Supplementary information

Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image *Pfu* DNA polymerase

In the format provided by the authors and unedited

Supplementary Information

Bioorthogonal information storage in L-DNA with a highfidelity mirror-image *Pfu* DNA polymerase

Chuyao Fan^{1,2}, Qiang Deng^{1,2}, Ting F. Zhu^{1,*}

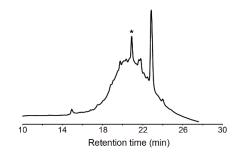
¹School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China ²These authors contributed equally to this work *To whom correspondence should be addressed. ORCID: 0000-0003-0897-0303, E-mail: tzhu@tsinghua.edu.cn

Contents	
Supplementary Figures 1-60	
Supplementary Tables 1-7	

Page 2-61 62-71

	1 10	20	30 40	50 60	0 70	90 90
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	MILDVDYITEEGKPV MVLDVDYLTEEGKPV MILDTDYITEDGKPV MILDTDYITEDGKPV MILDTDYITENGKPV	/IRLFKKENGKFKI /IRLFKKENGKFKI /VRLFKKENGEFKI /IRIFKKENGEFKI /IRVFKKENGEFKI	EHDRTFRPY <mark>T</mark> YALLR EHDRTFRPYFYALLR EHDRTFRPYFYALLR EYDRTFEPYFYALLK	DDSKIEEVKKITGERHO DDSKLEEVKKVTGERHO DDSAIEEVKKITAERHO DDSAIEDVKKITAERHO DDSAIEDVKKITAKRHO	SKIVRIVDVEKVEKKF SKVVRVVDVEKVEKKF SK <mark>VVRV</mark> VDVEKVEKKF	LGKPITVWKLYLEHP LGKPVTVWKLYLEHP LGKPVTVWKLYLEHP LGRPVEVWKLYFTHP LGRPIEVWKLYFTHP LGRPIEVWKLYFNHP
	100	•	20 130	140 15	• •	170 180
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	QDVPTIREKVRAHPJ QDVPTIREKVRAHPJ QDVPTIREKVRAHPJ QDVPTIREKVRAHPJ QDVPAIRDKIKEHPJ QDVPAIRDKIKEHPJ QDVPAIRDRIRAHPJ	AVVDIFEYDIPFAK AVVDIFEYDIPFAK AVVDVFEYDVPFAK AVIDIYEYDIPFAK AVVDIYEYDIPFAK AVVDIYEYDIPFAK	RYLIDKGLVPMEGEE RYLVDKGLVPMEGEE RYLIDKGLVPMEGDE RYLIDKGLIPMEGDE RYLIDKGLIPMEGDE		EEFGKGPIIMISYADE EEFGKGPILMISYADE EEFGKGPVLMVSYADE EEFAEGPILMISYADE EEFGEGPILMISYADG EEFGEGPILMISYADG	NEAKVITWKNIDLPY NEAKVATWKNIDLPY NEAKVATWKNVDLPY EGARVITWKNVDLPY EGARVITWKNUDLPY SEARVITWKNIDLPY EGARVITWKNIDLPY
	190	•	10 220	230 240		260 270
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	VEVVSSEREMIKKFI VEVVSSEREMIKKFI VEVVSSEREMVKRFI VEVVSSEREMVKRFI VEVVSSEREMVKKFI VDVVSTEKEMIKKFI VDVVSTEKEMIKKFI VDVVSTEKEMIKKFI VESVSTEKEMIKKFI	R I I REKDPD I I V RVV REKDPD V L V RVV REKDPD V L V RVV REKDPD V L V RVV KEKDPD V L T	YNGDSFDEPYLAKRA YNGDSFDEPYLAKRA YNGDSFDEPYLAKRA YNGDSFDEPYLAKRA YNGDNFDEAYLKKRC YNGDNFDEAYLKKRC YNGDNFDEAYLKKRC YNGDNFDEAYLKKRS	EKLGIKLTIGRDGSEP EKLGVKLTLGRDGSEP EKLGVKLTLGRDGSEP EKLGINFALGRDGSEP	KMOR <mark>I</mark> GDMTAVEVKGR KMORMGDMTAVEVKGR KMORMGDRFAVEVKGR	IHFDLYEVITRTINL VHFDLYEVATRTINL VHFDLYEVATRTINL IHFDLYEVATRTINL
	280 PTYTLEAVYEAIFG	•	00 310 NR 200 1	320 330	•	350 360 RSSTGNLVEWFLLRK
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	PTYTLAAVYEALFG PTYTLAAVYEAVFG PTYTLAAVYEAVFG PTYTLEAVYEAVFG PTYTLEAVYEAIFG PTYTLEAVYEAIFG PTYTLEAVYEAVFG	PKEKVYADE IAKA PKEKVYADE IAKA PKEKVYADEVAKA PKEKVYAEE ITA PKEKVYAEE IAQA PKEKVYAEE IAQA	WESGENLERVAKYSME WESGENLERVAKYSME WESGENLERVAKYSME WETGENLERVARYSME WETGEGLERVARYSME WESGEGLERVARYSME	DA <mark>G</mark> ATYELG <mark>K</mark> EF <mark>L</mark> PME DA <mark>G</mark> ATYELG <mark>KEF</mark> LPME	IQLSRLVGQPLWDVS AQLSRLVGQPLWDVS AQLSRLVGQPLWDVS AQLSRLIGQSLWDVS AQLSRLVGQSLWDVS AQLSRLVGQSLWDVS	RSSTGNLVEWFLLRK RSSTGNLVEWFLLRK RSSTGNLVEWFLLRK RSSTGNLVEWFLLRK RSSTGNLVEWFLLRK RSSTGNLVEWFLLRK
	370	380 3	9 º · · · · · · · · · · · · · · · · · ·	410 420	9 4 39	440 450
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	A Y E R NE L A P N K P S E A Y E R N E L A P N K P S E A Y E R N E L A P N K P S E A Y E R N E L A P N K P D E A Y E R N E L A P N K P D E A Y K R N E L A P N K P D E	EYQRRLRESYTGG EYQRRLRESYTGG EYQRRLRESYTGG ELARR.RQSYEGG ELARR.RESYAGG ELARR.RGYAGG	FVKEPEKGLWENVY FVKEPEKGLWENVYY YVKEPERGLWENVYY YVKEPERGLWENVYY YVKEPERGLWENVYY	LDFRALYPSIIITHNVS LDFRALYPSVVVTHNVS LDFRSLYPSIIITHNVS LDFRSLYPSIIITHNVS	SPDTLNLEGCKNYD SPDTLNLEGCKNYD SPDTLNREGCKNYD SPDTLNREGCKEYD SPDTLNREGCEYD SPDTLNREGCKEYD SPDTLNREGCKEYD	PQVGHKFCKDPPGFI PQVGHKFCKDPPGFI PQVGHKFCKDPPGFV PQVGHRFCKDPPGFI PQVGHKFCKDPPGFI PEVGHKFCKDPPGFI
	460	47 <u>0</u> 4	8 º 4 9 º	500 510	520	530 540
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KODI <i>Tgo</i> 9°N-7 <i>Tok</i>	PSLLGHLLEERQKH PSLLGHLLEERQKH PSLLGHLLEERQKH PSLLGHLLEERQKH PSLLGDLLEERQKH PSLLGDLLEERQKH PSLLGDLLEERQKH	TKMKETQDPIEKK TKMKETQDPIEKK KKMKETQDPVEKK KKMKATIDPIERK KKMKATIDPIEKK RKMKATVDPLEKK	LLDYRQ <mark>RAIKI</mark> LANS LLDYRQ <mark>RAIKILANS</mark> LLDYRQ <mark>RAIKILANS</mark>	YGYY <mark>G</mark> YA <mark>K</mark> ARWYC <mark>K</mark> EC	AESVTAWGR <mark>E</mark> Y <mark>ITM</mark> T AESVTAWGRQYIETT AESVTAWGR <mark>E</mark> YIEMV	WKELEEKFGFKVLYA WKELEEKFGFKVLYA WKELEEKFGFKVLYA IKETEEKYGFKVLYA IREIEEKFGFKVLYA IRELEEKFGFKVLYA
	550		70 580	590 600	• •	620 630
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-01 KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	DTDGLYATIPGGES DTDGLYATIPGGES DTDGLYATVPGGES DTDGLYATVPGGES DTDGLYATVPGGES DTDGFFATIPGADA DTDGFFATIPGADA DTDGFFATIPGADA DTDGFFATIPGADA	EIKKKALEFVKYI EVKKKALEFVKYI EVKKKALEFVKYV TVKKKAMEFLYI TVKKKAKEFLYI TVKKKAKEFLKYI	NSKLPGLLELEYEGF NSKLPGLLELEYEGF NSKLPGLLELEYEGF NAKLPGALELEYEGF NAKLPGLLELEYEGF NPKLPGLLELEYEGF	YKRGFFVTKKRYAV <mark>V</mark> DI YKRGFFVTKKRYAVVDI YERGFFVTKKKYAVIDI YKRGFFVTKKKYAVIDI	EGKVITRGLEIVRRD EGKVTTRGLEVVRRD EGKVTTRGLEVVRRD EGKITTRGLEIVRRD EDKITTRGLEIVRRD EGKITTRGLEIVRRD	WSE AKETQARVLET WSE AKETQARVLET WSE AKETQARVLET WSE AKETQARVLET WSE AKETQARVLEA WSE AKETQARVLEA WSE AKETQARVLEA WSE AKETQARVLEA
D (640	<u>·</u>	60 670	680 690	· · ·	710 720
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 <i>Tgo</i> 9°N-7 <i>Tok</i>	LKHGDVEEAVRIV LKHGDVEEAVRVV LKHGDVEEAVRVV LKDGDVEKAVRIV LKHGDVEEAVRIV LKHGDVEEAVRIV	KEVTOKLANYEVPP KEVTOKLANYEVPP KEVTEKLSKYEVPP KEVTEKLSKYEVPP KEVTEKLSKYEVPP	EKLAIYEQITRPLHE EKLAIYEQITRPLHE EKLAVYEQVTRPLHE EKLVIHEQITRDLKD EKLVIYEQITRDLKD EKLVIHEQITRDLRD		CGVKIKPGMVIGYIVL CGVKVKPGMVVGYVVL CGVKIRPGTVISYIVL CGIKIRPGTVISYIVL CGVKIRPGTVISYIVL	RGDGPISNRAYLAE RGDGPVSNRAYLAE KGSGRIGDRAIPFDE KGSGRIGDRAIPFDE KGSGRIGDRAIPADE
na			50 760			
Pfu-WT Pfu-5m Pfu-5m-30I Pfu-5m-0I KOD1 Tgo 9°N-7 Tok	YDPKKHKYDAEYY YDPKKHKYDAEYY YDPKKHKYDAEYY FDPTKHKYDAEYY FDPAKHKYDAEYY FDPTKHRYDAEYY	ENQVLPAVLR LEG ENQVLPAVLR LEG ENQVLPAVLR LEG ENQVLPAVER LRA ENQVLPAVER LRA ENQVLPAVER LRA	FGYRKEDLRYQKTRQ FGYRKEDLRYQKTRQ FGYRKEDLRYQKTRQ FGYRKEDLRYQKTRQ FGYRKEDLRYQKTRQ FGYRKEDLRYQKTRQ FGYRKEDLRYQKTKQ FGYRKEDLRYQKTKQ	VGLTSWINIKKS. VGLTSWINPKKS. VGLTSWINPKKS. VGLSAWIKPKGT. VGLGAWIKPK.T. VGLGAWIKVKGKK		

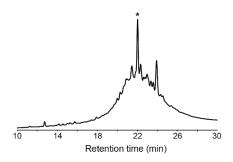
Supplementary Figure 1 | **Multiple sequence alignment and design of mutant** *Pfu* **DNA polymerases.** Multiple sequence alignment of Pfu-WT, Pfu-5m, Pfu-5m-30I, Pfu-5m-0I, KOD1, *Tgo*, 9°N-7, and *Tok* polymerases. Conserved amino acids are highlighted in red, mutations for introducing additional NCL sites are highlighted in yellow, substituted isoleucines are highlighted in blue, and I540A is highlighted in green for serving both purposes.

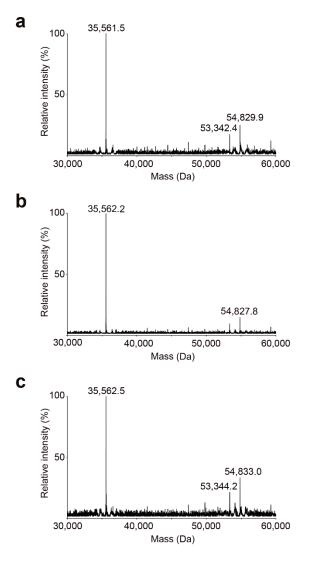

Supplementary Figure 2 | PCR activity of different mutants of *Pfu* DNA polymerase.

PCR amplification of a 1.5-kb D-DNA template coding for the bacterial 16S rRNA gene by WT *Pfu* DNA polymerase (Pfu-WT), split WT *Pfu* DNA polymerase (split Pfu-WT), split *Pfu* DNA polymerase with 5 point mutations (split Pfu-5m), split Pfu-5m with all isoleucines substituted (split Pfu-5m-0I), split Pfu-5m with 30 isoleucines left (split Pfu-5m-30I), expressed and *in vitro* refolded split Pfu-5m-30I (split Pfu-5m-30I-refold), and negative control without polymerase (NC), analyzed by 1.2% agarose gel electrophoresis and stained by ExRed, with cycle numbers from which they were sampled indicated above the lanes. M, DNA marker. The experiment was performed twice with similar results.

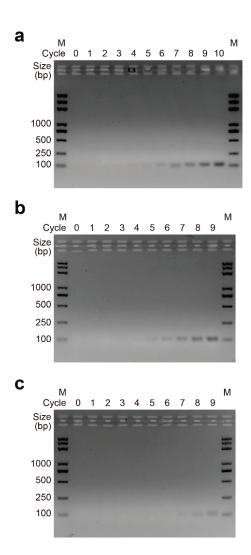
а

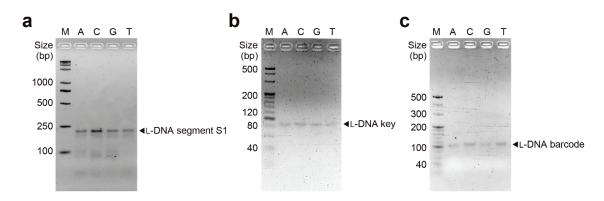
Peptide sequence:


TfaThz-VIDEEGKVITRGLEIVRRDWSEIAKETQARVLETILKHGDVEEAVRIVKEVIQKL

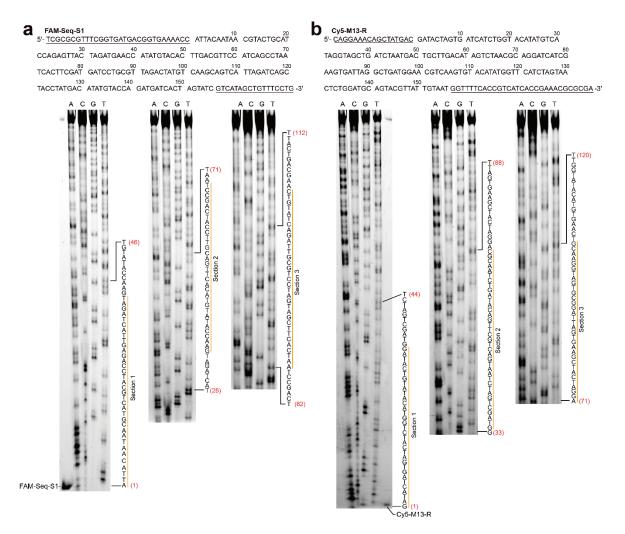

b

Peptide sequence:

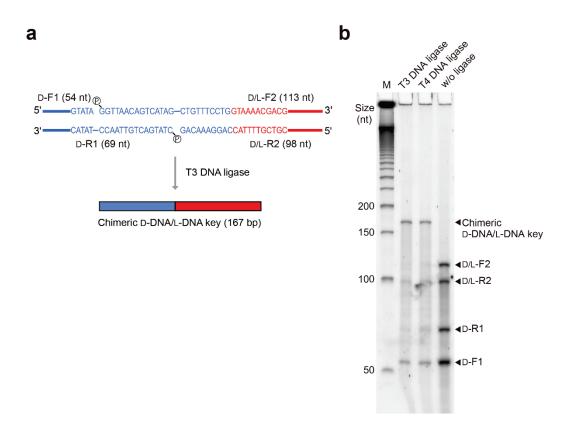

TfaThz-VVDEEGKVTTRGLEVVRRDWSEAAKETQARVLETLLKHGDVEEAVRVVKEVTQKL


Supplementary Figure 3 | **Isoleucine substitution facilitates the synthesis of the Pfu-C-4 peptide segment. a,** RP-HPLC analysis of crude Pfu-C-4 peptide segment with WT amino acid sequence. **b,** RP-HPLC analysis of crude Pfu-C-4 peptide segment with all 7 isoleucine residues substituted (underlined). Asterisk, target peptide peak.

Supplementary Figure 4 | ESI-MS analysis of folded synthetic *Pfu* DNA polymerase before and after heat-precipitation. a, Deconvoluted ESI-MS spectrum of folded synthetic L- split Pfu-5m-30I before heat-precipitation. b, Deconvoluted ESI-MS spectrum of folded synthetic L- split Pfu-5m-30I after heat-precipitation. c, Deconvoluted ESI-MS spectrum of heat-precipitated pellet of synthetic L- split Pfu-5m-30I after *in vitro* folding. Calculated molecular mass of 54827.9 Da and 35561.0 Da for the folded Pfu-N and Pfu-C fragments, respectively, reflecting disulfide bond formation.

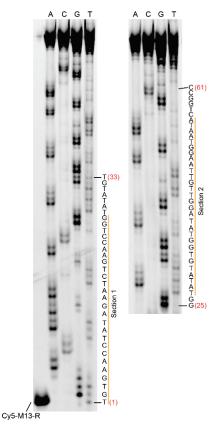


Supplementary Figure 5 | PCR amplification of a 100-bp sequence by WT, and synthetic L- and D- *Pfu* DNA polymerases. PCR amplification by a, WT, b, synthetic L- *Pfu* DNA polymerase (split L-Pfu-5m-30I), and c, synthetic D- *Pfu* DNA polymerase (split D-Pfu-5m-30I) were analyzed by 3% sieving agarose gel electrophoresis and stained by ExRed, with cycle numbers from which they were sampled indicated above the lanes. The PCR amplification efficiency of the synthetic D- *Pfu* DNA polymerase measured ~1.5, estimated based on the intensity of the product bands, analyzed by the ImageLab software (Bio-Rad Laboratories). M, DNA marker. The PCR amplifications by WT *Pfu* DNA polymerases were performed twice with similar results. The PCR amplifications by synthetic L- and D- *Pfu* DNA polymerase were performed once.

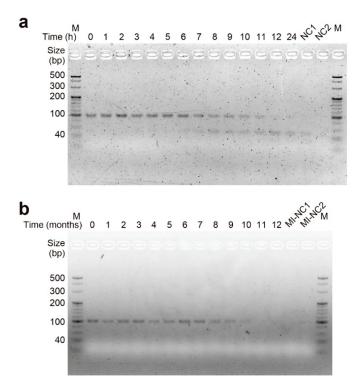


Supplementary Figure 6 | Mirror-image PCR with L-dNTPaSs for L-DNA

phosphorothioate sequencing. a, L-DNA segment S1 of 203 bp from L-DNA storage library amplified by D-Dpo4-5m with L-dNTPαSs, analyzed by 2.5% agarose gel and stained by ExRed. The experiment was performed twice with similar results. **b,** The L-DNA part of the chimeric DNA key of 88 bp amplified by D-Dpo4-5m with L-dNTPαSs, analyzed by 4% sieving agarose gel and stained by ExRed. The experiment was performed twice with similar results. **c,** L-DNA barcode of 100 bp amplified after one year storage by D-Dpo4-5m with L-dNTPαSs, analyzed by 3% agarose gel and stained by ExRed. The experiment was performed twice with similar results. **c,** L-DNA barcode of 100 bp amplified after one year storage by D-Dpo4-5m with L-dNTPαSs, analyzed by 3% agarose gel and stained by ExRed. The experiment was performed twice with similar results. **A,** L-dATP replaced by L-dATPαS; C, L-dCTP replaced by L-dCTPαS; G, L-dGTP replaced by L-dGTPαS; T, L-dTTP replaced by L-dTTPαS. M, DNA marker.

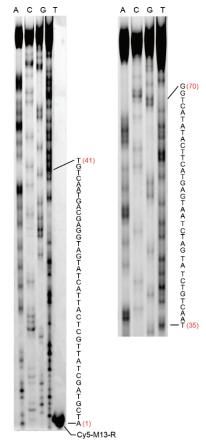


Supplementary Figure 7 | Sequencing of L-DNA segment S1 using D-Dpo4-5m by the phosphorothioate approach. a, Amplification products of L-DNA segment S1 by D-Dpo4-5m with L-dNTP α Ss and 5'-FAM-labelled forward sequencing primer were each cleaved by 2-iodoethanol, and analyzed by 10% denaturing PAGE and scanned by a Typhoon Trio⁺ system operated under Cy2 mode. b, Amplification products of L-DNA segment S1 by D-Dpo4-5m with L-dNTP α Ss and 5'-Cy5-labelled reverse sequencing primer were each cleaved by 2-iodoethanol, and analyzed by 10% denaturing PAGE and scanned by a Typhoon Trio⁺ system operated under Cy5 mode. The corresponding sequencing chromatograms are shown in Fig. 3f,g with each section (1 to 3) analyzed independently. The experiment was performed twice with similar results.

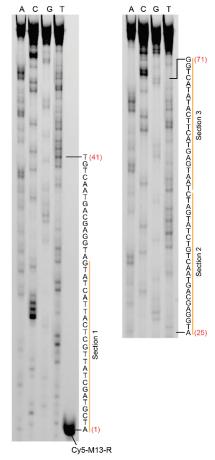


Supplementary Figure 8 | Chimeric D-DNA/L-DNA key for chiral steganography. a, Design and preparation of a chimeric double-stranded D-DNA/L-DNA key molecule by D-DNA/L-DNA oligo synthesis and enzymatic ligation. The D-DNA (blue) and L-DNA (red) parts of the key molecule are distinguished by color. **b**, Double-stranded chimeric D-DNA/L-DNA key molecule prepared using T3 or T4 DNA ligase, analyzed by 10% denaturing PAGE and stained by ExRed. M, ssDNA marker. The experiment was performed three times with similar results.

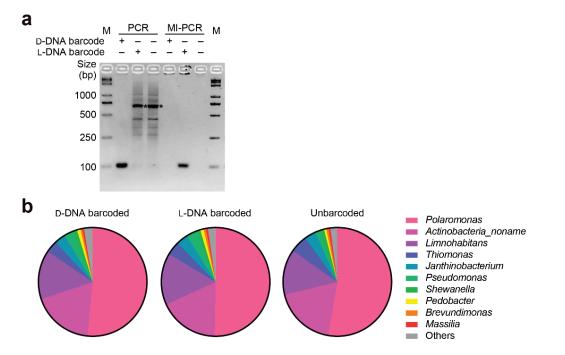
Cy5-M13-R 5'-<u>CAGGAAACAGCTATGAC</u> TGTGAACCTA TAGAATCTGA ACCTGGTATA TGTGGTATAG GTTGTTAAGG TAAT <u>ACTGGCCGTCGTTTTAC-3'</u>


Supplementary Figure 9 | Sequencing of the L-DNA part of the chimeric DNA key using D-Dpo4-5m by the phosphorothioate approach. The L-DNA part of the chimeric DNA key was amplified by MI-PCR using D-Dpo4-5m, and further amplified by D-Dpo4-5m with L-dNTP α Ss and 5'-Cy5-labelled reverse sequencing primer, cleaved by 2-iodoethanol, and analyzed by 10% denaturing PAGE and scanned by a Typhoon Trio⁺ system operated under Cy5 mode. The corresponding sequencing chromatograms are shown in Fig. 4f with each section (1 and 2) analyzed independently. The experiment was performed once.

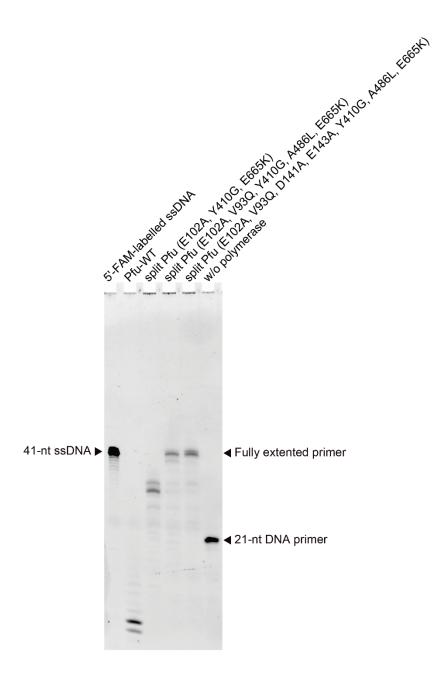
Supplementary Figure 10 | **Degradation of D-DNA or L-DNA barcode in pond water samples stored at 4 °C. a**, Time course (from 0 to 24 h) of degradation of the D-DNA barcode in pond water samples, extracted from 2-ml pond water samples stored at 4 °C, amplified by PCR using L-Dpo4-5m, analyzed by 3% sieving agarose gel electrophoresis and stained by ExRed. NC1, negative control without D-DNA barcode. NC2, negative control without L-Dpo4-5m. The experiment was performed twice with similar results. b, Time course (from 0 to 12 months) of degradation of the L-DNA barcode in pond water samples, extracted from 2-ml pond water samples stored at 4 °C, amplified by MI-PCR using D-Dpo4-5m, analyzed by 3% sieving agarose gel electrophoresis and stained by ExRed. The amplified L-DNA bands were very faint after 11 and 12 months, and thus an improved method using 40-ml pond water samples for amplification was applied to retrieve the information stored in the L-DNA barcode (Fig. 5c). MI-NC1, negative control without L-DNA barcode. MI-NC2, negative control without D-Dpo4-5m. M, DNA marker. The experiment was performed once.

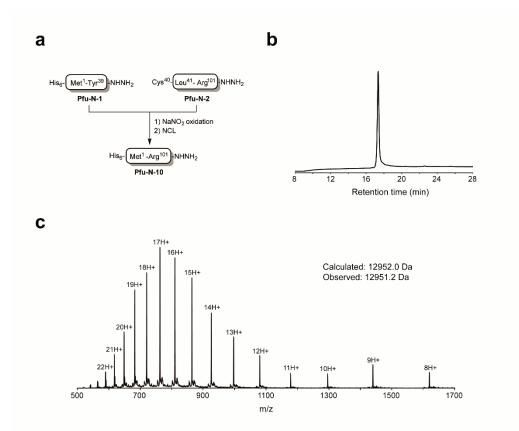

Cy5-M13-R

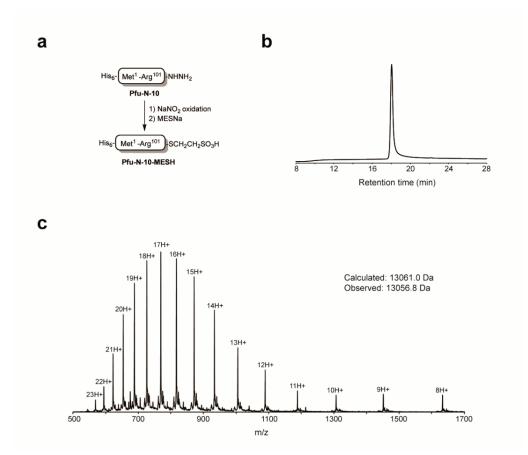
5'-<u>CAGGAAACAGCTATGAC</u> ATCGTAGCTA²⁰ CTATGATGGA³⁰ GCAGTAACT 40 TCTATGATC 50 AATGAGTAC 60 TCATAT <u>ACTGGCCGTCGTTTTAC</u> -3'

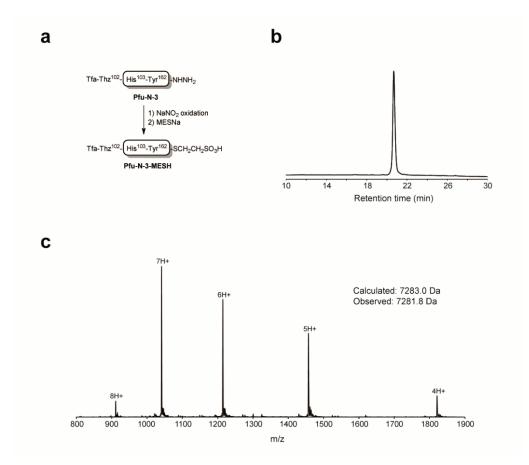


Supplementary Figure 11 | Sequencing of L-DNA barcode in pond water samples after 8 months using D-Dpo4-5m by the phosphorothioate approach. The L-DNA barcode in pond water samples was amplified after 8 months by D-Dpo4-5m with L-dNTP α Ss and 5'-Cy5-labelled reverse sequencing primer, cleaved by 2-iodoethanol, and analyzed by 10% denaturing PAGE and scanned by a Typhoon Trio⁺ system operated under Cy5 mode. The experiment was performed once.

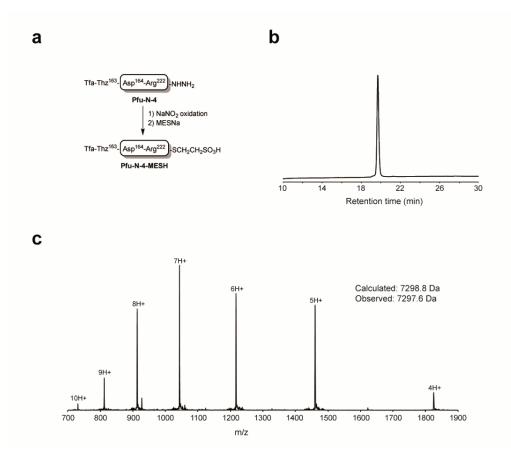

Cy5-M13-R 5'-CAGGAAACAGCTATGAC ATCGTAGCTA¹⁰ TTGCTCATTA CTATGATGGA³⁰ GCAGTAACTG⁴⁰ TCTATGATCT⁵⁰ AATGAGTACT TCATAT <u>ACTGGCCGTCGTTTTAC</u> -3'


Supplementary Figure 12 | Sequencing of L-DNA barcode in pond water samples after 1 year using D-Dpo4-5m by the phosphorothioate approach. The L-DNA barcode in pond water samples was amplified after 1 year by D-Dpo4-5m with L-dNTP α Ss and 5'-Cy5-labelled reverse sequencing primer, cleaved by 2-iodoethanol, and analyzed by 10% denaturing PAGE and scanned by a Typhoon Trio⁺ system operated under Cy5 mode. The corresponding sequencing chromatograms are shown in Fig. 5d with each section (1 to 3) analyzed independently. The experiment was performed three times with similar results.

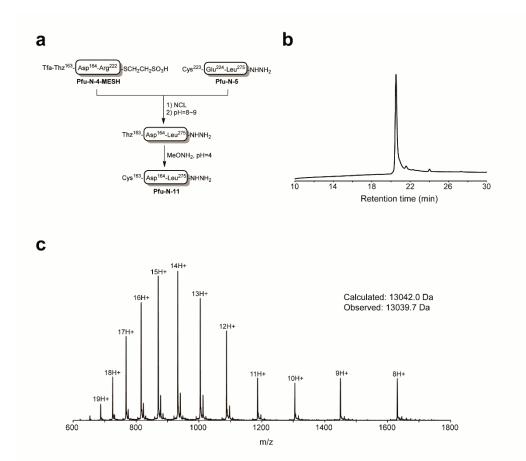

Supplementary Figure 13 | **Spiking D- or L-DNA barcode into microbial DNA extracted from the pond water samples. a,** The 100-bp double-stranded information-storing D- or L-DNA barcode was spiked into the microbial (D-) DNA extracted from the pond water samples, and amplified by synthetic natural and mirror-image *Pfu* DNA polymerases, analyzed by 3% sieving agarose gel electrophoresis and stained by ExRed. M, DNA marker. Asterisk, non-specific amplification bands appeared when the D-DNA primers annealed to the microbial DNA in the absence of D-DNA barcode. The experiment was performed twice with similar results. b, Metagenomic analysis of the top 10 genera of microbial organisms present in the pond water samples by MetaPhlAn 2.7.7, using D- or L-DNA barcoded, or unbarcoded microbial DNA samples.


Supplementary Figure 14 | **DNA-templated RNA polymerization by mutant** *Pfu* **DNA polymerases.** DNA-template-directed primer extension by different *Pfu* DNA polymerase mutants with 41-nt single-stranded DNA template, 5'-FAM-labelled 21-nt DNA primer, and NTPs, incubated at 65 °C for 10 min, and analyzed by 20% denaturing PAGE and scanned by a Typhoon Trio+ system operated under Cy2 mode. Synthetic 5'-FAM-labelled 41-nt ssDNA and 21-nt DNA primer served as markers. The experiment was performed twice with similar results.

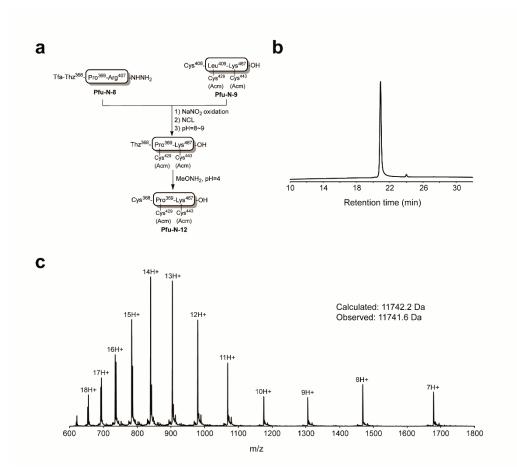
Supplementary Figure 15 | Preparation of L-Pfu-N-10. a, L-Pfu-N-1 (64.6 mg) was dissolved in 2.3 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 228 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 2.3 ml 0.2 M MPAA (in 6 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.7) was added. After the addition of L-Pfu-N-2 (62.5 mg), the pH of the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 25-60% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). The ligation product was obtained with a yield of 34% (68.2 mg). b, Analytical HPLC chromatogram of the ligation product L-Pfu-N-10 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-10.

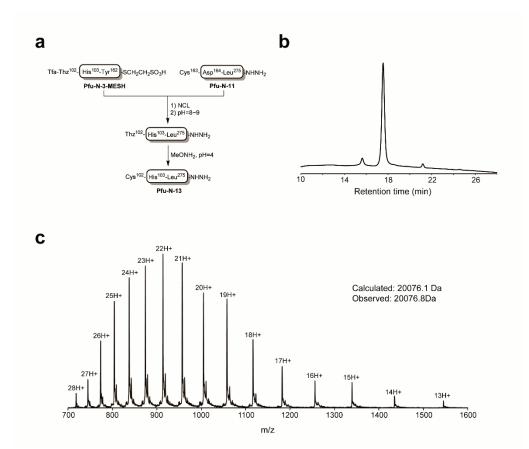


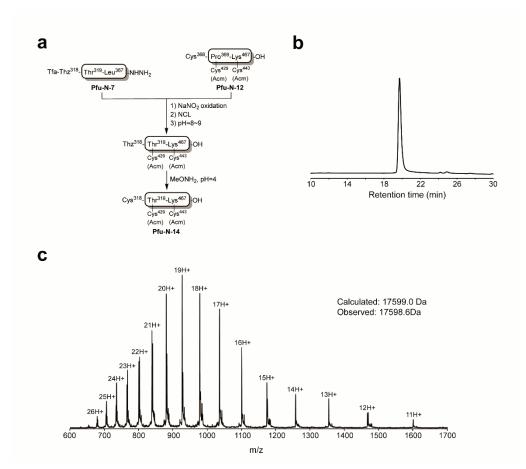
Supplementary Figure 16 | Preparation of L-Pfu-N-10 MESH. a, L-Pfu-N-10 (35.5 mg) was dissolved in 0.55 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 55 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 0.25 ml 0.4 M MESNa (in acidified ligation buffer) was added. The pH of the reaction mixture was adjusted to 4.8 with NaOH solution at room temperature. After 1 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 25-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-10 MESH was obtained with a yield of 67% (24.2 mg). b, Analytical HPLC chromatogram of L-Pfu-N-10 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-10 MESH.

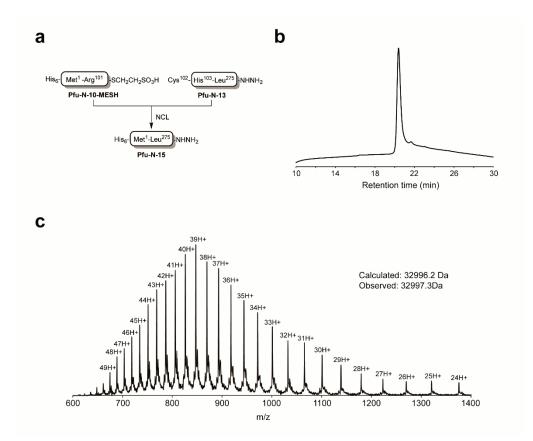


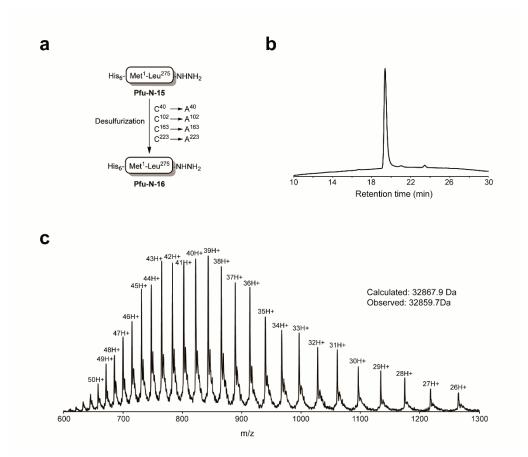
Supplementary Figure 17 | Preparation of L-Pfu-N-3 MESH. a, L-Pfu-N-3 (41.7 mg) was dissolved in 1.5 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath, and 120 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath (-10 °C) under stirring for 25 min, after which 0.6 ml 0.4 M MESNa (in acidified ligation buffer) was added. The pH of the reaction mixture was adjusted to 4.8 with NaOH solution at room temperature. After 1 h, the products were purified by HPLC (purification conditions: 35-75% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-3 MESH was obtained with a yield of 56% (23.6 mg). b, Analytical HPLC chromatogram of L-Pfu-N-3 MESH (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-3 MESH.

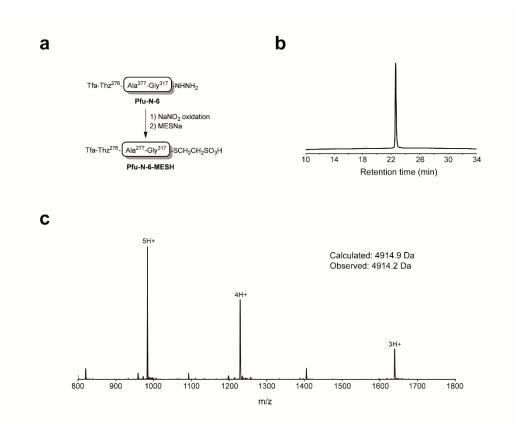

18

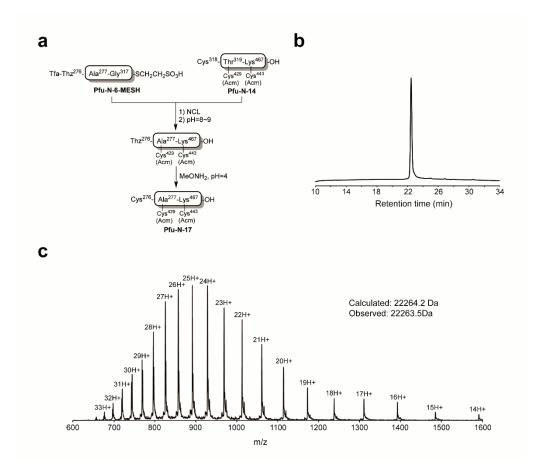

Supplementary Figure 18 | Preparation of L-Pfu-N-4 MESH. a, The preparation of L-Pfu-N-4 MESH (46.7 mg) was carried out following a procedure similar to the preparation of L-Pfu-N-3 MESH (Supplementary Fig. 17). Purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-N-4 MESH was obtained with a yield of 69% (32.5 mg). b, Analytical HPLC chromatogram of L-Pfu-N-4 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-4 MESH.

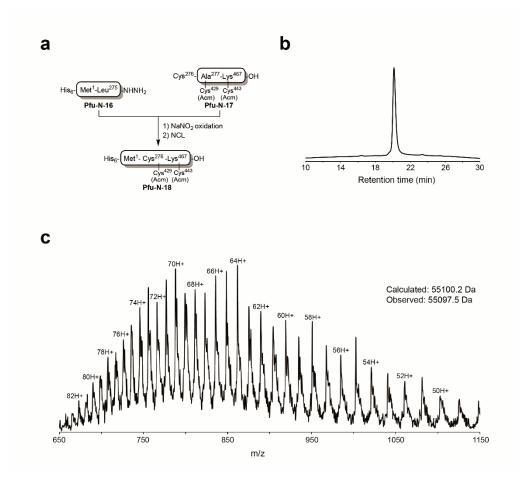

Supplementary Figure 19 | Preparation of L-Pfu-N-11. a, L-Pfu-N-4 MESH (32.7 mg) and L-Pfu-N-5 (33.1 mg) were dissolved in a 2.2 ml aqueous solution of 6 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 15 h, the products were analyzed by HPLC, the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (26.9 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-11 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-N-11.

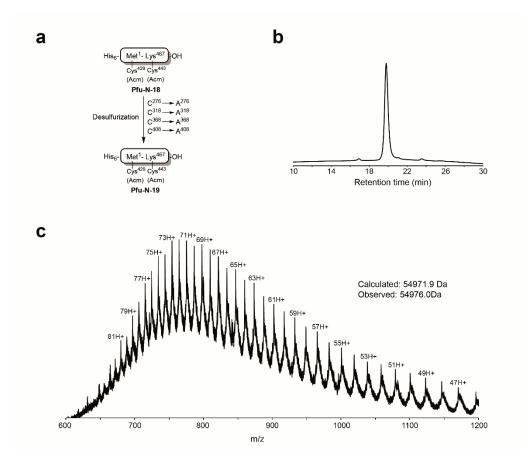

Supplementary Figure 20 | Preparation of L-Pfu-N-12. a, L-Pfu-N-8 (62.4 mg) was dissolved in 2.6 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 260 µl 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 2.5 ml 0.2 M MPAA (in 6 M Gn·HCl and 0.1 M Na₂HPO₄, pH 5.7) was added. The pH of the reaction mixture was adjusted to 5.3 with NaOH solution at room temperature. After the addition of L-Pfu-N-9 (71.6 mg), the pH of the reaction mixture was further adjusted to 6.5. After 14 h, the products were analyzed and the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (76 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 25-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-12 was obtained with a yield of 46% (55.7 mg). b, Analytical HPLC chromatogram of L-Pfu-N-12 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H_2O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-12.

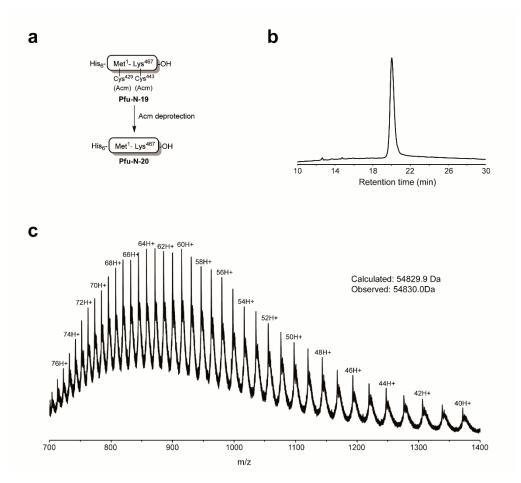

Supplementary Figure 21 | Preparation of L-Pfu-N-13. a, The ligation of L-Pfu-N-3 MESH (42.3 mg) and L-Pfu-N-11 (63.7 mg) was carried out following a procedure similar to the ligation of L-Pfu-N-4 MESH and L-Pfu-N-5 (Supplementary Fig. 19). Purification conditions: 35-75% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-N-13 was obtained with a yield of 48% (46.8 mg). b, Analytical HPLC chromatogram of L-Pfu-N-13 (λ =214 nm). Column: Welch C4. Gradient: 30-80% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-13.

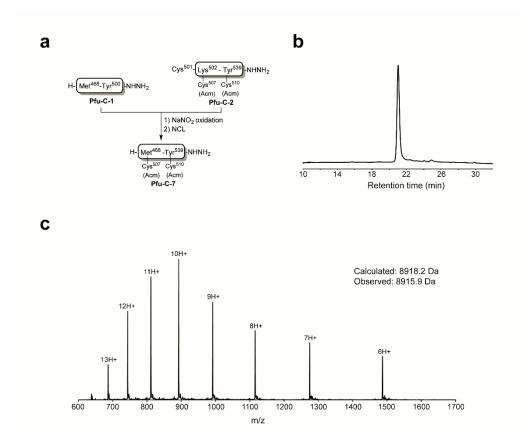

Supplementary Figure 22 | Preparation of L-Pfu-N-14. a, The ligation of L-Pfu-N-7 (42.3 mg) and L-Pfu-N-12 (62.8 mg) was carried out following a procedure similar to the ligation of L-Pfu-N-8 and L-Pfu-N-9 (Supplementary Fig. 20). Purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-N-14 was obtained with a yield of 48% (46 mg). b, Analytical HPLC chromatogram of L-Pfu-N-14 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-14.

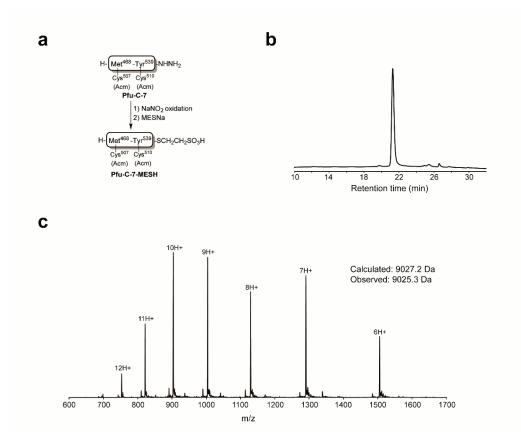

Supplementary Figure 23 | Preparation of L-Pfu-N-15. a, L-Pfu-N-10 MESH (15.8 mg) and L-Pfu-N-13 (22.1 mg) were dissolved in a 1.5 ml aqueous solution of 6 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 14 h, the products were analyzed by HPLC (purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-15 was obtained with a yield of 65% (23.7 mg). **b**, Analytical HPLC chromatogram of L-Pfu-N-15 (λ =214 nm). Column: Welch C4. Gradient: 20-80% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-N-15.

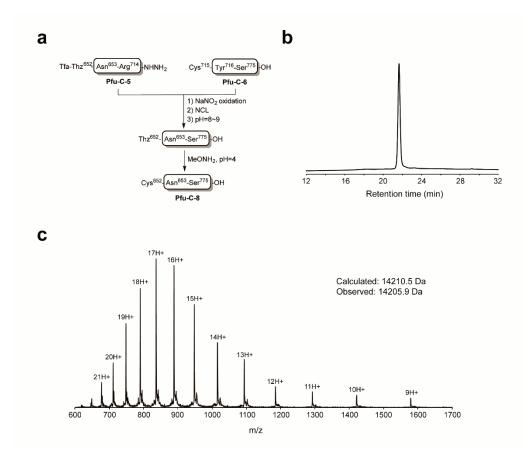

Supplementary Figure 24 | Preparation of L-Pfu-N-16. a, L-Pfu-N-15 (23.7 mg) was dissolved in 8 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product L-Pfu-N-16 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-16 was obtained with a yield of 75% (17.8 mg). **b**, Analytical HPLC chromatogram of the desulfurization product L-Pfu-N-16 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-N-16.

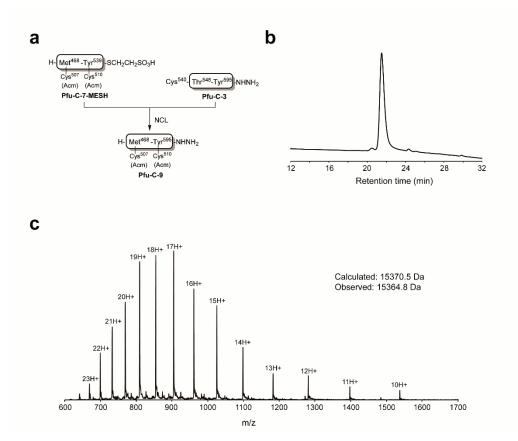

Supplementary Figure 25 | Preparation of L-Pfu-N-6 MESH. a, The preparation of L-Pfu-N-6 MESH (24 mg) was carried out following a procedure similar to the preparation of L-Pfu-N-3 MESH (Supplementary Fig. 17). Purification conditions: 25-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-N-6 MESH was obtained with a yield of 68% (16.8 mg). b, Analytical HPLC chromatogram of L-Pfu-N-6 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-6 MESH.

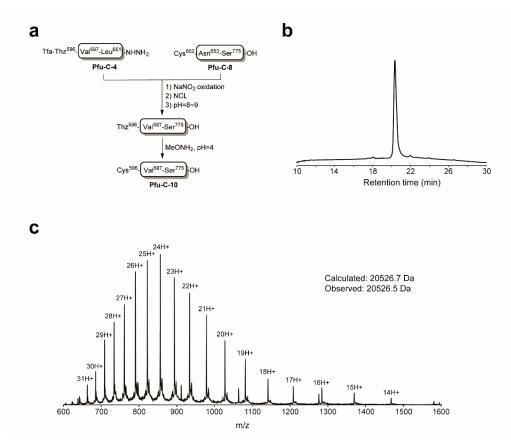

Supplementary Figure 26 | Preparation of L-Pfu-N-17. a, The ligation of L-Pfu-N-6 MESH (14.7 mg) and L-Pfu-N-14 (44.4 mg) was carried out following a procedure similar to the ligation of L-Pfu-N-4 MESH and L-Pfu-N-5 (Supplementary Fig. 19). Purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-N-17 was obtained with a yield of 73% (41.2 mg). b, Analytical HPLC chromatogram of L-Pfu-N-17 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-17.

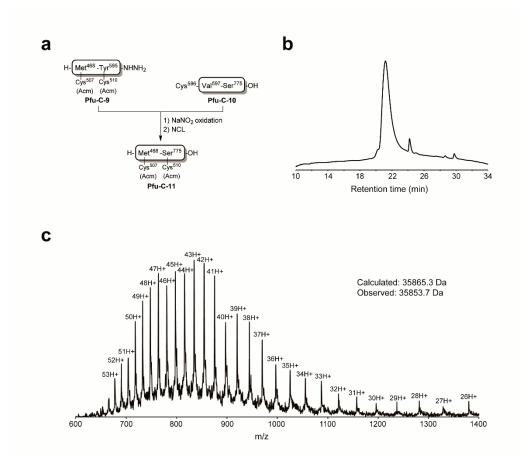

Supplementary Figure 27 | Preparation of L-Pfu-N-18. a, L-Pfu-N-16 (17.8 mg) was dissolved in 0.2 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 11 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 23 min, after which 3.7 mg MPAA was added. After the addition of L-Pfu-N-17 (13.8 mg), the pH of the reaction mixture was adjusted to 6.5 with NaOH solution at room temperature. After 14 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). The ligation product L-Pfu-N-18 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-N-18.

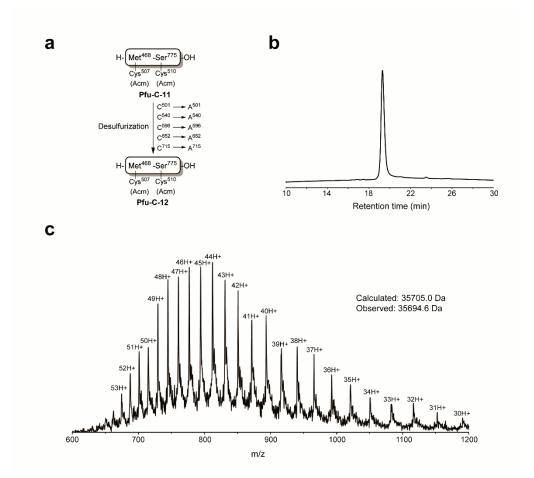

Supplementary Figure 28 | Preparation of L-Pfu-N-19. a, L-Pfu-N-18 (15.6 mg) was dissolved in 3.5 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product L-Pfu-N-18 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-18 was obtained with a yield of 49% (7.5 mg). **b**, Analytical HPLC chromatogram of L-Pfu-N-19 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-N-19.

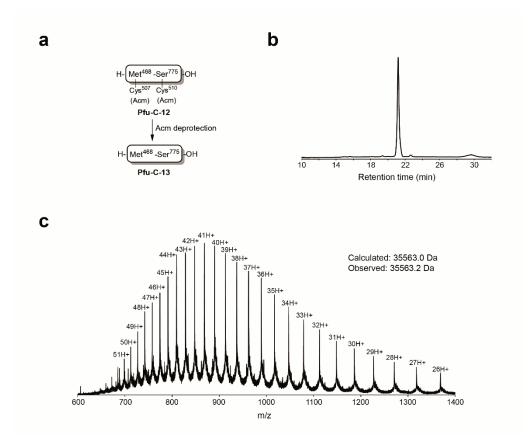

Supplementary Figure 29 | Preparation of L-Pfu-N-20. a, L-Pfu-N-19 (7.5 mg) was dissolved in a 0.3 ml aqueous solution of 8 M Gn·HCl, 0.1 M Na₂HPO₄ and 40 mM TCEP, pH 7.0. PdCl₂ (2 mg) was dissolved in a 0.07 ml aqueous solution of 6 M Gn·HCl and added to the peptide solution. The reaction mixture was kept under stirring at 30 °C. After 2.5 h, 1 ml 2 M DTT (in an aqueous solution of 6 M Gn·HCl) was added. The reaction mixture was under stirring for 30 min and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-N-20 was obtained with a yield of 58% (4.3 mg). b, Analytical HPLC chromatogram of L-Pfu-N-20 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-N-20. The synthesis was performed once.

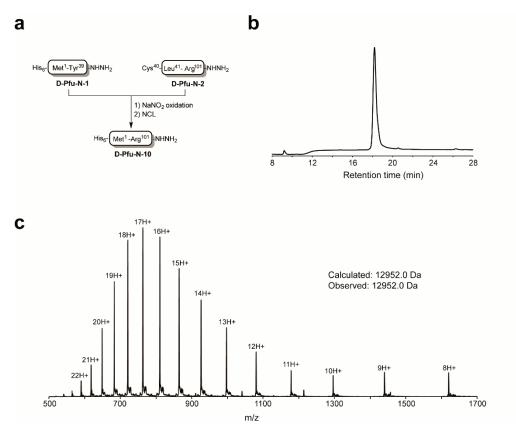

Supplementary Figure 30 | **Preparation of L-Pfu-C-7. a,** L-Pfu-C-1 (33 mg) was dissolved in 1.8 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 165 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 0.9 ml 0.4 M MPAA (in 8 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.7) was added. After the addition of L-Pfu-C-2 (35.14 mg), the pH of the reaction mixture was adjusted to 6.5 with NaOH solution at room temperature. After 16 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-7 was obtained with a yield of 38% (24.3 mg). **b**, Analytical HPLC chromatogram of L-Pfu-C-7 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-C-7.

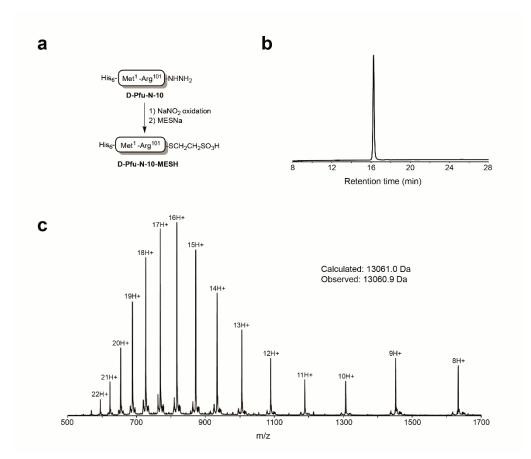

Supplementary Figure 31 | Preparation of L-Pfu-C-7 MESH. a, L-Pfu-C-7 (17.3 mg) was dissolved in 0.38 ml acidified ligation buffer (aqueous solution of 8 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0), and then 0.12 ml 0.1M NaH₂PO₄, pH 3.0 was added to dilute the concentration of Gn·HCl to 6 M. The mixture was cooled in ice-salt bath (-10 °C), and 39 µl 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 12.8 mg MESNa powder was added. The pH of the reaction mixture was adjusted to 4.7 with NaOH solution at room temperature. After 1 h, the products were purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-7 MESH was obtained with a yield of 43% (7.5 mg). b, Analytical HPLC chromatogram of L-Pfu-C-7 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-7 MESH.

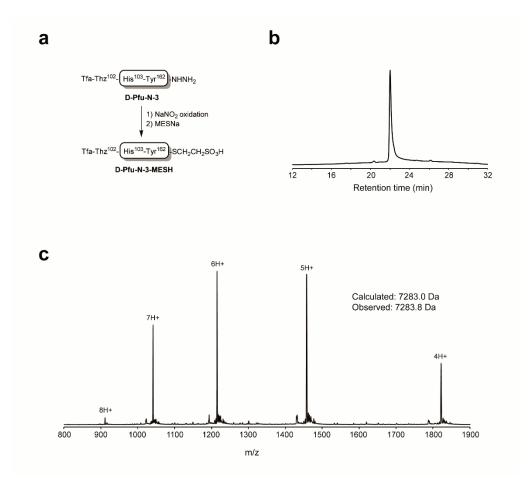

Supplementary Figure 32 | Preparation of L-Pfu-C-8. a, L-Pfu-C-5 (72.5 mg) was dissolved in 2.2 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 206 µl 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 2.1 ml 0.2 M MPAA (in 6 M Gn·HCl and 0.1 M Na₂HPO₄, pH 5.7) was added. The pH of the reaction mixture was adjusted to 5.3 with NaOH solution at room temperature. After the addition of L-Pfu-C 6 (66.1 mg), the pH of the reaction mixture was further adjusted to 6.5. After 14 h, the products were analyzed and the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (61.8 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-8 was obtained with a yield of 46% (59.7 mg). b, Analytical HPLC chromatogram of L-Pfu-N-12 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-8.

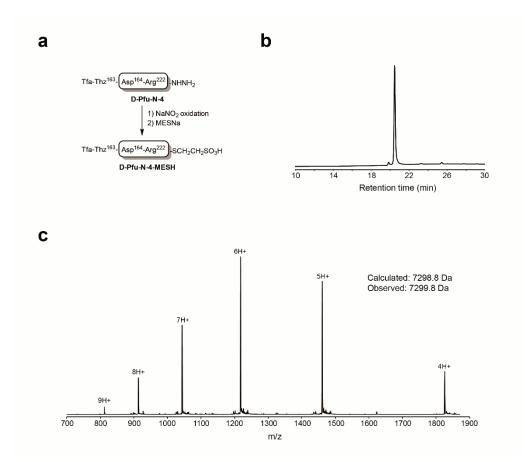

Supplementary Figure 33 | Preparation of L-Pfu-C-9. a, L-Pfu-C-7 MESH (7.5 mg) and L-Pfu-C-3 (6.4 mg) were dissolved in a 0.4 ml aqueous solution of 7 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 14 h, the products were purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-9 was obtained with a yield of 67% (8.6 mg). b, Analytical HPLC chromatogram of L-Pfu-C-9 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-9.

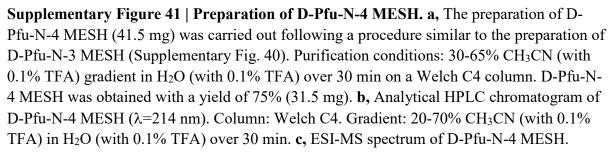

Supplementary Figure 34 | Preparation of L-Pfu-C-10. a, The ligation of L-Pfu-C-4 (16.2 mg) and L-Pfu-C-8 (30.5 mg) was carried out following a procedure similar to the ligation of L-Pfu-C-5 and L-Pfu-C-6 (Supplementary Fig. 32). Purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. L-Pfu-C-10 was obtained with a yield of 46% (20.4 mg). b, Analytical HPLC chromatogram of L-Pfu-C-10 (λ =214 nm). Column: Welch C4. Gradient: 20-80% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-10.

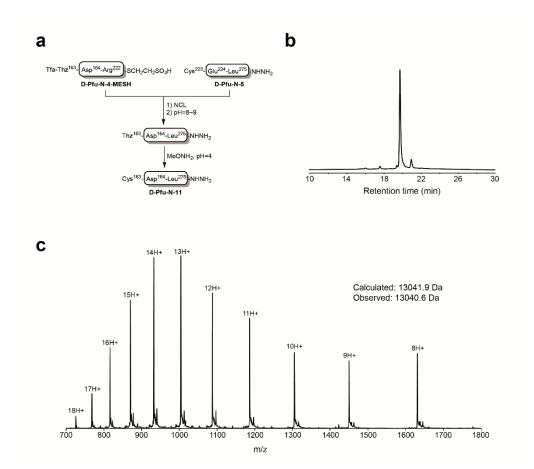

Supplementary Figure 35 | Preparation of L-Pfu-C-11. a, L-Pfu-C-9 (14 mg) was dissolved in 0.27 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 18 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 0.15 ml 0.25 M MPAA (in 8 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.7) was added. After the addition of L-Pfu-C-10 (16.5 mg), the pH of the reaction mixture was adjusted to 6.6 with NaOH solution at room temperature. After 14 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-11 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of L-Pfu-C-11.

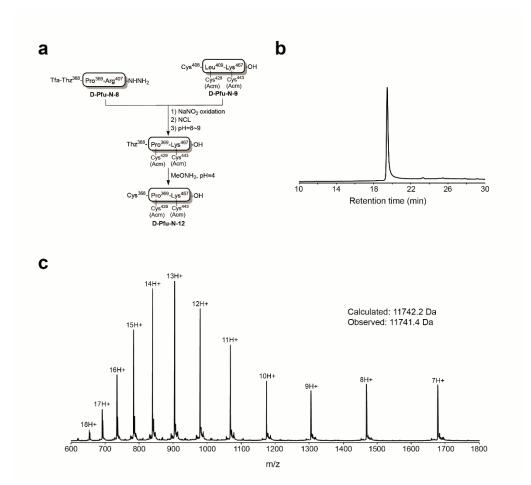

Supplementary Figure 36 | Preparation of L-Pfu-C-12. a, L-Pfu-C-11 (6.8 mg) was dissolved in 2.3 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product L-Pfu-C-12 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-12 was obtained with a yield of 43% (2.9 mg). b, Analytical HPLC chromatogram of the desulfurization product L-Pfu-C-12 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-12.

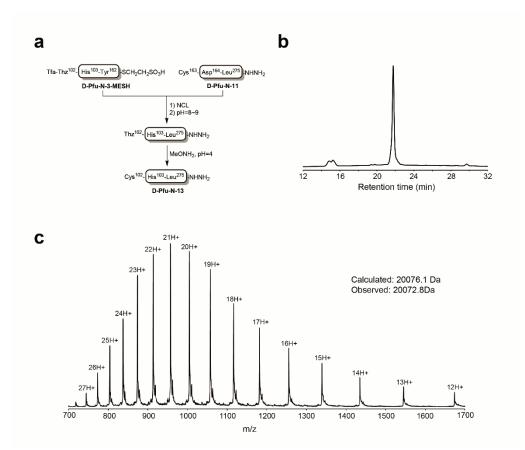

Supplementary Figure 37 | Preparation of L-Pfu-C-13. a, L-Pfu-C-12 (3.6 mg) was dissolved in a 0.25 ml aqueous solution of 8 M Gn·HCl, 0.1 M Na₂HPO₄ and 40 mM TCEP, pH 7.0. PdCl₂ (1 mg) was dissolved in a 0.05 ml aqueous solution of 6 M Gn·HCl and added to the peptide solution. The reaction mixture was kept under stirring at 30 °C. After 3 h, 1 ml 2 M DTT (in an aqueous solution of 6 M Gn·HCl) was added. The reaction mixture was under stirring for 30 min and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). L-Pfu-C-13 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of L-Pfu-C-13. The synthesis was performed twice.

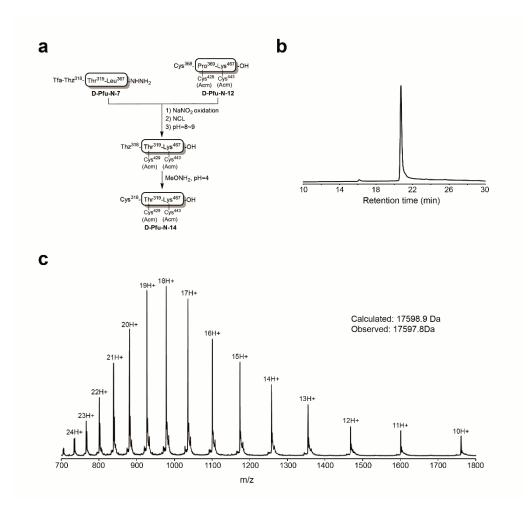

Supplementary Figure 38 | **Preparation of D-Pfu-N-10. a**, D-Pfu-N-1 (63 mg) was dissolved in 2.3 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 222 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 2.2 ml 0.2 M MPAA (in 6 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.7) was added. After the addition of D-Pfu-N-2 (76.7 mg), the pH of the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 25-60% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). The ligation product was obtained with a yield of 38% (52 mg). **b**, Analytical HPLC chromatogram of the ligation product D-Pfu-N-10 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-10.



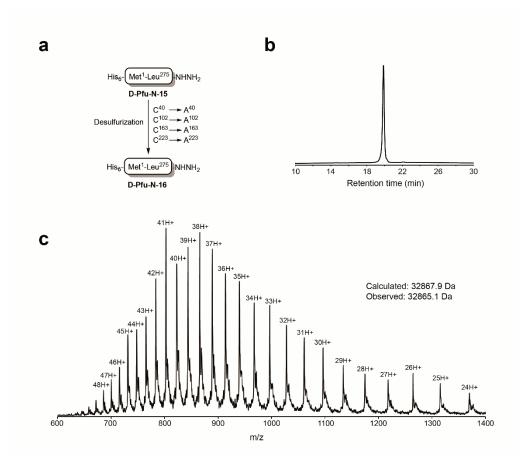

Supplementary Figure 39 | Preparation of D-Pfu-N-10 MESH. a, D-Pfu-N-10 (52 mg) was dissolved in 0.8 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 55 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 23 min, after which 0.4 ml 0.4 M MESNa (in acidified ligation buffer) was added. The pH of the reaction mixture was adjusted to 4.6 with NaOH solution at room temperature. After 1 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 25-60% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-10 MESH was obtained with a yield of 68% (35.6 mg). b, Analytical HPLC chromatogram of D-Pfu-N-10 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-10 MESH.

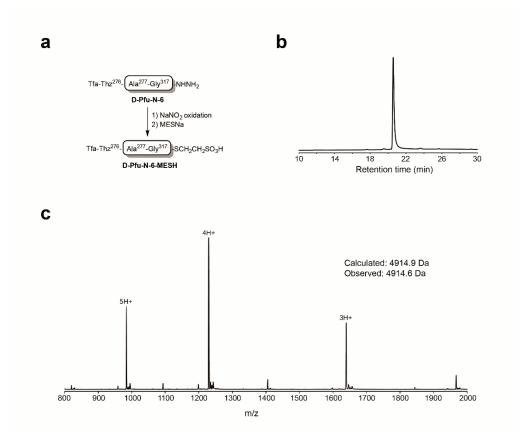

Supplementary Figure 40 | Preparation of D-Pfu-N-3 MESH. a, D-Pfu-N-3 (46.8 mg) was dissolved in 1.3 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath, and 130 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath (-10 °C) under stirring for 25 min, after which 0.7 ml 0.4 M MESNa (in acidified ligation buffer) was added. The pH of the reaction mixture was adjusted to 4.5 with NaOH solution at room temperature. After 1 h, the products were purified by HPLC (purification conditions: 35-75% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-3 MESH was obtained with a yield of 58% (27.8 mg). b, Analytical HPLC chromatogram of D-Pfu-N-3 MESH (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-3 MESH.

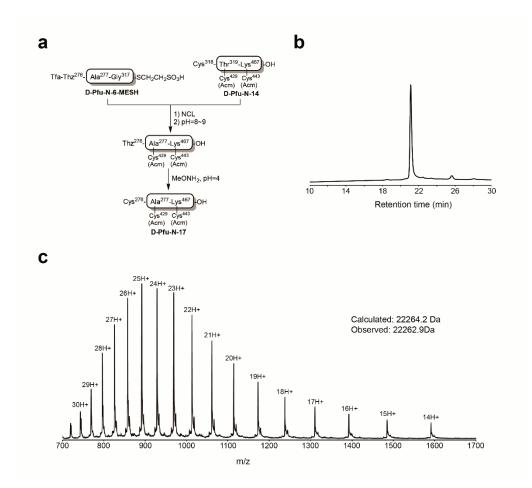


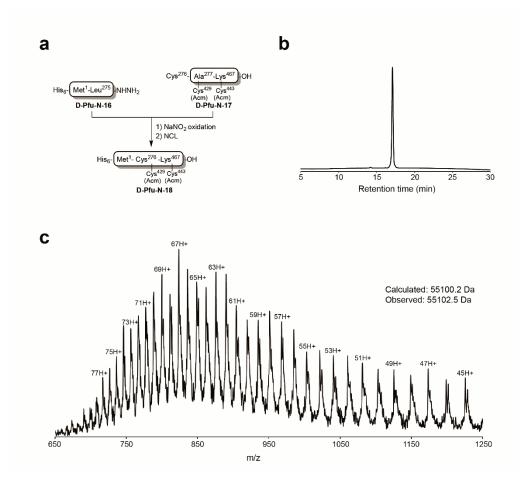

Supplementary Figure 42 | Preparation of D-Pfu-N-11. a, D-Pfu-N-4 MESH (43.3 mg) and D-Pfu-N-5 (41.1 mg) were dissolved in a 2.5 ml aqueous solution of 6 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 15 h, the products were analyzed by HPLC, the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (35.4 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-11 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-11.

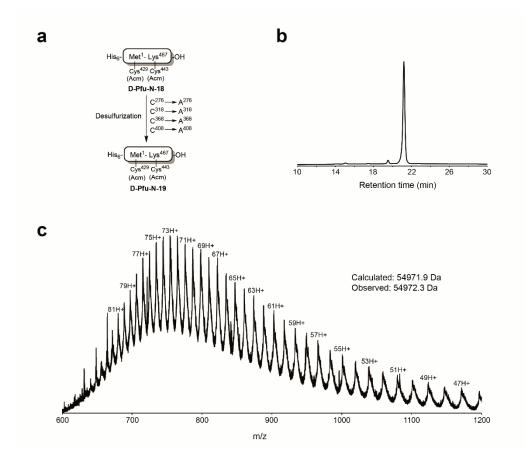
Supplementary Figure 43 | Preparation of D-Pfu-N-12. a, D-Pfu-N-8 (52.4 mg) was dissolved in 2.1 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 210 µl 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 2.1 ml 0.2 M MPAA (in 6 M Gn HCl and 0.1 M Na₂HPO₄, pH 5.7) was added. The pH of the reaction mixture was adjusted to 5.3 with NaOH solution at room temperature. After the addition of Pfu-N-9 (61.5 mg), the pH of the reaction mixture was further adjusted to 6.5. After 14 h, the products were analyzed and the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (63.3 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-12 was obtained with a yield of 50% (52.1 mg). b, Analytical HPLC chromatogram of D-Pfu-N-12 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-12.

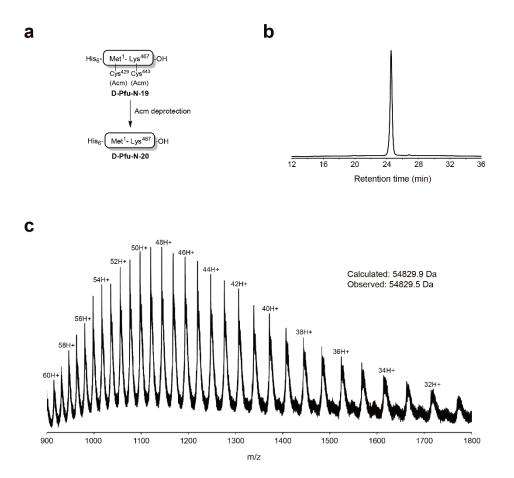

Supplementary Figure 44 | Preparation of D-Pfu-N-13. a, The ligation of D Pfu-N-3 MESH (29.2 mg) and D-Pfu-N-11 (45.6 mg) was carried out following a procedure similar to the ligation of D-Pfu-N-4 MESH and D-Pfu-N-5 (Supplementary Fig. 42). Purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. D-Pfu-N-13 was obtained with a yield of 58% (40.1 mg). b, Analytical HPLC chromatogram of D-Pfu-N-13 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-13.

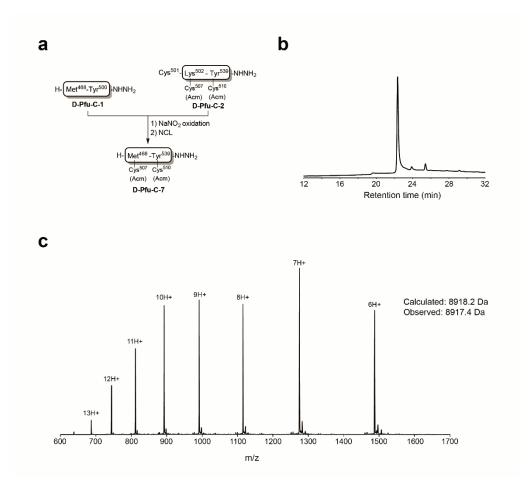

Supplementary Figure 45 | Preparation of D-Pfu-N-14. a, The ligation of D-Pfu-N-7 (31.9 mg) and D-Pfu-N-12 (52.1 mg) was carried out following a procedure similar to the ligation of D-Pfu-N-8 and D-Pfu-N-9 (Supplementary Fig. 43). Purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. D-Pfu-N-14 was obtained with a yield of 59% (45.7 mg). **b**, Analytical HPLC chromatogram of D-Pfu-N-14 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-14.

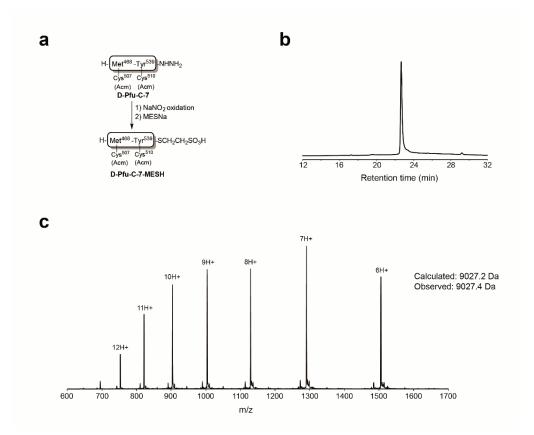

Supplementary Figure 46 | Preparation of D-Pfu-N-15. a, D-Pfu-N-10 MESH (30.1 mg) and D-Pfu-N-13 (40.1 mg) were dissolved in a 1.0 ml aqueous solution of 6 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 14 h, the products were purified by HPLC (purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-15 was obtained with a yield of 47% (31.2 mg). b, Analytical HPLC chromatogram of D-Pfu-N-15 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-15.

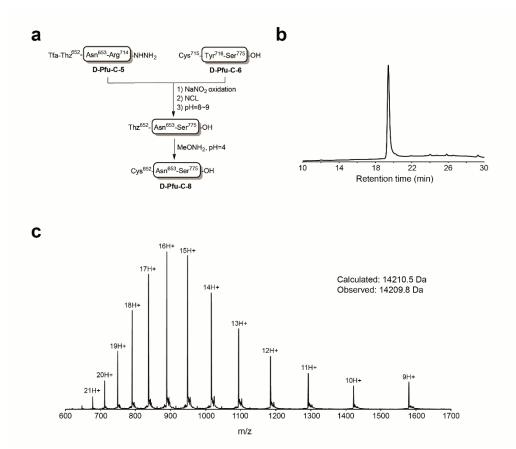

Supplementary Figure 47 | Preparation of D-Pfu-N-16. a, D-Pfu-N-15 (15.9 mg) was dissolved in 5.5 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product D-Pfu-N-16 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-16 was obtained with a yield of 69% (10.9 mg). **b**, Analytical HPLC chromatogram of the desulfurization product D-Pfu-N-16 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-16.

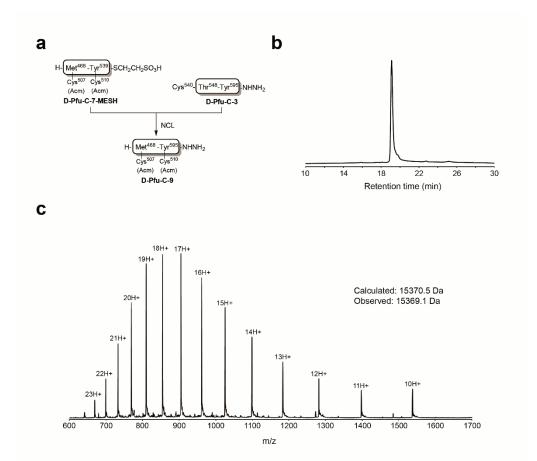

Supplementary Figure 48 | Preparation of D-Pfu-N-6 MESH. a, The preparation of D-Pfu-N-6 MESH (30.4 mg) was carried out following a procedure similar to the preparation of D-Pfu-N-3 MESH (Supplementary Fig. 40). Purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. D-Pfu-N-6 MESH was obtained with a yield of 63% (18.6 mg). **b**, Analytical HPLC chromatogram of D-Pfu-N-6 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-6 MESH.

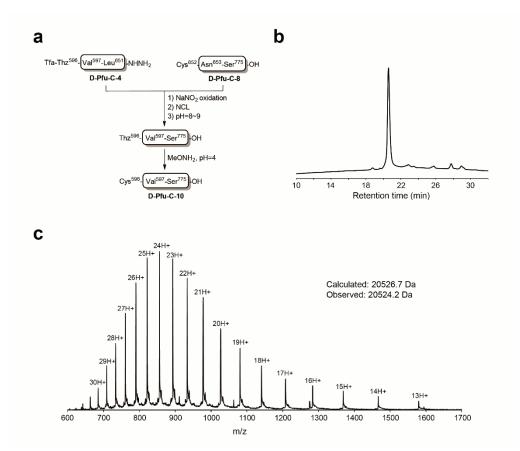

Supplementary Figure 49 | Preparation of D-Pfu-N-17. a, The ligation of D-Pfu-N-6 MESH (15.4 mg) and D-Pfu-N-14 (46.9 mg) was carried out following a procedure similar to the ligation of D-Pfu-N-4 MESH and D-Pfu-N-5 (Supplementary Fig. 42). Purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. D-Pfu-N-17 was obtained with a yield of 69% (41.2 mg). b, Analytical HPLC chromatogram of D-Pfu-N-17 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-17.

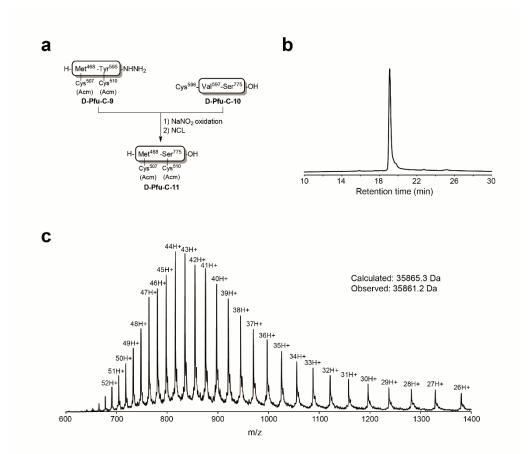

Supplementary Figure 50 | Preparation of D-Pfu-N-18. a, D-Pfu-N-16 (30.4 mg) was dissolved in 0.26 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 18.5 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 23 min, after which 6.3 mg MPAA was added. After the addition of D-Pfu-N-17 (23.8 mg), the pH of the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 30-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). The ligation product D-Pfu-N-18 (λ =214 nm). Column: Welch C4. Gradient: 25-100% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-18.

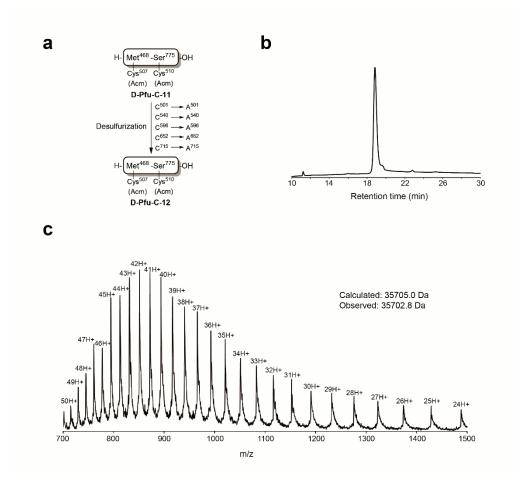

Supplementary Figure 51 | Preparation of D-Pfu-N-19. a, D-Pfu-N-18 (24 mg) was dissolved in 8 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product D-Pfu-N-18 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-19 was obtained with a yield of 47% (11.3 mg). **b**, Analytical HPLC chromatogram of D-Pfu-N-19 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-N-19.

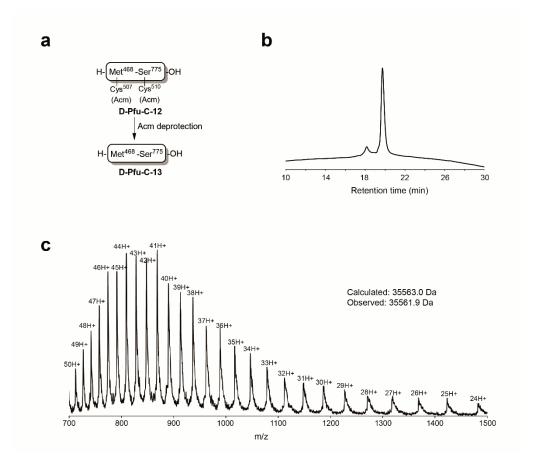

Supplementary Figure 52 | Preparation of D-Pfu-N-20. a, D-Pfu-N-19 (26.9 mg) was dissolved in 1 ml aqueous solution of 8 M Gn·HCl, 0.1 M Na₂HPO₄ and 40 mM TCEP, pH 7.0. PdCl₂ (4 mg) was dissolved in a 0.15 ml aqueous solution of 6 M Gn·HCl and added to the peptide solution. The reaction mixture was kept under stirring at 30 °C. After 3 h, 1.5 ml 2 M DTT (in an aqueous solution of 6 M Gn·HCl) was added. The reaction mixture was under stirring for 30 min and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-N-20 was obtained with a yield of 61% (16.5 mg). b, Analytical HPLC chromatogram of D-Pfu-N-20 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-N-20. The synthesis was performed three times.


Supplementary Figure 53 | Preparation of D-Pfu-C-7. a, D-Pfu-C-1 (27 mg) was dissolved in 1.35 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 135 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 23 min, after which 0.7 ml 0.4 M MPAA (in 8 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.7) was added. After the addition of D-Pfu-C-2 (29 mg), the pH of the reaction mixture was adjusted to 6.5 with NaOH solution at room temperature. After 14 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 35-75% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-7 was obtained with a yield of 36% (18.6 mg). b, Analytical HPLC chromatogram of D-Pfu-C-7 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-7.


Supplementary Figure 54 | Preparation of D-Pfu-C-7 MESH. a, D-Pfu-C-7 (36.1 mg) was dissolved in 0.8 ml acidified ligation buffer (aqueous solution of 8 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0), and then 0.25 ml 0.1M NaH₂PO₄, pH 3.0 was added to dilute the concentration of Gn·HCl to 6 M. The mixture was cooled in ice-salt bath (-10 °C), and 85 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 27 mg MESNa powder was added. The pH of the reaction mixture was adjusted to 4.6 with NaOH solution at room temperature. After 1 h, the products were purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-7 MESH was obtained with a yield of 46% (16.8 mg). **b**, Analytical HPLC chromatogram of D-Pfu-C-7 MESH (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-C-7 MESH.


Supplementary Figure 55 | Preparation of D-Pfu-C-8. a, D-Pfu-C-5 (.37.1 mg) was dissolved in 1.1 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 106 µl 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 1.0 ml 0.2 M MPAA (in 6 M Gn·HCl and 0.1 M Na₂HPO₄, pH 5.5) was added. The pH of the reaction mixture was adjusted to 5.3 with NaOH solution at room temperature. After the addition of D-Pfu-C 6 (36.6 mg), the pH of the reaction mixture was further adjusted to 6.5. After 14 h, the products were analyzed and the pH was adjusted to 9.0 to promote the complete removal of the Tfa group. After 1 h, the products were analyzed, and MeONH₂·HCl (32 mg) was added to carry out the conversion of Thz into Cys. TCEP·HCl was added until the pH of the reaction mixture reached 4.0. After 3 h, the products were analyzed and purified by HPLC (purification conditions: 30-65% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-8 was obtained with a yield of 40% (28.1 mg). b, Analytical HPLC chromatogram of D-Pfu-C-8 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-8.


Supplementary Figure 56 | Preparation of D-Pfu-C-9. a, D-Pfu-C-7 MESH (27.3 mg) and D-Pfu-C-3 (23.5 mg) were dissolved in a 1.5 ml aqueous solution of 7 M Gn·HCl, 0.1 M Na₂HPO₄, 40 mM TCEP and 100 mM MPAA. The pH of the reaction mixture was adjusted to 6.5. After 14 h, the products were purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-9 was obtained with a yield of 70% (32.8 mg). b, Analytical HPLC chromatogram of D-Pfu-C-9 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-9.


Supplementary Figure 57 | Preparation of D-Pfu-C-10. a, The ligation of D-Pfu-C-4 (15 mg) and D-Pfu-C-8 (28.1 mg) was carried out following a procedure similar to the ligation of D-Pfu-C-5 and D-Pfu-C-6 (Supplementary Fig. 55). Purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column. D-Pfu-C-10 was obtained with a yield of 28% (11.7 mg). b, Analytical HPLC chromatogram of D-Pfu-C-10 (λ =214 nm). Column: Welch C4. Gradient: 20-70% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-10.

Supplementary Figure 58 | Preparation of D-Pfu-C-11. a, D-Pfu-C-9 (19.3 mg) was dissolved in 0.3 ml acidified ligation buffer (aqueous solution of 6 M Gn·HCl and 0.1 M NaH₂PO₄, pH 3.0). The mixture was cooled in ice-salt bath (-10 °C), and 25 μ l 0.5 M NaNO₂ (in acidified ligation buffer) was added. The reaction was kept in ice-salt bath under stirring for 25 min, after which 0.15 ml 0.25 M MPAA (in 8 M Gn·HCl and 0.1 M Na₂ HPO₄, pH 5.6) was added. After the addition of D-Pfu-C-10 (22.9 mg), the pH of the reaction mixture was adjusted to 6.6 with NaOH solution at room temperature. After 14 h, the reaction mixture was reduced by TCEP and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-11 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. **c**, ESI-MS spectrum of D-Pfu-C-11.

Supplementary Figure 59 | Preparation of D-Pfu-C-12. a, D-Pfu-C-11 (18.9 mg) was dissolved in 5.4 ml 200 mM TCEP solution (6 M Gn·HCl and 0.1 Na₂HPO₄, pH 7.0), containing 20 mM VA-044 and 40 mM reduced L-glutathione. The reaction was under stirring overnight at 37 °C. The desulfurization product D-Pfu-C-12 was analyzed by HPLC and ESI-MS and purified by semi-preparative HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-12 was obtained with a yield of 68% (12.8 mg). b, Analytical HPLC chromatogram of the desulfurization product D-Pfu-C-12 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-12.

Supplementary Figure 60 | Preparation of D-Pfu-C-13. a, D-Pfu-C-12 (23.8 mg) was dissolved in a 1.6 ml aqueous solution of 8 M Gn·HCl, 0.1 M Na₂HPO₄ and 40 mM TCEP, pH 7.0. PdCl₂ (6 mg) was dissolved in a 0.2 ml aqueous solution of 6 M Gn·HCl and added to the peptide solution. The reaction mixture was kept under stirring at 30 °C. After 2 h, 3 ml 2 M DTT (in an aqueous solution of 6 M Gn·HCl) was added. The reaction mixture was under stirring for 30 min and purified by HPLC (purification conditions: 35-70% CH₃CN (with 0.1% TFA) gradient in H₂O (with 0.1% TFA) over 30 min on a Welch C4 column). D-Pfu-C-13 was obtained with a yield of 50% (11.9 mg). b, Analytical HPLC chromatogram of D-Pfu-C-13 (λ =214 nm). Column: Welch C4. Gradient: 25-75% CH₃CN (with 0.1% TFA) in H₂O (with 0.1% TFA) over 30 min. c, ESI-MS spectrum of D-Pfu-C-13. The synthesis was performed three times.

Supplementary Table 1 | Error rate analysis of synthetic L- *Pfu* DNA polymerase in PCR and gene assembly

Procedure	Deletion	Insertion	Substitution	Total mutations	Total sequenced bases	Oligo purification method	Polymerase error rate
PCR (45 cycles)	0	0	4	4	91728	-	3.6×10 ⁻⁶
Procedure	Deletion	Insertion	Substitution	Mutational clones	Total sequenced clones	Oligo purification method	Percentage of correct clones
Gene assembly	28	0	2	4	7	Oligonucleotide purification cartridge (OPC)	43%
Gene assembly	0	0	1	1	10	Denaturing PAGE with single- nucleotide resolution	90%

Supplementary Table 2 | Primer sequences

Primer	Sequence
16S-F1	5'-
	TTTGTTGGAGAGTTTGATCCTGGCTCAGGGTGAACGCTGGCGGCGTGCCT
	AAGACATGCAAGTCGTGCGGGGCCGCGGGGTTTTACTCCGT-3'
16S-R1	5'-
	TTTCCCCGGGTTGTCCCCCTCTTCCGGGTAGGTCACCCACGCGTTACTCA
	CCCGTCCGCCGCTGACCACGGAGTAAAACCCCGCGGCCCG-3'
16S-F2	5'-
	GGAAGAGGGGGACAACCCGGGGAAACTCGGGCTAATCCCCCATGTGGA
	CCCGCCCTTGGGGTGTGTCCAAAGGGCTTTGCCCGCTTCCG-3'
16S-R2	5'-
	CGGCTACCCGTCGTCGCCTTGGTGGGCCATTACCCCACCAACTAGCTGAT
	GGGACGCGGGCCCATCCGGAAGCGGGCAAAGCCCTTTGGA-3'
16S-F3	5'-
	AAGGCGACGACGGGTAGCCGGTCTGAGAGGATGGCCGGCC
	ACTGAGACACGGGCCCCACTCCTACGGGAGGCAGCAGTTAGG-3'
16S-R3	5'-
	ACCCCGAAGGGCTTCTTCCTCCAAGCGGCGTCGCTCCGTCAGGCTTGCG
	CCCATTGCGGAAGATTCCTAACTGCTGCCTCCCGTAGGAGT-3'
16S-F4	5'-
	CTTGGAGGAAGAAGCCCTTCGGGGTGTAAACTCCTGAACCCGGGACGAA
	ACCCCCGACGAGGGGACTGACGGTACCGGGGTAATAGCGCC-3'
16S-R4	5'-
	ACGCCCAGTGAATCCGGGTAACGCTCGCGCCCTCCGTATTACCGCGGCTG
	CTGGCACGGAGTTGGCCGGCGCTATTACCCCGGTACCGTC-3'
16S-F5	5'-
	GCGTTACCCGGATTCACTGGGCGTAAAGGGCGTGTAGGCGGCCTGGGGC
	GTCCCATGTGAAAGACCACGGCTCAACCGTGGGGGGGGGG
16S-R5	5'-
	TATCTGCGCATTTCACCGCTACTCCGGGAATTCCACCACCCTCTCCCACCG
	TCTAGCCTGAGCGTATCCCACGCTCCCCACGGTTGAGC-3'
16S-F6	5'-
	AATTCCCGGAGTAGCGGTGAAATGCGCAGATACCGGGAGGAACGCCGAT
	GGCGAAGGCAGCCACCTGGTCCACCCGTGACGCTGAGGCGC-3'
16S-R6	5'-
	AGACCTAGCGCGCATCGTTTAGGGCGTGGACTACCCGGGTATCTAATCCG
	GTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCACGGGTGG-3'
16S-F7	5'-
	CCCTAAACGATGCGCGCTAGGTCTCTGGGTCTCCTGGGGGGCCGAAGCTA
	ACGCGTTAAGCGCGCCGCCTGGGGAGTACGGCCGCAAGGCT-3'

16S-R7	5'-
	TTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCC
	CGTCAATTCCTTTGAGTTTCAGCCTTGCGGCCGTACTCCC-3'
16S-F8	5'-
	GGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGCCTT
	GACATGCTAGGGAACCCGGGTGAAAGCCTGGGGTGCCCCGC-3'
16S-R8	5'-
	GGACTTAACCCAACACCTCACGGCACGAGCTGACGACGGCCATGCAGCA
	CCTGTGCTAGGGCTCCCCTCGCGGGGGCACCCCAGGCTTTCA-3'
16S-F9	5'-
	CGTGCCGTGAGGTGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCCGCC
	GTTAGTTGCCAGCGGTTCGGCCGGGCACTCTAACGGGACTG-3'
16S-R9	5'-
	TGTGTCGCCCAGGCCGTAAGGGCCATGCTGACCAGACGTCGTCCCCTCCT
	TCCTCCCGCTTTCGCGGGCAGTCCCGTTAGAGTGCCCGGC-3'
16S-F10	5'-
	GGCCCTTACGGCCTGGGCGACACACGTGCTACAATGCCCACTACAAAGC
	GATGCCACCCGGCAACGGGGAGCTAATCGCAAAAAGGTGGG-3'
16S-R10	5'-
	GATCCGCGATTACTAGCGATTCCGGCTTCATGGGGTCGGGTTGCAGACCC
	CAATCCGAACTGGGCCCACCTTTTTGCGATTAGCTCCCCG-3'
16S-F11	5'-
	GCCGGAATCGCTAGTAATCGCGGATCAGCCATGCCGCGGTGAATACGTTC
	CCGGGCCTTGTACACACCGCCCGTCACGCCATGGGAGCGG-3'
16S-R11	5'-
	CGACTTCGCCCCAGTCACGGGCCCTACCCTCGGCGCCTGCCCGTAGGCTC
	CCGGCGACTTCGGGTAGAGCCCGCTCCCATGGCGTGACGG-3'
16S-R12	5'-
	CCGCACCTTCCGGTACAGCTACCTTGTTACGACTTCGCCCCAGTCACGGG
	CCCT-3'
M13-F	5'-GTAAAACGACGGCCAGT-3'
M13-R	5'-CAGGAAACAGCTATGAC-3'

Character	Code	Character	Code
a	ACG	space	ATC
b	GTA	,	TCC
с	CAG		TCT
d	TGC	0	ATT
e	ATG	1	ACA
f	CTA	2	ACC
g	GAT	3	AGA
h	TCG	4	AGG
i	AGC	5	TAA
j	AAT	6	TAT
k	GCA	7	TTA
1	TGA	8	TTC
m	CTG	9	TTG
n	TAC	-	TGT
0	AGT	?	TGG
р	GAC	:	CAA
q	AAC	•	CAC
r	TCA	!	CTT
S	TAG	*	CTC
t	ACT	/	CCA
u	CAT	/n	CCT
v	GTC	0	CCG
W	CGA	T	CGC
Х	GCT	"	CGG
у	CGT	(GAA
Z	AAG)	GAG
^	ATA		

Supplementary Table 3 | Encoding table for L-DNA information storage

Supplementary Table 4 | Sequences for L-DNA information storage

Segment	Sequence
Storage S1	5'-
	gtaaaacgacggccagt <u>TCGCGCGTTTCGGTGATGACGGTGAAAACC</u> ATTACAA
	TAACGTACTGCATCCAGAGTTACTAGATGAACCATATGTACACTTGACG
	TTCCATCAGCCTAATCACTTCGATGATCCTGCGTTAGACTATGTCAAGC
	AGTCATTAGATCAGCTACCTATGACATATGTACCAGATGATCACTAGTAT
	Cgtcatagctgtttcctg-3'
Storage S2	5'-
	gtaaaacgacggccagt <u>TCTGACACATGCAGCTCCCGGAGACGGTCA</u> ATTACCC
	GATCGAGCCAGTCGATCACTTCGATGATCACGTAGCGTCTGCTGATGA
	CTTCACGTATCAGTCTAATCTACACGACTCATTCAACGTGAATCGACTC
	AAGTTGCCATCAGACTTAGATCAGCTAGATCTGCCATATGATCTAGTCG
	AGTgtcatagctgtttcctg-3'
Storage S3	5'-
	gtaaaacgacggccagt <u>CAGCTTGTCTGTAAGCGGATGCCGGGAGCA</u> ATTAGAC
	ATTGATGCATCCAGTCGACGTACGATATGATCAGCACTTAGATCTAGAT
	GTACTAGATGATCAGTTCAATCTGCAGCTCAATGCAGACTAGCAGTTA
	CTCCATCACTTCGATGATCCAGAGTTACTAGACTAGCACTCATACTAGC
	GTCgtcatagctgtttcctg-3'
Storage S4	5'-
	gtaaaacgacggccagt <u>GACAAGCCCGTCAGGGCGCGTCAGCGGGTC</u> ATTAGG
	ATGATCATGTGAATGCTGATGTACACTTAGATCAGTCTAATCACGTGAT
	GAATCTGAAGCGTCAGCTACGATATCGTAATGAGCTACGATTAGATCCG
	AAGTCATTGATGCATCACGTAGTAGCATCTGATGATCACTTCGATGATC
	AGTgtcatagctgtttcctg-3'
Storage S5	5'-
	gtaaaacgacggccagt <u>TTGGCGGGTGTCGGGGCTGGCTTAACTATG</u> ATTTAAG
	ACGACAGTTAGAGCACTATGATCACGTAGCGTCTGCTGATGACTTCAC
	GTTCTATCATAGACATGTCATCGACGGACTAGATCACGATCTACATGCG
	AATCCGAAGTTCATGATGCATCCGAAGTCATTGATGCATCGACTCAATG
	TAGgtcatagctgtttcctg-3'
Storage S6	5'-
	gtaaaacgacggccagt <u>CGGCATCAGAGCAGATTGTACTGAGAGTGC</u> ATTTATA
	TGTACACTATCAGCACTTAGATGTGACTAATCACTAGTATCAGTCATTC
	AATCGTCAGCATGCGATCTATCATACGATCGAGTATCCAGAGTCATTGA
	TGCATCCTAAGTTCAATGTAGATGATGATCACTTCGATGATCAGTTCAG
	ATgtcatagctgtttcctg-3'

Lowercase: M13-F and M13-R sequences for storage library amplification Underlined: Unique sequences for segment-specific amplification and sequencing

Storage S7	5'-
U U	gtaaaacgacggccagtACCATATGCGGTGTGAAATACCGCACAGATATTTTAAC
	GTACAGCTAGACGACTAGCAGTTACATCAGTCTAATCTGAAGCGTCAG
	CTACGATATCACTTCGAGCTACGATTAGATCAGCCTAATCCAGATGTGA
	TGACATTGAAGTTAGATGTCCATCTCAAGCGATTCGACTATCACGTAGA
	TCgtcatagctgtttcctg-3'
Storage S8	5'-
	gtaaaacgacggccagtGCGTAAGGAGAAAATACCGCATCAGGCGTGATTTTCA
	GCACTATCAGCTAGTCCATCGTAATGCAGACGCTGATGATCTGAATGCT
	AACTCACATCAGCCTAATCACTTCGATGATCACGTGAGTACATCTGATG
	TACATCAGTCTAATCACTTCGATGATCGTATGAAGTAGTTGCTCCATCT
	ACgtcatagctgtttcctg-3'
Storage S9	5'-
	$gtaaaacgacggccagt \underline{ATTCGCCATTCAGGCTGCGCAACTGTTGGG} ATTTTGA$
	GTCGAATCTGAATGCTAACTTCCATCGTAATGCAGACGCTGATGATCTC
	AAGCGATTCGACTTGGATCATAACTTCGATGTAGATGATCACGTCAATG
	ATCCTGCGTTAGACTATGTCAAGCATGTAGATCCGATCGAGCCAGTCG
	ATCgtcatagctgtttcctg-3'
Storage S10	5'-
	$gtaaaacgacggccagt \underline{AAGGGCGATCGGTGCGGGGCCTCTTCGCTAT}ACAATTC$
	TACATTCATACAGCTAGTCGATCCTGCATCAGTCGATCCGAAGTTCAGC
	AATCCTAAGTTCAATCACTTCGATGATCCTACATACTCATTCAATGTCC
	ATCACGTACTGCATCTGCATGCTGACGTACTGCATCTCGATGTACCAGA
	TGgtcatagctgtttcctg-3'
Storage S11	5'-
	$gtaaaacgacggccagt \underline{TACGCCAGCTGGCGAAAGGGGGGATGTGCTG}ACAACA$
	CTAAGTTCAACTTCGATCACTTCGATGATCCTGAGTTAGACTATCTAGA
	TGTCAAGCAGTCATTAGATCCAGAGTTACTAGAGCTGCATGTCAACGA
	CTAGCAGTTACATCCTATCAAGTCTGATCTAGCAGAGCATGTACCAGAT
	GTCTgtcatagctgtttcctg-3'
Pond water	5'-
sample	gtaaaacgacggccagtATATGAAGTACTCATTAGATCATAGACAGTTACTGCTC
barcode	CATCATAGTAATGAGCAATAGCTACGATgtcatagctgtttcctg-3'

Supplementary Table 5 | Sequences for chiral steganography

Lowercase: D-DNA

Uppercase: L-DNA

Underlined: Sequences for segment-specific amplification and sequencing

Oligo	Sequence
D-F1	5'-gtgctgcaaggcgattaattaggtatacaaccagaaccagattaagattgtata-3'
D-R1	5'-ctatgactgttaacctatacaatcttaatctggttctggttgtatacctaattaat
D/L-F2	5'- ggttaacagtcatagctgtttcctgGTAAAACGACGGCCAGTATTACCTTAACAAC CTATACCACATATACCAGGTTCAGATTCTATAGGTTCACAGTCATAGC TGTTTCCTG-3'
D/L-R2	5'- CAGGAAACAGCTATGACTGTGAACCTATAGAATCTGAACCTGGTAT ATGTGGTATAGGTTGTTAAGGTAATACTGGCCGTCGTTTTACcaggaaac ag-3'
D-DNA key-F	5'-gtgctgcaaggcgatta-3'
D-DNA key-R	5'-caggaaacagctatgac-3'
L-DNA key-F	5'-GTAAAACGACGGCCAGT-3'
L-DNA key-R	5'-CAGGAAACAGCTATGAC-3'
Chimeric D-DNA/L-DNA key	5'- <u>gtgctgcaaggcgatta</u> attaggtatacaaccagaaccagattaagattgtataggttaaca <u>gtcatagctgtttc</u> <u>ctgGTAAAACGACGGCCAGT</u> ATTACCTTAACAACCTATACCACATATA CCAGGTTCAGATTCTATAGGTTCACA <u>GTCATAGCTGTTTCCTG</u> -3'

Supplementary Table 6 | Sanger sequencing results of D-DNA segments in the storage library and the D-DNA part of the chimeric DNA key

TT 1 1º 1	C	C (• ~	1.0.	1 •
Underlined:	Sequences	tor segment	-specific a	amplification	and sequencing
0 11 4 01 1111 0 41	~		- province o		

DNA segment	Sanger sequencing result
D-S1	5'- <u>TCGCGCGTTTCGGTGATGACGGTGAAAACC</u> ATTACAATAACGTACT GCATCCAGAGTTACTAGATGAACCATATGTACACTTGACGTTCCATCA GCCTAATCACTTCGATGATCCTGCGTTAGACTATGTCAAGCAGTCATT AGATCAGCTACCTATGACATATGTACCAGATGATCACTAGTATC <u>GTCAT</u> <u>AGCTGTTTCCTG</u> -3'
D-S2	5'- <u>TCTGACACATGCAGCTCCCGGAGACGGTCA</u> ATTACCCGATCGAGC CAGTCGATCACTTCGATGATCACGTAGCGTCTGCTGATGACTTCACGT ATCAGTCTAATCTACACGACTCATTCAACGTGAATCGACTCAAGTTGC CATCAGACTTAGATCAGCTAGATCTGCCATATGATCTAGTCGAGT <u>GTC</u> <u>ATAGCTGTT–CCTG</u> -3'
D-S3	5'- <u>AGCTTGTCTGTAAGCGGATGCCGGGAGCA</u> ATTAGACATTGATGCAT CCAGTCGACGTACGATATGATCAGCACTTAGATCTAGATGTACTAGAT GATCAGTTCAATCTGCAGCTCAATGCAGACTAGCAGTTACTCCATCAC tTcGaTGATCCAGAGTTACTAGACTAGCACTCATACTAGCGTC <u>GTCATA</u> <u>GCTGTT–CCTG</u> -3'
D-S4	5'- <u>GACAAGCCCGTCAGGGCGCGTCAGCGGGTC</u> ATTAGGATGATCATG TGAATGCTGATGTACACTTAGATCAGTCTAATCACGTGATGAATCTGA AGCGTCAGCTACGATATCGTAATGAGCTACGATTAGATCCGAAGTCAT TGATGCATCACGTAGTAGCATCTGATGATCACTTCGATGATCAGT <u>GTC</u> <u>ATAGCTGTTTCCTG</u> -3'
D-S5	5'- <u>TTGGCGGGTGTCGGGGCTGGCTTAACTATG</u> ATTTAAGACGACAGT TAGAGCACTATGATCACGTAGCGTCTGCTGATGACTTCACGTTCTATC ATAGACATGTCATCGACGGACTAGATCACGATCTACATGCGAATCCGA AGttcaTGATGCATCCGAAGTCATTGATGCATCGACTCAATGTAG <u>GTCAT</u> <u>AGCTGTT–CCTG</u> -3'
D-S6	5'- <u>CGGCATCAGAGCAGATTGTACTGAGAGTGC</u> ATTTATATGTACACTA TCAGCACTTAGATGTGACTAATCACTAGTATCAGTCATTCAATCGTCA GCATGCGATCTATCATACGATCGAGTATCCAGAGTCATTGATGCATCCT AAGTTCAATGTAGATGATGATCACTTCGATGATCAGTTCAGAT <u>GTCAT</u> <u>AGCTGTTTCCTG</u> -3'

D-S7	5'- <u>ACCATATGCGGTGTGAA-TACCGCACAGAT</u> ATTTTAACGTACAGCT AGACGACTAGCAGTTACATCAGTCTAATCTGAAGCGTCAGCTACGATA TCACTTCGAGCTACGATTAGATCAGCCTAATCCAGATGTGATGACATT GAAGTTAGATGTCCATCTCAAGCGATTCGACTATCACGTAGATC <u>GTCA</u> <u>TAGCTGTTTCCTG-</u> 3'
D-S8	5'- <u>GCGTAAGGAGAAAATACCGCATCAGGCGTG</u> ATTTTCAGCACTATC AGCTAGTCCATCGTAATGCAGACGCTGATGATCTGAATGCTAACTCAC ATCAGCCTAATCACTTCGATGATCACGTGAGTACATCTGATGTACATC AGTCTAATCACTTCGATGATCGTATGAAGTAGTTGCTCCATCTAC <u>GTCA</u> <u>TAGCTGTTCCTG</u> -3'
D-S9	5'- <u>-TTCGCCATTCAGGCTGCGCAACTGTTGGG</u> ATTTTGAGTCGAATCT GAATGCTAACTTCCATCGTAATGCAGACGCTGATGATCTCAAGCGATT CGACTTGGATCATAACTTCGATGTAGATGATCACGTCAATGATCCTGC GTTAGACTATGTCAAGCATGTAGATCCGATCGAGCCAGTCGATC <u>GTCA</u> <u>TAGCTGTTTCCTG</u> -3'
D-S10	5'- <u>-AGGGCGATCGGTGCGGGCCTCTTCGCTAT</u> ACAATTCTACATTCATA CAGCTAGTCGATCCTGCATCAGTCGATCCGAAGTTCAGCAATCCTAAG TTCAATCACTTCGATGATCCTACATACTCATTCAATGTCCATCACGTAC TGCATCTGCATGCTGACGTACTGCATCTCGATGTACCAGATG <u>GTCATA</u> <u>GCTGTTTCCTG</u> -3'
D-S11	5'- <u>TACGCCAGCTGGCGAAAGGGGGGATGTGCTG</u> ACAACACTAAGTTC AACTTCGATCACTTCGATGATCCTGAGTTAGACTATCTAGATGTCAAG CAGTCATTAGATCCAGAGTTACTAGAGCTGCATGTCAACGACTAGCA GTTACATCCTATCAAGTCTGATCTAGCAGAGCATGTACCAGATGTCT <u>G</u> <u>TCATAGCTGTTTCCTG</u> -3'
D-DNA key	5'- <u>GTGCTGCAAGGCGATTA</u> ATTAGGTATACAACCAGAACCAGATTAAG ATTGTATAGGTTAACA <u>GTCATAGCTGTTTCCTG</u> -3'

Supplementary Table 7 | Metagenomic sequencing summary of D- or L-DNA barcoded, or unbarcoded microbial DNA samples

Sample	Total reads	Number of barcode sequences
D-DNA barcoded	117,760,298	20,315
L-DNA barcoded	113,056,024	0
Unbarcoded	128,710,640	0