Integral | Ans |
\( x^n \) | \( {{x^{n+1}} \over {n+1}} \) |
\( \frac{1}{x} \) | \( \ln{|x|} \) |
\( e^x \) | \( e^x \) |
\( a^x \) | \( {a^x \over \ln a} \) |
\( \) | \( x \) |
\( \sin x \) | \( \text{-} \cos x \) |
\( \cos x \) | \( \sin x \) |
\( \tan x \) | \( \text{-} \ln | \cos x ~| \) |
\( \sec^2 x \) | \( \tan x \) |
\( \csc^2 x \) | \( \text{-} \cot x \) |
\( \csc x \) | \( \text{-} \ln | \csc x + \cot x ~| = \ln | \tan \frac{x}{2} | \) |
\( \sec x \) | \( \ln | \sec x + \tan x ~| \) |
\( \cot x \) | \( \ln | \sin x ~| \) |
\( \sec x \tan x \) | \( \sec x \) |
\( \csc x \cot x \) | \( \text{-} \csc x \) |
\( {1 \over \sqrt {1 - x^2} } \) | \( \sin^{-1} x \) |
\( {\text{-} 1 \over \sqrt {1 - x^2} } \) | \( \cos^{-1} x \) |
\( {1 \over x^2 + 1} \) | \( \tan^{-1} x \) |
\( \int e^{-x} ~dx = -e^{-x} + c \)
\( \ln | \sin x ~| = \text{-} \ln | \csc x ~| \)
\( \ln | \cos x ~| = \text{-} \ln | \sec x ~| \)
\( \ln | \tan x ~| = \text{-} \ln | \tan x ~| \)