Antiderivatives

Integral Ans
\( x^n \) \( {{x^{n+1}} \over {n+1}} \)
\( \frac{1}{x} \) \( \ln{|x|} \)
\( e^x \) \( e^x \)
\( a^x \) \( {a^x \over \ln a} \)
\( \) \( x \)
\( \sin x \) \( \text{-} \cos x \)
\( \cos x \) \( \sin x \)
\( \tan x \) \( \text{-} \ln | \cos x ~| \)
\( \sec^2 x \) \( \tan x \)
\( \csc^2 x \) \( \text{-} \cot x \)
\( \csc x \) \( \text{-} \ln | \csc x + \cot x ~| = \ln | \tan \frac{x}{2} | \)
\( \sec x \) \( \ln | \sec x + \tan x ~| \)
\( \cot x \) \( \ln | \sin x ~| \)
\( \sec x \tan x \) \( \sec x \)
\( \csc x \cot x \) \( \text{-} \csc x \)
\( {1 \over \sqrt {1 - x^2} } \) \( \sin^{-1} x \)
\( {\text{-} 1 \over \sqrt {1 - x^2} } \) \( \cos^{-1} x \)
\( {1 \over x^2 + 1} \) \( \tan^{-1} x \)

\( \int e^{-x} ~dx = -e^{-x} + c \)

\( \ln | \sin x ~| = \text{-} \ln | \csc x ~| \)

\( \ln | \cos x ~| = \text{-} \ln | \sec x ~| \)

\( \ln | \tan x ~| = \text{-} \ln | \tan x ~| \)