.

[25] K. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
ACM Symposium on Theory of Computing (2010) 641-648.

22

