
module digital watch

Notes: Adaptation of the digital watch model presented by Harel (87)

To cite this model, please use:

@inproceedings{AbBa18modre,

author = {Ali Abbassi and Amin Bandali and Nancy A.Day and Jose Serna},
title = {A Comparison of the Declarative Modelling Languages{B}, {Dash}, and{TLA + }},
booktitle = {International Workshop on Model − Driven Requirements
Engineering(MoDRE)@IEEE International Requirements Engineering Conference(RE)},

publisher = {To appear},
year = 2018

}

extends Integers, TLC , FiniteSets, Sequences

variables
light , status,
waited 2 min, waited 2 sec,
pressed

STATUS
∆
= {“Time”, “Date”, “Wait”, “Update”

, “Alarm1”, “Alarm2”, “Chime”, “StopWatch”
, “Alarms Beep” doesn’t seem to be used right now }

KEYS
∆
= {“a”, “b”, “c”, “d”}

vars
∆
= 〈light , status, waited 2 min, waited 2 sec, pressed〉

vars but light
∆
= 〈status, waited 2 min, waited 2 sec, pressed〉

vars but status
∆
= 〈light , waited 2 min, waited 2 sec, pressed〉

Helper predicate for range of a function

Range(f )
∆
= {f [x ] : x ∈ domain f }

TypeOK
∆
= Typing invariant

∧ light ∈ boolean false: Off, true: On

∧ status ∈ STATUS
∧ waited 2 min ∈ boolean ∧ waited 2 sec ∈ boolean
∧ pressed ∈ [KEYS → boolean ]

Init
∆
= Initial state

∧ light = false initially light is off

∧ status = “Time” initially display shows time

∧ waited 2 min = false ∧ waited 2 sec = false
∧ pressed = [k ∈ KEYS 7→ false]

1



< Light >

light off light on
∆
=

∧ pressed [“b”]
∧ light ′ = true
∧ unchanged vars but light

light on light off
∆
=

∧ ¬pressed [“b”]
∧ light ′ = false
∧ unchanged vars but light

< /Light >

< Time >

time show date
∆
=

∧ status = “Time”
∧ pressed [“d”]
∧ status ′ = “Date”
∧ unchanged vars but status

time try update
∆
=

∧ status = “Time”
∧ pressed [“c”]
∧ status ′ = “Wait”
∧ unchanged vars but status

time go2alarm1
∆
=

∧ status = “Time”
∧ pressed [“a”]
∧ status ′ = “Alarm1”
∧ unchanged vars but status

< /Time >

< Date >

date show time
∆
=

∧ status = “Date”
∧ pressed [“d”]
∧ status ′ = “Time”
∧ unchanged vars but status

date return to time
∆
=

∧ status = “Date”
∧ waited 2 min
∧ status ′ = “Time”
∧ unchanged vars but status

< /Date >

2



< Wait >

wait show time
∆
=

∧ status = “Wait”
∧ ¬pressed [“c”]
∧ status ′ = “Time”
∧ unchanged vars but status

wait show update
∆
=

∧ status = “Wait”
∧ waited 2 sec
∧ status ′ = “Update”
∧ unchanged vars but status

< /Wait >

< Update >

update show time
∆
=

∧ status = “Update”
∧ pressed [“b”]
∧ status ′ = “Time”
∧ unchanged vars but status

< /Update >

< Alarm1 >

alarm1 go2alarm2
∆
=

∧ status = “Alarm1”
∧ pressed [“a”]
∧ status ′ = “Alarm2”
∧ unchanged vars but status

< /Alarm1 >

< Alarm2 >

alarm2 go2chime
∆
=

∧ status = “Alarm2”
∧ pressed [“a”]
∧ status ′ = “Chime”
∧ unchanged vars but status

< /Alarm2 >

< Chime >

chime go2Stopwatch
∆
=

∧ status = “Chime”
∧ pressed [“a”]
∧ status ′ = “StopWatch”
∧ unchanged vars but status

3



< /Chime >

< StopWatch >

Stopwatch go2time
∆
=

∧ status = “StopWatch”
∧ pressed [“a”]
∧ status ′ = “Time”
∧ unchanged vars but status

< /StopWatch >

< Alarms Beep >

< /Alarms Beep >

< Helpers >

Key presses

PressKey(k)
∆
=

∧ ¬pressed [k ] ∧ pressed ′ = [pressed except ! [k ] = true]
∧ unchanged 〈light , status, waited 2 min, waited 2 sec〉

ReleaseKey(k)
∆
=

∧ pressed [k ] ∧ pressed ′ = [pressed except ! [k ] = false]
∧ unchanged 〈light , status, waited 2 min, waited 2 sec〉

Waits

waited 2 min t
∆
= ¬waited 2 min ∧ waited 2 min ′ = true

∧ unchanged 〈light , status, waited 2 sec, pressed〉
waited 2 min f

∆
= waited 2 min ∧ waited 2 min ′ = false

∧ unchanged 〈light , status, waited 2 sec, pressed〉

waited 2 sec t
∆
= ¬waited 2 sec ∧ waited 2 sec′ = true

∧ unchanged 〈light , status, waited 2 min, pressed〉
waited 2 sec f

∆
= waited 2 sec ∧ waited 2 sec′ = false

∧ unchanged 〈light , status, waited 2 min, pressed〉
< /Helpers >

< Temporal properties >

I believe the original eventually time property from Dash expressed in CTL says that “on a
press a, it’s possible that in the future the display will display the time”. However, since TLA+’s
temporal logic is LTL-based and not CTL, we can’t easily express possibility properties. So,
instead, we’ll state that “on a press a, in the future the display will display the time”.

EventuallyTime
∆
=

2(pressed [“a”] ⇒ 3(status = “Time”))
Note: the above property does NOT hold with weak or strong fairness on

all the actions on vars

4



< /Temporal properties >

Spec

Next
∆
=

∨ light off light on ∨ light on light off
∨ time show date ∨ time try update ∨ time go2alarm1
∨ date show time ∨ date return to time
∨ wait show time ∨ wait show update
∨ update show time
∨ alarm1 go2alarm2
∨ alarm2 go2chime
∨ chime go2Stopwatch
∨ Stopwatch go2time
∨ ∃ k ∈ KEYS : PressKey(k)
∨ ∃ k ∈ KEYS : ReleaseKey(k)
∨ waited 2 min t ∨ waited 2 min f
∨ waited 2 sec t ∨ waited 2 sec f

Live
∆
= WFvars(Next)

Spec
∆
= Init ∧2[Next ]vars ∧ Live every transition either satisfies the action formula Next

or leaves the expression vars unchanged. In particular,
this admits “stuttering transitions” that do not affect
vars . That is to say, 2[Next ] vars

∆
= 2(Next ∨

(vars′ = vars))

\ * Modification History

\ * Last modified Tue Jul 17 14:04:48 EDT 2018 by amin

\ * Created Tue May 29 18:29:07 EDT 2018 by amin

5


