Derivative Rules

Rule Function Derivative Basic
Constant Function Rule \(f(x) = k\) \(f'(x) = 0\)
Linear Function Rule \(f(x) = x\) \(f'(x) = 1\)
Sum / Difference \(h = f \pm g \) \(h' = f' \pm g' \) \([c + f(x)]' = f(x)' \)
Product Rule \(h = fg \) \(h' = f'g + fg' \) \([kg(x)]' = kg'(x)\)
Extended Product Rule \(p = fgh \) \(p' = f'gh + fg'h + fgh' \)
Power Rule \(f = g^n \) \(f = ng^{~n-1}g' \) \(x^n \Rightarrow nx^{n-1}\)
Quotient Rule \(h = {f \over g}\) \(h' = {f'g-fg' \over g^2}\)\(,~g \ne 0\)
Chain Rule \(h(x) = f(g(x))\) \(h'(x) = f'(g(x)) \times g'(x)\)
Exponent Function \(f(x) = b^{~g(x)}\) \(f'(x) = b^{~g(x)} \ln b \times g'(x)\) \(b^{~x} \Rightarrow b^{~x} \ln b\)
\(e\) \(f(x) = e^x\) \(f'(x) = e^x\)
\(e = \lim \limits_{n \to \infty } {(1+ {1 \over n})^n}~,~\ln x = \log_{e}x \)
Logarithm \(f(x) = \log_{b} g(x)\) \( f'(x) = {g'(x) \over g(x) \ln b} \)
(chain rule)
\( \log_{b} x \Rightarrow {1 \over x \ln b}\)
Natural Logarithm \(f(x) = \ln g(x)\) \(f'(x) = {g'(x) \over g(x)} \) \(\ln x \Rightarrow {1 \over x}\)
Sine Function \(f(x) = \sin g(x) \) \(f'(x) = \cos g(x) \times g'(x) \) \( \sin x \Rightarrow \cos x \)
Cosine Function \(f(x) = \cos g(x) \) \(f'(x) = \text{-} \sin g(x) \times g'(x) \) \( \cos x \Rightarrow \text{-} \sin x \)
Tangent Function \(f(x) = \tan g(x) \) \(f'(x) = \sec^2 g(x) \times g'(x) \) \( \tan x \Rightarrow \sec^2 x \)
Cosecant Function \(f(x) = \csc x \) \(f'(x) = \text{-} \csc x \cot x \)
use radians
Secant Function \(f(x) = \sec x \) \(f'(x) = \sec x \tan x \)
use radians
Cotangent Function \(f(x) = \cot x \) \(f'(x) = \text{-} \csc^2 x \)
use radians
arcSine Function \(f(x) = \arcsin x \) \(f'(x) = \frac{1}{\sqrt{1-x^2}} \)
arcCosine Function \(f(x) = \arccos x \) \(f'(x) = \text{-} \frac{1}{\sqrt{1-x^2}} \)
arcTangent Function \(f(x) = \arctan x \) \(f'(x) = \frac{1}{x^2+1} \)

\(m_{\text{tangent}} = \text{IROC} = \lim \limits_{h \to 0} {f(a+h)-f(a) \over h} = f'(a) \)

\(m_{\text{secant}} = \text{AROC} = {f(x_{2})-f(x_{1}) \over x_{2} - x_{1} }\)