COMPACT GROUPS

TARAS KOLOMATSKI

1. PRELIMINARIES ON COMPACT GROUPS

Definition 1.1. Let (G, -) be a group, and let 7 be a topology on G. We say that 7 is a group topology,
and that (G,-,7) is a topological group, if the maps = — x~! and (z,y) — x - y are continuous under
7, with the latter taken as map from (G x G, 7 x 7). For brevity the terms locally compact group and
compact group will refer to topological groups with the stated properties. We will henceforth suppress
the group operation, and denote the identity element of the group by e. Further, all our topological groups

are assumed Hausdorff.

Proposition 1.2. Let (G, 1) be a topological group, U be open, and x € G, then U = {xs: s € U} is open.
If K is compact, then K= is compact, and if A and B are compact, then so is AB = {ab:a€ A,be B}.

Proof. The map s — xs is continuous and has a continuous inverse s — z~!

s, using the continuity
properties in the above definition. Thus it is a homeomorphism and takes open sets to open sets.

Next if K is compact, then we can easily see that K ! is too as if U; is an open cover for K !, then
Ufl is an cover for K and its members are open by a similar argument as above. Applying compactness
of K we see that K ! is compact.

Finally, suppose A and B are compact. Then the set A x B € G x G is compact. Then AB is compact

as it is the continuous image of a compact set. O

Definition 1.3. Let (G, 7) be a locally compact group, a left Haar measure is a nonzero Radon measure

(a fortiori real and positive) p on G that satisfies u(zF) = u(FE) for every Borel set E < G and = € G.

Proposition 1.4. (Existence and uniqueness) Every locally compact group G possesses a left Haar

measure. If p and A are two Haar measures on G then there exists ¢ € (0,00) so that p = cA.

Proposition 1.5. Let G be a locally compact group, and U < G be a nonempty open set, then if u is a
Haar measure on G, p(U) > 0.

Proof. Suppose that p(U) = 0. Then let K < G be any compact set. Fix € U. Then for any y € K,
y € (yz~1)U. We have proven that this translate is open, so K is covered by open left translates of U. By
compactness, we can find a finite collection {s; : i € [N]} so that K < (JN, s;U. Then

N N
p(K) < Y p(s:iU) = Y. u(U) = 0.
=1 i=1
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But a Radon measure is inner regular, so
w(G) =sup{p(K) : K € G, K is compact} = 0.
This contradicts that a Haar measure is nonzero, so u(U) > 0. O

Proposition 1.6. A locally compact group G is compact if and and only if, for any Haar measure p on
G, 1(G) < .

Proof. A Radon measure is locally finite, and thus finite on compact sets. Thus any Haar measure on
a compact group is finite. Conversely, suppose that G is not compact, fix . As p is nonzero, we may
find a compact subset K < G so that u(K) > 0 by an argument in the previous theorem. Now KK ™!
is compact, and G is not, so G\K K ! is nonempty. Let ug = e, and if we pick u; € G\KK !, then I
claim u1 K n K =. Suppose k € u1 K n K, then k = uw1k’, so u; = kk'~' € KK~!, contradiction. Now
recursively construct u; so that u; € G\ U;-lzl u; KK ~! which is nonempty as the union is compact. If
reu K nu;K, for i > j then x = u;k; = ujks and u; = ujklk;1 € quKfl, but u; € G\quK’l. Thus
all the u; K are disjoint, and we construct by axiom of choice a countable disjoint family of left translates

of a compact set. By o-additively, and as u(K) > 0,

M(UWK>=ZM(U¢K)=ZM(K)=OO- O
iZ0 i=0 i=0

Remark 1.7. If G is a compact group, then we have a natural choice of Haar measure - the one that is
a probability measure. Thus henceforth the Haar measure on G, a compact group, is a Haar measure p
such that u(G) = 1.

For the rest of this paper, we will restrict ourselves to the case that G is compact. This means that
unless we explicitly state ‘let G be a locally compact group’; G is assumed compact.
We will need one final ingredient, which we state without proof:

Theorem 1.8. The left Haar measure on G is also a right Haar measure. That is u(Ex) = p(E) for all
Borel sets E < G.

2. THE UNITARIZATION THEOREM
Definition 2.1. Let G be a locally compact group and H be a nonzero Hilbert space, then a represen-
tation of G on H is a map 7 : G — B(H) satisfying:
e (m is a group homomorphism): for all z,y € G we have w(zy) = w(x)7(y), and w(e) = Idy,
e (Strong continuity): for all £ € H, the map x € G — 7 ()¢ is continuous.
We say that 7 is unitary if (z) is a unitary operator (equivalent to w(z~!) = 7(x)*, where * is the Hilbert

space adjoint) for all z € G.

Theorem 2.2. Let H and H' be Hilbert spaces, then there exists a unitary map U : H — H' (that is
UE | Unyy =& | mHu, V€, n € H) if and only if there exists a bounded invertible S : H — H'.
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Proof. Briefly: Assume we have such an S, then well order an orthonormal basis for H, {e,}, and apply
Gram-Schmidt to the vectors {S(e,)}. Define U on the basis by transfinite recursion, sending e, to the
a-th vector constructed, and extend to a unique continuous linear map on H by the Bounded Linear

Transformations theorem. O

Theorem 2.3. Let 7 : G — B(H) be a representation. Then there exists an invertible linear map

S e B(H), so that 7g = S™17(-)S is a unitary representation.

Proof. Since G is compact and 7 is strongly continuous, the set {7(z)¢ : x € G} € H is compact for each
&£ € H, and is thus also bounded. By the Uniform Boundedness Principle, the operator norms are bounded

too, that is sup e [7(x)| < 0. Now define for £,n e H,

[§m] = fG (m(s)€ | w(s)n)ds.

By linearity of 7(s) and of integration, and by bilinearity of the inner product on H, we see that this new
form is bilinear. It is also easily seen to be conjugate symmetric ([f ] = [n, 5])7 and hence sesquilinear.

We claim that it is positive.
(6.6 = | InslPas

where if we suppose ¢ # 0, then |7(e)¢| = €] # 0. The map s — ||7(s)£|? is continuous (by continuity of
the norm, making note that joint continuity of the inner product does not necessarily hold). Thus we can
find an open neighbourhood U of e € G, such that |7 (s)¢]| > M for all se U. m(U) > 0, thus

€€] - fn 9¢1%s > Elmw) > o

We have verified that [- | -] gives an inner product. Let us call the resulting Hilbert space H', and let

us denote its norm as | - |’. Then

e = (] 7r<s>§|2ds)5 < (supll ) e

We have proven that the supremum in parenthesise is finite. Thus the identity map J : H — H' is
continuous. It is also bijective, and thus a homeomorphism by the Open Mapping Theorem. By the
previous proposition there exists a unitary U : H — H’'. Fix such a U, then [U¢ | Un] = (& | n).

Define S = J~'U, then for all z € G, £, € H we have (note that J is suppressed as we think of the

forms as functions on the underlying sets of the Hilbert spaces):

(57 n(2)S€ | n) = (U™ n(@)UE | U UR) = [n(2)UE | Un]
:J (m(s2)UE | 7(s)Un)yds = f (U | w(tz™")Un)ydt
= [55 | W(J;_l)Un] = <U_1U§ \C;]_lﬂ'(x_l)Un>
= {6187 ™ )sn) = {($ 7 n (@))€ ).
Note in particular that all the above constructions were to enable the reparametrization of the integral, just
71)*

as in the case for finite groups. As this holds for all £, 7, we have that for 75 = S~!7(-)S, m5(x) = 7s(x

)
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for all x € G. It is easily checked that mg is a representation, and thus it is a unitary representation, as
desired. 0

3. COMPLETE REDUCIBILITY

Lemma 3.1. Let w : G —> H(U) be a unitary representation. Then given £ € H\{0}, the operator given
by:

ken = |l =09 m(s)eds
is positive, nonzero, compact, self-adjoint, and kem(x) = w(x)ke for all x € G.
Proof.

hen | m = | 760 )¢ s = | [ | (o)) ds 0

This calculation verifies positivity. It is easy to see that k¢ is nonzero from this.
2
e |© = | KeIms)of ds

For nonzero &, [(€ | w(e)&)|* = |¢]* > 0. Thus by continuity the integral is nonzero.

Now, as G is compact and x — 7(x)€ is continuous, for all € > 0 we can cover the compact image of
G with finitely many e balls. Specifically, for € given, we can find a partition of G = |_|Z.E[N] FE; for Ne N
and FE; Borel, and points z; € E; such that

|7 (z)¢ — 7(x)€|| < ¢€,Va € E;.

Then define

=

kgn=2 2 (n | (@) €) m(as)E.

Note that kg is finite rank. We will argue that k¢ is a limit of these finite rank operators, and is hence

compact. For x € F;,

| | w(@i)§) w(wi)§ — (n | w(@)6) m(@)E|
= [<n | 7(@:)§ = m(2)§) m(wi)€ + | w(2)€) (w(2:)§ — m(2)§)]
< || m(@)€ —m(@)E) | - Iw(z)é] + [<n [ w(2)E) | - |m(2)€ — m(2:)€]
<|nll- e m(za)l + lnll - w(z)E] - €
= 2¢[nll¢]
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With the last equality arising as 7 is a unitary representation. For |n|| < 1, we perform the following
bound. In the first step, we split the integral over the partition, then bring constants into the integral.
N

2

i=1

N
1% @I~ wle)o r)e ds

|ken — kgnl =

([, <ol me0 0 ds = uE:) 0wt e

< ZJ v I<{n | m(2)&)m(x)é — (n | w(x;)€) m(a;)€|ds

<Zu i)2€[nl €] < 2e¢]

Thus [ ke — kg|| < 2€[|€]|, and k§ — k¢ as € — 0. Thus kg is compact.

Next, for self-adjointness,

(¢ | eny = L €1 | w()Eym(s)Ey ds = L T TAEE (¢ | m(s)e) ds

- f (1| w()€) T Tn(3)Eods = j ] ¢ | w()E) m(s)) ds
G G

= | keC) = ke [y
Finally,

2)ken = j (1| 7(5)€) m(ws)eds = f (n | m(a D) (t)edt
j<n|w (D) x( fdt—f@r W | 7€ n(Edt = ken(x)y. O

Definition 3.2. Let 7 : G — B(H) be a representation. Then a m-invariant subspace is a closed
subspace £ € H such that 7(z)L£ € £. We say that 7 is irreducible if the only m-invariant subspaces are
{0} and H.
We say that 7 is completely reducible if there exists a family {L£,}aeca of nonzero closed subspaces
of H satisfying:
i) Lo n Ly ={0} for a # o,
ii) each L, is m-invariant with each 7 |  irreducible, and

i) @ s Lo ={211& & € Ly} is dense in H.

Definition 3.3. If 7 : G — U(H) is a unitary representation, then we will require more when we say that
7 is completely reducible. Specifically, that there exist a family {£4}aeca of nonzero closed subspaces of H
satisfying the above conditions and also:

1) Lo L Ly for a # o,

ii) H= 12— @aeA {Z 52 51 € ‘Cawz Hga|l2 }
The second condition follows from the other assumptions by basic Hilbert space arguments. This is a

stronger set of conditions, but we will show that every unitary representation of a (compact) group is
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completely reducible in the second sense, hence also in the first, and thus these definition coincide on the

class of unitary representations of compact groups.

Proposition 3.4. Let 7 : G — U(H) be a unitary representation, and L € H be a closed subspace. Then
i) L is m-invariant if and only if Pem(x) = w(x) Py,
ii) L is m-invariant if and only if L+ is m-invariant.

Where P denotes the operator of orthogonal projection onto L.

Proof. i) Suppose that L is m-invariant, then for all z in G, Pyw(x)Pr = w(x)Pr, and thus
Per(x) = (m(z)*Pe)* = (n(a ) Pe)" = (Pem(z~Y)Pe)* = (Pem(z)* Pe)* = Per(a)Pe = m(x) Py

Conversely, if Pemw(z) = 7(x) Pz, then Pew(x) Py = w(x) Pz which implies that £ is 7 invariant.
ii) Ppo =1 — Pp then if Pew(x) = 7(z) Py,

Prim(z) = n(x) — Pen(x) = w(x) — w(x)Pr = w(x)Pra.
The converse follows as (£+)* = £ when £ is a closed subspace. g

Lemma 3.5. If 1 : G — U(H) is a representation and H is finite dimensional, then w is completely

reducible.

Proof. Because H is finite dimensional, we may pick a nonzero subspace £ of minimal dimension. Then
7 | is irreducible. Either £ = H, or £ is a nonzero invariant subspace, and we may repeat this argument
for the representation 7 |,+. As the dimension of our representation is decreasing with each restriction,

the process will terminate. O

Theorem 3.6. Let G be a compact group, then:

i) If 7 is irreducible, then m is finite dimensional.

it) Every representation m is completely reducible.

Proof. By the unitarization theorem, it suffices to to consider unitary representations. Note the remarks
above on the stronger conditions on complete reducibility, and also clearly that 7 is irreducible if and only
if mg is for isomorphisms S.

Let 7 : G — U(H) be a unitary representation. For £ € H\{0}, let k¢ be the positive nonzero compact
self-adjoint operator from Lemma 3.1. By the spectral theorem for self-adjoint compact operators on a
Hilbert space, there is an orthonormal basis for H of eigenvectors, which have at most countable many
eigenvalues. The set of eivenvalues is bounded and may only cluster about 0, and the eigenspace of any any
non-zero eigenvalue is finite dimensional. Thus we may find an index set |A| < w, distinct non-zero A, € C,
and nonzero pairwise orthogonal finite-rank projection operators P, for a € A, such that k¢ = >, .4 AaPa-
Further because k¢ is positive, A\, € R>0.

Additionally, suppose kT = Tk, for some T € B(H). Then for o € A, let L, = P,(H). Fix e A
and let 7 € Lg, then uniquely express Tn = Y, 7o + 1 with 1, € L, and 1, L £, for all a. Then
Thken = T(Agn) = X, Agna + B+, whereas keTn = ke (X, 10 + %) = 2, Aafla- Applying P, to both
sides, we see Agna = Aafa. For a # B, Ao # Ag so 1o = 0. Applying Pt projection onto the orthogonal
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complement of the closed span of the £,s, we get A\gn® = 0, but as Ag # 0, n= = 0. Thus T maps Lg to
itself, so TPg = PgT.

i) Suppose 7 is irreducible, fix £ € H\{0}, and express ke = >} 4 AaPa satisfying the above conditions.
As k¢ is nonzero, A # J. We have that kem(z) = m(x)ke, so also Pym(x) = m(x)P,, for all a € A and all
x € G. Thus L, is m-invariant by 3.4. By irreducibility, |A| = 1, and by a similar argument, k¢ has no
kernel. Thus dim(H) = dim(L,) < o0, as P, is finite rank. Thus 7 is finite dimensional.

ii) We will make this argument with Zorn’s Lemma. Let
A= {(7—[', {La}aca) : H' is a m-invariant subspace and 7 |3 is completely reduced by the Ea} )

In the above construction, each P yields a finite dimensional invariant subspace £, and 7 |~ is completely
reducible by 3.5. Thus A # & (pedantry: note by our convention, the restriction of 7 to {0} is not a
representation and is thus not completely reducible).

Let (Hy,{La}aca,) € A, indexed by a well ordered set v € I' be a nonempty ascending chain under

inclusion in both components. Then let Hr = [, H,. We claim

(Hfa U{‘Ca}aeA,Y) e A.

~el

For any £ € Hr, £ is the limit of a sequence of elements, each lying in some partial sum H) = U~,< \ Hye
So we can first approximate arbitrarily well £ by some member of a partial sum, and then approximate
further to any degree of precision by a member of the span of {L£,}aeca,. Thus the span of the union is
dense in Hp. Further members of the union remain pairwise orthogonal and a fortiori satisfy the other
required properties to witness complete reducibility. This completes the claim.

Thus by Zorn’s lemma, there is a maximal H' € A. If H' # H, then we can find a completely reducible
subspace H” of H'*. Then H' U H" e T, violating maximality. Thus H' = #H € A, so 7 is completely
reducible. O

4. SCHUR’S LEMMA AND ORTHOGONALITY RELATIONS

Theorem 4.1. (Schur’s Lemma) Let m: G — U(H) be a finite dimensional representation. Then:
i) 7 is irreducible if and only if 7(G) ={T € B(H) : Tn(-) = w(-)T} is CI.
it) If ' : G — U(H') is another finite dimensional representation and both w and @’ are irreducible, then
each linear A : H — H' so that A intertwines, i.e. that ©'(-)A = Ax(-) is of the form cU, ¢ € R>®

and U unitary.

Proof. i) Suppose T is irreducible. If T € 7(G)’ then so is T*, as T*m(z) = (r(x=1)T)* = (Tn(x~1))* =
w(x)T*. Then the self adjoint operators T' + T* and (T — T*) are in 7(G)’. Recall that these are finite-
dimensional operators, so the spectral theory of rudimentary linear algebra applies. If T+T* # ¢l for c € C,
then T'+ T™* induces a non-trivial decomposition of H into eigenspaces and T + T* is a linear combination
of pairwise orthogonal projections. We argued in the previous theorem that each such projection must

be in 7(G)’. But no proper projection can be in w(G)" if 7 is irreducible, thus both T'+ T* = ¢;] and
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(T —T*) = col. Then T = (¢; — icg)I € CI. Conversely, if 7 is irreducible, then let £ be a proper
irreducible subspace, then P, € 7(G)’ is not of the form cI.

ii) Suppose that A : H — H’ intertwines irreducible 7 and 7’. That is 7’(-)A = An(-). Then ker 4 is
m-invariant, and ran A is 7’-invariant. We thus see that either A = 0 or A is an isomorphism.

Assume A is an isomorphism H — H'. Then A*Ar(z) = A*n'(2)A = (7' (27 1) A)*A = (Ar(a71))*A =
m(z)A*A. Thus A*A € n(G)’, and so A*A = cI, by the previous part. But A*A is positive, so ¢ € R*Y.
If ¢ #0, then U = %A is unitary. |

Corollary 4.2. If G is an abelian compact group, then every irreducible representation is 1 dimensional.

Proof. Suppose 7 : G — U(H) is irreducible. Then for all z,y € G, w(x)7(y) = w(xy) = w(yx) = 7(y)m(x).
Thus 7(z) = ¢,I for ¢, € C by Schur’s Lemma. If dim# > 1, then any proper subspace violates
irreducibility. ]

Definition 4.3. If 7 : G - U(H), ' : G — U(H') are two irreducible representations, then we say that
m and 7' are equivalent if there is a unitary U such that Un(-) = #'(-)U, or identically, Un(-)U* = 7'(-).

It can be easily seen that this is an equivalence relation. Thus define

G ={m:G—>U(C"): 7 is irreducible} /

where ~ is the relation defined above. We will henceforth abuse notations by implicitly selecting repre-

sentatives, and thus treating members of G as representations.

Definition 4.4. Given 7 € G, we let T, = {(x(-)¢ | n) : &,n € Hr}. Members of T, are continuous
functions on G so T, = C(G). Invoking compactness, we will think of 7, as a subset of the space L?(G),

the L? space that arises from the Haar measure.
Remark 4.5. This is well defined, as if 7 ~ 7’ are two representatives, and Un(-) = 7(-)'U, for Uunitary,
Te={TO)E I & me e} ={UT (VUS| m) - EneHa} = {T(VUE | Uy §n € Ha} = T

Theorem 4.6. (Schur’s Orthogonality Relations)
Let m, 7' € G,
i) If m# o', then T, L T in L*(G).
i) If §m,¢,v € Hr, then

| o 1 mEECTds = e 106 1
G T

In particular, if {e1,...eq,} is an orthonormal basis for Hr, then {/d{(m(-)e; | e;)} is an orthonor-

mal basis for Tr.

Proof. Given linear A : H, — H,, let
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Then

7' (z)A :j 7 ((sz71)71) Am(s)ds :f 7' (7Y An(tz)ds = Ar(x).
G G
Hence if 7 # 7/, A = 0, and otherwise, using the same representative, 7 = 7/ and A = ¢I for ¢ € C. Given

&neHy and ¢,y € Ha, let A(v) = v | n)y for v e H. Then,
e 1O = [ A s = [ s Kmls)e | ¢y
G G
= [ @)1 1 ds = [ Gl | s
G G

i) If 7 ¢ 7, then (A€ | ¢) = 0, thus T, L T
ii) If 7 = 7’ then let for the given choices of vectors A = C(n,y) 1. Then (AE| ¢ = <€ 1 ¢). Now if

7 is a unitary representation, and {ey,...eq4_} is an orthonormal basis, then:

~ dr dr
TrA = Z L@(s*l)Aw(s)ei | edds = L Z(Aw(s)ei | 7(s)esdds
= J TrA ds = TrA.
G

So drcyyy = (v [y [7) =y [y, and (AE | () = (€ [ Xy | m), as desired. O

5. THE PETER-WEYL THEOREM

Definition 5.1. The left regular representation of G'is A : G — U(L*(G)) given by (A(z)f)(y) = f(z~1y).
For f € L*(G), and z,y € G. Tt is simple to check that this is unitary.

Definition 5.2. For 7 € G, 7 is a finite dimensional unitary representation, and we can define a conjugate
representation 7 € G. Given an orthonormal basis {eT, ..., ej } for Hn, m(x) has matrix [m; ;(z)]; ;, and
we define 7(x) by its matrix [m; ;(x)]; ;. Note that 7(x) is unitary, and the conjugate representation is
irreducible.

To see that this is well defined on G, suppose m ~ ’. Then n(-) = U*n’(-)U for U unitary. Identify
the Hilbert spaces with C%, then with the usual orthonormal basis,
d

T
77T/

=Y UeimiaUi|

k=1 i

dn dy
T=| > Uy Ui | = | D) Uni(@ailis|

k=1 i k=1 i
— * -
T=U nU

Thus 7 ~ 7/, so this is a well defined operation on G.

Theorem 5.3. (Peter-Weyl) Let G be a compact group,

i) Forme@, let {eT,..., ey } be an orthonormal basis for Hr, and let m; ; = (n(-)eT | e] ) € L*(G). Let

Cr,j = span{m; j i € [dr]}. Then Cyr ; is A-invariant, and X |c, ,~ 7.
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ii) Let T(G) = @, .cq Tx- Then T(G) is uniformly dense in C(G).
iii) T(G) is dense in L*(G), and B = {\/d,m; ;} is an orthonormal basis for L*(G). Moreover, if "
denotes the direct sum of k copies of w, then
A~ @ mér.
e

Proof. The Schur Orthogonality Relations tell us that B is an orthonormal set in L?(G).
i) For z,y € G, m(z~'y) = m(x)*n(y). m; is a member of C(G) < L?(G), and

dr
A@)mi ) (y) = mij(z'y) = Z T, (2) k5 (Y)
k=1

dn
@)y = Y mi(@)mh € Cr )
k=1

as the sum is a linear combination of the basis of C ;. Thus Cj ; is A-invariant.
Define U : Hy — Cy ; by UeT = +/d,m; ;. Then,

dr
UNz)Uel =/ dU*Nz)m; j = /dU* Z Th,i ()T
k=1

dr dr
= Z mm-(ac)U*(\/ dﬂ—ﬂ'k’j) = Z wk,i(m)eg = ﬁ(x)ef.
k=1 k=1

Thus A |o, ,~ 7.

ii) We will argue by Stone-Weierstrass. G is compact and Hausdorff. We will show that the span of
the matrix coefficients, 7 (G), is a conjugate closed and point separating subalgebra of C(G), and is hence
uniformly dense in C(G).

Conjugate closed is immediate as 7; j(z) = 7; (), so if we conjugate some linear combination of the
basis, the resulting linear combination remains in the span. To see that this is a algebra, we will use tensor

products. For 7; ;, ng,z’ the product
T (@) = (m(@)ef | e’ (@)ef | ef ) = (m@n)(@)ef @] | ef @ ef ).

Now, ™ ® «’ is not necessarily irreducible, but it is completely reducible. Say, 7 ® ' = @nN=1 T, With
T € G, and let P, : H™ @ H™ — H™ < H™ @ H™ be the orthogonal projection onto the space on which
the n-th representation acts. Then 25:1 Py, = Idyxgy~ is a resolution of the identity. Thus,

N N N
i (@) = (m@7)(2) D) PaeT @ €] | Y. Pmel @ef = >\ {mn(a)Pre] @ €] | Poe] @€}
n=1 m=1

n=1
because the H™ are invariant and mutually orthogonal, so the cross terms vanish. But this is a sum of
matrix coefficients of elements of G, and is thus in 7(G). This shows 7(G) is an algebra.

Finally, we show point separation. First we prove \ is injective. Let x € G\e. We can find U open,
ee U c G, so that x ¢ UU~ ! or identically, zU n U = . Then consider the indicator xyy € L*(G).
A@)xv)(y) = xu(@™'y) = xav(y), s0 Ma)xv = Xou # xv. Thus A(z) # Idr2(c). Now fix z # y € G.
By complete reducibility, L?(G) breaks down into spaces on which A acts irreducibly. Thus there is some
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space £  L2(G) on which A acts irreducibly and A |z (z) # A |z (y). Then © = A |z€ G witnesses point
separation.

iii) C'(G) is dense in L?*(G) (in general, for X locally compact Hausdorff, C.(G) is dense in LP(G) for
1 < p < o). Thus 7(G) is dense in L?(G) as it is dense in C(G). Thus B spans and is an orthonormal basis.
Now T(G) has already been broken down into mutually orthogonal spaces on which A acts irreducibly as
7, with multiplicity d,, for each 7 € G. Thus, using that twice taking a conjugate representation of m € G

is the identity on G and hence that 7 — 7 is bijective,

)\~<—Dﬁd"~@7rd”. O
el reG
This brings us to the end of this journey. Complete reducibility gives us the structure of all represen-
tations of compact groups in terms of irreducible representations, which are tractable as they are finite
dimensional. The totality of the information about the irreducible representations of a group is contained
in the left regular representation. One could also develop character theory. Thus, compact groups are the
natural setting in which the general theorems of finite group representation theory live.
A significant application of this theory occurs in harmonic analysis. The Fourier transform of f € L}(G),
indexed by G, is

f:G— UB(HW)
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Both the coefficients and their values may seem complicated - for the Fourier transform of R we just
calculate a complex valued integral with neither the need to understand the full representation theory of
some nonabelian group nor the calculation of operator valued integrals!

Of course, representation theory sneakily underlies the Forurier theory of R, for there is a abelian group
of translations in R with one dimensional irreducible representations and characters e**!. Nor are the
computations in the compact setting intractable, for the operator valued integrals are of finite complex
matrices, so calculating a Fourier coefficient given 7 is not difficult. This theory is used regularly in physics
for systems with continuous symmetry groups, and is just as versatile as vanilla Fourier theory in solving
equations of motion.

I have to stop somewhere, so I will leave you with something to wonder about. The Lagrangian
formulation of classical mechanics gives equations on tangent bundle of space, while the Hamiltonian
formulation gives equations on the cotangent bundle. There is a connection between the operations of
passing to a dual vector space, with a natural isomorphism to the double dual, and that of passing to the
dual group of an abelian system, with a similar guarantee given by Pontryagin duality. This connection
can make formal the process of solving eigenvalue problems for well behaved time evolution in frequency
space. Modern gauge theories live on principal bundles as opposed to the vector bundle that is the tangent
space, and there is a dual formulation of this theory using techniques in harmonic analysis.
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