We consider the problem of optimizing a quantum circuit to solve a certain problem.
The idea is that we will fix the “architecture” of the quantum circuit. For our purposes, an
architecture is an ordered list of quantum gates, where we only specify which qubits each
gate applies to, but not what the gates themselves actually are. An architecture looks like a
quantum circuit with none of the unitary gate boxes “filled in”.

More formally, we define a n-qubit Quantum Circuit Architecture (n-qubit QCA for short)
to be a tuple A = (Ay,..., Ar) of subsets of {1,...,n}; each A; represents the set of qubits
the corresponding quantum gate operates on.

We define an assignment for our QCA A = (A;,...,Ar) to be a choice of L unitary
matrices U = (Uy,...,Ur), such that each U; acts on a space of size 2/4il. An assignment
transforms our QCA into a real quantum circuit in the obvious way: for each placeholder
A;, one fills it in with the |A;|-qubit quantum gate defined by U;. Each U; can be tensored
with identity matrices on the qubits it does not operate on, in order to obtain a larger
unitary U; € U (2") describing its effect on the entire set of n qubits. Such a tensor prod-
uct is cumbersome to write (after all, the qubits of U; may not even be continuous), so
we will hide behind this notation, and simply use U; to refer to this larger unitary. Thus,
the behaviour of a QCA A with an assigment ¢ can be described by the unitary U := Uy---Uy,.

For now, we will focus on the problem of binary classification: we have a set of n-bit
strings, each labelled as true/false, and we wish to train a QCA that can classify them as
accurately as possible. For now, we ignore the problem of coming up with a suitable QCA
in the first place, and assume that we have both a QCA A= (A4,...,AL), and that we also
have decided on a measurement for taking the output from the QCA and deciding whether
it’s a true or false output. Any such measurement amounts to choosing orthogonal vectors
lor) and |pr), measuring the output state |p) from our QCA, and outputting “True” with
probability (¢r|p) and “False” with probability (pr|e).

Thus, if we have an assignment U for our QCA, for a particular input [¢)) (say, with truth
value “True”), our chance of being wrong is:

{er|UW)E = {or(U-Talo)?

We wish to minimize this error chance (or perhaps, its mean-squared error taken over
all or some of the training data). To this extent, we wish to use gradient descent, with the
assignment unitaries Uy, ..., U, as the variable, to find an optimal (or at least high-quality)
assignment. In order to do so, we wish to compute the gradient of our loss function, with
respect to each unitary. Similarly to the case of training classical neural networks, we com-
pute the loss gradient for one specific training sample; for this next part, we will fix an input
[v), which without loss of generality we assume is a True case.

Let us fix some i € {1,..., L}, and look at U;. For simplicity, let’s assume that U; operates
on the first d qubits, i.e., A; = {1,...,d}. Now, since we are optimizing over the manifold
U(2%), some care is needed: if we were to compute the best direction to move U; in and step
in that direction, U; would leave the manifold. Instead, we will parameterize U(2¢) in the
following way. From Lie theory, we know that the lie algebra of U(2%) is u(2%), the space of
skew-hermitian matrices:

u(2%) = {X € Mp(C): X = -X*}



And we know that exp : u(2?) - U(2%) is a smooth, surjective mapping. Thus, given our
current U;, we can find a matrix X; € u(2?) such that exp(X;) = U;; we can then optimize
X; itself instead. Since u(29) is itself a subspace, this eliminates the above problem.

And so, we are thinking of our loss function f as a function that takes in X;, and tells us
what error it eventually causes us to have. Let Cy := U;---U;_; and CY := U;,1---U, represent
the parts of the circuit before and after U;, respectively. Then, we have

F(Xi) = [orp|Or--Talw)?

= |{or|CL(Ui ® I)Colih)?

= [{or|Ci(exp(X;) ® 1)Calth)”
And so we need to compute f/(X;). It will be useful to split f into 3 parts fj o foo f3, where
fs=exp, fi=|-]* and

f2:U(2%) »C
U (pr|Ci(U ® I)Ca))

Where I here is the 2"~?-row identity matrix, acting on the qubits unused by U;. Fortunately,

f2 is quite easy to differentiate, as it’s a linear function. After some wrestling with notation,
its derivative (at every point X in its domain) is:

fo(X) = Try [C3lor)(¥|CT]

Where Try = I ® Tr is the partial trace operator, where I has 2¢ rows. We note 3 computa-
tionally important things:

1. (¥|C} is the conjugate transpose of the result of running the circuit on [¢)) until U;.
2. C5|er) is the result of running the circuit in reverse on input ¢p, until U;.

3. The partial trace of this matrix can be computed efficiently when d is small; in par-
ticular, Cslpr)(¥|Cy is a very large matrix, but we do not need to actually compute

1t.
Putting it all together via chain rule, our loss gradient is:
a ! ! !
L= FU) 0 U o exp/(X)

= f3(f2(Ui)) o Try [C3lor)(|C ] 0 exp’(X;)

We can average this gradient over several training samples, and then move X; in that direc-
tion, obtaining a new matrix X! and a new corresponding quantum gate U;. We can do this
for all gates in our assignment, and iterate the process in the usual way for gradient descent.

Main TODOs are to compute the above components of the gradient cleanly. In particular:

e Efficiently compute the partial trace of a matrix of the form uv* for long vectors u, v.

e Compute the derivative of exp; however, is there a way to avoid this? All we eventually
need is exp’(X;) composed with a low-rank linear map, so in principle we only need
one dimension of the range of exp/(X;), and may not need to compute the entire
superoperator.

e How will the derivative of |- |?> work anyway? It’s weird because we’re representing the
vectors as complex vectors, but we’re kinda actually working over R when taking the
derivatives. . .



