
ar
X

iv
:1

30
5.

61
58

v1
  [

m
at

h.
C

O
] 

 2
7 

M
ay

 2
01

3

A Geometric Approach to Combinatorial Fixed-Point Theorems

Elyot Grant∗, Will Ma†

May 28, 2013

Abstract

We develop a geometric framework that unifies several different combinatorial fixed-point theorems
related to Tucker’s lemma and Sperner’s lemma, showing them to be different geometric manifestations of
the same topological phenomena. In doing so, we obtain (1) new Tucker-like and Sperner-like fixed-point
theorems involving an exponential-sized label set; (2) a generalization of Fan’s parity proof of Tucker’s
Lemma to a much broader class of label sets; and (3) direct proofs of several Sperner-like lemmas from
Tucker’s lemma via explicit geometric embeddings, without the need for topological fixed-point theorems.
Our work naturally suggests several interesting open questions for future research.

1 Introduction

Combinatorial fixed-point theorems such as the Sperner and Tucker lemmas have generated a wealth of
interest in recent decades, in part due to the discovery of important new applications in economics and
theoretical computer science (see [Rah12, Yan09, CDT09]). Sperner’s lemma is known to be equivalent to
the celebrated Brouwer fixed-point theorem, of which it can be regarded as a discrete analogue. A similar
relationship holds between Tucker’s lemma and the Borsuk-Ulam theorem—it is easy to show that both are
equivalent, with Tucker’s lemma effectively serving as a combinatorial version of the topological Borsuk-Ulam
theorem (see [Mat03]).

Extensive research has examined the construction of direct proofs of the implications among these and
other similar theorems (and generalizations), yielding many different proofs of the Sperner and Tucker
lemmas via a variety of methods (see [Fre84, Kuh60, FT81]). Some of this work has succeeded in connecting
fixed-point theorems in the (Brouwer, Sperner)-family to the seemingly unrelated antipodality theorems
in the (Borsuk-Ulam, Tucker)-family; for example, Su has shown that it is possible to prove the Brouwer
fixed-point theorem directly from the Borsuk-Ulam theorem via an explicit topological construction [Su97],
and Živalcević [Živ10] has shown how Ky Fan’s [Fan52] generalization of Tucker’s lemma implies Sperner’s
lemma. However, despite these results suggesting that Tucker’s lemma is, in some sense, a “stronger” result
than Sperner’s lemma, the construction of a direct proof that Tucker’s lemma implies Sperner’s lemma
appears to remain an open question [NS12].

To shed some light on this question, we investigate the Tucker and Sperner lemmas from a geometric
viewpoint. Cast in this light, it becomes apparent that the Tucker and Sperner lemmas are actually members
of a much larger family of combinatorial fixed-point theorems sharing a common topological structure, but
having different geometric manifestations. Our approach hence unifies many known combinatorial fixed-point
theorems, and yields a new Tucker-type lemma and a new Sperner-type lemma, both with an exponential
number of labels. In doing so, we generalize the technique in [Fan52] to obtain a framework that proves
our new Tucker-like theorem without any topological fixed-point theorems (Section 3). As a bonus, our
framework also permits us to prove some of the Sperner-like theorems directly from Tucker’s lemma via
explicit geometric embeddings (Section 2). Moreover, we derive some insight into why Sperner’s lemma
may be difficult to prove directly from Tucker’s lemma—the analogy between Borsuk-Ulam and Tucker results
is geometrically different from the analogy between Brouwer and Sperner results, and alternate Sperner-like
theorems provide a more direct analogy.

∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. elyot@mit.edu
†Operations Research Center, Massachusetts Institute of Technology. willma@mit.edu

1

http://arxiv.org/abs/1305.6158v1


Acknowledgements. We thank Rob Freund for helpful discussions, and referee 2 for several useful comments.
Both authors were partially supported by NSERC PGS-D awards. The second author was supported in part
by NSF grant CCF-1115849 and ONR grants N00014-11-1-0053 and N00014-11-1-0056.

1.1 Preliminaries

We begin by briefly outlining our terminology and notation. For more background, we refer the reader to
Matoušek [Mat03]. A set σ ⊂ R

n is a k-dimensional simplex (or k-simplex) if it is the convex hull conv(A)
of a set A of k+1 affinely independent points. Points in A are termed vertices of σ, denoted V (σ). Simplices
of the form conv(B) where B ⊆ A are known as faces of σ. We write ei for the ith standard basis vector in
R

n.

Definition 1. For each n ≥ 1, we define the following subsets of Rn:

• The n-dimensional unit ball Bn is defined as {x ∈ Rn, ||x||2 ≤ 1}.

• The (n − 1)-dimensional tetrahedron ∆n−1 is defined as conv{ei : 1 ≤ i ≤ n}, or equivalently, can be
defined as the set of all points (x1, . . . , xn) such that

∑n

i=1 xi = 1 and xi ≥ 0 for all i.

• The n-dimensional octahedron ♦n is defined as conv{±ei}, or equivalently, is the unit ball {x ∈
Rn, ||x||1 ≤ 1} in the ℓ1 norm. This is also known as the n-dimensional cross-polytope or orthoplex.

• The n-dimensional cube �n is defined as conv{(x1, . . . , xn) : xi ∈ {−1, 1}}, or equivalently, is the unit
ball {x ∈ Rn, ||x||∞ ≤ 1} in the ℓ∞ norm.

Central to all combinatorial fixed-point theorems is the notion of triangulation:

Definition 2. If X ⊂ R
n, a finite family T of simplices is a triangulation of X if

⋃
σ∈T σ = X and the

following two properties hold:

• For each simplex σ ∈ T , all faces of σ are also simplices in T .

• For any two simplices σ1, σ2 ∈ T , the intersection σ1 ∩ σ2 is a face of both σ1 and σ2.

In more general contexts, a topological triangulation is defined to only require that
⋃

σ∈T σ is homeo-
morphic to the set X . This relaxed definition is necessary in order to discuss, e.g. finite triangulations of
the unit ball. For brevity, we will omit the word ‘topological’ when the context is clear; when we say a
triangulation of Bn, we mean a triangulation of any set homeomorphic to Bn, such as ∆n, ♦n, or �n. In all
other contexts, we will assume that

⋃
σ∈T σ = X when T is a triangulation of X .

Combinatorial Fixed-Point Theorems

We define the vertices V (T ) of a triangulation T to be the set of all 0-simplices in T . A label function
λ is a mapping from V (T ) to a finite label set L. In the case of the Tucker and Sperner lemmas, the sets
{1, . . . , n+1} or {1,−1, . . . , n,−n} are typically used for L. However, in our paper, we will instead represent
these labels as the sets of extreme points ext(∆n) = {e1, . . . , en+1} and ext(♦n) = {e1,−e1 . . . , en,−en}.Cast
in this framework, we shall state Sperner’s lemma as follows:

Theorem 1.1 (Sperner’s Lemma). Let T be a triangulation of ∆n. Let λ : V (T ) → ext(∆n) be a label
function with the property that for all x = (x1, . . . , xn+1) ∈ V (T ), for all 1 ≤ i ≤ n + 1, if xi = 0, then
λ(x) 6= ei (such a λ is sometimes called a proper colouring). Then T contains a panchromatic simplex—that
is, a simplex σ such that {λ(v) : v ∈ V (σ)} = {e1, . . . , en+1}.

The key idea in proving Sperner’s lemma from the Brouwer fixed-point theorem is to use the labels to
construct a mapping from ∆n to itself that must contain a fixed point in its interior. The mapping is designed
such that all simplices that are not panchromatic are mapped to the boundary of ∆n, and thus it follows
that T must contain a panchromatic simplex. Nothing about the proof requires any specific properties of
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∆n, so it is natural to consider what happens when we replace ∆n with other spaces homeomorphic to it,
such as ♦n or �n. As it turns out, we can establish results similar to Sperner’s lemma in other geometric
spaces as long as we have suitable analogies of the notions of proper colouring and panchromatic simplex.

The following propositions motivate the alternative notions of proper colouring and panchromatic simplex
that we shall employ when considering different geometric manifestations of Sperner-like theorems:

Proposition 1.2. Let σ be a simplex and let λ : V (σ) → ext(♦n) be a label function. Define a complementary
edge to be two vertices v1, v2 ∈ V (σ) with λ(v1) = −λ(v2). Then conv{λ(v) : v ∈ V (σ)} intersects the interior
of ♦n if and only if σ contains a complementary edge.

Proposition 1.3. Let σ be a simplex and let λ : V (σ) → ext(�n) be a label function. We say σ is a neutral
simplex if for all 1 ≤ i ≤ n, there exist vertices v1, v2 ∈ V (σ) such that λi(v1) = −1, λi(v2) = +1, where
λi(v) is the ith coordinate of λ(v). Then conv{λ(v) : v ∈ V (σ)} intersects the interior of �n if and only if
σ is a neutral simplex.

As a slight abuse of definitions, we shall say that T has a complementary edge whenever some simplex
in T does.

Two Sperner-like theorems can immediately be derived by imposing the right labelling constraints:

Theorem 1.4 (Octahedral Sperner with Octahedral Labels). Let T be a triangulation of ♦n. Let λ :
V (T ) → ext(♦n) be a label function such that for all boundary vertices x = (x1, . . . , xn) ∈ V (T )∩ ∂(♦n), for
all 1 ≤ i ≤ n, if xi ≥ 0 (respectively, if xi ≤ 0), then λ(x) 6= −ei (respectively, λ(x) 6= ei). Then T contains
a complementary edge.

Theorem 1.5 (Cubical Sperner with Cubical Labels). Let T be a triangulation of �n. Let λ : V (T ) →
ext(�n) be a label function such that for all vertices x = (x1, . . . , xn) ∈ V (T ), for all 1 ≤ i ≤ n, if
xi ∈ {−1, 1}, then λ(x)i = xi. Then T contains a neutral simplex.

Theorem 1.4 is a special case of a theorem originally conjectured by Atanassov and proven by De Loera
et al. [Ata96, LPS02]. Theorem 1.5 is implied by a theorem of Kuhn [Kuh60]. However, Kuhn actually
relabels the vertices of the triangulation asymmetrically using (n+1) labels, and demonstrates the existence
of a panchromatic simplex under the relabelling, which directly implies the existence of a neutral simplex
under the original labelling. His result can be regarded as a “Cubical Sperner with Tetrahedral Labels”,
where the domain over which the triangulation takes place is distinct from the codomain whose extreme
points are the labels (though the domain and codomain are still homeomorphic). As it turns out, allowing
the domain and codomain to differ yields several additional fixed-point theorems. We give some examples:

Theorem 1.6 (Cubical Sperner with Octahedral Labels). Let T be a triangulation of �n. Let λ : V (T ) →
ext(♦n) be a label function with the property that for all vertices x = (x1, . . . , xn) ∈ V (T ), for all 1 ≤ i ≤ n,
if xi ∈ {−1, 1}, then λi(x) 6= −xiei. Then T contains a complementary edge.

Theorem 1.7 (Octahedral Sperner with Cubical Labels). Let T be a triangulation of ♦n. Let λ : V (T ) →
ext(�n) be a label function with the property that for all vertices x ∈ V (T ), for all v ∈ ext(�n), if vTx = 1,
then λ(x) 6= −v. Then T contains a neutral simplex.

Theorem 1.6 is due to Freund [Fre84]. Theorem 1.7 appears to be novel, though it is related to a result
of Freund [Fre89] that assumes stronger conditions on the label function, and establishes a stronger result—
namely, that T contains a simplex whose labels, when regarded as a subset of the extreme points of �n,
contain the origin (or some other specific point) in their convex hull. The property of having such a simplex is
weaker than the property of having a complementary edge (since any simplex σ containing a complementary
edge must contain two vertices whose labels have the origin as their midpoint, and hence the convex hull
of the labels used must contain the origin). However, it is stronger than the property of having a neutral
simplex; for example, the set S = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (1, 1, 1)} does not contain the origin in its
convex hull, but corresponds to the labels of a neutral simplex. One may observe that a triangulation of ♦3

can be labelled using labels in the set S while respecting the conditions of Theorem 1.7, so our result cannot
be implied by Freund’s.
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It is not clear how one might prove Theorem 1.7 combinatorially. It does not seem possible to employ a
relabelling trick similar to Kuhn’s to reduce Theorem 1.7 to a statement involving only polynomially many
different labels. Additionally, the methods of Freund do not appear to be applicable. In Section 4, we provide
a proof of Theorem 1.7 via the Brouwer fixed-point theorem. We leave it as an open question to prove this
theorem via combinatorial means.

It is undoubtedly possible to derive further Sperner-like theorems using other domains and codomains,
but the aforementioned results are the most natural due to the symmetrical geometry of the cube and
octahedron. Octahedral labels are particularly nice due to their relation to Tucker’s lemma; indeed, it is
possible to prove Theorem 1.6 and Theorem 1.4 directly from Tucker’s lemma, as we show in Section 2.

To state Tucker-like fixed-point theorems, we require a notion of antipodality:

Definition 3. Let T be a topological triangulation of Bn with X =
⋃

σ∈T σ. We define the boundary of T
to be the triangulation ∂(T ) ⊂ T containing all simplices in T that lie entirely in the boundary ∂(X). T
is said to be antipodally symmetric on the boundary if, for all simplices σ ∈ ∂(T ), the reflected simplex −σ
also lies in ∂(T ).

Tucker’s lemma can then be stated as follows (originally in [Tuc46]; see [Meu06a] for a survey):

Theorem 1.8 (Tucker’s Lemma). Let T be a triangulation of Bn that is antipodally symmetric on the
boundary of the domain X. Let λ : V (T ) → ext(♦n) be a label function such that λ(v) = −λ(−v) for all
v ∈ ∂(X). Then T contains a complementary edge.

Our geometric intuition suggests that similar theorems should be possible using labels from other codomains
homeomorphic to Bn. Although it does not make sense to use labels in ext(∆n) due to there being no natural
notion of negation among them, we can use labels in ext(�n) to obtain the following new result:

Theorem 1.9 (Tucker’s Lemma with Cubical Labels). Let T be a triangulation of Bn that is antipodally
symmetric on the boundary of the domain X. Let λ : V (T ) → ext(�n) be a label function such that
λ(v) = −λ(−v) for all v ∈ ∂(X). Then T contains a neutral simplex.

As one might expect, it is straightforward to prove Theorem 1.9 topologically using the Borsuk-Ulam
theorem. However, we can establish this theorem combinatorially by extending the framework of Ky Fan
[Fan52] to a broader class of possible labellings of triangulations. In Section 3, we state and prove this
generalization of Fan’s theorem, and show how it implies Theorem 1.9.

2 Geometric Proofs of Sperner-like Theorems

In this section, we describe a technique that enables us to explicitly construct geometric reductions between
combinatorial fixed-point theorems. We illustrate our technique through an example:

Theorem 2.1. Tucker’s Theorem implies Theorem 1.4 (Octahedral Sperner with Octahedral Labels).

Proof. Let T be a triangulation of ♦n with label function λ : V (T ) → ext(♦n) satisfying the conditions of
Theorem 1.4. Let X = 2♦n be a dilated copy of the n-dimensional octahedron, so that ♦n lies entirely within
the interior of X . Our key idea is to extend the triangulation T and label function λ to a triangulation T ∗

of X and a label function λ∗ : V (T ∗) → ext(♦n) so that the following properties hold:

1. T ⊂ T ∗, and λ∗(v) = λ(v) for each vertex v in V (T ).

2. T ∗ is antipodally symmetric on the boundary, and λ∗(v) = −λ∗(−v) for each v ∈ V (T ∗) ∩ ∂(X).

3. There are no complementary edges in T ∗ \ T .

4



If we can construct such a T ∗ and λ∗, then Theorem 1.4 immediately follows from Tucker’s lemma, since T ∗

must contain a complementary edge if property (2) is true, and this complementary edge must then lie in T
by properties (1) and (3).

It remains to define a new triangulation T ∗ and labelling λ∗. Let Y = (X \ ♦n) ∪ ∂(♦n). To construct
T ∗, we shall first construct a triangulation of Y that agrees with T on ∂(♦n), and contains no vertices
lying on ∂(X) other than those in ext(X). This construction is made significantly simpler through the
application of known theory regarding triangulations of polytopes; the reader is referred to [Lee97] for
background. We first subdivide the region Y into 2n pieces via slicing by the n different (n− 1)-dimensional
coordinate hyperplanes. Each piece that remains is a convex n-polytope lying entirely within a single orthant.
We consider the subdivisions obtained by adjoining each polytope to all of the simplices in T that lie on
the respective facet of ♦n. We then refine each of these subdivisions to a triangulation using sequential
‘pushing’ or ‘pulling’ steps as described in [Lee97]. Note that we must perform these refinements iteratively,
one subdivision at a time, in order to ensure that simplicies lying in the intersection of two neighbouring
subdivisions are respected in the triangulation.

After triangulating Y , we extend this triangulation to all of X by simply adding the simplices in our
original triangulation T of ♦n, noting that the resulting collection of simplices is indeed a triangulation,
because the simplices agree at the boundard of ♦n. We define T ∗ to be the resulting triangulation obtained
by adding the triangulation of Y to T .

We next define an extended labelling λ∗ : V (T ∗) → ext(♦n). We set λ∗(v) = λ(v) for each vertex
v ∈ V (T ), and λ∗(2ei) = ei for the remaining vertices of T ∗—the extreme points of X . Because we split
the region Y into orthants before triangulating it, we can be sure that no complementary edge exists among
the simplices in T ∗ \ T , as there are no edges between in T ∗ \ T between vertices lying within different
orthants. However, T ∗ is antipodally symmetric on the boundary of X , and λ∗(v) = −λ∗(−v) for each
v ∈ V (T ∗) ∩ ∂(X), so Tucker’s theorem implies that T ∗ must contain a complementary edge somewhere. It
therefore must lie in T , completing the proof.

We can use the techniques of Theorem 2.1 to prove Sperner-like combinatorial fixed-point theorems
directly via implications from other fixed-point theorems. The proofs all involve similar techniques to those
used above in the proof of Theorem 2.1; the key steps in proving that fixed point theorem A implies Sperner-
like theorem B always follows the same pattern:

1. First, we embed the domain Z of theorem B inside the interior of the domain X in used in theorem A.

2. We construct an extension of the triangulation T from theorem B to a triangulation T ∗ of X by
constructing a triangulation of X \Z ∪ ∂(Z) that agrees with T on ∂(Z). We ensure that there are no
vertices lying on ∂(X) other than those in ext(X). We also ensure that this triangulation has no edges
that go between two different orthants (in other words, all edges that go between a point in orthant O1

and a point in orthant O2 have an end in O1 ∩O2.) For technical reasons (chiefly, lack of convexity),
this may require adding additional “Steiner” vertices in the interior of X , but this poses no problem.

3. We extend the labelling of T , as given in theoremB, to a labelling of all the vertices used in our extended
triangulation T ∗. We ensure that this labelling has two important properties: First, on the boundary
∂(X), it must respect the labelling constraints required by theorem A (either an antipodality condition
if theorem A is a Tucker-like theorem, or a proper labelling condition if theorem A is a Sperner-like
theorem). Secondly, it must add no “forbidden” simplices, with respect to the constraints imposed in
theorem B.

4. Finally, we argue that because theorem A implies the existence of a forbidden simplex in T ∗, there
must exist a forbidden simplex in T , proving theorem B.

Using this idea, alongside standard triangulation techniques, it is straightforward to establish all of the
following:

Theorem 2.2. Tucker’s Theorem implies Theorem 1.6 (Cubical Sperner with Octahedral Labels).
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Theorem 2.3. Theorem 1.6 (Cubical Sperner with Octahedral Labels) implies Theorem 1.4 (Octahedral
Sperner with Octahedral Labels).

Theorem 2.4. Theorem 1.4 (Octahedral Sperner with Octahedral Labels) implies Theorem 1.6 (Cubical
Sperner with Octahedral Labels).

The proofs of these theorems are all similar to the proof of Theorem 2.1. Technical details on how to
triangulate non-convex regions, such as an orthant of an origin-centered octohedron with an orthant of an
origin-centered cube removed, can be found in [Lee97].

Unfortunately, the style of geometric argument we describe here relies crucially on a labelling scheme
in which negations are permitted. Accordingly, it appears that additional insight is required in order for
it to be possible to use a geometric construction of this nature to directly prove Sperner’s lemma from a
Tucker-like theorem.

3 Generalized Parity Framework for Tucker-like Theorems

In this section, we give a combinatorial proof of Theorem 1.9 via a generalization of the inductive parity
proof technique of Fan [Fan52]. We assume our triangulation T is aligned with hemispheres, a standard
assumption in proofs of Tucker-like lemmas [Mat03, SS03, PS05]:

Definition 4. Let T be a triangulation of Bn that is antipodally symmetric on the boundary. T is aligned
with hemispheres if there exists a sequence T n = T, T n−1, . . . , T 0, where T i is a triangulation of Bi that is
antipodally symmetric on the boundary, such that T i−1 ∪ (−T i−1) = ∂(T i) and T i−1 ∩ (−T i−1) = ∂(T i−1).

Roughly speaking, this means that ∂(T ) (a triangulation of ∂(Bn)) can be decomposed into two antipodal
triangulations of Bn−1 that intersect along an equatorial triangulation of ∂(Bn−1). Repeating this process
recursively shall later facilitate an inductive argument.

We proceed with further definitions. Suppose we have a label set that can be partitioned into pairs
of opposite labels. We say such a label set is strictly symmetric. Define a labelling ℓ to be an unordered,
unoriented way of labelling a simplex, i.e. a multi-set of labels. There is a natural notion of an opposite
labelling −ℓ, where we take the opposite of each label in the multi-set. We use i-labelling to refer to the
labelling of an i-simplex, i.e. a multi-set of i + 1 labels. Let Li denote the set of i-labellings. Note that Li

may not be strictly symmetric even though the label set is strictly symmetric, e.g. labelling {+e1,−e1} is
its own opposite.

Now we define the set of forbidden labellings F ⊆
⋃n

i=0 L
i. (Assume F ∩L0 = ∅; otherwise we would just

make the label set smaller.) In the case of Tucker’s lemma, F is the set of labellings with a complementary
edge. In the case of Theorem 1.9, F is the set of labellings with a neutral simplex. The idea is to choose F ’s
such that Li\F is strictly symmetric for all 0 ≤ i ≤ n. That is, F must be symmetric and contain all the
labellings which are their own opposite.

If M i is a strictly symmetric subset of i-labellings, then from each pair of opposite labellings, we can
choose one to be the ‘+’ labelling and the other to be the ‘-’ labelling. Let M i

+,M
i
− denote the set of +,−

labellings, respectively. We call M i
+ ∪M i

− a partitioning of M i.

Theorem 3.1 (Parity Proof Framework). Let T be a triangulation of Bn that is antipodally symmetric on
the boundary and aligned with hemispheres. Fix the label set, and let F be any set of forbidden labellings
such that Li\F is strictly symmetric for all i = 0, . . . , n. Let λ be a label function on V (T ) such that
λ(v) = −λ(−v) for all v on the boundary. Suppose T contains no simplices with a labelling from F . Define
M0 := L0. Then for i = 1, . . . , n:

• M i−1 is strictly symmetric, so we can partition it into M i−1
+ ∪M i−1

−

• Define M i to be the set of ℓi in Li\F that contain an odd number of (i−1)-labellings from M i−1
+ . Then

T i contains an odd number of i-simplices with labellings from M i.
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Proof. First, we need some notation. Assume M i
+ ∪M i

− is chosen, and j ≥ i.

• For j-labelling ℓj, let degi(ℓj) denote the number of ℓi ⊆ ℓj such that ℓi ∈ M i.

• If j = i, then degi(ℓj) is simply the indicator function for whether ℓj ∈ M i.

• For j-simplex σj , let deg
i(σj) denote the number of i-dimensional faces with a labelling in M i.

• Similarly define degi+(ℓ
j), degi+(σj) for M

i
+, and degi−(ℓ

j), degi−(σj) for M
i
−.

Suppose i > 0. To show M i is strictly symmetric, we first show that every i-labelling ℓi ∈ Li\F contains
an even number of (i − 1)-labellings from M i−1.

degi−1(ℓi) ≡
∑

ℓi−1⊂ℓi

degi−1(ℓi−1)

≡
∑

ℓi−1⊂ℓi

degi−2
+ (ℓi−1)

≡
∑

ℓi−1⊂ℓi

∑

ℓi−2⊂ℓi−1

degi−2
+ (ℓi−2)

≡
∑

ℓi−2⊂ℓi

2 · degi−2
+ (ℓi−2)

≡ 0 mod 2

where all the equivalences follow from definitions except the fourth one, which follows from the fact that
each ℓi−2 ⊂ ℓi is contained in exactly 2 of the ℓi−1’s. (This proof doesn’t make sense for i = 1, but that case
is trivial.)

Now, suppose ℓi ∈ M i. degi−1
+ (ℓi) is odd, so degi−1

− (ℓi) is also odd, since degi−1(ℓi) is even. But

degi−1
− (ℓi) = degi−1

+ (−ℓi), since M i−1 is strictly symmetric. Hence degi−1
+ (−ℓi) is odd and −ℓi ∈ M i, so Mi

is symmetric. Furthermore, Mi is strictly symmetric since it is a subset of Li\F , which is strictly symmetric.
To show that T i contains an odd number of i-simplices with labellings from M i:

∑

σi∈T i

degi(σi) ≡
∑

σi∈T i

degi−1
+ (σi)

≡
∑

σi∈T i

∑

σi−1⊂σi

degi−1
+ (σi−1)

≡
∑

σi−1∈∂T i

degi−1
+ (σi−1) +

∑

σi−1∈T i\∂T i

2 · degi−1
+ (σi−1)

≡
∑

σi−1∈T i−1∪−T i−1

degi−1
+ (σi−1)

≡
∑

σi−1∈T i−1

degi−1(σi−1)

≡ 1 mod 2

where

• the third equivalence follows from the fact that each σi−1 on the boundary of T i is contained in exactly
1 of the σi’s, while every σi−1 on the interior of T i is contained in exactly 2 of the σis;

• the fourth equivalence follows from the hemispheres aligned with T ;
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• the fifth equivalence follows from the fact that λ is antipodal on the boundary;

• the sixth equivalence follows from the inductive hypothesis.

This completes the induction and the proof.

One may observe that we provided an elementary inductive proof of Theorem 3.1, similar in spirit to
Fan’s original combinatorial proof of his theorem. However, it is also possible to establish this theorem using
algebraic methods, following a scheme such as that used by Meunier[Meu06b].

It is not hard to see that, with the right parameters, this framework can be used to immediately establish
Tucker’s lemma:

Theorem 3.2. Theorem 3.1 directly implies Tucker’s lemma.

Proof. Theorem 3.1 is true for any sequence of partitionings. To prove Tucker’s lemma, we must produce a
sequence of partitionings such that Mn = ∅, contradicting the existence of a triangulation T that doesn’t
contain a forbidden labelling.

Let F be the set of labellings that contain a complementary edge; note that Li\F is indeed symmetric
for all i. Suppose we had a triangulation T that was a counterexample to Tucker’s Lemma; T satisfies the
conditions of Theorem 3.1. At each stage, use the following rule to partition M i−1: given a labelling ℓi−1,
let j be the smallest positive integer such that either +j or −j appears in ℓi−1. Since ℓi−1 cannot contain
a complementary edge, we cannot have both appear. If +j appears, then choose ℓi−1 to be a ‘+’ labelling;
otherwise choose it to be ‘-’. Note that this is a legal partitioning of M i−1. Now, for i = 1, . . . , n, it can be
inductively observed that:

• M i−1
+ = {{k1,−k2, k3, . . . , (−1)i−1ki} : 1 ≤ k1 < . . . < ki ≤ n}

• M i−1
− = {{−k1,+k2,−k3, . . . , (−1)iki} : 1 ≤ k1 < . . . < ki ≤ n}

• M i = {{k1,−k2, k3, . . . , (−1)iki+1}, {−k1,+k2,−k3, . . . , (−1)i+1ki+1} : 1 ≤ k1 < . . . < ki+1 ≤ m}

Thus Mn = ∅, completing the proof.

Theorem 3.1 also yields a purely combinatorial proof of Theorem 1.9.

Theorem 3.3. Theorem 3.1 directly implies Theorem 1.9 [Tucker’s lemma with cubical labels].

Proof. Let F be the set of labellings that contain a neutral simplex. Suppose we had a triangulation T that
was a counterexample to Theorem 1.9. At each stage, use the following rule to partition M i−1: given a
labelling ℓi−1, let Φ(ℓi−1) be the smallest coordinate on which all i labels of ℓi−1 agree. Since ℓi−1 cannot
be a neutral simplex, this coordinate must exist. If the labels are all positive on this coordinate, then choose
ℓi−1 to be a ‘+’ labelling; otherwise choose it to be ‘-’.

For i = 0, . . . , n, we will inductively show that for all ℓi ∈ M i, Φ(ℓi) ≥ i + 1. The base case i = 0 is
trivial. Suppose i > 0 and ℓi ∈ M i. By definition, ℓi contains a labelling ℓi−1 ∈ M i−1

+ . The induction
hypothesis says Φ(ℓi−1) ≥ i. Thus, since ℓi contains ℓi−1, ℓi cannot have all labels agree until at least the
i’th coordinate, and if they agree on the i’th coordinate, it must be on ‘+’.

Now, M i is strictly symmetric, so −ℓi ∈ M i, which means −ℓi contains an odd number of (i−1)-labellings
from M i−1

+ . But then ℓi contains an odd number of, i.e. at least one (i − 1)-labellings from M i−1
− , so we

can draw a corresponding conclusion: ℓi cannot have all labels agree until at least the i’th coordinate, and
if they agree on the i’th coordinate, it must be on ‘-’.

Combining these two conclusions, ℓi cannot have all labels agree on the i’th coordinate, so we get
Φ(ℓi) ≥ i+1, completing the induction. When i = n, for all ℓn ∈ Mn, Φ(ℓn) ≥ n+1. But this is impossible,
so Mn = ∅, contradicting the fact that T n = T contains an odd number of labellings from Mn.

Note that our framework allowed us to reach the conclusion without being able to characterize M i at
each stage. We leave it as an open question to come up with a combinatorial characterization of M i.
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4 Topological Proof of Theorem 1.7

Here, we provide a straightforward proof of Theorem 1.7 (Octahedral Sperner with Cubical Labels) via the
Brouwer fixed-point theorem. We follow the same standard technique that is typically used in the proof of
Sperner’s Lemma [Mat03].

Theorem 1.7 [Octahedral Sperner with Cubical Labels] Let T be a triangulation of ♦n. Let λ : V (T ) →
ext(�n) be a label function with the property that for all vertices x ∈ V (T ), for all v ∈ ext(�n), if vTx = 1,
then λ(x) 6= −v. Then T contains a neutral simplex.

Proof. Suppose for contradiction we had a T , λ that was a counterexample to Theorem 1.7. Our goal is to
construct a continuous function from ♦n to itself that has no fixed points, contradicting Brouwer’s fixed-point
theorem. Let f : ♦n → (n · �n) be the natural linear extension of λ to the entire octahedron, except we
dilate the codomain by a factor of n (and instead of mapping to (1, . . . , 1), we map to (n, . . . , n), etc.). We
will want to consider −f(x).

Now, fix an x ∈ ∂♦n. Define C(x) = {v ∈ ext(�n) : vTx = 1}. Since x ∈ ∂♦n, C(x) 6= ∅. We want to
define the region of ∂♦n to which x belongs by a vector S(x) ∈ {−1, 0, 1}n. ∀i ∈ [n], define

• Si(x) = 1 if ∀v ∈ C(x), vi = +1

• Si(x) = −1 if ∀v ∈ C(x), vi = −1

• Si(x) = 0 otherwise

There are 3n − 1 different regions excluding the interior. The key geometric observation about ♦n is that if
we know S(x), then C(x) is guaranteed to be the maximum of all subsets of ext(�n) that give rise to S(x).

Now we need to define corresponding regions on ∂(n · �n). For s = S(x), we want to define R(s), the
region of ∂(n ·�n) corresponding to s. Note that these regions will overlap. Say x ∈ R(s) if and only if for
all i ∈ [n]:

• If si = 1, then xi ≥ n− 1

• If si = −1, then xi ≤ −(n− 1)

• If si = 0, then −(n− 1) ≤ xi ≤ n− 1

Now, take an x ∈ ∂♦n and consider s : S(x). Let W (s) = {t ∈ ext(�n) : ti = si if |si| = 1}. −f(x) is a
convex combination of at most n − 1 vertices of n · �n. Let’s consider what these vertices can be. By the
observation that C(x) is maximal, none of these vertices can be those in n ·W (s). Thus there exists some
coordinate i such that |si| = 1 and at least one of these vertices “disagrees” with si. We conclude that

• If si = 1, then −f(x) ≤ n−1
n

n+ 1
n
(−n) < n− 1.

• If si = −1, then −f(x) ≥ n−1
n

(−n) + 1
n
(n) > −(n− 1).

Thus, −f(x) /∈ R(x).
Now, let g(x) be the continuous deformation that maps n · �n to ♦n, and bijectively maps R(x) to

R′(x) :=
⋂

v∈C(x){y : vT y = 1} for all points x ∈ ∂(♦n). Note that all the boundaries line up geometrically.
This map is continuous, and this map can be continuously extended to the interiors.

Now consider the composition g(−f(x)) : ♦n → ♦n. Since there is no neutral simplex, f(x) maps
nothing to the interior and hence there can be no fixed points on the interior. If x ∈ ∂♦n, then x ∈ R′(x),
but −f(x) /∈ R(x). Then g(−f(x)) /∈ R′(x), so x cannot be a fixed point. We’ve constructed a continuous
function from ♦n to itself with no fixed points, contradicting Brouwer’s fixed-point theorem and completing
the proof.
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