
module musical chairs
Notes: Adaptation of the model presented by Nissanke (99)

To cite this model, please use:

@inproceedings{AbBa18modre,

author = {Ali Abbassi and Amin Bandali and Nancy A.Day and Jose Serna},
title = {A Comparison of the Declarative Modelling Languages{B}, {Dash}, and{TLA + }},
booktitle = {International Workshop on Model − Driven Requirements
Engineering(MoDRE)@IEEE International Requirements Engineering Conference(RE)},

publisher = {To appear},
year = 2018

}

extends Integers, FiniteSets

constants CHAIRS , PLAYERS

variables
activePlayers, activeChairs,
occupied , music playing , state

vars
∆
= 〈activePlayers, activeChairs, occupied , music playing , state〉

STATE
∆
= {“Start”, “Walking”, “Sitting”, “Won”}

Helper predicate for range of a function

Range(f )
∆
= {f [x ] : x ∈ domain f }

Typing invariant

TypeOK
∆
=

∧ activePlayers ⊆ PLAYERS
∧ activeChairs ⊆ CHAIRS
∧ occupied ∈ [activeChairs → activePlayers] ∪ {〈〉}
∧ music playing ∈ boolean whether music is playing

∧ state ∈ STATE

Initial state

Init
∆
=
∧ activePlayers = PLAYERS force all activePlayers and

∧ activeChairs = CHAIRS activeChairs to be included

∧ Cardinality(activePlayers) > 1
∧ Cardinality(activePlayers) = Cardinality(activeChairs) + 1
∧ occupied = 〈〉 initially the empty function

∧music playing ∈ boolean
∧ state = “Start”

Walk
∆
=

∧ state = “Start”

1



∧music playing
∧ Cardinality(activePlayers) > 1
∧ occupied ′ = 〈〉
∧ state ′ = “Walking”
∧ unchanged 〈activeChairs, activePlayers, music playing〉

Sit
∆
=
∧ state = “Walking”
∧ ¬music playing
∧ occupied ′ ∈ [activeChairs → activePlayers]
each chair maps to only one player

∧ ∀ c ∈ activeChairs, p1, p2 ∈ activePlayers :
occupied ′[c] = p1 ∧ occupied ′[c] = p2⇒ p1 = p2

each occupying player sits on one chair

∧ ∀ p ∈ Range(occupied ′), c1, c2 ∈ domain occupied ′ :
occupied ′[c1] = p ∧ occupied ′[c2] = p ⇒ c1 = c2

there’s a player that didn’t get to sit down

∧ ∃ p ∈ activePlayers: p /∈ Range(occupied ′)

∧ state ′ = “Sitting”
∧ unchanged 〈activeChairs, activePlayers, music playing〉

EliminateLoser
∆
=

∧ state = “Sitting”
∧ Cardinality(activePlayers) > 1
∧ Cardinality(activePlayers)− Cardinality(Range(occupied)) = 1
∧ activePlayers ′ = Range(occupied)
∧ activeChairs ′ = activeChairs \ {choose c ∈ activeChairs : true}
∧ Cardinality(activeChairs ′) = Cardinality(activeChairs)− 1
∧ occupied ′ = 〈〉
∧ state ′ = “Start”
∧ unchanged music playing

Win
∆
=
∧ state = “Sitting”
∧ Cardinality(activePlayers) = 1
∧ state ′ = “Won”

ChangeMusicPlaying
∆
=

∧music playing ′ ∈ boolean
∧ unchanged 〈activeChairs, activePlayers, state, occupied〉

Safety invariants

OneMorePlayerThanChairs
∆
=

Cardinality(activePlayers) = Cardinality(activeChairs) + 1

Temporal properties

2



ExistentialLiveness
∆
=

∃ p ∈ PLAYERS : 3(activePlayers = {p})

FiniteLiveness
∆
= 3enabled Sit

InfiniteLiveness
∆
= 32(Cardinality(activePlayers) = 1)

Next
∆
=
∨Walk
∨ Sit
∨ EliminateLoser
∨Win
∨ ChangeMusicPlaying

PlayActions
∆
=

∨Walk
∨ Sit
∨ EliminateLoser
∨Win

Live
∆
= SFvars(PlayActions) ∧WFvars(ChangeMusicPlaying)

Live
∆
= true \ * don’t assume fairness

Spec
∆
= Init ∧2[Next ]vars ∧ Live every transition either satisfies the action

formula Next or leaves the expression

vars unchanged. In particular, this admits

“stuttering transitions” that do not affect

vars . That is to say,

2[Next ] vars
∆
= 2(Next ∨ (vars′ = vars))

\ * Modification History

\ * Last modified Tue Jul 17 14:05:02 EDT 2018 by amin

\ * Created Mon May 14 11:12:23 EDT 2018 by amin

3


