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Abstract

The minimum set cover problem is, without question, among the most ubiq-
uitous and well-studied problems in computer science. Its theoretical hardness
has been fully characterized—logarithmic approximability has been established,
and no sublogarithmic approximation exists unless P = NP. However, the gap
between real-world instances and the theoretical worst case is often immense—
many covering problems of practical relevance admit much better approxima-
tions, or even solvability in polynomial time. Simple combinatorial or geometric
structure can often be exploited to obtain improved algorithms on a problem-
by-problem basis, but there is no general method of determining the extent to
which this is possible.

In this thesis, we aim to shed light on the relationship between the structure
and the hardness of covering problems. We discuss several measures of structural
complexity of set cover instances and prove new algorithmic and hardness results
linking the approximability of a set cover problem to its underlying structure.
In particular, we provide:

• An APX-hardness proof for a wide family of problems that encode a
simple covering problem known as Special-3SC.

• A class of polynomial dynamic programming algorithms for a group of
weighted geometric set cover problems having simple structure.

• A simplified quasi-uniform sampling algorithm that yields improved ap-
proximations for weighted covering problems having low cell complexity
or geometric union complexity.

• Applications of the above to various capacitated covering problems via
linear programming strengthening and rounding.

In total, we obtain new results for dozens of covering problems exhibiting ge-
ometric or combinatorial structure. We tabulate these problems and classify
them according to their approximability.
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Chapter 1

Introduction

Many computationally intractable problems in discrete optimization suffer from
a large gap between their best known theoretical approximability and the experi-
mental results obtained by practical approaches applied to real-world instances.
Consider, as a familiar example, the Travelling Salesman Problem (TSP)—
arguably one of the most widely known and well-studied problems in theoret-
ical computer science. The standard (metric, symmetric, weighted) version of
the TSP admits a 1.5-approximation via the famous algorithm of Christofides,
but an improved approximation remains unknown in general [Vaz01]. However,
well-optimized TSP solvers designed for practical purposes can often, in a short
amount of time, obtain results that are provably within a fraction of a percent
of optimal on instances containing hundreds of thousand of vertices [JM02].
Randomly generated or real-world TSP instances are typically quite tractable
from an approximability point of view.

This theme is repeated, perhaps in an even more dramatic fashion, for cover-
ing problems such as Minimum Set Cover and Minimum Hitting Set—the main
topics of this thesis. As we shall see, in the general case, such problems are
inapproximable within anything better than a multiplicative logarithmic factor
unless P = NP. However, there are numerous special cases of practical rele-
vance in which geometric or combinatorial constraints are present, and conse-
quently, much better approximations, or even exact solution in polynomial time,
are possible. Moreover, even for cases where theoretically good approximations
are not known, there often exist heuristic algorithms that achieve astonishingly
good results on instances generated randomly or obtained from industrial appli-
cations; a compelling example can be found in [HLL06] for Rectilinear Polygon
Cover—a problem discussed at some length in Section 1.2.

These examples beg several fundamental questions that are of immense im-
portance in operations research and computer science. Why are typical or ran-
domly generated instances of computational optimization problems often sig-
nificantly easier than the theoretical worst case? What aspect of pathological
cases makes them so difficult, and why do such difficulties seem to occur rarely
in practice? What must we understand in order to establish theoretical jus-
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1. INTRODUCTION

tification for the easiness of practical problems in the face of strong hardness
results?

For the case of covering problems, we shall argue that the answer to all of
the above questions can be distilled down to a single word: structure. Set cover
problems encountered in practical applications typically have structural restric-
tions that forbid the existence of overly complex subproblems. Consequently,
pathological cases fail to present themselves, and instead, instance-specific prop-
erties can be exploited to obtain better approximation algorithms.

Indeed, many such improved approximation algorithms exist for special cases
of set cover arising in real-world geometric or combinatorial optimization prob-
lems. However, such structure-exploiting methods are frequently obtained in
an ad hoc manner on a problem-by-problem basis. There is no general method
of detecting underlying structure present within set cover instances and capi-
talizing on it for the purposes of obtaining the best possible approximability.
Furthermore, the current state of the art possesses few reliable and general
methods of easily determining whether or not a given covering problem admits
any improved approximability at all.

In this thesis, we aim to present simpler and more general tools for obtaining
both upper and lower bounds on the approximability of various classes of set
cover problems. Our results are achieved by establishing connections between
the underlying combinatorial structure of instances and their approximability
(or hardness of approximation). Accordingly, we obtain new polynomial-time
solvability and APX-hardness results for wide classes of covering problems as
well as improved approximation algorithms whose guarantees depend on vari-
ous instance-specific parameters.1. In doing so, we acquire dozens of improved
results for numerous covering problems in computational geometry and com-
binatorial optimization, including several weighted and capacitated covering
problems.

1.1 Set Cover: A Hard Problem with a Rich
History

We begin by reviewing the formal definition of minimum set cover and the
related family of optimization problems. We start with the basics:

Definition 1.1.1. A set system is an ordered pair (X,S) where X is any set
and S is a family of subsets of X.

Topologies, graphs, matroids, and so on can be regarded as special cases of
set systems, but for the purposes of defining general set cover, we shall impose
no structural restrictions of any kind on S. Set systems are also known as
hypergraphs or range spaces, with the distinction depending only on context

1Such parameterized approximation algorithms, as they are called, are well studied (see,
e.g. [CGG06]) However, we will not dwell on the theoretical aspects of parameterized ap-
proximability, instead choosing to focus on what these methods can do for various individual
covering problems.

2



1.1. SET COVER: A HARD PROBLEM WITH A RICH HISTORY

(combinatorics versus geometry). The set X, often called the universe or ground
set, will be assumed finite for all of our applications. Accordingly, S will always
be a finite family containing finite sets. In the literature, members of X are
usually called points, elements, or atoms; members of S are commonly called
ranges or simply sets. In the terminology of hypergraphs, members of X may
be called vertices or nodes and members of S may be called hyperedges (or
sometimes just edges). Throughout this thesis, we will use the variable M for
|X|—the number of elements—and the variable N for |S|—the number of sets.2

When defining set systems arising in geometric applications, we will employ
a slight form of notational abuse. In such cases, sets in S will not be defined
explicitly, but will be inferred from other classes of geometric objects or regions.
For example, X may be a finite set of points in the plane, and S could be
regarded as a family of disks, squares, or other objects, each of which contains
some points in X. When discussing such set systems, we will treat the sets in
S as geometric objects (and even refer to them as objects, regions, disks, and so
on). However, on a purely theoretical level, we shall only be concerned with the
restriction of each set in S to X.

In the optimization problem Min-Set-Cover, we are given a set system
(X,S) and must select a subfamily C ⊆ S such that each element in X lies inside
at least one set in C. The objective that we wish to minimize is the cardinality
of C. In the related Min-Hitting-Set problem, we instead wish to select a
minimum cardinality subset Y ⊆ X such that each set in S contains at least
one point in Y . For both of these problems to always have a feasible solution,
we shall assume throughout this thesis that each element in X is contained in
at least one set in S, and that no sets in S are empty.

In the literature, Min-Set-Cover and Min-Hitting-Set are sometimes
referred to as minimum hypergraph cover or minimum hypergraph transversal
respectively. We will not use these terms.

In the weighted generalizations of Min-Set-Cover and Min-Hitting-Set,
we are also given a vector of positive costs or weights w ∈ RS+ or w ∈ RX+ and we
wish to minimize the total cost of all objects in C or Y respectively. Instances
without costs (or, equivalently, with unit costs) are termed unweighted. In this
thesis, we will assume a model of computation in which all weights admit a
representation allowing primitive operations (addition and comparison) in time
linear in their size. If desired, the reader may simply assume that all weights
are positive integers. Wherever possible, we shall state hardness results for
unweighted versions of problems and algorithmic results for weighted versions so
as to obtain the strongest possible theorems. When simply developing structural
properties of set systems, the distinction will remain unimportant, so we will
only distinguish between weighted and unweighted problems where necessary.

It turns out that the two problems Min-Set-Cover and Min-Hitting-Set
are equivalent under the interchanging of the roles of X and S. Formally:

2This is in agreement with notation used in some publications and directly opposite to
that used in others (there appears to be no clear favourite in the literature). We choose to
make M the number of points so that when we introduce set system matrices for the integer
programming formulation of set cover, they will be M by N matrices.
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1. INTRODUCTION

Definition 1.1.2. Given a set system (X,S), its dual set system3 (X,S)∗ is
the set system (Z, T ) with Z = {zS : S ∈ S} and T = {Tx : x ∈ X} where
Tx = {zS : x ∈ S}.

One way to visualize the dual set system is as follows: first, regard a set
system (X,S) as a bipartite graph with vertex set A∪B, where the elements of
A are members of X, elements of B are members of S, and edges in the graph
correspond to the inclusion of elements in sets. A set cover then corresponds to
a family of vertices in B whose neighbours include the entirety of A, whereas
a hitting set corresponds to a family of vertices in A whose neighbours include
the entirety of B. The dual set system is then the set system obtained by
interchanging the roles of A and B. It should thus be clear that ((X,S)∗)∗ =
(X,S). Moreover, the following is immediately apparent:

Proposition 1.1.3. The problem Min-Set-Cover on the set system (X,S) is
isomorphic to the problem Min-Hitting-Set on the set system (X,S)∗.

In the above, by isomorphic, we mean that there is a structure-preserving
bijection between the two instances that preserves the feasibility and objective
value of potential solutions.

Remark 1.1.4. Proposition 1.1.3 even holds for the weighted generalizations of
Min-Set-Cover and Min-Hitting-Set as long as the same weights are used
for both problems.

Proposition 1.1.3 indicates that, from a computational point of view, Min-
Set-Cover and Min-Hitting-Set are essentially the same problem. For clarity
and consistency in our exposition, we shall focus on Min-Set-Cover when dis-
cussing theoretical results, with the implicit knowledge that our theorems are
applicable to appropriate hitting set problems after taking the dual set system.
However, when discussing specific classes of set systems—particularly those ob-
tained from geometric situations—we will often explicitly mention hitting set
formulations in cases where the dual set system lacks an intuitive geometric for-
mulation. We shall informally use the umbrella term covering problem (or some-
times, the more specific expressions weighted covering problem and unweighted
covering problem) for any computational optimization problem with an obvious,
direct formulation as a Min-Set-Cover or Min-Hitting-Set problem. Such
problems include many classical graph-theoretic optimization problems like min-
imum vertex cover, minimum edge cover, minimum dominating set, minimum
clique cover, and so on.

Covering problems also have a natural formulation as an integer program.
The most obvious way of defining set systems in this context is via binary
matrices that encode the element-set incidence relation:

3A cautionary note: the term ‘dual’ in the definition of dual set system has nothing to do
with linear programming duality. A better term (given the integer programming formulation
of set cover) would be ‘transpose’, but we stick with the classical terminology.
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1.1. SET COVER: A HARD PROBLEM WITH A RICH HISTORY

Definition 1.1.5. For a set system (X,S) with X = {v1, . . . , vM} and S =
{S1, . . . , SN}, we define the set system matrix 4 A(X,S) to be the M by N matrix
whose entry in position (i, j) is 1 if element vi is contained in set Sj and 0
otherwise.

As mathematical objects, we will always consider set system matrices modulo
row and column reorderings so as to ensure they are well defined and to estab-
lish a bijective correspondence between set system isomorphism classes and set
system matrices. For our purposes, it may be assumed that set system matrices
contain no duplicate rows or columns.

If we wish to obtain an optimal solution to the weighted Min-Set-Cover
problem on a set system having matrix A and weights w, then it suffices to
solve the following integer program:

min{wTx : Ax ≥ 1,x ∈ {0, 1}} (SCIP)

The following linear programming relaxation of (SCIP) can be solved in poly-
nomial time to produce a minimum cost fractional set cover :

min{wTx : Ax ≥ 1,x ≥ 0} (SCLP)

It is clear that the optimal objective value of (SCLP) is a lower bound on the
optimal objective value of (SCIP). Properties of (SCIP) and its linear pro-
gramming relaxation will be crucial when establishing the structural properties
of various covering problems. Section 2.1 provides an overview of the important
facts.

More general integer programs similar to (SCIP) may be obtained by replac-
ing A with an arbitrary (not necessarily binary) matrix and replacing 1 with
an arbitrary right hand side vector. Such problems are usually called covering
integer programs [Vaz01] or CIPs. Chapter 7 contains some results for CIPs
more general than set cover; for the remainder of this thesis, we shall deal only
with covering problems in which the matrices and right hand sides in (SCIP)
are binary.

Covering problems have a rich history of intractability spanning multiple
decades. Appropriate decision versions of the unweighted Min-Set-Cover and
Min-Hitting-Set problems were first proven to be NP-complete in 1972 by
Karp in his famous article in which NP-completeness proofs for 21 combinatorial
problems were given [Kar72]. With the development of the PCP theorem and
related inapproximability theory in the 1990s, many stronger hardness results
for set cover soon followed. Papadimitriou and Yannakakis proved in 1988 that
Min-Set-Cover is hard for the complexity class MAX-SNP [PY91]; together
with results from a 1992 paper of Arora et al. [ALM+98], this showed that
the problem admits no polynomial time approximation scheme (PTAS) unless
P = NP. In 1994, Lund and Yannakakis provided the first superconstant

4In the combinatorics literature, such objects are sometimes simply called incidence ma-
trices; we refrain from using this terminology to avoid confusion with vertex-edge incidence
matrices of graphs.
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1. INTRODUCTION

lower bound on the approximability of set cover by showing that no polynomial
time algorithm can achieve an approximation factor better than 1

2 log2M , or
approximately 0.72 lnM (where M is the number of elements in the set cover
instance) [LY94]. However, their result requires the assumption that NP has
no randomized quasi-polynomial time algorithms.5 Feige subsequently improved
upon the construction of Lund and Yannakakis to show an inapproximability
threshold of (1 − o(1)) lnM under an identical complexity assumption [Fei98].
Around the same time, Raz and Safra provided a weaker lower bound of c · lnn
for a small positive value of c under the weaker complexity-theoretic assumption
that P 6= NP [RS97]. Using more recent techniques, this result was reproven
for a larger value of c by Alon, Moshkovitz, and Safra [AMS06].

As it turns out, classical approximation algorithms for set cover produce
results that agree almost exactly with these inapproximability bounds. Inde-
pendently in the 1970s, Johnson [Joh74] and Lovász [Lov75] both proved that
the simple heuristic of repeatedly choosing the set containing the most uncovered
elements produces a (lnM+1)-approximation for unweighted Min-Set-Cover.
A simple generalization of this to the weighted case by Chvátal in 1979 [Chv79]
gave the same approximation threshold. In fact, logarithmic approximations
for weighted set cover can be achieved using almost every standard approxi-
mation technique, including randomized methods, iterated linear programming
rounding, primal-dual schema, and so on (see [Vaz01] for a thorough listing).
Moreover, all of the aforementioned techniques, including that of the simple
greedy algorithm, can be shown (e.g. by the method of dual fitting) to give
approximability results relative to the optimal value of the linear programming
relaxation (SCLP).

The performance of these algorithms seems to indicate that there is little
remaining to learn about the general set cover problem from an approxima-
bility point of view, aside from resolving the complexity-theoretic hypotheses
required for the inapproximability proofs to go through. In particular, the
(1−o(1)) lnM -factor inapproximability result of Feige is tight up to lower order
terms, barring the discovery of a pseudopolynomial algorithm for NP-complete
problems, which appears unlikely given current state of the art (though it cer-
tainly has not been ruled out). Accordingly, this same assumption implies the
surprising and somewhat depressing conclusion that no polynomial algorithm
can ever outperform the trivial greedy method on general instances by anything
more than a subconstant factor.

Fortunately, many improvements to the greedy method are possible when
covering problems become more structured. From a practical point of view,
the theoretical inapproximability of the general Min-Set-Cover problem often
poses few obstacles in obtaining good approximations for real-world instances.
Additionally, many covering formulations of other optimization problems have
good approximability properties. Throughout this thesis, we will explore nu-
merous covering problems with structural restrictions that enable us to obtain
better approximations. We first motivate our work with some simple examples.

5Specifically, the result holds unless NP ⊆ ZTIME(npolylog(n)).
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1.2. MOTIVATING PROBLEMS AND APPLICATIONS

1.2 Motivating Problems and Applications

Covering problems are ubiquitous in computer science and optimization be-
cause they conveniently model any situation in which a variety of independent
demands must be met by selecting some subset of a list of available options.
For example, an immediate and obvious application of geometric covering is to
wireless network planning, where one might be asked to cheaply position a con-
figuration of cellular antennas or wireless routers to provide service to clients
[GRV05]. We can model this by representing each client via an element, and
constructing a set for each feasible location in which an antenna could be in-
stalled (containing the elements corresponding to the clients that it could serve).
If we wish to allow for the option of paying a fee to avoid servicing a client, we
can add simply add singleton sets with appropriate fees. Depending on the
physical properties of the antennas, we could make assumptions about geomet-
ric structure and use them to obtain an improved approximation. For example,
we shall see in Chapter 6 that if the area of coverage of each antenna can be
assumed to be a disk in the plane, then the corresponding covering problem
admits a constant approximation.

Of course, Min-Set-Cover is NP-complete and so can theoretically encode
any problem in NP via a sufficiently long chain of reductions. However, we
avoid dealing directly with set cover formulations of problems that are not, by
their very nature, covering problems. We also deliberately overlook many cov-
ering formulations of optimization problems where the number of variables or
sets becomes exponential in the original problem size. For example, a common
technique in many network design problems is to express connectivity require-
ments on a graph G as covering-type requirements over the exponential-sized
set of cuts in G, and then obtain LP-based approximations.6 We will not study
such techniques, or the covering problems these formulations generate. In this
thesis, we assume all set systems are represented explicitly in the input.

To clarify our intentions, we shall now provide a few representative problems
that exemplify the types of structure we will be studying. We examine them
for many reasons: first, to familiarize the reader with the type of problems we
shall study and the conventions we shall use; secondly, to introduce and explain
several simplifying assumptions that will be applied repeatedly throughout this
thesis; and finally, to provide background motivation for studying such prob-
lems in the first place, by giving applications of both theoretical and real-world
importance. It shall become clear that these types of covering problems con-
ceal a variety of fascinating connections among algorithms, complexity theory,
geometry, combinatorics, and even topology.

6Despite its exponential size in these cases, the linear programming relaxation (SCLP)
can often be solved in polynomial time. This requires the use of the ellipsoid method, which
can, in certain cases, produce an optimal basic feasible solution in polynomial time as long as
polynomial separation oracles exist. See [Vaz01] for more information and many examples of
this method in action.
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1. INTRODUCTION

1.2.1 Interval Cover

The first problem we discuss is a trivial polynomial-time solvable covering prob-
lem that we shall refer to as R-Interval-SC:

Covering Problem: R-Interval-SC
Elements: A finite subset of R
Sets: A family of intervals in R

The above formatting shall serve as the standard manner in which we in-
troduce and describe different classes of set systems, and accordingly, different
covering problems. To define the class of set systems, we provided a simple (in
this case, geometric) embedding of X into a larger set (R), and then asserted
restrictions on the structure of the family of sets S (they must be a family of
intervals). The suffix ‘SC’ that follows then indicates that we are concerned
with the Min-Set-Cover problem on this class of set systems. We will employ
other suffixes for hitting set and dominating set problems (see Section 2.3.2).

The R-Interval-SC problem itself is usually referred to as line cover or
interval cover. We highlight several important points:

• We do not define the sets S explicitly as a family of subsets of the universe
X. Instead, we define both X and S as subsets of a larger ground set R,
and implicitly restrict S to X when considering the actual set system.

• Alternatively, and perhaps more intuitively, when considering the (either
weighted or unweighted) Min-Set-Cover problem on (X,S), we can sim-
ply imagine trying to select a min-cost subfamily of intervals in S whose
union is a subset of R containing all of the points in X. It is clear that
this is precisely equivalent to restricting S to X and solving the resulting
instance.

• It is indeed possible that distinct intervals in S all contain the same points
in X and thus become equal when restricted to X. We shall call such
intervals combinatorially equivalent. In an instance of (possibly weighted)
set cover, an optimal solution will never contain multiple combinatorially
equivalent sets, and thus we can assume in all covering problems that all
elements of S are distinct modulo combinatorial equivalence (by deleting,
if necessary, all but the cheapest set in each equivalence class).

• Similarly, we may consider two points in X to be combinatorially equiva-
lent if they lie within the same sets in S, and accordingly assume that all
points in X are unique modulo combinatorial equivalence (since deleting
all but one element of each equivalence class does not affect the feasibility
of a potential set cover C ⊆ S).

• Even though X is permitted to be any finite subset of R, we could have
explicitly requested that X be a set of the form {1, . . . , k} for some pos-
itive integer k, and requested that S consist entirely of closed intervals
with integer endpoints in {1, . . . , k}. It is straightforward to see that any

8



1.2. MOTIVATING PROBLEMS AND APPLICATIONS

instance of R-Interval-SC can be discretized in this way without affect-
ing the element-set incidence relation. We will perform such discretization
in many cases throughout this thesis.

• From the above, it follows that the number of distinct sets in S is at most(
M
2

)
= O(M2) modulo combinatorial equivalence (this exponent of 2 is

related to the fact that the VC dimension of a R-Interval-SC set system
is at most 2; we shall explore this notion further in Section 2.4).

• It may be the case that some interval I1 in S is a sub-interval of another
interval I2 in S. In the case of unweighted set cover, the smaller interval
can then be ignored, since in any optimal solution, we may always assume
that the larger interval can be taken. It can thus be assumed that no
two intervals have the same right endpoint, and thus S can be assumed
to contain at most M intervals in the unweighted case. However, such
simplifications are impossible in the weighted case.

• Additionally, by observing that the endpoints of S cut the real number line
into at most 2N + 1 sub-intervals (of which at most 2N − 1 are contained
in at least one set in S), it follows that the number of distinct points in
X is at most 2N − 1 = O(N) modulo combinatorial equivalence.

The unweighted R-Interval-SC problem can easily be solved in polynomial
time via a straightforward left-to-right greedy algorithm in which we repeatedly
take the interval that, among those covering the leftmost uncovered element,
has the largest right endpoint. The weighted version can be solved in a similar
manner via a dynamic programming algorithm in which W [k]—the cheapest
cost of covering the leftmost k points in X—is computed for all k via a simple
recurrence. We leave, as a straightforward exercise for the reader, verification
of the fact that these methods produce polynomial algorithms. In Chapter 4,
we will generalize these methods to obtain polynomial-time algorithms for more
difficult covering problems.

R-Interval-SC set systems have a number of equivalent definitions. Here is
a variant:

Covering Problem: Path-SC
Elements: The set E of edges of a path graph P = (V,E)
Sets: A family of paths in P

Here, by a path graph, we simply mean a path—a tree with all vertices
having degree at most 2. The correspondence between R-Interval-SC and
Path-SC instances is obvious—points correspond to edges, and intervals cov-
ering a group of consecutive points correspond to paths covering a group of
consecutive edges in P . We state Path-SC only for the purpose of helping to
clarify the two other covering problems we mention in this section, both of which
are generalizations of R-Interval-SC. One—R

2-Rectangle-SC—is a geomet-
ric generalization analogous to R-Interval-SC in higher dimensional Euclidean
space. The other—Tree-SC—is a combinatorial generalization obtained by
taking the definition of Path-SC and replacing ‘path graph’ with ‘tree’.

9



1. INTRODUCTION

1.2.2 Rectangle Cover

We first consider a 2-dimensional analogue of R-Interval-SC. Instead of our
ground set consisting of a collection of points in R, it shall consist of points in
the plane. Additionally, we shall replace intervals with Cartesian products of
intervals. The resulting problem, known commonly as rectangle cover, is the
following:

Covering Problem: R2-Rectangle-SC
Elements: A finite subset of R2

Sets: A family of axis-aligned rectangles, each of the form [a, b]×[c, d]
for a, b, c, d ∈ R with a ≤ b and c ≤ d

Throughout this thesis, we will encounter many geometric set systems de-
scribed in the above manner. The elements are points in some Euclidean space,
and the sets are geometric objects or regions of some kind—in this case, axis-
aligned rectangles in the plane. Such problems, particularly in two and three-
dimensional spaces, occur frequently in many real-world optimization problems
involving objects or regions having geometric structure.

The rectangle cover problem has a rich and colourful history. R2-Rectangle-
SC, and its higher dimensional analogues, have many theoretical applications in
computational geometry and combinatorics, as well as less obvious areas such as
machine scheduling [BP10]. However, much of the notoriety of R2-Rectangle-
SC is due to a special case that has arisen in many industrial problems. Before
discussing it, we require the following definition:

Definition 1.2.1. A rectilinear polygon is a connected, closed, bounded subset
of R2 that can be expressed as the union of a finite number of axis-aligned
rectangles.

Equivalently, we may think of rectilinear polygons as connected, closed re-
gions whose boundaries consist entirely of horizontal and vertical line segments.
We note that the above definition allows for rectilinear polygons containing
holes and points whose removal disconnects the polygon. If we want to forbid
such things, we may require that the polygon be simple—that is, having a single
piecewise-linear boundary with no self-intersections. Rectilinear polygons are
sometimes also called orthogonal polygons.

In practical applications, a common task is to assemble a given rectilinear
polygon from a minimum number of (possibly overlapping) axis-aligned rectan-
gles. Formally, we can state this problem as follows:

Covering Problem: Rectilinear-Polygon-Cover
Elements: All points inside a rectilinear polygon P
Sets: All axis-aligned rectangles lying entirely inside P

We note that, in the form stated above, Rectilinear-Polygon-Cover set
systems (X,S) have neither X nor S being finite sets. We shall see later that
Rectilinear-Polygon-Cover instances can be discretized to obtain equivalent
covering problems on finite set systems.
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1.2. MOTIVATING PROBLEMS AND APPLICATIONS

Somewhat confusingly, the Rectilinear-Polygon-Cover problem some-
times also goes by the name rectangle cover. However, it is indeed not as
general as R

2-Rectangle-SC, and as we shall see, its known approximabil-
ity properties differ tremendously. We shall always assume that instances of
Rectilinear-Polygon-Cover are unweighted.

The Rectilinear-Polygon-Cover problem shows up in a number of impor-
tant industrial applications dating back several decades. Perhaps the most cru-
cial application is to VLSI (very large scale integration) circuit design [Heg82].
In this setting, the rectilinear polygon may represent a region within a layer of a
silicon microchip onto which a desired type of semiconductor material must be
deposited via photolithographic techniques. A layer of polygons is printed by
exposing photosensitive materials to ultraviolet light passing through a mask,
which itself is created by a series of overlapping rectangular flashes of light. The
cost of a mask increases with the number of flashes required, and thus obtaining
a cover for the rectilinear polygon using fewer rectangles results in a reduction
in the number of flashes required, decreasing production time and costs.

More recently, similar techniques have been developed for the design of DNA
chip arrays used in a variety of applications such as genomic analysis [HHLP02].
As in the VLSI circuit design example, light passing through a mask is used,
but this time, the light controls the synthesis of oligonucleotides arranged in
a rectangular array. As with the case of silicon chip fabrication, the goal is to
minimize the number of flashes required in production of the mask, and doing so
is equivalent to finding an optimal solution to a Rectilinear-Polygon-Cover
instance.

A final application of Rectilinear-Polygon-Cover is to compression al-
gorithms, particularly those used in some types of image storage. Finding a
solution to a Rectilinear-Polygon-Cover instance enables an arbitrary con-
figuration of pixels, such as those found in a black and white image, to be
represented as a collection of rectangular blocks, possibly reducing the amount
of information required to store the configuration. Such a method is used in
[CIK88] to obtain competitive compression ratios for certain types of images.

At first, it may not be immediately obvious that Rectilinear-Polygon-
Cover can be reduced to R

2-Rectangle-SC, as both the number of points to
cover and the number of available rectangles to use appears to be infinite in
a Rectilinear-Polygon-Cover instance. However, we can apply discretizing
tricks that allow us to assume otherwise. For a rectilinear polygon P containing
2k edges, we can discretize P so that every vertex lies on an integer lattice point
of a k by k grid, since vertices of P may have at most k distinct x-coordinates
and k distinct y-coordinates. It then suffices to find a cover of the integer
lattice points lying inside P by rectangles within P whose vertices have integer
coordinates. There are at most k2 such points and at most O(k4) such rectangles
(in fact, only O(k2) if only maximal rectangles are considered [Fra89]), so indeed
we can encode every instance of Rectilinear-Polygon-Cover as an instance
of R2-Rectangle-SC with only a polynomial blowup in problem size.

From a practical point of view, Rectilinear-Polygon-Cover seems like
a relatively unintimidating problem that admits decent approximations in the

11
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real world. Many heuristic algorithms for Rectilinear-Polygon-Cover have
been observed to perform well on a variety of instances, both randomly gen-
erated and obtained from practical applications. In an application for DNA
chip arrays, Hannenhalli, Hubbell, Lipshutz, and Pevzner devised an efficient
algorithm that computed provably optimal rectilinear polygon covers for every
sample instance found in their company test data. In a recent large-scale exper-
iment by Heinrich-Litan and L ubbecke [HLL06], a relatively simple primal-dual
algorithm for Rectilinear-Polygon-Cover was implemented and tested on a
large number of randomly generated instances of various types as well as black
and white test images obtained from a variety of sources. On all instances, even
very large ones, the authors obtained results whose costs were provably within
a few percent of optimal.

However, from a theoretical perspective, much less is known. Rectilinear-
Polygon-Cover is quite infamous for having stumped and frustrated many
combinatorialists and theoretical computer scientists over the decades. No con-
stant approximation is known except in special cases, such as when the rec-
tilinear polygon is simple (in which case a 2-approximation is known [Fra89])
or vertically convex (in which case a polynomial-time exact algorithm via dy-
namic programming is known [FK84]). For the general problem, the best known
approximation is an algorithm of Anil Kumar and Ramesh that achieves an ap-
proximation factor of O(

√
log n) on instances having n edges [AKR03]. From

the hardness side, Rectilinear-Polygon-Cover is known to be MAX-SNP-
hard, implying that no polynomial time approximation scheme (PTAS) exists
unless P = NP [BD97]. Additionally, the problem remains NP-hard even when
the polygon is simple [CR94]. However, a constant approximation has not been
ruled out, and finding one (or disproving the existence of one) remains a key
open problem in the area.

The approximability of Rectilinear-Polygon-Cover is intimately related
to a longstanding open problem in combinatorics involving rectilinear polygons.
For a rectilinear polygon P , if I is a set of points in P having the property that
no two points in I are contained in any rectangle lying entirely within P , then it
is clear that at least |I| rectangles are needed to cover P . Such a set I is called
an independent set, or sometimes a stable set or antirectangle. If θ is the size of
a minimum rectangle covering of P and I is the size of a maximum independent
set in P , then we must always have θ ≥ α by our reasoning above. However, it
is not obvious whether θ can ever exceed α by much; in fact, quite a remarkable
story surrounds the quest to understand the so-called packing-covering duality
gap θ/α (see, e.g. [CKSS81]). Chvátal once conjectured that θ and α were equal
for all rectilinear polygons, but Szemerédi produced a counterexample sometime
in the seventies. Chung, in 1979, gave the first counterexample containing no
holes, proving that θ/α can be at least as large as 8

7 , even for simple polygons.
As of the time of writing, it appears that no better counterexample has ever
been published.7 Erdős asked if θ/α can be bounded above by any constant.

7Chaiken et al. claimed, in a 1981 paper, to have found an example having a larger gap
of 21

17
− ε [CKSS81]. However, they did not publish their example and other authors report
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Despite many partial results for special cases (e.g. [CKSS81, Lub85, Lub90]),
the question appears to remain unresolved.

Finding a constructive proof of a constant upper bound on θ/α could lead to
a primal-dual-based constant approximation for Rectilinear-Polygon-Cover,
but progress seems to have stalled in recent decades. An interesting and more
modern approach to such problems is the use of topological methods—in partic-
ular, application of existential results such as the Brouwer fixed-point theorem
and the Borsuk-Ulam theorem (a book by Matoušek [Mat03] contains a com-
prehensive overview of the relevant techniques). Topological methods involving
these theorems have yielded existence proofs of optimal packing-covering dual-
ity gaps for similar geometric set systems [Tar95, Kai97]. Classical proofs of
these results are not known. A noteworthy drawback of topological techniques
is that even if they succeed in establishing upper bounds on packing-covering
duality gaps, they may not lead to polynomial time approximation algorithms,
as they are inherently non-constructive.

Despite the wealth of classical combinatorial results concerning Rectilinear-
Polygon-Cover, somewhat less is known about the general R2-Rectangle-SC
problem, which could potentially be more difficult from a theoretical inap-
proximability point of view. No algorithm is known to achieve an o(logM)-
approximation on an instance having M points; it thus remains possible that
R

2-Rectangle-SC admits no better approximation than the general Min-Set-
Cover problem. Despite this, the strongest inapproximability result known for
R

2-Rectangle-SC is APX-hardness [vL09]; in particular, no super-constant
hardness results are known.

A very recent and exciting development is a construction due to Pach and
Tardos yielding an instance of R2-Rectangle-SC in which the integrality gap of
the natural linear programming relaxation (SCLP) is O(logM) [PT11]. While
stopping short of obtaining any formal proof of inapproximability, their re-
sult has ruled out many potential solution techniques, including all those that
would achieve an approximation ratio relative to the optimal value of (SCLP).
However, their result cannot be generalized to provide any improved linear pro-
gramming duality gap examples for Rectilinear-Polygon-Cover; therefore,
nothing has changed regarding Erdős’s question on the packing-covering dual-
ity gap of Rectilinear-Polygon-Cover instances. Further ramifications of the
Pach-Tardos construction are discussed in Section 3.3.

Unfortunately, we obtain no new results for the general R2-Rectangle-SC
or Rectilinear-Polygon-Cover problems in this thesis. However, we do study
several special cases and related problems, obtaining many improved algorithmic
and hardness results. In particular:

• In Chapter 2, we obtain structural results on concerning a wide class of
covering problems similar to R

2-Rectangle-SC.

• In Chapter 4, we give polynomial-time exact algorithms for several weighted

being unable to locate or reconstruct it [HLL06].
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covering problems, including R2-Rectangle-SC instances in which all in-
put rectangles abut the x-axis.

• In Chapter 5, we prove APX-hardness for various unweighted geometric
covering problems, including R2-Rectangle-SC when all rectangles in the
input are ε-perturbed copies of a single unit square, or when all rectangles
are either horizontal or vertical slabs.

1.2.3 Tree Cover

Another interesting problem can be obtained by generalizing R-Interval-SC via
a combinatorial route rather than a geometric one. By taking the equivalent
Path-SC problem and generalizing paths to trees, we obtain a problem known
as Tree Cover :

Covering Problem: Tree-SC
Elements: The set E of edges of a tree T = (V,E)
Sets: A family of paths in T

The Tree-SC problem arises in a variety of contexts in combinatorial opti-
mization. One such instance is the so-called Tree Augmentation problem: given
is a tree T and a set S of non-tree edges whose endpoints are vertices of T ,
and our goal is to select of a minimum cardinality (or minimum cost) subset of
S whose addition to T augments the edge connectivity of T by one. In other
words, we must find a minimum C ⊆ S such that T ∪ C is two-edge-connected.
To see the equivalence between Tree-SC and Tree Augmentation, observe that
adding any e = (u, v) ∈ S to T will create a cycle (known as a fundamental
cycle) containing the path from u to v in T , and that T ∪ C will be two-edge-
connected if and only if each edge of T lies within at least one such cycle. It
follows that finding a solution to a Tree Augmentation instance is equivalent
to solving a Tree-SC instance in which each path in P corresponds to the
tree edges lying in a single fundamental cycle. One may also observe that the
problem of augmenting the connectivity of a general connected graph to 2 is
equivalent to the Tree Augmentation problem after contracting all cycles; this
type of problem is sometimes simply called Bi-connectivity Augmentation.

An entirely different but equivalent framework for the Tree-SC problem is
the so-called Laminar Cover problem.

Definition 1.2.2. A family L of sets is said to be laminar if for all X,Y ∈ L
we have either X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅.

Given a graph G = (V,E) and a laminar family L on V , an edge e =
(u, v) ∈ E is said to cross a set S ∈ L whenever u ∈ S and v /∈ S or u /∈ S and
v ∈ S. Given such a G and L, the Laminar Cover problem asks us to find a
minimum cardinality subset C ⊆ E such that every set in L is crossed at least
once by an edge in C. Noting that the sets in a laminar family form a tree-like
structure under the inclusion relation, it is not hard to see that the Laminar
Cover problem is again equivalent to Tree-SC.
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Both weighted and unweighted Tree-SC have a number of useful applica-
tions to the solution of various network design problems (see, e.g. [Jai01], or
the survey [KN07]). The goal in these types of problems is typically to build or
purchase a network meeting certain connectivity or reliability requirements.

Tree-SC is NP-hard, even in the unweighted case, and even when T has
diameter four [FJ82]. However, a noteworthy special case admits a polynomial-
time exact algorithm:

Covering Problem: Vertical-Tree-SC
Elements: The set E of edges of a rooted tree T = (V,E)
Sets: A family of vertical paths in T

Here, by a vertical path in a rooted tree T , we mean a path from any vertex
v in T to an ancestor or descendent of v.

Weighted Vertical-Tree-SC can be solved exactly in polynomial time via a
dynamic programming algorithm that recursively computes the minimum cost
of covering all of the edges in each subtree of T . However, it turns out that
the set system matrices induced by Vertical-Tree-SC are totally unimodular
[Sch03], implying that the solution obtained via the natural linear programming
relaxation (SCLP) is an exact integral solution, in turn providing an entirely
different polynomial algorithm for Vertical-Tree-SC.

The polynomial solvability of Vertical-Tree-SC can be used to obtain an
easy 2-approximation for general Tree-SC [FJ82]. The key observation we need
is the following elementary result:

Proposition 1.2.3. If P is an arbitrary path in a rooted tree T , then P can
be split into the disjoint union of two (possibly empty) paths L and R that are
each vertical paths in T (here, L and R represent the left and right vertical
pieces of P ).

The method for obtaining a 2-approximation for general Tree-SC is then:

1: Input a (possibly weighted) Tree-SC instance on a tree T .
2: Select an arbitrary vertex v of T and consider T to be rooted at v.
3: Apply Proposition 1.2.3 to each path Pj in S to replace it with paths Lj

and RJ in T that are each vertical with respect to v.
4: Assign Lj and Rj the same weight as Pj , and obtain an exact optimal

solution to the auxiliary Vertical-Tree-SC instance containing only the
paths in {Lj ∪Rj : j ∈ {1, . . . , N}}.

5: Output a solution to the Tree-SC instance in which a path Pj is taken if
and only if at least one of Lj or Rj was taken in the optimal solution to the
auxiliary Vertical-Tree-SC instance.

It is clear that the cost of the Vertical-Tree-SC solution obtained in Algo-
rithm 1.2.3 is at most twice the cost of an optimal Tree-SC solution, and from
this, we obtain the following result:

Theorem 1.2.4. Weighted Tree-SC admits a 2-approximation.
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For nearly twenty years, the best known approximation factor for Tree-SC
stood at 2, and improving upon this was regarded as a major open problem in
the area [Khu97]. It was not until 1999 that a better ratio was found; then,
Nagamochi gave a (1.875 + ε)-approximation for unweighted Tree-SC [Nag03].
This was subsequently improved to a 1.5-approximation by Even et al. in 2001
[EFKN01], which remains the best approximation factor for the general problem.
However, improved results are known for special cases, such as when T has low
diameter, or when all the paths in S are leaf-to-leaf paths [Mad09]. For weighted
Tree-SC, it is still unknown whether there exists any algorithm that achieves
a better approximation than the 2-factor provided by Algorithm 1.2.3.

Most algorthms for Tree-SC make use of very specific combinatorial prop-
erties of Tree-SC set systems, and the more general methods we develop in this
thesis are not able to yield improved results. However, we obtain a variety of
interesting results relating to many variations and generalizations of Tree-SC
and Vertical-Tree-SC. Some examples:

• In Chapter 5, we prove that the priority version of Vertical-Tree-SC is
APX-hard.

• In Chapters 6 and 7, we give an algorithm that yields a constant approx-
imation for weighted capacitated and priority versions of Tree-SC.

• In Section 2.3, we give a direct encoding reduction showing that Vertical-
Tree-SC is in fact a special case of R2-Rectangle-SC.

1.3 Organization of Thesis

This thesis comprises eight chapters. Chapter 2 develops all of the necessary pre-
liminaries. Included are descriptions of several set systems alongside structural
results that relate and characterize them. We formally define the reduction-
based partial order defined by subproblems; this allows us to formally show
that some covering problems generalize others. We prove many relations un-
der this ordering, some of which we believe were not previously known. We
also discuss measures of set system complexity, the most important of which is
Vapnik-Chervonenkis dimension (VC dimension). Set systems of low VC dimen-
sion often admit strong approximations via algorithms known as ε-net-finders;
we explain all of the necessary background information required to understand
this.

The remainder of the thesis contains a collection of algorithmic and hard-
ness results for covering problems. Most of the problems analyzed herein can
be placed into one of two categories—those like R

2-Rectangle-SC that arise
from geometric applications, and those like Tree-SC that correspond to com-
binatorial optimization problems in graphs.8 There is a great deal of prior work

8Of course, there is some overlap in cases sich as R-Interval-SC for which formulations
of both types exist.
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concerning these types of problems, and we summarize and highlight the impor-
tant contributions in Chapter 3. Results are organized according to the types
of techniques employed.

Chapters 4 through 6 contain original results, most of which are from arti-
cles that appear in (or have been submitted to) refereed publications. Chap-
ter 4 contains dynamic programming algorithms for several weighted geometric
covering problems, proving that they are exactly solvable in polynomial time.
Results using this method were first published in [CGK10a], and subsequently
improved in [CG11]. Chapter 5 contains a collection of APX-hardness proofs
for several covering problems. Most of these results were originally given in
[CG11]. All of them make use of the APX-hardness of a very specific cov-
ering problem we call Special-3SC. Chapter 6 describes an algorithm from
[CGKS12] for weighted covering problems based on a quasi-uniform sampling
technique. It produces an output whose approximation guarantee varies with
an instance-specific parameter known as shallow cell complexity. Several new
results for weighted covering problems are achieved using this method. Finally,
in Chapter 7, we apply our results to various capacitated and priority covering
problems to achieve improved results. A major contribution is an algorithm
based on linear programming strengthening and rounding, originally published
in [CGK10a] (see also [CGK10b]).

In Chapter 8, we summarize all the results discussed and present a listing of
all the problems studied in this thesis, classified by their approximability (where
known). We also discuss some directions for future research.
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Chapter 2

Foundations

In this chapter, we cover the preliminary definitions and basic results for the
types of set systems we shall study. The key ideas focus around characterizing
different types of structure present in set systems, and using this information
to obtain algorithms for set cover problems, or to relate set cover problems to
one another. Many of the results in this section are trivial, or are folklore-type
results that are well known, even if rarely stated explicitly.

2.1 Set System Matrices

We recall that a set system can be defined by a binary M by N set system
matrix A, whose rows are indexed by elements, whose columns are indexed by
sets, and whose equivalence with other such matrices is modulo row and column
reorderings. Since a covering problem can be regarded as a class of set systems,
it accordingly can be regarded as a class of binary matrices.

In this thesis, we shall often take the viewpoint of stating properties of
covering problems as properties of their respective set system matrices. For
a more natural presentation, we will simply equivocate classes of set systems
with classes of set system matrices instead of fussing over the details of the
two representations (matrices A and set systems (X,S)). We choose to employ
the matrix-based terminology instead of the set-system-based terminology in
the vast majority of cases. In particular, our prose shall discuss the rows and
columns of a set system matrix A rather than the elements X and sets S in
a set system (X,S). Although this may seem unconventional (particularly to
computational geometers), we believe that it aids in distilling useful structure
down to fundamental combinatorial properties and results in a shorter, cleaner
presentation of many results (especially in Chapter 6). In a sense, everything
we need to know about the structure of classes of set systems shall boil down
to which types of submatrices they admit or forbid.

We spend the remainder of this section developing the vocabulary surround-
ing set systems and their matrix representations. Proofs of trivial results are
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omitted if they follow immediately from definitions.

2.1.1 Duality

Recall that, given a set system (X,S), its dual set system (X,S)∗ is the set
system obtained by taking (X,S) and interchanging the role of elements and
sets. Duality has a natural formulation in terms of set system matrices:

Proposition 2.1.1. If A = A(X,S) is the set system matrix for (X,S), then its
transpose AT is the set system matrix1 for (X,S)∗.

This enables us to extend our definition of duality to classes of set systems,
and in turn, to set cover problems:

Definition 2.1.2. For a class C of set systems, we will write C∗ for the class
{AT : A ∈ C}.

We summarize the correspondence between primal and dual set systems in
Table 2.1.1.

Primal Dual
Set system (X,S) (X,S)∗

Set system matrix A AT

Class of set systems C C∗

Table 2.1: Relation between primal and dual set systems

2.1.2 Heredity

A noteworthy property of many covering problems is that deleting elements or
sets produces a covering problem of the same type:

Definition 2.1.3. A class C of set systems is hereditary if for all set system
matrices A ∈ C, we have B ∈ C whenever B is a submatrix of A (equivalently,
membership in C is unchanged when rows or columns of A are deleted). A
covering problem is hereditary whenever its corresponding class of set systems
is.

The vast majority of covering problems we examine in this thesis are hered-
itary. For example:

1Recalling that we always consider set system matrices modulo row and column reorderings,
and noting that the matrix transpose operation commutes with reordering rows and columns
(e.g., performing a row swap and then transposing is equivalent to transposing and then
performing the equivalent column swap), we observe that the set system matrix AT is in fact
well-defined.
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• R2-Rectangle-SC is hereditary, because removing points or rectangles
from a R

2-Rectangle-SC instance produces another R2-Rectangle-SC
instance.

• Analogously, the same thing holds for all other geometric set cover prob-
lems where the elements are points and the sets are geometric objects of
some kind.

• Tree-SC is also hereditary, but it is perhaps less obvious deleting a row
from a Tree-SC matrix shall always leave a Tree-SC matrix; to see this,
note that deleting a row of a Tree-SC matrix A corresponds to contracting
an edge in the corresponding tree T .

• An example of a covering problem that is not hereditary is Rectilinear-
Polygon-Cover.

It is clear that the hereditary property is preserved when computing the dual
of a class of set systems:

Proposition 2.1.4. If a class C of set systems is hereditary, then so is C∗.

2.1.3 Subproblems

Despite being trivial, the following definition is extremely important:

Definition 2.1.5. Let C1 and C2 be two classes of set systems. We shall write
C1 ⊆ C2 and say that C1 is a subproblem of C2 or C2 encodes C1 if, for all
matrices A ∈ C1, we also have A ∈ C2.

We shall employ the same vocabulary and notation for covering problems.
For example, we shall say that R-Interval-SC is a subproblem of R2-Rectangle-
SC and write R-Interval-SC ⊆ R

2-Rectangle-SC.
The subproblem relation ‘⊆’ shall prove crucial in allowing us to relate differ-

ent covering problems, for it tells us precisely when one problem is a special case
of another via a direct instance-to-instance mapping. We observe the following:

Remark 2.1.6. The subproblem relation ‘⊆’, when applied to covering prob-
lems, is transitive, antisymmetric, and reflexive. Therefore, the set of all cov-
ering problems forms a partially ordered set (poset) with respect to the ‘⊆’
relation.

The following are a few easy examples discussed in the introduction:

• R-Interval-SC ⊆ R
2-Rectangle-SC

• Rectilinear-Polygon-Cover ⊆ R
2-Rectangle-SC

• R-Interval-SC ⊆ Vertical-Tree-SC

• Vertical-Tree-SC ⊆ Tree-SC
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We give many other (less obvious) encodings in Section 2.3.
It turns out that the subproblem relation commutes with the duality oper-

ator:

Proposition 2.1.7. Let C1 and C2 be two classes of set systems. Then C1 ⊆
C2 if and only if C1

∗ ⊆ C2
∗.

Proof. The result follows immediately from the fact that A ∈ C if and only if
AT ∈ C∗.

2.1.4 The Integrality Gap

We recall the integer programming formulation for a (possibly weighted) cover-
ing problem, and its natural linear programming relaxation:

min{wTx : Ax ≥ 1,x ∈ {0, 1}} (SCIP)

min{wTx : Ax ≥ 1,x ≥ 0} (SCLP)

Denote by OPT (A,w) the optimal value of the integer program (SCIP) on a
set system A with weights w. Let OPTf (A,w) be the optimal value of the
linear programming relaxation (SCLP) on the same input; in other words, let
OPTf (A,w) be the cost of the optimal fractional set cover of a set system A
with weights w. The quantity OPTf (A,w) provides a simple lower bound on
the cost of an optimal solution, and this can be used to obtain approximation
guarantees for algorithms:

Definition 2.1.8. An algorithm for a set cover problem is an LP-relative α-
approximation if it always produces a solution of value at most αOPTf (A,w)
over all choices of A (and in the weighted case, over all w ∈ RN+ ).

The ratio of OPT (A,w) to OPTf (A,w) provides a measure of how well the
linear programming relaxation approximates the optimal solution to a single
instance. When we examine this quantity over a class of instances and look at
the worst case, we gain information on how tight the relaxation may be for a
given set cover problem:

Definition 2.1.9. The weighted integrality gap of a class of set systems C is
given by

sup
A∈C,w∈RN

+

OPT (A,w)
OPTf (A,w)

.

The unweighted integrality gap of C is given by

sup
A∈C

OPT (A,1)
OPTf (A,1)

.

Additionally, the integrality gap of a (weighted or unweighted) covering problem
is the (weighted or unweighted, respectively) integrality gap of its corresponding
class of set systems.
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Note that we might also express integrality gaps (sometimes also called
integrality ratios) as functions of N ; as an example, the general unweighted
Min-Set-Cover problem is known to have an integrality gap of O(logN), since

OPT (A,w) ≤ O(logN) ·OPTf (A,w)

for all instances (where N is the number of columns of A) [Vaz01]. As it
turns out, this is asymptotically tight (the integrality gap of Min-Set-Cover
is Θ(logN); see [Vaz01] for an example).

We will sometimes attempt to compute or bound the integrality gaps of
various covering problems. The integrality gap may not necessarily tell us ex-
plicitly what the best approximability or inapproximability for a problem is,
but it can provide information about what is achievable with certain methods.
For example, the following is clear:

Proposition 2.1.10. Suppose a class of set systems C has weighted (or re-
spectively, unweighted) integrality gap α. Then the weighted (respectively, un-
weighted) set cover problem on C has no LP-relative β-approximation for any
β < α.

This will prove crucial when we discuss ε-net finders (see Section 2.4), be-
cause their existence implies an LP-relative approximation, and thus examples
having large integrality gap can rule out the existence of ε-net-based methods for
certain problems (see Section 3.3 for a more thorough discussion and example).

2.1.5 Total Unimodularity

One case where the integrality gap of a set system can easily be determined is
when the set system matrix A is totally unimodular. We recall the following
classic definition:

Definition 2.1.11. An integer matrix A is totally unimodular (TUM) whenever
every square submatrix of A has a determinant in {0, 1,−1}. Equivalently, A
is TUM if and only if every square submatrix of A is either singular or has an
integer inverse.

We shall also say that a set system is TUM whenever its corresponding set
system matrix is.

Total unimodularity has important consequences for the covering integer
program (SCIP). For example, the following can easily be deduced from classical
results (see, e.g. Chapter 83 of [Sch03] or Chapter 19 of [Sch86] for justification):

Theorem 2.1.12. Suppose A is TUM and let b be a vector of integers. Then
the polyhedron {x ≥ 0|Ax ≥ b} is integral. Accordingly, the linear program
(SCLP) has an integral optimal solution for any weights w.

This theorem implies that the value of an optimal solution to (SCIP) is the
same as the value of an optimal solution to (SCLP) whenever A is TUM. In
other words, we have the following:
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Corollary 2.1.13. Let C be a class of totally unimodular set systems. Then
C has an integrality gap of 1.

Moreover, we can solve (SCIP) (and consequently, the minimum set cover
problem on C) exactly by simply finding an optimal basic feasible solution to
(SCLP). Since the optimal solution of such a linear program can be computed in
polynomial time (e.g. via the ellipsoid method [Sch86]), we obtain the following:

Corollary 2.1.14. Let C be a class of totally unimodular set systems. Then
the minimum cost set cover problem on C can be solved exactly in polynomial
time.

To make use of this, we require some examples of TUM set systems. We
begin with the following:

Proposition 2.1.15. Let A be TUM. Then AT is TUM. Accordingly, if C is a
totally unimodular set system class, then so is C∗.

Proof. This follows immediately from Definition 2.1.11 and the fact that the
determinant of A is equal to the determinant of AT .

An important class of TUM matrices are the network matrices:

Definition 2.1.16. An M by N matrix A is a network matrix if and only if
there exists a directed tree T on edges {e1, . . . , eM} and a family of directed
paths {P1, . . . , PN} in T such that:

• Ai,j = 1 whenever ei lies along Pj in a forward direction.

• Ai,j = −1 whenever ei lies along Pj in a backward direction.

• Ai,j = 0 whenever ei does not lie in Pj .

We can define Network-SC as the covering problem consisting of all set
cover matrices that are network matrices (in other words, all network matrices
that have no entries equal to -1). This is precisely equivalent to the following:

Covering Problem: Network-SC
Elements: The set of edges of a directed tree T
Sets: A family of directed paths in T , each of which respects the
directions of edges in T

It follows immediately that the Network-SC problem is a generalization of
Vertical-Tree-SC and thus

Vertical-Tree-SC ⊆ Network-SC.

Additionally, immediately from Definition 2.1.16 we have:

Proposition 2.1.17. The problem Network-SC is hereditary. That is, every
submatrix of a binary network matrix is also a binary network matrix.
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The following is a classical result (see, e.g., Section 13.3 of [Sch03]):

Theorem 2.1.18. Let A be a network matrix. Then A is totally unimodular.

By applying Corollaries 2.1.13 and 2.1.14, we obtain:

Corollary 2.1.19. The covering problems R-Interval-SC, Vertical-Tree-SC,
and Network-SC all have integrality gap 1 and are thus solvable in polynomial
time.

Practically speaking, when TUM matrices manifest in a combinatorial op-
timization context, they often turn out to also be network matrices (or their
transposes). In fact, it is uncommon to stumble upon matrices that are TUM
but are not network matrices. This occurs for a profound reason; in a clas-
sic and celebrated result spanning more than 50 pages, Seymour showed that
all TUM matrices admit a certain type of construction from a class of atomic
units comprising network matrices, their transposes, and a single sporadic 5 by
5 matrix [Sey80]. Consequently, the structure of TUM matrices is very closely
related to that of network matrices.2

2.2 Complexity-Theoretic Preliminaries

Here, we give brief definitions of the complexity classes and reductions that we
will use in this thesis, and explanations of how these notions relate to covering
problems. We state only the results that we shall explicitly use in the forthcom-
ing chapters. For more details, including more rigourous definitions and proofs
of everything described here, one may refer to any of a number of standard texts
on the subject such as [AB09].

The class P is commonly used for the set of decision problems that can be
solved by a deterministic Turing machine in polynomial time. In this thesis,
we take the standard approach of considering optimization problems to be in P
whenever their corresponding decision problems are. For unweighted covering
problems or covering problems with explicitly represented integer weights, this
holds if and only if there exists a polynomial algorithm that returns the optimal
objective value, since the optimal value can be found in a polynomial number of
steps via binary searching whenever the corresponding decision problem can be
solved in polynomial time.3 Moreover, for all polynomial-time solvable covering
problems discussed in this thesis, we shall provide algorithms that not only
return the value of an optimal solution, but indeed can be easily modified to
output optimal coverings.

2The decomposition of TUM matrices is intimately linked to matroid theory because of
correspondences between TUM matrices and regular matroids, with a similar correspondence
holding for network matrices and graphic matroids. We will not discuss matroid theory in this
thesis, but the interested reader is eagerly referred to Truemper’s book [Tru92] for a thorough
presentation of Seymour’s decomposition theorem and all of its implications.

3In fact, this holds for all optimization problems in which all feasible objective values are
sums or products of explicitly represented rational numbers [Sch03].
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The decision version of the general Min-Set-Cover problem can be easily
seen to be in NP, since the covering itself provides a polynomial-time checkable
certificate that a covering of a certain size exists. Consequently, in this the-
sis, we shall proceed under the assumption that P 6= NP, since otherwise, all
covering problems would be exactly solvable in polynomial time, and most of
our approximability bounds would be meaningless. From the hardness side of
things, the decision version of general Min-Set-Cover is also NP-hard [Kar72]
and is therefore an NP-complete problem. We shall say that an optimization
problem is NP-hard whenever its corresponding decision version is. Many more
restricted covering problems such as R2-Rectangle-SC and Tree-SC are also
NP-hard (see Section 3.1 for examples).

For the majority of this thesis, we shall not be overly concerned with the
run time of our algorithms and shall usually just prove that they terminate in
time polynomial in the input size of the problem. For covering problems, the
input may either be an explicit matrix containing MN binary entries, or a more
compact representation such as a list of locations of points and objects defining
a geometric set system. When polynomial time is all that we care about, the
distinction between these input representations is unimportant since a function
is polynomial in MN if and only if it is polynomial in a smaller function in
Ω(M + N). Accordingly, we shall ignore the details of input storage for the
covering problems discussed herein. Only in Chapter 4 do we explicitly provide
worst-case run time bounds, and in this case, we simply express them directly
in terms of M and N assuming an appropriate set of primitive operations.

Many of our results deal with approximation algorithms. We shall use the
following generalized approximation ratios:

Definition 2.2.1. Given a covering problem P, an algorithm is an f(M,N)-
approximation for P if, for all M and N , it always produces solutions with costs
at most f(M,N) times optimal on instances in P having set systems with M
elements and N sets.

This definition enables us to define approximation guarantees that vary only
with M or N rather than the entire problem input size. Of course, wherever
possible, we shall aim for approximation algorithms for which f(M,N) is simply
a constant; so-called constant approximations or constant factor approximations
are obtainable for a variety of covering problems. Problems admitting these
make up the complexity class APX:

Definition 2.2.2. A covering problem P belongs to the class APX if, for some
α ≥ 0, P admits a (1 + α)-approximation that runs in polynomial time.

One example of a problem in APX that we have already encountered is
(weighted) Tree-SC.

For problems in APX, we shall attempt, wherever possible, to give the best
possible approximation we can. Some problems are indeed NP-hard but admit
polynomial-time (1 + ε)-approximations for all non-zero values of ε. Such prob-
lems are said to admit a polynomial-time approximation scheme or PTAS—a se-
ries of algorithms that each approximate the optimum solution with successively
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improving accuracy, generally at the expense of an increase in the exponent in
the algorithms’ polynomial run time. Problems admitting such a scheme belong
to a complexity class of their own:

Definition 2.2.3. A covering problem P belongs to the class PTAS if, for each
ε > 0, P admits a (1 + ε)-approximation that runs in polynomial time (where,
of course, a different algorithm may be used for each value of ε).

The definitions of PTAS and APX essentially only differ by the replacement
of an existential quantifier with a universal one.

We have the following chain of inclusions:

P ⊂ PTAS ⊂ APX ⊂ NP

Noteworthy is the fact that under the assumption that P 6= NP, all of these
containments can be proven to be strict. Indeed, in this thesis, we will review
dozens of covering problems, placing some into each of the following four types:

• Problems in P.

• Problems that admit a PTAS but are NP-hard.

• Problems that admit a constant approximation but have no PTAS.

• Problems that admit no constant approximation.

One may wonder how it might be possible to show that a covering problem
admits no PTAS. Under the assumption that P 6= NP, it is widely known that
there exist many problems in APX that are provably not in PTAS. An impor-
tant example of a covering problem with this property is unweighted minimum
vertex cover in graphs:

Covering Problem: Min-Vertex-Cover
Elements: The edges of a graph G = (V,E)
Sets: {δ(v) : v ∈ V }, where δ(v) is the set of edges incident to v

Min-Vertex-Cover was proven to admit no approximation with factor
smaller than 1.1666 [H̊as99], and subsequently 1.3606 [DS05], using techniques
based on the PCP theorem.4 Knowing this, it then suffices to construct some
kind of approximability-preserving reduction from Min-Vertex-Cover to our
target problem P in order to prove that P has no PTAS. There are two main
types of reductions that accomplish this: PTAS reductions and L-reductions
(‘linear’ reductions). Of the two, L-reductions are much simpler and are exclu-
sively what we shall use in this thesis:

4The inapproximability bound of Min-Vertex-Cover can be improved to 2 if the unique
games conjecture (UGC) is assumed, matching the trivial 2-approximation obtained by taking
both vertices incident to every edge chosen in a maximum matching [KR08]. However, the
UGC remains unproven and there appears to be no widespread consensus among experts
regarding its truth. We do not require the UGC for any of the results we prove herein.
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Definition 2.2.4. A pair of functions (f, g) is an L-reduction from a minimiza-
tion problem A to a minimization problem B if there are positive constants α
and β such that for each instance x of A, the following hold:

(L1) The function f maps instances ofA to instances of B such that OPT(f(x)) ≤
α ·OPT(x).

(L2) The function g maps feasible solutions of f(x) to feasible solutions of x
such that cx(g(y))−OPT(x) ≤ β ·

(
cf(x)(y)−OPT(f(x))

)
, where cx and

cf(x) are the cost functions of the instances x and f(x) respectively.

PTAS reductions are similar but slightly more involved; their definition gen-
eralizes the linear parameters α and β to allow for non-constant error blowup.

For L-reductions as well as the more general PTAS reductions, the following
approximability-preserving properties can be shown:

Proposition 2.2.5. Write A ≤ B if there exists an L-reduction or a PTAS-
reduction from A to B. Then:

• If A ≤ B and B ∈ APX, then A ∈ APX.

• If A ≤ B and B ∈ PTAS, then A ∈ PTAS.

These results are also extremely useful when applied in the contrapositive.
Specifically, we may rule out membership in PTAS by constructing, e.g., an
L-reduction from the problem Min-Vertex-Cover.

More general theory has also been developed. Crescenzi and Panconesi
showed that the class APX admits a natural class of ‘complete’ problems un-
der PTAS-reductions, analogous to the NP-complete problems that exist for
NP under polynomial-time reductions [CP91]. Independently, Papadimitriou
and Yannakakis showed something similar for a class known as MAX-SNP un-
der L-reductions [PY91]; MAX-SNP-complete problems include MAX-3SAT,
which admits no PTAS by the PCP theorem. As it turns out, APX contains
MAX-SNP and is a natural closure of it under PTAS-reductions [CT00]. Since
there are problems in APX that do not admit a PTAS, Proposition 2.2.5 im-
plies that APX-hard problems also fail to admit a PTAS. Min-Vertex-Cover
is such a problem.

In summary, for our purposes, it shall suffice to know the following:

• If a covering problem P is APX-hard or MAX-SNP-hard, then it does
not have a PTAS.

• We can prove that a problem is APX-hard by constructing an L-reduction
to it from another APX-hard problem.

• Min-Vertex-Cover is APX-hard.

As a final note, we shall point out that many of the classical approximation
algorithms for covering problems, as well as the algorithm we give in Chap-
ter 6, employ randomization. However, in this thesis, we shall not concern
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ourselves with the compelxity-theoretic consequences of randomization, and we
will not make an effort to distinguish approximability bounds that require ran-
domization from those that do not. As we discuss in Chapter 6, it is likely that
almost all known sampling-based randomized algorithms for covering problems
can be derandomized in polynomial time using standard methods without any
complexity-theoretic assumptions.

2.3 Set Systems and their Structural Properties

Here, we shall explain various ways of constructing set systems having ex-
ploitable structural properties. Many of these examples are obtained by taking
existing set systems and applying various operations to them to create new set
systems. We will exploit the properties of these set systems to obtain improved
approximation algorithms for their related covering problems.

2.3.1 Bounded Degree and Frequency

We first discuss the most basic examples of all: bounded degree and bounded
frequency. These are, respectively, set systems with few elements in each set,
and set systems with few sets containing each element.

Covering Problem: ∆-Regular-SC
Elements: Any finite set
Sets: Finite subsets of X, each containing exactly ∆ elements

In an instance of ∆-Regular-SC, each set is said to have degree ∆. We note
that this forces a feasible solution to contain at least N/∆ sets. By a greedy
method that repeatedly chooses the most cost-effective set remaining, it is not
hard to obtain an algorithm for ∆-Regular-SC that attains an approximation
ratio of

H∆ = 1 +
1
2

+ . . .+
1
∆
≤ log ∆ + 1,

where H∆ is the ∆th harmonic number [Vaz01]. Thus ∆-Regular-SC ∈ APX
for any fixed value of ∆. For the value of ∆ = 2, this problem is equivalent to
Min-Edge-Cover in graphs, which can be solved exactly in polynomial time
via a method that employs a minimum-cost matching algorithm (such as that of
Edmonds; see Chapter 27 of [Sch03]). However, for ∆ ≥ 3, the problem has been
shown to be APX-hard via a chain of L-reductions from Min-Vertex-Cover
[AK00].

All of the above results can also be shown to hold when the definition of ∆-
Regular-SC is modified so that each set contains at most ∆ elements rather
than exactly ∆ elements. That is, the variation is still in P when ∆ = 2 and is
still APX-complete when ∆ ≥ 3.

We next discuss the ‘dual’ notion to bounded degree—bounded frequency:
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Covering Problem: k-Uniform-SC
Elements: Any finite set
Sets: Finite subsets of X such that each element is contained in
exactly k sets

In an instance of k-Uniform-SC, each element is said to have frequency
k. It is not hard to show that simply selecting the cheapest set containing
each element produces a k-approximation for weighted k-Uniform-SC [Vaz01].
However, the k = 2 case is precisely equivalent to Min-Vertex-Cover, which is
APX-hard. Since the k = 1 case is trivial, it then follows that k-Uniform-SC
is in P for k = 1 and is APX-complete for k ≥ 2. Again, these results still hold
when sets may contain fewer than k elements.

We also observe that ∆-Regular-SC and k-Uniform-SC are indeed dual
problems: the dual of a k-uniform set system is a k-regular set system, and vice
versa. The k = 2 case provides us with an interesting example—Min-Vertex-
Cover is an APX-complete covering problem whose dual problem, Min-Edge-
Cover, is polynomial-time solvable. Duality does not preserve APX-hardness
or polynomial-time solvability.

Another noteworthy special case is the following:

Covering Problem: 3-Regular-Graph-SC
Elements: The edges of a 3-regular graph G = (V,E)
Sets: {δ(v) : v ∈ V }, where δ(v) is the set of edges incident to v

In 3-Regular-Graph-SC, we have a combination of restrictions: sets have
degree exactly 3 and the elements have frequency exactly 2. This covering prob-
lem is still APX-complete, as proven by Alimonti and Kann [AK00]. Reduc-
tions from 3-Regular-Graph-SC are commonly used to prove other covering
problems are APX-hard.

2.3.2 Hitting Set and Dominating Set

We have already discussed hitting set problems as the ‘dual’ of set cover prob-
lems in which the roles of sets and elements are reversed and the goal is to
compute a min-cost subset of the elements so that each set contains at least
one selected element (each set is ‘hit’ at least once). In the case of geometric
problems, we will often try to describe such problems explicitly rather than via
duality, because the resulting formulation carries physical intuition with it. For
example, we can define the following:

Covering Problem: R-Interval-HS
Elements: A finite set of intervals in R

Sets: For a finite family of points P , the sets {Sp : p ∈ P} where Sp
comprises all of the intervals that contain p

Notation-wise, we will replace the ‘SC’ in a problem’s bolded name with
‘HS’ whenever we wish to examine the related hitting set dual problem. For
example, we can examine R

2-Rectangle-HS, Vertical-Tree-HS, and so on.
One easy result is the following:
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Theorem 2.3.1. Vertical-Tree-HS is in P.

Proof. Vertical-Tree-SC is totally unimodular by Proposition 2.1.18, so its
dual Vertical-Tree-HS is also by Proposition 2.1.15. The result then follows
by Proposition 2.1.14.

We note that instead of trying to find a new combinatorial algorithm for the
dual problem, we simply made use of the property of total unimodularity.

Dominating set problems are covering problems in which the elements and
sets are one in the same:

Covering Problem: Min-Dominating-Set
Elements: A finite family of sets S
Sets: The family {N(S) : S ∈ S}, where N(S) = {A ∈ S : A∩S 6= ∅}

When given a set system (X,S), we may obtain the related dominating
set system (X,S)D whose elements are the sets S and whose sets are indexed
by the sets S, with an element being incident to a set if and only if the two
corresponding sets intersect. In other words, the weighted Min-Dominating-
Set problem asks us to select a minimum-cost family of sets C ⊆ S such that
every set in S was either selected itself, or intersects a set that was selected. For
a class C of set systems, we shall write CD for the set {(X,S)D : (X,S) ∈ C}
of related dominating set systems.

An equivalent way of viewing the dominating set system related to a set
system (X,S) is to consider the intersection graph Ω(S), which has S as its
vertex set and has vertices Si, Sj ∈ S adjacent if and only if Si and Sj have
non-empty intersection.5 The dominating set problem is then simply a graph-
theoretic covering problem in which the goal is to select a minimum cost subset
of vertices in Ω(S) such that every unselected vertex is adjacent to at least one
selected vertex. The set system matrix corresponding to an instance of Min-
Dominating-Set is thus simply the adjacency matrix of the corresponding
intersection graph (with ones added down the main diagonal, since each element
covers itself). Since such matrices are symmetric, it follows that dominating set
problems are self-dual :

Proposition 2.3.2. Let (X,S) be any set system. Then (X,S)D∗ = (X,S)D.

As a consequence, it is unnecessary to discuss, e.g., hitting set variations of
dominating set problems, as they are isomorphic to the original problem.

In the general case, it turns out that Min-Dominating-Set is equivalent
to Min-Set-Cover under L-reductions [Kan92] and thus admits an O(logM)-
approximation, but no better unless P = NP. Nevertheless, we will, as usual,
examine several special cases that exhibit improved approximability.

One example is R-Interval-DS—the dominating set version of R-Interval-
SC. In this problem, we are given a family of intervals on the real line, and
we wish to select a minimum cost subfamily that intersects each interval in the
input. As with R-Interval-SC, an approach based on dynamic programming
yields an exact algorithm running in polynomial time, and thus:

5The theory of intersection graphs is a large area in and of itself; see [MM99].
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Theorem 2.3.3. R-Interval-DS is in P.

We shall meet a few other dominating set problems in the chapters that
follow.

2.3.3 Combining and Disassembling Set Systems

In this section, we cover a few ways by which individual set systems can be split
apart, and multiple set systems can be merged.

Definition 2.3.4. Given two set system matrices A1 and A2 both having the
same number of rows, we write A1 ‖ A2 for the concatenation of A2 onto the
right of A1.

Concatenation produces a set system (X,S1 ∪ S2) from two set systems
(X,S1) and (X,S2) having the same ground set. This allows us to represent,
for example, geometric set systems in which the goal is to cover points in the
plane using both disks and rectangles.

We shall also define concatenation over entire covering problems:

Definition 2.3.5. Given two classes C1 and C2 of set systems, we write C1 ‖
C2 for the class of all set systems of the form A1 ‖ A2 with A1 ∈ C1, A2 ∈ C2,
and both A1 and A2 having the same number of rows.

As an example, consider the following special case of R2-Rectangle-SC:

Covering Problem: R2-Slab-SC
Elements: A finite subset of R2

Sets: A family of axis-aligned slab-shaped rectangular regions, each
either of the form [a, b]× [−∞,∞] or of the form [−∞,∞]× [a, b]

If we take an R
2-Slab-SC matrix A and write it as A1 ‖ A2 where the

columns in A1 only correspond to horizontal slabs and the columns of A2 only
correspond to vertical slabs, then both A1 and A2 are R-Interval-SC matrices.
The following shall provide a method with which we can use this structural
property to obtain a constant approximation for R2-Slab-SC:

Theorem 2.3.6. Suppose C1 and C2 are two hereditary families of set systems
that both admit an LP-relative polynomial-time α-approximation for their un-
weighted (respectively, weighted) covering problems for some α ≥ 1. Then the
unweighted (respectively, weighted) covering problem on C1 ‖ C2 admits an
LP-relative polynomial-time (2α)-approximation.

Proof. We prove the weighted version; the unweighted version is similar. Let
A1 ∈ C1 be M × N1 and let A2 ∈ C2 be M × N2, and let w1 ∈ R

N1
+ and

w2 ∈ RN2
+ be two sets of weights. We shall provide an algorithm to approximate

the optimal solution to the weighted covering problem on A1 ‖ A2 with weights
w1 ‖ w2.

We first solve the linear programming relaxation (SCLP) of the covering
problem involving the set system A1 ‖ A2 and weights w1 ‖ w2. Let x∗ be an
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optimal fractional solution and define x′ = 2x∗. Write x′ as x′1 ‖ x′2 for the
respective fractional weights of columns in A1 and A2. Since Ax∗ ≥ 1, each
row of Ax′ is at least 2 and thus for all i, we must have either [A1x′1]i ≥ 1 or
[A2x′2]i ≥ 1. Mark row i of A1 ‖ A2 if [A1x′1]i ≥ 1, and leave the remaining
rows unmarked. Let A′1 be the submatrix of A1 containing only marked rows,
and let A′2 be the submatrix of A2 containing only unmarked rows.

By our marking scheme, A′1x
′
1 ≥ 1 and A′2x

′
2 ≥ 1, so x′1 and x′2 are feasible

solutions of the covering problems on A′1 and A′2 respectively. Since C1 and
C2 are hereditary, we have A′1 ∈ C1 and A′2 ∈ C2 and thus the two weighted
covering problems on A′1 (with weights w1) and A′2 (with weights w2) both
admit LP-relative polynomial-time α-approximations. Let x†1 and x†2 be α-
approximate integer solutions to these two covering problems obtained via such
an algorithm. Observe that x†1 ‖ x†2 is a feasible integer solution for our original
covering problem on A1 ‖ A2, since both marked and unmarked rows are cov-
ered. It remains to bound the cost of this solution, proving our approximation
guarantee:

(w1 ‖ w2)T (x†1 ‖ x†2) = wT
1 x†1 + wT

2 x†2
≤ α(wT

1 x′1 + wT
2 x′2)

≤ 2α(wT
1 x∗1 + wT

2 x∗2)
= 2α(OPT )

This shows that our algorithm does indeed yield an LP-relative polynomial-time
(2α)-approximation, completing the proof.

We may apply Theorem 2.3.6 to R2-Slab-SC with α = 1 since R-Interval-
SC matrices are TUM, yielding the following:

Corollary 2.3.7. Weighted R
2-Slab-SC admits a polynomial-time LP-relative

2-approximation.

A related, but entirely separate idea is that of splitting the sets of an indi-
vidual set system into multiple smaller sets, and solving the resulting problem.
We have already encountered one example of this idea in Theorem 1.2.4, where
we obtained a 2-approximation for Tree-SC by separating each path in a tree
into two vertical paths. The following is a more general notion:

Definition 2.3.8. Let A1 and A2 be two set system matrices, both of dimension
M × N . The matrix A1 ∨ A2 is the M × N matrix obtained by performing a
‘element-wise OR operation’ on A1 and A2. In other words,

[A1 ∨A2]i,j =
{

1 : [A1]i,j = 1 or [A2]i,j = 1
0 : otherwise

We shall also define element-wise operations over entire covering problems:

Definition 2.3.9. Given two classes C1 and C2 of set systems, we write C1∨C2

for the class of all set systems of the form A1 ∨A2 with A1 ∈ C1, A2 ∈ C2, and
both A1 and A2 having the same dimensions.
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Via precisely the same mechanism as the one used to prove Theorem 1.2.4,
we may obtain the following more general result:

Theorem 2.3.10. Suppose C and D are two families of set systems such that
for all A ∈ C, we may find, in polynomial time, matrices B1 and B2 such that
A = B1∨B2 and B1 ‖ B2 ∈ D. Suppose also that the unweighted (respectively,
weighted) covering problem on D admits a polynomial-time α-approximation.
Then the unweighted (respectively, weighted) covering problem on C admits a
polynomial-time (2α)-approximation.

Proof. Similar to the proof of Theorem 1.2.4. If we wish to solve the cover-
ing problem on A with weights w, we first find an α-approximate solution for
the covering problem on B1 ‖ B2 (with weights inherited), and then take the
corresponding columns in A. This yields a 2α-approximate solution since a min-
cost solution for A must cost at least half as much as a min-cost solution for
B1 ‖ B2.

Remark 2.3.11. Theorem 2.3.10 will produce an LP-relative approximation if
the α-approximation for D is LP-relative.

This can be applied to the hitting set version of R2-Slab-HS:

Corollary 2.3.12. Weighted R2-Slab-HS admits a polynomial-time LP-relative
2-approximation.

Proof. Given a R
2-Slab-HS matrix A (that is, the transpose of a R

2-Slab-SC
matrix), let B1 be A with all rows corresponding to horizontal slabs replaced by
rows of zeroes, and let B2 be A with all rows corresponding to vertical slabs re-
placed by rows of zeroes. Clearly A = B1∨B2, and B1 ‖ B2 is a R-Interval-HS
matrix (one can think of it as representing two entirely independent R-Interval-
HS problems in the same matrix), so the covering problem on B1 ‖ B2 is TUM
and has an integrality gap of 1. The result then follows by Theorem 2.3.10.

Remark 2.3.13. Theorems 2.3.6 and 2.3.10 can both easily be generalized to
the concatenation or element-wise OR of more than 2 matrices, with appropriate
worsening in the approximation guarantee.

At this point, we have shown that both R
2-Slab-SC and R

2-Slab-HS in-
stances can be created by elementary constructions involving very simple TUM
matrices, and that these constructions facilitate constant approximations. In
fact, by combining Theorems 2.3.6 and 2.3.10, constant approximations can be
obtained for any class of matices that admit a polynomial-time decomposition
into the element-wise OR of a bounded number of TUM matrices or other matri-
ces admitting an LP-relative constant approximation. Below is a final example
that uses several of the tools we have developed:

Theorem 2.3.14. Weighted Tree-HS admits a polynomial-time LP-relative
4-approximation.
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Proof. Let T be the class of TUM matrices. By Theorem 2.3.6, since T is
hereditary, weighted covering on T ‖ T admits a polynomial-time LP-relative 2-
approximation. Consequently, weighted covering on T∨T admits a polynomial-
time LP-relative 4-approximation provided a decomposition into the element-
wise OR of two TUM matrices can be found in polynomial time. We shall show
that this is the case for Tree-HS matrices.

Let A be a Tree-HS matrix. Since Tree-SC matrices can be decomposed
into the element-wise OR of two Vertical-Tree-SC matrices, write AT = B1 ∨
B2 for two Vertical-Tree-SC matrices B1 and B2. Note that the transpose
operation distributes over element-wise OR, and thus it follows that A = BT1 ∨
BT2 . The Vertical-Tree-SC matrices B1 and B2 are TUM by Theorem 2.1.18,
so BT1 ∈ T and BT2 ∈ T by Proposition 2.1.15 and hence A ∈ T∨T. The result
follows.

Given how straightforward these types of decompositions are, one might hope
that something better, such as a PTAS or polynomial-time solvability, might
be possible, especially for R2-Slab-SC or R2-Slab-HS. Unfortunately, we will
prove in Chapter 5 that R2-Slab-SC and R

2-Slab-HS are both APX-hard;
the concatenation or element-wise OR of two polynomial-time solvable covering
problems may not even admit a PTAS.

2.3.4 Geometric Set Systems

Computational geometry is a rich source of set systems having nice structural
properties. In a geometric set cover problem, the elements X are points in
Euclidean space, and the sets S are a pre-specified configuration of regions or
geometric objects. We have already seen examples like R2-Rectangle-SC; here
we discuss some more exotic set systems and prove some useful properties about
them. Many of these properties can be found in a standard textbook such as
[dBCvKO08].

We begin with a class of set systems relevant to wireless network planning
[GRV05]:

Covering Problem: Rn-Ball-SC
Elements: A finite subset of Rn

Sets: A family of closed balls, each of the form Br[p] for some p ∈ Rn
and some r ≥ 0 (where Br[p] is the set containing all points whose
Euclidean distance to p is at most r)

A variation of this is Rn-Unit-Ball-SC, in which every ball has radius 1.
In the plane, these problems will be referred to by their traditional names R2-
Disk-SC and R

2-Unit-Disk-SC. It turns out that the unit radius restriction
can be enforced by adding an additional Euclidean dimension:

Proposition 2.3.15. Rn-Ball-SC ⊆ R
n+1-Unit-Ball-SC.

Proof. Let (X,S) be an R
n-Ball-SC instance. Without loss of generality, we

assume that all balls have radius at most 1. We employ the following mappings,
which send points and balls in R

n to points and unit balls in R
n+1:
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• (x1, . . . , xn) 7−→ (x1, . . . , xn, 0)

• Br[(x1, . . . , xn)] 7−→ B1[(x1, . . . , xn,
√

1− r2)]

We can easily check that

(x1, . . . , xn) ∈ Br[(x1, . . . , xn)]⇐⇒ (x1, . . . , xn, 0) ∈ B1[(x1, . . . , xn,
√

1− r2),

implying that the above mapping sends Rn-Ball-SC instances to isomorphic
R
n+1-Unit-Ball-SC instances. The result follows.

The above style of proof shall become a very common motif—we will of-
ten verify encoding relations by explicitly defining a geometric mapping that
preserves the element-set incidence relation of desired set systems.

It turns out that Rn-Unit-Ball-SC is a self-dual problem; its hitting set
version can encode precisely the same problems as its covering version:

Proposition 2.3.16. Rn-Unit-Ball-SC = R
n-Unit-Ball-HS

Proof. Since x ∈ B1[y] if and only if y ∈ B1[x], it suffices to simply replace
each point x with a unit ball centred at x, and each unit ball centered at y with
a point y.

For the same reason, R2-Unit-Square-SC is also self-dual.
In a configuration of disks in the plane, no pair of disks have boundaries

that intersect more than twice. This topological property is so useful that many
authors have studied the following generalization of R2-Disk-SC:

Covering Problem: R2-Pseudodisk-SC
Elements: A finite subset of R2

Sets: A family of connected, closed, bounded regions, each of which
has a simple closed Jordan curve as its boundary, with each pair of
Jordan curves intersecting at most twice

R
2-Pseudodisk-SC encodes R2-Disk-SC as well as various other problems

such as R2-Square-SC. However, it cannot encode R2-Rectangle-SC, as it is
possible for the boundaries of two axis-aligned rectangles to intersect four times.

Our next example is covering involving lower half-spaces. For our purposes, a
half-space in R

n is a lower half-space whenever its intersection with the negative
xn-coordinate axis is a ray of infinite length.

Covering Problem: Rn-Lower-Halfspace-SC
Elements: A finite subset of Rn

Sets: A family of closed lower half-spaces in R
n

It turns out that Rn-Lower-Halfspace-SC can also encode R
n-Ball-SC.

Like in Proposition 2.3.15, the transformation requires adding another dimen-
sion:

Proposition 2.3.17. Rn-Ball-SC ⊆ R
n+1-Lower-Halfspace-SC.
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Proof. This can be shown via a mapping known as the standard lifting trans-
formation; see [dBCvKO08] for details. As an explicit example, for the case
of n = 2, it suffices to employ the following mappings, which send points and
balls in the plane to points and lower half-spaces in R

3, preserving incidence
relations:

• (a, b) 7−→ (a, b, a2 + b2)

• Br[a, b] 7−→ {(x, y, z) : z − 2ax− 2by + a2 + b2 − r2 ≤ 0}

Analogous mappings can be used in higher dimensions.

Using tools of projective geometry, we can show that Rn-Lower-Halfspace-
SC is also a self-dual problem:

Proposition 2.3.18. Rn-Lower-Halfspace-HS = R
n-Lower-Halfspace-SC

Proof. Assuming no points or half-space boundaries intersect the origin, it is
sufficient to apply a projective duality mapping, which maps points to lower
half-spaces and vice-versa, preserving incidence properties. See [dBCvKO08]
for details. As an explicit example, for the case of n = 2, we may send points
(a, b) to lower half-planes ax+ by + 1 ≤ 0 and vice versa.

Next, we define a broad class of covering problems known collectively as
box cover problems. The set systems involved in these covering problems have
numerous applications in areas such as database range-searching and computa-
tional learning theory [HW87].

Covering Problem: Rn-(n+ k)-Sided-Box-SC
Elements: A finite subset of Rn

Sets: A family of (n + k)-sided axis-aligned boxes, each of the form
[a1, b1]× . . .× [ak, bk]× [−∞, bk+1]× . . .× [−∞, bn] where all ai, bi ∈ R
and ai ≤ bi for 1 ≤ i ≤ k

Note that we require 0 ≤ k ≤ n in the above formulation. In the event that
k = n, this problem is simply geometric set cover with ordinary n-dimensional
axis-aligned boxes. For example, R1-2-Sided-Box-SC is just R-Interval-SC,
and R

2-4-Sided-Box-SC is simply R
2-Rectangle-SC. The crucial part of the

problem definition is that in the event that k < n, each box is always semi-
infinite in the negative direction in the first k dimensions. This allows us to
describe many new types of covering problems. For example, in R

2-2-Sided-
Box-SC, the goal is to cover points in the plane using quadrants, each of which
extends semi-infinitely downward and leftward in the plane.

When R
n-(n+k)-Sided-Box-SC instances are considered in the literature,

the boxes are sometimes regarded as having fixed endpoints in some dimen-
sions, instead of extending off to infinity. For example, R2-3-Sided-Box-SC
is equivalent to the problem of covering with axis-aligned rectangles, each of
which abuts the x-axis.6 These two representations are isomorphic in that any

6For this reason, R2-3-Sided-Box-SC has been called hinged axis-aligned rectangle cover
or HARC [BKS11].

37



2. FOUNDATIONS

instance of one representation can easily be reformulated using the other, and
the reader is encouraged to pick whichever visualization is most convenient. We
prefer semi-infinite boxes because in such a case, many properties of these prob-
lems (such as their VC dimension, see Section 2.4) are a function of the number
of sides of the boxes.

The complexity of a Rn-(n+ k)-Sided-Box-SC problem is a monotonically
increasing function of both the number of sides and the number of dimensions:

Proposition 2.3.19. For 0 ≤ k < n, the following always hold:

1. Rn-(n+ k)-Sided-Box-SC ⊆ R
n-(n+ k + 1)-Sided-Box-SC.

2. Rn−1-(n+ k)-Sided-Box-SC ⊆ R
n-(n+ k)-Sided-Box-SC.

Proof. Item (1) is obvious. To verify (2), we give only a proof that R-Interval-
SC = R

1-2-Sided-Box-SC ⊆ R
2-2-Sided-Box-SC; all other cases can be

checked analogously.
Given an instance of R-Interval-SC, consider the following mapping send-

ing real numbers and intervals on the real line to points and quadrants in the
plane:

• x 7−→ (x,−x)

• [a, b] 7−→ [−∞, b]× [−∞,−a]

We can easily check that x ∈ [a, b] if and only if (x,−x) ∈ [−∞, b]× [−∞,−a],
implying that the above mapping sends R-Interval-SC instances to isomorphic
R

1-2-Sided-Box-SC instances. The result follows.

Box cover problems in which all dimensions are semi-infinite are self-dual:

Proposition 2.3.20. Rn-n-Sided-Box-SC = R
n-n-Sided-Box-HS

Proof. We give a proof for n = 2; other cases are similar. It is straightforward
to check that the following bijective mapping sending points to quadrants and
vice-versa preserves the necessary incidence relations in both directions:

• (x, y) 7−→ [−∞,−x]× [−∞,−y]

• [−∞, x]× [−∞, y] 7−→ (−x,−y)

Somewhat surprisingly, the problem R
2-3-Sided-Box-SC can encode the

problem Vertical-Tree-SC. In a sense, this implies that the geometric R
2-3-

Sided-Box-SC problem is a stronger generalization of R-Interval-SC than
the combinatorial Vertical-Tree-SC problem:

Theorem 2.3.21. Vertical-Tree-SC ⊆ R
2-3-Sided-Box-SC
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Figure 2.1: Encoding of a Vertical-Tree-SC instance as a R
2-3-Sided-Box-

SC instance. Each point represents an edge from a full binary tree T . The
thin lines are for visualization purposes only, and connect points that share a
parent-child bond in T . The axis-aligned 3-sided boxes each cover a set of points
corresponding to a vertical path in T .

Proof. We have given a rigourous proof in [CGK10b], but we shall give a simpler
‘proof by picture’ that, we believe, provides a much clearer indication of precisely
how the structure of a Vertical-Tree-SC instance can be exploited to obtain
a R

2-3-Sided-Box-SC instance.
Let (X,S) be a Vertical-Tree-SC instance on a tree T . Without loss of

generality, we may assume that T is a subgraph of a full binary rooted tree (by
replacing each high-degree vertex in T with a binary tree, adjusting the paths
accordingly, and deleting unnecessary edges). We then create a point in the
plane for each edge in T as shown in Figure 2.1, and observe that the edges
covered by any vertical path in T can be covered by a single 3-sided box that
contains no other points. This completes the proof.

We shall discuss several other geometric set systems involving convex objects
such as polygons in the plane. However, additional restrictions are necessary,
since geometric covering and hitting set problems with arbitrary convex poly-
gons can encode general Min-Set-Cover. For example, by placing a series of
points on a circle, it is easy to see that any subset of them can be contained in a
convex polygon that contains no other points on the circle. Even restricting the
polygons to triangles is sufficient to encode 3-Regular-Graph-SC, implying
that R2-Triangle-Cover is APX-hard.

With hitting set problems, there are similar issues with other types of ge-
ometric set systems. Hitting set with arbitrary line segments in the plane can
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easily encode Min-Vertex-Cover, again by simply placing points on a circle.
It follows that, for example, Min-Vertex-Cover ⊆ R

2-Triangle-Hitting-Set
and thus R2-Triangle-Hitting-Set is APX-hard (since any line segment can
be replaced by an appropriate skinny triangle).

To circumvent the difficulties associated with skinny geometric objects, some
authors have concentrated on restricted geometric set systems in which each
object must be sufficiently ‘fat’. There are various definitions of ‘fatness’ used
in the literature, most of which are more-or-less equivalent [Cha03, EAS11]. We
will use the following definition:

Definition 2.3.22. A bounded, convex7 geometric object S in the plane is α-
fat if there exist circles C1 and C2 with radii r1 and r2 such that C1 ⊆ S ⊆ C2

and r2
r1
< α.

For example, disks are 1-fat and squares are
√

2-fat. We shall discover, in
general, that problems involving fat objects often admit better approximations
than those with skinny objects.

2.3.5 Priority Set Systems

In a priority covering problem, we are given a set system (X,S), a priority
supply vector s ∈ ZN+ , a priority demand vector π ∈ ZM+ , and (in the weighted
case) weights w ∈ R

N
+ . The goal is to select a minimum-weight subset C ⊆ S

such that for each x ∈ X, there is a selected set S ∈ C such that x ∈ S and
sS ≥ πx. In other words, we wish to purchase a subset of S so that each point
x is covered by a set whose supply exceeds the demand of x.

Priority covering problems arise naturally in situations where quality of ser-
vice restrictions are important—we may think of each set as providing a certain
level of service to all of the elements it contains, each element being satisfied
only if its required level of service is met. Priority versions of the Steiner tree
and Steiner forest problems were first studied by Charikar, Naor and Schieber
[CNS04], motivated by network multicast routing problems in which varying
qualities of data are simultaneously broadcasted. We shall study the prior-
ity versions of problems like Tree-SC by relating them to geometric covering
problems.

We can express the priority relationship via a matrix:

Definition 2.3.23. Given priority supplies and demands s ∈ ZN+ and π ∈ ZM+ ,
the priority matrix Π[s, π] is an M ×N binary matrix filled as follows:

Π[s, π]ij =
{

1 : sj ≥ πi
0 : otherwise,

If the rows and columns of Π[s, π] are permuted to appear according to
a non-decreasing order of their priorities (from left to right and bottom to top

7For non-convex objects, there are more general and sophisticated measures of fatness such
as local fatness that preserve the useful combinatorial properties of fat objects [dB10]

40



2.3. SET SYSTEMS AND THEIR STRUCTURAL PROPERTIES

respectively), then Π[s, π] takes on a staircase structure in which no one appears
immediately above or left of any zero. It follows that that priority matrices are
a special case of R-Interval-SC matrices and are thus TUM. Moreover, this
staircase structure is preserved when transposing the matrix, so the transpose
of a priority matrix is a priority matrix.

When we add priorities to a set system, the resulting priority set system is
simply another set system in which some element-set incidences are removed
(some elements may no longer be covered by sets containing them if the set’s
supply is not high enough).

Definition 2.3.24. Given a set system matrix A and priority supplies and
demands s ∈ ZN+ and π ∈ ZM+ , we define the priority set system matrix A[s, π]
to be A∧Π[s, π], where ∧ is the ‘element-wise AND’ operation on matrices. In
other words, A[s, π]ij = 1 if and only if Aij = 1 and sj ≥ πi.

We shall also define a class of set systems for all of the priority covering
instances related to a given class of set systems:

Definition 2.3.25. For a class of set systems C, define CP to be the set of all
priority set system matrices A∧Π over all choices of A ∈ C and all appropriately
sized priority matrices Π.

An example of a priority covering problem that we will encounter multiple
times is Priority-R-Interval-SC—the priority version of R-Interval-SC. A
geometric view of priorities shall help us visualize this problem more easily.
Imagine a Priority-R-Interval-SC instance (X,S) where each point x ∈ R

is placed in the plane at coordinates (x, πx) and each interval S = [a, b] ⊆ R

is replaced with a line segment connecting (a, sS) to (b, sS). In other words,
we have taken our 1-dimensional covering problem and extruded it out into
the second dimension, with the final coordinate of each object representing its
priority (supply or demand). In this representation, an interval S represented
by a segment connecting (a, sS) to (b, sS) covers a point x represented by the
point (x, πx) if and only if a ≤ x ≤ b and πx ≤ sS , which happens precisely
when (x, πx) lies in the downward shadow of the segment.

Definition 2.3.26. For a set Y of points in the plane, we define the downward
shadow of Y to be the set of all points (a, b) such that there is a point (a, y) ∈ Y
with y ≥ b.

However, the downward shadow of a horizontal line segment in the plane is
precisely a 3-sided box. This leads us to the following observation:

Proposition 2.3.27. Priority-R-Interval-SC is isomorphic to R
2-3-Sided-

Box-SC.

3-sided boxes are sometimes called bottomless rectangles [Kes07], and cov-
ering problems involving them are fairly well-studied and arise in a variety of
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situations [BP10, BKS11]. In [CGK10a], we showed that Priority-R-Interval-
SC can be solved exactly in polynomial time via a dynamic programming algo-
rithm. We give a simpler and more general proof of this in Chapter 4 (see also
[CG11]).

Intuitively, for a geometric covering problem, we can think of the process
of adding priorities as that of adding another Euclidean dimension in which
the height of each point or object is determined by its height, and an object
covers precisely the points in its downward shadow. For box cover problems,
the priority version of a problem is obtained by adding another dimension in
which all objects are semi-infinite:

Proposition 2.3.28. Rn-(n+ k)-Sided-Box-SC P = R
n+1-(n+ k + 1)-Sided-

Box-SC

Some other basic results about the priority operation follow:

Proposition 2.3.29. Let C and D be classes of set systems. Then the following
are true:

1. If C is hereditary, then so is CP .

2. If C ⊆ D, then CP ⊆ DP .

3. (C∗)P = (CP )∗.

Proof. The first two items are immediate from the definitions. The third is clear
through the following chain of implications:

B ∈ (C∗)P ⇐⇒ B = AT ∧Π for some A ∈ C and priority matrix Π

⇐⇒ B = (A ∧ΠT )T for some A ∈ C and priority matrix Π

⇐⇒ B = (A ∧Π)T for some A ∈ C and priority matrix Π

⇐⇒ B ∈ (CP )∗.

Note that we used the fact that transposes of priority matrices are priority
matrices, and the fact that matrix transpose distributes over element-wise AND.

2.4 Measuring and Exploiting the Complexity
of Set Systems

If we are to obtain general algorithms that achieve better approximations for
covering problems by exploiting their structural properties, it would be useful
to first have a quantifiable way of identifying structure. It might first appear
tempting to use global properties of a set system, such as the average number
of elements per set, as an indicator of set system complexity. However, large
set systems that appear simple and unintimidating at first glance may conceal
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difficult subproblems within them, and global properties may fail to detect these
pathological subproblems. Consequently, more involved methods that analyze
a matrix locally are required.

The approach used traditionally in practice can be stated as follows: first,
establish some canonical, infinite list {A0, A1, . . .} of matrices that are nonde-
creasing in size and complexity as their index increases. Then, characterize a
class of set systems C according to the largest value of d for which Ad is a
submatrix of some A ∈ C. If {A0, A1, . . .} is chosen well, then ruling out all
submatrices {Ad+1, Ad+2, . . .} shall force severe restrictions upon the structure
of A. For some choices of forbidden submatrices, these restrictions can yield
necessary or sufficient conditions for obtaining an improved approximation.

The most important set system complexity measures that will be discussed
in this thesis are:

• Vapnik-Chervonenkis dimension or more commonly, VC dimension—a
metric originally developed in computational learning theory that can be
exploited to obtain improved approximability for covering problems; in-
deed, to admit any improved approximability, a hereditary class of set
systems must exhibit bounded VC dimension.

• Union Complexity—used primarily in computational geometry to quan-
tify the complexity of the boundary of a union of geometric objects; set
systems exhibiting low union complexity admit improved LP-relative ap-
proximations.

• Shallow Cell Complexity—a new notion that we originally introduced in
[CGKS12]; in Chapter 6 we provide an algorithm for weighted set cover
whose factor of approximation is a function of the shallow cell complexity
of the set system. Many common set systems, including those of low union
complexity, exhibit low shallow cell complexity.

2.4.1 VC dimension

VC dimension was first introduced by Vapnik and Chervonenkis in 1971 in a
groundbreaking paper that led to decades of development in the areas of com-
putational and statistical learning theory [VC71, BEHW89]. In short, VC di-
mension is the single key property of a set system that determines how quickly a
computational process can learn to statistically classify points, and many statis-
tical properties of machine learning algorithms are related to the VC dimension
of the underlying set system. A rich theory has developed surrounding these
ideas; for more information, one may refer to any one of a number of texts on
the subject such as Vapnik’s [Vap98]. We shall only make use of a select few
key ideas from this theory. For our purposes, it shall suffice to treat the VC
dimension of a set system as a forbidden submatrix property.

Definition 2.4.1. For an integer d ≥ 1, define the matrix Vd to be the d × 2d

set system matrix whose columns each contain a distinct d-bit binary string (of
the 2d such strings).
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Recalling that we consider set system matrices modulo row and column re-
orderings, we remark that the matrix Vd satisfying the above property is unique
(and thus well-defined) and contains no two identical rows or columns. The ma-
trix Vd is the largest possible set system matrix containing d rows, since adding
more columns to Vd would result in some column being duplicated.

Definition 2.4.2. The VC dimension of a matrix A, written VC(A), is the
largest value of d such Vd is a submatrix of A (where, as usual, the submatrix
relation is modulo row and column reorderings).

More traditionally, if a set system (X,S) admits Vd as a submatrix of its
set system matrix, then there must a exist d-element subset D ⊆ X such that
there is some subfamily T ⊆ S containing 2d sets, each of which is distinct when
restricted to D. In such a case, T is said to shatter D, and the VC dimension
of a set system is simply the size of the largest set that can be shattered.

It is known that the VC dimension of a given, explicitly represented set
system matrix can be computed in time O(nlogn) [LMR91], but computing it
exactly is hard for the class LOGNP [PY96]. When a set system matrix is not
given, and instead a polynomial-size circuit is provided that answers element-set
incidence queries for a potentially exponential-sized set system, computing the
VC dimension becomes NP-hard; in fact, under this model, it is NP-hard to
approximate VC dimension to within a factor of 2− ε for any ε > 0 [MU02].8

We note that all non-trivial set system matrices have a VC dimension of at
least 1. In general, simpler set systems have lower VC dimension. Accordingly,
we define the VC dimension of a class of set systems by the worst case VC
dimension among its constituent matrices.

Definition 2.4.3. Given a class C of set system matrices, its VC dimension
VC(C) is the maximum of VC(A) over all A ∈ C.

A simpler definition is possible for hereditary classes of set systems. The fol-
lowing is immediate from the previous definitions and the definition of heredity:

Proposition 2.4.4. If C is hereditary, then VC(C) is the largest value of d for
which Vd ∈ C.

VC dimension also has a dual notion:

Definition 2.4.5. The VC codimension VC∗(A) of a matrix A is the largest
value of d such that V Td is a submatrix of A. Equivalently, it is the VC dimension
of AT . For a class of set systems C, define VC∗(C) = VC(C∗).

Many classical results in machine learning theory center around computing
bounds on the VC dimension of various classes of set systems. Below are some
examples:

8The best known hardness result is actually somewhat stronger than NP-hardness. They
show that approximating VC dimension within a factor of 2 − ε is complete for Σp3—a com-
plexity class in the polynomial hierarchy that contains NP.
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• Priority matrices, as defined in Definition 2.3.23, are examples of matrices
that have VC dimension and VC codimension equal to 1.

• Rn-Halfspace-SC and Rn-Ball-SC both have VC dimension n+1 [Dud78].

• R-Interval-SC has VC dimension 2, R2-Rectangle-SC has VC dimen-
sion 4, and in general, Rn-2n-Sided-Box-SC has VC dimension and VC
codimension both equal to 2n [VC71].

• Tree-SC can be shown to have VC dimension and VC codimension equal
to 2 using exactly the same method as for R-Interval-SC.

As it turns out, all of the classes of set systems we have discussed in this
thesis have bounded VC dimension. There is a very good reason for this:

Proposition 2.4.6. Let C be a hereditary class of set systems that has un-
bounded VC dimension. Then C contains every set system matrix.

Proof. If C is hereditary and has unbounded VC dimension, then C contains
Vd and all of its submatrices, for all integers d. Let A be an arbitrary set
system matrix of dimension M ×N , recalling that set system matrices contain
no duplicate rows or columns. This immediately implies that A is a submatrix
of VM (modulo row and column reordering) obtained by deleting columns, from
which we can conclude that A ∈ C. The result follows since A was arbitrary.

It follows that hereditary problems with unbounded VC dimension inherit
all of the hardness of the Min-Set-Cover problem and thus do not admit any
improved approximation algorithms over general Min-Set-Cover.

VC dimension and codimension have many nice properties:

Proposition 2.4.7. Let C and D be classes of set systems, and let A be a set
system matrix. The following hold:

1. A (respectively C) has finite VC dimension if and only if A (respectively
C) also has finite VC codimension. In particular, VC∗(A) ≤ 2VC(A).

2. If C ⊆ D, then VC(C) ≤ VC(D) and VC∗(C) ≤ VC∗(D).

3. VC(DP ) = VC(D) + 1 and VC∗(DP ) = VC∗(D) + 1.

Proof. 1. This property follows from the fact that V Td has 2d distinct rows
and thus is a submatrix of V2d . See also [VC71].

2. This is immediate from the definitions.

3. To show that VC(DP ) ≥ VC(D) + 1, we simply note that we can write

Vd+1 =
[

Vd Vd
11×2d 01×2d

]
=
[

Vd Vd
11×2d 11×2d

]∧[
1d×2d 1d×2d

11×2d 01×2d

]
,
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which is the bitwise AND of a matrix of VC dimension d and a priority
matrix. It follows that if some A ∈ D contains Vd as a submatrix, then
some A ∧Π in DP contains Vd+1 as a submatrix.

A proof of the fact that VC(DP ) ≤ VC(D)+1 can be found in [BKS11]; we
outline the idea here. Let d = VC(DP ) and suppose, for a contradiction,
that Vd+2 is a submatrix of some matrix in DP . This assumption implies
that Vd+2 = A ∧ Π for some priority matrix Π and some matrix A of VC
dimension at most d. Let row r be the row of highest priority demand
in A, and note that whenever [A ∧ Π]r,j = 1, then column j of Π must
consist entirely of ones. Hence if B is the submatrix of A ∧ Π obtained
by deleting all columns that do not contain a 1 in row r, then B is also a
submatrix of A. We therefore obtain a contradiction, since B contains a
copy of Vd+1, but we assumed VC(A) ≤ d.

We have thus proven that VC(DP ) = VC(D) + 1. The dual version then
follows from Proposition 2.3.29, since:

VC∗(DP ) = VC((DP )∗) = VC((D∗)P ) = VC(D∗) + 1 = VC∗(D) + 1

Part 3 of Proposition 2.4.7 has the following nice corollary:

Proposition 2.4.8. Rn-(n+ k)-Sided-Box-SC has VC dimension n+ k.

Proof. Immediate from the fact that Rk-2k-Sided-Box-SC has VC dimension
2k, along with repeated applications of Proposition 2.3.28 and Proposition 2.4.7.

We shall also provide a VC dimension result for the following covering prob-
lem:

Covering Problem: Graph-Path-SC
Elements: The set E of edges of a graph G = (V,E)
Sets: A family of paths in G

Proposition 2.4.9. Graph-Path-SC has unbounded VC dimension.

Proof. Consider the following counterxample. Construct a graph Gd by taking
a path P of length d and replacing every edge by a triangle to obtain a chain
of d triangles, each sharing a single vertex with the next. Let P ′ be the path of
length d in Gd that passes through all vertices of P . It is clear that for every
subset of the edges in P ′, there exists a path in Gd containing those edges, and
no other edges in P . This implies that these edges can be shattered, and thus
VC(Gd) = d. Thus Graph-Path-SC contains instances of arbitrarily high VC
dimension.

Although it is not a tree, the counterexample we give in the proof of Propo-
sition 2.4.9 is an extremely simple graph with many nice properties. It is a
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so-called series-parallel graph—a natural generalization of trees obtained by iter-
atively replacing edges with paths or sets of parallel edges. It also has treewidth
2, pathwidth 2, bandwidth 2, and is outerplanar. Proposition 2.4.9 implies that
we should not hope that our approximability results for trees can be extended
to series-parallel graphs or other related simple graph classes. Indeed, covering
series-parallel graphs with paths is no easier than general Min-Set-Cover.

Despite the fact that bounded VC dimension is a necessary condition for
o(logM) approximation algorithms to exist, it alone is not known to be sufficient
to obtain them. With our current knowledge, we need additional structural
properties to hold in order to obtain better approximation guarantees.

2.4.2 ε-Nets and the Theorem of Haussler and Welzl

An intriguing connection between VC dimension and covering problems was
discovered by Haussler and Welzl in 1986 [HW87]. They showed that all set
systems of bounded VC dimension admit relatively small hitting sets for sub-
problems where every set contains a large number of elements. These hitting
sets are known as ε-nets.9

Definition 2.4.10. Given a set system (X,S), a point x ∈ X has depth L if
it is contained in exactly L sets in S. Equivalent, the depth of a row of a set
system matrix A is the number of ones it contains. A matrix A is L-deep if all
of its rows have depth L or greater.10

Definition 2.4.11. Given a set system (X,S), a subfamily of sets C ⊆ S is an
ε-net whenever every point x ∈ X having depth εN or greater is contained in
at least one set in C, where N = |S|. Equivalently, given a set system matrix
A, an ε-net is a set cover for the submatrix of A obtained by deleting all rows
containing fewer than εN ones.

An ε-net is simply a set cover that needs only to cover points that are
contained in at least an ε-fraction of the available sets in S. The remaining
points can be discarded and ignored.

Historically, ε-nets were defined first for hitting set problems rather than
set cover problems, and what we described in Definition 2.4.11 is theoretically
an ε-net for the dual set system (X,S)∗. However, the literature tends not
to distinguish between ε-nets for primal and dual set systems when discussing
covering problems, instead relying on context to determine what is meant. Gen-
erally speaking, the convention used both in the literature and in this thesis is
as follows:

9The geometric ε-nets we discuss here should not be confused with the ε-nets from prob-
ability theory or the theory of metric spaces, which share the same name but are entirely
unrelated.

10The terminology employed in the literature for these notions is somewhat confusing. We
use the term depth L only for points (meaning depth exactly L) and L-deep only for matrices
(meaning all rows have depth at least L).
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Remark 2.4.12. When discussing a covering problem in which the goal is to
select a min-cardinality or min-cost set of things in order to (cover, hit, domi-
nate, stab, etc.) a group of objects, an ε-net is a subset of things that (covers,
hits, dominates, stabs, etc.) all of the objects that are incident to an ε-fraction
of the things. In the matrix world, an ε-net is always a subset of the columns of
a set system matrix, whose selection covers all rows of depth at least εN , where
N is the number of columns.

For example, when discussing R
2-Rectangle-SC, an ε-net is a collection of

rectangles that covers every point of depth εN or greater, where N is the number
of rectangles. When discussing R

2-Rectangle-HS, an ε-net is a collection of
points that hits every rectangle containing at least εN points, where N is the
number of points.

The key contribution of Haussler and Welzl was to show that small ε-nets
can be found for all unweighted covering problems having finite VC dimension.
Translated into our language, their celebrated theorem is as follows:

Theorem 2.4.13 (Haussler and Welzl, 1986). Let A be a set system matrix
having VC codimension at most d. Then A admits an ε-net of size

s = O

(
d

ε
log

d

ε

)
.

Moreover, a uniformly random sample of s columns from A is, with high prob-
ability, an ε-net.

Remark 2.4.14. We observe the following:

• Since all problems with finite VC dimension also have finite VC codimen-
sion (by Proposition 2.4.7), Theorem 2.4.13 effectively yields ε-nets of size
O
(

1
ε log 1

ε

)
for all set systems of bounded VC dimension.

• We note that the bound on the size of the ε-net is independent of the
number of elements or sets in the set system, and depends only on the VC
codimension d and the parameter ε itself.

• Since all submatrices of a matrix A also have VC codimension at most d,
Theorem 2.4.13 also applies to all submatrices of A.

• Theorem 2.4.13 implies the existence of a randomized polynomial time
algorithm to find a feasible covering of size s for instances in which every
element lies within at least an ε sets. An ε-net can be found in expected
polynomial time by simply randomly choosing a sample of columns of A
repeatedly.

The result of Theorem 2.4.13 was improved many times in the years that fol-
lowed. Blumer et al. reproved Theorem 2.4.13 with s = O

(
d
ε log 1

ε

)
[BEHW89].

Soon thereafter, Komlós, Pach, and Woeginger provided a proof that elimi-
nated the leading constant term, obtaining the result for s = (1+o(1))

(
d
ε log 1

ε

)
[KPW92]. In the same paper, they showed that this bound was essentially op-
timal by providing a randomized set system construction admitting no ε-nets of
size less than K

(
1
ε log 1

ε

)
for some positive constant K.
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2.4.3 From ε-Nets to Set Covers

Since the paper of Haussler and Welzl, interest in ε-nets has grown significantly.
Many authors have provided algorithms to construct ε-nets of smaller sizes than
those guaranteed by the Haussler-Welzl method for specific set systems. Such
algorithms are known as ε-net-finders:

Definition 2.4.15. Given a class C of set systems, an ε-net-finder of size s for
C is a polynomial algorithm that, when given an instance A ∈ C, produces an
ε-net for A containing at most s sets.

As it turns out, ε-net-finders for many problems, including R2-Disk-SC, R2-
Disk-HS, and R

n-Halfspace-SC, have been constructed to yield ε-nets of size
s = O( 1

ε ), beating the O
(

1
ε log 1

ε

)
bound obtained directly from Theorem 2.4.13

[MSW90, Mat92, CV07] (numerous other ε-net finders, many of which are de-
signed for specific covering problems, are overviewed in Chapter 3).

At a glance, ε-nets appear to have a key drawback—used näıvely, they only
guarantee improved results for set systems in which every element is of suffi-
ciently high depth. Fortunately, an important breakthrough occurred in 1994,
when Brönnimann and Goodrich found a method of applying ε-net-finders to
obtain good solutions to general set cover problems [BG95]. Their algorithm,
known as the iterative reweighting method, achieves the following:

Theorem 2.4.16 (Brönnimann and Goodrich, 1994). Let C be a class of set
systems admitting an ε-net-finder of size s( 1

ε ) where s is an arbitrary function.
Then there is an LP-relative polynomial algorithm for the unweighted Min-
Set-Cover problem on C that produces covers of size at most 4s(OPT ), where
OPT is the size of a minimum (fractional) cover.

The original method used to prove this theorem calls the ε-net-finder multiple
times on progressively refined versions of the input covering instance in which
the multiplicity of some sets is increased. Along with Theorem 2.4.13 of Haussler
and Welzl, Theorem 2.4.16 immediately implies the following:

Corollary 2.4.17. All unweighted covering problems of bounded VC dimension
admit a polynomial-time O(logOPT )-approximation.

In some cases, this represents a significant improvement over the O(logM)-
approximation obtained via the greedy algorithm.

Perhaps more importantly, the method of Brönnimann and Goodrich yields
improved approximation algorithms for covering problems admitting improved
ε-net-finders:

Corollary 2.4.18. All unweighted covering problems admitting an ε-net-finder
of size s = O

(
1
εφ
(

1
ε

))
admit an O(φ(OPT ))-factor approximation. In particu-

lar, an ε-net-finder of size O
(

1
ε

)
yields a constant approximation.

Theorem 2.4.16 was reproven a decade later by Even, Rawitz, and Shahar
using a very elegant and simple linear-programming-based method [ERS05] (see
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also [Lon01]). Their proof is very short, and they also manage to remove the
leading factor of 4 in the approximation guarantee. We wholeheartedly recom-
mend their paper as it presents, in an incredibly clear and concise manner, the
connection between ε-net finders and LP-relative approximation algorithms for
covering problems.

In 2010, Varadarajan extended the result of Even, Rawitz, and Shahar to
weighted covering problems [Var10] in the event that the ε-net finder exhibits a
property known as quasi-uniformity :

Definition 2.4.19. A randomized ε-net-finder of size s is quasi-uniform if it
produces ε-nets in which each set is randomly chosen with probability at most
c
N s for some constant c > 0.

We note that in a uniformly chosen ε-net (such as those used to prove The-
orem 2.4.16), each element is chosen with probability 1

N s. Quasi-uniformity
allows for a randomized ε-net finder in which each set’s probability of being
chosen may exceed this by some fixed multiplicative constant c.

Quasi-uniformity turns out to be useful when dealing with weighted covering
problems. Using it, we can state Varadarajan’s version of Theorem 2.4.16 for
weighted covering problems. We include a brief proof for completeness, as it is
not difficult (more details can be found in [Var10]):

Theorem 2.4.20. Let φ(N) be a nondecreasing function (possibly a constant)
and suppose that a hereditary class of set systems C admits a quasi-uniform
ε-net finder F of size 1

εφ(N), where φ(N) ∈ O(logN).11 Then there exists
an expected polynomial-time O(φ(N))-approximation for the weighted covering
problem on C.

Proof. Suppose that our goal is to approximate the minimum weight set cover
problem on an M ×N set system matrix A with weights w. We reduce this to
the problem of computing a small cover of a related M/2-deep covering instance,
and employ our ε-net finder.

We first solve the LP relaxation (SCLP) of the problem, and let x∗ be
an optimal basic solution. Standard properties of basic solutions immediately
imply that the support of x∗ (the set of positive entries) has size at most M .
We create a set family S∗, by including b2M · x∗Sc copies of each set S ∈ S
with x∗S ≥ 1/(2M); small sets S with x∗S < 1/(2M) are not included. For each
element e ∈ X we now have∑

S : x∗S≥
1

2M ,e∈S

b2M · x∗Sc ≥M
∑

S : x∗S≥
1

2M ,e∈S

x∗S ≥
M

2
, (2.4.1)

where the second inequality uses the fact that small sets supply at most a 1/2
unit of coverage for each element e. Let A∗ be the set system matrix for set

11We observe that in all cases, we must have 1
ε
≤ N (otherwise the problem of computing

an ε-net is trivial, since no element can have depth greater than N). Thus by having φ as
a function of N rather than 1

ε
, we are in fact weakening the requirements of the theorem,

allowing ε-net finders whose performance may vary according to an instance-specific function
of N .
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family S∗ and elements X, and assume that it has N∗ columns. Equation (2.4.1)
shows that A∗ is M/2-deep; we henceforth let L := M/2 so that A∗ is L-deep.
We let w∗ be a set of weights for A∗, inherited from A (so each copy of a column
in A is given the same weight in A∗).

We now take ε = 1/L and employ our ε-net finder F to A∗ (note that F
can be applied to A∗ because we assumed that C was hereditary). The ε-net
finder F shall produce a covering of X in which each set in S∗ is included with
probability O

(
φ(N∗)
L

)
. The expected weight of the covering is then

O

(
φ(N∗)
L

)
·w(S∗) ≤ O(2φ(N∗)/M) ·

∑
S∈S
b2M · wSx∗Sc

≤ O(φ(N∗)) ·OPT ≤ O(φ(N)) ·OPT,

where the final inequality follows from the fact that φ(N) ∈ O(logN). By
running F until an ε-net of desired weight is found, we can indeed obtain a
covering of cost at most φ(N)OPT in expected polynomial time, completing
the proof.

One should note that a few O(1) factors are lost over the approximation
obtained in [ERS05] for unweighted set cover. It remains unclear whether these
losses can be avoided.

A noteworthy difference in Varadarajan’s version for weighted set cover is
that the approximation factor is O(φ(N)), not O(φ(OPT )) as in the original
theorem of Brönnimann and Goodrich. Since the value of an optimal solution
to a weighted covering problem may depend entirely on the weights used, we
are unable to bound the approximation factor by anything involving the size of
the optimal solution.

The Brönnimann–Goodrich theorem and related results essentially show that
the existence of a good ε-net finder is sufficient to imply the existence of a
good LP-relative algorithm for covering problems. There is a natural ‘reverse
direction’ that follows quite easily: if good ε-nets do not exist, then the linear
programming relaxation (SCLP) has a poor integrality gap, and thus good LP-
relative algorithms cannot exist either.

Theorem 2.4.21. Let C be a hereditary class of set systems. Suppose for some
ε > 0 there is a matrix A ∈ C with no ε-net of size k

ε . Then C has integrality
gap at least k.

Proof. Suppose such an A exists and let B be the submatrix of A obtained by
deleting all rows of depth less than Nε, where N is the number of columns of A.
Then B has no set cover containing fewer than k

ε sets (otherwise such a cover
would be an ε-net for A). However, B is Nε-deep and thus taking each column
of B with weight 1

Nε produces a valid fractional covering for B. The cost of such
a fractional covering is N · 1

Nε = 1
ε , from which it follows that the integrality

gap of the natural linear programming relaxation (SCLP) for B is at least k.
But B ∈ C since C is hereditary, and thus C has integrality gap at least k.
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In summary, good LP-relative approximation algorithms exist for covering
problems if and only if good ε-net-finders do. See [ERS05] and [BKS11] for
further discussion on the connection between integrality gaps and ε-nets.
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Chapter 3

Related Work

In this chapter, we discuss a variety of prior results relating to covering prob-
lems having geometric or combinatorial structure. We stop short of attempting
a full encyclopedic cataloguing of all known upper and lower bounds on approx-
imability for all covering problems; instead, we discuss the important classical
results in the area as well as all of the recent results related to our own work. In
cases where our results improve upon the work of others, we briefly describe the
significance of our contributions. Most of the results we discuss are for geomet-
ric covering problems; the idea of priority covering was developed more recently
and is less widely known, so there are fewer results to report.

3.1 Known Hardness Results

Hardness results for covering problems go back many decades. The weakest
type of hardness we shall discuss is NP-hardness. Of course, Min-Set-Cover
and Min-Hitting-Set were among the first problems ever found to be NP-
complete [Kar72]. Additionally, the NP-completeness of Min-Vertex-Cover
showed that Min-Set-Cover remains hard even when each element lies in at
most 2 sets. In the decades that followed, many other NP-hardness results
followed for more restrictive covering problems via increasingly sophisticated
chains of reductions. Eventually, NP-hardness was established for almost all
nontrivial geometric covering and hitting set problems. We state the following:

Theorem 3.1.1. The following covering problems are NP-hard, even in the
unweighted case:

• R2-Unit-Disk-SC, R2-Unit-Disk-DS, and R2-Unit-Square-SC [HM85,
CCJ90].

• R2-Unit-Square-HS and R
2-Unit-Disk-HS by the self-duality of the

above.

• R3-Halfspace-SC and R
3-Halfspace-HS from the previous results via

the standard lifting transformation (Proposition 2.3.17).
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• Rectilinear-Polygon-Cover, even when the rectilinear polygon contains
no holes [CR94].

Many additional NP-hardness results were published for other geometric
covering problems, but with the subsequent introduction of the stronger notions
of APX-hardness and MAX-SNP-hardness (both of which rule out the pos-
sibility of a PTAS unless P = NP [PY91]), most of these NP-hardness results
have been superseded. The problems mentioned in Theorem 3.1.1 are essentially
the only remaining problems for which we know of no stronger hardness results.
As we shall see, all except Rectilinear-Polygon-Cover are known to admit a
PTAS in the unweighted case.

As for APX-hardness and MAX-SNP-hardness, a variety of results are
known. One of the first key breakthroughs was for the Rectilinear-Polygon-
Cover problem, which was proven to be MAX-SNP-hard by Berman and
DasGupta using a complicated but incredibly beautiful sequence of gadgets that
yield an L-reduction from a degree-bounded version of Min-Vertex-Cover
that was known to be MAX-SNP-hard at the time. Their method yielded
the first proof that Rectilinear-Polygon-Cover (and hence R

2-Rectangle-
SC) does not admit a PTAS. Unfortunately, their construction requires the
rectilinear polygon to contain holes; we know of no APX-hardness or MAX-
SNP-hardness result for Rectilinear-Polygon-Cover in the event that the
polygon is simple.

With the result of Alimonti and Kann showing that 3-Regular-Graph-
SC is APX-hard [AK00], it became much easier to establish APX-hardness
for covering problems. Many hardness results for geometric problems such as
R

2-Triangle-Cover follow immediately (as mentioned in Section 2.3.4). Har-
Peled provides an incredibly simple and clever trick to extend this result to the
case that all triangles are fat [HP09]. By using Vizing’s Theorem to 4-edge
colour all 3-regular graphs, Har-Peled is able to encode 3-Regular-Graph-
SC using points and triangles in the plane that are all approximately right-
angled. It follows that R

2-Fat-Triangle-Cover is APX-hard. In the same
paper, Har-Peled also uses 3-Regular-Graph-SC encoding to establish the
APX-hardness of R2-Circle-SC—the problem of covering points in the plane
using circles (boundaries of disks). Har-Peled also applies the standard lifting
transformation to extend the result to R3-Plane-SC—covering points in three-
dimensional space with planes (not halfspaces, but their boundaries).

In his PhD thesis, van Leeuwen gives several L-reductions from 3-Regular-
Graph-SC to other geometric covering problems, including R2-Rectangle-SC
and R

2-Ellipse-Cover, establishing their APX-hardness. However, his results
do not appear to be applicable to fat rectangles or fat ellipses. We provide many
stronger hardness results for geometric covering in Chapter 5.

As for non-geometric problems, a result of Cheriyan, Jordan, and Ravi can
be used to show that Tree-SC is APX-hard, even if all of the paths form a
cycle on the leaves of the tree [CJR99]. Though Vertical-Tree-SC is solvable in
polynomial time, we do obtain an APX-hardness proof for Priority-Vertical-
Tree-SC in Chapter 5.
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3.2 ε-Net Finders for Geometric Set Cover

We recall Theorem 2.4.16, originally due to Brönnimann and Goodrich, which
implies that ε-net-finders of size s( 1

ε ) can be used to obtain set covers of size
O(s(OPT )), yielding constant (or near-constant) approximations for covering
problems admitting ε-nets of size linear (or nearly linear) in 1

ε . Since its in-
troduction, a number of different authors have employed it to obtain improved
approximation algorithms for covering problems by constructing ε-net-finders.
In fact, there are so many results of this nature that it is infeasible to list them
all here; we only mention a few of the more important contributions. Until
recently, almost all of these results have applied only to the unweighted setting.

We begin by noting that Theorem 2.4.13—the key result of Haussler and
Welzl—yields O(logOPT )-approximations for all covering problems of bounded
VC dimension. Recall that when discussing VC dimension, we defined the
matrix Vd and characterized a hereditary class of set systems C according to
the largest value of d for which Vd ∈ C. One might wonder if any useful results
can be obtained if Vd is replaced by a different canonical family of matrices.
One such attempt, due to Ding, Seymour, and Winkler [DSW94], is to consider
the d×

(
d
2

)
matrix Kd whose columns are all distinct and each contain exactly

two ones (Kd is precisely the node-arc incidence matrix of the complete graph
on d vertices, and is a submatrix of Vd). They show that if a matrix A contains
no Kd submatrix for a fixed constant d, then there is a set cover for A of size
polynomial in ν(A)—the maximum number size of an ‘independent set’ of rows
of A (that is, the maximum size of a set of rows of A, no two of which contain
a one in the same column).

A simple application of this theorem produces a result analogous to the
Haussler-Welzl theorem (Theorem 2.4.13). If A is (εN)-deep (where N is the
number of columns), then clearly ν(A) ≤ 1

ε . If A also contains no Kd sub-
matrix for a fixed constant d, then the result of Ding, Seymour, and Winkler
implies that A admits a set cover of size polynomial in 1

ε . Consequently, matri-
ces that forbid sufficiently large Kd submatrices admit polynomial-sized ε-nets.
Unfortunately, despite the interesting nature of this result and its connections
to the combinatorics of hypergraphs, the ε-nets produced are simply too large to
facilitate any improvements in approximability for geometric covering problems.

For covering and hitting set problems with disks in the plane and half-
spaces in R

3, O( 1
ε )-size ε-net-finders were known many years ago [MSW90],

long before the result of Brönnimann and Goodrich [BG95]. Consequently, the
Brönnimann-Goodrich theorem immediately yielded constant approximations
for R2-Disk-SC, R2-Disk-HS, R3-Halfspace-SC and R

3-Halfspace-HS.1 A
key breakthrough came in 2005 via a result of Clarkson and Varadarajan that
generalized these ε-net-finders to numerous other set systems. Clarkson and
Varadarajan showed that small ε-nets (and therefore, small set covers), could be
found for geometric set systems exhibiting low union complexity [CV07, Var09].
In an approximate sense, the union complexity of a collection of geometric ob-

1More recently, these problems have been shown to admit a PTAS; see Section 3.4.
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jects is proportional to the worst case combinatorial complexity of the boundary
of the union of any subset of those objects. As illustrating examples, consider
the following:

• The union of N half-planes contains only O(N) segments along its bound-
ary.

• The union of N rectangles in the plane can contain O(N2) segments along
its boundary if, for example, the rectangles are laid out in a ‘plaid’ fashion.

• A non-trivial result is that an arrangement of N disks in the plane has
union complexity O(N) [KLPS86].

We shall not give the full, formal definition of union complexity here. It suffices
to know that the aforementioned notion of combinatorial complexity is, to within
a constant factor, equal to the union complexity of the set system [Var09], and
can be generalized to higher dimensional Euclidean spaces. The pure, rigourous,
nongeometric definition of complexity used by Clarkson and Varadarajan is
somewhat cumbersome and more difficult to apply on its own; details can be
found in the journal version of their paper [CV07].

The main result of Clarkson and Varadarajan essentially states that set
systems having linear or near-linear union complexity admit polynomial-time
approximation algorithms whose factor of approximation is constant or near-
constant, respectively. A simplified statement of their contribution is as follows:

Theorem 3.2.1 (Clarkson and Varadarajan, 2005). Let C be a geometric cov-
ering set system and suppose there is a nondecreasing function f such that for
all set systems (X,S) ∈ C, for all k ≥ 1, and all families C ⊆ X of objects with
|C| = k, the union complexity of C is at most kf(k). Then C admits an ε-net
finder of size O( 1

ε f( 1
ε )), and consequently, the unweighted covering problem on

C admits an LP-relative polynomial-time O(f(OPT ))-approximation.

To prove Theorem 3.2.1, Clarkson and Varadarajan give an algorithm that
produces ε-nets by first choosing a uniformly random group of objects to form
a partial cover, and then, guided by structural properties related to the union
complexity of the objects, performs a series of repair steps to cover the remaining
uncovered deep points. By applying a counting lemma from [CS89], they are
able to prove that the total number of sets used is, on average, not too large.

More recently, the approximability bound in Theorem 3.2.1 has been im-
proved fromO( 1

ε f( 1
ε )) toO( 1

ε log(f( 1
ε ))) using similar techniques [AES10, Var09].

This shaves off an additional logarithmic factor in cases where the union com-
plexity is small but non-constant.2

Applications of Theorem 3.2.1 and its improvements are immediately ap-
parent. For example, knowing that an arrangement of k disks in the plane
has union complexity O(k), we can immediately reprove the existence of an

2Technically, for the result in [Var09] to hold, we need f(k) ∈ ω(log(j) k) for some constant

j, where log(j) is the logarithm iterated j times. However, the algorithm we give in Chapter 6
achieves a stronger result without this requirement.
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O(1)-approximation for unweighted R
2-Disk-SC via the Clarkson-Varadarajan

method. Several new results have also been proven using similar techniques.
In fact, the method is quite widely applicable in geometric set cover, in part
because many results about the complexity of configurations of intersecting ge-
ometric objects are widely known. Below are a few examples:

• Boissonat et al. have proven that unit cubes in R
3 have linear union com-

plexity [BSTY98], implying that unweighted R
3-Unit-Cube-SC and R

3-
Unit-Cube-HS both admit a constant approximation (the latter follows
from the fact that R3-Unit-Cube-SC is self-dual). We rule out a PTAS
for these problems in Chapter 5.

• Unweighted R
3-3-Sided-Box-SC and its hitting set version R

3-3-Sided-
Box-HS are subproblems of R3-Unit-Cube-SC and R3-Unit-Cube-HS
and thus also admit a constant approximation.

• A paper of Efrat et al. [ERS93] proves linear union complexity for fat
wedges—unbounded wedge-shaped regions in the plane whose boundary
consists of two rays. Specifically, Efrat et al. show that if each wedge has
an opening angle of at least δ, then the union complexity of k wedges
is O(k), with the constant in the big O varying with respect to δ. This
implies that unweighted R

2-Fat-Wedge-Cover—the problem of covering
points in the plane with fat wedges—admits a constant approximation.
We rule out a PTAS for this problem in Chapter 5.

• Matoušek et al. have shown that k fat triangles of roughly the same size
have O(k) union complexity [MPS+94]; it follows that unweighted R2-Fat-
Triangle-Cover admits a constant approximation when all the triangles
are roughly the same size. Of course, the APX-hardness result of Har-
Peled implies that no PTAS is possible, even in this restricted case.

• More recently, Ezra et al. have proven that general fat triangles have union
complexity O(k2α(k) log∗(k)) where α(k) is the extremely slow-growing
inverse-Ackermann function [EAS11]. Plugging this into the result of
Clarkson and Varadarajan yields anO(2α(OPT ) log∗(OPT ))-approximation
for general unweighted R

2-Fat-Triangle-Cover.3 We improve this to
O(log log∗(OPT )) in Chapter 6.

• Using techniques involving Davenport-Schinzel sequences (see the text of
Sharir and Agarwal [SA95] for a complete overview of the related theory),
it can be shown that the downward shadow of k line segments in the plane
has complexityO(kα(k)), where α(k) is again the inverse-Ackermann func-
tion. This can be used to yield an O(α(OPT ))-approximation for un-
weighted R2-Segment-Shadow-SC (which we improve toO(logα(OPT ))

3More recently, with de Berg, these authors have apparently improved the bound to
O(k log∗ k), yielding an O(log∗(OPT ))-approximation for unweighted R

2-Fat-Triangle-
Cover.
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in Chapter 5). Similar near-constant results can be obtained for downward
shadows of k-intersecting functions for arbitrary k.

Using methods in Chapter 6, we can extend all of these results to weighted
covering problems, with OPT replaced by N in the non-constant approximation
guarantees.

Unforunately, the Clarkson–Varadarajan method on its own has yielded no
improvement for problems such as R2-Rectangle-SC that do not exhibit nice
union complexity. Moreover, these methods have not been very fruitful out-
side of the area of geometric covering problems. To formally obtain the bounds
required for Clarkson and Varadarajan’s method to go through on, e.g., a non-
geometric set system, one must construct something called a configuration sys-
tem and prove non-trivial results about its structure. It is conceivable that,
with significant effort, such a method could be used to obtain improvements for
non-geometric covering problems. However, we do not know of any such result.

Aronov, Ezra, and Sharir recently provided some additional techniques to
construct ε-nets for hitting set problems involving rectangular boxes in two and
three dimensions [AES10]. Their technique is related to that of Clarkson and
Varadarajan, but differs from it in several subtle ways. Their improvements also
yield better results for some types of covering problems involving fat objects.
We list a few results that follow from their work:

• Unweighted R
2-Rectangle-HS and its three-dimensional analogue R3-6-

Sided-Box-HS both admit an O(log logOPT )-approximation.

• Hitting set involving arbitrary fat objects in the plane admits an approx-
imation of factor O(log log logOPT ).

• Covering involving general locally fat objects (and in particular, fat convex
objects) in the plane admits an O(log logOPT )-approximation.

• In the above example, if the locally fat objects are of similar sizes, then
the approximation factor can be improved to a near-constant function of
OPT using results of de Berg [dB10] and properties of Davenport-Schinzel
sequences (see [SA95]).

In another recent paper, Pyrga and Ray have provided a way to reprove
several of the ε-net results of Clarkson and Varadarajan without using union
complexity at all, instead relying on elementary combinatorial and geometric
arguments [PR08]. They provide a simple proof that R3-Halfspace-SC admits
ε-nets of size O( 1

ε ). A few generalizations are also given.
Recently, Varadarajan [Var10] gave an elegant algorithm that extends some

of the unweighted results above to the weighted setting. The algorithm produces
randomized quasi-uniform ε-nets of small expected size using a novel sampling-
based approach. Using this and a version of Theorem 2.4.20, Varadarajan is able
to obtain an O(2O(log∗N)f(N))-approximation for weighted covering problems
having union complexity O(kf(k)) (where the leading exponential factor can be
dropped if f(k) ∈ ω(log(j) k) for some constant j). We discuss Varadarajan’s
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method in more depth in Chapter 6, where we give our own quasi-uniform
sampling algorithm that makes various improvements, including removing the
leading exponential term entirely from the approximation factor, simplifying
the algorithm and its analysis, and providing applications to non-geometric set
systems.

An important property of ε-net based methods is that that they always yield
LP-relative approximability results; that is, the approximability obtained is
always relative to the standard LP relaxation (SCLP) (recall Definition 2.1.8). It
follows that ε-net based methods cannot yield approximation algorithms whose
factor of approximation is lower than the integrality gap of (SCLP), which is
typically bounded away from 1 for all set systems except those that are totally
unimodular. Consequently, ε-net based are unable to produce anything better
than constant-factor approximations. Additionally, the constants involved are
quite typically large. Alternate techniques are required to obtain PTAS results
or exact algorithms. Moreover, as we shall see in the next section, ε-nets of
size o( 1

ε log
(

1
ε

)
) need not always exist, even for relatively simple geometric set

systems. Indeed, for some set systems, it is impossible to beat the näıve greedy-
based logarithmic approximation for set cover using any LP-relative algorithm.

3.3 The Pach-Tardos Counterexample

For many decades, a prevailing conjecture amongst many computational geome-
ters was that all sufficiently simple geometric covering problems admitted ε-nets
of size linear in 1

ε [AES10, MSW90]. This was settled in the negative by Alon,
who gave a method of constructing set systems consisting of points and (non-
axis aligned) slabs in the plane whose minimum ε-nets have size Ω

(
1
εα
(

1
ε

))
,

where α is the inverse-Ackermann function [Alo10]. However, it still remained
open whether the O( 1

ε log 1
ε ) upper bound could be matched in a geometric set

system of low VC dimension.
A recent construction due to Pach and Tardos has answered this in the af-

firmative by proving that R2-Rectangle-SC admits no ε-nets of size o( 1
ε log 1

ε )
[PT11]. Instead, they show that the natural LP-relaxation (SCLP) for R

2-
Rectangle-SC instances may exhibit a logarithmic integrality gap. Their con-
struction, inspired by a recent hypergraph colouring result in combinatorics,
is too complicated to describe here, but we shall outline their result and its
consequences.

Theorem 3.3.1 (Pach and Tardos, 2010). For all ε > 0 and for all sufficiently
large N , there exists a R

2-Rectangle-SC set system (X,S) on N rectangles
exhibiting all of the following properties:

• S consists entirely of axis-aligned rectangles in the plane whose boundaries
intersect pairwise either zero times, or four times.

• (X,S) has VC dimension 2 and VC codimension 2.
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• The set X only contains points of depth at least εN (that is, each point
in X is contained in at least εN sets in S).

• (X,S) admits no set cover of size smaller than 1
9ε log 1

ε .

The proof of Theorem 3.3.1 explicitly constructs R
2-Rectangle-SC in-

stances that admit no ε-nets of size o( 1
ε log 1

ε ). Moreover, this difficulty persists
even for instances with much lower VC dimension and codimension than typical
R

2-Rectangle-SC instances. Since the boundaries of the rectangles in their
construction always intersect pairwise either zero times or four times, the inter-
section graph of the rectangles is a comparability graph (and hence a perfect
graph); even under this strong condition, small ε-nets can be ruled out.

An important aspect of the Pach-Tardos construction is that N can be as
small as O( 1

ε log 1
ε ), which is polynomial in 1

ε . Specifically, this implies that
there are R

2-Rectangle-SC instances admitting no ε-net of size o( 1
ε logN).

Via a direct application of Theorem 2.4.21, it follows that the integrality gap of
R

2-Rectangle-SC instances may be as large as Ω(logN) on instances having
N rectangles. In particular, no LP-relative approximation algorithm for un-
weighted R

2-Rectangle-SC can beat the trivial greedy method by more than
a constant factor (recalling that the greedy algorithm for set cover achieves
an O(logN)-approximation). Consequently, the worst case integrality gap of
R

2-Rectangle-SC is precisely Θ(logN).
Via simple geometric encodings and self-duality, the Pach-Tardos counterex-

ample can be generalized to other set systems:

Corollary 3.3.2. The following set systems admit no ε-net finders of size
o( 1
ε log 1

ε ) and hence have an integrality gap of Θ(logN):

• R3-4-Sided-Box-SC and R
4-4-Sided-Box-SC.

• The dual problem R
4-4-Sided-Box-HS.

• R4-Halfspace-SC and its dual problem R
4-Halfspace-HS.

Pach and Tardos also give a weaker ε-net lower bound for the hitting set
version R

2-Rectangle-HS using a completely unrelated method:

Theorem 3.3.3 (Pach and Tardos, 2010). There is a constant C > 0 such that
for all ε > 0 and for all sufficiently large N , there exists a R

2-Rectangle-HS
set system (X,S) on N rectangles exhibiting all of the following properties:

• (X,S) has VC dimension 3.4

• The set X only contains points of depth at least εN (that is, each point
in X is contained in at least εN sets in S).

• (X,S) admits no set cover of size smaller than C 1
ε log log 1

ε .

4In their paper, Pach and Tardos claim to have a different construction yielding the same
result for a set system of VC dimension 2. However, they have deferred the proof to a future
publication.
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In a manner similar to what we discussed previously for Theorem 3.3.1, this
establishes a lower bound of Ω(log logN) on the integrality gap of unweighted
R

2-Rectangle-HS. Noteworthy is the fact that this asymptotically matches the
approximation factor of the ε-net based algorithm of Aronov, Ezra, and Sharir
for R2-Rectangle-HS, firmly establishing the integrality gap of R2-Rectangle-
HS at Θ(log logN).

The counterexamples of Pach and Tardos demonstrate that VC dimension
is not an ideal measure of set system complexity, and show that ε-net based
methods have limitations. In particular, to make any additional progress on
R

2-Rectangle-SC or R2-Rectangle-HS, it will be necessary to employ some
type of LP strengthening, or perhaps abandon LP-based methods altogether
and pursue a different algorithmic idea. Nevertheless, no existing hardness
result has ruled out a constant approximation for R

2-Rectangle-SC or R
2-

Rectangle-HS using other techniques; determining whether or not a constant
approximation is possible remains one of the largest open problems in the area.

3.4 The Local Search Approach

In light of the drawbacks of ε-net based methods, Mustafa and Ray recently
proposed a different approach. They give a PTAS for a wide class of unweighted
geometric hitting set problems via a local search technique [MR10]. Cast in our
framework, their algorithm works roughly as follows: fix a constant k and take
any feasible set cover C. Whenever possible, find a family of k sets in C that
can be replaced by some family of k − 1 sets while still covering every object
in the universe, making such replacements until no more are possible. For a
fixed k, this runs in polynomial time. As Mustafa and Ray show, this method
produces a 1 + O

(
1√
k

)
-approximation for hitting set problems on set systems

satisfying certain locality conditions. By taking k to be sufficiently large, a
(1 + ε)-approximation can be obtained for a wide variety of problems. Mustafa
and Ray obtain a variety of results using this technique:

Theorem 3.4.1 (Mustafa and Ray, 2010). The following covering problems
admit a PTAS:

• Unweighted R
3-Halfspace-HS.

• Unweighted R
2-Pseudodisk-HS.

• As a special case of the above, unweighted R
2-Square-HS, R2-Disk-HS,

and any unweighted hitting set problem involving translated copies of
identical convex regions in the plane.

We observe that via simple encodings, the result of Mustafa and Ray can be
used to obtain a PTAS for a few other covering problems:

Corollary 3.4.2. The following covering problems admit a PTAS:
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• Unweighted R
3-Lower-Halfspace-SC (from the PTAS result for R

3-
Halfspace-HS via the geometric duality result described in Proposi-
tion 2.3.18).

• Unweighted R
2-Disk-SC (from the previous point, via the lifting trans-

formation described in Proposition 2.3.17).

• Any unweighted set cover problem involving translated copies of identi-
cal convex regions in the plane (by self-duality and the third point in
Theorem 3.4.1).

The results of Mustafa and Ray currently do not seem applicable to set cover
with general pseudodisks in the plane. In particular, it is unclear whether or not
their result can be extended to the geometric covering problem involving squares
in the plane having different sizes, as no duality result relates this problem to R2-
Square-HS. The existence of a PTAS for R2-Pseudodisk-SC and R2-Square-
SC remains an open question. Additionally, it is unclear whether any results
for weighted covering problems can be obtained via the local search approach.

In Chapter 5, we provide several APX-hardness proofs that demonstrate
that the PTAS methods of Mustafa and Ray are unlikely to admit generalization
to more difficult set systems. In particular, no PTAS exists for covering or
hitting set problems involving half-spaces in four dimensions, cubes and unit
spheres in three dimensions, or regions in the plane whose boundaries intersect
pairwise at most three times.

3.5 Other Methods for Geometric Set Cover

Here, we shall briefly describe a few other relevant techniques that have been
used to obtain solutions or approximations for geometric covering problems.
Most of these methods rely heavily on restrictive geometric properties of specific
set systems, and consequently, they are difficult to generalize.

The piercing problem is a special case of unweighted geometric hitting set
in which a family of geometric objects S is provided but no set of points X is
given; instead, any point may be used to hit the objects. Like Rectilinear-
Polygon-Cover, piercing problems are not hereditary (because columns of a
set system matrix cannot be removed). Piercing is NP-hard with unit squares
and unit disks in the plane [FPT81], but admits a PTAS in a much more general
set of cases than ordinary hitting set. We list a few of the key results in the
area:

• Hochbaum and Maass show that in any fixed dimension, there is a PTAS
for piercing problems involving fat objects of approximately equal size
[HM85].

• By duality, the previous result implies the existence of a PTAS for the
problem of covering a fixed set of points in any Euclidean space using
a minimum number of identical translated copies of a single fat object,
where the objects may be freely placed at any location but not rotated.
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• Using planar separator theorems and their higher-dimension generaliza-
tions, Chan gives a PTAS for piercing problems involving fat objects of
arbitrary size in any fixed dimension [Cha03].

We know of only one true PTAS result for the weighted version of an NP-
hard geometric covering problem. The weighted version of R2-Unit-Square-
SC (and by self-duality, R2-Unit-Square-HS) admits a PTAS due to Erlebach
and van Leeuwen, who employ an approach involving shifted grids [EvL10] (see
also the PhD thesis of van Leeuwen [vL09]). A similar method can also be
used to obtain a PTAS for the weighted version of the dominating set problem
R

2-Unit-Square-DS.
A weaker PTAS-like result is that of Har-Peled and Lee, who give a PTAS

for weighted covering in the plane with any class of fat objects, provided that
each object is allowed to expand by a tiny fraction of its diameter [HPL08]. In
Chapter 5, we give APX-hardness results for several covering problems involv-
ing fat objects, showing that without allowing this expansion, a PTAS cannot
be obtained.

We know of few non-trivial examples of geometric covering problems that are
known to be polynomial-time solvable. Har-Peled and Lee give an exact dynamic
programming algorithm for weighted R

2-Halfplane-SC (and, by implication,
R

2-Halfplane-HS) [HPL08]. Their method runs in O(n5) time on an instance
containing n points and half-planes. In Chapter 4, we give a more general
dynamic programming algorithm that achieves the same result, but reduces the
running time by a factor of n.

Ambühl et al. give a polynomial time dynamic programming algorithm for
weighted covering of points in a narrow strip using unit disks [AEMN06]; their
method appears to be unrelated to ours or that of Har-Peled and Lee.
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Chapter 4

Polynomial-Time
Algorithms for Geometric
Set Cover

In this chapter, we examine some geometric covering problems in the plane that
exhibit a very special kind of structure that allows for exact solvability in poly-
nomial time via dynamic programming algorithms. All of the algorithms in this
section work for both weighted and unweighted covering problems. Addition-
ally, they can be configured to either output the minimum cost of a cover, or to
output a minimum-cost cover itself.

Most of these results were first presented in [CG11], building upon an earlier
algorithm for R2-3-Sided-Box-SC that appeared in [CGK10a]. This algorithm
relied on a somewhat messy recursion involving shortest path subproblems, and
has been rendered obsolete by our newer proof, which we believe is much cleaner,
simpler, and more general.

4.1 Main Dynamic Programming Algorithm

Our main tool in this chapter is a dynamic programming algorithm for a specific
covering problem that can fully encode many other problems. We begin by
describing this problem, which we shall call R2-2-Intersecting-Shadow-SC.

For a set Y of points in the plane, we recall that the downward shadow of
Y is the set of all points (a, b) such that there is a point (a, y) ∈ Y with y ≥ b.
We shall obtain an exact algorithm for a geometric covering problem involving
downward shadows of infinite curves in the plane. Whenever we say curves in
this context, we specifically mean simple Jordan arcs—continuous curves that
are not self-intersecting. See [dBCvKO08] for further details.

Definition 4.1.1. A family F of curves is k-intersecting if, for all C1, C2 ∈ F
with C1 6= C2, the number of points common to C1 and C2 is at most k.
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Definition 4.1.2. A curve C is x-monotone if, for every x ∈ R, the set of all
y such that (x, y) ∈ C is a convex subset of R (i.e. an interval). In less formal
terms, one may walk along the entirety of C without ever moving to the left.

We finally give the formal definition of our key problem:

Covering Problem: R2-2-Intersecting-Shadow-SC
Elements: A finite subset of R2

Sets: A family of downward shadows of pairwise 2-intersecting infinite
x-monotone curves in R

2.

We add the ‘infinite’ here because of the possibility that two curves may in-
tersect at most twice, but have downward shadows whose boundaries intersect
more than twice. We require the boundaries of the sets in S to be 2-intersecting,
not just the curves. For infinite x-monotone curves, the boundary of the down-
ward shadow of the curve is simply the curve itself.

We state our main result:

Theorem 4.1.3. There exists a polynomial-time exact algorithm for weighted
R

2-2-Intersecting-Shadow-SC. Moreover, it requires O(NM2(M+N)) prim-
itive operations to run on a set system consisting of M points and N regions

For the purposes of Theorem 4.1.3, it suffices to allow a ‘primitive operation’
to be one of the following:

• Adding or comparing two coordinates or weights,

• Determining if a given point lies above or below a given curve,

• Determining the coordinates of the points of intersection of a pair of
curves.

For the remainder of this section, we shall assume that such operations can each
be completed in O(1) time. Note that even if arbitrary arithmetic operations
are allowed in O(1) time, more time may be required for the primitive opera-
tions if, for example, the x-monotone curves are piecewise-linear functions each
consisting of k pieces.

Before proceeding to the proof, we shall develop some simply theory, from
which a proof shall immediately present itself. We wish to give a polynomial-
time dynamic programming algorithm for the weighted cover of a finite set of
points X ⊆ R

2 by a set S of downward shadows of 2-intersecting x-monotone
curves C1, . . . , CN . For 1 ≤ i ≤ N , define the region Si ∈ S to be the downward
shadow of the curve Ci and let it have positive cost wi. As usual, we shall let
M = |X|.

For simplicity in the presentation of our proof, we shall make the following
assumptions:

• Each curve Ci is the graph of a smooth univariate function with domain
[−∞,∞].

66



4.1. MAIN DYNAMIC PROGRAMMING ALGORITHM

• All intersections are transverse (that is, no pair of curves intersect tan-
gentially).

• No points in X lie on any curve Ci.

It is not difficult to get around these assumptions by, if necessary, perturbing
each curve slightly while maintaining the element-set incidence relation. How-
ever, we retain them to keep our exposition as clean as possible.

We shall abuse notation by writing Ci(x) for the unique y ∈ R such that
(x, y) lies on the curve Ci. We say curve Ci is wider than curve Cj (written
Ci � Cj) whenever Ci(x) > Cj(x) for all sufficiently large x. We may also write
Si � Sj whenever Ci � Cj . We note that � is a total ordering and thus we can
order all curves by width, so we assume without loss of generality that Ci � Cj
whenever i > j. The width-based ordering of curves is useful because of the
following key observation:

Proposition 4.1.4. If Ci � Cj , then Sj \ Si is connected (topologically).

Proof. This is clearly true if Ci and Cj intersect once or less. If Ci and Cj
intersect transversely twice—say, at (x1, y1) and (x2, y2) with x2 > x1—then
the area above Ci but below Cj can only be disconnected if Cj(x) > Ci(x) for
x < x1 and x > x2, implying Cj � Ci.

For all 1 ≤ i ≤ N and all intervals [a, b], define X[a, b] to be all points in
X with x-coordinate in [a, b], and define X[a, b, i] to be X[a, b] \ Si. Define S<i
to be the set {S1, . . . , Si−1} of all regions of width less than Si. Let W [a, b, i]
denote the minimum cost of a solution to the weighted set cover problem on the
set system (X[a, b, i],S<i) (with weights inherited from the original problem).
In other words, W [a, b, i] is the minimum cost of covering all points in X[a, b]
that are above Ci, using only downward shadows of curves less wide than Ci.
If such a covering does not exist, W [a, b, i] = ∞. For simplicity, we assume
that CN , the widest curve, contains no points in its downward shadow (that is,
X ∩ SN is empty). Our goal is then to determine W [−∞,∞, N ] via dynamic
programming; the key structural result we need is the following:

Lemma 4.1.5. If X[a, b, i] is non-empty, then

W [a, b, i] = min
{

min
c∈(a,b)

{W [a, c, i] +W [c, b, i]},

min
j<i
{W [a, b, j] + wj}

}
.

Proof. Clearly W [a, b, i] ≤W [a, c, i] +W [c, b, i] for all c ∈ (a, b). Also, for j < i,
W [a, b, j] + wj is the cost of purchasing Sj and then covering the remaining
points in X[a, b] using regions less wide than Sj (and hence less wide than Si).
Thus W [a, b, j] +wj is a cost of a feasible solution to (X[a, b, i],S<i) and hence
is at least W [a, b, i]. It follows that W [a, b, i] is bounded above by the right
hand side.

To show that W [a, b, i] is bounded below by the right hand side, we let
Z ⊆ S<i be a feasible set cover for (X[a, b, i],S<i). We consider two cases:

67



4. POLYNOMIAL-TIME ALGORITHMS FOR GEOMETRIC SET COVER

Case 1: There is some c ∈ (a, b) such that (c, Ci(c)) is not covered by Z.
Let Z<c be the set of all regions in Z containing a point in X[a, c, i], and let
Z>c be the set of all regions in Z containing a point in X[c, b, i]. Let Z ∈ Z.
Since Z ≺ Si, by Proposition 4.1.4, Z \Si is connected and thus cannot contain
points both in X[a, c, i] and X[c, b, i]. Hence Z<c ∩ Z>c = ∅ and thus the cost
of Z is at least W [a, c, i] +W [c, b, i].

Case 2: For all c ∈ (a, b), the point (c, Ci(c)) is covered by Z. Then Z covers
X[a, b, i]∪ Si and hence covers all points in X[a, b]. Let Cj be the widest curve
in Z, noting that j < i. Then the cost of Z is at least wj + W [a, b, j] since
Z \ Sj must cover all points in X[a, b, j].

It follows that Z must cost as much as either minc∈(a,b){W [a, c, i]+W [c, b, i]}
or minj<i{W [a, b, j] + wj}, and the result follows.

We can now prove our main result:

Proof of Theorem 4.1.3. Lemma 4.1.5 immediately implies the existence of a
dynamic programming algorithm to compute W [−∞,∞, N ] and return a cover
having that cost. It suffices to simply compute W [a, b, i] recursively for all
combinatorially relevant values of a, b, and i, using the min-cost covering of
subproblems containing 1 or fewer points as the base case. There are at most
M + 1 combinatorially relevant values of a and b when computing optimal costs
W [a, b, i] for subproblems, so there are O(NM2) distinct values of W [a, b, i] to
compute. Recursively computing W [a, b, i] requires O(M+N) table lookups, so
the total runtime of our algorithm is O(NM2(M+N)) primitive operations.

4.2 Applications: Half-planes, Pseudodisks, and
More

A first application of our algorithm is directly to R
2-3-Sided-Box-SC. This

problem is essentially equivalent to covering with shadows of horizontal line seg-
ments. With sufficient perturbation to forbid two 3-sided rectangles from being
tangent in any way, the boundaries of such regions are clearly 2-intersecting.
Additionally, the regions are downward shadows of x-monotone curves. We
therefore obtain the following:

Theorem 4.2.1. Weighted R
2-3-Sided-Box-SC admits an exact solution in

polynomial time.

Our next application shows us that the x-monotone requirement of Theo-
rem 4.1.3 can be dropped if all the shadows contain the points (x,−∞) for all
x. We express this idea in its polar form rather for more clarity.

Definition 4.2.2. A configuration of pseudodisks is a set of closed Jordan curves
that intersect at most twice pairwise.
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Covering Problem: R2-Origin-Containing-Pseudodisk-SC
Elements: A finite subset of R2

Sets: A configuration of pseudodisks in R2, each of which contains the
origin (in other words, all of the pseudodisks share a common point,
which may possibly lie on one or more of their boundaries).

Corollary 4.2.3. There exists a polynomial-time exact algorithm for weighted
R

2-Origin-Containing-Pseudodisk-SC. Furthermore, it runs inO(NM2(M+
N)) time on a set system consisting of M points and N pseudodisks.

Proof. We refer the reader to Lemma 2.11 of [ANP+04], which shows us how
to use a topological sweep curve method to transform the arrangement of pseu-
dodisks into a topologically equivalent arrangement where all the psuedodisks
are star-shaped about the origin. By examining the proof of this lemma, we note
that this transformation can be accomplished in polynomial time since, with N
pseudodisks, the sweep curve must be advanced at most 2

(
N
2

)
times. We then

apply a standard polar-to-cartesian projective transformation about the origin
(sending each point (x, y) to (atan2(y, x),

√
x2 + y2)), which maps each star-

shaped pseudodisk to the downward shadow of a positive valued x-monotone
function on [0, 2π), noting that these functions are pairwise 2-intersecting. Ad-
ditionally, we map each point from the original set system into the appropriate
cell of the transformed arrangement to obtain a topologically identical set sys-
tem involving downward shadows of pairwise 2-intersecting x-monotone curves
in R

2. It then suffices to apply Theorem 4.1.3.

A final application is to R
2-Halfplane-SC—covering with arbitrary (not

necessarily lower) half-planes in R
2:

Corollary 4.2.4. There are polynomial-time exact algorithms for weighted R
2-

Halfplane-SC and R2-Halfplane-HS, also running in O(NM2(M+N)) time.

Proof. We first apply an inversive transformation [Cox69] about the origin to
map each half-plane to a disk whose boundary intersects the origin (and each
point to its corresponding location after inversion). We shall obtain a new
set system whose element-set incidence relation is unchanged, but is now a
configuration of disks each containing the origin. These disks are pseudodisks,
and thus the previous corollary can be applied to achieve the desired result for
R

2-Halfplane-SC.
To obtain the result for R2-Halfplane-HS, it suffices to observe that R2-

Halfplane-SC and R
2-Halfplane-HS are isomorphic problems due to projec-

tive duality [dBCvKO08].

In the above application, we are giving an immediate and direct improvement
over the dynamic programming algorithm of Har-Peled and Lee for weighted
cover of points in the plane by half-planes [HPL08]; their method runs in O(n5)
time on an instance with n points and half-planes. Our algorithm both gener-
alizes theirs and reduces the run time by a factor of n.
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4.3 Algorithm for a Hitting Set Problem

The hitting set version R2-3-Sided-Box-HS of the 3-sided rectangle cover prob-
lem admits a much easier polynomial-time exact algorithm than the one used
to solve R2-2-Intersecting-Shadow-SC:

Theorem 4.3.1. There exists a polynomial-time exact algorithm for weighted
R

2-3-Sided-Box-HS. Moreover, it runs in O(min(N,M)3 +M +N) time on a
set system containing N points and M 3-sided rectangles.

Proof. Suppose we are given a R
2-3-Sided-Box-HS set system consisting of

a set X of N points and a family S of M 3-sided rectangles (note that the
roles of M and N have switched since we are now dealing with a hitting set
problem). Define S[a, b] to be the family of all rectangles lying entirely inside
(a, b) × (−∞,∞), and define W [a, b] to be the minimum cost of hitting all
rectangles in S[a, b]. Define y[a, b] to be the minimum y-coordinate of a top
edge of a 3-sided rectangle in S[a, b], or ∞ if S[a, b] is empty. Finally, define
X[a, b] to be the set of all x ∈ X lying in (a, b)× (−∞, y].

Whenever S[a, b] is non-empty, hitting all rectangles in S[a, b] requires choos-
ing at least one point in X[a, b] (otherwise the lowest rectangle in S[a, b] will
not be hit). However, any x = (x1, x2) ∈ X[a, b] will hit all rectangles in S[a, b]
whose horizontal range contains x1, since x is lower than the top edge of all rect-
angles in S[a, b]. After choosing such an x, it thus only remains to cover those
rectangles in S[a, x1] and S[x1, b]. Via this argument, the following recurrence
is immediate:

Claim 4.3.2. W [a, b] = minx=(x1,x2)∈X[a,b]{W [a, x1] +W [x1, b] + wx}

Via this claim, it is simple to implement a dynamic programming algorithm
the computes W [−∞,∞] and returns a hitting set having that cost. There
are at most min{M,N} combinatorially relevant values of a and b for which
subproblems must be computed, and computing each subproblem requires at
most min{M,N} table lookups because for any given a and b, the set X[a, b]
may contain at most min{M,N} combinatorially distinct points. The result
follows.

Unfortunately, generalizing this result to other objects, such as downward
shadows of parabolas in the plane, seems difficult.
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Chapter 5

APX-Hardness Results

In this chapter, we shall present APX-hardness results for a variety of covering
problems, most of which are geometric. All of these results stem from the
APX-hardness of a new problem known as Special-3SC, which we believe
may be of independent interest in proving the APX-hardness of other problems.
Most of these results, including the APX-hardness of Special-3SC itself, have
appeared before in [CG11].

5.1 Special-3SC

Historically, one of the first problems known not to admit a PTAS was Min-
Vertex-Cover, and even in 1991, it was known that this hardness held even if
the degree of the graph was at most 4 [PY91]. In 1997, an improvement was
made by Alimonti and Kann, who showed that vertex cover remained APX-
hard even when the result graph was 3-regular [AK00]. The resulting problem—
3-Regular-Graph-SC—remained, for years, one of those widely used problems
to reduce from when proving the APX-hardness of covering problems. Since
vertex cover on graphs of degree at most 2 is solvable in polynomial time, it
stands to reason that it should not be possible to obtain a stronger or more
useful hardness result than the APX-hardness result of 3-Regular-Graph-
SC. However, we shall show that by imposing even more additional structure on
an instance of 3-Regular-Graph-SC, it is possible to preserve APX-hardness
while introducing nice properties into the set system, which will allow us to
obtain hardness results for other problems much more easily. The problem we
obtain, which we call Special-3SC, has proven to be extremely versatile when
attempting to prove the APX-hardness of geometric covering problems. We
are not aware of anything else like it.

The formal definition of Special-3SC is as follows:

Definition 5.1.1. In an instance of Special-3SC, we are given a universe U =
A∪W∪X∪Y ∪Z comprising disjoint sets A = {a1, . . . , an}, W = {w1, . . . , wm},
X = {x1, . . . , xm}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zm} where 2n = 3m.
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We are also given a family S of 5m subsets of U satisfying the following two
conditions:

• For each 1 ≤ t ≤ m, there are integers 1 ≤ i < j < k ≤ n such that
S contains the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt}
(summing over all t gives the 5m sets contained in S).

• For all 1 ≤ t ≤ n, the element at is in exactly two sets in S.

Our key result is the following:

Lemma 5.1.2. Special-3SC is APX-complete.

Proof. It is easy to see that Special-3SC is in APX because it is a covering
problem of bounded frequency 2 and thus admits a greedy 2-approximation. To
show that it is APX-hard, we shall exhibit an L-reduction from 3-Regular-
Graph-SC to Special-3SC, which is sufficient because 3-Regular-Graph-
SC is APX-hard [AK00], and L-reductions preserve APX-hardness [PY91].

We recall that a pair of functions (f, g) is an L-reduction from a minimization
problem A to a minimization problem B if there are positive constants α and
β such that for each instance x of A, the following hold:

(L1) The function f maps instances of A to instances of B such that OPT(f(x))
≤ α ·OPT(x).

(L2) The function g maps feasible solutions of f(x) to feasible solutions of x
such that cx(g(y))−OPT(x) ≤ β ·

(
cf(x)(y)−OPT(f(x))

)
, where cx and

cf(x) are the cost functions of the instances x and f(x) respectively.

Given an instance x of 3-Regular-Graph-SC on edges {e1, . . . , en} with
vertices {v1, . . . , vm} where 3m = 2n, we define f(x) be the Special-3SC in-
stance containing the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt}
for each 4-tuple (t, i, j, k) such that vt is a vertex incident to edges ei, ej , and
ek with i < j < k. To define g, we suppose we are given a solution y to
the Special-3SC instance f(x). We take vertex vt in our solution g(y) of
the 3-Regular-Graph-SC instance x if and only if at least one of {ai, wt},
{aj , xt, yt}, or {ak, zt} is taken in y. We observe that g maps feasible solutions
of f(x) to feasible solutions of x since ei is covered in g(y) whenever ai is covered
in y.

Our key observation is the following:

Claim 5.1.3. OPT(f(x)) = OPT(x) + 2m.

Proof. For 1 ≤ t ≤ m, we define the sets Pt = {{wt, xt}, {yt, zt}} and Qt =
{{ai, wt}, {aj , xt, yt}, {ak, zt}}. Call a solution C of f(x) segregated if for all
1 ≤ t ≤ m, C either contains all sets in Pt and no sets in Qt, or contains all sets
in Qt and no sets in Pt.

Via local interchanging, we observe that there exists an optimal solution to
f(x) that is segregated. Specifically, when given an arbitrary optimal solution

72



5.2. ENCODINGS OF SPECIAL-3SC VIA GEOMETRIC SET COVER

C∗ of f(x), we can construct a new solution C′ if, for each t, we simply take all
sets in Qt whenever C∗ contains at least one set in Qt and otherwise take all
sets in Pt. It follows immediately that C′ is feasible if C∗ is, and it is not hard
to see that the cost of C′ cannot exceed that of C∗.

Additionally, our function g, when restricted to segregated solutions of f(x),
forms a bijection between them and feasible solutions of x. We check that g
maps segregated solutions of size 2m+ k to solutions of x having cost precisely
k, and the claim follows.

Claim 5.1.3 implies that f satisfies property (L1) with α = 5, since OPT(x) ≥
m
2 . Moreover, cx(g(y)) + 2m ≤ cf(x)(y) since both {wt, xt} and {yt, zt} must
be taken in y whenever vt is not taken in g(y), and at least three of the sets
in {{ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, {ak, zt}} must be taken in y whenever
vt is taken in g(y). Together with Proposition 5.1.3, this proves that g satisfies
property (L2) with β = 1, completing the proof that (f, g) is an L-reduction.

5.2 Encodings of Special-3SC via Geometric Set
Cover

We now use Special-3SC to show the APX-hardness of over a dozen geometric
covering problems. Our method is, for a class C of set systems, to prove that
Special-3SC ⊆ C, thereby showing that C inherits the hardness of Special-
3SC.

Theorem 5.2.1. Unweighted geometric set cover is APX-hard with each of
the following classes of geometric objects:

(C1) Axis-aligned rectangles in R
2, even when all rectangles have lower-left

corner in [−1,−1 + ε]× [−1,−1 + ε] and upper-right corner in [1, 1 + ε]×
[1, 1 + ε] for an arbitrarily small ε > 0.

(C2) Axis-aligned ellipses in R2, even when all ellipses have centers in [0, ε]×[0, ε]
and major and minor axes of length in [1, 1 + ε].

(C3) Axis-aligned slabs in R
2, each of the form [ai, bi]× [−∞,∞] or [−∞,∞]×

[ai, bi].

(C4) Axis-aligned rectangles in R
2, even when the boundaries of each pair of

rectangles intersect exactly zero times or four times.

(C5) Downward shadows of line segments in R
2.

(C6) Downward shadows of (graphs of) univariate cubic functions in R
2.

(C7) Unit balls in R
3, even when all the balls contain a common point.

(C8) Axis-aligned cubes in R
3, even when all the cubes contain a common point

and are of similar size.
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(C9) Half-spaces in R
4.

(C10) Fat wedges in R
2, each of which has an opening angle in [π − ε, π].

Additionally, unweighted geometric hitting set is APX-hard with each of the
following classes of objects:

(H1) Axis-aligned slabs in R
2.

(H2) Axis-aligned rectangles in R
2, even when the boundaries of each pair of

rectangles intersect exactly zero times or four times.

(H3) Unit balls in R
3.

(H4) Half-spaces in R
4.

Before we proceed to the encodings that prove this theorem, we make a few
comments about the implications of our results.

Mustafa and Ray ask if their local improvement approach outlined in [MR10]
might yield a PTAS for a wider class of instances; Theorem 5.2.1 immediately
rules this out for all of the covering and hitting set problems listed above by prov-
ing that no PTAS exists for them unless P = NP. Item (C1) demonstrates that
even tiny perturbations can destroy the behaviour of the local search method.
(C2) rules out the possibility of a PTAS for arbitrarily fat ellipses (that is,
ellipses that are within ε of being perfect circles). (C5) and (C6) stand in con-
trast to our algorithm from Chapter 4, which proves that geometric set cover is
polynomial-time solvable when the objects are downward shadows of horizontal
line segments or quadratic functions. In the case of (C4) and (H2), the inter-
section graph of the rectangles is a comparability graph (and hence a perfect
graph); even then, neither set cover nor hitting set admits a PTAS. (C7), (C8),
(C9), (H3), and (H4) complement the result of Mustafa and Ray by showing
that their algorithm fails in higher dimensions. (C10) stands in contrast to the
fact that covering with half-planes is exactly solvable in polynomial time.

A natural gap exists between our results (C6), (C7), and (H3) and the results
of Mustafa and Ray. For unit balls in R

3, the existence of a PTAS remains an
open question for both set cover and hitting set. Additionally, set cover with
arbitrary disks or squares in R

2 remains open (the result of Mustafa and Ray
can only provide a PTAS for the hitting set version, or the covering version
when all disks or squares have the same radius).

The beauty of Special-3SC is that it allows many of our geometric APX-
hardness results to follow immediately from simple “proofs by pictures” (see
Figure 5.2). The key property of Special-3SC is that we can divide the ele-
ments into two sets A and B = W ∪X ∪ Y ∪ Z, and linearly order B in such a
way that all sets in S are either two adjacent elements from B, one from B and
one from A, or two adjacent elements from B and one from A. We need only
make [wt, xt, yt, zt] appear consecutively in the ordering of B. Knowing this, we
present a proof of Theorem 5.2.1:
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Proof of Theorem 5.2.1.

Figure 5.1: APX-hardness proofs of geometric set cover problems.

For (C1), we simply place the elements of A on the line segment {(x, x−2) :
x ∈ [1, 1 + ε]} and place the elements of B, in order, on the line segment
{(x, x + 2) : x ∈ [−1,−1 + ε]}, for a sufficiently small ε > 0. As we can see
immediately from Figure 5.2, each set in S can be encoded as a fat rectangle in
the class (C1).

(C2) is similar. It is not difficult to check that each set can be encoded as a
fat ellipse in this class.

For (C3), we place the elements of A on a horizontal line (the top row). For
each 1 ≤ t ≤ m, we create a new row containing {wt, xt} and another containing
{yt, zt} as shown in Figure 5.2. This time, we will need the second property in
Definition 5.1.1—that each ai appears in two sets. If {ai, wt} is the first set that
ai appears in, we place wt slightly to the left of ai; if it is the second set instead,
we place wt slightly to the right of ai. Similarly, the placement of xt, yt (resp.
wt) depends on whether a set of the form {aj , xt, yt} (resp. {ak, wt}) is the first
or second set that aj (resp. ak) appears in. As we can see from Figure 5.2, each
set in S can be encoded as a thin vertical or horizontal slab.

(C4) is similar to (C3), with the slabs replaced by thin rectangles. For
example, if {ai, wt} and {ai, wt′} are the two sets that ai appears in, with wt
located higher than wt′ , we can make the rectangle for {ai, wt} slightly wider
than the rectangle for {ai, wt′} to ensure that these two rectangles intersect 4
times.

For (C5), we can place the elements of A on the ray {(x,−x) : x > 0} and
the elements of B, in order, on the ray {(x, x) : x < 0}. The sets in S can be
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encoded as downward shadows of line segments as in Figure 5.2.
(C6) is similar to (C5). One way is to place the elements of A on the line

segment `A = {(x, x) : x ∈ [−1,−1 + ε]} and the elements of B (in order) on
the line segment `B = {(x, 0) : x ∈ [1.5, 1.5 + ε]}. For any a ∈ [−1,−1 + ε] and
b ∈ [1.5, 1.5 + ε], the cubic function f(x) = (x − b)2[(a + b)x − 2a2]/(b − a)3 is
tangent to `A and `B at x = a and x = b. (The function intersects y = 0 also
at x = 2a2/(a + b) � 1.5 + ε, far to the right of `B). Thus, the size-2 sets in
S can be encoded as cubics. A size-3 set {aj , xt, yt} can also be encoded if we
take a cubic with tangents at aj and xt, shift it upward slightly, and make xt
and yt sufficiently close.

For (C7), we place the elements in A on a circular arc γA = {(x, y, 0) :
x2 + y2 ≤ 1, x, y ≥ 0} and the elements in B (in order) on the vertical line
segment `B = {(0, 0, z) : z ∈ [1− 2ε, 1− ε]}. (This idea is inspired by a known
construction [BD99], after much simplification). We can ensure that every two
points in A have distance Ω(

√
ε) if ε� 1/n2. The technical lemma below allows

us to encode all size-2 sets (by setting b = b′) and size-3 sets by unit balls
containing a common point.

Lemma 5.2.2. Given any a ∈ γA and b, b′ ∈ `B , there exists a unit ball that
(i) intersects γA at an arc containing a of angle O(

√
ε), (ii) intersects `B at

precisely the segment from b to b′, and (iii) contains (1/
√

2, 1/
√

2, 1).

Proof. Say a = (x, y, 0), b = (0, 0, z−h), b′ = (0, 0, z+h). Consider the unit ball
K centered at c = ((1− h2)x, (1− h2)y, z). Then (ii) is self-evident and (iii) is
straightforward to check. For (i), note that a lies in K since ‖a−c‖2 = h2 +z2 ≤
ε2 + (1− ε)2 < 1. On the other hand, if a point p ∈ γA lies in the unit ball, then
letting a′ = ((1 − h2)x, (1 − h2)y, 0), we have ‖p − c‖2 = ‖p − a′‖2 + z2 ≤ 1,
implying ‖p− a‖ ≤ ‖p− a′‖+ ‖a′ − a‖ ≤

√
1− z2 + h = O(

√
ε).

(C8) is similar to (C1); we place the elements in A on the line segment
`A = {(t, t, 0) : t ∈ (0, 1)} and the elements in B on the line segment `B =
{(0, 3 − t, t) : t ∈ (0, 1)}. For any (a, a, 0) ∈ `A and (0, 3 − b, b) ∈ `B , the cube
[−3 + b + 2a, a] × [a, 3 − b] × [−3 + a + 2b, b] is tangent to `A at (a, a, 0), is
tangent to `B at (0, 3 − b, b), and contains (0, 1, 0). Size-3 sets {aj , xt, yt} can
be encoded by taking a cube with tangents at aj and xt, expanding it slightly,
and making xt and yt sufficiently close. We can move the lines further apart to
make the cubes within epsilon of being unit cubes.

(C9) follows from (C7) by the standard lifting transformation that maps
points (x, y, z) ∈ R3 to (x, y, z, x2 + y2 + z2) ∈ R4 and balls {(x, y, z) : (x −
a)2 + (y− b)2 + (z− c)2 ≤ r2} to half-spaces {(x, y, z, w) : w−2ax−2by+ 2cz ≤
r2 − a2 − b2 − c2} [dBCvKO08].

For (C10), we shall place the elements of A and B respectively along two
circular arcs `A = {(cos t, sin t) : t ∈ (0, ε)}, and `B = {(cos t, 2 − sin t) : t ∈
(0, ε)}. Any point on either arc defines a unique tangent to that arc, and thus
any pair of points, one on `A and one on `B , define a pair of tangents that
meet at a unique intersection point (which will be somewhat close to (1, 1)). It
follows that a wedge of opening angle close to π can be chosen to be tangent to
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any point on `A and any point on `B . Again, for the size-3 sets, it suffices to
expand each wedge slightly and make xt and yt sufficiently close.

For (H1), we map each element ai to a thin vertical slab. For each 1 ≤ t ≤ m,
we map {wt, xt, yt, zt} to a cluster of four thin horizontal slabs as in Figure 5.2.
Each set in S can be encoded as a point in the arrangement.

(H2) is similar; see Figure 5.2.
(H3) follows from (C7) by duality; see Proposition 2.3.16.
(H4) follows from (C9) by duality; see Proposition 2.3.18.

5.3 Hardness of Priority Tree Cover

Here, we prove that Priority-Vertical-Tree-SC—the priority version of the
totally unimodular problem Vertical-Tree-SC—is APX-hard. An alternate
proof that Priority-Tree-SC is APX-hard can be found in [CGK10a], but our
new proof, which uses Special-3SC, is significantly shorter.

As with the previous results, we will prove that Priority-Vertical-Tree-SC
is APX-hard by establishing that it can encode Special-3SC:

Theorem 5.3.1. Special-3SC ⊆ Priority-Vertical-Tree-SC, and therefore
Priority-Vertical-Tree-SC is APX-hard.

Proof. Suppose we are given an instance of Special-3SC with parameters m
and n as usual. Let P be a path containing precisely 4m edges, and write the
edges of P , in order, as

P = [ew1 , ex1 , ey1 , ez1 , ew2 , ex2 , ey2 , ez2 , . . . , ezm
],

identifying them with elements from our Special-3SC instance. Let u be one
of the end vertices of P , and let S be a star rooted at a vertex v having n
neighbours (that is, v is adjacent to n other vertices, none of which are adjacent
to one another). We construct a tree T by identifying u with v, creating a
caterpillar graph comprising a single path of length 4m leading to a vertex v
of degree n + 1, adjacent to the path and n leaves. We assign priorities to the
edges of T such that the priority of an edge in P is a decreasing function of its
distance from v, and the priority of all edges in S is zero. We identify the edges
of S with elements a1 through an of our original Special-3SC instance. It is
then not hard to see that a path in T , of the correctly chosen supply priority,
can cover exactly 2 adjacent elements in P and one element of S. The result
follows.
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Chapter 6

Improved Quasi-Uniform
Sampling for Weighted Set
Cover

Here, we present our quasi-uniform sampling algorithm for weighted set cover.
We build off of the ideas in Varadarajan’s [Var10] result, extending the scope
of his technique to more general, not necessarily geometric, set cover instances.
Additionally, we improve the approximation guarantee in some cases as a result
of modifications to both the algorithm and its analysis.

The other important feature of our algorithm is that its approximation factor
varies according to an instance-specific parameter known as shallow cell com-
plexity (SCC). This is a purely combinatorial property of set cover instances,
and checking that a set system has low SCC can be done much more easily than,
e.g., establishing bounds on union complexity for a non-geometric set system.
In fact, using SCC, we recover all of the previous results of Varadarajan [Var10]
as well as generalize the results of Clarkson and Varadarajan and all related
sequels [CV07, Var09, AES10] to the weighted case, using no additional effort.
Moreover, we also obtain many new results for various other weighted covering
problems, including non-geometric ones.

All of the results in this section are from [CGKS12].

6.1 Shallow Cell Complexity

One of the key technical concepts used by Varadarajan [Var10] is the cell com-
plexity of a given configuration of geometric objects. Informally, in a config-
uration of objects in Euclidean space, a cell is a maximal connected region
consisting of points that all lie within precisely the same set of objects. The
depth of a cell is the number of objects that define the cell. In his algorithm,
Varadarajan uses an earlier result by Clarkson and Shor [CS89] that shows that
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geometric set cover instances with low union complexity have a small number
of cells of large depth.

A =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0


For our purposes, we shall strip away the

topological details underpinning the formal
geometric definition of cells, leaving us with
a purely combinatorial notion of ‘cell’ for the
matrix world. We call two rows Ai and Aj
of a 0, 1-matrix A equivalent if they contain
ones in precisely the same columns. The cells of A are then defined to be the
resulting equivalence classes, and the depth of a cell is the number of ones in any
one of its rows. For example, the first and third row of matrix A on the right
are equivalent and have depth two. There are two more cells formed by rows
two and four, of depth two and one, respectively. We define the key property
used in our algorithm:

Definition 6.1.1 (Cell Complexity). Let f(n, k) be a function that is non-
decreasing in both n and k. A binary matrix A with N columns has shallow
cell complexity (SCC) f if for all 1 ≤ k ≤ n ≤ N and for all sub-matrices A∗ of
A containing exactly n columns, the number of cells of A∗ of depth k or fewer
is at most f(n, k). A class of set systems C has SCC f if and only if all A ∈ C
do.

Intuitively, matrices with low SCC are those for whom all submatrices have
few distinct rows containing few ones. The SCC of a matrix is, in some sense,
the worst case density of any cluster of such rows in a submatrix of A. We note
that SCC is already a hereditary property; a matrix’s SCC is an upper bound for
the SCC of all of its submatrices.

Below are some examples of SCC bounds for various simple classes of set
system matrices:

• General binary matrices have SCC at most
(
n
k

)
.

• Binary matrices that do not contain the submatrix [0, 1] have SCC at most
k + 1.

• A set system matrix has SCC at most O(nd) whenever its underlying set
system has VC codimension at most d (see [HW87]).

• Binary network matrices have SCC O(n), as we show in Lemma 6.5.2.

6.2 The Quasi-Uniform Sampling Algorithm

Our main result shows that set cover instances with small SCC are well approx-
imable:

Theorem 6.2.1. Let φ(n) be a non-decreasing function of n, and let c ≥ 0 be a
constant. Suppose C is a class of set cover instances with SCC f(n, k) = nφ(n)kc.

80



6.2. THE QUASI-UNIFORM SAMPLING ALGORITHM

Then there exists a quasi-uniform ε-net finder of size O( 1
ε max{1, log φ(N)}) for

C (where N is the number of columns in a given A ∈ C).

Via Theorem 2.4.20, we can immediately obtain the following approximabil-
ity result:

Corollary 6.2.2. Let φ(n) be a non-decreasing function of n, and let c ≥ 0 be a
constant. Suppose C is a class of set cover instances with SCC f(n, k) = nφ(n)kc.
Then there is a randomized polynomial-time LP-relativeO(max{1, log φ(OPT )})-
approximation algorithm for the weighted set cover problem for C.

As mentioned, our algorithm follows Varadarajan’s general sampling frame-
work, ensuring quasi-uniformity [Var10]. Varadarajan’s version of the algo-
rithm and analysis gives an O(log φ(n))-approximation when φ(n) ∈ ω(log(j) n)
for some constant j, but obtains only a 2O(log∗ n)-approximation in the case of
φ(n) = O(1). We provide a refined analysis that eliminates the 2O(log∗ n) factor.
At the same time, our algorithm also simplifies Varadarajan’s in several ways.
In Section 6.3 we also show how our algorithm can be derandomized.

We now describe our proof of Theorem 6.2.1. Recall that a set system
matrix A is k-deep if all rows of A contain at least k ones. We shall present
an ε-net finder obtaining the following: Our goal is to provide a polynomial
algorithm to produce a small, quasi-uniform L/N -net of an L-deep M ×N set
system matrix A∗ of SCC f(n, k) = nφ(n)kc. Throughout this section, we let
`(N) = max{1, log φ(N)}. For simplicity, we shall assume that f(n, k) is known
a priori, although this is unnecessary if standard binary search techniques are
employed to guess c and `(N).

The algorithm proceeds in a series of sequential phases. At the start of a
phase, we are given a k-deep m× n submatrix A of A∗ with SCC f(n, k) as in-
herited from A∗. The eventual goal is to produce a set cover for the subproblem
induced by A, but much of the work will be put off until future phases, which
operate on increasingly small nested sub-matrices of A. The purpose of a single
phase is simply to partition the columns of A into three categories:

• Forced columns: those that will definitely be taken in our set cover;

• Rejected columns: those that will definitely not be taken in our set cover;

• Retained columns: those for which the decision to force or reject will be
deferred until a future phase of the algorithm.

Given such a partition, we define B to be the submatrix of A obtained by delet-
ing all forced columns, rejected columns, and rows with a one in any forced
column (rows covered by a forced column). The subsequent phase of the algo-
rithm operates on B.

The algorithm we present reduces the size and depth of A by a factor of
approximately 1

2 during each phase. Reducing by 1
2 is a somewhat arbitrary

choice that we make to optimize the simplicity of our presentation. We con-
trast our algorithm with that of Varadarajan [Var10], who reduces the depth
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of A from k to log k during each phase, picking up an unavoidable 2O(log∗ n)

in the approximation factor when the shallow cell complexity of A is very low.
We avoid this by employing a forcing scheme that is somewhat simpler than
Varadarajan’s original “forced addition” scheme [Var10].

Roughly speaking, in each phase, we randomly and independently mark
each column of A with probability 1

2 + H(N, k) for a carefully-chosen function
H(N, k). We then force some columns of A in order to cover rows that contain
ones in fewer than k

2 marked columns, and retain the marked columns that
remain. The exact manner in which we force will be described later; the key
trick is to use low SCC to obtain a forcing rule in which no column is forced
with high probability. Formally, our marking and forcing rules will achieve the
following during each phase:

1. The output B is k
2 -deep (each row of B contains at least k

2 ones).

2. Each column of A is retained with probability at most 1
2 + h(N, k).

3. Each column of A is forced with probability at most k−2.

We will see later that it suffices to take h(N, k) = O

(√
log k+`(N)

k

)
. Our

analysis exploits the following key property of shallow cell complexity:

Lemma 6.2.3. Suppose A is k-deep, has n columns, and has shallow cell com-
plexity f(n, k) = nφ(n)kc. Then there is a column S of A such that the number
of cells of depth exactly k that contain a one in S is at most φ(n)kc+1.

Proof. Let A′ be the submatrix of A obtained by deleting all rows that have
more than k ones and eliminating duplicate copies of rows. Since A has shallow
cell complexity f , so does A′ and thus there are at most nφ(n)kc rows in A′.
Each row of A′ contains exactly k ones, so A′ contains at most nφ(n)kc+1 ones.
Thus the average number of ones per column in A′ is φ(n)kc+1 and it follows
that some column of A′ contains at most φ(n)kc+1 ones. The corresponding
column of A then contains at most φ(n)kc+1 ones in cells of A having depth
exactly k.

We now use this result to develop a procedure that takes a k-deep set system
(X,R) of low shallow cell complexity and returns a highly structured partition
of X into clusters of points, each of which lies within the common intersection
of some k sets in R. We wish to assign each cluster to be the responsibility
of some set containing it such that no set is responsible for too many clusters.
In our full algorithm, we will force sets when the clusters they are responsible
for are insufficiently covered, and the fact that no column is responsible for too
many clusters will enable us to obtain an upper bound on the probability that
a column is forced. We first give a definition:

Definition 6.2.4. In a set system matrix A, a group of rows R is called a k-
cluster if there exists a set C of k columns of A that each contain a one in all
rows of R. In such a case, C is said to support R.
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A =


1 1 0 0
0 1 1 1
1 1 0 0
0 1 1 0


For example, rows 2 and 4 of matrix A to

the right form a 2-cluster supported by columns
2 and 3. The next result follows immediately:

Proposition 6.2.5. Let A be a set system ma-
trix and let A′ be a submatrix f A. Suppose R
is a cell of depth k in A′ (that is, a collection of
identical rows in A′, each containing k ones). Then the rows in R form a k-
cluster when regarded as rows of A (note that they are not necessarily identical
in A).

We now state our key lemma:

Lemma 6.2.6. Suppose a set system matrix A is k-deep, has n columns, and
has shallow cell complexity f(n, k) = nφ(n)kc. Denote by X and S the rows
and columns of A respectively. Then there exists a function γ : X → S such
that:

• γ(x) is a column containing a one in row x, and

• for each S ∈ S, the pre-image γ−1(S) = {x ∈ X : γ(x) = S} can be
partitioned into φ(n)kc+1 k-clusters of A.

Moreover, such a function γ can be computed in polynomial time.

Proof. We define an iterative procedure to assign γ(x) for each x ∈ X in poly-
nomial time:

1: Initialize A1 ← A and i← 1.
2: Find a column Si ∈ S such that at most φ(n)kc+1 cells of Ai having depth

exactly k contain a one in Si (one exists by Lemma 6.2.3). Let Yi ⊆ X be
all rows of Ai that are members of the φ(n)kc+1 cells.

3: Set γ(x) = Si for each row x ∈ Yi.
4: Ai+1 ← submatrix of Ai obtained by deleting the column Si and all rows

in Yi from Ai.
5: If Ai+1 contains no rows, γ(x) is defined for all rows x ∈ X and we may

terminate.
6: Otherwise, increment i and go back to step 2.

We note that after the deletions in step 4, Ai+1 is still k-deep because rows
in X \ Yi either contain more than k ones or contain a zero in column Si; in
either case, their depth after the deletion of column Si cannot be less than k.
Additionally, the shallow cell complexity of A is inherited by sub-matrices, so
Ai+1 always has shallow cell complexity f(n, k) = nφ(n)kc throughout the pro-
cedure. This permits the application of Lemma 6.2.3 throughout the iterations
of the procedure, implying that our procedure terminates and thus assigns a
value to γ(x) for each x ∈ X. Additionally, γ(x) is always a column containing
a one in row x, as we require.
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Additionally, the pre-image Yi = γ−1(Si) is a collection of at most φ(n)kc+1

cells of Ai. Proposition 6.2.5 then implies that γ−1(Si) can be partitioned into
at most φ(n)kc+1 k-clusters of A, completing the proof.

Formally, we say that S is responsible for x whenever γ(x) = S. With our
key lemma in hand, we can finally provide a formal description of a phase:

1: Input: m by n set system matrix A of depth k with SCC nφ(n)kc

2: if log k ≥ k
12(c+3) or `(N) ≥ k

12(c+3) then
3: Force every column of A and terminate
4: else
5: Mark each column of A independently with probability 1

2 + h(N, k)
6: Obtain a function γ as described in Lemma 6.2.6
7: for all rows x of A do
8: if x does not contain at least k

2 ones in marked columns then
9: Force γ(x)

10: end if
11: end for
12: Reject the remaining columns of A that have been neither forced nor

marked
13: end if
14: Obtain matrix B from A by deleting forced columns, rejected columns, and

rows with a one in a forced column
15: Output: B

It is clear that, after a single phase, B will be k
2 -deep, as any row x of A

that does not lie in k
2 marked columns is deleted when γ(x) is forced. It follows

that each phase halves the depth of A, and thus the algorithm will terminate in
at most dlogLe phases when given a set system matrix of depth L; hence, the
algorithm runs in polynomial time.

We also verify that the final output does indeed form a set cover of A. Rows
of A are deleted during the algorithm if and only if they contain a one in a
forced column, and thus are covered. Rows that are never deleted are covered
in the final phase when all columns of A are taken.

To ensure that our algorithm is feasible, we must verify that the marking
probability h(N, k)+ 1

2 is at most one. This is easy from our choice of terminat-
ing condition. During non-terminating phases of the algorithm, we have both
log k < k

12(c+3) and `(N) < k
12(c+3) , and thus:

log k + `(N) <
k

6(c+ 3)

=⇒ 3(c+ 3)
2

log k + `(N)
k

<
1
4

=⇒
√

3(c+ 3)
2

log k + `(N)
k

+
1
2
< 1.
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The final technical challenge remaining is to bound the probability that a col-
umn is forced at some point during the algorithm. We begin by bounding the
probability that a single column is forced during a single phase:

Claim 6.2.7. In a single non-terminating phase of the algorithm, each column
S of A is forced with probability at most k−2.

Proof. We recall by Lemma 6.2.6 that the pre-image γ−1(S) = {x ∈ X : γ(x) =
S} can be partitioned into φ(n)kc+1 k-clusters of A. Fix such a partition as
obtained in Lemma 6.2.6. With this partition under consideration, suppose a
row x of A has γ(x) = S and lies in a k-cluster R supported by a set of columns
C. A row in R can only cause S to be forced if fewer than k

2 columns in C are
marked. We shall bound the probability of this happening in order to bound the
probability that any row in R is insufficiently covered my the marked columns.
We let Z be a random variable indicating the number of columns of C that are
marked. Define

µ = E[Z] = k

[
1
2

+ h(N, k)
]
.

Then applying the Chernoff bound yields:

Pr
[
Fewer than

k

2
columns in C marked

]
≤ Pr

[
Z ≤ k

2

]
= Pr

[
Z ≤

(
1− kh(N, k)

k
2 + kh(N, k)

)
µ

]

≤ Exp

−1
3

(
kh(N, k)

k
2 + kh(N, k)

)2(
k

2
+ kh(N, k)

)
≤ Exp

(
−2

3
kh(N, k)2

)
.

Since γ−1(S) can be partitioned into φ(n)kc+1 k-clusters of A, by the union
bound, the probability that S is forced during an individual phase is at most

φ(n)kc+1Exp
(
−2

3
kh(N, k)2

)
.

Taking h(N, k) =
√

3
2

(c+3) log k+`(N)
k and recalling that n ≤ N during all

phases of the algorithm, this is at most

φ(n)kc+1Exp (−(c+ 3) log k − log(φ(n))) = k−2.

The previous claim essentially proves that our additional sampling proba-
bility h(N, k) is big enough to cause the forcing probability in each phase to be
relatively low. Our next claim shows us that h(N, k) is still small enough for the
probability of a column surviving t phases of sampling to decay exponentially
in t. The function h(N, k) is indeed quite finely tuned in order to exhibit both
of these features.
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Claim 6.2.8. After t ≥ 1 phases of our algorithm, the probability of any given

column of the original M by N matrix A∗ still remaining is O(1)
2t .

Proof. This is clearly true after the terminating condition has occurred. Before
that happens, A is still at least L

2i -deep after i phases, so the probability that a
row is retained during phase i+ 1 is at most 1

2 + h(N, L2i ). Multiplying over all
phases yields an upper bound of

Pt =
t−1∏
i=0

(
1
2

+ h

(
N,

L

2i

))
=

t−1∏
i=0

(
1
2

+O(1)

√
(2i)(logL− i+ `(N))

L

)
.

We recall that at a phase in which the initial depth is k, we must always have
`(N) < k

12(c+3) , otherwise we terminate. If we have not yet terminated in phase
t, we may take k = L

2t , the depth after t phases, and obtain `(N) < L
12(c+3)2t .

Combining with the above yields:

Pt ≤
t−1∏
i=0

(
1
2

+O(1)

√
(2i)(logL− i)

L
+
O(1)
2t−i

)

=
1
2t

logL∏
j=logL−t

(
1 +O(1)

√
j

2j
+ 2logL−t−j

)

≤ O(1)
2t

Exp

 logL∑
j=logL−t

(√
j

2j
+ 2logL−t−j

)
≤ O(1)

2t
Exp (O(1)) =

O(1)
2t

.

The final inequality follows from the fact that∫ ∞
0

√
x

2x
dx =

√
2π

(ln 2)3/2
≈ 4.34362 ∈ O(1).

Claim 6.2.9. A column is forced during the final phase of the algorithm with

probability O
(
`(N)
L

)
, where `(N) = max{1, log φ(N)}.

Proof. The algorithm terminates when either log k ≥ k
12(c+3) or `(N) ≥ k

12(c+3) .
In particular, during the terminating phase of the algorithm in which every
column is forced, we must have log k + `(N) ≥ k

12(c+3) from which it follows

that k ≤ O(1)`(N). Thus at least O(1) log
(

L
`(N)

)
phases are required to reach

the terminating condition. Consequently, taking t = O(1) log
(

L
`(N)

)
in the

previous claim yields the desired result.

We finally prove that our algorithm returns a quasi-uniform cover:
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Claim 6.2.10. Throughout all phases of the algorithm, a given column is forced

with probability at most O
(
`(n)
L

)
, where `(n) = max{1, log φ(n)}.

Proof. By the previous claim, it is sufficient to obtain the stated bound for non-
terminating phases of the algorithm. After phase i, the depth is L

2i and thus the
probability of a column both remaining after i phases and being forced during
phase i+ 1 is

O(1)
2i

(
L

2i

)−2

=
O(1)
L

2i

L
.

Summing over all phases yields a bound of at most

O(1)
L

logL∑
i=0

2i

L
≤ O(1)

L
(2) =

O(1)
L

.

This completes the proof that our algorithm computes a quasi-uniform cover.

6.3 Derandomization

In this subsection, we note that our algorithm can be derandomized, and thus
all the results in this chapter hold deterministically. To our knowledge, deran-
domization of Varadarajan’s technique [Var10] has not been observed before.

The idea is to replace the need for totally independent random choices with
b-wise independent random choices for some constant b. Specifically, at the
beginning of the algorithm, we generate a b-wise independent sequence of N
integers X1, . . . , XN that are uniformly distributed in the range [0, U) for a
sufficiently large universe size U (for example, U = Θ(N) would suffice). The
subset of columns that are retained during phase i is supposedly a uniform
sample of the set of original columns, with a certain sampling probability Pi.
To produce this sample, we take the subset of all columns S such that XS ∈
[0, PiU). By a well known construction [Jof74, MR95], a b-wise independent
sequence X1, . . . , XN ∈ [0, U) can be generated from b truly random integers in
[0, U) for a given prime U ≥ N . Deterministically, we can try all O(U b) possible
choices for these b integers and thus simulate the randomized algorithm by brute
force in polynomial time.

It remains to show that this version of the algorithm using X1, . . . , XN still
achieves the same expected bound on the weight of the computed set cover.
For the analysis, we use the following alternative to the Chernoff bound (e.g.,
see [SSS95, Theorem 4(III)]): if Z is a sum of b-wise independent 0-1 random
variables with E[Z] = µ for an even b, then

Pr[|Z − µ| ≥ t] ≤
(
b ·max{b, µ}

e2/3t2

)b/2
.
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In the proof of Claim 6.2.7, our application has µ = k · (1/2 + h(N, k)) and
t = kh(N, k). Thus,

Pr[Z ≤ k/2] ≤ O

(
1

kh(N, k)2

)b/2
.

Taking h(N, k) = 1/k1/3, for example, we can bound the right-hand side by
O(1/kb/6). Choosing b sufficiently large (as a function of c), we observe that
Claim 6.2.7 remains true. Claim 6.2.8 also remains true for our new choice
of h(N, k), by suitably replacing square roots with cube roots in the calcula-
tions. The final expected weight bound on the set cover follows by linearity of
expectation, which does not require independence.

6.4 Geometric Set Systems with Low Shallow
Cell Complexity

Our results refine the sampling algorithm by Varadarajan [Var10], and thus
there are naturally numerous consequences for geometric covering problems. A
standard technique by Clarkson and Shor [CS89] links the shallow cell complex-
ity to union complexity: for a family of objects in a constant dimension d with
constant description complexity, if the union complexity is O(nφ(n)), then the
shallow cell complexity is bounded by O((n/k)φ(n/k) · kd) ≤ O(nφ(n)kd−1).
We immediately obtain the following corollary of Theorem 6.2.1, which matches
and generalizes previous results for the unweighted case [AES10, Var09]:

Corollary 6.4.1. Let C be a class of geometric set cover instances where the
union of n objects has complexity O(nφ(n)). Then there is a randomized
polynomial-time LP-relative O(max{1, log φ(n)})-approximation algorithm for
the weighted set cover problem for C.

This corollary enables us to resolve several of the open questions posed in
[Var10] pertaining to weighted geometric set cover for objects with linear or
near linear union complexity.

For example, fat triangles have been shown to have union complexity O(n ·
2α(n) log∗ n) by a recent result of Ezra, Aronov, and Sharir [EAS11] (with de
Berg, these authors have apparently improved the bound toO(n log∗ n)). Apply-
ing Varadarajan’s result readily gives a 2O(log∗ n)-approximation for the weighted
version of R2-Fat-Triangle-Cover. Corollary 6.4.1 immediately implies the
following strengthening:

Corollary 6.4.2. There is a randomized poly-time LP-relative O(log log∗ n)-
approximation algorithm for weighted R

2-Fat-Triangle-Cover.

Several other examples shall follow. It is well-known that a collection of n
disks (or pseudodisks) has union complexity O(n) [KLPS86]. Corollary 6.4.1
thus gives us an O(1) approximation for weighted disk cover, improving the
2O(log∗ n)-approximation obtained in [Var10].
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The same thing works for axis-aligned octants and unit cubes in R
3, since

they have linear union complexity [BSTY98]; we thus obtain O(1) approxima-
tions for R3-Unit-Cube-SC and R

3-3-Sided-Box-SC as well. Since these set
systems are both self-dual (see Proposition 2.3.20), these results extend to R

3-
Unit-Cube-HS and Min-Hitting-Set33. Half-spaces in R

3 have linear union
complexity, since the union is the complement of a convex polyhedron. By self-
duality again [dBCvKO08], we obtain results for both R

3-Halfspace-SC and
R

3-Halfspace-HS. Disks in R2 can be mapped to half-spaces in R3 by the lifting
transformation (see Proposition 2.3.17), and so we get an O(1)-approximation
for weighted hitting set for disks in the plane. In summary:

Corollary 6.4.3. There are randomized polynomial-time O(1)-approximation
algorithms for the weighted versions of the following covering problems:

• R3-Unit-Cube-SC (equivalently, R3-Unit-Cube-HS),

• R3-Halfspace-SC (equivalently, R3-Halfspace-HS),

• R2-Disk-SC (equivalently, R2-Disk-HS),

• more generally, R2-Pseudodisk-SC and R
2-Pseudodisk-HS,

• R3-3-Sided-Box-SC,

• R3-3-Sided-Box-HS.

Recently, Gibson and Pirwani [GP10] have applied Varadarajan’s technique
to the weighted dominating set problem in the intersection graph of a set of
disks in R

2. We can map a disk σ with center (a, b) and radius c to a point
pσ = (a, b, c), and a disk σ′ with center (a′, b′) and radius c′ to a region
Sσ′ = {(x, y, z) :

√
(x− a′)2 + (y − b′)2 ≤ z + c′}, so that the two disks in-

tersect if and only if pσ is covered by Sσ′ . The union of the Sσ′ ’s corresponds
to a planar additively weighted Voronoi diagram, which is known to have lin-
ear complexity [Aur91]. We immediately obtain the following improvement to
Gibson and Pirwani’s result:

Corollary 6.4.4. There is a randomized polynomial-time O(1)-approximation
algorithm for weighted R

2-Disk-DS.

6.5 Shallow Cell Complexity of Other Set Sys-
tems

Here we obtain some results on the shallow cell complexity of non-geometric
set systems, such as those of priority covering systems and Tree-SC. Our main
application is an O(1)-approximation for weighted priority tree cover. We first
obtain an exact bound on the SCCof Tree-SC matrices:

We first obtain an exact bound on the SCCof Tree-SC matrices. In what
follows, we are essentially borrowing some ideas from matroid theory without
explicitly referring to them. We first need a definition:
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Definition 6.5.1. [BL73, Oxl11, §6.4] Let G = (V,E) be a connected graph and
let T ⊆ E be a tree spanning G. The T -fundamental-cycle incidence matrix of
G is the T × (E \ T ) matrix A where Aef is 1 if e lies on the fundamental cycle
of f in T and 0 otherwise.

Note that tree-fundamental-cycle incidence matrices are precisely the inci-
dence matrices associated with Tree-SC.

The following lemma is well-known to matroid theorists [Jae79, Oxl11, §14.10];
we prove it here for completeness without reference to matroids:

Lemma 6.5.2. Let A be a Tree-SC matrix. Then the number of distinct rows
of A is at most max {3N − 3, 2}. In particular, Tree-SC has O(N) SCC, since
Tree-SC is a hereditary class of set systems.

Proof. If every row of A has at most a single one, then A has at most N + 1
distinct rows, and we are done. Suppose A has some row with at least two ones.

We shall assume that A is the T -fundamental-cycle incidence matrix of a
graph G for some spanning tree T of G. We first create a new graph G̃ = (Ṽ , Ẽ)
and a new tree T̃ ⊆ Ẽ spanning Ẽ in the following way. While G has a vertex
v ∈ V of degree at most 2, contract one of its incident T edges. In a moment, we
will justify why G maintains at least 2 vertices throughout. If we let Ã be the
T̃ -fundamental-cycle incidence matrix of G̃, observe that we obtained Ã from A
by deleting some zero rows, some rows with exactly one 1, and some duplicate
rows. Thus, the number of distinct rows dropped by at most N + 1. Note that
it also follows that Ã has at least one row, so T̃ 6= ∅, which is why G had at
least 2 vertices throughout the contraction process.

Since G̃ has minimum degree 3,

3|Ṽ | ≤ 2|Ẽ|,

so
|Ṽ | − 1 ≤ 2[|Ẽ| − (|Ṽ | − 1)]− 3 = 2N − 3,

which shows Ã has at most 2N − 3 rows. Therefore, A has at most 3N − 2
distinct rows.

It turns out that when an SCC bound holds independently of k, we may
add priorities at loss of a factor of k in the SCC. More generally, we have the
following result:

Lemma 6.5.3. Let C be a class of set systems with SCC f(n, k). Then CP has
SCCat most kf(n, n).

Proof. Suppose A ∈ C and consider what happens when priorities π and s are
added to A, possibly after duplicating some rows of A and applying different
demand priorities to each. For simplicity, order the columns of A by decreasing
supply priority.

Consider a row x of A. The effect of adding a priority to x is to set some suffix
of its corresponding row to zero. Thus, each cell of A induces at most one cell
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of each depth when priorities are added—in particular, at most k cells of depth
k or fewer (excluding cells containing no ones, which can be ignored). Since A
certainly has at most f(N,N) total cells (where N is the number of columns of
A), it follows that after adding priorities, A will have at most kf(N,N) cells of
depth at most k. The result follows.

Lemma 6.5.3 implies the following:

• If C has SCCf(n, k) = g(n) for some function g not depending on k, then
CP has SCC kg(n).

• Priority-Tree-SC has O(nk) SCC(via the above point and Lemma 6.5.2).

Combining this with our algorithm, we obtain the following:

Theorem 6.5.4. There is a randomized polynomial-time O(1)-approximation
algorithm for weighted Priority-Tree-SC.

Unfortunately, not all binary TUM matrices have low SCC after adding pri-
orities:

Example 6.5.5. Even transposes of 0, 1 network matrices, which are totally
unimodular, can have SCC Ω(n2) after adding priorities. We show this using a
set cover problem where the elements are vertical paths in a rooted tree and
each set consists of the paths meeting at a specified edge and not exceeding the
priority of the edge.

Fix ` ≥ 1. Let v0, v1, . . . , v` be a path with ` edges, and let w1, . . . , w` be
leaves, each adjacent to v0. For each 1 ≤ i ≤ `, assign priority i to edge vi−1vi,
and assign priority ` to edge wiv0. Root the tree at v`.

The resulting set cover problem has n = 2` sets, and we claim the number of
cells of depth 2 is at least `2 = n2

4 . Indeed, let 1 ≤ i, j ≤ `, and consider the path
Pij from wi to vj having priority j. The only two edges whose corresponding
sets contain Pij are wiv0 and vj−1vj . Thus, each Pij lies in a distinct depth-2
cell.

91





Chapter 7

Capacitated and Priority
Covering Problems

In this chapter, we focus primarily on nongeometric covering problems, most of
which arise in applications from combinatorial optimization. A key difference
between the results in this chapter and the previous chapters is that we shall
obtain results for problems that are not, strictly speaking, special cases of Min-
Set-Cover. Instead, our primary results shall involve, more general ‘covering’-
type problems. Specifically, we will discuss the following three types of problems:

• Priority covering problems, defined in Chapter 2, which are special cases
of Min-Set-Cover obtained from other set systems by the addition of
priority supplies and demands.

• Multi-cover problems—covering problems in which each element must be
covered a specified number of times, which may differ from element to
element. These cannot be encoded by Min-Set-Cover.

• Capacitated covering problems—a generalization of multi-cover problems
in which each element is given an integral demand capacity, and each set
is given an integral supply capacity. Each element must be covered by sets
whose supply capacities sum to the element’s demand capacity, or greater.

Of course, like Min-Set-Cover, all of the above problems come in both weighted
and unweighted flavours.

Our key result is an approximation algorithm for capacitated covering prob-
lems that uses LP-relative approximation algorithms for priority covering and
multi-cover problems as a subroutine. Using the theory we have already de-
veloped for priority covering problems in conjunction with some basic results
about multi-cover problems, we are able to obtain powerful results for many
difficult capacitated covering problems. One of our major results is an O(1)-
approximation for the capacitated version of Tree-SC. We also list various

93



7. CAPACITATED AND PRIORITY COVERING PROBLEMS

algorithmic results for weighted and unweighted capacitated and priority cov-
ering problems on lines and trees. Additional details (including integrality gap
results) may be found in [CGK10b].

Most of the results in this chapter were originally published in [CGK10a]
or the full version [CGK10b]. The final proof that the capacitated version of
Tree-SC admits a constant approximation requires our quasi-uniform sampling
result from Chapter 6, which can also be found in [CGKS12].

7.1 Preliminaries and Statement of Main Result

In a covering integer program (CIP), we are given an M by N non-negative
constraint matrix A, demands b ∈ Z

M
+ , non-negative costs c ∈ Z

N
+ , and upper

bounds d ∈ ZN+ . The goal is to solve the following integer linear program (which
we denote by Cov(A, b, c, d)):

min{cTx : Ax ≥ b, 0 ≤ x ≤ d, x integer}.

CIPs generalize the integer programming formulation (SCIP) of Min-Set-
Cover and are sufficiently powerful to encode capacitated covering and multi-
covering (see [Vaz01] for additional applications). Capacitated covering prob-
lems can be encoded by forcing all of the non-zero entries of any column of
the constraint matrix A to be equal. The resulting CIPs are known as column-
restricted CIPs (or CCIPs for short). To encode multi-cover problems, we apply
a stronger restriction, forcing A to be a binary matrix; the resulting CIPs are
known as 0,1-CIPs. Ordinary Min-Set-Cover can be encoded by implying yet
another strengthening, forcing A to be a binary matrix as well as forcing b and
d to both consist entirely of ones. In the unweighted versions of all of these
problems, the cost vector c is forced to consist entirely of ones.

Weighted CIPs are hard to solve even when they contain just a single row.
A capacitated covering problem in which the goal is to cover a single element is
precisely equivalent to the knapsack problem; consequently, even CIPs having
a single row are NP-hard to solve exactly.

General CIPs provide an extremely powerful framework for encoding covering-
type problems, and there is a rich and long line of work ([Dob82, Hoc82, RV93,
Sri99, Sri06]) on approximation algorithms for them. As a backdrop to what
we do in the remainder of this chapter, we shall briefly discuss some of the
relevant contributions (though we will not make use of any of these results di-
rectly). Assuming no upper bounds on the variables, Srinivasan [Sri99] gave a
O(1 + logα)-approximation for general CIPs, where α, called the dilation of the
instance, denotes the maximum number of non-zero entries in any column of
the constraint matrix. Later on, Kolliopoulos and Young [KY05] obtained the
same approximation factor, respecting the upper bounds. However, these algo-
rithms do not give any better results when special structure of the constraint
matrix is known. Even for the special case of CCIPs, nothing better is known
unless one aims for bicriteria results where solutions violate the upper bound
constraints x ≤ d. On the hardness side, Trevisan [Tre01] showed that it is
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NP-hard to obtain a (logα − O(log logα))-approximation, even for the special
case of 0,1-CIPs.

As with the set cover problems discussed in previous chapters, our method
will be to exploit additional underlying structure to better solve CCIPs and 0,1-
CIPs. As a warm-up, we observe that CIPs remain solvable in polynomial time
whenever the constraint matrix A is totally unimodular, since the canonical
LP relaxation of the CIP is then integral (e.g., see [Sch03]). Consequently, the
multi-cover versions of Network-SC and Network-HS remain polynomial-
time solvable and have an integrality gap of 1 (by Theorem 2.1.18).

While a number of general techniques have been developed for obtaining
improved approximation algorithms for structured covering problems like the
ones discussed in previous chapters, very little is known for structured CIP
instances that are not 0,1. Our study of CCIPs in this chapter is our attempt
to mitigate this problem. The main focus of the line of research discussed herein
is to understand how the structure of the underlying 0,1-CIP can be used to
derive improved approximation algorithms for CCIPs. Our primary result is the
following:

Theorem 7.1.1. Let C be a class of set systems. Suppose that the following
assumptions hold:

A1 The weighted 0,1-CIP on C has integrality gap γ ≥ 1. In other words,
among all of the multi-cover problems obtained by taking an (SCIP) in-
stance on some matrix in C and adding non-negative vectors of demands
and weights, none have integrality gap greater than γ.

A2 The weighted PCIP problem on C (that is, the regular weighted set cover
problem on the class CP of set systems) has integrality gap ω ≥ 1.

Then the weighted CCIP on C admits a polynomial time LP-relative (24γ+8ω)-
approximation algorithm for column-restricted CIPs. In other words, there is an
O(γ + ω)-approximation algorithm for capacitated covering problems obtained
by taking element-set incidence matrices from C and adding arbitrary supply
capacities and costs to sets and arbitrary demand capacities to elements.

The main idea implicit in Theorem 7.1.1 is that the approximability of a
class of CCIP instances (defined on some family of set systems) is related to the
integrality gap of the underlying PCIP and 0,1-CIP problems (defined on the
same family of set systems). Accordingly, capacitated covering problems can
be approximated well whenever their underlying priority covering problems and
multi-cover problems admit good LP-relative approximation algorithms.

Additionally, we highlight the following key aspects of this result:

• The variables γ and ω need not be fixed integers; indeed, they may vary
according to any instance-related parameter, allowing non-constant ap-
proximation algorithms to be obtained via our method.

• We do not explicitly require an algorithm to solve the underlying PCIP
or 0,1-CIP problems in order to obtain our approximation for the CCIPs.
Any proof of a small integrality gap is sufficient.
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• Conversely, since we do require an integrality gap proof for the underlying
PCIP and 0,1-CIP problems, approximation algorithms for PCIPs or 0,1-
CIPs that are not LP-relative are insufficient for applying the theorem.

• Theorem 7.1.1 also holds for unweighted CCIPs. Specifically, to obtain a
(24γ + 8ω)-approximation for unweighted capacitated covering problems
on a class C of set systems, it suffices to prove integrality gap bounds of
ω and γ on the unweighted priority and multi-cover problems on C.

• As part of our analysis, we will prove that an integrality gap of ω need
only be obtained for PCIPs in which the number of distinct priorities is
O(log smax) where smax is the largest integer supply priority in the original
CCIP instances we wish to approximate. This has implications for some
applications.

Theorem 7.1.1 is proven using LP strengthening and rounding. We add a set
of valid constraints called the knapsack cover constraints to the canonical LP
relaxation of a CCIP, which can otherwise have an unbounded integrality gap.
We then give a method of rounding a fractional solution to the resulting LP by
relating it to LPs obtained from the related PCIC and 0,1-CIP problems.

Our method is related to a prior result of Kolliopoulos [Kol03]. The author
studies CCIPs that satisfy a rather strong assumption, called the no bottleneck
assumption, which implies that the supply of any column is smaller than the
demand of any row. Kolliopoulos [Kol03] shows that if one is allowed to violate
the upper bounds by a multiplicative constant, then the integrality gap of the
CCIP is within a constant factor of that of the original 0,1-CIP.1 As the author
notes, such a violation is necessary; otherwise the CCIP has unbounded inte-
grality gap. If one is not allowed to violated upper bounds, nothing better than
the result of [KY05] is known for the special case of CCIPs.

Our work on CCIPs parallels a large body of work on column-restricted
packing integer programs (CPIPs), the ‘dual’ problem to covering. Assuming the
no-bottleneck assumption, Kolliopoulos and Stein [KS04] show that CPIPs can
be approximated asymptotically as well as the corresponding 0,1-PIPs. Chekuri
et al. [CMS07] subsequently improve the constants in the result from [KS04].
These results imply constant factor approximations for the column-restricted
tree packing problem under the no-bottleneck assumption. Without the no-
bottleneck assumption, however, only a polylogarithmic approximation is known
for the problem [CEK09].

The only work on priority versions of covering problems that we are aware of
is due to Charikar, Naor and Schieber [CNS04] who studied the priority Steiner
tree and forest problems in the context of Quality of Service (QoS) management
in a network multicasting application. Charikar et al. present an O(log n)-
approximation algorithm for the problem, and Chuzhoy et al. [CGNS08] later
show that no efficient o(log log n) approximation algorithm can exist unless
NP ⊆ DTIME(nlog log logn) (n is the number of vertices).

1Such a result is implicit in the paper; the author only states a O(logα) integrality gap.
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To the best of our knowledge, the column-restricted or priority versions
of the line and tree cover problem have not been studied. The best known
approximation algorithm known for both is the O(log n) factor implied by the
results of [KY05] stated above. However, upon completion of our work, Nitish
Korula [Kor09] pointed out to us that a 4-approximation for column-restricted
line cover is implicit in a result of Bar-Noy et al. [BNBYF+01]. We remark
that their algorithm is not LP-relative, although our general result on CCIPs
is. Moreover, their results cannot be extended to trees.

7.2 Proof of Main Result

In this section, we shall prove Theorem 7.1.1 via LP strengthening and rounding.
Throughout this section, we shall fix a class C of set systems and assume that
assumptions A1 and A2 from above hold. We begin with an overview of the
method.

The key ingredient in the proof is the addition of knapsack cover constraints
to the standard LP relaxation of the CCIP. Knapsack cover constraints were
first used to strengthen LP relaxations in [Bal75, HJP75, Wol75]; Carr et al.
[CFLP00] were the first to use them in the design approximation algorithms.
The paper of Kolliopoulos and Young [KY05] also uses these to obtain their
result on general CIPs.

The main technique used for designing algorithms for column-restricted
problems is grouping-and-scaling developed by Kolliopoulos and Stein [KS01,
KS04] for packing problems, and later used by Kolliopoulos [Kol03] in the cov-
ering context. In this technique, the columns of the matrix are divided into
groups of ‘similar’ supply values; in a single group, the supply values are then
scaled to be the same; for a single group, the integrality gap of the original
0,1-CIP is invoked to get an integral solution for that group; the final solution
is a ‘union’ of the solutions over all groups.

There are two issues in applying the technique to the new strengthened
LP relaxation of our problem. First, although the original constraint matrix
is column-restricted, the new constraint matrix with the knapsack cover con-
straints is not. Secondly, unless additional assumptions are made, the current
grouping-and-scaling analysis does not give a handle on the degree of violation
of the upper bound constraints. This is the reason why Kolliopoulos [Kol03]
needs the strong no-bottleneck assumption.

We get around the first difficulty by grouping the rows as well, into those
that get most of their coverage from columns not affected by the knapsack
constraints, and the remainder. On the first group of rows, we apply a subtle
modification to the vanilla grouping-and-scaling analysis and obtain an O(γ)-
approximate feasible solution satisfying these rows; we then show that one can
treat the remainder of the rows as a PCIP and get an O(ω)-approximate feasible
solution satisfying them, using assumption A2. Combining the two gives the
O(γ + ω) factor. The full details are given in the Subsections that follow.
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7.2.1 Strengthening the Canonical LP Relaxation

In the following, we use C for the set of columns and R for the set of rows of A.
For a vector s ∈ R

N , we denote by A[s] a column-restricted constraint matrix
whose jth column contains only elements in {0, sj}.

Let F ⊂ C be a subset of the columns in the CCIP Cov(A[s], b, c, d). For all
rows i ∈ R, define bFi = max{0, bi −

∑
j∈F A[s]ijdj} to be the residual demand

of row i w.r.t. F . Define matrix AF [s] by letting

AF [s]ij =
{

min{A[s]ij , bFi } : j ∈ C \ F
0 : j ∈ F, (7.2.1)

for all i ∈ C and for all j ∈ R. The following Knapsack-Cover (KC) inequality∑
j∈C

AF [s]ijxj ≥ bFi

is valid for the set of all integer solutions x for Cov(A[s], b, c, d). Adding the
set of all KC inequalities yields the following stronger LP formulation CIP. We
note that the LP is not column-restricted, in that, different values appear on
the same column of the new constraint matrix.

optP := min
∑
j∈C

cjxj (P)

s.t.
∑
j∈C

AF [s]ijxj ≥ bFi ∀F ⊆ C,∀i ∈ R (7.2.2)

0 ≤ xj ≤ dj ∀j ∈ C

It is not known whether (P) can be solved in polynomial time. For α ∈ (0, 1),
call a vector x∗ α-relaxed if its cost is at most optP , and if it satisfies (7.2.2)
for F = {j ∈ C : x∗j ≥ αdj}. An α-relaxed solution to (P) can be computed
efficiently for any α. To see this note that one can check whether a candidate
solution satisfies (7.2.2) for a set F ; we are done if it does, and otherwise we
have found an inequality of (P) that is violated, and we can make progress via
the ellipsoid method. Details can be found in [CFLP00] and [KY05].

We fix an α ∈ (0, 1), specifying its precise value later. Compute an α-relaxed
solution, x∗, for (P), and let F = {j ∈ C : x∗j ≥ αdj}. Define x̄ as, x̄j = x∗j if
j ∈ C \ F , and x̄j = 0, otherwise. Since x∗ is an α-relaxed solution, we get that
x̄ is a feasible fractional solution to the residual CIP, Cov(AF [s], bF , c, αd). In
the next subsection, our goal will be to obtain an integral feasible solution to
the covering problem Cov(AF [s], bF , c, d) using x̄. The next lemma shows how
this implies an approximation to our original CIP.

Lemma 7.2.1. If Cov(AF [s], bF , c, d) admits an integral feasible solution, xint

with cTxint ≤ β · cT x̄, then there exists a max{1/α, β}-factor approximation to
Cov(A[s], b, c, d).
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Proof. Define

zj =
{
dj : j ∈ F
xintj : j ∈ C \ F, (7.2.3)

Observe that z ≤ d. z is a feasible integral solution to Cov(A[s], b, c, d) since for
any i ∈ R, ∑

j∈C
A[s]ijzj =

∑
j∈F

A[s]ijdj +
∑
j∈C\F

A[s]ijxintj

≥ (bi − bFi ) +
∑
j∈C\F

AF [s]ijxintj

≥ bi

where the first inequality follows from the definition of bFi and since A[s]ij ≥
AF [s]ij , the second inequality follows because xint is a feasible solution to the
instance Cov(AF [s], bF , c, d).
Furthermore,

cT z =
∑
j∈F

cjdj +
∑
j∈C\F

cjx
int
j ≤ 1

α

∑
j∈F

cjx
∗
j + β

∑
j∈C\F

cjx
∗
j ≤ max{ 1

α
, β}optP

where the first inequality follows from the definition of F and the second from
the assumption in the theorem statement.

7.2.2 Solving the Residual Problem

In this section we use a feasible fractional solution x̄ of Cov(AF [s], bF , c, αd), to
obtain an integral feasible solution xint to the problem Cov(AF [s], bF , c, d), with
cTxint ≤ βcT x̄ for β = 24γ + 8ω. Fix α = 1/24.

Converting to Powers of 2. For ease of exposition, we first modify the
input to the residual problem Cov(AF [s], bF , c, d) so that all entries of bF are
powers of 2. For every i ∈ R, let b̄i denote the smallest power of 2 larger than
bFi . For every column j ∈ C, let s̄j denote the largest power of 2 smaller than
sj .

Lemma 7.2.2. y = 4x̄ is feasible for Cov(AF [s̄], b̄, c, 4αd).

Proof. Focus on row i ∈ R. We have∑
j∈C

AF [s̄]ijyj ≥ 2 ·
∑
j∈C

AF [s]ij x̄j ≥ 2bFi ≥ b̄i,

where the first inequality uses the fact that sj ≤ 2s̄j for all j ∈ C, the second
inequality uses the fact that x̄ is feasible for Cov(AF [s], bF , c, αd), and the third
follows from the definition of b̄i.
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Partitioning the rows. We call b̄i the residual demand of row i. For a
row i, a column j ∈ C is i-large if the supply of j is at least the residual demand
of row i; it is i-small otherwise. Formally,

Li = {j ∈ C : Aij = 1, s̄j ≥ b̄i} is the set of i-large columns
Si = {j ∈ C : Aij = 1, s̄j < b̄i} is the set of i-small columns

Recall the definition from (7.2.1), AF [s̄]ij = min(A[s̄]ij , bFi ). Therefore, the
entry AF [s̄]ij = Aijb

F
i for all j ∈ Li since s̄j ≥ b̄i ≥ bFi ; and AF [s̄]ij = Aij s̄j for

all j ∈ Si, since being powers of 2, s̄j < b̄i implies, s̄j ≤ b̄i/2 ≤ bFi .
We now partition the rows into large and small depending on which columns

most of their coverage comes from. Formally, call a row i ∈ R large if∑
j∈Si

AF [s̄]ijyj ≤
∑
j∈Li

AF [s̄]ijyj ,

and small otherwise. Note that Lemma 7.2.2 together with the fact that each
column in row i’s support is either small or large implies,

For a large row i,
∑
j∈Li

AF [s̄]ijyj ≥ b̄i/2.

For a small row i,
∑
j∈Si

AF [s̄]ijyj ≥ b̄i/2.

Let RL and RS be the set of large and small rows.
In the following, we address small and large rows separately. We compute

a pair of integral solutions xint,S and xint,L that are feasible for the small and
large rows, respectively. We then obtain xint by letting

xintj = max{xint,Sj , xint,Lj }, (7.2.4)

for all j ∈ C.

7.2.3 Dealing with Small Rows via Multi-Cover

For these rows we use the grouping-and-scaling technique similar to that of
[CMS07, Kol03, KS01, KS04]. However, as mentioned in the introduction, we
use a modified analysis that bypasses the no-bottleneck assumptions made by
earlier works.

Lemma 7.2.3. We can find an integral solution xint,S such that
a) xint,Sj ≤ dj for all j,

b)
∑
j∈C cjx

int,S
j ≤ 24γ

∑
j∈C cj x̄j , and

c) for every small row i ∈ RS ,
∑
j∈C A

F [s]ijx
int,S
j ≥ bFi .

Proof. The complete proof is slightly technical and hence we start with a sketch.
Since the rows are small, for any row i, we can zero out the entries that are

larger than b̄i, and still 2y will be a feasible solution. Note that, now in each
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row, the entries are < b̄i, and thus are at most b̄i/2 (everything being powers
of 2). We stress that it could be that b̄i of some row is less than the entry in
some other row, that is, we do not have the no-bottleneck assumption. However,
when a particular row i is fixed, b̄i is at least any entry of the matrix in the ith
row. Our modified analysis of grouping and scaling then makes the proof go
through.

We group the columns into classes that have sj as the same power of 2, and
for each row i we let b̄(t)i be the contribution of the class t columns towards the
demand of row i. The columns of class t, the small rows, and the demands b̄(t)i
form a CIP where all non-zero entries of the matrix are the same power of 2. We
scale both the constraint matrix and b̄

(t)
i down by that power of 2 to get a 0,1-

CIP, and using assumption A1, we get an integral solution to this 0,1-CIP. Our
final integral solution is obtained by concatenating all these integral solutions
over all classes.

Till now the algorithm is the standard grouping-and-scaling algorithm. The
difference lies in our analysis in proving that this integral solution is feasible for
the original CCIP. Originally the no-bottleneck assumption was used to prove
this. However, we show since the column values in different classes are geomet-
rically decreasing, the weaker assumption of b̄i being at least any entry in the
ith row is enough to make the analysis go through. We now get into the full
proof.

Step 1: Grouping the columns

Let s̄min and s̄max be the smallest and largest supply among the columns
in C \ F . Since all s̄j are powers of 2, we introduce the shorthand, s̄(t) for the
supply s̄max/2t. We say that a column j is in class t ≥ 0, if s̄j = s̄(t), and we
let

C(t) := {j ∈ C \ F : s̄j = s̄(t)}

be the set of class t supplies.

Step 2: Disregarding i-large columns of a small row i

Fix a small row i ∈ RS . We now identify the columns j that are i-small. To
do so, define ti := log(s̄max/b̄i) + 1. Observe that any column j in class C(t) for
t ≥ ti are i-small. This is because s̄j = smax/2t ≤ smax/2ti = b̄i/2 < b̄i. Define

b̄
(t)
i =

{
2
∑
j∈C(t) AF [s̄]ijyj : t ≥ ti

0 : otherwise

as the contribution of the class t, i-small columns to the demand of row i,
multiplied by 2. Note that by definition of small rows, these columns contribute
to more than 1/2 of the demand, and so∑

t≥ti

b̄
(t)
i ≥ b̄i. (7.2.5)
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Henceforth, we will consider only the contributions of the small i-columns of a
small row i.

Step 3: Scaling and getting the integral solution
Fix a class t of columns and scale down by s̄(t) to get a {0, 1}-constraint

matrix (recall entries of the columns in a class t are all s̄(t)). This will enable
us to apply assumption A1 and get an integral solution corresponding to these
columns. The final integral solution will be the concatenation of the integral
solutions over the various classes.

The constants in the next claim are carefully chosen for the calculations to
work out later.

Claim 7.2.4. For any t ≥ 0 and for all i ∈ RS , 6 ·
∑
j∈C(t) Aijyj ≥ b3b̄(t)i /s̄(t)c.

Proof. The claim is trivially true for rows i with ti > t as b̄(t)i = 0 in this case.
Consider a row i with ti ≤ t. Since any column j ∈ C(t) is i-small, we get
AF [s̄]ij = Aij s̄j = Aij s̄

(t). Using the definition of b̄i, we obtain

6 ·
∑
j∈C(t)

Aij s̄
(t)yj = 3b̄(t)i .

Dividing both sides by s̄(t) and taking the floor on the right-hand side yields
the claim.

Since α = 1/24 and x̄ is a feasible solution to Cov(AF [s], bF , c, d/24), we get
that 6yj = 24 · x̄j ≤ dj for all j ∈ C \ F . Thus, the above claim shows that
6y is a feasible fractional solution for Cov(A(t), b3b̄(t)/s̄(t)c, c(t), d(t)), where A(t)

is the submatrix of A defined by the columns in C(t), and c(t) and d(t) are the
sub-vectors of c and d, respectively, that are induced by C(t). Using assumption
A1, we therefore conclude that there is an integral vector xint,S,t such that

xint,S,tj ≤ dj for all j ∈ C(t), and (7.2.6)∑
j∈C(t)

A
(t)
ij x

int,S,t
j ≥

⌊
3b̄(t)i
s̄(t)

⌋
for all i ∈ RS , and (7.2.7)

∑
j∈C(t)

cjx
int,S,t
j ≤ 6γ ·

∑
j∈C(t)

cjyj (7.2.8)

We obtain integral solution xint,S by letting xint,Sj = xint,S,tj if j ∈ C(t). Thus
xint,Sj ≤ dj for all j ∈ C, and we get,∑
j∈C

cjx
int,S
j =

∑
t≥0

∑
j∈C(t)

cjx
int,S,t
j ≤ 6γ ·

∑
t≥0

∑
j∈C(t)

cjyj = 24γ ·
∑
j∈C

cj x̄j . (7.2.9)

Thus we have established parts (a) and (b) of the lemma. It remains to show
that xint,S is feasible for the set of small rows.
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Step 4: Putting them all together: scaling back
Once again, fix a small row i ∈ RS . The following inequality takes only

contribution of the i-small columns. We later show this suffices.∑
j∈C

AF [s]ijx
int,S
j ≥

∑
j∈C: j is i-small

Aijsjx
int,S
j

=
∑
t≥ti

∑
j∈C(t)

A
(t)
ij sjx

int,S
j ≥

∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,tj

(7.2.10)

The first inequality follows since AF [s]ij = Aijsj for i-small columns, the equal-
ity follows from the definition of ti, and the final inequality uses the fact that
sj ≥ s̄(t) for j ∈ C(t). The following claim along with (7.2.10) proves feasibility
of row i. This is the part where our analysis slightly differs from the standard
grouping-and-scaling analysis.

Claim 7.2.5. For any small row i ∈ RS ,∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,tj ≥ bFi .

Proof. In this proof, the choice of the constant 3 on the right-hand side of the
inequality in Claim 7.2.4 will become clear. Let Si = {t ≥ ti : 3b̄(t)i < s̄(t)} be
the set of i-small classes t whose fractional supply b̄(t)i is small compared to its
integral supply s̄(t). We now show that for any small row i, the columns in the
classes not in Si suffice to satisfy its demand. Note that∑

t 6∈Si,t≥ti

b̄
(t)
i =

∑
t≥ti

b̄
(t)
i −

∑
t∈Si

b̄
(t)
i ≥

∑
t≥ti

b̄
(t)
i −

1
3

∑
t∈Si

s̄(t) (7.2.11)

which follows from the definition of Si. Furthermore, from (7.2.5) we know that
for a small row,

∑
t≥ti b̄

(t)
i ≥ b̄i. Also, since s̄(t) form a geometric series, we get

that
∑
t∈Si

s̄(t) ≤
∑
t≥ti s̄

(t) ≤ 2s̄(ti). Putting this in (7.2.11) we get∑
t6∈Si,t≥ti

b̄
(t)
i ≥ b̄i −

1
3

∑
t≥ti

s̄(t) ≥ b̄i −
2
3
s̄(ti) =

2
3
b̄i, (7.2.12)

where the final equality follows from the definition of ti, which implies that
s̄(ti) = b̄i/2.

Moreover, for t 6∈ Si, we know that b3b̄ti/s̄(t)c ≥ 3
2 b̄
t
i/s̄

(t) since bac ≥ a/2 if
a > 1. Therefore, using inequality (7.2.7) in (7.2.10), we get∑

j∈C
AF [s]ijx

int,S
j ≥

∑
t≥ti

∑
j∈C(t)

A
(t)
ij s̄

(t)xint,S,tj ≥
∑

t6∈Si,t≥ti

s̄(t)

⌊
3b̄(t)i
s̄(t)

⌋

≥ 3
2

∑
t6∈Si,t≥ti

b̄
(t)
i

≥ b̄i ≥ bFi ,
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where the second-last inequality uses (7.2.12), and the last uses the definition
of b̄i. This completes the proof of the lemma.

7.2.4 Dealing with Large Rows via Priority Covering

The large rows can be showed to be a PCIP problem and thus assumption A2
can be invoked to get an analogous lemma to Lemma 7.2.3.

Lemma 7.2.6. We can find an integral solution xint,L such that
a) xint,Lj ≤ 1 for all j,

b)
∑
j∈C cjx

int,S
j ≤ 8ω

∑
j∈C cj x̄j , and

c) for every large row i ∈ RL,
∑
j∈C A

F [s]ijx
int,S
j ≥ bFi .

Proof. Let i ∈ RL be a large row, and recall that Li is the set of i-large columns
in C. We have ∑

j∈Li

AF [s]ijyj =
∑
j∈Li

Aij b̄iyj ≥ b̄i/2,

and hence
2
∑
j∈Li

Aijyj ≥ 1. (7.2.13)

Let AR be the minor of A induced by the large rows. Consider the priority
cover problem Cov(AR[s̄, b̄],1, c). From the definition of Li, it follows 2y is a
feasible fractional solution to the priority cover problem.

Using assumption A2, we conclude that there is an integral solution xint,L

such that
∑
j∈C cjx

int,L
j ≤ 2ω

∑
j∈C cjyj = 8ω

∑
j∈C cj x̄j , and

∑
j∈C A

R
ijx

int,L
j ≥

1, for all large rows i ∈ RL.
Fix a large row i. Since AF [s]ij = bFi for all i-large columns Li, we get∑

j∈C
AF [s]ijx

int,L
j ≥

∑
j∈Li

Aijb
F
i x

int,L
j = bFi

∑
j∈C

ARijx
int,L
j ≥ bFi

This completes the proof of the lemma.

7.2.5 Putting Everything Together

We now complete the proof of Theorem 7.1.1.
Let xint,S and xint,L be as satisfying the conditions of Lemma 7.2.3 and

7.2.6, respectively. Define xint as xintj = max{xint,Sj , xint,Lj }. We have

a) xintj ≤ dj since both xint,Sj ≤ dj and xint,Lj ≤ 1 ≤ dj .

b) For any row i,
∑
j∈C A

F [s]ijxintj ≥ bFi since the inequality is true with xint

replaced by xint,S for small rows, and xint by xint,L for large rows.
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c)
∑
j∈C cjx

int
j ≤

∑
j∈C cjx

int,S
j +

∑
j∈C cjx

int,L
j ≤ (24γ + 8ω)

∑
j∈C cj x̄j .

Thus, xint is a feasible integral solution to Cov(AF [s], bF , c, d) with cost bounded
as
∑
j∈C cjx

int
j ≤ (24γ+ 8ω)

∑
j∈C cj x̄j . Noting that α = 1/24, the proof of the

theorem follows from Lemma 7.2.1.

7.3 Applications

Bansal et al. [BKS11] very recently showed that if the integrality gap bound γ
of the underlying multicover family is hereditary in the sense that it also holds
for row-induced sub-systems, then the integrality gap of the LP relaxations of
the corresponding priority instances is O(α log2 k), where k is the number of
distinct priorities. In addition, the authors show the hereditary multicover gap
is γ whenever a given instance has hereditary discrepancy at most α.

One of the main specific questions left open when [CGK10a] was originally
published concerns the case where the set system matrix A is a network matrix.
Does the addition of capacities make the problem harder in this case? The work
in [BKS11] implies an O((log log smax)2) approximation for the capacitated set-
cover problem in this case, where smax is the largest supply. We improve over
[BKS11] and settle the open question in [CGK10a].

Theorem 7.3.1. There is a constant-factor approximation for the weighted
capacitated covering problem whenever the underlying set system matrix A is
a network matrix.

Proof. The corresponding multicover problem involving network matrices is to-
tally unimodular and thus admits an integrality gap of 1. Consequently, by
Theorem 7.1.1, it suffices to bound the integrality gap of the related priority
covering problem. In other words, we must establish a constant factor upper
bound on the integrality gap of Priority-Network-SC. Fortunately, Theo-
rem 6.5.4 provides an LP-relative O(1)-approximation for it, which implicitly
yields a proof that the integrality gap is bounded by a constant. The result
follows.

Unfortunately, the same argument does not work for all totally unimodular
matrices. As shown by Example 6.5.5, there may exist TUM covering problems
whose priority versions do not have low SCC and consequently do not admit a
good approximation using the methods of Chapter 6.

For non-TUM problems, it is not clear that anything can be done without
an improved way to bound the integrality gap of the multi-cover instance. For-
tunately, there exist some techniques for dealing with multi-cover problems, and
they can be applied to set systems of low SCC:

Theorem 7.3.2. There is an O(log logN)-approximation for the capacitated
covering problem whenever the underlying set system matrix has SCC O(n).
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Proof. As in the proof of Theorem 7.3.1, we can use the methods of Chapter 6 to
obtain a constant approximation for the priority covering version, so it suffices
to obtain an O(log logN)-approximation for the multi-cover problem.

Using a trick from [BP10, §5], it is possible to obtain a polynomial-time LP-
relative O(log logM)-approximation for the multicover version of any standard
set cover problem admitting a constant approximation (where M is the number
of rows in the set system matrix). However, for problems with linear SCC we
have M ∈ O(N), and thus a O(log logM)-approximation is an O(log logN)-
approximation, from which the result follows.

Along with the SCC bounds proven in Chapter 6, Theorem 7.3.2 implies
the existence of an O(log logN)-approximation algorithms for many capaci-
tated covering and hitting set problems, including weighted and capacitated
versions of R3-Unit-Cube-SC, R3-Unit-Cube-HS, R3-3-Sided-Box-SC, R3-
3-Sided-Box-HS, R3-Halfspace-SC, R3-Halfspace-HS, R2-Disk-SC, R2-
Disk-HS, and so on.

7.4 Combinatorial Approximation Algorithm for
Priority Tree Cover

Here, we describe a purely combinatorial approach to priority covering on trees.
Unfortunately, this method only works in the unweighted case.

Theorem 7.4.1. There is an efficient 2-approximation algorithm for the un-
weighted Priority-Tree-SC problem.

The crucial idea is the following. Given an optimum solution S∗ ⊆ S, we
can partition the edge-set E of T into disjoint sets E1, . . . , Ep, and partition
two copies of S∗ into S1, . . . , Sp, such that Ei is a path in T for each i, and Si
is a priority line cover for the path Ei. Once again, we assume without loss of
generality that the instance is segment-complete.

In particular, we prove the following lemma. Let ÊS∗,j be the set of edges
e such that j is the segment with the highest supply, among all segments in S∗

that cover e. Note that the union of all ÊS∗,j , over all j ∈ S∗, partitions E.
Also note that for each edge e, there is a unique segment j such that e ∈ ÊS∗,j .
If there were two, we could replace one of the segments by a sub-segment and
still stay feasible. We call the segment j responsible for e.

Lemma 7.4.2. Given an optimal solution S∗ ⊆ S to a PTC instance with tree
T = (V,E), there is a partition

E1 ∪ . . . ∪ Ep = E,

where each Ei is the edge set of a path in T such that for all j ∈ S∗, ÊS∗,j∩Ei 6=
∅ for at most two i ∈ {1, . . . , p}.
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Using this, we describe the 2-approximation algorithm that proves Theo-
rem 7.4.1.

Proof of Theorem 7.4.1. For any two vertices t (top) and b (bottom) of the tree
T , such that t is an ancestor of b, let Ptb be the unique path from b to t. Note
that Ptb, together with the restrictions of the segments in Sto Ptb, defines an
instance of PLC. Therefore, for each pair t and b, we can compute the optimal
solution to the corresponding PLC instance; let the cost of this solution be
c′tb. Create an instance of the 0,1-tree cover problem with T and segments
S ′ := {(t, b) : t is an ancestor of b} with costs c′tb. Solve the 0,1-tree cover
instance exactly (recall we are in the rooted version) and for the segments (t, b)
in S ′ returned, return the solution of the corresponding PLC instance of cost
c′tb. We now use Lemma 7.4.2 to obtain a solution to the 0,1-tree cover problem
(T,S ′) of cost at most 2 times the cost of S∗. This will prove the theorem.

For each Ei, let ti and bi be the end points of Ei with ti being the ancestor
of bi. Since Ei’s partition the edges, the segments (ti, bi) : i = 1, . . . , p is a
feasible 0,1-tree cover for (T,S ′). Define Si := {j ∈ S∗ : e ∈ Ei ∩ ÊS∗,j} to
be the set of segments responsible for the edges in Ei. By definition, Si is a
PLC for Ei. Thus, the cost of the segments in Si is at least c′tibi

. Furthermore,
Lemma 7.4.2 implies that the total cost of the segments in Si is at most twice
the cost of segments in S∗. Therefore, the cost of the feasible solution to the
cover problem in (T,S ′) is at most twice the cost of segments in S∗.

Proof of Lemma 7.4.2. We give an algorithm to compute the decomposition.
Let e be any of the edges incident to the root of T , and let j1 ∈ S∗ be the
highest-supply segment covering e. We then let E1 be the edges of the path in
T corresponding to j1. Removing E1 from T yields sub-trees T1, . . . , Tq. For
each tree Ti we repeat the above steps, and let

E1, . . . , Ep (7.4.1)

be the final partition; let ji ∈ S∗ be the segment corresponding to edge-set Ei.
Note that for q < q′, ÊS∗,jq ∩ Eq′ is empty. This is because Eq′ is a subset of
edges that are not in jq′−1, . . . , j1.

Consider a segment j ∈ S, and let 1 ≤ i ≤ p be smallest such that ÊS∗,j ∩
Ei 6= ∅, and assume that ÊS∗,j ∩Eq 6= ∅ for some i < q ≤ p; choose q smallest
with this property. We claim that jq = j, and hence for all q < q′ ≤ p we have
ÊS∗,j ∩ Eq′ = ∅. Thus, ÊS∗,j has non-empty intersection only with Ei and Eq.

Let e ∈ ES∗,j ∩Ei, and let f ∈ ES∗,j ∩Eq be two edges in different parts of
the partition such that j is responsible for both. As both e and f are edges on
j, and since i < q, it follows that f is a descendant of e in tree T . Let g be the
topmost edge of Eq; clearly, g is on the e, f -path in T . By the decomposition
algorithm, segment jq is the highest-supply segment covering edge g. As j
contains g, this means that the supply of jq is at least that of j. Finally, since
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f is on jq, jq covers f as well. But this means that jq = j as j is responsible
for f .
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Chapter 8

Summary and Conclusion

In this thesis, we examined a variety of covering problems, obtaining both al-
gorithmic and hardness results. Motivated by both theoretical and practical
applications, we studied geometric problems like R2-Rectangle-SC, and com-
binatorial problems such as Tree-SC and its variants. As we have seen, a
distinction between computational geometry and combinatorial optimization
cannot be clearly drawn, and there are many situations in which methods from
both areas can be combined to yield additional insight.

In Chapter 2, we observed that the combinatorial notion of adding priorities
to a problem has a very useful geometrical interpretation—that of ‘extruding’
the set system out into an extra dimension, with the depth of elements and sets
arranged according to supply and demand priorities. We showed how Tree-SC
can be encoded geometrically using 3-sided rectangles, from which it follows
that both Priority-Tree-SC and R

2-Rectangle-SC are subproblems of R3-
4-Sided-Box-SC. Oddly enough, we obtained an LP-relative constant approx-
imation for weighted Priority-Tree-SC, whereas R

2-Rectangle-SC has no
known constant approximation and exhibits an Ω(logM) integrality gap, even
in the unweighted case (via the recent result of Pach and Tardos [PT11]).

In Chapter 4, we showed that the less general problem R
2-3-Sided-Box-SC

and its hitting set version R
2-3-Sided-Box-HS both admit polynomial-time

exact algorithms via dynamic programming, even in the weighted case. We
provided generalizations to more sophisticated set systems, such as families of
pseudodisks containing a common point, and families of downward shadows of
2-intersecting functions. In Chapter 5, we ruled out any generalization of this
to downward shadows of 3-intersecting functions by developing and encoding a
new APX-hard problem known as Special-3SC. We also provided a variety of
other encodings, yielding APX-hardness proofs for covering problems involving
objects such as half-spaces in R

4 and ε-perturbed copies of a single square or
circle in the plane. These results nicely complement the recent PTAS results
obtained by Mustafa and Ray [MR10] for problems such as unweighted R

2-
Unit-Square-SC, R2-Unit-Disk-SC, and R

3-Halfspace-SC.
The quasi-uniform sampling algorithm we provided in Chapter 6 improves
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upon several known algorithms for geometric covering problems. However, using
the notion of shallow cell complexity, we were able to generalize this approach
to allow nongeometric applications. We provided constant or almost-constant
approximations for weighted Priority-Tree-SC and a variety of other weighted
covering problems exhibiting low union complexity, matching the performance of
known unweighted methods. We also answered an open question of Varadarajan
[Var10] by improving several almost-constant approximations to constant ones.

Finally, in Chapter 7, we examined more general covering problems involv-
ing capacities and demands. Our key result was a linear programming round-
ing algorithm, which demonstrated that good approximation algorithms for
(weighted) capacitated covering problems could be obtained using algorithms
for related (weighted) priority covering and multicover problems as a subroutine.

We hope that our approach has yielded a unified understanding of how the
difficulty of a covering problem is tied to its structure. We devote the rest of
this section to classifying the problems we have encountered by their complexity,
and discussing open problems.

8.1 Summary of Results

Here, we summarize most of the algorithmic and hardness results discussed or
proven in this thesis.

The following problems are totally unimodular (TUM) and thus admit an ex-
act linear programming formulation (and hence an exact solution in polynomial
time, even in the weighted case):

• R-Interval-SC.

• More generally, Vertical-Tree-SC and Network-SC.

• The dual versions R-Interval-HS, Vertical-Tree-HS, and Network-
HS.

The following problems admit polynomial-time exact algorithms via dynamic
programming, even in the weighted case:

• R2-2-Intersecting-Shadow-SC (and specifically, R2-3-Sided-Box-SC).

• R2-Origin-Containing-Pseudodisk-SC.

• R2-Halfplane-SC and its self-dual R2-Halfplane-HS.

• R2-3-Sided-Box-HS.

The following problems are NP-hard (even in the unweighted case) but not
known (or known not) to be APX-hard:

• R2-Unit-Disk-SC, R2-Unit-Disk-DS, and R
2-Unit-Square-SC.

• The self-duals R2-Unit-Square-HS and R
2-Unit-Disk-HS.

110



8.1. SUMMARY OF RESULTS

• R3-Halfspace-SC and R
3-Halfspace-HS.

• Rectilinear-Polygon-Cover when the rectilinear polygon has no holes.

The following problems admit a PTAS (only in the unweighted case) via the
local search method of Mustafa and Ray:

• R3-Halfspace-SC and R
3-Halfspace-HS.

• R2-Pseudodisk-HS, as well as R2-Disk-SC, R2-Disk-HS, and R2-Disk-
DS.

• R2-Unit-Square-SC, R2-Unit-Square-DS, and R
2-Unit-Square-HS

(also in the weighted case via the shifted grids approach of Erlebach and
van Leeuwen).

The following problems are known to be APX-hard:

• 3-Regular-Graph-SC.

• Rectilinear-Polygon-Cover.

• Tree-SC.

• R2-Fat-Triangle-Cover.

• R2-Circle-SC and R
3-Plane-SC (covering with boundaries of disks and

half-planes).

The following problems can be proven APX-hard via encodings of Special-
3SC:

• R2-Rectangle-SC and R
2-Ellipse-Cover, even when all of the objects

are ε-perturbed copies of a single square or circle.

• R2-Segment-Shadow-SC.

• R3-Unit-Ball-SC and R
3-Unit-Ball-HS.

• R2-Slab-SC, R2-Slab-HS, R4-Halfspace-SC, and R
4-Halfspace-HS.

• R2-Rectangle-SC and R
2-Rectangle-HS, even when each pair of rect-

angles intersect exactly 0 times or 4 times.

• R3-Cube-SC.

• R2-Fat-Wedge-Cover.

• Priority-Vertical-Tree-SC.

The following problems are known to admit O(1)-factor algorithms:

• Tree-SC (a 2-approximation is known in the weighted case, and a 1.5-
approximation is known in the unweighted case).
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• ∆-Regular-SC and k-Uniform-SC.

The following problems admit constant or almost-constant approximation
algorithms via our quasi-uniform sampling method:

• Priority-Tree-SC.

• R2-Fat-Triangle-Cover.

• R3-Unit-Cube-SC and R
3-Unit-Cube-HS.

• R2-Disk-SC, R2-Disk-HS, R3-Halfspace-SC, and R
3-Halfspace-HS.

• More generally, R2-Pseudodisk-SC and R
2-Pseudodisk-HS,

• R3-3-Sided-Box-SC and R
3-3-Sided-Box-HS.

The following problems admit a super-constant integrality gap via the meth-
ods of Pach and Tardos:

• R2-Rectangle-SC (an Ω(logOPT ) integrality gap is known, and no ap-
proximation of value o(logOPT ) is known).

• R2-Rectangle-HS (an Ω(log logOPT ) integrality gap is known, and an
LP-relative O(log logOPT )-approximation is known, but no better ap-
proximation is known).

The following problems are equivalent to general Min-Set-Cover, have un-
bounded VC dimension, and admit no o(logM)-approximation unless P = NP,
even in the unweighted case:

• Min-Hitting-Set.

• Graph-Path-SC.

8.2 Directions for Future Research

The R2-Rectangle-SC and Tree-SC problems remain two of the most impor-
tant and well-studied problems in the area. Despite our progress, there are still
countless open questions related to both.

The integrality gap results of Pach and Tardos [PT11] rule out the possibility
of an LP-relative constant approximation algorithm for either R2-Rectangle-
SC or R2-Rectangle-HS. However, no super-constant inapproximability has
been proven for either problem. In fact, we do not know of any natural problem
of bounded VC dimension having super-constant inapproximability—given the
current state of the art, we believe that it still remains plausible that all covering
problems of VC dimension d admit an f(d)-approximation for some function f .
However, stronger linear programming relaxations or new methods would be
required to prove such a thing. On the other hand, perhaps R2-Rectangle-SC
or R2-Rectangle-HS are simply hard problems. One idea might be to examine
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if constructions similar to those in [PT11] could be used alongside methods
similar to those in [AMS06] or [Fei98] to prove super-constant hardness for R2-
Rectangle-SC or R2-Rectangle-HS.

One may also note that even an LP-relative O(1)-approximation has still not
been ruled out for Rectilinear-Polygon-Cover. Erdös’s question concerning
the ratio of the maximum independent set to the minimum rectilinear poly-
gon cover appears to remain unanswered. Perhaps some of the more modern
methods could lend some fresh insight to this problem.

As for Tree-SC, the biggest unanswered question remains its theoretical
best possible polynomial-time approximability. The least known upper bound
is 1.5 (2 in the weighted case), but the best known lower bound is barely larger
than 1, leaving a considerable gap. We suspect that many of the approximation
factors implied by our quasi-uniform sampling algorithm in Chapter 6 are likely
not optimal either.

There still remain a few key covering problems whose membership in vari-
ous complexity classes is not known. For example, the local search method of
Mustafa and Ray [MR10] fails to yield a PTAS for R2-Pseudodisk-SC, and
it does not work for weighted problems. Could a weight-sensitive local-search
method be developed?

Another question concerns whether the techniques of Chapter 5 can be ex-
tended to additional problems. The packing or independent set versions of
Special-3SC may warrant further study.

Finally, we ask several questions about shallow cell complexity—our new
matrix parameter. Its connection to the approximability of covering problems
makes it a valuable quantity to study, but it currently remains still poorly
understood. If one could obtain new structural results linking SCC to other
matrix properties, then perhaps we could expand the types of covering problems
solvable via quasi-uniform sampling and related methods. Can SCC be related
to statistical properties of a matrix, such a correlation among its rows? Can we
find examples of set systems arising in industrial problems or economic models
that exhibit low SCC ? Are there other matrix parameters related to SCC that
might be more general or easier to use?

We believe that there is ample opportunity for lots of exciting research to
arise from these questions. There still remains much to learn concerning the
relationship between the approximability and structure of covering problems.
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