
Dimension Reduction Algorithms for Near-Optimal

Low-Dimensional Embeddings and Compressive

Sensing

by

Elyot Grant

B.Math, University of Waterloo (2010)
M.Math, University of Waterloo (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 19, 2013

Certified by .
Piotr Indyk

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Dimension Reduction Algorithms for Near-Optimal

Low-Dimensional Embeddings and Compressive Sensing

by

Elyot Grant

Submitted to the Department of Electrical Engineering and Computer Science
on July 19, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we establish theoretical guarantees for several dimension reduction algorithms
developed for applications in compressive sensing and signal processing. In each instance,
the input is a point or set of points in d-dimensional Euclidean space, and the goal is to
find a linear function from Rd into Rk, where k << d, such that the resulting embedding of
the input pointset into k-dimensional Euclidean space has various desirable properties. We
focus on two classes of theoretical results:

• First, we examine linear embeddings of arbitrary pointsets with the aim of mini-
mizing distortion. We present an exhaustive-search-based algorithm that yields a k-
dimensional linear embedding with distortion at most εopt(k) + δ for any δ > 0, where
εopt(k) is the smallest possible distortion over all orthonormal embeddings into k di-
mensions. This PTAS-like result transcends lower bounds for well-known embedding
techniques such as the Johnson-Lindenstrauss transform.

• Next, motivated by compressive sensing of images, we examine linear embeddings of
datasets containing points that are sparse in the pixel basis, with the goal of recov-
ing a nearly-optimal sparse approximation to the original data. We present several
algorithms that achieve strong recovery guarantees using the near-optimal bound of
O(k log n) measurements, while also being highly “local” so that they can be imple-
mented more easily in physical devices. We also present some impossibility results
concerning the existence of such embeddings with stronger locality properties.

Thesis Supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Portions of the work leading to this thesis were supported by grants from the Natural Sciences

and Engineering Research Council of Canada, a grant from Draper Lab, an NSF CCF-

1012042 award, the MADALGO project, and the Packard Foundation.

Parts of Chapters 3 and 4 were presented at the ACM 29th Annual Symposium on

Computational Geometry (SoCG 2013).

5

6

Contents

1 Introduction 9

1.1 Low Distortion Embeddings . 11

1.2 Compressive Sensing of Images . 12

1.3 Related work . 14

2 Nearly Optimal Linear Embeddings into Very Low Dimensions 17

3 Compressive Sensing of Arrays via Local Embeddings 21

3.1 Preliminaries and Notation . 22

3.2 Sparse recovery and hashing . 23

3.3 Hashing via affine transformations, folding, and wrapping 25

3.4 Sparse recovery guarantees for wrapping . 28

3.5 Sparse recovery guarantees for folding . 32

4 Impossibility of Universality for Local Hash Functions 37

7

8

Chapter 1

Introduction

The so-called curse of dimensionality poses a central challenge in various signal processing

problems including sensing, storage, transmission, and inference, as datasets often become

increasingly difficult to organize and compute with as the number of dimensions increases. In

many applications dealing with high dimensional metric spaces, an extremely useful tool to

mitigate such problems is the notion of an embedding into a space of low dimension [14]. Such

embeddings constitute a concise, yet faithful representation of the original metric space, and

consequently enable the use of very efficient algorithmic tools and techniques in the smaller

space.

In most situations, it is not necessary that the embedding preserves every aspect of the

original pointset—it instead suffices that embeddings preserve whatever critical features of

the original space are necessary to perform the computation at hand. Some examples include

the following:

• Neighbourhood-preserving projections and hashes: Suppose that given a high dimensional

data set and a set of queries, one wishes to find the nearest neighbours of those queries

in the data set. For a set V of n points in Rd, a näıve point query would incur O (nd)

computations. On the other hand, one can bring this computational cost down to O (nk),

if one can reduce the dimensionality from d to k. This approach forms the core of local-

ity sensitive hashing (LSH), a popular technique for pattern recognition and information

9

retrieval [15].

• Compressive signal acquisition: Instead of acquiring (or recording) a high dimensional

signal (or image) x ∈ Rd, the technique of compressive sensing (CS) prescribes recording

only a few linear projections (or measurements) y = Φx. A rich, extensive theory specifying

the types of allowable projection matrices Φ, as well as efficient algorithms for recovering

x from y, has been developed; see, for example, the seminal papers of [3, 6]. The matrix Φ

can be thought of as representing an embedding of Rd into Rk, and, if chosen properly, such

embeddings can facilitate various recovery guarantees, particularly in situations where x

is known to be sparse in a particular basis.

In this thesis, we will discuss two main algorithms for embeddings of high dimensional

spaces. First, motivated by neighbourhood-preserving projections and hashes, we examine

linear embeddings of arbitrary pointsets with the aim of minimizing the amount of distortion

in the pairwise distances between points. Our main contribution in this area is a PTAS-

like exhaustive-search-based algorithm that yields a k-dimensional linear embedding with

almost-optimal distortion, with running time varying as the desired closeness to optimality

increases. Chapter 2 discusses the exhaustive search algorithm for low distortion embeddings.

Secondly, motivated by compressive sensing of images, we examine linear embeddings of

datasets containing points that are sparse in the pixel basis, with the goal of being able to

recover a nearly-optimal sparse approximation to the original data from the embedded signal.

We present several algorithms that achieve strong recovery guarantees using a nearly optimal

number of measurements, while also being highly “local” so that they can be implemented

more easily in physical devices. Chapter 3 contains these results.

Additionally, we also present an impossibility result concerning the existence of embed-

dings with stronger locality properties than those achieved in the results of Chapter 3. This

result demonstrates that certain distributions of embeddings cannot both behave as univer-

sal hash functions while simultaneously representing continuous deformations of rectangular

images into smaller rectangular regions. This impossibility theorem is presented in Chapter

4.

10

In the remainder of the introduction, we provide background information on low dis-

tortion embeddings, compressive sensing, and related concepts. Additionally, we introduce

notation and motivate the specific problems studied in the remaining chapters.

1.1 Low Distortion Embeddings

Throughout this thesis, we focus on embeddings of high-dimensional point sets. Specifically,

we consider inputs consisting of a set V of n vectors in Rd, and seek embeddings of the form

f : Rd → Rk, where k � d, n. Here, we will consider the domain Rd and codomain Rk

as being equipped with the Euclidean norm. Our goal is to minimize the distortion of the

embedding f . Specifically, a function f : Rd → Rk is said to have distortion ε > 0 if, for

every x ∈ V ,

1− ε ≤ ‖f(x)‖2
2

‖x‖2
2

≤ 1 + ε. (1.1)

Our goal is to construct embeddings with as small a value of ε as possible. As intuition would

suggest, there is a tradeoff between k, the number of dimensions of the embedding, and ε,

the distortion. A celebrated result by Johnson and Lindenstrauss [17] states that given any

set V of n vectors in Rd and ε > 0, if k = O(log n/ε2), then there exists an embedding

f : Rd → Rk that satisfies (1.1). In fact, the embedding in this theorem is constructed

by choosing a random orthonormal projection from Rd to Rk, scaled by an appropriate

factor; such functions f may be called J-L embeddings. The random dimensionality reduction

technique plays a foundational role in several areas, including high-dimensional similarity

search and compressive sensing.

Unfortunately, the bound guaranteed by a J-L embedding cannot be improved (by much):

by the result of [1], there exist sets of n points that necessarily require Ω(log n/ε2 log(1/ε))

dimensions in order to be embedded with distortion at most ε. However, real-world data

often exhibit some low-dimensional structure, which can be potentially exploited to obtain

an embedding of distortion ε using fewer dimensions. Thus, an intriguing question emerges:

given a particular set V possessing some hidden low-dimensional structure, is it possible

11

to examine V and find an embedding into fewer than O(log n/ε2) dimensions, while still

obtaining distortion ε? As we discuss in Chapter 2, the answer is yes in a number of

situations.

1.2 Compressive Sensing of Images

In recent years, a new “linear” approach for acquiring digital images has been discovered [4,

7]. Traditional approaches to image acquisition first capture an entire n-pixel image and

then process it for compression, transmission, or storage. In contrast, the new approach

obtains a compressed representation directly, by acquiring a small number of nonadaptive

linear measurements of the signal in hardware. Formally, for an image represented by a

vector x, the representation is equal to Ax, where A is an M × n matrix. The advantage of

this architecture is that it can use fewer sensors, and therefore can be cheaper and use less

energy than a conventional camera [8, 9, 22].

In order to reconstruct the image x from a lower-dimension measurement vector (or

sketch) Ax, one needs to assume that the image x is k-sparse for some k (i.e., it has at most

k non-zero coordinates) or at least be “well-approximated” by a k-sparse vector1. Then,

given Ax, one finds (an approximation to) x by performing sparse recovery. The latter

problem is typically defined as follows: construct a matrix A such that, for any signal x, we

can recover a vector x∗ from Ax that is “close” to the best possible k-sparse approximation

of x. The notion of closeness is typically parametrized by 1 ≤ q ≤ p, and we require that

‖x− x∗‖p ≤ C · Errqk(x)/k1/q−1/p (1.2)

where Errqk(x) = mink-sparse x′ ‖x− x′‖q and C is the approximation factor. This is often

referred to as the `p/`q guarantee. Note that if x is k-sparse, then for any q we have Errqk(x) =

0, and therefore x∗ = x. Although the main focus of this paper is signal acquisition, sparse

1Often, to achieve sufficient sparsity, the signal needs to be first transformed by representing it in an
appropriate bases (e.g., wavelet or Fourier). We ignore this issue in this paper, since for the applications we
focus on (star tracking or muzzle flash detection), the signals are sparse in the standard (pixel) basis.

12

recovery has applications to other areas such as data stream computing [13, 21].

In this paper, we focus on the `∞/`1 guarantee. The `∞/`1 guarantee discussed here is

stronger than the more popular `1/`1 guarantee; see [10] for an overview. For this case, it is

known [5] (cf. [10]) that there exist random binary matrices A with M = O(k log n) rows,

and associated recovery algorithms that, with constant probability, produce approximations

x∗ satisfying Equation (1.2) with constant approximation factor C. The matrices are induced

via a collection of random hash functions h1 . . . hT where hi : [n]→ [m]. Each hash function

h defines an m× n binary matrix that contains a one in entry (i, j) if and only if the pixel

corresponding to column j is mapped by h onto the sensor corresponding to the row i. The

final matrix is obtained via vertical concatenation of the resulting matrices. As long as the

hash functions hi are chosen independently from a universal family, (where the probability

of a collision between any pair of elements is O(1)/m), T = O(log n) hash functions are

sufficient to achieve the desired guarantee. See Section 3.2 for further details.

Unfortunately, random matrices are not easy to implement in optical or digital hardware,

requiring either a complex optical system or a complex network of wires. To circumvent this

issue, various structured matrix constructions were proposed. In particular, the papers [11,

24, 25] proposed a “geometric” construction of measurement matrices, in which the image is

partitioned into
√
m×

√
m squares, which are then superimposed onto a

√
m×

√
m sensor

array. This technique corresponds to a linear mapping from n dimensions to m dimensions,

where the identified pixels are added together. The process is repeated several times with

different values of m, and the resulting mappings are concatenated together.

The geometric approach has been shown to be useful for sparse recovery and processing

of point sources, such as stars in astronomical images [11], muzzle flashes [12] or tracked

objects [24]. However, the theoretical guarantees for this method are not fully satisfactory.

In particular, it is not known whether the construction satisfies the `p/`q approximation

guarantee of Equation 1.2. Instead, the paper [11] showed a recovery guarantee for a class

of images that possess additional geometric structure, namely that contain a small number

of distinguishable objects (e.g., stars) plus some noise. Moreover, the proof applied only

13

to a variation of the geometric construction where the image was partitioned into pieces of

constant size which were then pseudorandomly permuted. To the best of our knowledge, no

recovery guarantees are known for general images.

1.3 Related work

The classical method to construct lower dimensional data representations is principal compo-

nents analysis (PCA) [20], which involves orthogonally projecting a dataset into the subspace

spanned by the top few eigenvectors of its covariance matrix. However, a global spectral tech-

nique such as PCA can potentially contract specific local distances, and hence cannot offer

near-optimal distortion guarantees in general.

The optimal trade-offs between distortion and dimensions have been studied for many

metrics [14]. Although most of those results were focused on the worst case distortion

(along the line of the J-L theorem), there have been several works focused on designing

algorithms that approximate the best distortion (see [23] and references therein). However,

this research was focused on minimizing the distortion of non-linear embeddings, which is

a much harder task. In particular, the minimum distortion of a non-linear embedding into

a fixed-dimensional space is NP-hard to approximate, even up to a polynomial factor [19].

In contrast, our focus on linear and orthonormal embeddings enables us to obtain strong

algorithmic results.

In addition to the aforementioned work on compressive sensing and sparse recovery, our

work in Chapter 3 is related to the line of research on non-expansive and locality-preserving

hashing [16, 18]. The two aforementioned papers present constructions of hash functions that

are both Lipschitz and “induce few collisions”. Specifically, the construction of paper [18]

is 1-Lipschitz and universal, albeit it only works in one dimension. The construction of [16]

is O(1)-Lipschitz, but not universal: for some pairs of points the probability of collision is

ω(1/m). Both constructions are based on “non-uniform” overlapping, where the spacing

between consecutive blocks is random (i.e., the superimposed parts of the grid [
√
n]2 have

different sizes). The construction of [16] uses an appropriately discretize random rotation

14

before applying the non-uniform overlapping.

In connection to our work, we note that our proof in Section 3.5, which shows that ran-

domized distortions followed by folding leads to sparse approximation guarantees, could be

plausibly applied to the construction of [16] as well. However, the non-uniform folding em-

ployed in this construction increases its complexity, making it less appealing in applications.

15

16

Chapter 2

Nearly Optimal Linear Embeddings

into Very Low Dimensions

A key property of the embeddings produced by the Johnson-Lindenstrauss transform is that

they correspond to orthonormal projections of Rd on a k-dimensional subspace. We too

will focus on such so-called orthonormal embeddings, as they are convenient for a number

of reasons. Note that for orthonormal embeddings, the right-hand-side inequality of Eq. 1.1

trivially holds, as projection does not expand distances by the definition. It therefore suffices

to focus on the left-hand-side inequality (i.e., the lower bound) in Eq. 1.1. Also, we can

assume without loss of generality assume that all vectors in V have unit norm.

For a fixed set set V ∈ Rd, we define εopt(k) to be the smallest achievable distortion over

all possible orthonormal embeddings of V into Rk. Our specific contribution is an exhaustive-

search-based algorithm that finds a linear embedding with distortion at most εopt(k) + δ, for

any δ > 0. This algorithm is space-efficient and can be achieved by a single pass over the data

V . However, the runtime of this algorithm is exponential in k and 1/δ. Unfortunately, due

to the running time being exponential in k, its applications may be limited to cases where

an embedding into a very small number of dimensions is desired. However, the algorithm

exhibits many characteristics of a polynomial time approximation scheme (PTAS), so it is

of theoretical interest.

17

Formally, our goal shall be to construct a linear embedding f into Rk having distortion

at most εopt(k) + δ for an arbitrary δ > 0. Our embedding will not necessarily be orthonor-

mal; it will instead be the the composition of a random J-L embedding and another linear

embedding. We establish the following:

Theorem 2.0.1. Given a set V consisting of n points in Rd, a positive integer k < d, and

a parameter δ > 0, there exists an algorithm A that returns an embedding f of V into Rk

having distortion at most εopt(k) + δ, in time O(n2)(k/δ)O(k2 log(n)/δ2).

Proof. Our algorithm is similar to that used by Badoiu et al., who solve a variety of geometric

optimization problems by first reducing the dimension of the input, and then performing a

brute force search on the lower dimensional space [2]. Define U to be a k-dimensional

subspace of Rd such that an orthonormal projection into U yields an embedding with the

optimal distortion εopt(k). We let {u1, . . . , uk} be an orthonormal basis for U . The first step

of our algorithm is to perform a regular J-L embedding g : Rd → Rq on the input. We

need to ensure that g does not distort the angles between vectors in U and V too much;

specifically, it suffices to obtain the following for every unit basis vector ui and each unit

vector v ∈ V :

〈g(ui), g(v)〉2 = 〈ui, v〉2 ±
δ

2k
. (2.1)

Here, the ‘±’ symbol is used to denote worst case deviations. Such a mapping g can be

performed on V with high probability of success, using a codomain having q = Θ(log(n)k/δ2)

dimensions. Note that the bound still holds for squared inner products, because U and V

consist entirely of unit vectors. Note also that the high probability of success holds even

though we don’t know what U is.

Next, we do a brute force search over the unit sphere of Rq to approximately guess the

transformed basis {g(u1), . . . , g(uk)}. This may seem formidable, but fortunately for our

purposes, it suffices to consider only k-tuples of candidates in a δ
4k

-net N over unit vectors

in Rq. A standard volume-packing argument states that it is possible to construct N with

cardinality at most
(

4k
δ

)Cq
for some absolute constant C. We simply iterate over all possible

k-tuples of vectors in N . SupposeW = (w1, . . . , wk) are the vectors considered in a particular

18

iteration of the search, and define MW to be the k × q matrix whose rows are the vectors

(w1, . . . , wk). Among all such k-tuples W ∈ Nk, we identify the k-tuple that minimizes the

maximum of the right-side distortion

RightDistortion(W) = max
v∈V
‖MW · g(v)‖2

2 − 1

and the left-side distortion

LeftDistortion(W) = max
v∈V

(
1− ‖MW · g(v)‖2

2

)
.

We let W∗ = (w∗1, . . . , w
∗
k) be the minimizing set of vectors in Nk, and let M∗ be the

corresponding matrix. Our algorithm shall output the final linear transformation f(v) =

M∗ ·g(v), the composition of the linear transformation implied by M∗ with the J-L mapping

g.

We now show that f has distortion at most εopt(k) + δ. For all i, define w′i to be the

element of N that is closest in direction to g(ui). Vector w′i is then a unit vector whose angle

from g(ui) is at most δ
4k

, since N is a δ
4k

-net. It follows that

〈w′i, g(v)〉 = 〈g(ui), g(v)〉 ± δ

4k
,

and hence, for all v ∈ V ,

〈w′i, g(v)〉2 = 〈g(ui), g(v)〉2 ± δ

2k
= 〈ui, v〉2 ±

δ

k
,

where the latter equality uses the bound in (2.1). Summing over all values of i, we see that

‖M∗ · g(v)‖2
2 =

k∑
i=1

〈w′i, g(v)〉2 =
k∑
i=1

〈ui, v〉2 ± δ.

By our choice of U and the fact that orthonormal projections are contractive, the value of

19

∑k
i=1〈ui, v〉2 must lie in the range [1− εopt(k), 1], and hence:

1− εopt(k)− δ ≤ ‖f(v)‖2
2 ≤ 1 + δ.

From this, it follows that f has distortion at most εopt(k) + δ.

The time complexity is dominated by the time required to compute the worst case stretch

and shinkage for each k-tuple of vectors (w1, . . . , wk) in our δ/4k-net N . Näıvely, there are

O(n) vectors in V , and O((k/δ)qkC) k-tuples for some constant C ∈ O(1), giving a total

running time of O(n)(k/δ)O(k2 log(n)/δ2). The running time could be potentially reduced by

pruning the brute-force search (for example, by only considering k-tuples of vectors in N

that are approximately mutually orthogonal), but we do not pursue that direction here.

20

Chapter 3

Compressive Sensing of Arrays via

Local Embeddings

We recall the geometric approach to constructing measurement matrices for compressive

sensing of images [11, 24, 25]—the image is partitioned into
√
m ×

√
m squares, which are

then superimposed onto a
√
m ×

√
m sensor array. It is easy to see then when applied

naively to a pathological example, recovery of the original image is impossible. However,

by randomly distorting the image prior to partitioning and superimposing it, we can obtain

algorithms for compressive sensing of images that have provable recovery guarantees for all

sparse images.

In this thesis, we present two variants of the geometric construction, called wrapping

and folding, that both support the `∞/`1 guarantee. Our constructions are randomized, and

the guarantee holds with a constant probability. The key feature of our constructions is

that they use only O(k log n) measurements, matching the bounds previously known only

for unstructured matrices.

In wrapping, the
√
m ×

√
m squares are superimposed directly. That is, all pixels with

the same coordinates modulo
√
m are added together. This is the construction used in [11]

and [12]. Note that the resulting mapping from the pixels onto the sensor array is discontin-

uous, as e.g., the neighbouring pixels (0,
√
m−1) and (0,

√
m) are mapped to distant sensors.

21

This issue does not occur in folding, where we flip alternate squares before superimposing

them, as one does when folding a paper map. In order to achieve provable guarantees for

these constructions, we randomize them using discrete affine distortions, described formally

in Section 3.3. The distortions are very “local” (in particularly, they are Lipschitz), which

ensures that they are easily implementable in optical or digital hardware. Our constructions

yield the following guarantees:

• For a randomized distortion followed by wrapping, we show that the resulting family of

mappings from [
√
n]2 into [

√
m]2 is universal. This implies that O(log n) such mappings

suffice to achieve the `∞/`1 guarantee with constant probability, yielding the O(k log n)

measurement bound. Unfortunately, the wrapping operation is highly discontinuous.

• For a randomized distortion followed by folding, we show that O(log n) such mappings

also suffice to achieve the `∞/`1 guarantee with constant probability, despite the fact

that the resulting family of mappings is not universal. However, the mappings are

Lipschitz.

Our first construction uses a family of mappings that is universal but not local (in particular,

not Lipschitz), while our second construction uses a family of mappings that is local but not

universal. Naturally, one might ask if there exists mappings that are both universal and

local. In Chapter 4, we show that, for natural definitions of ‘local’ and ‘universal’, such

mappings do not exist.

3.1 Preliminaries and Notation

We shall consider an n-dimensional positive-valued signal x ∈ Rn, and regard it as containing

the intensity values of an image consisting of n square pixels. For simplicity in our exposition,

we shall restrict ourselves to the case where the image itself is square, with dimensions
√
n

by
√
n (where

√
n is an integer). Generalization of our results to rectangular images is

straightforward.

22

Notation-wise, we use [n] to denote the set {0 . . . n − 1}, and use a mod b to denote

the integer remainder obtained when dividing a by b. We define d(x, y) to be the Euclidean

distance between two points x, y. We say that a function f is Lipschitz with constant c if

d(f(x), f(y)) ≤ c · d(x, y).

3.2 Sparse recovery and hashing

Our signal acquisition algorithms all employ hash functions h : [
√
n]2 → [

√
m]2 that map

keys, representing locations of pixels in the input image, to values, representing the locations

of sensors in a rectangular array. These hash functions each define an m× n binary matrix

Ah that contains a one in entry (i, j) if and only if the pixel corresponding to column j

is mapped by h onto the sensor corresponding to row i. The matrix Ah contains a single

one in every column and provides a complete representation of h. By randomly choosing

T = O(log n) hash functions h1 . . . hT from a carefully chosen distribution H, and then

vertically concatenating the resulting Aht matrices, we may obtain a matrix A such that,

with high probability, we can reconstruct an approximation x∗ to x when given only Ax.

The recovery is very simple: each coordinate xj is estimated as

x∗j = mediant=1...T (Ahtx)ht(j) (3.1)

For the purposes of accurate recovery of a sparse approximation to x, a sufficient condition

for the correctness of the above estimator is if the hash function distribution H is universal.

Definition 3.2.1. Let C ≥ 1 be a constant, and let H be a distribution over a family of hash

functions, each from some finite domain D of size n to any finite codomain R of size m.

Then H is called C-universal if, for all a, b ∈ D with a 6= b, we have Pr[h(a) = h(b)] ≤ C
m

,

where h is a hash function randomly chosen according to the distribution H.

In this paper, we shall say that a hash function is universal whenever it is C-universal

for some fixed constant C. The constant C shall be called the universality constant.

23

Let x(k) be a closest k-sparse approximation to x, i.e., x(k) contains the k largest entries

of x, and is equal to 0 elsewhere. One can show the following [5] (cf. [10]):

Fact 3.2.2. Assume that H is a C-universal distribution of hash functions h : [n] → [m].

Let T ≥ c log(n) and let m > c′k, where c, c′ are large enough constants depending on the

universality constant C. Then, for each j ∈ {1 . . . n}, the estimator in Equation 3.1 satisfies

Pr[|xj − x∗j | > ‖x− x(k)‖1/k] < 1/n

Note that the number of rows of the sketch matrix A is mT = O(k log n).

Proof. We will briefly outline the argument of [5] (cf. [10]), as we will re-use it later. Let S

be the support of x(k), |S| = k. Then, for c′ > 10, one can observe that, for any j

Pr[h(j) ∈ h(S − {j})] ≤ 1/10 (3.2)

and

E

 ∑
j′ /∈S−{j}:h(j′)=h(j)

|xj|

 ≤ ‖x− x(k)‖1

10k
(3.3)

Applying Markov’s inequality to Equation 3.3 then yields

Pr

 ∑
j′ /∈S−{j}:h(j)=h(j′)

|xj| > ‖x− x(k)‖1/k

 ≤ 1/10.

The guarantee then follows from the standard properties of the median estimator, and the

fact that 1/10 + 1/10 < 1/2.

A universal distribution H can easily be constructed by simply choosing a completely

random hash function each time. As we shall see, by employing a geometric approach based

on randomized affine distortions and wrapping, we can obtain the same result using far less

randomness.

24

3.3 Hashing via affine transformations, folding, and

wrapping

In this section, we shall define two randomized geometric hash functions—named Distort-

and-Wrap and Distort-and-Fold—that each facilitate sparse recovery. Both hash functions

map integer lattice points in [
√
n]2 to integer lattice points in [

√
m]2, and both require only

Θ(log(n)) random bits. The reason that we provide two distinct examples is that, as we shall

show, there is a necessary trade-off between locality properties and universality properties

among such hash functions.

Both of the hash functions we introduce can be described as the composition of two maps:

• First, a distortion map, which randomly deforms the input array via a discretized affine

transformation. Using a relatively simple family of transformations, we can distribute

hash collisions sufficiently uniformly as to facilitate sparse recovery.

• Secondly, a dimension reduction map, which takes the distorted
√
n by

√
n array and

maps each location into some cell of the final
√
m by

√
m array.

We employ the same distortion map in defining both Distort-and-Wrap and Distort-and-

Fold, but the dimension reduction maps differ. The Distort-and-Wrap hash function achieves

universality, immediately implying that sparse recovery is possible for m = Θ(k log n) via

Fact 3.2.2. The Distort-and-Fold hash function is not universal, but exhibits stronger locality

properties than the Distort-and-Wrap hash function—it is Lipschitz and preserves distances

and areas locally, up to a constant factor. Despite not being universal, Distort-and-Fold

still supports sparse recovery when m = Θ(k log n) (though establishing this requires some

additional work beyond applying Fact 3.2.2).

The randomized distortion map we use is defined as follows:

Definition 3.3.1. Define a DISTORT step to be a randomized mapping from Z2 to Z2,

taking

(x, y) 7→
(
x+

⌊
λxx√
n

⌋
+

⌊
λxy(x+ y)√

n

⌋
, y +

⌊
λyy√
n

⌋
+

⌊
λxy(x+ y)√

n

⌋)
25

where λx, λy, and λxy are three random integers, each uniformly and independently selected,

with replacement, from the set [
√
n].

The DISTORT mapping, roughly speaking, is a discretized version of the operation per-

formed via left multiplication by the following matrix:

M =
1√
n

 √n+ λx + λxy λxy

λxy
√
n+ λy + λxy


In practice, a DISTORT step could be simulated by a device that implements (e.g. via

optical methods) the continuous linear transformation represented by M . Since λ√
n
∈ [0, 1)

for each randomly chosen λ in the expression above, we have 1 ≤ det(M) < 8. Consequently,

multiplication by M always preserves areas, up to a constant factor, without ever shrinking

them.

We proceed by establishing that the DISTORT step does not increase the distances

between points too much:

Lemma 3.3.2. The mapping produced by any DISTORT step is Lipschitz. In particular, its

Lipschitz constant is at most 4.

Proof. Consider two integer lattice points P = (x, y) and Q = (x + a, y + b), and let f be

any DISTORT step with parameters λx, λy, and λxy. Since λ√
n
∈ [0, 1) for any 0 ≤ λ < n,

we have ⌊
λx(x+ a)√

n

⌋
−
⌊
λxx√
n

⌋
≤ a

and similarly for expressions involving λy and λxy. Consequently,

d(f(P), f(Q)) ≤
√

(3a+ b)2 + (3b+ a)2

≤
√

16a2 + 16b2 = 4d(P,Q),

where, for the second inequality, we used the fact that 2ab ≤ a2 + b2.

26

We also show that the DISTORT step can never map two distinct points to the same

target:

Lemma 3.3.3. The mapping produced by any DISTORT step is one-to-one.

Proof. Again, we consider two integer lattice points P = (x, y) and Q = (x + a, y + b), and

let f be any DISTORT step with parameters λx, λy, and λxy. We assume that f(P) = f(Q),

with the goal of showing that a = 0 and b = 0, hence proving that P = Q. The assumption

f(P) = f(Q) implies that

⌊
λxx√
n

⌋
+

⌊
λxy(x+ y)√

n

⌋
= a+

⌊
λx(x+ a)√

n

⌋
+

⌊
λxy(x+ a+ y + b)√

n

⌋
(3.4)

and ⌊
λyy√
n

⌋
+

⌊
λxy(x+ y)√

n

⌋
= b+

⌊
λy(y + b)√

n

⌋
+

⌊
λxy(x+ a+ y + b)√

n

⌋
. (3.5)

We note that if a+b = 0, then equations (3.4) and (3.5) can only be satisfied if a = b = 0.

Consider instead the case where a+b > 0. In this case, at least one of a or b must be positive,

so we may assume, without loss of generality, that a > 0. However, if both a + b and a are

positive, then equation (3.4) cannot be satisfied, as its left side would be strictly less than

its right side. A similar contradiction occurs in the case where a + b < 0, so we must have

a = b = 0, completing the proof.

After randomly distorting the input array, we perform an operation to reduce the size of

the input from n to m. Our two hash functions arise from two possible methods of doing

this:

Definition 3.3.4. Define a WRAP step to be a mapping from Z2 to [
√
m]2 that maps each

point (x, y) to (x mod
√
m, y mod

√
m).

Definition 3.3.5. Define a FOLD step to be a mapping from Z2 to [
√
m]2, taking (x, y)

to (fold(x + ρx,
√
m), fold(y + ρy,

√
m)), where, for positive integers a and b, the expression

fold(a, b) is defined to equal a mod b whenever (a mod 2b) < b, and b − 1 − (a mod b)

27

otherwise. Here, ρx and ρy are random integers, uniformly and independently selected, with

replacement, from the set [
√
m].

Observe that the WRAP step is a deterministic operation, but the FOLD step incorpo-

rates a randomized shift, which shall be useful later for obtaining sparse recovery guarantees.

We note that wrapping produces “discontinuities” near locations mapped near the bound-

ary of [
√
m]2; for example, (

√
m−1,

√
m−1) and (

√
m,
√
m) get mapped to distant locations.

However, folding is more “continuous” than wrapping in the sense that it is a discretized

version of a continuous mapping from [0,
√
n]2 to [0,

√
m]2. In particular, we observe the

following:

Proposition 3.3.6. The mapping produced by any FOLD step is Lipschitz with constant 1.

We now define the two randomized hash functions we study herein, which are obtained

by combining our randomized DISTORT operation with wrapping and folding:

Definition 3.3.7. The Distort-and-Fold hash function consists of performing a DISTORT

step followed by a FOLD step. The Distort-and-Wrap hash function consists of performing

a DISTORT step followed by a WRAP step.

Since every possible DISTORT transformation is Lipschitz with constant at most 4, and

the FOLD step is Lipschitz with constant 1, we can immediately deduce the following:

Proposition 3.3.8. Any Distort-and-Fold transformation is Lipschitz with constant at most

4.

3.4 Sparse recovery guarantees for wrapping

In this section we show that the family of mappings obtained by composing randomized

distortion and wrapping is universal. This implies that O(log n) such mappings suffice to

achieve the `∞/`1 guarantee with constant probability, yielding the O(k log n) measurement

bound.

28

Theorem 3.4.1. Let H be the distribution of all Distort-and-Wrap hash functions, chosen

uniformly over all choices of constants λx, λy, and λxy selected during the DISTORT step.

Then H is universal. In particular, H is C-universal for some universality constant1 C ≤ 91.

Proof. Let h ∈ H be randomly chosen, and let λx, λy, and λxy be the three independently

chosen parameters associated to h, each uniformly selected from [
√
n]. Let f be the under-

lying DISTORT operation used by h. Consider two distinct integer lattice points P = (x, y)

and Q = (x + a, y + b), with 0 ≤ x, y, x + a, y + b <
√
n, and (a, b) 6= (0, 0). Our goal will

be to show that Pr[h(P) = h(Q)] is at most C
m

. This is equivalent to showing that, with

probability at most C
m

, we will have f(P) and f(Q) congruent modulo
√
m in both their

horizontal and vertical coordinates.

We begin by noting that if d(P,Q) <
√
m
4

, then we must have d(f(P), f(Q)) <
√
m by

Lemma 3.3.2. However, since Lemma 3.3.3 implies that we cannot have f(P) = f(Q), we

must then have h(P) 6= h(Q) in such a case, because f(P) and f(Q) can only be congruent

modulo
√
m in both their horizontal and vertical coordinates if either f(P) = f(Q) or

d(f(P), f(Q)) ≥
√
m. Accordingly, we shall henceforth assume that d(P,Q) ≥

√
m
4

.

To proceed, we investigate the underlying structure of the DISTORT operation. Observe

that, using vector arithmetic, we can write

f((x, y)) = (x, y) +

⌊
λxx√
n

⌋
(1, 0) +

⌊
λyy√
n

⌋
(0, 1) +

⌊
λxy(x+ y)√

n

⌋
(1, 1)

and thus

f(Q)− f(P) = (a, b) +

(⌊
λx(x+ a)√

n

⌋
−
⌊
λxx√
n

⌋)
(1, 0)

+

(⌊
λy(y + b)√

n

⌋
−
⌊
λyy√
n

⌋)
(0, 1)

+

(⌊
λxy(x+ y + a+ b)√

n

⌋
−
⌊
λxy(x+ y)√

n

⌋)
(1, 1).

1In the proof of Theorem 3.4.1, we make little effort to optimize the universality constant C, instead
opting for the clearest possible exposition.

29

Let Zx be the integer-valued random variable equal to

⌊
λx(x+ a)√

n

⌋
−
⌊
λxx√
n

⌋
,

and consider its distribution as λx varies. Let Sx = {0, . . . , a} if a ≥ 0, and let Sx =

{−a, . . . , 0} otherwise. We observe that the support of Zx is contained in the set Sx, and for

each t ∈ Sx, we have

Pr[Zx = t] ≤

⌈√
n
|a|

⌉
√
n
≤ 1

|a|
+

1√
n
.

Analogously, we define Zy =
⌊
λy(y+b)√

n

⌋
−
⌊
λyy√
n

⌋
and Zxy =

⌊
λxy(x+y+a+b)√

n

⌋
−
⌊
λxy(x+y)√

n

⌋
, and

note that for any integer t, we have Pr[Zy = t] ≤ 1
|b| + 1√

n
, and Pr[Zxy = t] ≤ 1

|a+b| + 1√
n
.

Observe that Zx, Zy, and Zxy are all independent, as λx, λy, and λxy are.

To finish the proof, we must use the above bounds on the randomness of Zx, Zy, and Zxy

to prove that there is a very low probability that f(Q)− f(P) is divisible by
√
m in both its

horizontal and vertical coordinates. To accomplish this, we use the assumption that d(P,Q)

is large to show that at least two of the three lengths {|a|, |b|, |a + b|} must be large, which

will imply that both the horizontal and vertical coordinates of f(Q)− f(P) are unlikely to

be divisible by
√
m, given the randomness introduced by our choice of values for Zx, Zy, and

Zxy.

Since we assumed that d(P,Q) ≥
√
m
4

, we have
√
a2 + b2 ≥

√
m
4

, so one of |a| or |b| must

be at least
√
m

4
√

2
. Without loss of generality, we shall assume that |a| ≥

√
m

4
√

2
. We consider two

cases:

Case 1: |a + b| ≥
√
m

8
√

2
. Fix Zy = t, and consider what happens to f(Q) − f(P) =

(a, b + t) + Zx(1, 0) + Zxy(1, 1) as Zx and Zxy range over their respective distributions. To

have h(P) = h(Q), we must have b+ t+Zxy and a+Zx +Zxy both divisible by
√
m, which

occurs if and only if both Zxy ≡ −b− t mod
√
m and Zx ≡ b+ t− a mod

√
m. Since these

events occur independently, it suffices to bound their respective probabilities.

If |a| ≤
√
m, then there is only one value that Zx can take on so that Zx ≡ b + t − a

mod
√
m, and our previous analysis of the distribution of Zx can then be used to deduce

30

that

|a| ≤
√
m⇒ Pr[Zx ≡ b+ t− a mod

√
m]

≤ 1

|a|
+

1√
n
≤ 4
√

2√
m

+
1√
n
≤ 7√

m
.

However, if |a| ≥
√
m, then there could be up to

⌈
|a|√
m

⌉
distinct values of Zx for which

Zx ≡ b+ t− a mod
√
m. In this case, we instead obtain the bound

|a| >
√
m⇒ Pr[Zx ≡ b+ t− a mod

√
m]

≤
⌈
|a|√
m

⌉(
1

|a|
+

1√
n

)
≤ 2√

m
+

2|a|√
n
√
m
≤ 4√

m
,

where in the final inequality, we used the fact that |a| ≤
√
n. Combining both subcases, we

obtain Pr[Zx ≡ b+ t− a mod
√
m] ≤ 7√

m
.

For Zxy, our analysis is similar, and we obtain

|a+ b| ≤
√
m⇒ Pr[Zxy ≡ −b− t mod

√
m]

≤ 1

|a+ b|
+

1√
n
≤ 8
√

2√
m

+
1√
n
≤ 13√

m

and

|a+ b| >
√
m⇒ Pr[Zxy ≡ −b− t mod

√
m]

≤
⌈
|a+ b|√

m

⌉(
1

|a+ b|
+

1√
n

)
≤ 2√

m
+

2|a+ b|√
n
√
m
≤ 6√

m
,

using the fact that |a+b| ≤ 2
√
n. Therefore, we conclude that Pr[Zxy ≡ −b− t mod

√
m] ≤

13√
m

, and hence Pr[h(P) = h(Q)] ≤ 91
m
.

Case 2: |a + b| <
√
m

8
√

2
. Then since we assumed that |a| ≥

√
m

4
√

2
, we must have |b| ≥

√
m

8
√

2

by the triangle inequality, and we can proceed similarly to how we did in Case 1. We

fix Zxy = t, and observe that h(P) = h(Q) if and only if Zx ≡ −a − t mod
√
m and

31

Zy ≡ −b − t mod
√
m. By a similar argument to that used in Case 1, we have Pr[Zx ≡

−a − t mod
√
m] ≤ 7√

m
, and Pr[Zy ≡ −b − t mod

√
m] ≤ 13√

m
, from which it follows that

Pr[h(P) = h(Q)] ≤ 91
m

.

3.5 Sparse recovery guarantees for folding

When wrapping is replaced by folding, our hash function no longer has the universality

property. Specifically, for any two adjacent points P = (x, y) and Q = (x, y + 1), it is not

difficult to see that the probability of their collision under the Distort-and-Fold hash function

is Ω(1/
√
m), not O(1/m). This is because the first coordinates of P and Q remain equal

with constant probability during the DISTORT operation, in which case they collide during

folding with probability 1/
√
m. However, the folding construction still satisfies the following

weaker properties, which are sufficient to guarantee sparse recovery:

Lemma 3.5.1. Fix n, let k be an integer with 0 < k ≤ n, and let m be a perfect square of

size roughly c′k, where c′ is a sufficiently large constant. Let h be a randomly chosen Distort-

and-Fold transformation mapping into [
√
m]2, and let h consist of a DISTORT function f

followed by a FOLD function g, (i.e., h(P) = g(f(P))). Write f = (fx, fy). Then there

exist absolute positive constants C, C ′ such that:

(1) For any two distinct points P,Q ∈ [
√
n]2, we have

Pr[fx(P) = fx(Q)] ≤ C

‖P −Q‖∞
, (3.6)

and the same statement holds for fy.

(2) For any two points P,Q ∈ [
√
n]2 with ‖P −Q‖∞ > C ′

√
k,

Pr[h(P) = h(Q)] ≤ 1

20k
. (3.7)

Proof. Both parts of this proof employ techniques similar to those used in the proof of

32

Theorem 3.4.1. As we did there, we write P = (x, y) and Q = (x+a, y+b) with (a, b) 6= (0, 0),

and define the same independent random variables Zx, Zy, and Zxy. We observe that at least

two of the values in the set {|a|, |b|, |a + b|} must be at least ‖P−Q‖∞
2

, and thus at least two

of the three random variables in {Zx, Zy, Zxy} must have a large support. This forms the

basis for the arguments we use to establish the lemma.

In proving (1), we must use the fact that at least one of {|a|, |a+ b|} is at least ‖P−Q‖∞
2

.

We consider the case where |a| ≥ ‖P−Q‖∞
2

; the case where |a + b| ≥ ‖P−Q‖∞
2

is similar.

Fixing Zy and Zxy, we observe that there is at most one value that the random variable Zx

can attain that will cause fx(P) and fx(Q) to be equal. Since for any integer t, we have

Pr[Zx = t] ≤ 1
|a| + 1√

n
, it follows that

Pr[fx(P) = fx(Q)] ≤ 1

|a|
+

1√
n
≤ 3

‖P −Q‖∞
,

which establishes the result. For fy, we proceed similarly.

We prove (2) for the case where c′ = 1280 and C ′ = 144, making little effort to optimize

the constants. If ‖P − Q‖∞ > C ′
√
k ≈ 144√

1280

√
m > 4

√
m, then ‖P − Q‖∞ > 4

√
m and

thus at least two of {|a|, |b|, |a + b|} are greater than 2
√
m. We shall complete the proof

assuming that both |a| and |b| are greater than 2
√
m, but the other cases are similar. Fix

Zxy = t, and fix the two horizontal and vertical shift parameters so that ρx = tx and ρy = tx.

By the nature of the FOLD operation, as Zx is allowed to vary, the horizontal coordinates

hx(P) and hx(Q) of h(P) and h(Q) will be equal if and only if Zx ≡ −a − t mod 2
√
m or

Zx + tx ≡ a+ t− tx mod 2
√
m. Therefore,

Pr[hx(P) = hx(Q)] ≤ 2

⌈
|a|√
m

⌉(
1

|a|
+

1√
n

)
≤ 8√

m
.

The vertical coordinates of h(P) and h(Q) will be equal with the same probability. Since

these events are independent, we have Pr[h(P) = h(Q)] ≤ 64
m
≤ 1

20k
, completing the proof.

Using Lemma 3.5.1, we can obtain the following sparse recovery guarantee for Distort-

33

and-Fold:

Theorem 3.5.2. Let T ≥ c log(n) and let m > c′k, where c, c′ are sufficiently large constants.

Let h be a composition of a DISTORT function g and a FOLD function f , i.e., h(P) =

f(g(P)). Then, for each p ∈ {1 . . . n}, the estimator in Equation 3.1 satisfies

Pr[|xp − x∗p| > ‖x− x(k)‖1/k] < 1/n

Proof. Let P be the point in [
√
n]2 corresponding to the index p. Let S ′ be the support of

x(k) and S” be the set of points Q ∈ [
√
n]2 such that ‖P − Q‖∞ ≤ C ′

√
k; let S = S ′ ∪ S”.

By the arguments outlined in the proof of Fact 3.2.2, it suffices to show that Equations 3.2

and 3.3 hold.

We will first show that Equation 3.2 holds. Let S”x = {Q : gx(Q) = gx(P)} and

S”y = {Q : gy(Q) = gy(P)}. Note that both S”x and S”y are random variables defined by

g.

Lemma 3.5.3. E[|S”x|] ≤ c′′′
√
k for some absolute constant c′′′.

Proof. Let S” = {Q1 . . . Qr}, and assume that the points Q1, Q2 . . . Qr are sorted in the

order of increasing distance from P . By Lemma 3.5.1, we have

E[|S”x|] ≤
r∑
i=1

Pr[gx(P) = gx(Qi)] ≤
r∑
i=1

C

‖P −Qi‖∞
=

C′
√
k∑

`=1

8`C/` = 8CC ′
√
k,

where we used the fact that there are at most 8` distinct points Q with ‖P −Q‖∞ = `.

The lemma for S”y is similar. By Markov’s inequality, it follows that

Pr[|S”x|+ |S”y| > 160c′′′
√
k] ≤ 1/80.

Moreover, for sufficiently large m, each Q ∈ S”x ∪ S”y can collide with P under f with

probability at most 1/
√
m (due to the random translation applied during the FOLD step).

34

This collision probability is at most 1/80 · 1
160c′′′

√
k

for c′ large enough. Consequently, we

have:

Pr
[
h(P) ∈ h(S”x ∪ S”y − {P}) : |S”x|+ |S”y| ≤ 160c′′′

√
k
]

≤ 1/80

The previous two equations thus imply

Pr[h(P) ∈ h(S”x ∪ S”y − {P})] ≤ 1/80 + 1/80 = 1/40.

Moreover, all other points in S” collide with P under f with probability at most 1/m, so

Pr [h(P) ∈ h(S”− (S”x ∪ S”y ∪ {P}))] ≤
|S”|
m
≤ (C ′)2k

m
,

which is less than 1
40

for c′ large enough. It follows that Pr[h(P) ∈ h(S”−{P})] ≤ 1
40

+ 1
40

=

1
20

.

Finally, by Lemma 3.5.1, for any Q /∈ S” we have Pr[h(P) = h(Q)] ≤ 1
20k

. Therefore, we

have Pr[h(P) ∈ h(S ′−S”−{P})] ≤ k
20k

= 1
20

and thus Pr[h(P) ∈ h(S−{P})] ≤ 1
20

+ 1
20

= 1
10

,

so Equation 3.2 holds.

From this, Equation 3.3 by applying linearity of expectations, and the theorem follows.

35

36

Chapter 4

Impossibility of Universality for Local

Hash Functions

In this chapter, we prove an impossibility result that effectively rules out the construction

of universal hash functions for images, if it is required that those functions are sufficiently

“local”. Here, our notions of locality and universality are continuous: we consider functions

that map the vertices of each pixel of a large image to locations in the continuous square

region [0,
√
m]2, so that each pixel is effectively mapped to a polygon in [0,

√
m]2. We show

that if such a mapping is appropriately “local”, then some pair of pixels must collide (i.e.,

overlap) with substantial probability. These results naturally complement the results of

Chapter 3, where we showed that sparse recovery guarantees could be achieved using hash

functions that were either universal (Distort-and-Wrap), or Lipschitz (Distort-and-Fold).

In this chapter, we employ the same notation as used in Chapter 3 (see Section 3.1).

In the following, we formalize these notions. Let H be a distribution over a family of

functions from the domain D = [
√
n]2 to the continuous region R = [0,

√
m]2.

Definition 4.0.4. For h ∈ H and a point P = (x, y) ∈ [
√
n]2, define the pixel Rh(P) to be

the convex hull of the four points {h(x − 1, y − 1), h(x − 1, y), h(x, y − 1), h(x, y)}. We say

that two pixels Rh(P) and Rh(Q) collide whenever their interiors intersect.

Since our notion of collision is continuous, we need to redefine universality for this setting:

37

Definition 4.0.5. For any C ≥ 1, we say that H is continuously C-universal if, for all

points P,Q ∈ D with P 6= Q, we have Pr[Rh(P) collides with Rh(Q)] ≤ C
m

, where h is a

function randomly chosen according to the distribution H.

Our notion of “locality” of a mapping is formalized as follows:

Definition 4.0.6. Let h be a function from [
√
n]2 to [0,

√
m]2. For C ≥ 1, we define h to

be C-approximately locally isometric whenever the following hold:

(1) The function h is Lipschitz with constant at most C.

(2) Each pixel Rh(P) has area at least 1
C

.

The first condition is a prerequisite of any local mapping (the distances cannot expand

too much). The second condition essentially states that, locally, the distances cannot shrink

too much either. In particular, this rules out the possibility of projecting a “large” image

into a “small” image by simply scaling it down. Note that the continuous version of our

Distort-and-Fold mapping from Section 3.5 satisfies both conditions for a small value of C.

With the notions of locality and universality formalized, we now state our impossibility

result:

Theorem 4.0.7. Let C1 ≥ 1 and C2 ≥ 1 be any constants. Then there exist sufficiently

large values of m and n, dependent only on C1 and C2, such no distribution H over a family

of C1-approximately locally isometric hash functions from D = [
√
n]2 to R = [0,

√
m]2 is

continuously C2-universal.

Proof. We define two points P and Q to be adjacent whenever d(P,Q) = 1, and say that

two pixels are adjacent whenever the corresponding points are. Intuitively, the general idea

behind our proof is that any C-approximately locally isometric mapping from D to R must

create a large number of “creases” (or fold lines) in order to continuously embed the large

n-pixel input region D into the small range R, which has area only m. These creases create

collisions among adjacent pixels, and, as it turns out, create sufficiently many collisions that

H cannot be continuously universal.

The rest of the proof relies on the following structural lemma:

38

Lemma 4.0.8. Let h be a C1-approximately locally isometric hash function from D = [
√
n]2

to R = [0,
√
m]2. Then the number of adjacent pairs of pixels that collide under h is at least

c n√
m

for some absolute constant c > 0 that depends only on C1.

Proof. Each of the (
√
n− 1)2 pixels Rh(P) is a convex polygon in [0,

√
m]2 having three or

four edges (fewer edges are not possible since each pixel has positive area). We give special

names to some of these edges: define a crease edge to be an edge that is the boundary

between two adjacent colliding pixels, and define a boundary edge to be any of the 4(
√
n−1)

edges that are not the border between two adjacent pixels. Let C be the set of all crease

edges, and let B be the set of all boundary edges.

Next, we shall define a function α, taking point-pixel pairs of the form (p,Rh(P)), where

p is a point in Rh(P), to edges in B ∪ C. We define α(p,Rh(P)) algorithmically as follows:

let `p be the horizontal line passing through p. Consider the process of moving rightward

along `p until an edge e0 of Rh(P) is encountered. If e0 is a crease or boundary edge, we set

α(p,Rh(P)) = e0. If not, we let Rh(P1) be the pixel neighbouring Rh(P) that also has e0

as one of its edges, and continue moving rightward along `p, through the interior of Rh(P1),

until a second edge e1 of Rh(P1) is encountered. Again, if e1 is a crease or boundary edge, we

set α(p,Rh(P)) = e1, and if not, we continue through further pixels to the right of P1. This

process must terminate, because some boundary or fold edge must be encountered before

`p exits the square [0,
√
m]2. We can ignore the points p for which this process is not well

defined due to `p intersecting a vertex of one of the pixels, or colliding with a horizontal edge;

such points comprise a set of measure zero, which will not be relevant during our analysis.

Given a boundary or crease edge e ∈ B ∪ C and a point p ∈ [0,
√
m]2, we let U(p, e) be

the set of all pixels Rh(P) with p ∈ Rh(P) and α(p,Rh(P)) = e. We claim that |U(p, e)| ≤ 2.

To see this, observe that the algorithm used to generate α(p,Rh(P)) can be run in reverse,

starting from `p ∩ e and moving leftwards instead of rightwards. The only decision to be

made is which pixel, of the two having e as an edge, to begin moving leftward in initially.

For e ∈ B ∪ C, we define µe as a measure of the total area of all the point-pixel pairs

39

(p,Rh(P)) with α(p,Rh(P)) = e. Formally, we let

µe =
∑
P

µ{p ∈ Rh(P) : α(p,Rh(P)) = e},

where µ is the standard (e.g. Lebesgue) measure in R2. Using the previous claim that

|U(p, e)| ≤ 2, we can see that µe ≤ 2
√
m ‖e‖2, since the area of all points p ∈ [0,

√
m]2 with

`p ∩ e 6= ∅ is at most
√
m ‖e‖2. It follows that µe ≤ 2C1

√
m, since h is C1-approximately

locally isometric.

We note that
∑

e∈B∪C µe is simply the sum of the areas of all the pixels, which is at least

Θ(n)
C1

, since h is C1-approximately locally isometric. It follows that |B ∪ C| ≥ Θ(n)

2C2
1

√
m

. Since

|B| = 4(
√
n− 1), it follows that |C| ≥ Θ(n)√

m
, which yields the result.

Using Lemma 4.0.8, it is easy to show that H cannot be continuously universal. We

define S to be the set of all unordered pairs {P,Q} of adjacent points in D, noting that

|S| ≤ 2n. Lemma 4.0.8 implies that, for each h in the support of H, there are at least c n√
m

pairs {P,Q} ∈ S such that Rh(P) and Rh(Q) collide. Therefore, by the pigeonhole principle,

there must exist some pair of adjacent points {P,Q} ∈ S such that, if h is randomly selected

according to the distribution H, the probability that Rh(P) and Rh(Q) collide is at least

c/2√
m

. By selecting m to be sufficiently large, it then follows that H cannot be continuously

C2-universal.

40

Bibliography

[1] N. Alon. Problems and results in extremal combinatorics. Discrete Math., 273(1):31–53,
2003.

[2] M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core sets. In
Symposium on the Theory of Computing, pages 250–257, 2002.

[3] E. Candès. Compressive sampling. In Proc. Int. Cong. Math., volume 3, pages 1433–
1452, Madrid, Spain, 2006.

[4] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

[5] G. Cormode and S. Muthukrishnan. Improved data stream summaries: The count-min
sketch and its applications. Latin, 2004.

[6] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[7] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306, 2006.

[8] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk.
Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008.

[9] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. MIT CSAIL-TR-
2006-058, 2006.

[10] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of IEEE,
2010.

[11] R. Gupta, P. Indyk, E. Price, and Y. Rachlin. Compressive sensing with local geometric
features. SOCG, 2011.

[12] L. Hamilton, D. Parker, C. Yu, and P. Indyk. Focal plane array folding for efficient
information extraction and tracking. AIPR, 2012.

[13] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course notes,
available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

41

[14] P. Indyk and J. Matousek. Low distortion embeddings of finite metric spaces. Handbook
of Discrete and Comp. Geom., 273:177–196, 2004.

[15] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Symposium on the Theory of Computing, pages 604–613, New
York, NY, 1998.

[16] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving hashing in
multidimensional spaces. STOC, 1997.

[17] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Proc. Conf. Modern Anal. and Prob., New Haven, CT, Jun. 1982.

[18] N. Linial and O. Sasson. Non-expansive hashing. STOC, 1996.

[19] J. Matousek and A. Sidiropoulos. Inapproximability of metric embeddings into Rd.
Trans. Amer. Math. Soc, 362(12):6341–6365, 2010.

[20] B. Moore. Principal component analysis in linear systems: Controllability, observability,
and model reduction. IEEE Trans. Automat. Control, 26(1):17–32, 1981.

[21] S. Muthukrishnan. Data streams: Algorithms and applications). Foundations and
Trends in Theoretical Computer Science, 2005.

[22] J. Romberg. Compressive sampling by random convolution. SIAM Journal on Imaging
Science, 2009.

[23] A. Sidiropoulos. Computational Metric Embeddings. PhD thesis, Massachusetts Instt.
Tech., May 2008.

[24] V. Treeaporn, A. Ashok, and M. A. Neifeld. Increased field of view through optical
multiplexing. Optics Express, 18(21), 2010.

[25] S. Uttam, A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady.
Optically multiplexed imaging with superposition space tracking. Optics Express, 17(3),
2009.

42

