
No Limit Texas Hold’em Versus a Shover

Bryan Coutts

August 13, 2020

1 The Problem

Poker has always been a fascinating game to me, as on the surface it seems to be a game of chance,
but there turns out to be a great depth of skill in probabilistically playing well and gaining an edge
over one’s opponents, winning more hands in the long-term. I’m interested in the balance is between
luck and skill in poker, and it’s natural to investigate a simple special case of the game. Specifically,
I want to investigate the scenario where you’re playing:

• No Limit Texas Hold’em (NLHE) poker

• Heads-up (versus only one other player)

• With blinds of $1 and $2, each player starting with $100

• Where the opponent always goes all-in at the beginning of each hand

Naturally, choosing to go all-in every turn without even considering your cards requires no skill.
Thus, investigating the win-rate such a player would have, versus a player who is playing optimally
to counter their strategy, would establish a lower bound on the role of luck in heads-up NLHE poker.
We wish to put ourselves in the shoes of the optimal player, and determine what the optimal strategy
is.

Unsurprisingly, this problem has been considered before; in Will Tipton’s Expert Heads Up No
Limit Hold’em, Vol 2, Section 16.2.1, the optimal winrate is computed to be roughly 64%. The
technique used is a common technique for finding optimal strategies in game theory; one starts with
some arbitrary strategy, finds ways in which it is suboptimal, and keeps iteratively improving it
until it converges to an optimal strategy. Here, I’ll be outlining an interesting alternative approach
using linear programming. In addition to being an interesting use case for LPs, this also provides
a bit more certainty; iterative approaches like the one used above always make me a little nervous,
as they’re susceptible to getting stuck in local optima (although I believe in this particular case it
does work).

2 The basics

Before getting into the mathematics of solving this ourselves, we can make some elementary obser-
vations. The natural way we can gain an advantage, is by waiting for good hands, which have a good
chance of beating our opponent’s uniformly random hand. In each round, we know our opponent

1

will go all-in, and thus (having already put in our chips for the blind), we have only the choice of
whether to go all-in, or to fold. This strategy may also depend on the chips each player has (e.g.,
as our stack dwindles, they may be forced to settle for hands with lower winrates).

We also note that this is effectively a 1-player game. The opponent’s strategy being fixed, we
simply have a series of rounds in which we see our 2 cards and decide whether to call or fold. We can
even precompute the winrate our hand will have vs. our opponent’s uniformly random hand from
the remainder of the cards. From this, a tempting line of reasoning would be to have some kind
of recursive solution to this problem: if when making this decision we can determine the expected
winrate of folding, vs. the expected winrate of calling, then we should make the move that results
in a higher winrate. If for now we ignore the blinds, and suppose that each player just antes $1 each
round, and let xk,h represent the optimal winrate when you have k chips and your hand is h, then
we have the following recurrence

xk,h = max

[
xk−1,∗︸ ︷︷ ︸

fold winrate

, whx2k,∗ + (1− wh) · 0︸ ︷︷ ︸
call winrate

]
for k ≤ 100

xk,h = max

[
xk−1,∗︸ ︷︷ ︸

fold winrate

, wh · 1 + (1− wh)xk/2,∗︸ ︷︷ ︸
call winrate

]
for k > 100

where wh is the winrate of the hand h versus a random opponent hand, and xk,∗ is a shorthand
representing the winrate when we have k chips and a randomly-chosen hand:

xk,∗ =
∑

hands h

[chance of getting hand h] · xk,h

Our main problem at this point is that this recurrence is cyclic. If we were to try to compute, say,
x100,A9o (our winrate at the start if our first hand is Ace-9 offsuit) using this reccurence, we’d need
to know the value of x99,h for each h, which in turn would require us to compute x98,h and x198,h.
Eventually, we would reach x50,h, which would then contain x100,h in its recurrence, giving us an
infinite loop.

3 Linear programming to the rescue!

This is where linear programming comes in. If you’re unfamiliar with linear programming, the basic
gist of it is that a linear program (LP) is a type of problem where you minimize (or maximize) a
linear function, subject to linear constraints. For instance, an LP might look like this:

min 3x+ 4y − z
subject to 2x = 4z + y

3y + x ≤ z

These are very similar to linear systems of equalities that one might be familiar with from linear
algebra, except we are allowed to use ≤ and ≥ inequalities, in addition to equalities. A problem
of this form is called a linear program (LP); the goal is to find values x, y, z which minimize the
objective function 3x+4y−z, while obeying the constraints. LPs are perhaps the most fundamental
class of problems in the field of mathematical optimization, and there exist fast solvers that can

2

take an arbitrary LP and produce its optimal solution; many real-world problems are solved in this
way. I won’t go over how LPs are solved here, but the takeaway is that if we can simply model our
problem as a LP, we can use an existing solver to solve it.

Back to our problem. Ideally, we would like to write an LP whose constraints just require our
recurrence relation to hold; then, any solution (actually, there would only be one) would solve our
problem. However, max is not a linear function. Fortunately, there’s a trick to working with max
in linear programs: if we want to compute c = max(a, b), we need c ≥ a and c ≥ b, but also want to
minimize c. This can be encoded in the LP:

min c

subject to c ≥ a
c ≥ b

So for our problem, we have a bunch of constraints where a winrate xk,h must be the max of the
winrate from calling and folding. We can use the above trick to encode these constraints as an
LP, where we minimize every winrate xk,h, subject to xk,h being at least the fold winrate (the fold
constraints), and at least the call winrate (the call constraints). This culminates in the following
LP:

(P) min

200∑
k=0

∑
hands h

xk,h

subject to xk,h ≥ xk−1,∗ ∀k, h
xk,h ≥ whx2k,∗ + (1− wh)x200,∗ ∀h, k ≤ 100

xk,h ≥ whx0,∗ + (1− wh)x2k,∗ ∀h, k > 100

xk,∗ =
∑

hands h

[chance of getting hand h] · xk,h ∀k

x0,h = 0 ∀h
x200,h = 1 ∀h

In the above LP, the first constraint line encodes the fold constraints, and the next two lines encode
the call constraints. The 4th line enforces that xk,∗ indeed represents having k chips and a random
hand, and the last 2 lines encode that having $200 is a win, and $0 is a loss. And with this, we’re
mostly done. There are a few minor details to worry about when actually constructing this LP; feel
free to skip the next paragraph if you aren’t interested in the gritty details of constructing this LP.

I’ve been ignoring blinds to make this explanation simpler, but when actually constructing this
LP we need to take this into account, by counting being in the small blind or big blind as different
states; as such, we have a winrate xk,b,h, for every chip amount k, blind position b (either small or
big blind), and hand h. In addition, although there are 2652 unique 2-card hands, many of these
(e.g. 9 and 10 of hearts vs. 9 and 10 of spades) are effectively the same. Ultimately, there are
really only 169 distinct 2-card hands up to equivalence (13 pairs, 78 off-suit hands, 78 suited hands);
this lets us cut down drastically on the number of states/variables. Finally, there’s an arbitrary
decision of whether to make xk,∗ an explicit variable, or just write it as a linear combination of other
variables in the other constraints; it turns out the former makes the problem much easier for GLPK
to solve, so I’ve done that. When all is said and done, we have an LP with 68341 variables and
134927 constraints; a somewhat large but tractable LP. On my computer, GLPK is able to solve

3

this LP in about 30 minutes.

And when we run our LP solver, we finally have our answer! When playing optimally against an
opponent that always goes all-in, you can expect to win x100,∗ ≈ 64% of your games. The solution
to the LP can also be used to actually play optimally, by using it to compute the expected winrate
of calling or folding from any position, and determining which is higher.

4 Extra Stuff

Here I’ll talk about some more advanced stuff that builds on this, with less detailed exposition.

4.1 More general stochastic games

The technique we used here is really quite general. It didn’t matter much that our setting was poker;
we simply needed a game in which you have choices of ways to move probabilistically to new state(s),
so that for each move we introduce an inequality that the winrate of a given state, is at least the
winrate obtained by performing the given move. This will not only allow us to consider a broader
class of problems, but also let us consider our LP and solution more abstractly and with fewer tiny
details; something I greatly appreciate as someone who likes to pretend to be a pure mathematician!

Let’s say a stochastic game is a set of states Σ, with some subsets W and L of terminal win and
loss states. For each state σ ∈ Σ, we have a set of moves Mσ, where each move m ∈ Mσ moves
probabilistically to a new state in Σ, and the probability of moving to the state σ′ ∈ Σ is denoted
Pr[m→ σ′]. This would result in the LP:

(GP) min
∑
σ∈Σ

xσ

subject to xσ ≥
∑
σ′∈Σ

Pr[m→ σ′]xσ′ ∀σ ∈ Σ,m ∈Mσ

xw = 1 ∀w ∈W
x` = 0 ∀` ∈ L

One might naturally call such a game a stochastic game (although in the literature, this term has
many conflicting definitions, none of which seem to agree with my use case). The above could then
be considered a general solver for 1-player stochastic games, and indeed, I’ve implemented it as a
general solver solver.py, with a client poker.py that uses it to solve the poker-related problem.
I havent been able to come up with other interesting and motivating examples of these games for
my solver to solve; such an example would both need to be interesting, and ideally involve a cyclic
recurrence so that it can’t be solved via recursion and dynamic programming, thus necessitating the
LP approach. If anyone can think of any, please let me know!

4.2 The dual problem

It’s typical when modelling problems as LPs, to take the dual LP and interpret it in some way.
For those unfamiliar with LP duality, the gist of it is that for any minimization LP (P), there’s a

4

straightforward way to construct a maximization LP (D) called its dual, such that (P) and (D) have
the same optimal value, and every feasible solution in (D) has lower objective value than every fea-
sible solution in (P). Every variable in (P) corresponds to a constraint in (D), and every constraint
in (P) corresponds to a variable in (D). The exact meaning of the dual problem is, in general, pretty
mysterious and difficult to interpret for an arbitrary LP, but often has a nice interpretation in a
specific context (see, for instance, the example of min-cut and max flow).

If we look at the problem (GP) (from this section) and take its dual, we obtain, with some
massaging:

(GD) max
∑
σ∈Σ

∑
m∈Mσ

∑
w∈W

Pr[m→ w] · yσ,m

subject to
∑
m∈Mσ

yσ,m = 1 +
∑
σ′∈Σ

∑
m∈M ′

σ

Pr[m→ σ] · yσ′,m ∀σ ∈ Σ

yσ,m ≥ 0 ∀σ ∈ Σ,m ∈Mσ

This can be interpreted as a sort of network flow problem, where the flow represents the probabalistic
movement of our strategy from state to state. We have a net flow of 1 into each game state, and
each variable yσ,m determines how much of the flow into σ gets sent out through the move m. In
fact, if there’s a unique optimal move m for state σ, m will be the only move in Mσ to receive a
nonzero value for yσ,m.

This is interesting for two reasons. For one, this is the easiest way to read optimal moves from
the LP solution. If you’re in state σ, instead of explicitly computing the winrates of each move
m ∈ Mσ to take the best one, you can simply choose the m for which the dual variable ym,σ is
greatest (and most LP solvers will give you this dual solution as well). Secondly, this dual LP
represents an equally valid approach to solving the problem; we could instead have come up with
this network-flow approach and created this LP as our solution to the problem, and it would have
worked just as well.

4.3 Minimizing turns taken

In some games, rather than maximizing winrate, one might want to minimize the number of turns
taken (e.g. a maze). Our approach can also solve these problems with some small modifications.
Our primal variables xσ will now correspond to the expected number of moves to finish the game
starting from xσ, and the terminal (winning) states have value 0 instead of 1. Recursively, we
require that xσ is at most 1 greater than the expected number of turns from each of its possible
moves, and maximize each xσ instead of minimizing. This is included in the code by setting the
gs.min turn mode = True flag on the GameSolver object.

One example of a new problem this lets us solve is the egg drop problem (solved in egg drop.py),
a well-known tech interview question in which one has a building with N floors, and has E eggs, and
must determine the highest floor one can drop an egg from without it breaking. This can be thought
of as a stochastic game, where a move amounts to deciding which floor to drop the next egg from, and
then you move probabilistically to a new state, depending on whether the egg broke or didn’t break.
Admittedly, this isn’t the greatest showcase of my solver; since the underlying recurrence has no
cycles, one could easily just solve it via dynamic programming rather than bother using an LP. Still,

5

it’s nice that there are interesting problems that can be solved by just describing them to this solver.

4.4 2-player stochastic games

It’d be nice if we could solve 2-player stochastic games with this approach (one particular example
I considered was tic-tac-toe, except you have some probability p of failing to place your symbol).
In fact, it’s almost possible to use our approach by taking each state where it’s our opponent’s
turn, and flip its inequalities so its winrate is at most the winrate from each move they can make,
and maximize this winrate instead of minimizing. Unfortunately, this doesn’t quite work, as the
minimization and maximization of different winrates can be at odds. For instance, consider a sim-
ple game where there are 10 our-turn states σ1, . . . , σ10, which each have one move leading to an
opponent-turn state σ11, which in turn leads to a single win state σ12. The true winrates would be
xk = 1 for each k, but the optimal solution to this LP would be xk = 0 for each k.

I’ve considered a couple solutions to this problem. I’ve noticed some simple problems do appear
to work in spite of the above issue; it’s possible we could find some class of stochastic games for
which this approach works. Perhaps if moves are “symmetric” in some way, we avoid problems like
the above where the our-move variables force the opponent-move variables down or vice-versa.

Another approach would be similar to the branch-and-cut approach to solving integer programs,
where we solve the above LP, and when we find cases where a state like σ11 is “loose”, i.e. not equal
to the winrate of at least one of its moves. For each of these cases, we could then add a constraint
to force xσ to be at most the greatest of its current winrates (or if it’s an opponent’s state, force
xσ to be at least the least of its current winrates), and re-solve the LP. However, it’s possible that
if the winrates of its moves were also incorrect, that xσ variable would still be loose in the new
LP, requiring us to keep iterating until we remove all loose variables, and it’s unclear how many
iterations of this would be necessary.

6

