
THE EULER-LAGRANGE PDE

TARAS KOLOMATSKI

1. A Few Words on Boundary Values

In this paper, we will endeavour to find solutions to certain partial differential equations which satisfy
given boundary data. For functions that can be continuously extended to the boundary of our domain,
this notion is clearly well defined. Indeed, with continuous boundary data we will hope for solutions with
at least this level of regularity. However, as is to be expected, we will have to broaden the function spaces
in which we look for solutions, hence a more sophisticated notion of boundary values is necessary.

When U Ă Rn is open and bounded with a C1 boundary, BU is a compact C1 pn´ 1q-manifold which
can inherit a metric induced from its embedding in Rn. With this metric, it makes sense to speak of the
spaces LppBUq.

Our function space will be W 1,ppUq and we will make use of the following result:

Theorem 1.1. (Evans 5.5.1) Let U Ă Rn be open and bounded with a C1 boundary. There exists a
bounded linear operator

T : W 1,ppUq Ñ LppBUq,

such that

i. Tu “ u|BU , for all u PW 1,ppUq X CpUq, and
i. }Tu}LppBUq ď C}u}W 1,ppUq, for all u PW 1,ppUq, where C “ Cpp, Uq is an absolute constant. �

The function Tu is called the trace of u. T is necessarily unique as, in the context of U Ă Rn open
and bounded with a C1 boundary, C8

`

U
˘

is dense in W 1,ppUq (Evans 5.3.2).

The space W 1,p
0 pUq is the closure of DpUq in W 1,ppUq. There are multiple useful results that hold only

of W 1,p
0 pUq. For example Poincaré’s inequality, which states, for bounded U , that:

}u}LppUq ď C}∇u}LppUq.

This result cannot hold of W 1,ppUq as we can break the inequality by adding a sufficiently large constant
to u. Notice that, by the linearity of T , adding a constant to u adds this constant to the trace. Thus this
difficulty is avoided when we impose boundary values. Further, members of DpUq vanish outside a strict
subset of U and have zero trace by the first condition in the above theorem. These together suggest a
relationship between W 1,p

0 pUq and the class of zero trace functions.

The following theorem is pertinent as it will allow us to apply results about W 1,p
0 pUq to spaces of

functions that satisfy fixed boundary data.

Theorem 1.2. Let U Ă Rn be open and bounded with a C1 boundary. Then for u P W 1,ppUq, Tu “ 0 if

and only if u PW 1,p
0 pUq. �
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2. Motivation for the Euler-Lagrange Equation

It is difficult to make any general statements of solutions to partial differential equations in the form:

Arus “ 0,

when A is a non-linear differential operator. However, if there is a functional (here taken to mean not
necessarily linear) I such that for some notion of differentiation:

Arus “ I 1rus “ 0,

then it is suggestive that we will be able to find solutions if we can solve the problem of minimising I. It
turns out that the latter problem is frequently tractable. Further, minimisation problems of this form are
often themselves an object of interest in numerous disciplines, including physics.

We will restrict our attention to the following construction:

Fix a dimension n, and a set U Ă Rn that is open and bounded with a C8 boundary. Additionally fix
a smooth function

L : Rn ˆ Rˆ U Ñ R,
such that L extends continuously to Rn ˆ Rˆ U . We call L the Lagrangian.

We will denote the arguments of L as Lpp, z, xq with p P Rn, z P R, and x P U . Further we let Lp

and Lx denote the gradients with respect to the n-dimensional arguments p and x, and Lz the partial
derivative with respect to z.

Define a functional I, corresponding to L, on the space C8
`

U
˘

by:

Irws “

ż

U

L pDwpxq, wpxq, xq dx.

In the interest of brevity, we henceforth suppress the argument in Dw and w.

Suppose that we fix boundary data g P CpBUq, and u P C8
`

U
˘

attains the minimal value of I among

functions w P C8
`

U
˘

with w|BU “ g. Then for all v P DpUq, pu ` tvq|BU “ g for any t P R. We can
construct the following smooth function:

τptq “ Iru` tvs “

ż

U

L pDu` tDv, u` tv, xq dx.

Which will have a minimum at t “ 0, and hence τ 1p0q “ 0. Expanding this explicitly,

τ 1p0q “

ż

U

˜

n
ÿ

i“1

Lpi
pDu` tDv, u` tv, xq vi ` Lz pDu` tDv, u` tv, xq v

¸

dx

As we assumed that v had support that is a strict subset of U , and as Lpi
pDu` tDv, u` tv, xq and vipxq

are smooth functions in xi, we may apply integration by parts to the first term to shift the derivative,
without incurring a boundary term.

τ 1p0q “

ż

U

˜

´

n
ÿ

i“1

Lpi
pDu, u, xqi ` Lz pDu, u, xq

¸

v dx “ 0

As this is true of all test functions v, it follows that

´

n
ÿ

i“1

Lpi
pDu, u, xqi ` Lz pDu, u, xq “ 0.

(For Lp functions this would be true almost everywhere but the above expression is continuous.)
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We have derived a partial differential equation that is solved (not exclusively) by smooth minimises of
I. This is the Euler-Lagrange equation, and will here be the object of study.

3. Existence of Weak Solutions

Suppose we are given a Lagrangian L and boundary data g such that over some non-empty function
space satisfying the boundary constraint, the infimum of I is finite. We can then form a sequence of
functions uk such that Iruks decreases to the infimum. Ideally, we hope that we can make a compactness
argument to extract a converging subsequence, which by continuity will attain the minimal value of our
functional. Unfortunately, several difficulties arise:

Consider the functional Irus “
ş

U
eudx on C8 pp0, 1qq with boundary values of 1 at the endpoints. It

is easy to see that the infimum of I is 0, but that functions that come close to attaining it must have
arbitrarily large negative values for subsets of p0, 1q arbitrarily close in measure to 1. Clearly a smooth
minimiser does not exist for this problem, and a lack of compactness is apparent.

If the Lagrangian is thought of as a cost function, then it seems reasonable to expect rewards for
functions with tame values and derivatives. Indeed if we control at least the derivative, then we should
expect that functions that come close to minimising the functional I are uniformly bounded. This is an
assumption we will have to make:

Definition 3.1. A Lagrangian L satisfies the coercivity condition if there is a number 1 ă q ă 8 and
constants α ą 0, β ě 0 such that:

Lpp, z, xq ě α|p|q ´ β

at all points pp, z, xq P Rn ˆ Rˆ U .

We will make note of the value of q that satisfies this definition and look for solutions in the space
W 1,ppUq. For functions in this space I is well defined (but not necessarily finite) as it is just an integral
of some measurable function. For all functions w PW 1,ppUq, this inequality directly implies that:

Irws ě α}Dw}qLqpUq ´ β volpUq.

Hence I will always have a finite infimum when coercivity holds.
When we introduce the boundary data, our function space, called the admissible set, becomes

A “
 

u PW 1,ppUq : Tu “ g
(

.

With coercivity we will be able to show that a sequence uk such that Iruks converges to the infimum
has uniformly bounded norms }uk}LqpUq and }Duk}LqpUq. Boundedness does not imply compactness in
LqpUq, however as LqpUq is reflexive (p ą 1), and thus itself a dual space, bounded weakly closed sets are
weakly compact by Banach-Alaoglu (the weak and weak˚ topologies coincide). Thus we may pass to a
subsequence that converges weakly. Is it true, though, that I is continuous with respect to weak limits?

This is our second difficulty; functions with arbitrarily small Lq norm could take on arbitrarily large
values, for example, so convergence in the Lebesgue or weak Lebesgue sense seems incompatible with I.
Indeed, we will be unable to demonstrate that Iruks Ñ Irus for arbitrary weak limits uk Ñ u. However,
under certain assumptions we will be able to establish the following property.

Definition 3.2. A functional I on W 1,qpUq is weakly lower semicontinuous if, whenever uk Ñ u
weakly,

Irus ď lim inf
kÑ8

Iruks.

We assume that Lpp, z, xq is convex in the variable p for fixed z, x. This assumption is reasonable as
some work involving the second derivative of τptq yields that rDpi,pjLpDu, u, xqsi,j is a positive semidefinite
matrix for minimising functions u. We are assuming this holds on a larger set, though.
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A characterization of convexity for smooth functions is that they lie above their supporting hyperplanes.
Thus if Lpp, z, xq is convex in p, for fixed z, x we have:

L pp2, z, xq ě L pp1, z, xq ` Lp pp1, z, xq ¨ pp2 ´ p1q.

With these ingredients, we will now begin producing results.

Theorem 3.3. If L is bounded bellow and convex in p, then L is weakly lower semicontinuous on W 1,qpUq.

Proof. Fix a sequence uk PW
1,qpUq such that uk Ñ u weakly in W 1,qpUq. Let

l “ lim inf
kPN

Iruks.

By passing to a subsequence, we can assume without loss of generality that

l “ lim
kPN

Iruks.

To establish the theorem, it suffices to show Irus ď l.
Setup: Weak convergence implies boundedness (see the appendix), so

sup
nPN

}uk}W 1,qpUq ă 8.

By the Kondrakov-Rellich compactness theorem (Evans 5.7.1), the inclusion W 1,qpUq Ñ LqpUq is com-
pact. Thus we can pass to a subsequence such that uk Ñ u converges in LqpUq. Norm convergence in
LqpUq implies that we can pass to yet another subsequence that additionally converges pointwise almost
everywhere. Finally, as U is compact and thus has finite Lebesgue measure, Ergoff’s theorem tells us that
our sequence converge almost uniformly. That is, for all ε ą 0, there is a measurable subset Eε Ă U with
λpUzEεq ă ε such that uk Ñ u uniformly almost everywhere on Eε.

Additionally, for all ε ą 0, let Fε “
 

x P U : |upxq| ` |Dupxq| ă 1
ε

(

, defined almost everywhere. Notice
that λpUzEεq Ñ 0 as ε Ñ 0 by the monotone convergence theorem applied to the indicator functions.
Combining the above two constructions, define Gε “ Eε X Fε. By construction, λpUzGεq Ñ 0 as εÑ 0.

The argument: As L is bounded bellow, by possibly adding a constant, we can assume L ě 0.

Iruks “

ż

U

L pDuk, uk, xq dx ě

ż

Gε

L pDuk, uk, xq dx

ě

ż

Gε

L pDu, uk, xq dx`

ż

Gε

Lp pDu, uk, xq pDuk ´Duq dx

For the first summand:
Du is bounded on Gε so DupGεq is compact.
uk Ñ u uniformly and u is bounded thus there is some N such that for all k ě N ,

}ukpxq}L8pGεq ă }u}L8pGεq ` 1 ă 8.

Thus all uk take values in a compact set, so LpDu, uk, xq is uniformly bounded (@x P U, n P N) by some
constant by the extreme value theorem. As LpDu, uk, xq Ñ LpDu, u, xq pointwise for each x P U , the
dominated convergence theorem implies:

lim
nÑ8

ż

Gε

L pDu, uk, xq dx “

ż

Gε

L pDu, u, xq dx

For the second summand: DpLpDu, uk, xq Ñ DpLpDu, uk, xq uniformly over x P Gε, and hence in L8pGεq.

Further Duk Ñ Du weakly in LqpGεq. As Gε has compact closure, L8pGεq Ă Lq˚pGεq, so by joint
continuity:

lim
nÑ8

ż

Gε

Lp pDu, uk, xq pDuk ´Duq dx “

ż

Gε

Lp pDu, u, xq pDu´Duq dx “ 0.
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Thus,

l “ lim
nÑ8

Iruks ě

ż

Gε

L pDu, u, xq dx

Letting εÑ 0 and applying the monotone convergence theorem (insert indicators), we see:

l ě

ż

U

L pDu, u, xq dx “ Irus �

Now that we have weak lower semicontinuity, we will be able to prove the existence of a minimiser of I.

Theorem 3.4. Suppose L satisfies the coercivity inequality and convexity in p. If the admissible set A is
non-empty for a given trace, then there exists u P A such that

Irus “ inf
wPA

Irws.

Proof. By adding a constant to L, we can set β “ 0 in the coercivity inequality. So assume without loss
of generality that L ě α|Dw|q. Then for w P A,

Irws ě α

ż

U

|Dw|qdx ě 0

Let m “ infwPA Irws ě. Suppose m ă 8, as otherwise the result trivially holds. Thus:

sup
wPA

}Duk}LqpUq ă 8.

Now pick a sequence uk P A with Iruks Ñ m. We would like to work with W 1,q
0 pUq functions, and we

can do so at the cost of a constant. Pick some w P A. Then uk ´ w P W 1,q
0 pUq. Applying the Poincaré

inequality:

}uk}LqpUq ď }uk ´ w}LqpUq ` }w}LqpUq ď C}Dpuk ´ wq}LqpUq ` }w}LqpUq

We have shown above that the norms }Dpuk ´wq}LqpUq are uniformly bounded, and the second term is a
constant. Thus the norms }uk}LqpUq are uniformly bounded.

Banach-Alaoglu tells us that bounded weakly closed sets in LqpUq are weakly compact (we use here
that p ą 1 to ensure reflexivity). Recall, additionally, that norm closed convex subsets of a Banach space
are weakly closed. Thus the norm closed balls in W 1,qpUq are weakly compact. It follows from the above
boundedness observations that there is a function u PW 1,qpUq such that passing to a subsequence we have
uk Ñ u weakly in LqpUq. We can pass to yet another subsequence such that the Duk have a weak limit,
which must evidently be Du. As A is a closed (hence convex) subspace, it is weakly closed so u P A.

By definition, m ď Irus. But as uk Ñ u weakly in W 1,qpUq and Iruks Ñ m, our hypothesise allow us
to invoke weak lower semicontinuity, so Irus ď m. Hence

Irus “ inf
wPA

Irws. �

The Euler-Lagrange equation was derived such smooth minimizes of I are among it’s solutions. We
have shown that under certain assumptions, there exist weak minimizers of I, but it is not immediately
apparent that these are solutions to the differential equation.

Unfortunately, this will require making additional assumptions that bound the growth of L from above.
We require that for our q form coercivity, that:

|Lpp, z, xq| ď C p|p|q ` |z|q ` 1q

|Lppp, z, xq| ď C
`

|p|q´1 ` |z|q´1 ` 1
˘

|Lzpp, z, xq| ď C
`

|p|q´1 ` |z|q´1 ` 1
˘

for some constant C ą 0 and all points p P Rn, z P R, x P U . We call this the growth condition.
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Suppose that for a smooth function u, for all v P DpUq,
ż

U

˜

´

n
ÿ

i“1

Lpi
pDu, u, xqi ` Lz pDu, u, xq

¸

v dx “ 0.

Then, by density, this relation holds for all v PW 1,p
0 pUq.

More generally, if for u P W 1,ppUq, this condition holds for all v P DpUq, then the growth condition

implies that Lpi
pDu, u, xq , Lz pDu, u, xq P L

q
q´1 pUq - the conjugate space to LqpUq. Thus the density

argument also goes through. With these observations, it is reasonable to make the following definition.

Definition 3.5. We say u P A is a weak solution of the Euler-Lagrange equation (derived from L, g),

provided that for all v PW 1,p
0 pUq:

ż

U

˜

´

n
ÿ

i“1

Lpi
pDu, u, xqi ` Lz pDu, u, xq

¸

v dx “ 0.

Theorem 3.6. Suppose that L satisfies the growth condition and u P A is such that

Irus “ inf
wPA

Irws.

Then u is a weak solution of the Euler-Lagrange equation.

Proof. We fix v PW 1,p
0 pUq and define

τptq “ Iru` tvs.

The growth condition implies that τ takes on finite values. Pick t ‰ 0. We consider:

τptq ´ τp0q

t
“

ż

U

LpDu` tDv, u` tv, xq ´ LpDu, u, xq

t
dx

and let

Ltpxq “
LpDu` tDv, u` tv, xq ´ LpDu, u, xq

t
denote the integrand. For x fixed,

Ltpxq Ñ
n
ÿ

i“1

Lpi
pDu, u, xq vi ` Lz pDu, u, xq v

almost everywhere, as this is just the derivative of a smooth function in t. Similarly, we can apply the
fundamental theorem of calculus:

Ltpxq “
1

t

ż t

0

d

ds
LpDu` sDv, u` sv, xqds

“
1

t

ż t

0

n
ÿ

i“1

Lpi
pDu` sDv, u` sv, xq vi ` Lz pDu` sDv, u` sv, xq v ds.

Consider a term in the integrand, by Young’s Inequality

|Lp1
pDu` sDv, u` sv, xq v1| ď

1

q
|Lp1

pDu` sDv, u` sv, xq|
q

q´1 `
q ´ 1

q
|v1|q

Where |Lp1
pDu` sDv, u` sv, xq|

q
q´1 ď Cp|Du`sDv|p`|u`sv|p`1q by the growth condition. Combining

similar estimates for the remaining terms, we conclude

|Ltpxq| ď C 1 p|Du|q ` |u|q ` |Dv|q ` |v|q ` 1q
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Uniformly over t P p0, 1q as, for example, |Du`sDv|p ď pnp|Du|p`sp|Dv|pq ď pnp|Du|p`|Dv|pq. This
bound is a constant that does not depend on s, and so can be moved out of the integral, which is over a
probability measure.

Hence |Ltpxq| P L1pUq and is dominated by C 1 p|Du|q ` |u|q ` |Dv|q ` |v|q ` 1q P L1pUq. Hence by the
dominated convergence theorem,

lim
tÑ0`

τptq ´ τp0q

t
“ lim

tÑ0`

ż

U

Ltpxqdx “

ż

U

lim
tÑ0`

Ltpxqdx “

ż

U

n
ÿ

i“1

Lpi
pDu, u, xq vi ` Lz pDu, u, xq v dx.

As this limit exists, it must equal 0 as u is a minimiser. This is true of all v P W 1,p
0 pUq. Thus u is a

weak solution of the Euler-Lagrange equation. �

4. Regularity

Unfortunately, we will only be able to prove partial results on the regularity of weak solutions. We
restrict our attention to Lagrangian functions that depend on p only, which have quadratic growth (i.e.
q “ 2). Particularly, we will assume that

Irws “

ż

U

LpDwq ´ fw dx

for some f P L2pUq. Mimimisers, u PW 1,2pUq, must satisfy:
ż

U

n
ÿ

i“1

Lpi
pDuq vidx “

ż

U

fvdx

for all v PW 1,2
0 pUq. One can show this implies u satisfies

´

n
ÿ

i“1

pLpi
pDuqqi “ f.

We will need some ingredients for the following proof. Define for u PW 1,2pUq, the Newton quotient

Dh
k puqpxq “

upx` hekq ´ upxq

h
.

If v PW 1,2
c pUq, then computation yields the following parts-like identity holds:

ż

U

uDh
kv dx “ ´

ż

U

vD´h
k u dx.

We will require two additional assumptions. The first resembles elipticity:

n
ÿ

i,j“1

Lpi,pj ppqξiξj ě θ|ξ|2

for some fixed θ ą 0 and all ξ P Rn. The second is that |D2Lppq| is globally bounded on Rn.

Theorem 4.1. If u PW 1,2pUq satisfies the differential equation:

´

n
ÿ

i“1

pLpi
pDuqqi “ f

and the two conditions in the previous paragraph, then u P C1pUq.
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Proof. Let open V ĂĂ U be given. Find an open W with V ĂĂW ĂĂ U , and let ζ be a smooth function
such that supppζq ĂW and ζ|U “ 1. For sufficiently small h ‰ 0, define v “ ´D´h

k pζ2Dh
kuq.

Then v PW 1,2
0 pUq, so we substitute:
ż

U

n
ÿ

i“1

Lpi
pDuq

`

´D´h
k pζ2Dh

kuq
˘

i
dx “

ż

U

n
ÿ

i“1

`

Dh
kLpi

pDuq
˘ `

ζ2Dh
ku

˘

i
dx

“ ´

ż

U

f
`

D´h
k pζ2Dh

kuq
˘

dx

Now we investigate:

Dh
kLpi

pDupxqq “
Lpi
pDupx` hekq ´ Lpi

pDupxqq

h

“
1

h

ż 1

0

d

ds
Lpi

psDupx` hekq ´ p1´ sqDupxqq ds

“
1

h

n
ÿ

j“1

ˆ
ż 1

0

Lpi,pj
psDupx` hekq ´ p1´ sqDupxqq ds

˙

pujpx` hekq ´ ujpxqq

“

n
ÿ

j“1

ahi,jpxqD
h
kujpxq

Where

ahi,jpxq “

ż 1

0

Lpi,pj
psDupx` hekq ´ p1´ sqDupxqq .

The left hand side becomes:
n
ÿ

i,j“1

ż

U

ahi,jD
h
kuj

`

ζ2Dh
ku

˘

i
dx “

n
ÿ

i,j“1

ż

U

ahi,jpxqD
h
kuj

`

ζ2Dh
kui ` 2ζζiD

h
ku

˘

dx.

The assumption that resembled elepticity yields, after transporting the sum through the integral:
n
ÿ

i,j“1

ż

U

ahi,jζ
2Dh

kujD
h
kui ě θ

ż

U

ζ2|Dh
k pDuq|

2dx.

Subsequent arguments establish:
ż

V

|Dh
kDu|

2dx ď C

ż

U

f2 ` |Du|2dx

For all sufficiently small h ‰ 0, which is argued to imply that Du is continuous, and hence that u is
continuously differentiable. �
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5. Appendix

Theorem 5.1. Let X be a Banach space, and pxnqnPN be a sequence in X converging weakly to x P X.
Then supnPN }xn} ă 8.

Proof. Hahn-Banach tells us that for all y P X, there is ϕ P X˚ with }ϕ} “ 1 that norms y, i.e. }ϕpyq} “
}y}; this is the statement that the inclusion X Ă X˚˚ is isometric. Now, suppose xn Ñ x weakly.
For all ϕ P X˚, ϕpxnq Ñ ϕpxq, so supnPN ϕpxnq ă 8. But if we think of xn as a member of X˚˚,
then supnPN xnpϕq ă 8 pointwise on X˚, so by the uniform boundedness principle, supnPN }xn}X˚˚ “
supnPN }xn} ă 8. �

6. Source

This paper follows Chapter 8 of Partial Differential Equations by Lawrance C. Evans.


