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In this talk I will use many theorems from functional analysis to prove Stone-
Weierstrass.

Theorem 1. (Stone-Weierstrass): If X is a compact Hausdorff space, and A ⊆
CR(X) is a uniformly closed sub-algebra that separates points (if x 6= y ∈ X, then
there is f ∈ A with f(x) 6= f(y)) and has g ∈ A with g(x) > 0, ∀x ∈ A, then
A = CR(X).

CR(X) is a Banach space, and we will need to know its dual space; this is given
by the Riesz Representation theorem. First, let’s discus the space of regular Borel
real measures on X.

Theorem 2. (Jordan Decomposition): If µ is a real measure on (Σ, X), then
there exists a measurable set P such that µ(E ∩ P ) ≥ 0 and µ(E ∩ PC) ≤ 0 for all
measurable E. Then µ+(E) = µ(E ∩ P ), µ−(E) = −µ(E ∩ P ) are unique positive
mutually singular measures such that µ = µ+ − µ−.

Definition 1. Define MR(X) to be the set of finite regular real Borel measures on
X. The total variation of µ is defined here as |µ| = µ+ +µ−. Then MR(X) is made
into a Banach space by the norm ‖µ‖ = |µ|(X) = µ+(X) + µ−(X).

Theorem 3. (Riesz Representation): If X is a compact Hausdorff space, then
CR(X)∗ ∼= MR(X) and the isomorphism is isometric and is given by µ ∈MR(X) 7→
φ ∈ CR(X)∗ with φ(f) =

∫
X
fdµ.

In particular, we see from this theorem that ‖µ‖ = supf∈b(C(X))

∣∣∫
X
fdµ

∣∣.
We will use a nice corollary of the Hahn-Banach theorem:

Theorem 4. (Hahn-Banach): If A is a proper closed subspace of CR(X), then
there exists µ ∈MR(X), µ 6= 0, so that

∫
X
fdµ = 0 for all f ∈ A.

Now let’s do some analysis on this dual space!

Definition 2. The ω∗ topology on CR(X)∗ is defined by µλ → µ if and only if∫
X
fdµλ →

∫
X
fdµ for all f ∈ CR. This is the weakest topology on CR(X)∗ so that

every f ∈ CR(X) is continuous.

A note is on order:

Theorem 5. If A is a proper closed subspace of CR(X), then define A⊥ = {φ ∈
CR(X)∗ : φ(f) = 0 ∀f ∈ A}. Then A⊥ 6= {0}, and A⊥ is ω∗-closed.

Proof. A⊥ 6= {0} by Hahn-Banach. If φλ is a net in A⊥ and φλ → φ in the ω∗

topology, then φλ(f)→ φ(f) for all f ∈ CR(X), in particular if h ∈ A, 0 = φλ(h)→
φ(h) so φ(h) = 0 and thus φ ∈ A⊥, so A⊥ is ω∗-closed. �

This topology has useful properties:
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Theorem 6. (Banach Alaoglu): The norm closed unit ball of CR(X)∗, b(CR(X)∗),
is ω∗-compact.

And for our final ingredient:

Definition 3. If U ⊂ V , V a vector space, then U is convex if whenever x, y ∈ U
and λ ∈ [0, 1] then λx + (1 − λ)y ∈ U . If U is convex, then we say z ∈ U is an
extreme point of U if whenever x, y ∈ U and λ ∈ (0, 1) with z = λx + (1 − λ)y
we have x = y = z. We denote the set of extreme points of U as Ext(U). [Draw
diagram of quarter circle in R2.]

Theorem 7. (Krein-Milman): If K ⊂ CR(X)∗ is convex and ω∗-compact, then

K = Ext(K)
ω∗

.

Finally:

Theorem 8. (Stone-Weierstrass): If X is a compact Hausdorff space, and A ⊆
CR(X) is a uniformly closed sub-algebra that separates points (if x 6= y ∈ X, then
there is f ∈ A with f(x) 6= f(y)) and has g ∈ A with g(x) > 0, ∀x ∈ A, then
A = CR(X).

Proof. Suppose A 6= CR(X). Then A is a proper closed subspace of CR(X). Let
K = b1(CR(X)∗) ∩ A⊥. Then K is the intersection of a ω∗-compact, convex, set
and a ω∗-closed convex set, thus K is ω∗-compact, convex, and K 6= {0}.

By Krein-Milman, K has an extreme point µ. For any ν ∈ A⊥ with ν 6= 0,
ν

2|ν| + −ν
2|ν| = 0, so 0 is not an extreme point of K and thus µ 6= 0. In fact ‖µ‖ = 1.

Suppose supp(µ) 6= {x0}, i.e. µ is not supported at one point. Then if Y =
supp(µ), we can find f ∈ A which is not constant on Y as A separates points.

Using our positive function g, we can find positive numbers so that f̃ = f+cg
d

satisfies 0 < f̃(x) < 1 for all x ∈ X, and f̃ is not constant on Y . Hence assume
0 < f(x) < 1 for all x ∈ X.

Thus if µ1 = fµ, then fµ = fµ+ − fµ− and fµ+, fµ− are positive mutually
singular measures, thus by the uniqueness of the Jordan Decomposition, |fµ| =
fµ+ +fµ− = f(µ+ +µ−) = f |µ|. Similarly, if µ2 = (1−f)µ, then |µ2| = (1−f)|µ|.

Further, if h ∈ A, then µ1(h) =
∫
X
hfdµ. But A is an algebra and f, h ∈ A so

fh ∈ A and µ ∈ A⊥, so µ1(h) = 0 and µ1 ∈ A⊥. Similarly µ2 ∈ A⊥.

Consider ‖µ1‖ + ‖µ2‖ =
∫
X
d|µ1| +

∫
X
d|µ2| =

∫
X
fd|µ| +

∫
X

(1 − f)d|µ| =∫
X
d|µ| = ‖µ‖ = 1. We have:

‖µ1‖
µ1

‖µ1‖
+ ‖µ2‖

µ2

‖µ2‖
= µ1 + µ2 = fµ+ (1− f)µ = µ

With µ1

‖µ1‖ ,
µ2

‖µ2‖ ∈ K. This is a convex combination. As f is not constant on Y,

µ1 is not a constant multiple of µ. Thus µ is not an extreme point - contradiction!

Thus supp(µ) = {x0} and µ = ±δx0
. Then for our positive g:

0 =

∫
X

gdµ = ±
∫
X

gdδx0
= ±g(x0) 6= 0

Contradiction; thus A = CR(X).
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