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1. Preliminaries on Compact Groups

Definition 1.1. Let pG, ¨q be a group, and let τ be a topology on G. We say that τ is a group topology,

and that pG, ¨, τq is a topological group, if the maps x ÞÑ x´1 and px, yq ÞÑ x ¨ y are continuous under

τ , with the latter taken as map from pGˆG, τ ˆ τq. For brevity the terms locally compact group and

compact group will refer to topological groups with the stated properties. We will henceforth suppress

the group operation, and denote the identity element of the group by e. Further, all our topological groups

are assumed Hausdorff.

Proposition 1.2. Let pG, τq be a topological group, U be open, and x P G, then xU “ txs : s P Uu is open.

If K is compact, then K´1 is compact, and if A and B are compact, then so is AB “ tab : a P A, b P Bu.

Proof. The map s ÞÑ xs is continuous and has a continuous inverse s ÞÑ x´1s, using the continuity

properties in the above definition. Thus it is a homeomorphism and takes open sets to open sets.

Next if K is compact, then we can easily see that K´1 is too as if Ui is an open cover for K´1, then

U´1
i is an cover for K and its members are open by a similar argument as above. Applying compactness

of K we see that K´1 is compact.

Finally, suppose A and B are compact. Then the set AˆB Ď GˆG is compact. Then AB is compact

as it is the continuous image of a compact set. �

Definition 1.3. Let pG, τq be a locally compact group, a left Haar measure is a nonzero Radon measure

(a fortiori real and positive) µ on G that satisfies µpxEq “ µpEq for every Borel set E Ă G and x P G.

Proposition 1.4. (Existence and uniqueness) Every locally compact group G possesses a left Haar

measure. If µ and λ are two Haar measures on G then there exists c P p0,8q so that µ “ cλ.

Proposition 1.5. Let G be a locally compact group, and U Ď G be a nonempty open set, then if µ is a

Haar measure on G, µpUq ą 0.

Proof. Suppose that µpUq “ 0. Then let K Ď G be any compact set. Fix x P U . Then for any y P K,

y P pyx´1qU . We have proven that this translate is open, so K is covered by open left translates of U . By

compactness, we can find a finite collection tsi : i P rN su so that K Ď
ŤN
i“1 siU . Then

µpKq ď
N
ÿ

i“1

µpsiUq “
N
ÿ

i“1

µpUq “ 0.
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But a Radon measure is inner regular, so

µpGq “ sup tµpKq : K Ď G,K is compactu “ 0.

This contradicts that a Haar measure is nonzero, so µpUq ą 0. �

Proposition 1.6. A locally compact group G is compact if and and only if, for any Haar measure µ on

G, µpGq ă 8.

Proof. A Radon measure is locally finite, and thus finite on compact sets. Thus any Haar measure on

a compact group is finite. Conversely, suppose that G is not compact, fix µ. As µ is nonzero, we may

find a compact subset K Ď G so that µpKq ą 0 by an argument in the previous theorem. Now KK´1

is compact, and G is not, so GzKK´1 is nonempty. Let u0 “ e, and if we pick u1 P GzKK
´1, then I

claim u1K X K “. Suppose k P u1K X K, then k “ u1k
1, so u1 “ kk1´1 P KK´1, contradiction. Now

recursively construct ui so that ui P Gz
Ťn
j“1 ujKK

´1, which is nonempty as the union is compact. If

x P uiK X ujK, for i ą j then x “ uik1 “ ujk2 and ui “ ujk1k
´1
s P ujKK

´1, but ui P GzujKK
´1. Thus

all the uiK are disjoint, and we construct by axiom of choice a countable disjoint family of left translates

of a compact set. By σ-additively, and as µpKq ą 0,

µ

˜

8
ď

i“0

uiK

¸

“

8
ÿ

i“0

µ puiKq “
8
ÿ

i“0

µ pKq “ 8. �

Remark 1.7. If G is a compact group, then we have a natural choice of Haar measure - the one that is

a probability measure. Thus henceforth the Haar measure on G, a compact group, is a Haar measure µ

such that µpGq “ 1.

For the rest of this paper, we will restrict ourselves to the case that G is compact. This means that
unless we explicitly state ‘let G be a locally compact group’, G is assumed compact.

We will need one final ingredient, which we state without proof:

Theorem 1.8. The left Haar measure on G is also a right Haar measure. That is µpExq “ µpEq for all

Borel sets E Ă G.

2. The Unitarization Theorem

Definition 2.1. Let G be a locally compact group and H be a nonzero Hilbert space, then a represen-

tation of G on H is a map π : GÑ BpHq satisfying:

‚ (π is a group homomorphism): for all x, y P G we have πpxyq “ πpxqπpyq, and πpeq “ IdH,

‚ (Strong continuity): for all ξ P H, the map x P G ÞÑ πpxqξ is continuous.

We say that π is unitary if πpxq is a unitary operator (equivalent to πpx´1q “ πpxq˚, where ˚ is the Hilbert

space adjoint) for all x P G.

Theorem 2.2. Let H and H1 be Hilbert spaces, then there exists a unitary map U : H Ñ H1 pthat is

xUξ | UηyH1 “ xξ | ηyH,@ξ, η P Hq if and only if there exists a bounded invertible S : HÑ H1.
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Proof. Briefly: Assume we have such an S, then well order an orthonormal basis for H, teαu, and apply

Gram-Schmidt to the vectors tSpeαqu. Define U on the basis by transfinite recursion, sending eα to the

α-th vector constructed, and extend to a unique continuous linear map on H by the Bounded Linear

Transformations theorem. �

Theorem 2.3. Let π : G Ñ BpHq be a representation. Then there exists an invertible linear map

S P BpHq, so that πS “ S´1πp¨qS is a unitary representation.

Proof. Since G is compact and π is strongly continuous, the set tπpxqξ : x P Gu Ď H is compact for each

ξ P H, and is thus also bounded. By the Uniform Boundedness Principle, the operator norms are bounded

too, that is supxPG }πpxq} ă 8. Now define for ξ, η P H,

rξ, ηs “

ż

G

xπpsqξ | πpsqηy ds.

By linearity of πpsq and of integration, and by bilinearity of the inner product on H, we see that this new

form is bilinear. It is also easily seen to be conjugate symmetric
´

rξ, ηs “ rη, ξs
¯

, and hence sesquilinear.

We claim that it is positive.

rξ, ξs “

ż

G

}πpsqξ}2ds,

where if we suppose ξ ‰ 0, then }πpeqξ} “ }ξ} ‰ 0. The map s ÞÑ }πpsqξ}2 is continuous (by continuity of

the norm, making note that joint continuity of the inner product does not necessarily hold). Thus we can

find an open neighbourhood U of e P G, such that }πpsqξ} ą }ξ}
2 for all s P U . mpUq ą 0, thus

rξ, ξs “

ż

G

}πpsqξ}2ds ą
}ξ}

2
mpUq ą 0.

We have verified that r¨ | ¨s gives an inner product. Let us call the resulting Hilbert space H1, and let

us denote its norm as } ¨ }1. Then

}ξ}1 “

ˆ
ż

G

}πpsqξ}2ds

˙
1
2

ď

ˆ

sup
xPG

}πpxq}

˙

}ξ}.

We have proven that the supremum in parenthesise is finite. Thus the identity map J : H Ñ H1 is

continuous. It is also bijective, and thus a homeomorphism by the Open Mapping Theorem. By the

previous proposition there exists a unitary U : HÑ H1. Fix such a U , then rUξ | Uηs “ xξ | ηy.

Define S “ J´1U , then for all x P G, ξ, η P H we have (note that J is suppressed as we think of the

forms as functions on the underlying sets of the Hilbert spaces):
@

S´1πpxqSξ | η
D

“
@

U´1πpxqUξ | U´1Uη
D

“ rπpxqUξ | Uηs

“

ż

G

xπpsxqUξ | πpsqUηy ds “

ż

G

@

πptqUξ | πptx´1qUη
D

dt

“
“

Uξ | πpx´1qUη
‰

“
@

U´1Uξ | U´1πpx´1qUη
D

“
@

ξ | S´1πpx´1qSη
D

“

A

`

S´1πpx´1qS
˘˚
ξ | η

E

.

Note in particular that all the above constructions were to enable the reparametrization of the integral, just

as in the case for finite groups. As this holds for all ξ, η, we have that for πS “ S´1πp¨qS, πSpxq “ πSpx
´1q˚,
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for all x P G. It is easily checked that πS is a representation, and thus it is a unitary representation, as

desired. �

3. Complete Reducibility

Lemma 3.1. Let π : G Ñ HpUq be a unitary representation. Then given ξ P Hzt0u, the operator given

by:

kξη “

ż

G

xη | πpsqξyπpsqξds

is positive, nonzero, compact, self-adjoint, and kξπpxq “ πpxqkξ for all x P G.

Proof.

xkξη | ηy “

ż

G

xη | πpsqξy xπpsqξ | ηy ds “

ż

G

|xη | πpsqξy|
2
ds ě 0

This calculation verifies positivity. It is easy to see that kξ is nonzero from this.

xkξξ | ξy “

ż

G

|xξ | πpsqξy|
2
ds

For nonzero ξ, |xξ | πpeqξy|
2
“ |ξ|

2
ą 0. Thus by continuity the integral is nonzero.

Now, as G is compact and x ÞÑ πpxqξ is continuous, for all ε ą 0 we can cover the compact image of

G with finitely many ε balls. Specifically, for ε given, we can find a partition of G “
Ů

iPrNsEi for N P N
and Ei Borel, and points xi P Ei such that

}πpxqξ ´ πpxiqξ} ă ε,@x P Ei.

Then define

kεξη “
N
ÿ

i“1

µpEiq xη | πpxiqξyπpxiqξ.

Note that kεξ is finite rank. We will argue that kξ is a limit of these finite rank operators, and is hence

compact. For x P Ei,

} xη | πpxiqξyπpxiqξ ´ xη | πpxqξyπpxqξ}

“ } xη | πpxiqξ ´ πpxqξyπpxiqξ ` xη | πpxqξy pπpxiqξ ´ πpxqξq}

ď | xη | πpxiqξ ´ πpxqξy | ¨ }πpxiqξ} ` | xη | πpxqξy | ¨ }πpxqξ ´ πpxiqξ}

ă }η} ¨ ε ¨ }πpxiqξ} ` }η} ¨ }πpxqξ} ¨ ε

“ 2ε}η}}ξ}
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With the last equality arising as π is a unitary representation. For }η} ď 1, we perform the following

bound. In the first step, we split the integral over the partition, then bring constants into the integral.

}kξη ´ k
ε
ξη} “

›

›

›

›

›

N
ÿ

i“1

ˆ
ż

Ei

pxη | πpsqξyπpsqξq ds´ µpEiq xη | πpxiqξyπpxiqξ

˙

›

›

›

›

›

“

›

›

›

›

›

N
ÿ

i“1

ż

Ei

pxη | πpsqξyπpsqξ ´ xη | πpxiqξyπpxiqξq ds

›

›

›

›

›

ď

N
ÿ

i“1

ż

Ei

} xη | πpxqξyπpxqξ ´ xη | πpxiqξyπpxiqξ}ds

ă

N
ÿ

i“1

µpEiq2ε}η}}ξ} ď 2ε}ξ}

Thus }kξ ´ k
ε
ξ} ă 2ε}ξ}, and kεξ Ñ kξ as εÑ 0. Thus kξ is compact.

Next, for self-adjointness,

xζ | kξηy “

ż

G

xζ | xη | πpsqξyπpsqξy ds “

ż

G

xη | πpsqξy xζ | πpsqξy ds

“

ż

G

xη | πpsqξy xζ | πpsqξyds “

ż

G

xη | xζ | πpsqξyπpsqξy ds

“ xη | kξζy “ xkξζ | ηy .

Finally,

πpxqkξη “

ż

G

xη | πpsqξyπpxsqξds “

ż

G

@

η | πpx´1tqξ
D

πptqξdt

“

ż

G

xη | πpxq˚πptqξyπptqξdt “

ż

G

xπpxqη | πptqξyπptqξdt “ kξπpxqη. �

Definition 3.2. Let π : G Ñ BpHq be a representation. Then a π-invariant subspace is a closed

subspace L Ď H such that πpxqL Ď L. We say that π is irreducible if the only π-invariant subspaces are

t0u and H.

We say that π is completely reducible if there exists a family tLαuαPA of nonzero closed subspaces

of H satisfying:

i) Lα X Lα1 “ t0u for α ‰ α1,

ii) each Lα is π-invariant with each π |Lα irreducible, and

iii)
À

αPA Lα “ t
řn
i“1 ξi : ξi P Lαiu is dense in H.

Definition 3.3. If π : GÑ UpHq is a unitary representation, then we will require more when we say that

π is completely reducible. Specifically, that there exist a family tLαuαPA of nonzero closed subspaces of H
satisfying the above conditions and also:

i) Lα K Lα1 for α ‰ α1,

ii) H “ l2 ´
À

αPA Lα “
 
ř

α ξi : ξi P Lαi ,
ř

α }ξα}
2 ď 8

(

.

The second condition follows from the other assumptions by basic Hilbert space arguments. This is a

stronger set of conditions, but we will show that every unitary representation of a (compact) group is
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completely reducible in the second sense, hence also in the first, and thus these definition coincide on the

class of unitary representations of compact groups.

Proposition 3.4. Let π : GÑ UpHq be a unitary representation, and L Ď H be a closed subspace. Then

i) L is π-invariant if and only if PLπpxq “ πpxqPL,

ii) L is π-invariant if and only if LK is π-invariant.

Where PL denotes the operator of orthogonal projection onto L.

Proof. i) Suppose that L is π-invariant, then for all x in G, PLπpxqPL “ πpxqPL, and thus

PLπpxq “ pπpxq
˚PLq

˚
“
`

πpx´1qPL
˘˚
“
`

PLπpx
´1qPL

˘˚
“ pPLπpxq

˚PLq
˚
“ PLπpxqPL “ πpxqPL.

Conversely, if PLπpxq “ πpxqPL, then PLπpxqPL “ πpxqPL which implies that L is π invariant.

ii) PLK “ I ´ PL then if PLπpxq “ πpxqPL,

PLKπpxq “ πpxq ´ PLπpxq “ πpxq ´ πpxqPL “ πpxqPLK .

The converse follows as pLKqK “ L when L is a closed subspace. �

Lemma 3.5. If π : G Ñ UpHq is a representation and H is finite dimensional, then π is completely

reducible.

Proof. Because H is finite dimensional, we may pick a nonzero subspace L of minimal dimension. Then

π |L is irreducible. Either L “ H, or LK is a nonzero invariant subspace, and we may repeat this argument

for the representation π |LK . As the dimension of our representation is decreasing with each restriction,

the process will terminate. �

Theorem 3.6. Let G be a compact group, then:

i) If π is irreducible, then π is finite dimensional.

ii) Every representation π is completely reducible.

Proof. By the unitarization theorem, it suffices to to consider unitary representations. Note the remarks

above on the stronger conditions on complete reducibility, and also clearly that π is irreducible if and only

if πS is for isomorphisms S.

Let π : G Ñ UpHq be a unitary representation. For ξ P Hzt0u, let kξ be the positive nonzero compact

self-adjoint operator from Lemma 3.1. By the spectral theorem for self-adjoint compact operators on a

Hilbert space, there is an orthonormal basis for H of eigenvectors, which have at most countable many

eigenvalues. The set of eivenvalues is bounded and may only cluster about 0, and the eigenspace of any any

non-zero eigenvalue is finite dimensional. Thus we may find an index set |A| ď ω, distinct non-zero λα P C,

and nonzero pairwise orthogonal finite-rank projection operators Pα for α P A, such that kξ “
ř

αPA λαPα.

Further because kξ is positive, λα P Rą0.

Additionally, suppose kξT “ Tkξ, for some T P BpHq. Then for α P A, let Lα “ PαpHq. Fix β P A

and let η P Lβ , then uniquely express Tη “
ř

α ηα ` ηK with ηα P Lα and ηK K Lα for all α. Then

Tkξη “ T pλβηq “
ř

α λβηα ` βηK, whereas kξTη “ kξ
`
ř

α ηα ` η
K
˘

“
ř

α λαηα. Applying Pα to both

sides, we see λβηα “ λαηα. For α ‰ β, λα ‰ λβ so ηα “ 0. Applying PK, projection onto the orthogonal



COMPACT GROUPS 7

complement of the closed span of the Lαs, we get λβη
K “ 0, but as λβ ‰ 0, ηK “ 0. Thus T maps Lβ to

itself, so TPβ “ PβT .

i) Suppose π is irreducible, fix ξ P Hzt0u, and express kξ “
ř

αPA λαPα satisfying the above conditions.

As kξ is nonzero, A ‰ H. We have that kξπpxq “ πpxqkξ, so also Pαπpxq “ πpxqPα, for all α P A and all

x P G. Thus Lα is π-invariant by 3.4. By irreducibility, |A| “ 1, and by a similar argument, kξ has no

kernel. Thus dimpHq “ dimpLαq ă 8, as Pα is finite rank. Thus π is finite dimensional.

ii) We will make this argument with Zorn’s Lemma. Let

Λ “
 

pH1, tLαuαPAq : H1 is a π-invariant subspace and π |H1 is completely reduced by the Lα
(

.

In the above construction, each P yields a finite dimensional invariant subspace L, and π |L is completely

reducible by 3.5. Thus Λ ‰ H (pedantry: note by our convention, the restriction of π to t0u is not a

representation and is thus not completely reducible).

Let pHγ , tLαuαPAγ q P Λ, indexed by a well ordered set γ P Γ be a nonempty ascending chain under

inclusion in both components. Then let HΓ “
Ť

γ Hγ . We claim
˜

HΓ,
ď

γPΓ

tLαuαPAγ

¸

P Λ.

For any ξ P HΓ, ξ is the limit of a sequence of elements, each lying in some partial sum Hλ “
Ť

γďλHγ .

So we can first approximate arbitrarily well ξ by some member of a partial sum, and then approximate

further to any degree of precision by a member of the span of tLαuαPAλ . Thus the span of the union is

dense in HΓ. Further members of the union remain pairwise orthogonal and a fortiori satisfy the other

required properties to witness complete reducibility. This completes the claim.

Thus by Zorn’s lemma, there is a maximal H1 P Λ. If H1 ‰ H, then we can find a completely reducible

subspace H2 of H1K. Then H1 YH2 P Γ, violating maximality. Thus H1 “ H P Λ, so π is completely

reducible. �

4. Schur’s Lemma and Orthogonality Relations

Theorem 4.1. (Schur’s Lemma) Let π : GÑ UpHq be a finite dimensional representation. Then:

i) π is irreducible if and only if πpGq1 “ tT P BpHq : Tπp¨q “ πp¨qT u is CI.

ii) If π1 : GÑ UpH1q is another finite dimensional representation and both π and π1 are irreducible, then

each linear A : H Ñ H1 so that A intertwines, i.e. that π1p¨qA “ Aπp¨q is of the form cU , c P Rě0

and U unitary.

Proof. i) Suppose π is irreducible. If T P πpGq1 then so is T˚, as T˚πpxq “ pπpx´1qT q˚ “ pTπpx´1qq˚ “

πpxqT˚. Then the self adjoint operators T ` T˚ and ipT ´ T˚q are in πpGq1. Recall that these are finite-

dimensional operators, so the spectral theory of rudimentary linear algebra applies. If T`T˚ ‰ cI for c P C,

then T `T˚ induces a non-trivial decomposition of H into eigenspaces and T `T˚ is a linear combination

of pairwise orthogonal projections. We argued in the previous theorem that each such projection must

be in πpGq1. But no proper projection can be in πpGq1 if π is irreducible, thus both T ` T˚ “ c1I and
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ipT ´ T˚q “ c2I. Then T “ pc1 ´ ic2qI P CI. Conversely, if π is irreducible, then let L be a proper

irreducible subspace, then PL P πpGq
1 is not of the form cI.

ii) Suppose that A : H Ñ H1 intertwines irreducible π and π1. That is π1p¨qA “ Aπp¨q. Then kerA is

π-invariant, and ranA is π1-invariant. We thus see that either A “ 0 or A is an isomorphism.

Assume A is an isomorphism HÑ H1. Then A˚Aπpxq “ A˚π1pxqA “ pπ1px´1qAq˚A “ pAπpx´1qq˚A “

πpxqA˚A. Thus A˚A P πpGq1, and so A˚A “ cI, by the previous part. But A˚A is positive, so c P Rě0.

If c ‰ 0, then U “ 1?
c
A is unitary. �

Corollary 4.2. If G is an abelian compact group, then every irreducible representation is 1 dimensional.

Proof. Suppose π : GÑ UpHq is irreducible. Then for all x, y P G, πpxqπpyq “ πpxyq “ πpyxq “ πpyqπpxq.

Thus πpxq “ cxI for cx P C by Schur’s Lemma. If dimH ą 1, then any proper subspace violates

irreducibility. �

Definition 4.3. If π : G Ñ UpHq, π1 : G Ñ UpH1q are two irreducible representations, then we say that

π and π1 are equivalent if there is a unitary U such that Uπp¨q “ π1p¨qU , or identically, Uπp¨qU˚ “ π1p¨q.

It can be easily seen that this is an equivalence relation. Thus define

Ĝ “ tπ : GÑ UpCnq : π is irreducibleu {„ ,

where „ is the relation defined above. We will henceforth abuse notations by implicitly selecting repre-

sentatives, and thus treating members of Ĝ as representations.

Definition 4.4. Given π P Ĝ, we let Tπ “ txπp¨qξ | ηy : ξ, η P Hπu. Members of Tπ are continuous

functions on G so Tπ Ă CpGq. Invoking compactness, we will think of Tπ as a subset of the space L2pGq,

the L2 space that arises from the Haar measure.

Remark 4.5. This is well defined, as if π „ π1 are two representatives, and Uπp¨q “ πp¨q1U , for Uunitary,

Tπ “ txπp¨qξ | ηy : ξ, η P Hπu “ txU
˚π1p¨qUξ | ηy : ξ, η P Hπu “ txπp¨qUξ | Uηy : ξ, η P Hπu “ Tπ1 .

Theorem 4.6. (Schur’s Orthogonality Relations)

Let π, π1 P Ĝ,

i) If π ‰ π1, then Tπ K Tπ1 in L2pGq.

ii) If ξ, η, ζ, γ P Hπ, then
ż

G

xπpsqξ | ηyxπpsqζ | γyds “
1

dπ
xξ | ζyxγ | ηy.

In particular, if te1, . . . edπu is an orthonormal basis for Hπ, then t
?
dπtxπp¨qei | ejyu is an orthonor-

mal basis for Tπ.

Proof. Given linear A : Hπ ÞÑ Hπ1 , let

Ã “

ż

G

π1ps´1qAπpsqds.
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Then

π1pxqÃ “

ż

G

π1
`

psx´1q´1
˘

Aπpsqds “

ż

G

π1pt´1qAπptxqds “ Ãπpxq.

Hence if π  π1, Ã “ 0, and otherwise, using the same representative, π “ π1 and Ã “ cI for c P C. Given

ξ, η P Hπ and ζ, γ P Hπ1 , let Apνq “ xν | ηyγ for ν P H. Then,

xÃξ | ζy “

ż

G

@

π1ps´1qAπpsqξ | ζ
D

ds “

ż

G

@

π1ps´1qxπpsqξ | ηyγ | ζ
D

ds

“

ż

G

xπpsqξ | ηy
@

π1ps´1qγ | ζ
D

ds “

ż

G

xπpsqξ | ηyxπ1psqζ | γyds.

i) If π  π1, then xÃξ | ζy “ 0, thus Tπ K Tπ1 .

ii) If π “ π1 then let for the given choices of vectors Ã “ cpη,γqI. Then xÃξ | ζy “ cpη,γqxξ | ζy. Now if

π is a unitary representation, and te1, . . . edπu is an orthonormal basis, then:

TrÃ “
dπ
ÿ

i“1

ż

G

xπps´1qAπpsqei | eiyds “

ż

G

dπ
ÿ

i“1

xAπpsqei | πpsqeiyds

“

ż

G

TrA ds “ TrA.

So dπcpη,γq “ xxγ | ηyγ | γy “ xγ | ηy, and xÃξ | ζy “ 1
dπ
xξ | ζyxγ | ηy, as desired. �

5. The Peter-Weyl Theorem

Definition 5.1. The left regular representation of G is λ : GÑ UpL2pGqq given by pλpxqfqpyq “ fpx´1yq.

For f P L2pGq, and x, y P G. It is simple to check that this is unitary.

Definition 5.2. For π P Ĝ, π is a finite dimensional unitary representation, and we can define a conjugate

representation π P Ĝ. Given an orthonormal basis teπ1 , . . . , e
π
dπ
u for Hπ, πpxq has matrix rπi,jpxqsi,j , and

we define πpxq by its matrix rπi,jpxqsi,j . Note that πpxq is unitary, and the conjugate representation is

irreducible.

To see that this is well defined on Ĝ, suppose π „ π1. Then πp¨q “ U˚π1p¨qU for U unitary. Identify

the Hilbert spaces with Cdπ , then with the usual orthonormal basis,

π “

«

dπ
ÿ

k,l“1

Uk,iπ
1
k,lUl,j

ff

i,j

,

π “

«

dπ
ÿ

k,l“1

Ul,jπ1k,lUk,i

ff

i,j

“

«

dπ
ÿ

k,l“1

Uk,ipπ1qk,lUl,j

ff

i,j

,

π “ U
˚
π1 U.

Thus π „ π1, so this is a well defined operation on Ĝ.

Theorem 5.3. (Peter-Weyl) Let G be a compact group,

i) For π P Ĝ, let teπ1 , . . . , e
π
dπ
u be an orthonormal basis for Hπ, and let πi,j “ xπp¨qe

π
j | e

π
i y P L

2pGq. Let

Cπ,j “ spantπi,j : i P rdπsu. Then Cπ,j is λ-invariant, and λ |Cπ,j„ π.
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ii) Let T pGq “
À

πPĜ Tπ. Then T pGq is uniformly dense in CpGq.

iii) T pGq is dense in L2pGq, and B “ t
?
dππi,ju is an orthonormal basis for L2pGq. Moreover, if πk

denotes the direct sum of k copies of π, then

λ „
à

πPĜ

πdπ .

Proof. The Schur Orthogonality Relations tell us that B is an orthonormal set in L2pGq.

i) For x, y P G, πpx´1yq “ πpxq˚πpyq. πi,j is a member of CpGq Ă L2pGq, and

pλpxqπi,jqpyq “ πi,jpx
´1yq “

dπ
ÿ

k“1

πk,ipxqπk,jpyq

λpxqπi,j “
dπ
ÿ

k“1

πk,ipxqπk,j P Cπ,j ,

as the sum is a linear combination of the basis of Cπ,j . Thus Cπ,j is λ-invariant.

Define U : Hπ Ñ Cπ,j by Ueπi “
?
dππi,j . Then,

U˚λpxqUeπi “
a

dπU
˚λpxqπi,j “

a

dπU
˚

dπ
ÿ

k“1

πk,ipxqπk,j

“

dπ
ÿ

k“1

πk,ipxqU
˚p
a

dππk,jq “
dπ
ÿ

k“1

πk,ipxqe
π
k “ πpxqeπi .

Thus λ |Cπ,j„ π.

ii) We will argue by Stone-Weierstrass. G is compact and Hausdorff. We will show that the span of

the matrix coefficients, T pGq, is a conjugate closed and point separating subalgebra of CpGq, and is hence

uniformly dense in CpGq.

Conjugate closed is immediate as πi,jpxq “ πi,jpxq, so if we conjugate some linear combination of the

basis, the resulting linear combination remains in the span. To see that this is a algebra, we will use tensor

products. For πi,j , π
1
k,l, the product

πi,jπ
1
k,lpxq “ xπpxqe

π
j | e

π
i yxπ

1pxqeπ
1

l | e
π1

k y “ xpπ b π
1qpxqeπj b e

π1

l | e
π
i b e

π1

k y.

Now, π b π1 is not necessarily irreducible, but it is completely reducible. Say, π b π1 “
ÀN

n“1 πn, with

πn P Ĝ, and let Pn : Hπ bHπ1

Ñ Hπn Ă Hπ bHπ1

be the orthogonal projection onto the space on which

the n-th representation acts. Then
řN
n“1 Pn “ IdHπbHπ1 is a resolution of the identity. Thus,

πi,jπ
1
k,lpxq “ xpπ b π

1qpxq
N
ÿ

n“1

Pne
π
j b e

π1

l |

N
ÿ

m“1

Pme
π
i b e

π1

k y “

N
ÿ

n“1

xπnpxqPne
π
j b e

π1

l | Pne
π
i b e

π1

k y

because the Hπn are invariant and mutually orthogonal, so the cross terms vanish. But this is a sum of

matrix coefficients of elements of Ĝ, and is thus in T pGq. This shows T pGq is an algebra.

Finally, we show point separation. First we prove λ is injective. Let x P Gze. We can find U open,

e P U Ă G, so that x R UU´1 or identically, xU X U “ H. Then consider the indicator χU P L
2pGq.

pλpxqχU qpyq “ χU px
´1yq “ χxU pyq, so λpxqχU “ χxU ‰ χU . Thus λpxq ‰ IdL2pGq. Now fix x ‰ y P G.

By complete reducibility, L2pGq breaks down into spaces on which λ acts irreducibly. Thus there is some
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space L Ă L2pGq on which λ acts irreducibly and λ |L pxq ‰ λ |L pyq. Then π “ λ |LP Ĝ witnesses point

separation.

iii) CpGq is dense in L2pGq (in general, for X locally compact Hausdorff, CcpGq is dense in LppGq for

1 ď p ă 8). Thus T pGq is dense in L2pGq as it is dense in CpGq. Thus B spans and is an orthonormal basis.

Now T pGq has already been broken down into mutually orthogonal spaces on which λ acts irreducibly as

π, with multiplicity dπ, for each π P Ĝ. Thus, using that twice taking a conjugate representation of π P Ĝ

is the identity on Ĝ and hence that π ÞÑ π is bijective,

λ „
à

πPĜ

πdπ „
à

πPĜ

πdπ . �

This brings us to the end of this journey. Complete reducibility gives us the structure of all represen-
tations of compact groups in terms of irreducible representations, which are tractable as they are finite
dimensional. The totality of the information about the irreducible representations of a group is contained
in the left regular representation. One could also develop character theory. Thus, compact groups are the
natural setting in which the general theorems of finite group representation theory live.

A significant application of this theory occurs in harmonic analysis. The Fourier transform of f P L1pGq,

indexed by Ĝ, is

f̂ : Ĝ ÞÑ
ğ

πPĜ

BpHπq

f̂pπq “

ż

G

fpsqπps´1qds.

Both the coefficients and their values may seem complicated - for the Fourier transform of R we just
calculate a complex valued integral with neither the need to understand the full representation theory of
some nonabelian group nor the calculation of operator valued integrals!

Of course, representation theory sneakily underlies the Forurier theory of R, for there is a abelian group
of translations in R with one dimensional irreducible representations and characters eixt. Nor are the
computations in the compact setting intractable, for the operator valued integrals are of finite complex
matrices, so calculating a Fourier coefficient given π is not difficult. This theory is used regularly in physics
for systems with continuous symmetry groups, and is just as versatile as vanilla Fourier theory in solving
equations of motion.

I have to stop somewhere, so I will leave you with something to wonder about. The Lagrangian
formulation of classical mechanics gives equations on tangent bundle of space, while the Hamiltonian
formulation gives equations on the cotangent bundle. There is a connection between the operations of
passing to a dual vector space, with a natural isomorphism to the double dual, and that of passing to the
dual group of an abelian system, with a similar guarantee given by Pontryagin duality. This connection
can make formal the process of solving eigenvalue problems for well behaved time evolution in frequency
space. Modern gauge theories live on principal bundles as opposed to the vector bundle that is the tangent
space, and there is a dual formulation of this theory using techniques in harmonic analysis.
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