MODULE musical_chairs

Notes: Adaptation of the model presented by Nissanke (99)
To cite this model, please use:

@inproceedings{ AbBal8modre,
author = {Ali Abbassi and Amin Bandali and Nancy A.Day and Jose Serna},
title = {A Comparison of the Declarative Modelling Languages{B}, {Dash}, and{TLA + }},

booktitle = {International Workshop on Model — Driven Requirements
Engineering(MoDRE)QIEEE International Requirements Engineering Conference(RE)},

publisher = {To appear},
year = 2018

}

EXTENDS Integers, FiniteSets
CONSTANTS CHAIRS, PLAYERS

VARIABLES
activePlayers, activeChairs,
occupied, music_playing, state

vars = (activePlayers, activeChairs, occupied, music_playing, state)
STATE_ = {“Start", “Walking", “Sitting”, “Won"}

Helper predicate for range of a function

Range(f) = {f[z] : € DOMAIN f}

Typing invariant

TypeOK =

activePlayers C PLAYERS

activeChairs C CHAIRS

occupied € [activeChairs — activePlayers) U {()}
music_playing € BOOLEAN whether music is playing
state € STATE_

> > > > >

Initial state

Init =
A activePlayers = PLAYERS force all activePlayers and
A activeChairs = CHAIRS activeChairs to be included
A Cardinality (activePlayers) > 1
A Cardinality(activePlayers) = Cardinality (activeChairs) + 1
A occupied = () initially the empty function
A music—playing € BOOLEAN
A state = "Start”

Walk =
A state = “Start”

A music_playing

A Cardinality (activePlayers) > 1

A occupied’ = ()

A state’ = "Walking"

A UNCHANGED (activeChairs, activePlayers, music_playing)

A

Sit =

A state = “Walking"

A mmusic_playing

A occupied’ € [activeChairs — activePlayers]

each chair maps to only one player

AY ¢ € activeChairs, pl, p2 € activePlayers :
occupied'[c] = pl A occupied’[c] = p2 = pl = p2

each occupying player sits on one chair

AY p € Range(occupied’), cl, ¢2 € DOMAIN occupied’ :
occupied'[cl] = p A occupied’[c2] = p = ¢l = ¢2

there’s a player that didn’t get to sit down

A 3dp € activePlayers: p ¢ Range(occupied’)

A state’ = "Sitting”

A UNCHANGED (activeChairs, activePlayers, music_playing)

EliminateLoser =
A state = “Sitting”
A Cardinality(activePlayers) > 1
A Cardinality (activePlayers) — Cardinality(Range(occupied)) = 1
A activePlayers’ = Range(occupied)
A activeChairs’ = activeChairs \ {CHOOSE ¢ € activeChairs : TRUE}
A Cardinality(activeChairs’) = Cardinality(activeChairs) — 1
A occupied’ = ()
A state’ = "Start”
A UNCHANGED music_playing

Win £
A state = "Sitting”
A Cardinality(activePlayers) = 1
A state’ = "Won"

ChangeMusicPlaying =
A music_playing’ € BOOLEAN
A UNCHANGED (activeChairs, activePlayers, state, occupied)

Safety invariants

OneMorePlayerThanChairs =
Cardinality(activePlayers) = Cardinality(activeChairs) + 1

Temporal properties

ExistentialLiveness =
dp € PLAYERS : $(activePlayers = {p})

. . A .
FiniteLiveness = <ENABLED Sit

InfiniteLiveness = <©O(Cardinality(activePlayers) = 1)

A

Next =
Vv Walk
Vv Sit
V EliminateLoser
Vv Win
V ChangeMusicPlaying

PlayActions =
Vv Walk
Vv Sit
V EliminateLoser
VvV Win

Live = SFyars (PlayActions) A WE 4. (Change MusicPlaying)

LA .
Live = TRUE \ * don’t assume fairness

Spec 2 Init A O[Next]yars A Live every transition either satisfies the action
formula Next or leaves the expression
vars unchanged. In particular, this admits
“stuttering transitions” that do not affect
vars . That is to say,
O[Next]-vars 2 O(Next V (vars’ = vars))

\ * Modification History
\ * Last modified Tue Jul 17 14:05:02 EDT 2018 by amin
\ * Created Mon May 14 11:12:23 EDT 2018 by amin

