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1. Introduction

In a famous 1922 paper, Kuratowski proved that, if S is any set in a topological

space, then at most 14 distinct sets can be produced by repeatedly applying the

operations of topological closure and complement to S [10, 5]. Furthermore, there

exist sets achieving this bound of 14 in many common topological spaces. There is

a large and scattered literature on Kuratowski’s theorem, most of which focuses on

topological spaces; an admirable survey is the paper of Gardner and Jackson [6].

For analogous result on relations, see Graham, Knuth, and Motzkin [7].

The basic properties of closure systems and a version of Kuratowski’s theorem in

a general setting are presented in Section 2; this version can be found in Hammer [8].

Our point of view most closely matches that of Peleg [12], who briefly observed that
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Kleene and positive closure are closure operators, and hence Kuratowski’s theorem

holds for them.

We discuss positive and Kleene closures in Section 3. In Section 4, we recon-

sider Kuratowski’s theorem in the context of formal languages, where closure is

replaced by Kleene or positive closure. We describe all possible algebras of lan-

guages generated by a language under the operations of complement and closure.

We classify languages according to the structure of the algebras they generate, and

give a language of each type (Theorems 18 and 23).

In Section 5 we study how the properties of being open and closed are preserved

under concatenation. In Section 6 we investigate analogues, in formal languages, of

the separation axioms in topological spaces; one of our main results (Theorem 32)

is that there is a clopen partition separating two words if and only if the words

do not commute. In Section 7 we show that we can decide in quadratic time if the

language specified by a DFA is closed, but if the language is specified by an NFA,

the problem is PSPACE-complete.

An earlier version of this work was presented at the 2009 DLT conference [2].

2. Closure Systems and Kuratowski’s Theorem

We recall the definitions and properties of closures in general. Let S be a set, which

we call the universal set. An operator � applied to X ⊆ S is denoted by X�. Then

a mapping � : 2S → 2S is a closure operator if and only if it satisfies the following,

for all subsets X and Y of S:

X ⊆ X� (� is extensive);

X ⊆ Y implies X� ⊆ Y � (� is isotone);

X�� = X� (� is idempotent).

(1)

A pair (S,� ) satisfying (1) is a closure system. The set X� is the closure of X .

We say X is closed if X = X�. The complement S \X of a set X ⊆ S is denoted

X−. The set X is open if its complement X− is closed, and X is clopen if it is both

open and closed. The interior of X , denoted X◦, is defined to be X−�−.

We now list some fundamental properties of closure systems; proofs are routine.

Note the duality between closure and interior.

Proposition 1.

(a) The intersection of an arbitrary family of closed sets is closed.

(b) The union of an arbitrary family of open sets is open.

Proposition 2. For X ⊆ S, the following sets are identical:

(a) X� = X−◦−;

(b)
⋂
{Y ⊆ S : Y ⊇ Xand Y is closed};

(c) {a ∈ S : for all open Y ⊆ S, a ∈ Y implies Y ∩X 6= ∅}.

Proposition 3. For X ⊆ S, the following sets are identical:
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(a) X◦ = X−�−;

(b)
⋃
{Y ⊆ S : Y ⊆ Xand Y is open};

(c) {a ∈ S : there exists an open Y ⊆ X,with a ∈ Y }.

Proposition 4. Let X,Y ⊆ S. Then the following hold:

(a) X� is closed and X◦ is open.

(b) (X ∪ Y )� = (X� ∪ Y �)� and (X ∩ Y )◦ = (X◦ ∩ Y ◦)◦.

(c) (X ∩ Y )� ⊆ X� ∩ Y � and (X ∪ Y )◦ ⊇ X◦ ∪ Y ◦.

A closure operator is topological if the union of a finite family of closed sets is

always closed. We shall not assume that this property holds in general.

We now state two versions of Kuratowski’s theorem. The first is equivalent

to Kuratowski’s original result [10]. With no additional work, this result can be

generalized [8] to an arbitrary closure system that is not necessarily topological:

Theorem 5. Let (S,�) be a closure system, and let X ⊆ S. Starting with X, apply

the operations of closure and complement in any order, any number of times. Then

at most 14 distinct sets are generated. Also, any X ⊆ S satisfies

X�−�−�−� = X�−�. (2)

A closure operator � preserves openness if X� is open for all open sets X , or

equivalently, if Y ◦ is closed for all closed sets Y . Hence, if � preserves openness,

then X�◦ and X◦� are clopen for all sets X . We will see later that the positive

closure of languages preserves openness.

In 1983, Peleg [12] defined a closure operator to be compact if it satisfies Eq. (3)

below. He showed that at most 10 different sets are generated if � is compact, and

proved that � preserves openness if and only if it is compact. The following theorem

is a modified version of Peleg’s result:

Theorem 6. Let (S,�) be a closure system such that � preserves openness, and

let X ⊆ S. Starting with X, apply the operations of closure and complement in any

order, any number of times. Then at most 10 distinct sets are generated. Also, any

X ⊆ S satisfies

X�−�−� = X�−�−. (3)

3. Positive and Kleene Closures of Languages

We deal now with closures in the setting of formal languages. Our universal set is

Σ∗ for a finite non-empty alphabet Σ. For L ⊆ Σ∗, we define the complement L− =

Σ∗ \ L, the positive closure L+ =
⋃

i≥1 L
i, and the Kleene closure L∗ =

⋃
i≥0 L

i.

One may easily verify that positive and Kleene closure are both closure operators.

We emphasize that the positive and Kleene closures are not topological, as the

union of two closed languages is not necessarily closed. For example, observe that
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(aa)+ ∪ (aaa)+ ( (aa∪aaa)+, as a5 belongs to the right-hand side but not the left.

Hence languages do not form a topology under positive or Kleene closure.

A language is positive-closed if it is a closed set under positive closure. It is

positive-open if its complement is positive-closed. The terms Kleene-closed, and

Kleene-open are defined analogously.

Proposition 7. Let L ⊆ Σ∗. The following are equivalent:

(a) L is positive-closed.

(b) L ∪ {ε} is Kleene-closed.

(c) For all u, v ∈ L, we have uv ∈ L.

If L is positive-closed, then so are L \ {ε} and L ∪ {ε}. Consequently, there is

an obvious 2-to-1 mapping between positive-closed and Kleene-closed languages—

positive-closed languages may or may not contain ε, and Kleene-closed languages

must. Since positive and Kleene closure are similar, hereafter we restrict our at-

tention to positive closure since our theorems can then be stated without worrying

about ε. For the remainder of this article, a language is closed if it is positive-closed,

open if it is positive-open, and clopen if it is both positive-closed and positive-open.

We define idempotent interior operators as well. The positive interior of a lan-

guage L is L⊕ = L−+−; the Kleene interior is L~ = L−∗−. We note the following:

Proposition 8. Let L ⊆ Σ∗. The following are equivalent:

(a) L is positive-open (in other words, L = L⊕).

(b) L \ {ε} is Kleene-open.

(c) For all u, v ∈ Σ∗ such that uv ∈ L, we have u ∈ L or v ∈ L.

In the 1970’s, D. Forkes proved Eq. (2) with the Kleene closure as �, and the

first author then proved that Eq. (3) holds when � is positive closure. (They were

both unaware of [10].) Peleg [12] proved this over a wider class of operators. Since

Eq. (3) holds if and only if a closure operator preserves openness, we have:

Theorem 9. Let L ⊆ Σ∗ be open. Then L+ is open.

Corollary 10. Let L ⊆ Σ∗. Then L+⊕ and L⊕+ are clopen. Moreover, if L is

open, then L+ is clopen, and if L is closed, then L⊕ is clopen.

The converses of the above are false. For example, the language {a, aaaa} is not

open, but its closure is clopen. We discuss such possibilities in the next section.

We now present several examples of clopen, open and closed languages.

Example 11. Clopen languages: Let Σ be an alphabet and let Σ1,Σ2 ⊆ Σ be sub-

alphabets. For w ∈ Σ∗, let w[i] denote the i’th letter of w, and for a ∈ {1, 2}, let

|w|a denote the number of distinct values of i for which w[i] ∈ Σa. Suppose k ≥ 0.

Then L = {w ∈ Σ∗ : |w|1 < k|w|2} is clopen.
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To see this, observe that if |u|1 < k|u|2 and |v|1 < k|v|2, then |uv|1 <= k|uv|2,

and thus L is closed. By a similar argument, L− is closed, so L is clopen.

Example 12. Open languages: A language L is prefix-closed if and only if for ev-

ery w ∈ L, each prefix of w is in L. We analogously define suffix-closed, subword-

closed, and factor-closed languages. Here by subword, we mean an arbitrary subse-

quence, and by factor, we mean a contiguous subsequence. For any L ⊆ Σ∗, if L is

prefix-, suffix-, factor-, or subword-closed, then L is open by Proposition 8.

Example 13. Closed languages: Left ideals (those languages L satisfying L =

Σ∗L), right ideals (L = LΣ∗), two-sided ideals (L = Σ∗LΣ∗), or languages of

the form L =
⋃

a1···an∈LΣ∗a1Σ
∗ · · ·Σ∗anΣ

∗, all satisfy L = L+, and so are all

positive-closed.

Example 14. Closures of open languages: By Corollary 10, the closure of any open

language is clopen. Consequently, we may obtain clopen languages by applying posi-

tive closure to any prefix-, suffix-, factor-, or subword-closed language. For example,

if w is any (possibly infinite) word, then the set of all words that can be factored

into prefixes of w is a clopen language.

Our next example requires some explanation. Suppose we are given a word w,

and we wish to determine all the open languages containing w that are minimal

with respect to set inclusion. For simplicity, we only analyze the case in which

w = a1a2 · · · an where each ai ∈ Σ and ai 6= aj for all i 6= j.

By part (c) of Proposition 8, if L is an open language containing w, then for all

1 ≤ i < n, either a1 · · · ai ∈ L or ai+1 · · · an ∈ L. Additionally, for all 1 ≤ i < j ≤ n,

if a1 · · · ai /∈ L and aj · · · an /∈ L, then ai+1 · · ·aj−1 ∈ L (we obtain this result by

applying part (c) of Proposition 8 to ai+1 · · · an). Motivated by these observations,

we define a language L ⊆ Σ+ to be a w-core if all of the following hold:

(a) w ∈ L and every word in L is a factor of w.

(b) For all 1 ≤ i < n, exactly one of a1 · · · ai or ai+1 · · · an is in L.

(c) For all 1 ≤ i < j ≤ n, L contains the word ai+1 · · ·aj−1 if and only if

a1 · · · ai /∈ L and aj · · · an /∈ L.

By our argument above, all open languages containing w must contain some w-

core as a sublanguage. Moreover, there are exactly 2n−1 unique w-cores, determined

exclusively by the n−1 choices made in item (b) of our definition above. One possible

w-core is the set of all prefixes of w—this occurs precisely when we always include

a1 · · · ai, but never ai+1 · · · an. Analogously, the set of all suffixes of w is a w-core.

Moreover, we can show that every w-core is, in fact, open. Again, we employ part

(b) of Proposition 8. Let L be a w-core and let x ∈ L. We write x = uv for words

u and v, and write u = ai · · · ak and v = ak+1 · · · aj for some 1 ≤ i ≤ k < j ≤ n,

since uv must be a factor of w. If u /∈ L, then by items (b) and (c) of our definition

of a w-core, we must have either i > 1 and a1 · · · ai−1 ∈ L, or ak+1 · · · an ∈ L.
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However, if i > 1 and a1 · · ·ai−1 ∈ L, then we cannot have uv ∈ L by items (b)

and (c), so we must instead have ak+1 · · · an ∈ L. Similarly, if v /∈ L, then we must

have a1 · · · ak ∈ L. Item (b) of our definition implies that we cannot have both

a1 · · · ak ∈ L and ak+1 · · ·an ∈ L, so we must have one of u ∈ L or v ∈ L. Thus L

is open. We may therefore conclude the following:

Example 15. Minimal open languages containing a word: Let w = a1a2 · · · an
where ai ∈ Σ for all i and ai 6= aj for all i 6= j. Then the open languages containing

w that are minimal with respect to set inclusion are the 2n−1 w-cores.

4. Kuratowski’s Theorem for Languages

For any language L, let A(L) be the family of all languages generated from L by

complementation and positive closure. Since positive closure preserves openness,

Theorem 6 implies that A(L) contains at most 10 languages. As we will see, this

upper bound is tight. Moreover, we will show that there are precisely 9 distinct

finite algebras (A(L),+ ,− ). Since the languages in A(L) occur in complementary

pairs, A(L) must contain 2, 4, 6, 8, or 10 distinct languages. We will provide a list

of conditions that classify languages according to the structure of (A(L),+ ,− ), and

thus completely describe the circumstances under which |A(L)| is equal to 2, 4, 6,

8, or 10.

We will also explore Kleene closure, where there are subtle differences. Let D(L)

be the family of all languages generated from L by complementation and Kleene

closure. Kleene closure does not preserve openness, since Kleene-closed languages

contain ε and Kleene-open languages do not. Therefore we must fall back to The-

orem 5, which implies that D(L) contains at most 14 languages, and we will show

that this bound is also tight. We will show that there are precisely 12 distinct finite

algebras (D(L),∗ ,− ). We describe these algebras by relating them to those in the

positive case.

In a sense, our results are the formal language analogues of topological results

obtained by Chagrov [3] and discussed in [6]. Peleg [12] noted the tightness of the

bounds of 10 and 14 in the positive and Kleene cases, but went no further.

4.1. Structures of the algebras with positive closure and

complement

We may better understand the structure of A(L) by first analyzing a related algebra

of languages. Let B(L) be the family of all languages generated from L by positive

closure and positive interior, and let C(L) = {M : M− ∈ B(L)} be their com-

plements. Since the closure and interior operators fix the languages L+⊕ and L⊕+

(which are clopen by Corollary 10), it follows that B(L) = {L,L+, L+⊕, L⊕, L⊕+}.

Of course, these five languages may not all be distinct. However, we can show that

it suffices to analyze the structure of B(L) to determine the structure of A(L).

Lemma 16. Let L ⊆ Σ∗. Then A(L) = B(L) ∪ C(L), and the union is disjoint.
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Proof. Clearly A(L) ⊇ B(L)∪C(L), since any language generated from L by clo-

sure, interior, and complement can be generated using only closure and complement

via the identity L⊕ = L−+−. To prove the reverse inclusion, we let M ∈ A(L). Then

there is some string of symbols z ∈ {+,−}∗ such that M = Lz. We construct a

string z′ ∈ {+,−,⊕}∗ by starting with z and repeatedly replacing all instances of

−+ by ⊕− and all instances of −⊕ by +−, until no such replacements are possible.

Since L−+ = L⊕− and L−⊕ = L+−, we have M = Lz′

. However, in producing

z′, we effectively shuffle all complements to the right. Consequently, the operation

performed by z′ is a series of positive closures and interiors followed by an even or

odd number of complements. Hence either M ∈ B(L) or M ∈ C(L).

We now prove that B(L) ∩ C(L) = ∅. We note that L⊕ ⊆ L⊕+, L⊕ ⊆ L ⊆ L+,

and L⊕ ⊆ L+⊕ by isotonicity. Hence L⊕ ⊆ M for all M ∈ B(L). Thus for two

languages in B(L) to be complements, L⊕ must be empty. Then L contains no

strings of length 1, and thus neither do L+ and L+⊕. Then no language in B(L)

contains a string of length 1, so no two languages in B(L) are complements. �

The fact that B(L)∩C(L) = ∅ can be proven in a more straightforward manner,

but the supplied proof generalizes to Kleene closure, which we require later.

The disjointness of B(L) and C(L) is a property of formal languages that is

crucial to our analysis. In general closure systems, the intersection of B(L) and

C(L) may be non-empty. For example, consider the real numbers under the usual

topology. The rational numbers are then a set whose interior is the complement of

its closure.

Lemma 16 implies that |A(L)| = 2|B(L)|. Moreover, there is an exact 1-to-2

correspondence between the languages in B(L) and A(L): each language in B(L)

can be associated to itself and its complement. Hence the algebra (A(L),+ ,− ) can be

constructed by simply merging the two algebras (B(L),+ ,⊕ ) and (C(L),+ ,⊕ ) and

adding the complement operator. Thus we have reduced the problem of describing

all algebras (A(L),+ ,− ) to the simpler task of describing the algebras (B(L),+ ,⊕ ).

Before we proceed, we need to exclude a possible case via the following:

Lemma 17. Suppose L ⊆ Σ∗. If L+ and L⊕ are both clopen, then L must be clopen.

Proof. Seeking a contradiction, we assume that both L+ and L⊕ are clopen but

L is not clopen. Then L is neither open nor closed (otherwise L is L+ or L⊕, both

of which are clopen.) If L is not open, then L \ L⊕ is non-empty.

Let w be a shortest word in L \ L⊕. Consider M = L⊕ ∪ {w}. M is clearly a

subset of L since w ∈ L, and L⊕ contains all open subsets of L by Proposition 3.

Since w ∈ M but w /∈ L⊕, it follows that M is not open. Then Proposition 8 (c)

must fail to hold for some word in M . But it holds for all words in L⊕ and thus

must fail for w. Then there exist non-empty words x and y with xy = w, but x /∈ M

and y /∈ M . Then neither x nor y is in L⊕.

By our assumption that L+ is open, the fact that w ∈ L+ implies that either

x ∈ L+ or y ∈ L+. Without loss of generality, suppose that x ∈ L+. Then x is the
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concatenation of a list of words from L; we write x = u1u2 · · ·un with ui ∈ L for

all 1 ≤ i ≤ n. Then |ui| ≤ |x| < |w| for all i, and thus ui ∈ L⊕ for all i by our

definition of w as the shortest word in L\L⊕. However, x is then the concatenation

of a list of words from L⊕ and is thus an element of L⊕+, which is L⊕ since we

assumed L⊕ was closed. This is a contradiction since x /∈ L⊕. �

Finally, we characterize the 9 possible algebras (B(L),+ ,⊕ ). Table 1 classifies

all languages according to the structure of the algebras they generate and gives an

example of each type. Here, we briefly explain our analysis. Clearly B(L) = {L} if

and only if L is clopen, giving Case (1). If L is open but not closed, then B(L) =

{L,L+} since L+ must then be clopen. Similarly, if L is closed but not open, then

B(L) = {L,L⊕}. These situations yield Cases (2) and (3). We henceforth assume

that L is neither open nor closed, and thus L, L⊕, and L+ are all different. The

remaining cases depend on the values of L⊕+ and L+⊕. Both must be clopen, so

neither can equal L. Lemma 17 proves that L⊕ and L+ cannot both be clopen. If

neither L⊕ nor L+ are clopen, then we have Case (8) if L⊕+ and L+⊕ are equal,

and Case (9) if they are not. The remaining cases occur when one of L+ and L⊕

is clopen and the other is not. If L+ is clopen and L⊕ is not, then we get Case (4)

if L⊕+ = L+ and Case (6) otherwise. Analogously, if L⊕ is clopen and L+ is not,

then we get Case (5) if L+⊕ = L⊕ and Case (7) otherwise.

We see that if (B(L),+ ,⊕ ) has algebraic structure (2), then (C(L),+ ,⊕ ) has

structure (3); thus we say that Case (3) is the dual of Case (2). By examining the

conditions under which each case holds, we can easily see that Cases (4) and (5)

are also duals, as are Cases (6) and (7). Cases (1), (8), and (9) are self-dual. This

notion is useful in constructing the algebra (A(L),+ ,− ): we connect an instance of

(B(L),+ ,⊕ ) to its dual structure in the obvious way via the complement operator.

Figure 1 gives an example of this for Case (6).

In summary, we have proven the following result:

Theorem 18. Start with any language L, and apply the operators of positive clo-

sure and complement in Σ∗ in any order, any number of times. Then at most 10

distinct languages are generated, and this bound is optimal. Furthermore, Table 1

describes the 9 algebras generated by this process, classifies languages according to

the algebra they generate, and gives a language generating each algebra.

In the unary case, we obtain the following:

Theorem 19. Start with any unary language L, and apply the operators of positive

closure and complement in Σ∗ in any order, any number of times. Then at most 6

distinct languages are generated, and this bound is optimal. Furthermore, precisely

Cases (1) through (5) in Table 1 are possible for a unary language.

Proof. We assume that L ⊆ a∗ and consider the following two possibilities:

Case (i): a ∈ L. Then L+ = aa∗ or L+ = a∗, both of which are clopen. Further-

more, a ∈ L⊕, so L⊕+ = L+. Hence one of cases (1), (2), or (4) must hold.
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Table 1. Classification of languages by the structure of (B(L),+ ,⊕ ).

Case Necessary and Sufficient

Conditions

|B(L)| |A(L)| Example Dual

(1) L is clopen. 1 2 a+ (1)

(2) L is open but not closed. 2 4 a (3)

(3) L is closed but not open. 2 4 aaa∗ (2)

(4) L is neither open nor closed;

L+ is clopen and L⊕+ = L+.

3 6 a ∪ aaaa (5)

(5) L is neither open nor closed;

L⊕ is clopen and L+⊕ = L⊕.

3 6 aa (4)

(6) L is neither open nor closed;

L+ is open but L⊕ is not

closed; L⊕+ 6= L+.

4 8 G := a ∪ abaa (7)

(7) L is neither open nor closed;

L⊕ is closed but L+ is not

open; L+⊕ 6= L⊕.

4 8 (a ∪ b)+ \G (6)

(8) L is neither open nor closed;

L⊕ is not closed and L+ is

not open; L+⊕ = L⊕+.

4 8 a ∪ bb (8)

(9) L is neither open nor closed;

L⊕ is not closed and L+ is

not open; L+⊕ 6= L⊕+.

5 10 a ∪ ab ∪ bb (9)

Case (ii): a /∈ L. Then L⊕ = ∅ or L⊕ = {ε}, both of which are clopen. Further-

more, a /∈ L+, so L+⊕ = L+. Hence one of cases (1), (3), or (5) must hold.

Unary examples for cases (1) through (5) can be found in Table 1. �

Note that all the example languages are either finite or cofinite and are thus

regular. Consequently, Theorems 18 and 19 also hold for any regular language and

any regular unary language, respectively.

4.2. Structures of the algebras with Kleene closure and

complement

Since Kleene closure requires the existence of the identity element ε, we consider only

the case where complementation is with respect to Σ∗. As we did in the positive

case, first we restrict ourselves to closure and interior. Let E(L) be the family

of all languages generated from L by Kleene closure and Kleene interior, and let

F (L) = {M : M− ∈ E(L)} be their complements. Our next results relate D(L)

and E(L) to A(L) and B(L). Our discussion involves both closure operators, so we

will be explicit about which closure properties we are invoking (although the word
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LEGEND:

neither closed nor open open but not clopen

clopen closed but not clopen

(d)(a) (c)(b)

Fig. 1. Construction of A(L), Case (6): (a) (B(L),+ ,⊕ ), Case (6); (b) (B(L),+ ,⊕ ), Case (7), the
dual of Case (6) obtained by interchanging + with ⊕, and “open” with “closed”; (c) (C(L),+ ,⊕ ),
that is, (B(L),+ ,⊕ ), Case (7), with elements renamed as complements of those of Case (6); (d)
A(L) constructed from B(L) and C(L).

clopen will still mean positive-clopen). We first claim the following, which can again

be proven in the same manner as Lemma 16:

Lemma 20. Let L ⊆ Σ∗. Then D(L) = E(L) ∪ F (L), and the union is disjoint.

Next, we give a way of relating E(L) to B(L). We recall that L∗ = L+ ∪ {ε}

and L~ = L⊕ \ {ε}. Consequently, E(L) ⊆
⋃

M∈B(L){M ∪ {ε},M \ {ε}}. We now

know enough to explicitly determine D(L) in the following case:

Lemma 21. Let L ⊆ Σ∗ be clopen. Then D(L) = {L∪ {ε}, L \ {ε}, L− ∪ {ε}, L− \

{ε}}.

Since the operations of positive closure and positive interior preserve the pres-

ence or absence of ε in a language, we may also note that if ε ∈ L, then all languages

in B(L) contain ε, and conversely if ε /∈ L, then no language in B(L) contains ε.

For M ∈ E(L), we write φ(M) to denote either M ∪ {ε} or M \ {ε}, whichever lies

in B(L). We note that φ(M), φ(M ∪ {ε}), and φ(M \ {ε}) are equal. Moreover, we

note that φ(M∗) = φ(M)+ and φ(M~) = φ(M)⊕; φ can therefore be thought of as

a homomorphism from E(L) to B(L). Consequently, E(L) ⊆ {M : φ(M) ∈ B(L)}.

We use this idea and the classifications of Table 1 to determine all possible algebras

(E(L),∗ ,~ ). As we will see, there are precisely 12 distinct algebras, each containing

at most 14 elements.
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We have seen what happens in Case (1) when L is clopen; two algebras are

possible depending on whether ε ∈ L or not, and we refer to these as Cases (1a)

and (1b) respectively. We next examine Cases (2) and (3), in which L is not clopen

but is open or closed. Suppose L is open but not clopen, and hence B(L) = {L,L+}.

Then L∗ is clopen and thus E(L∗) = {L∗, L∗ \ {ε}}. Since E(L∗) ⊆ E(L) we thus

have {L,L∗, L∗ \ {ε}} ⊆ E(L) ⊆ {M : φ(M) ∈ {L,L+}}. Therefore, we have two

cases; either one or both of L \ {ε} and L ∪ {ε} may be in E(L), depending on

whether or not L~ = L. If ε /∈ L, then L~ = L and thus E(L) = {L,L∗, L∗ \ {ε}}.

If ε ∈ L, then L~ = L \ {ε} and thus E(L) = {L,L \ {ε}, L∗, L∗ \ {ε}}. We refer to

these situations as Cases (2a) and (2b) respectively.

Similar possibilities occur when L is closed but not clopen. If ε ∈ L then E(L) =

{L,L~, L~∪{ε}}. If ε /∈ L then L∗ = L∪{ε} and E(L) = {L,L∪{ε}, L~, L~∪{ε}}.

We refer to these situations as Cases (3a) and (3b) respectively.

We now turn to Cases (4)–(9), when L is neither closed nor open.

Lemma 22. Let L ⊆ Σ∗ be neither open nor closed. Then

E(L) = {L} ∪ {M ∪ {ε} : M ∈ B(L) and M is closed}

∪ {M \ {ε} : M ∈ B(L) and M is open}.

Proof. Clearly L ∈ E(L). We claim that no other language M with φ(M) = L can

be in E(L). If we suppose otherwise, then such an M must be generated by taking

the Kleene closure or interior of some other language in E(L). This would imply

that M is open or closed, which is impossible since φ(M) = L and L is neither open

nor closed.

For each remaining M ∈ B(L)\{L}, we wish to show that M∪{ε} ∈ E(L) if and

only if M is closed, and M \ {ε} ∈ E(L) if and only if M is open. Let M ∈ B(L) \

{L} be generated by some non-empty sequence S of positive closures and positive

interiors. If we replace each positive closure by a Kleene closure and each positive

interior by a Kleene interior, then we obtain a sequence S′ that generates some

M ′ ∈ E(L) with φ(M ′) = M . Now M ′ contains ε if and only if the last operation in

S′ was a Kleene closure. If M is closed, we may append a final positive closure to

any such S to obtain one in which the last operation is a closure. Conversely, if there

exists an S whose last operation is a closure, then M must be closed. Thus there

exists an M ′ ∈ E(L) containing ε with φ(M ′) = M if and only if M is closed. By a

similar argument, there exists an M ′ ∈ E(L) not containing ε with φ(M ′) = M if

and only if M is open. The result follows. �

Lemma 22 allows us to describe the structure of the algebra (E(L),∗ ,~ ) in Cases (4)

through (9). The algebra E(L) contains M ∪ {ε} for all closed M in B(L), M \ {ε}

for all open M in B(L), and both for all clopen M in B(L).

We classify the 12 distinct algebras in Table 2. The conditions are identical to

those found in Table 1; the only differences lie in Cases (1), (2), and (3), where the

initial presence or absence of ε can affect the structure of the algebra.
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Table 2. Classification of languages by the structure of (E(L),∗ ,~ ).

Case Necessary and Sufficient

Conditions

|E(L)| |D(L)| Example Dual

(1a) L is clopen; ε ∈ L. 2 4 a∗ (1b)

(1b) L is clopen; ε /∈ L. 2 4 a+ (1a)

(2a) L is open but not clopen;

ε ∈ L.

3 6 a ∪ ε (3a)

(2b) L is open but not clopen;

ε /∈ L.

4 8 a (3b)

(3a) L is closed but not clopen;

ε /∈ L.

3 6 aaa∗ (2a)

(3b) L is closed but not clopen;

ε ∈ L.

4 8 aaa∗ ∪ ε (2b)

(4) L is neither open nor closed;

L+ is clopen and L⊕+ = L+.

4 8 a ∪ aaa (5)

(5) L is neither open nor closed;

L⊕ is clopen and L+⊕ = L⊕.

4 8 aa (4)

(6) L is neither open nor closed;

L+ is open but L⊕ is not

closed; L⊕+ 6= L+.

6 12 G := a ∪ abaa (7)

(7) L is neither open nor closed;

L⊕ is closed but L+ is not

open; L+⊕ 6= L⊕.

6 12 (a ∪ b)+ \G (6)

(8) L is neither open nor closed;

L⊕ is not closed and L+ is

not open; L+⊕ = L⊕+.

5 10 a ∪ bb (8)

(9) L is neither open nor closed;

L⊕ is not closed and L+ is

not open; L+⊕ 6= L⊕+.

7 14 a ∪ ab ∪ bb (9)

We now summarize our results for the Kleene case:

Theorem 23. Start with any language L, and apply the operators of Kleene closure

and complement in any order, any number of times. Then at most 14 distinct lan-

guages are generated, and this bound is optimal. Furthermore, Table 2 describes the

12 algebras generated by this process, classifies languages according to the algebra

they generate, and gives a language generating each algebra.

Theorem 24. Start with any unary language L, and apply the operators of pos-

itive closure and complement in any order, any number of times. Then at most

8 distinct languages are generated, and this bound is optimal. Furthermore, pre-
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cisely Cases (1a) through (5) in Table 2 describe the 8 possible algebras that can be

generated from a unary language by this process.

The proof of Theorem 24 is analogous to the proof of Theorem 19, and again,

all of our example languages are regular, so Theorems 23 and 24 also hold for any

regular language and any regular unary language, respectively.

5. Closure Operators and Concatenation

We note that the concatenation of two closed languages need not be closed, and that

the concatenation of two open languages need not be open. For example, consider

the languages L = {a}+ and M = {b}+ for a, b ∈ Σ, which are both clopen (under

positive closure). Then ab ∈ LM but abab /∈ LM , so LM is not closed. Additionally,

ab ∈ LM , but neither a nor b is in LM , so LM is not open. However, we do have

several results regarding cases when the concatenation of closed or open languages

must be closed or open. All proofs are elementary, and analogous results hold for

Kleene closure.

Theorem 25. If L and M are closed and LM = ML, then LM is closed. In

particular, the concatenation of any two closed unary languages is closed.

Proof. Immediate from the fact that LMLM = LLMM whenever LM = ML. �

Theorem 26. Let L,M ⊆ Σ∗. Suppose L and M are closed and L ∪M is closed.

Then LM is closed. More generally, if W ∈ {L,M}+ is any sequence of concate-

nations of L and M , then W is closed. In particular, Lk is closed for all k ≥ 1.

Proof. To show that LM is closed, it suffices to show that (LM)k ⊆ LM ; we do

this by induction on k. For k > 1, (LM)k ⊆ L(L∪M)(L∪M)M(LM)k−2 ⊆ L(L∪

M)M(LM)k−2 = (LLM ∪ LMM)(LM)k−2 ⊆ LM(LM)k−2 = (LM)k−1 ⊆ LM.

The generalization of this proof to arbitraryW is straightforward (one may consider

W = Lk and W = Mk as special cases and note that in all other cases, the sequence

W contains LM or ML as a subsequence.) �

The next results follow directly from Proposition 8 (c).

Theorem 27. Let L and M be open.

(a) Suppose ε ∈ L and ε ∈ M . Then LM is open.

(b) Suppose ε /∈ L and ε /∈ M . Then LM is open if and only if L = ∅ or M = ∅.

(c) LL is open if and only if ε ∈ L or L = ∅.

Additionally, if neither L nor M is empty and ε ∈ L ∪M but ε /∈ L ∩M , then

we may or may not have LM open, even in the unary case. As examples, consider

L = {ε, a, aaa, aaaaa}, M = {a} and L = {ε, a, aaa}, M = {a}.

Theorem 28. Let L,M ⊆ Σ∗ both be clopen with L∪M = Σ∗. Then LM is clopen.

More generally, if W ∈ {L,M}+ is any sequence of concatenations of L and M ,
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then W is clopen if and only if W = ∅ or W contains at most one occurrence of a

language that does not contain ε.

Proof. Theorem 26 immediately implies that LM is closed. To show that LM is

open, let ab ∈ LM where a ∈ L and b ∈ M and let ab = uv for arbitrary words u

and v. We must show that either u ∈ LM or v ∈ LM . Without loss of generality, we

assume that u is a prefix of a and let a = ux, so ab = uxb and hence v = xb. Then

either u ∈ L or x ∈ L. If x ∈ L, then v = xb ∈ LM and we are done. Otherwise, we

have x /∈ L, implying u ∈ L and x ∈ M since L ∪M = Σ∗. If ε ∈ M , u = uε ∈ LM

and we are done. Otherwise, we have ε /∈ M , and thus ε ∈ L since L ∪ M = Σ∗.

Then xb ∈ M since x ∈ M , b ∈ M , and M is closed. Then εxb = v ∈ LM and thus

LM is open and hence is clopen.

The generalization to arbitrary W is straightforward by repeated applications

of the above. If W contains multiple occurrences of a language not containing ε,

then W contains no words of length 1, so either W = ∅ or W is not open. �

Note that the converse of the above theorem is false; indeed, it is possible that

LM is clopen, but L ∪M is not even positive-closed. As a counterexample, we let

L = {ε}∪ {w ∈ {a, b}∗ : |w|a < |w|b} and let M = {ε}∪ {w ∈ {a, b}∗ : |w|a > |w|b},

where by |w|c for a letter c, we mean the number of occurrences of c in w. It is not

hard to see that LM is clopen, but L∪M is not closed since we have b ∈ L ⊆ L∪M

and a ∈ M ⊆ L ∪M , but ba /∈ L ∪M .

6. Separation of Words and Languages

Next, we discuss analogies of the separation axioms of topology in the realm of

languages. Although languages do not form a topology under Kleene or positive

closure, there are many interesting results describing when there exist open, closed,

and clopen languages that separate given words or languages. In most of these

theorems, we only consider words in Σ+, as ε is always a trivial case.

Lemma 29. Let w ∈ Σ+, and let L ⊆ Σ∗ be closed with w /∈ L. Then there exists

a finite open language M such that w ∈ M but M ∩ L = ∅.

Proof. We simply take M = L− ∩ {x ∈ Σ+ : |x| ≤ |w|}. �

Theorem 30. Let u, v ∈ Σ+. There exists an open language L with u ∈ L and

v /∈ L if and only if for all natural numbers k, we have u 6= vk. Consequently, if

u 6= v, then there exists an open language L with either u ∈ L and v /∈ L, or u /∈ L

and v ∈ L. In other words, all words are distinguishable by open languages.

Proof. For the forward direction, we note that if u = vk for some positive k, then

any open language containing u must contain v by Proposition 8 (c). For the reverse

direction, we apply Lemma 29 to u and {v}+, which is closed. �
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We now recall a basic result from combinatorics on words (see, e.g., [11]).

Lemma 31. Let u, v ∈ Σ+. The following are equivalent:

(1) uv = vu.

(2) There exists a word x and integers p ≥ 1 and q ≥ 1 such that u = xp and

v = xq.

If any of the above hold, then we say that u and v commute.

Let u, v ∈ Σ+. Suppose there exists a clopen language L ⊆ Σ∗ with u ∈ L

and v /∈ L. We note that L− is also clopen whenever L is, and we call the pair

(L,L−) a clopen partition separating u and v. Motivated by the desire to extend

the topological notion of connected components to formal languages, we have the

following result, which characterizes precisely when clopen partitions exist:

Theorem 32. Let u, v ∈ Σ+. There exists a clopen partition separating u and v if

and only if u and v do not commute.

Proof. The forward direction is quite straightforward. If u and v commute, then

there exists a word x and integers p and q such that u = xp and v = xq. Then any

open language containing u will also contain x, and any open language containing

v will also contain x. It follows that no clopen partition can separate u and v.

For the reverse direction, we proceed by induction on |u| + |v|. We will apply

the induction hypothesis on words in various alphabets, so we make no assumption

that |Σ| is constant.

For our base case, suppose |u|+ |v| = 2. If u and v do not commute, then they

must be distinct words of length 1, and thus the language {u}+ is a clopen language

separating u from v.

Suppose, as a hypothesis, that for some k ≥ 2, the result holds for all finite

alphabets Σ and for all u, v ∈ Σ+ such that 2 ≤ |u| + |v| ≤ k. Now, given any Σ,

let u, v ∈ Σ+ be such that u and v do not commute and |u| + |v| = k + 1. Let Σu

and Σv, respectively, be the symbols that occur one or more times in u and v. If

Σu ∩ Σv = ∅, then Σ+
u is a clopen language containing u but not v, and our result

holds. If not, suppose a ∈ Σu ∩ Σv. Let λu = |u|a
|u| and λv = |v|a

|v| be the respective

relative frequencies of a in u and v. If λu > λv, then {w ∈ Σ∗ : |w|a ≥ λu|w|} is

clopen (by Example 11) and contains u but not v, and we are done. Similarly, if

λu < λv, then {w ∈ Σ∗ : |w|a ≤ λu|w|} is a clopen language containing u but not

v. Thus it remains to show that the result holds when λu = λv.

Assume λu = λv = λ. If λ = 1, then u = ai and v = aj for some positive integers

i and j, and thus u and v commute, contradicting our original assumption. Hence

we must have 0 < λ < 1. Let n = |u|
gcd(|u|a,|u|)

= |v|
gcd(|v|a,|v|)

be the denominator of λ

when it is expressed in lowest terms. We must have n > 1 since λ is not an integer.

Next, we consider a new alphabet ∆ with |Σ|n symbols, each corresponding to

a word of length n in Σ∗. We consider the bijective morphism φ mapping words in

∆∗ to words in (Σn)∗ by replacing each symbol in ∆ with its corresponding word in
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Σn. Since n divides both |u| and |v|, there must then exist unique words p, q ∈ ∆∗

such that φ(p) = u and φ(q) = v.

Our plan is now to inductively create a clopen language L over ∆ which contains

p but not q, and then use this language to construct our clopen partition over Σ

separating u and v. We must check that p and q do not commute. If pq = qp

then we would have uv = φ(p)φ(q) = φ(pq) = φ(qp) = φ(q)φ(p) = vu, which is

impossible since uv 6= vu. We also have n|p|+ n|q| = |u|+ |v|. Since n > 1 implies

|p| + |q| < |u| + |v| = k + 1, the induction hypothesis can be applied to p and q.

Thus there exists a clopen language L ⊆ ∆∗ with p ∈ L and q /∈ L.

We now construct our clopen partition over Σ separating u and v. We intro-

duce some notation to make this easier. As usual, define φ(L) = {w ∈ Σ∗ :

w = φ(r) for some r ∈ L}. Let A< = {w ∈ Σ∗ : |w|a < λ|w|} and let

A= = {w ∈ Σ∗ : |w|a = λ|w|}. Additionally, let A≤ = A< ∪ A=. It is easy to

verify that A<, A≤, and A= are all closed, and both A< and A≤ are open as well.

Finally, we let M = (φ(L) ∩ A=) ∪ A<. Since p ∈ L and q /∈ L, we must have

u ∈ φ(L) and v /∈ φ(L). Then since u and v are both contained in A= but not A<,

we must have u ∈ M and v /∈ M .

We now finish the proof by showing that M is clopen. We first show that M is

closed. Let x, y ∈ M . We must show that xy ∈ M . There are two cases to consider:

Case (A1): x, y ∈ (φ(L) ∩ A=). We see that φ(L)φ(L) = φ(LL) ⊆ φ(L), so

φ(L) is closed. Then since A= is closed, φ(L) ∩A= is the intersection of two closed

languages, and hence closed. Thus xy ∈ φ(L) ∩A= ⊆ M .

Case (A2): One or more of x or y is not in φ(L)∩A=. Without loss of generality,

suppose x /∈ φ(L) ∩ A=. Then x ∈ A<, so |x|a < λ|x|. Furthermore, y ∈ M ⊆ A≤,

so |y|a ≤ λ|y|. Adding these two inequalities yields |x|a + |y|a < λ|x| + λ|y|, so

|xy|a < λ|xy| and thus xy ∈ A< ⊆ M .

Lastly, we show that M is open. Let z ∈ M and suppose z = xy for some

x, y ∈ Σ+. We show that x ∈ M or y ∈ M . Again, we have two cases to consider:

Case (B1): z ∈ A<. Since A< is open, at least one of x or y is in A<. Since

A< ⊆ M , we are done.

Case (B2): z ∈ φ(L) ∩ A=. If either x or y is in A<, then we are done, so

assume otherwise. Then |x|a ≥ λ|x| and |y|a ≥ λ|y|. But |xy|a = λ|xy|, so we

must have |x|a = λ|x| and |y|a = λ|y| and thus x, y ∈ A=. Then λ|x| and λ|y|

must be integers and hence n divides both |x| and |y|. Then there exist s, t ∈ ∆∗

such that φ(s) = x and φ(t) = y. But since φ is a morphism, we must then have

φ(st) = φ(s)φ(t) = xy = z. But z in φ(L), so st ∈ L. Since L is open, we must

then have either s ∈ L or t ∈ L. Thus we must have either x = φ(s) ∈ φ(L) or

y = φ(t) ∈ φ(L). Then one of x or y is in φ(L) ∩ A= ⊆ M .

Thus M is both closed and open, and the result follows by induction. �

Holub and Kortelainen have recently provided an alternate proof of Theorem 32

[9]. They extend our result by showing how to obtain a regular clopen partition

separating two words if they do not commute.



January 31, 2011 15:13 WSPC/INSTRUCTION FILE S0129054111008052

Closures in Formal Languages and Kuratowski’s Theorem 317

Corollary 33. Let u, v ∈ Σ+. There exist non-intersecting finite open languages L

and M with u ∈ L and v ∈ M if and only if u and v do not commute.

Proof. The forward direction is identical to that of Theorem 32. For the reverse

direction, we suppose u and v do not commute and let K be a clopen language

containing u but not v. We then take L = {w ∈ K : |w| ≤ |u|} and M = {w ∈ K− :

|w| ≤ |v|}. These are open by Proposition 8 (c) since K and K− are both open. �

We can also use Theorem 32 to extend the topological notion of connected com-

ponents to the setting of formal languages. We say that words u, v ∈ Σ+ are dis-

connected if there exists a clopen partition separating u from v, and connected oth-

erwise. We write u ∼ v if u and v are connected, and note that ∼ is an equivalence

relation (indeed, this is the case when we consider the clopen partitions induced by

any closure operator; it need not be topological). Recall that w is primitive if there

is no word x with w = xk for some k ≥ 2. By Theorem 32, u ∼ v if and only if

u and v are both powers of some primitive word x. It follows that each connected

component of Σ+ consists of a primitive word and its powers. Dividing an arbitrary

language into connected components simply sorts its words by primitive root.

The following theorem holds for all closure operators that preserve openness.

Theorem 34. If L,M ⊆ Σ∗ are disjoint and open, then L+ and M+ are disjoint.

Proof. If L ∩M = ∅, then M ⊆ L−. Then by isotonicity, M+ ⊆ L−+ = L− since

L− is closed. But then L ⊆ M+−. Applying isotonicity again yields L+ ⊆ M+−+.

But M+ is the closure of an open language and is thus clopen, so M+− is also

clopen and thus M+−+ = M+−. Hence L+ ⊆ M+− and the result follows. �

Corollary 35. Let L,M ⊆ Σ∗ both be closed and such that L ∪ M = Σ∗. Then

L⊕ ∪M⊕ = Σ∗.

In our setting, it is not true that a single “point” x and a closed set S can be

separated by two open sets. As a counterexample, consider x = ab and y = {aa, bb}∗.

Furthermore, it is not true that arbitrary disjoint sets, even ones whose closures are

disjoint, can be clopen separated. As an example, consider {ab}∗ and {aa, bb}∗.

7. Algorithms

We now consider the computational complexity of determining if a given language

L is closed or open. Of course, the answer depends on how L is represented.

Theorem 36. Given an n-state DFA M = (Q,Σ, δ, q0, F ) accepting the regular

language L, we can determine in O(n2) time if L is closed or open.

Proof. We prove the result when L is positive-closed. For Kleene-closed, we have

the additional check whether q0 is in F . For the open case, we start with a DFA

for L.
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We know from Proposition 7 that L is closed if and only if, for all u, v ∈ L we

have uv ∈ L. Given M , we create an NFA-ε M ′ that accepts all words x 6∈ L such

that there exists a decomposition x = uv with u, v ∈ L. Then L(M ′) is empty if

and only if L is closed.

Here is the construction of M ′: M ′ = (Q′,Σ, δ′, q′0, F
′), where Q′ = Q ∪ Q×Q,

q′0 = q0, F
′ = (Q− F )× F , and δ′ is defined as follows:

δ′(p, a) = {δ(p, a)} for p ∈ Q, a ∈ Σ;

δ′(p, ε) = {[p, q0]}, if p ∈ F ;

δ′([p, q], a) = {[δ(p, a), δ(q, a)]} for p, q ∈ Q, a ∈ Σ.

M ′ functions as follows: on input u, it simulates the computation of M . If and

only if a final state is reached (and so u ∈ L), M ′ has the option to use its ε-

transition to enter a state specified by two components, the second of which is q0.

Now M ′ processes v, determining δ(q0, uv) in its first component and δ(q0, v) in the

second. If uv 6∈ L, but v ∈ L, then M ′ accepts. Thus M ′ accepts uv if and only if

u, v ∈ L and uv 6∈ L.

We now use the usual depth-first search technique to determine if L(M ′) is

empty, which uses time proportional to the number of states and transitions of M ′.

Since M ′ has |Q||Σ|+ |F |+ |Q|2|Σ| transitions and |Q|+ |Q|2 states, our depth-first

search can be done in O(n2) time. �

From Proposition 7, we know that L is not closed if and only if there exists

a word uv 6∈ L such that u, v ∈ L. In the following proposition we give an upper

bound on the length of such a word.

Corollary 37. If L is a regular language that is not closed, and accepted by a n-

state DFA, then there exist u, v ∈ L with uv 6∈ L such that |uv| ≤ n2 + n − 1.

This O(n2) upper bound is matched by a corresponding Ω(n2) lower bound:

Theorem 38. For each positive integer n there exists a DFA Mn with 2n + 5

states satisfying the following property: for any u, v ∈ L(Mn), if uv 6∈ L(Mn), then

|uv| ≥ n2 + 2n+ 2.

Proof. It is easier to describe DFA M ′
n = (Q,Σ, δ, q0, F ) that accepts the com-

plement of L(Mn). Let Q = {q0, q1, . . . , qn, r, p0, p1, . . . , pn, s, d}, let δ be given by

Table 3, and let F = {q0, q1, . . . , qn, p0, p1, . . . , pn, s}. The case n = 5 is shown in

Fig. 2.

First, we observe that x = 10n−1110n
2+n−11 is accepted by M ′

n, but neither

u = 10n−11 nor v = 10n
2+n−11 is. Next, take any word x′ accepted by M ′

n. If the

acceptance path does not pass through r, then by examining the DFA we see that

every prefix of x′ is also accepted. Otherwise, the acceptance path passes through

r. Again, we see that every prefix of x′ is accepted, with the possible exception of
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Table 3. Transition function δ(q, a) of M ′
n
.

a\q q0 q1 q2 . . . qn−1 qn r p0 p1 . . . pn−1 pn s d

0 d q2 q3 . . . qn q1 d p1 p2 . . . pn p0 d d

1 q1 s s . . . s r p0 d d . . . d s d d

rq5q4q3q2q1q0
0

0

0

1

1

1

s

000

1 1
1

1

00

0001

p0p1p2p3p4p5

Fig. 2. DFA M5. Unspecified transitions go to the dead state d (not shown).

the prefix ending at r. Thus either x′ is of the form 10in+n−1110k for some i, k ≥ 0,

or x′ is of the form 10in+n−1110j(n+1)+n1 for some i, j ≥ 0. In both cases the prefix

ending at r is 10in+n−11, so in the first case, the corresponding suffix is 10k for

some k ≥ 0, and this suffix is accepted by M ′
n. In the latter case, the corresponding

suffix is 10j(n+1)+n1. This is accepted unless j(n + 1) + n = in + n − 1 for some

i ≥ 0. By taking both sides modulo n, we see that j ≡ −1 (mod n). Thus j ≥ n− 1.

Thus |x′| ≥ 1 + n− 1 + 1 + 1 + (n− 1)(n+ 1) + n+ 1 = n2 + 2n+ 2. �

We now turn to the case whereM is represented as an NFA or regular expression.

For the following theorem, we actually require the word w exhibited in the theorem

above to have length ≥ 2. However, this can be accomplished easily using a trivial

modification of the proof given in [1], since the word w encodes a configuration of

the Turing machine T .

Theorem 39. The following problem is PSPACE-complete: given an NFA M , de-

cide if L(M) is closed.

Proof. First, we observe that the problem is in PSPACE. We give a nondetermin-

istic polynomial-space algorithm to decide if L(M) is not closed, and use Savitch’s

theorem to conclude the result.

If M has n states, then there is an equivalent DFA M ′ with N ≤ 2n states. From

Corollary 37 we know that if L = L(M) = L(M ′) is not closed, then there exist
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words u, v with u, v ∈ L but uv 6∈ L, and |uv| ≤ N2+N −1 = 22n+2n−1. We now

guess u, processing it symbol-by-symbol, arriving in a set of states S of M . Next, we

guess v, processing it symbol-by-symbol starting from both q0 and S, respectively

and ending in sets of states T and U . If U contains a state of F and T does not,

then we have found u, v ∈ L such that uv 6∈ L. As we proceed, we count the number

of symbols guessed, and reject if that number is greater than 22n + 2n − 1.

To show that the problem is PSPACE-hard, we note that ∆∗ is closed, but

∆∗ \ {w} for w with |w| ≥ 2 is not. With the aid of Lemma 10.2 of [1] we could

use an algorithm solving the problem of whether a language is closed to solve the

membership problem for polynomial-space bounded Turing machines. �

If L is not closed and is accepted by an n-state NFA, then a minimal-length

word uv, with u, v ∈ L but uv 6∈ L, may be exponentially long. Such an example is

given in [4], where it is shown that for some constant c, there exist NFA’s with n

states such that a shortest word not accepted is of length > 2cn. We note also that

the problem of deciding, for a given NFA M , whether L(M) is open is PSPACE-

complete. The proof is similar to that of Theorem 39.
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