Quantum-resistant cryptography from supersingular elliptic curves

David Urbanik

July 12, 2016
Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:

\[\text{Message Space} \quad \xrightarrow{\text{Encryption}(\cdot)} \quad \text{Ciphertext Space} \]
\[\xleftarrow{\text{Decryption}(\cdot)} \]

Just one pair of these functions is not enough; need (exponentially) many of them indexed by a parameter \(s \):

\[\text{Message Space} \quad \xrightarrow{\text{Encryption}(\cdot, s)} \quad \text{Ciphertext Space} \]
\[\xleftarrow{\text{Decryption}(\cdot, s)} \]

To do encryption, two parties need to agree on \(s \). In 1976, Diffie and Hellman showed it can be done over a public channel.
Symmetric Ciphers and Shared Secrets

To communicate cryptographically, we need to specify (at least) a function and its inverse:

\[\text{Encryption}(-) \quad \rightarrow \quad \text{Ciphertext Space} \]
\[\text{Decryption}(-) \quad \leftarrow \quad \text{Message Space} \]

Just one pair of these functions is not enough; need (exponentially) many of them indexed by a parameter \(s \):

\[\text{Encryption}(-,s) \quad \rightarrow \quad \text{Ciphertext Space} \]
\[\text{Decryption}(-,s) \quad \leftarrow \quad \text{Message Space} \]
To communicate cryptographically, we need to specify (at least) a function and its inverse:

\[
\begin{align*}
\text{Message Space} & \quad \xrightarrow{\text{Encryption}(-)} \quad \text{Ciphertext Space} \\
\text{Ciphertext Space} & \quad \xleftarrow{\text{Decryption}(-)} \quad \text{Message Space}
\end{align*}
\]

Just *one* pair of these functions is not enough; need (exponentially) many of them indexed by a parameter \(s \):

\[
\begin{align*}
\text{Message Space} & \quad \xrightarrow{\text{Encryption}(-,s)} \quad \text{Ciphertext Space} \\
\text{Ciphertext Space} & \quad \xleftarrow{\text{Decryption}(-,s)} \quad \text{Message Space}
\end{align*}
\]

To do encryption, two parties need to agree on \(s \). In 1976, Diffie and Hellman showed it can be done over a public channel.
The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.
The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.

Alice’s Computation Public Channel Bob’s Computation

\[
\begin{align*}
g & \quad g \\
g^a & \quad g^a \quad g^b \\
g^b & \quad g^b \\
(g^b)^a & \quad = \quad (g^a)^b
\end{align*}
\]
The Diffie-Hellman Protocol

Setup: Fix a group G and $g \in G$.

Alice’s Computation Public Channel Bob’s Computation

g

\[x \mapsto x^a \]

g^a

\[x \mapsto x^b \]

g^b

\[x \mapsto x^a \]

g^b

\[x \mapsto x^b \]

$(g^b)^a = (g^a)^b$

Hard problem: Given g, g^a, and g^b, determine g^{ab}.
Cryptography Under Attack

Nearly all cryptosystems which use only an open channel are broken by quantum computers. Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman). Both are special cases of the Abelian Hidden subgroup problem:

Abelian Hidden Subgroup Problem

Input
- Abelian group G
- A set X
- $H \leq G$
- $f: G \rightarrow X$ where $f(g_1) = f(g_2)$ iff $g_1H = g_2H$.

Output
- A generating set for H.

David Urbanik

SIDH Key Exchange

July 12, 2016
Nearly all cryptosystems which use only an open channel are broken by quantum computers.
Cryptography Under Attack

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).
Cryptography Under Attack

- Nearly all cryptosystems which use only an open channel are broken by quantum computers.
- Quantum computers can factor integers (breaks RSA), and compute discrete logarithms (breaks all forms of Diffie-Hellman).
- Both are special cases of the Abelian Hidden subgroup problem:

Abelian Hidden Subgroup Problem

Input: Abelian group G, a set X, $H \leq G$, and $f : G \rightarrow X$ where $f(g_1) = f(g_2)$ iff $g_1H = g_2H$.

Output: A generating set for H.
The Diffie-Hellman Protocol (again)

Setup: Fix a group G and $g \in G$.

Alice’s Computation \hspace{2cm} Public Channel \hspace{2cm} Bob’s Computation

\[
\begin{align*}
&g \\
\xrightarrow{x \mapsto x^a} \\
&g^a \\
\xrightarrow{g^b} \\
&\left(g^b \right)^a \\
\end{align*} \hspace{2cm}
\begin{align*}
&g \\
\xrightarrow{x \mapsto x^b} \\
&g^b \\
\xleftarrow{g^a} \\
&\left(g^a \right)^b \\
\end{align*}
\]

Hard problem: Given g, g^a, and g^b, determine g^{ab}.
The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class \mathcal{C} and $E \in \mathcal{C}$.

Alice’s Computation Public Channel Bob’s Computation

$$E \xrightarrow{X \mapsto X/\langle R_A \rangle} \frac{E}{\langle R_A \rangle} \xrightarrow{E/\langle R_B \rangle} \frac{E}{\langle R_A, R_B \rangle}$$

Hard problem: Given E, $E/\langle R_A \rangle$, $E/\langle R_B \rangle$ *, determine $E/\langle R_A, R_B \rangle$.

* Some extra information is also available.
A set of solutions \(\{(x, y)\} \) over a field \(\mathbb{k} \) to an equation of the form

\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]
A set of solutions \(\{(x, y)\} \) over a field \(\mathbb{k} \) to an equation of the form

\[
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.
\]

After a change of coordinates:

- **Weierstrass Form**
 \[
y^2 = x^3 + ax + b
\]

- **Montgomery Form**
 \[
by^2 = x^3 + ax^2 + x
\]

- **Legendre Form**
 \[
y^2 = x(x - 1)(x - \lambda)
\]
Elliptic Curves

A set of solutions \(\{(x, y)\} \) over a field \(\mathbb{k} \) to an equation of the form

\[
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6
\]

After a change of coordinates:

- **Weierstrass Form**
 \[
y^2 = x^3 + ax + b
\]

- **Montgomery Form**
 \[
 by^2 = x^3 + ax^2 + x
\]

- **Legendre Form**
 \[
 y^2 = x(x - 1)(x - \lambda)
\]

Elliptic curves also need to be non-singular, i.e. there is a unique tangent line at every point.
Elliptic Curve Examples

Figure: \(y^2 = x^3 + ax + b, \quad a \in \{-2, -1, 0, 1\} \) and \(b \in \{-1, 0, 1, 2\} \).
The Group of an Elliptic Curve E

$$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$$
The Group of an Elliptic Curve E

$$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$$
The Group of an Elliptic Curve E

$$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$$
The Group of an Elliptic Curve E

$$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$$
The Group of an Elliptic Curve E

$G = \{(x, y) \in \mathbb{k}^2 : (x, y) \text{ is a point on } E\}$
The Group of an Elliptic Curve E

$$G = \{(x, y) \in k^2 : (x, y) \text{ is a point on } E\} \cup \{\infty\}$$

Define a point “at ∞” such that

$$A + B = \infty.$$
The Group of an Elliptic Curve E

\[G = \{(x, y) \in \mathbb{K}^2 : (x, y) \text{ is a point on } E\} \cup \{\infty\} \]

Define a point “at ∞” such that

\[A + B = \infty . \]

This way we get an identity element, and also inverses.
The Group of an Elliptic Curve E

$$G = \{(x, y) \in \mathbb{F}_2 : (x, y) \text{ is a point on } E\} \cup \{\infty\}$$
The Group of an Elliptic Curve E

$$G = \{ (x, y) \in \mathbb{F}_p^2 : (x, y) \text{ is a point on } E \} \cup \{ \infty \}$$
The Group of an Elliptic Curve E
The Group of an Elliptic Curve E

Why is this group operation associative?
The Group of an Elliptic Curve E

Why is this group operation associative?

![Diagram showing points A, B, and C on an elliptic curve.](image)
The Group of an Elliptic Curve E

Why is this group operation associative?
Why is this group operation associative?
The Group of an Elliptic Curve \(E \)

Why is this group operation associative?
Why is this group operation associative?
The Group of an Elliptic Curve E

Why is this group operation associative?
Supersingular elliptic curves

Many equivalent definitions:

Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.

The group of p-torsion points of E is trivial, where $\text{char}(k) = p$.

Writing E in Legendre form, $E: y^2 = x(x-1)(x-\lambda)$ is supersingular iff λ is a root of $f(x) = p - 1/2 \sum_{i=0}^{n} (n_i)^2 x^i$.

If we write E as a cubic homogeneous polynomial $f(x, y, z)$ in the projective plane, then E is supersingular iff the coefficient of $(xyz)^{p-1}$ in $f(x, y, z)^{p-1}$ is zero.
Supersingular elliptic curves

Many equivalent definitions:
Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of p-torsion points of E is trivial, where $\text{char}(\mathbb{k}) = p$.

Writing E in Legendre form, $E: y^2 = x(x-1)(x-\lambda)$ is supersingular iff λ is a root of $f(x) = p^2 - 1 - \frac{1}{2} \sum_{i=0}^{2} (n_i)^2 x^i$.

If we write E as a cubic homogeneous polynomial $f(x, y, z)$ in the projective plane, then E is supersingular iff the coefficient of $(xyz)^{p-1}$ in $f(x, y, z)^{p-1}$ is zero.
Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of \(p \)-torsion points of \(E \) is trivial, where \(\text{char}(\mathbb{k}) = p \).
- Writing \(E \) in Legendre form, \(E : y^2 = x(x - 1)(x - \lambda) \) is supersingular iff \(\lambda \) is a root of

\[
 f(x) = \sum_{i=0}^{\frac{p-1}{2}} \binom{n}{i}^2 x^i .
\]
Supersingular elliptic curves

Many equivalent definitions:

- Elliptic curves for which the endomorphism ring has rank 4 (is an order in a quaternion algebra); normal elliptic curves have rank 2 or 1.
- The group of p-torsion points of E is trivial, where $\text{char}(\mathbb{k}) = p$.
- Writing E in Legendre form, $E : y^2 = x(x - 1)(x - \lambda)$ is supersingular iff λ is a root of

$$f(x) = \sum_{i=0}^{\frac{p-1}{2}} \binom{n}{i}^2 x^i.$$

- If we write E as a cubic homogeneous polynomial $f(x, y, z)$ in the projective plane, then E is supersingular iff the coefficient of $(xyz)^{p-1}$ in $f(x, y, z)^{p-1}$ is zero.
Quotients of elliptic curves

Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny. Isogenies are given by non-constant rational functions which fix the identity point. It is a theorem that such a map is always a group homomorphism. If Φ is a subgroup of the elliptic curve group of E, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu's formulas). The image curve under the isogeny is the quotient curve.
Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.
Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an isogeny.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an *isogeny*.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If Φ is a subgroup of the elliptic curve group of E, then there is (up to isomorphism) a unique isogeny with kernel Φ (comes from Velu’s formulas).
Quotients of elliptic curves

- Quotients are generally associated to a surjective quotient map; in this case, the map is called an \emph{isogeny}.
- Isogenies are given by non-constant rational functions which fix the identity point.
- It is a theorem that such a map is always a group homomorphism.
- If \(\Phi \) is a subgroup of the elliptic curve group of \(E \), then there is (up to isomorphism) a unique isogeny with kernel \(\Phi \) (comes from Velu’s formulas).
- The image curve under the isogeny is the quotient curve.
The Supersingular Isogeny Diffie-Hellman Protocol

Setup: Fix a supersingular isogeny class C and $E \in C$.

Hard problem: Given E, $E/\langle R_A \rangle$, $E/\langle R_B \rangle$ *, determine $E/\langle R_A, R_B \rangle$.

* Some extra information is also available.
Suppose Alice receives the curve $E/\langle R_B \rangle$ from Bob and she wants to compute $(E/\langle R_B \rangle)/\langle R_A \rangle = E/\langle R_B, R_A \rangle$. To use Velu's formulas, we need to know a subgroup of the domain curve, but R_A is a subgroup of the original curve E. Bob could compute the action of his isogeny ϕ_B on R_A for Alice, but this would require exchanging R_A over the public channel. The solution is to choose two special points P_A and Q_A on E, and then choose $R_A = m_A P_A + n_A Q_A$ for some integers m_A and n_A. Bob then sends $\phi_B(P_A)$ and $\phi_B(Q_A)$ to Alice, and then Alice can compute $\langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle = \langle \phi_B(m_A P_A + n_A Q_A) \rangle = \langle \phi_B(R_A) \rangle$.
Computing the Second Isogeny

- Suppose Alice receives the curve $E/\langle R_B \rangle$ from Bob and she wants to compute $(E/\langle R_B \rangle)/\langle R_A \rangle = E/\langle R_B, R_A \rangle$.

- To use Velu’s formulas, we need to know a subgroup of the domain curve, but R_A is a subgroup of the original curve E.
Computing the Second Isogeny

- Suppose Alice receives the curve $E/\langle R_B \rangle$ from Bob and she wants to compute $(E/\langle R_B \rangle)/\langle R_A \rangle = E/\langle R_B, R_A \rangle$.
- To use Velu’s formulas, we need to know a subgroup of the domain curve, but R_A is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_B on R_A for Alice, but this would require exchanging R_A over the public channel.
Computing the Second Isogeny

- Suppose Alice receives the curve $E/\langle R_B \rangle$ from Bob and she wants to compute $(E/\langle R_B \rangle)/\langle R_A \rangle = E/\langle R_B, R_A \rangle$.
- To use Velu’s formulas, we need to know a subgroup of the domain curve, but R_A is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_B on R_A for Alice, but this would require exchanging R_A over the public channel.
- The solution is to choose two special points P_A and Q_A on E, and then choose $R_A = m_A P_A + n_A Q_A$ for some integers m_A and n_A.
Computing the Second Isogeny

- Suppose Alice receives the curve $E/\langle R_B \rangle$ from Bob and she wants to compute $(E/\langle R_B \rangle)/\langle R_A \rangle = E/\langle R_B, R_A \rangle$.
- To use Velu’s formulas, we need to know a subgroup of the domain curve, but R_A is a subgroup of the original curve E.
- Bob could compute the action of his isogeny ϕ_B on R_A for Alice, but this would require exchanging R_A over the public channel.
- The solution is to choose two special points P_A and Q_A on E, and then choose $R_A = m_A P_A + n_A Q_A$ for some integers m_A and n_A.
- Bob then sends $\phi_B(P_A)$ and $\phi_B(Q_A)$ to Alice, and then Alice can compute

$$\langle m_A \phi_B(P_A) + n_A \phi_B(Q_A) \rangle = \langle \phi_B(m_A P_A + n_A Q_A) \rangle = \langle \phi_B(R_A) \rangle.$$
The current leading implementation of SIDH was developed by researchers at Microsoft and released in April of 2016. I’ve been optimizing the finite field arithmetic used for 64-bit ARM architectures. Because the original algorithm used for finite field operations on this platform was very generic, using hand-coded 64-bit ARM assembly I was able to improve the performance by about a factor of 10.

Of all the quantum-resistant key-exchange protocols, SIDH has by far the smallest key sizes, which can be made smaller with compression. I am currently working on implementing key compression and decompression algorithms which can make the key sizes of SIDH comparable with those of existing quantum-vulnerable algorithms.