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PREFACE

The main purpose of this book is to present an account of computational meth-
ods for generating orthogonal polynomials on the real line (or part thereof), to
discuss a number of related applications, and to provide software necessary for
implementing all methods and applications.

The choice of topics, admittedly, is influenced by the author’s own past in-
volvement in this area, but it is hoped that the treatment given, and especially
the software provided, will be useful to a large segment of the readership.

In Chapter 1, a brief, but essentially self-contained, review of the theory of
orthogonal polynomials is presented, which emphasizes those parts of the the-
ory that are most relevant to computation. The computational methods them-
selves are treated in Chapter 2. They are basically of two kinds, those based
on moment information and those based on discretization. Other miscellaneous
methods also receive attention, such as the computation of Cauchy integrals,
modification algorithms for the underlying measures, and computing orthogonal
polynomials of Sobolev type. Chapter 3 is devoted to applications, specifically
numerical quadrature, discrete least squares approximation, moment-preserving
spline approximation, and the summation of slowly convergent series. Historical
comments and references to related topics not treated in this book are given in
separate Notes to each chapter.

All software are in the form of Matlab scripts, which are collected in a suite
of Matlab programs called OPQ, and which are downloadable individually from
the Web Site

http://www.cs.purdue.edu/archives/2002/wxg/codes/

Occasionally, there will be a need to refer to a quadruple-precision version
ORTHPOLq of the Fortran package in Gautschi (1994). This can be found on the
Web Site

http://www.cs.purdue.edu/archives/2001/wxg/codes/

Many tables throughout the book report on numerical results of various algo-
rithms. All numbers in these tables are displayed in floating-point format m(e),
where m, 1 ≤ m < 10, is the mantissa of the number, and e the signed exponent.

The author is grateful to Gene H. Golub for his encouragement to write
this book. He also acknowledges helpful comments by Olav Nj̊astad and Lothar
Reichel.

I dedicate this book to my wife, Erika, in appreciation of her patience and
unwavering support.

December, 2003 Walter Gautschi
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1

BASIC THEORY

This introductory chapter is to present a quick review of material on orthogonal
polynomials that is particularly relevant to computation. Proofs of most results
are included; for those requiring more extensive analytic treatments, references
are made to the literature.

1.1 Orthogonal polynomials

1.1.1 Definition and existence

Let λ(t) be a nondecreasing function on the real line R having finite limits as
t → −∞ and t → +∞, and assume that the induced positive measure dλ has
finite moments of all orders,

µr = µr(dλ) :=

∫

R

tr dλ(t), r = 0, 1, 2, . . . , with µ0 > 0. (1.1.1)

Let P be the space of real polynomials and Pd ⊂ P the space of polynomials of
degree ≤d. For any pair u, v in P, one may define an inner product as

(u, v) =

∫

R

u(t)v(t) dλ(t). (1.1.2)

If (u, v) = 0, then u is said to be orthogonal to v. If u = v, then

‖u‖ =
√

(u, u) =

(∫

R

u2(t) dλ(t)

)1/2

(1.1.3)

is called the norm of u. (We write (u, v)dλ and ‖u‖dλ if we want to exhibit the
measure dλ.) Clearly, ‖u‖ ≥ 0 for all u ∈ P. Schwarz’s inequality states that

|(u, v)| ≤ ‖u‖ ‖v‖. (1.1.4)

Definition 1.1 The inner product (1.1.2) is said to be positive definite on P if
‖u‖ > 0 for all u ∈ P, u 6≡ 0. It is said to be positive definite on Pd if ‖u‖ > 0
for any u ∈ Pd, u 6≡ 0.

Hankel determinants in the moments µr,

∆n = detMn, Mn =




µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
...

...
µn−1 µn · · · µ2n−2


 , n = 1, 2, 3, . . . , (1.1.5)

provide a simple criterion for positive definiteness.

1



2 BASIC THEORY

Theorem 1.2 The inner product (1.1.2) is positive definite on P if and only if

∆n > 0, n = 1, 2, 3, . . . . (1.1.6)

It is positive definite on Pd if and only if ∆n > 0 for n = 1, 2, . . . , d+ 1.

Proof Consider first the space Pd, and let u ∈ Pd, u = c0 + c1t + · · · + cdt
d.

Since

‖u‖2 =

∫

R

d∑

k,`=0

ckc`t
k+` dλ(t) =

d∑

k,`=0

µk+`ckc`, (1.1.7)

positive definiteness on Pd is equivalent to the Hankel matrix Md+1 being pos-
itive definite. This, in turn, is equivalent to ∆n > 0 for n = 1, 2, . . . , d + 1. The
case d = ∞ gives the result for P. 2

Definition 1.3 Monic real polynomials πk(t) = tk + · · · , k = 0, 1, 2, . . . , are
called monic orthogonal polynomials with respect to the measure dλ, and will
be denoted by πk( · ) = πk( · ; dλ), if

(πk, π`)dλ = 0 for k 6= `, k, l = 0, 1, 2, . . . and

‖πk‖dλ > 0 for k = 0, 1, 2, . . . .
(1.1.8)

There are infinitely many orthogonal polynomials if the index set k = 0, 1, 2, . . .
is unbounded, and finitely many otherwise. Normalization π̃k = πk/‖πk‖, k =
0, 1, 2, . . . , yields the orthonormal polynomials, which satisfy

(π̃k, π̃`)dλ = δk` :=

{
0 if k 6= `,
1 if k = `.

(1.1.9)

They will be denoted by π̃k( · ) = π̃k( · ; dλ).
Lemma 1.4 Let πk, k = 0, 1, . . . , n, be monic orthogonal polynomials. If p ∈ Pn

satisfies (p, πk) = 0 for k = 0, 1, . . . , n, then p ≡ 0.

Proof Writing p(t) = a0 + a1t+ · · · + ant
n, one has

0 = (p, πn) = an(tn, πn) = an(πn, πn).

Since (πn, πn) > 0, this yields an = 0. Similarly, one shows, in turn, that an−1 =
0, an−2 = 0, . . . , a0 = 0. 2

Lemma 1.5 A set π0, π1, . . . , πn of monic orthogonal polynomials is linearly
independent. Moreover, any polynomial p ∈ Pn can be uniquely represented in
the form

p =

n∑

k=0

ckπk (1.1.10)

for some real constants ck. In other words, π0, π1, . . . , πn forms a basis of Pn.
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Proof If
∑n

k=0 γkπk ≡ 0, taking the inner product of both sides with πj , j =
0, 1, . . . , n, yields by orthogonality γj = 0. This proves linear independence.
Writing p in the form (1.1.10) and taking the inner product of both sides with
πj gives cj = (p, πj)/(πj , πj), j = 0, 1, . . . , n. With the coefficients ck so defined,
p−∑n

k=0 ckπk is orthogonal to π0, π1, . . . , πn, hence, by Lemma 1.4, identically
zero. 2

Theorem 1.6 If the inner product (1.1.2) is positive definite on P, there exists
a unique infinite sequence {πk} of monic orthogonal polynomials.

Proof The polynomials πk can be generated by applying Gram–Schmidt or-
thogonalization to the sequence of powers, ek(t) = tk, k = 0, 1, 2, . . . . Thus, one
takes π0 = 1 and for k = 1, 2, 3, . . . recursively generates

πk = ek −
k−1∑

`=0

c`π`, c` =
(ek, π`)

(π`, π`)
. (1.1.11)

Since (π`, π`) > 0 by the positive definiteness of the inner product, the polyno-
mial πk is uniquely defined and, by construction, is orthogonal to all polynomials
πj , j < k. 2

The hypothesis of Theorem 1.6 is satisfied if λ has infinitely many points of
increase, that is, points t0 such that λ(t0 + ε) − λ(t0 − ε) > 0 for all ε > 0. The
set of all points of increase of λ is called the support (or spectrum) of the measure
dλ and its convex hull the support interval of dλ.

Theorem 1.7 If the inner product (1.1.2) is positive definite on Pd but not on
Pn for any n > d, there exists only a finite number d+1 of orthogonal polynomials
π0, π1, . . . , πd.

Proof The Gram–Schmidt procedure (1.1.11) can be applied as long as the
denominators (π`, π`) in the formula for c` remain positive, that is, for k ≤ d+1.
The last polynomial πd+1 so constructed is orthogonal to all πj , j ≤ d, where
π0, π1, . . . , πd are mutually orthogonal and of positive norm. However, πd+1 has
norm zero. Indeed, by assumption there exists a monic polynomial ω ∈ Pd+1

such that ‖ω‖ = 0. Since ω − πd+1 has degree d, by Lemma 1.5 there holds

ω = πd+1 +

d∑

j=0

γjπj

for certain coefficients γj . Consequently,

0 = ‖ω‖2 = ‖πd+1‖2 +
d∑

j=0

γ2
j ‖πj‖2,

which implies ‖πd+1‖ = 0. Thus, πd+1 cannot be a member of a sequence of
orthogonal polynomials. 2
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Theorem 1.8 If the moments (1.1.1) of dλ exist only for r = 0, 1, . . . , r0, there
exists only a finite number d+ 1 of orthogonal polynomials π0, π1, . . . , πd, where
d = br0/2c.
Proof The Gram–Schmidt procedure (1.1.11) can be carried out as long as the
inner products in (1.1.11), including (πk, πk), exist, that is, for 2k ≤ r0 or, for
what is the same, k ≤ d. 2

Many of the measures occurring in applications are absolutely continuous
whereby dλ(t) = w(t) dt and w is a nonnegative integrable function on R called
the weight function. The corresponding orthogonal and orthonormal polynomials
will be denoted also by πk( · ;w) resp. π̃k( · ;w). The support of dλ is normally an
interval—finite, half-infinite, or infinite—or possibly a finite number of disjoint
intervals. A discrete measure dλ is one whose support consists of a finite or
denumerably infinite number of distinct points tk at which λ has positive jumps
wk. If the number of points is finite and equal to N , the discrete measure will
be denoted by dλN . The inner product associated with it is

∫

R

u(t)v(t) dλN (t) =

N∑

k=1

wku(tk)v(tk). (1.1.12)

It is positive definite on PN−1, but not on any Pn with n ≥ N . By Theorem
1.7, there exist only N orthogonal polynomials π0, π1, . . . , πN−1. They are called
discrete orthogonal polynomials and satisfy

N∑

k=1

wkπr(tk)πs(tk) = ‖πr‖2δrs. (1.1.13)

Theorem 1.9 Let π0, π1, . . . , πN−1 be the monic orthogonal polynomials relative
to the discrete measure dλN of (1.1.12). Then, they satisfy not only (1.1.13), but
also

N−1∑

k=0

1

‖πk‖2
πk(tr)πk(ts) =

1

wr
δrs. (1.1.14)

Proof The orthogonality condition (1.1.13) can be written in matrix form as
QTQ = I, where Q ∈ RN×N is the matrix with elements qrs = πs(tr)

√
wr/‖πs‖.

Then also QQT = I, which is precisely (1.1.14). 2

Orthogonality in the sense of (1.1.14) is referred to as dual orthogonality.

1.1.2 Examples

Examples of measures that are sufficiently unconventional to require numerical
techniques for the generation of the corresponding orthogonal polynomials, but
are of interest in applications, will now be presented. The phrase “dλ(t) on [a, b]”
will be used as a shorthand expression for “the support of dλ is the interval [a, b]”;
thus, dλ(t) ≡ 0 for t outside of [a, b].
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Example 1.10 dλ(t) = tα ln(1/t) dt on [0, 1], α > −1.
All moments µr of dλ are finite, in fact, equal to (r+α+1)−1, and the inner

product (1.1.2) is positive definite on P. The corresponding orthogonal polyno-
mials are useful to construct Gaussian quadrature rules (cf. §3.1.1) for integrals
over [0, 1] whose integrands have two singularities at the origin, one logarithmic
and the other algebraic (if α is not a nonnegative integer); see Example 2.27 of
§2.1.9.

Example 1.11 dλ(t) = e−t dt and dλ(t) = e−t2 dt on [0, c], 0 < c <∞.
These are Laguerre resp. Hermite measures (cf. §1.5.1) on a finite inter-

val. Their moments are expressible in terms of the incomplete gamma function
γ(α, x) =

∫ x

0
tα−1e−t dt as µr = γ(r+1, c) resp. µr = 1

2γ(
1
2 (r−1), c2). Both mea-

sures are useful in Gaussian integration of integrals commonly encountered in
molecular quantum mechanics. The underlying orthogonal polynomials go under
the name Mach polynomials (Mach, 1984) in the former, and Rys polynomials
(King and Dupuis, 1976) in the latter case. See also Steen, Byrne, and Gelbard
(1969) and Chin (1992).

Example 1.12 dλ(t) = w(t) dt where

w(t) =

{
|t|γ(t2 − ξ2)α(1 − t2)β if t ∈ (−1,−ξ) ∪ (ξ, 1),
0 otherwise

(1.1.15)

and 0 < ξ < 1, α > −1, β > −1, γ ∈ R.
This is an example of a (symmetric) measure supported on two disjoint

intervals [−1,−ξ] and [ξ, 1]. The respective orthogonal polynomials are stud-
ied in Barkov (1960), also in the more general (asymmetric) case where |t| in
eqn (1.1.15) is replaced by |t + c|. The special case γ = 1, α = β = − 1

2 ,
ξ = (1 − ρ)/(1 + ρ) (0 < ρ < 1) arises in the study of the diatomic linear chain
(Wheeler, 1984, where the basic support interval extends from 0 to 1 rather than
from –1 to 1). The quantity ρ in this context has the meaning of a mass ratio
ρ = m/M , where m and M (m < M) are the masses of the two kinds of particles
alternating along the chain. See also Example 2.30 in §2.1.9.

Example 1.13 dλ(t) = tαe−t2 dt on [0,∞], α > −1.
The moments of dλ are µr = Γ(1

2 (r + α + 1)) and the inner product (1.1.2)
is positive definite on P. For α = 2 the measure is identical with the Maxwell
velocity distribution in the kinetic theory of gases. The corresponding orthogonal
polynomials are, therefore, referred to as Maxwell polynomials or speed polyno-
mials. They have found application in the numerical solution of the Boltzmann
equation by a discrete ordinate method (Shizgal, 1981) and also in the calcula-
tion of the eigenvalues of the Lorentz Fokker–Planck equation (Shizgal, 1979).
The case α = 0, referred to as the half-range Hermite measure (cf. Example
2.31 in §2.1.9), occurs in the calculation of effective radiative neutron capture
cross-sections in nuclear reactor design (Steen, Byrne, and Gelbard, 1969). It
also has statistical applications (Kahaner, Tietjen, and Beckman, 1982).
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Example 1.14 dλ(t) = t2
(
1 + t2/ω

)−ω−1
dt on [0,∞], ω > 1.

In this example, the moment µr exists only if r < 2ω−1, so that in Theorem
1.8 one has r0 = 2ω−2 if ω is an integer, and r0 = b2ω−1c otherwise. Accordingly,
there exist only d+1 orthogonal polynomials, where d = ω−1 resp. d = bω− 1

2c.
As ω → ∞, they tend to the Maxwell polynomials of Example 1.13. For finite
ω they are useful in the study of space plasma, where Lorentzian rather than
Maxwellian velocity distributions are often observed. They have been named,
therefore, Lorentzian polynomials (Pierrard and Magnus, 2003).

The final example is a discrete measure supported on N distinct points. It is
neither unconventional nor in need of numerical techniques. The corresponding
discrete orthogonal polynomials indeed have been used already by Chebyshev
(1859) in connection with discrete least squares approximation (cf. §3.2.1). See
also Table 1.2.

Example 1.15 dλN (x) =
∑N−1

k=0 δ(x− k) dx, δ = Dirac delta function.
Thus, dλN is supported on the N equally spaced points 0, 1, 2, . . . , N−1 and

has unit jumps there. The corresponding orthogonal polynomials are, up to a
constant factor,

tn(x) = n! ∆n

{(x
n

)(x−N

n

)}
, n = 0, 1, 2, . . . , N − 1, (1.1.16)

where ∆ is the forward difference operator with unit spacing acting on the vari-
able x; cf. Szegö (1975, eqn (2.8.1)). See also Examples 2.26 and 2.35.

1.2 Properties of orthogonal polynomials

We assume in this section that dλ is a positive measure on R with infinitely
many points of increase unless stated otherwise, and with finite moments (1.1.1)
of all orders.

1.2.1 Symmetry

Definition 1.16 An absolutely continuous measure dλ(t) = w(t) dt is symmet-
ric (with respect to the origin) if its support interval is [−a, a], 0 < a ≤ ∞, and

w(−t) = w(t) for all t ∈ R. A discrete measure dλN =
∑N

k=1 wkδ(t − tk) dt is
symmetric if tk = −tN+1−k, wk = wN+1−k for k = 1, 2, . . . , N .

Theorem 1.17 If dλ is symmetric, then

πk(−t; dλ) = (−1)kπk(t; dλ), k = 0, 1, 2, . . . . (1.2.1)

Thus, πk is an even or odd polynomial depending on the parity of k.

Proof Define π̂k(t) = (−1)kπk(−t; dλ). One computes

(π̂k, π̂`)dλ = (−1)k+`(πk, π`)dλ = 0 if k 6= `.

Since all π̂k are monic, π̂k(t) ≡ πk(t; dλ) by the uniqueness of monic orthogonal
polynomials. 2
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Theorem 1.18 Let dλ be symmetric on [−a, a], 0 < a ≤ ∞, and

π2k(t; dλ) = π+
k (t2), π2k+1(t; dλ) = tπ−

k (t2). (1.2.2)

Then {π±
k } are the monic orthogonal polynomials with respect to the measure

dλ±(t) = t∓1/2w(t1/2) dt on [0, a2].

Proof We prove the assertion for π+
k ; the proof for π−

k is analogous.
Clearly, π+

k is monic. By symmetry, 0 = (π2k, π2`)dλ = 2
∫ a

0 π2k(t)π2`(t)w(t) dt
if k 6= `; hence, by the first of (1.2.2),

0 = 2

∫ a

0

π+
k (t2)π+

` (t2)w(t) dt =

∫ a2

0

π+
k (τ)π+

` (τ)τ−1/2w(τ1/2) dτ, k 6= `.

2

1.2.2 Zeros

Theorem 1.19 All zeros of πn( · ) = πn( · ; dλ), n ≥ 1, are real, simple, and
located in the interior of the support interval [a, b] of dλ.

Proof Since
∫

R
πn(t) dλ(t) = 0 for n ≥ 1, there must exist at least one point

in the interior of [a, b] at which πn changes sign. Let t1, t2, . . . , tk, k ≤ n, be all
such points. If we had k < n, then by orthogonality

∫

R

πn(t)

k∏

κ=1

(t− tκ) dλ(t) = 0.

This, however, is impossible since the integrand has constant sign. Therefore,
k = n. 2

Theorem 1.20 The zeros of πn+1 alternate with those of πn, that is,

τ
(n+1)
n+1 < τ (n)

n < τ (n+1)
n < τ

(n)
n−1 < · · · < τ

(n)
1 < τ

(n+1)
1 , (1.2.3)

where τ
(n+1)
i , τ

(n)
k are the zeros in descending order of πn+1 and πn, respectively.

Proof See the Remark in §1.3.3. 2

Theorem 1.21 In any open interval (c, d) in which dλ ≡ 0 there can be at most
one zero of πn( · ; dλ).

Proof By contradiction. Suppose there are two zeros τ
(n)
i 6= τ

(n)
j in (c, d), and

let all the others, within (c, d) or without, be τ
(n)
k . Then,

∫

R

πn(t; dλ)
∏

k 6=i,j

(t−τ (n)
k ) dλ(t) =

∫

R

∏

k 6=i,j

(t−τ (n)
k )2 ·(t−τ (n)

i )(t−τ (n)
j ) dλ(t) > 0,

since the integrand is nonnegative outside of (c, d). This contradicts orthogonality
of πn to polynomials of lower degree. 2
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1.2.3 Discrete orthogonality

The zeros of πn, as will be seen in §1.4 (see the paragraph preceding §1.4.2),
are the nodes τG

ν of the n-point Gauss quadrature rule (1.4.7), which is exact
for polynomials of degree ≤ 2n − 1. By applying this quadrature rule to the
orthogonality relation (1.1.8), one obtains the following discrete orthogonality
property.

Theorem 1.22 The first n orthogonal polynomials πk( · ) = πk( · ; dλ), k =
0, 1, . . . , n− 1, are discrete orthogonal in the sense

n∑

ν=1

λG
ν πk(τG

ν )π`(τ
G
ν ) = δk`‖πk‖2

dλ, k, ` = 0, 1, . . . , n− 1, (1.2.4)

where δk` is the Kronecker delta and τG
ν , λG

ν are the nodes and weights of the
n-point Gauss quadrature formula (1.4.7).

From the Gauss–Lobatto quadrature rule (1.4.22) and its error term (1.4.24),
one similarly obtains

Theorem 1.23 If dλ is supported on the finite interval [a, b], then the first n+
2 (monic) orthogonal polynomials πk( · ) = πk( · ; dλ), k = 0, 1, . . . , n + 1, are
discrete orthogonal in the sense

λL
0 πk(a)π`(a) +

n∑

ν=1

λL
ν πk(τL

ν )π`(τ
L
ν ) + λL

n+1πk(b)π`(b)

= δkl‖πk‖2
dλ + δk,n+1δ`,n+1γn,

(1.2.5)

where τL
ν , λL

ν are the nodes and weights of the (n + 2)-point Gauss–Lobatto
quadrature formula (1.4.22) and

γn =

∫ b

a

[πn(t; dλa,b)]
2 dλa,b(t), dλa,b(t) = (t− a)(b − t) dλ(t). (1.2.6)

The extra term on the right of (1.2.5) comes from the fact that the remainder
Ra,b

n (f) in (1.4.22) is not zero when f is a monic polynomial of degree 2n + 2,
but equal to −γn.

1.2.4 Extremal properties

The set of monic polynomials of degree n will be denoted by P◦
n.

Theorem 1.24 For any monic polynomial π ∈ P◦
n there holds

∫

R

π2(t) dλ(t) ≥
∫

R

π2
n(t; dλ) dλ(t), (1.2.7)

with equality if and only if π = πn. In other words, πn minimizes the integral on
the left over all π ∈ P◦

n:

min
π∈P◦

n

∫

R

π2(t) dλ(t) =

∫

R

π2
n(t; dλ) dλ(t). (1.2.8)
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Proof By Lemma 1.5, the polynomial π can be represented in terms of the
orthogonal polynomials π0, π1 . . . , πn as

π(t) = πn(t) +

n−1∑

k=0

ckπk(t). (1.2.9)

Therefore,

∫

R

π2(t) dλ(t) =

∫

R

π2
n(t) dλ(t) +

n−1∑

k=0

c2k

∫

R

π2
k(t) dλ(t).

This establishes inequality (1.2.7) and equality if and only if c0 = c1 = · · · =
cn−1 = 0, that is, π = πn. 2

Another way of viewing the result of Theorem 1.24 is to consider the left-
hand integral in (1.2.8) a function φ(a0, a1, . . . , an−1) of the coefficients in π(t) =

tn +
∑n−1

k=0 akt
k. Setting the partial derivative with respect to each ak equal to

zero yields ∫

R

π(t)tk dλ(t) = 0, k = 0, 1, . . . , n− 1, (1.2.10)

which are precisely the conditions of orthogonality that π = πn must satisfy.
Moreover, the Hessian matrix of φ is twice the Hankel matrix Mn in (1.1.5),
which by Theorem 1.2 is positive definite, confirming the minimality of πn.

The extremal property (1.2.8) can be generalized to arbitrary powers p > 1.

Theorem 1.25 Let 1 < p <∞. Then, the extremal problem of determining

min
π∈P◦

n

∫

R

|π(t)|p dλ(t) (1.2.11)

has a unique solution π∗
n( · ; dλ).

Proof Seeking the minimum in (1.2.11) is equivalent to the problem of ap-
proximating tn best by polynomials of degree ≤ n − 1 in the p-norm ‖u‖p =(∫

R
|u|p dλ

)1/p
. It is known from approximation theory (cf., e.g. Davis (1975,

Chapter VII)) that this has a unique solution. 2

An interesting special case of Theorem 1.25 is p = 2s+ 2, where s ≥ 0 is an
integer. The extremal polynomial of Theorem 1.25 is then denoted by

π∗
n( · ; dλ) = πn,s( · ; dλ). (1.2.12)

In analogy to (1.2.8) and (1.2.10), one finds that πn,s must satisfy
∫

R

π2s+1
n,s (t)tk dλ(t) = 0, k = 0, 1, . . . , n− 1. (1.2.13)

Thus, the (2s + 1)st power of πn,s must be orthogonal to all polynomials of
lower degree. This is referred to as power orthogonality ; the polynomials πn,s

themselves are called s-orthogonal polynomials. Evidently, πn,0 = πn.
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Theorem 1.26 All zeros of πn,s( · ) = πn,s( · ; dλ) are real, simple, and con-
tained in the interior of the support interval of dλ. The zeros of πn+1,s alternate
with those of πn,s.

Proof The proof of the first part is analogous to the proof of Theorem 1.19.
For the second part, see Milovanović (2001, Theorem 2.2). 2

1.3 Three-term recurrence relation

The three-term recurrence relation satisfied by orthogonal polynomials is ar-
guably the single most important piece of information for the constructive and
computational use of orthogonal polynomials. Apart from its obvious use in gen-
erating values of orthogonal polynomials and their derivatives, both within and
without the spectrum of the measure, knowledge of the recursion coefficients (i)
allows the zeros of orthogonal polynomials to be readily computed as eigenvalues
of a symmetric tridiagonal matrix, and with them the all-important Gaussian
quadrature rule, (ii) yields immediately the normalization coefficients needed
to pass from monic orthogonal to orthonormal polynomials, (iii) opens access
to polynomials of the second kind and related continued fractions, and (iv) al-
lows an efficient evaluation of expansions in orthogonal polynomials. Much of
this book, therefore, is devoted to computing the coefficients of the three-term
recurrence relation in cases where they are not known explicitly.

The principal reason why there exists a three-term recurrence relation is the
shift property

(tu, v)dλ = (u, tv)dλ for all u, v ∈ P (1.3.1)

obviously enjoyed by the inner product (1.1.2). There are other inner products,
even positive definite ones, that do not satisfy (1.3.1). Among them, inner prod-
ucts of Sobolev type (see §1.7) and Hermitian inner products on the unit circle
are the most prominent ones. In these cases, recurrence relations still exist, but
they are no longer of the simple three-term variety.

1.3.1 Monic orthogonal polynomials

Theorem 1.27 Let πk( · ) = πk( · ; dλ), k = 0, 1, 2, . . . , be the monic orthogonal
polynomials with respect to the measure dλ (cf. Definition 1.3). Then,

πk+1(t) = (t− αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,
(1.3.2)

where

αk =
(tπk, πk)dλ

(πk, πk)dλ
, k = 0, 1, 2, . . . , (1.3.3)

βk =
(πk, πk)dλ

(πk−1, πk−1)dλ
, k = 1, 2, . . . . (1.3.4)

The index range is infinite, k ≤ ∞, or finite, k ≤ d − 1, depending on whether
the inner product ( · , · )dλ is positive definite on P resp. on Pd but not on Pn,
n > d (cf. Theorems 1.6–1.8).
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Proof Since πk+1 − tπk is a polynomial of degree ≤k, by Lemma 1.5 one can
write

πk+1(t) − tπk(t) = −αkπk(t) − βkπk−1(t) +

k−2∑

j=0

γkjπj(t) (1.3.5)

for certain constants αk, βk, and γkj , where π−1(t) = 0 (for k = 0) and empty
sums (for k = 0 and 1) are understood to be zero. Taking the inner product of
both sides with πk yields, by orthogonality,

−(tπk, πk) = −αk(πk, πk),

that is,

αk =
(tπk, πk)

(πk, πk)
.

This proves (1.3.3). Relation (1.3.4) for βk is obtained by taking the inner product
with πk−1 (k ≥ 1),

−(tπk, πk−1) = −βk(πk−1, πk−1)

and simplifying. Indeed, (tπk, πk−1) = (πk, tπk−1) = (πk, πk + · · · ), where dots
stand for a polynomial of degree <k, and thus (tπk, πk−1) = (πk, πk), giving

βk =
(πk, πk)

(πk−1, πk−1)
.

Finally, taking the inner product of both sides of (1.3.5) with πi, i < k−1, yields

−(tπk, πi) = γki(πi, πi).

It is at this point where the basic property (1.3.1) plays out its crucial role:
one has (tπk, πi) = (πk, tπi), which vanishes by orthogonality, since tπi ∈ Pk−1.
Thus, γki = 0 for i < k − 1. This establishes (1.3.2). 2

Remark to Theorem 1.27 If the index range in Theorem 1.27 is finite, k ≤
d− 1, then (1.3.3) and (1.3.4) are still meaningful for k = d, and βd > 0, but the
polynomial πd+1 defined by (1.3.2) for k = d has norm 0, ‖πd+1‖ = 0; see the
proof of Theorem 1.7.

The coefficients in the three-term recurrence relation (1.3.2) will be denoted
by αk = αk(dλ) and βk = βk(dλ) if the measure dλ is to be evidenced explic-
itly. Although β0 in (1.3.2) can be arbitrary, since it multiplies π−1 = 0, it is
convenient for later purposes to define

β0(dλ) = (π0, π0) =

∫

R

dλ(t). (1.3.6)

Note from (1.3.4) and (1.3.6) that all βk are positive and

‖πn‖2 = βnβn−1 · · ·β1β0, n = 0, 1, 2, . . . . (1.3.7)

There is a converse of Theorem 1.27, usually attributed to Favard (but antic-
ipated by a number of mathematicians as far back as Stieltjes; cf. Marcellán and
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Álvarez–Nodarse (2001)), which says that any (infinite) sequence of polynomials
π0, π1, π2, . . . satisfying a three-term recurrence relation (1.3.2) with all βk pos-
itive is orthogonal with respect to some positive measure with infinite support
(cf., e.g. Natanson (1965, Chapter VIII, §6)).

Theorem 1.28 Let the support interval [a, b] of dλ be finite. Then,

a < αk(dλ) < b, k = 0, 1, 2, . . . , (1.3.8)

0 < βk(dλ) ≤ max(a2, b2), k = 1, 2, . . . , (1.3.9)

where the index range is k ≤ ∞ resp. k ≤ d, with d as in Theorem 1.27.

Proof The first relation, (1.3.8), follows immediately from (1.3.3) by noting
that a ≤ t ≤ b for t in the support of dλ. It remains to prove the upper bound
in (1.3.9).

From
‖πk‖2 = (πk, πk) = |(tπk−1, πk)|

and Schwarz’s inequality (1.1.4), one gets

‖πk‖2 ≤ max(|a|, |b|)‖πk−1‖ · ‖πk‖.

Dividing both sides by ‖πk‖ and squaring yields the assertion, since βk =
‖πk‖2/‖πk−1‖2 by (1.3.4). 2

The Szegö class S of (absolutely continuous) measures supported on [−1, 1]
consists of measures dλ(t) = w(t) dt such that

∫ 1

−1

lnw(t)√
1 − t2

dt > −∞. (1.3.10)

For such measures it is known that

lim
k→∞

αk(dλ) = 0, lim
k→∞

βk(dλ) = 1
4 (dλ ∈ S); (1.3.11)

cf. Szegö (1975, eqns (12.7.4) and (12.7.6)).

1.3.2 Orthonormal polynomials

With π̃k( · ) = π̃k( · ; dλ) denoting the orthonormal polynomials (cf. Definition
1.3), one has

πk(t) = ‖πk‖ π̃k(t), k = 0, 1, 2, . . . . (1.3.12)

Theorem 1.29 Let π̃k( · ) = π̃k( · ; dλ), k = 0, 1, 2, . . ., be the orthonormal poly-
nomials with respect to the measure dλ. Then,

√
βk+1π̃k+1(t) = (t− αk)π̃k(t) −

√
βkπ̃k−1(t), k = 0, 1, 2, . . . ,

π̃−1(t) = 0, π̃0(t) = 1/
√
β0,

(1.3.13)

where the αs and βs are given by (1.3.3), (1.3.4), and (1.3.6). The index range
is the same as in Theorem 1.27.
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Proof Inserting (1.3.12) into (1.3.2), dividing by ‖πk+1‖, and noting (1.3.4)
yields

π̃k+1(t) = (t− αk)
π̃k(t)√
βk+1

− βk
π̃k−1(t)√
βk+1βk

.

Multiplying through by
√
βk+1 gives the three-term recurrence relation in (1.3.13).

The starting values follow from those in (1.3.2), noting from (1.3.12) and (1.3.7)
with k = 0 that 1 =

√
β0π̃0. 2

Definition 1.30 If the index range in Theorems 1.27 and 1.29 is infinite, the
Jacobi matrix associated with the measure dλ is the infinite, symmetric, tridiag-
onal matrix

J∞ = J∞(dλ) :=




α0

√
β1 0√

β1 α1

√
β2√

β2 α2

√
β3

. . .
. . .

. . .

0



. (1.3.14)

Its n× n leading principal minor matrix is denoted by

Jn = Jn(dλ) := [J∞(dλ)][1:n,1:n]. (1.3.15)

If the index range in Theorem 1.29 is finite, k ≤ d − 1, then Jn is well defined
for 0 ≤ n ≤ d.

If the first n equations of (1.3.13) are written in the form

tπ̃k(t) =
√
βkπ̃k−1(t)+αkπ̃k(t)+

√
βk+1π̃k+1(t), k = 0, 1, . . . , n− 1, (1.3.16)

and one lets

π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)]
T, (1.3.17)

then (1.3.16) may be expressed in matrix form as

tπ̃(t) = Jn(dλ)π̃(t) +
√
βnπ̃n(t)en, (1.3.18)

where en = [0, 0, . . . , 1]T is the nth coordinate vector in Rn.

Theorem 1.31 The zeros τ
(n)
ν of πn( · ; dλ) (or π̃n( · ; dλ)) are the eigenvalues of

the Jacobi matrix Jn(dλ) of order n, and π̃(τ
(n)
ν ) are corresponding eigenvectors.

Proof Both assertions follow immediately from (1.3.18) by putting t = τ
(n)
ν and

noting that π̃(τ
(n)
ν ) 6= 0, the first component of π̃(τ

(n)
ν ) being 1/

√
β0. 2
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Corollary to Theorem 1.31 Let vν denote the normalized eigenvector of

Jn(dλ) corresponding to the eigenvalue τ
(n)
ν ,

Jn(dλ)vν = τ (n)
ν vν , vT

ν vν = 1, (1.3.19)

and let vν,1 denote its first component. Then,

β0v
2
ν,1 =

1
∑n−1

k=0 [π̃k(τ
(n)
ν )]2

, ν = 1, 2, . . . , n. (1.3.20)

Proof Claim (1.3.20) follows from

vν =

(
n−1∑

k=0

[π̃k(τ (n)
ν )]2

)−1/2

π̃(τ (n)
ν ), ν = 1, 2, . . . , n,

by comparing the first component on each side and squaring, noting from (1.3.13)
that π̃0 = 1/

√
β0. 2

1.3.3 Christoffel–Darboux formulae

A simple, but important, consequence of the three-term recurrence relation
(1.3.13) is the following theorem.

Theorem 1.32 (Christoffel–Darboux formula) Let π̃k( · ) = π̃k( · ; dλ) denote
the orthonormal polynomials with respect to the measure dλ. Then,

n∑

k=0

π̃k(x)π̃k(t) =
√
βn+1

π̃n+1(x)π̃n(t) − π̃n(x)π̃n+1(t)

x− t
(1.3.21)

and
n∑

k=0

[π̃k(t)]2 =
√
βn+1 [π̃′

n+1(t)π̃n(t) − π̃′
n(t)π̃n+1(t)]. (1.3.22)

Proof Multiplying the recurrence relation (1.3.13) by π̃k(x) and subtracting
the resulting relation from the one with x and t interchanged yields

(x− t)π̃k(x)π̃k(t) =
√
βk+1 [π̃k+1(x)π̃k(t) − π̃k(x)π̃k+1(t)]

−√
βk [π̃k(x)π̃k−1(t) − π̃k−1(x)π̃k(t)].

Summing both sides from k = 0 to k = n and observing π̃−1 = 0 and the
telescoping nature of the summation on the right gives (1.3.21). Taking the limit
x→ t gives (1.3.22). 2

Corollary to Theorem 1.32 Let πk( · ) = πk( · ; dλ) denote the monic orthog-
onal polynomials with respect to the measure dλ. Then,

n∑

k=0

βnβn−1 · · ·βk+1πk(x)πk(t) =
πn+1(x)πn(t) − πn(x)πn+1(t)

x− t
. (1.3.23)
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Proof Put π̃k = πk/‖πk‖ in (1.3.21) and use
√
βn+1 = ‖πn+1‖/‖πn‖ along

with (1.3.7). 2

Remark From (1.3.22) one obtains the useful inequality

π̃′
n+1(t)π̃n(t) − π̃′

n(t)π̃n+1(t) > 0. (1.3.24)

It provides, for example, a quick proof of Theorem 1.20. Indeed, let τ and σ
be consecutive zeros of π̃n, so that π̃′

n(τ)π̃′
n(σ) < 0. Then, −π̃′

n(τ)π̃n+1(τ) > 0
and −π̃′

n(σ)π̃n+1(σ) > 0 by (1.3.24), implying that π̃n+1 at τ and σ has opposite
signs. Therefore, there is at least one zero of π̃n+1 between τ and σ. This accounts
for at least n−1 zeros of π̃n+1. There are, however, two additional zeros of π̃n+1,

one to the right of the largest zero τ
(n)
1 of π̃n and one to the left of the smallest,

τ
(n)
n . This is so because π̃′

n(τ
(n)
1 ) > 0 and, again by (1.3.24), π̃n+1(τ

(n)
1 ) < 0.

Thus, π̃n+1 must vanish to the right of τ
(n)
1 since π̃n+1(t) > 0 for t sufficiently

large. A similar argument holds at τ
(n)
n . This proves (1.2.3).

1.3.4 Continued fractions

Historically, orthogonal polynomials—in substance if not in name—arose as de-
nominators of a certain continued fraction. It seems appropriate, therefore, to
briefly pursue this connection with continued fractions. Not only the denomina-
tors, but also the numerators of the continued fraction are of interest, as they
give rise to a series of related orthogonal polynomials.

Assume dλ to be a positive measure with infinitely many points of increase,
and let αk = αk(dλ), βk = βk(dλ), k = 0, 1, 2, . . . , denote the coefficients in the
three-term recurrence relation for the orthogonal polynomials πk( · ) = πk( · ; dλ),
with β0 as defined in (1.3.6).

Definition 1.33 The Jacobi continued fraction associated with the measure dλ
is

J = J (t; dλ) =
β0

t− α0 −
β1

t− α1 −
β2

t− α2 −
· · · . (1.3.25)

Its nth convergent is denoted by

An

Bn
=
An(t; dλ)

Bn(t; dλ)
=

β0

t− α0 −
β1

t− α1 −
· · · βn−1

t− αn−1
, n = 1, 2, 3, . . . .

(1.3.26)

From the theory of continued fractions (see, e.g. Jones and Thron (1980,
§2.1)), it is well known that the numerators An and denominators Bn satisfy
the recurrence relations

Ak+1 = (t− αk)Ak − βkAk−1, k = 1, 2, . . . ,

A0 = 0, A1 = β0

(1.3.27)

resp.
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Bk+1 = (t− αk)Bk − βkBk−1, k = 0, 1, 2, . . . ,

B−1 = 0, B0 = 1.
(1.3.28)

Since (1.3.28) is identical with the recurrence relation for the monic orthogonal
polynomials, the following theorem is self-evident.

Theorem 1.34 The denominators Bk of the Jacobi continued fraction (1.3.25)
are precisely the monic orthogonal polynomials πk,

Bk(t; dλ) = πk(t; dλ), k = 0, 1, 2, . . . . (1.3.29)

As regards the numerators An, a simple inductive argument based on (1.3.27)
reveals that β−1

0 Ak+1( · ; dλ) is a monic polynomial of degree k which does not
depend on β0.

Definition 1.35 The polynomial

π
[1]
k (t; dλ) = β−1

0 Ak+1(t; dλ) (1.3.30)

is called the (first) numerator polynomial of degree k associated with the measure
dλ.

Theorem 1.36 The numerator polynomials π
[1]
k ( · ) = π

[1]
k ( · ; dλ) satisfy the

three-term recurrence relation

π
[1]
k+1(t) = (t− αk+1)π

[1]
k (t) − βk+1π

[1]
k−1(t), k = 0, 1, 2, . . . ,

π
[1]
−1(t) = 0, π

[1]
0 (t) = 1,

(1.3.31)

where αk+1 = αk+1(dλ), βk+1 = βk+1(dλ).

Proof This is an immediate consequence of (1.3.27) and (1.3.30). 2

Since αk+1 ∈ R and βk+1 > 0 for k = 0, 1, 2, . . . , it follows from (1.3.31)
and Favard’s theorem that the numerator polynomials are also orthogonal with
respect to a positive measure dλ[1]. In general, however, dλ[1] is not known.

Example 1.37 (Chihara, 1978, Chapter VI, eqn (12.4)) For the Legendre mea-
sure dλ(t) = dt on [−1, 1] (cf. §1.5.1), one has

dλ[1](t) =
dt

[
ln

1 + t

1 − t

]2
+ π2

, −1 < t < 1.

Theorem 1.36 suggests to define numerator polynomials of higher order.

Definition 1.38 The numerator polynomials π
[s]
k ( · ) = π

[s]
k ( · ; dλ) of order s ≥

0 are defined to be the solution of the three-term recurrence relation

π
[s]
k+1(t) = (t− αk+s)π

[s]
k (t) − βk+sπ

[s]
k−1(t), k = 0, 1, 2, . . . ,

π
[s]
−1(t) = 0, π

[s]
0 (t) = 1,

(1.3.32)

where αk+s = αk+s(dλ), βk+s = βk+s(dλ). Evidently, π
[0]
k = πk.
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Although the measure of orthogonality dλ[s] of the numerator polynomials

π
[s]
k is not known, its Cauchy integral (cf. §2.3) can be expressed in terms of

Cauchy integrals of dλ (Van Assche, 1991, eqn (3.7))

∫

R

dλ[s](t)

z − t
=

1

βs

ρs(z)

ρs−1(z)
, ρk(z) =

∫

R

πk(t; dλ) dλ(t)

z − t
,

which, in fact, may be used to recover dλ[s] by the Stieltjes–Perron inversion
formula (cf. Example 2.50).

Also, the Stieltjes polynomial πK
n+1( · ; dλ) in the theory of Gauss–Kronrod

quadrature (cf. §3.1.2) can be expressed in terms of dλ[n+1] (Peherstorfer and
Petras, 2000, Theorem 3).

1.3.5 The recurrence relation outside the support interval

It is of interest to consider the Jacobi continued fraction (1.3.25) for complex
z ∈ C\[a, b] outside the support interval [a, b] of dλ. According to Theorem 1.34,
(1.3.26), and Definition 1.35, replacing t by z, one has

β0

z − α0 −
β1

z − α1 −
· · · βn−1

z − αn−1
=
σn(z; dλ)

πn(z; dλ)
, n = 1, 2, 3, . . . , (1.3.33)

where πn( · ; dλ) is the monic orthogonal polynomial of degree n, and

σn(z; dλ) = β0π
[1]
n−1(z; dλ), (1.3.34)

with π
[1]
n−1 the first numerator polynomial of degree n− 1. By Theorem 1.36, the

polynomials σk( · ) = σk( · ; dλ) satisfy

σk+1(z) = (z − αk)σk(z) − βkσk−1(z), k = 1, 2, 3, . . . ,

σ0(z) = 0, σ1(z) = β0.
(1.3.35)

Recall that β0 =
∫

R
dλ(t). If one defines σ−1(z) = −1, then (1.3.35) holds also

for k = 0.

Theorem 1.39 The numerators in (1.3.33) are given by

σn(z) =

∫

R

πn(z) − πn(t)

z − t
dλ(t), n = 1, 2, 3, . . . . (1.3.36)

Proof It suffices to show that the integral on the right satisfies (1.3.35). As
regards the starting values, this is trivial, since π0 = 1 and π1(z) = z − α1. To
establish the rest, we use the recurrence relation of the πks to write

πk+1(z) − πk+1(t)

= zπk(z) − tπk(t) − αk[πk(z) − πk(t)] − βk[πk−1(z) − πk−1(t)]

= (z − t)πk(t) + (z − αk)[πk(z) − πk(t)] − βk[πk−1(z) − πk−1(t)].
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Dividing both sides by z − t and integrating yields

σk+1(z) =

∫

R

πk(t) dλ(t) + (z − αk)σk(z) − βkσk−1(z).

Since k ≥ 1, the integral on the right vanishes by orthogonality. 2

The polynomials σn are called the polynomials of the second kind, or the
associated polynomials, with respect to the measure dλ.

Let

F (z) = F (z; dλ) :=

∫

R

dλ(t)

z − t
, z ∈ C\[a, b]. (1.3.37)

This is a function vanishing at infinity and analytic in the whole complex plane
with the interval [a, b] removed. (If −a = b = +∞, then F is analytic separately
in Im z > 0 and Im z < 0, the two branches being different in general.) To
elucidate the connection between F in (1.3.37) and the continued fractions in
(1.3.33), we begin by formally expanding F in descending powers of z,

F (z) ∼ µ0

z
+
µ1

z2
+
µ2

z3
+ · · · , (1.3.38)

where µr are the moments (1.1.1) of dλ. Define

ρn(z) = ρn(z; dλ) :=

∫

R

πn(t; dλ)

z − t
dλ(t), n = 0, 1, 2, . . . . (1.3.39)

Note from (1.3.36) and (1.3.37) that

σn(z) = πn(z)F (z) − ρn(z). (1.3.40)

Formal expansion of ρn yields

ρn(z) ∼
∞∑

k=0

rk
zk+1

, rk =

∫

R

tkπn(t) dλ(t). (1.3.41)

By orthogonality, rk = 0 for k < n, so that

ρn(z) = O(z−n−1) as z → ∞. (1.3.42)

It follows from (1.3.40) that

F (z) − σn(z)

πn(z)
=
ρn(z)

πn(z)
= O(z−2n−1) as z → ∞. (1.3.43)

Thus, for each n = 1, 2, 3, . . . , if σn/πn or, equivalently, the continued fraction
(1.3.33), is expanded in descending powers of z, the expansion agrees with that
of F up to and including the term with z−2n. In the language of continued
fraction theory, this means that the Jacobi continued fraction (1.3.25) for dλ is
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the continued fraction “associated” with the formal power series in (1.3.38) for
F ( · ; dλ).

The connection between the continued fraction (1.3.25) and F is actually
much closer. To desribe it, one needs a simple notion from the theory of the
moment problem. The moment problem consists in determining the measure dλ
from the sequence of its moments µ0, µ1, µ2, . . . (see (1.1.1)).

Definition 1.40 The moment problem for dλ is said to be determined if the
measure dλ is uniquely determined by its moments. It is called indeterminate
otherwise.

Theorem 1.41 If the moment problem for dλ is determined, then

lim
n→∞

σn(z; dλ)

πn(z; dλ)
= F (z; dλ), z ∈ C\[a, b]. (1.3.44)

Proof For a finite interval [a, b], the moment problem is always determined,
and Theorem 1.41 is due to Markov; see Szegö (1975, Theorem 3.5.4) or Perron
(1957, Satz 4.2). For half-infinite and doubly infinite intervals [a, b], the theorem
is due, respectively, to Stieltjes (Perron, 1957, Satz 4.14 and Satz 4.10) and
Hamburger (Perron, 1957, Satz 4.15 and Satz 4.11). 2

Remark to Theorem 1.41 In the case of unbounded intervals [a, b], there
are sufficient conditions of Carleman for the moment problem to be determined.
They are expressed in terms of the moments µr; cf. Shohat and Tamarkin (1943,
Theorems 1.11 and 1.10, and p. 59).

Theorem 1.41 has an important consequence regarding the sequence of func-
tions ρn, n = 0, 1, 2, . . . , defined in (1.3.39).

Definition 1.42 Consider the difference equation (cf. (1.3.35))

yk+1 = (z − αk)yk − βkyk−1, k = 0, 1, 2, . . . (1.3.45)

(where αk = αk(dλ), βk = βk(dλ)). A solution {fn} of (1.3.45) is said to be
minimal if

lim
n→∞

fn

yn
= 0 (1.3.46)

for any solution {yn} linearly independent of {fn}.
In general, a minimal solution may or may not exist. If it exists, it is uniquely

determined up to a constant factor; cf. Gautschi (1967a).

Theorem 1.43 Under the condition of Theorem 1.41, the sequence ρ−1(z) = 1,
ρn(z) = ρn(z; dλ), n = 0, 1, 2, . . . , defined in (1.3.39), is a minimal solution of
(1.3.45) if z ∈ C\[a, b].
Proof First, it follows from (1.3.40) that ρn(z), n ≥ −1, is a solution of (1.3.45)
if we assume σ−1(z) = −1. To prove minimality, it suffices to show that (1.3.46)
holds for one particular solution yn = y0

n of (1.3.45) which is linearly independent
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of fn. Indeed, every solution yn of (1.3.45) linearly independent of fn can be
represented in the form

yn = c0y
0
n + c1fn, c0 6= 0.

Then,
fn

yn
=

fn

c0y0
n + c1fn

=
fn/y

0
n

c0 + c1fn/y0
n

→ 0 as n→ ∞.

In the case at hand, fn = ρn(z), and from (1.3.40) we have

ρn(z)

πn(z)
= F (z) − σn(z)

πn(z)
.

By Theorem 1.41, this tends to zero as n → ∞, when z ∈ C\[a, b], so that we
can take y0

n = πn(z). 2

Combining Theorem 1.43 with a well-known theorem of Pincherle (see, e.g.
Gautschi (1967a, Theorem 1.1)), we can state the following corollary.

Corollary to Theorem 1.43 Under the condition of Theorem 1.41, the se-
quence ρn(z), n = −1, 0, 1, 2, . . . , defined in Theorem 1.43, is a minimal solution
of (1.3.45), when z ∈ C\[a, b], and there holds

ρn(z)

ρn−1(z)
=

βn

z − αn−
βn+1

z − αn+1−
βn+2

z − αn+2−
· · · , n = 0, 1, 2, . . . , z ∈ C\[a, b].

(1.3.47)

This expresses the “tails” of the Jacobi continued fraction J (z; dλ) (cf. Def-
inition 1.33) in terms of ratios of the minimal solution {ρn(z)}.

1.4 Quadrature rules

Let dλ be a measure with bounded or unbounded support, which may or may
not be positive but is such that the assumptions made at the beginning of §1.1.1
are satisfied. An n-point quadrature rule for the measure dλ is a formula of the
type ∫

R

f(t) dλ(t) =

n∑

ν=1

λνf(τν) +Rn(f), (1.4.1)

where the sum on the right provides an approximation to the integral on the left
and Rn is the respective error. The τν , assumed mutually distinct, are called the
nodes, and λν the weights of the quadrature rule.

Definition 1.44 The quadrature rule (1.4.1) is said to have degree of exactness
d if

Rn(p) = 0 for p ∈ Pd. (1.4.2)

It is said to have precise degree of exactness d if it has degree of exactness d but
not d+ 1, that is, if (1.4.2) holds but Rn(p) 6= 0 for some p ∈ Pd+1.

A quadrature rule (1.4.1) with degree of exactness d = n− 1 is called inter-
polatory.
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1.4.1 Interpolatory quadrature rules and beyond

The quadrature rule (1.4.1) is interpolatory if and only if it is “obtained by
interpolation,” that is, by integrating the Lagrange interpolation formula

f(t) =

n∑

ν=1

f(τν)`ν(t) + rn−1(f ; t), (1.4.3)

where

`ν(t) =

n∏

µ=1
µ6=ν

t− τµ
τν − τµ

. (1.4.4)

(The dependence on n is suppressed in the notation for `ν .) Then,

λν =

∫

R

`ν(t) dλ(t), ν = 1, 2, . . . , n; Rn(f) =

∫

R

rn−1(f ; t) dλ(t). (1.4.5)

Indeed, rn−1(p; t) ≡ 0 if p ∈ Pn−1; hence, Rn(p) = 0, so that d = n − 1.
Conversely, if d = n− 1, then letting f = `µ in (1.4.1), one gets

∫
R
`µ(t) dλ(t) =∑n

ν=1 λν`µ(τν) = λµ, µ = 1, 2, . . . , n, since `µ ∈ Pn−1 and `µ(τν) = δµν .
A prototype of an interpolatory quadrature rule is the Newton–Cotes formula,

where dλ(t) = dt on [−1, 1] and τν are equally spaced on [−1, 1]. The respective
weights λν are called Cotes numbers.

Evidently, given any n distinct nodes τν , formula (1.4.1) can always be made
interpolatory, that is, to have degree of exactness d = n− 1. Theorem 1.45 tells
us under what conditions one can do better. To formulate the theorem, it is
convenient to introduce the node polynomial

ωn(t) =

n∏

ν=1

(t− τν). (1.4.6)

Theorem 1.45 Given an integer k with 0 ≤ k ≤ n, the quadrature rule (1.4.1)
has degree of exactness d = n−1+k if and only if both of the following conditions
are satisfied:

(a) Formula (1.4.1) is interpolatory.

(b) The node polynomial (1.4.6) satisfies
∫

R

ωn(t)p(t) dλ(t) = 0 for all p ∈ Pk−1.

Proof The necessity of (a) is trivial, and that of (b) immediate, since ωnp ∈
Pn−1+k and, therefore,

∫

R

ωn(t)p(t) dλ(t) =
n∑

ν=1

λνωn(τν)p(τν) = 0,

since ωn(τν) = 0.
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To prove the sufficiency of (a) and (b), one must show that under these
conditions Rn(p) = 0 for any p ∈ Pn−1+k. Given any such p, we divide it by ωn

to obtain
p = qωn + r, q ∈ Pk−1, r ∈ Pn−1.

Then, ∫

R

p(t) dλ(t) =

∫

R

q(t)ωn(t) dλ(t) +

∫

R

r(t) dλ(t).

The first integral on the right vanishes by (b), since q ∈ Pk−1. The second, since
r ∈ Pn−1, equals

n∑

ν=1

λνr(τν)

by virtue of (a). But

r(τν ) = p(τν) − q(τν)ωn(τν) = p(τν),

so that indeed ∫

R

p(t) dλ(t) =

n∑

ν=1

λνp(τν),

that is, Rn(p) = 0. 2

Note that (b) are conditions requiring ωn to be orthogonal to polynomials
of degree k − 1. These are nonlinear constraints on the nodes τν of (1.4.1). (If
k = 0, there is no constraint, since d = n− 1 is always attainable.) Once distinct
nodes have been found that satisfy these constraints, the respective weights λν ,
by (a), can be found by interpolation.

If dλ is a positive measure, then k = n in Theorem 1.45 is optimal. Indeed,
k = n+1, according to (b), would require orthogonality of ωn to all polynomials
of degree ≤ n, in particular orthogonality onto itself. This is impossible. The
optimal quadrature rule (1.4.1) with k = n, that is, having degree of exactness
d = 2n − 1, is called the Gauss quadrature rule with respect to the measure
dλ. Condition (b) then shows that ωn(t) = πn(t; dλ), that is, the nodes τν are
the zeros of the polynomial of degree n orthogonal with respect to the measure
dλ. The weights λν can be obtained by interpolation and, therefore, are also
expressible in terms of orthogonal polynomials. Computationally, however, there
are better ways to generate Gauss formulae (cf. §3.1.1).

1.4.2 Gauss-type quadrature rules

We assume in this subsection that the measure dλ is positive. The n-point Gauss
quadrature rule will be written in the form

∫

R

f(t) dλ(t) =

n∑

ν=1

λG
ν f(τG

ν ) +RG
n (f), RG

n (P2n−1) = 0, (1.4.7)
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where in the notation for the nodes and weights their dependence on n is sup-
pressed. This formula, apart from being optimal with respect to degree of exact-
ness, has a number of other remarkable properties.

Theorem 1.46 All nodes τν = τG
ν are mutually distinct and contained in the

interior of the support interval [a, b] of dλ, and all weights λν = λG
ν are positive.

Proof Since τν are the zeros of πn( · ; dλ) (cf. the last paragraph of §1.4.1), the
first assertion follows from Theorem 1.19. While formula (1.4.5) for λν gives no
clue as to their signs, it was Stieltjes who observed that

0 <

∫

R

`2µ(t) dλ(t) =

n∑

ν=1

λν`
2
µ(τν) = λµ, µ = 1, 2, . . . , n,

where the first equality follows from the fact that `2µ ∈ P2n−2 ⊂ P2n−1. 2

Theorem 1.47 The weights λG
ν are the coefficients in the partial fraction de-

composition of σn/πn (cf. (1.3.33)),

σn(z)

πn(z)
=

n∑

ν=1

λG
ν

z − τG
ν

. (1.4.8)

In particular,

λG
ν =

σn(τG
ν )

π′
n(τG

ν )
, ν = 1, 2, . . . , n. (1.4.9)

Proof If, for the moment, we denote the partial fraction coefficients by λν , we
have from (1.3.43)

∫

R

dλ(t)

z − t
−

n∑

ν=1

λν

z − τG
ν

= O(z−2n−1) as z → ∞.

By expanding both terms on the left in descending powers of z, we find that

∫

R

tk dλ(t) −
n∑

ν=1

λν [τG
ν ]k = 0, k = 0, 1, . . . , 2n− 1.

This implies λν = λG
ν . Multiplying (1.4.8) by z − τG

ν and letting z → τG
ν yields

(1.4.9). 2

Theorem 1.48 (Markov) There holds

n∑

ν=1

λG
ν f(τG

ν ) =

∫

R

p2n−1(f ; t) dλ(t), (1.4.10)

where p2n−1(f ; · ) is the Hermite interpolation polynomial of degree 2n− 1 sat-
isfying

p2n−1(f ; τG
ν ) = f(τG

ν ), p′2n−1(f ; τG
ν ) = f ′(τG

ν ), ν = 1, 2, . . . , n. (1.4.11)
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Proof As is well known, writing τν = τG
ν , one has

p2n−1(f ; t) =

n∑

ν=1

[hν(t)f(τν) + kν(t)f ′(τν)], (1.4.12)

where, with `ν as defined in (1.4.4),

hν(t) = (1 − 2(t− τν)`′ν(τν))`2ν(t),

kν(t) = (t− τν)`2ν(t).
(1.4.13)

Since hν , kν ∈ P2n−1, there follows

∫

R

p2n−1(f ; t) dλ(t) =

n∑

ν=1

[χνf(τν) + κνf
′(τν)],

where

χν =

∫

R

hν(t) dλ(t) =

n∑

µ=1

λµ(1 − 2(τµ − τν)`′ν(τν))`2ν(τµ) = λν ,

κν =

∫

R

kν(t) dλ(t) =
n∑

µ=1

λµ(τµ − τν)`2ν(τµ) = 0.

2

Corollary to Theorem 1.48 If f ∈ C2n on the support interval [a, b] of dλ,
then the remainder RG

n (f) in the Gauss formula (1.4.7) can be expressed as

RG
n (f) =

f (2n)(τ)

(2n)!

∫

R

[πn(t; dλ)]2 dλ(t), τ ∈ (a, b). (1.4.14)

Proof For functions f satisfying the assumption of the corollary, it is well
known from the theory of interpolation that

f(t) = p2n−1(f ; t) + r2n−1(f ; t), (1.4.15)

where

r2n−1(f ; t) =
f (2n)(τ(t))

(2n)!

n∏

ν=1

(t− τν)2 (1.4.16)

and τ(t) ∈ (a, b). Integrating (1.4.15) and using (1.4.16), (1.4.10), and (1.4.7)
gives

RG
n (f) =

∫

R

r2n−1(f ; t) dλ(t) =

∫

R

f (2n)(τ(t))

(2n)!

n∏

ν=1

(t− τν)2 dλ(t).

It now suffices to apply the mean value theorem of integration and to note that
τν = τG

ν in order to obtain (1.4.14). 2
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Example 1.49 Gauss–Chebyshev quadrature.
This is (1.4.7) with dλ(t) = (1 − t2)−1/2 dt, the Chebyshev measure of the

first kind (cf. Table 1.1). The nodes τν = τG
ν are the zeros of the Chebyshev

polynomial Tn. Since Tn(cos θ) = cosnθ (cf. (1.5.2)), one has

τν = cos θν , θν =
2ν − 1

2n
π, ν = 1, 2, . . . , n. (1.4.17)

In order to find the weights λν = λG
ν , we note that (1.4.7), being interpolatory,

must be exact for f(t) = Tk(t), k = 0, 1, . . . , n − 1. In view of (1.4.17) and the
orthogonality of the Chebyshev polynomials, this can be written in the form

n∑

ν=1

λν cos kθν = πδk,0, k = 0, 1, . . . , n− 1. (1.4.18)

An elementary computation (using Euler’s formula for the cosine) will show that

n−1∑
′

k=0

cos kθν cos kθµ = 1
2 nδν,µ, ν, µ = 1, 2, . . . , n, (1.4.19)

where the prime means that the first term (for k = 0) is to be halved. Multiplying
both sides of (1.4.18) by cos kθµ and then summing over k as in (1.4.19) yields
1
2 nλµ = 1

2 π, that is, λµ = π/n. Thus,

∫ 1

−1

f(t)(1 − t2)−1/2 dt =
π

n

n∑

ν=1

f

(
cos

2ν − 1

2n
π

)
+RC

n (f). (1.4.20)

We see that for each n = 1, 2, 3, . . . , the n-point Gauss–Chebyshev quadrature
rule has equal weights. According to a result of Posse (1875), this is the only
Gauss quadrature rule that has this property.

If the support interval [a, b] of dλ is bounded from below, that is, a > −∞
and b ≤ ∞, it is sometimes convenient to have a quadrature rule in which one
of the nodes is a, say τ0 = a. If, then, we replace n by n+ 1 in (1.4.1) and write
ωn+1(t) = (t− a)ωn(t), the optimal formula according to Theorem 1.45 requires
ωn to satisfy ∫

R

ωn(t)p(t)(t − a) dλ(t) = 0 for p ∈ Pn−1,

that is, ωn(t) = πn(t; dλa), where dλa(t) = (t−a) dλ(t). The remaining n nodes,
therefore, must be the zeros of πn( · ; dλa). The resulting (n+1)-point quadrature
rule ∫

R

f(t) dλ(t) = λa
0f(τa

0 ) +

n∑

ν=1

λa
νf(τa

ν ) +Ra
n(f),

τa
0 = a, πn(τa

ν ; dλa) = 0, ν = 1, 2, . . . , n,

(1.4.21)
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is called the Gauss–Radau rule. Similarly, if b also is bounded, b < ∞, and one
wants both a and b to be nodes, one obtains the (n + 2)-point Gauss–Lobatto
rule

∫ b

a

f(t) dλ(t) = λL
0 f(τL

0 ) +
n∑

ν=1

λL
ν f(τL

ν ) + λL
n+1f(τL

n+1) +Ra,b
n (f),

τL
0 = a, τL

n+1 = b, πn(τL
ν ; dλa,b) = 0, ν = 1, 2, . . . , n,

(1.4.22)

where now dλa,b(t) = (t− a)(b − t) dλ(t). In (1.4.21), one has

Ra
n(f) = γa

n

f (2n+1)(τa)

(2n+ 1)!
, γa

n =

∫

R

[πn(t; dλa)]2 dλa(t), (1.4.23)

while in (1.4.22) there holds

Ra,b
n (f) = −γn

f (2n+2)(τ)

(2n+ 2)!
, γn =

∫ b

a

[πn(t; dλa,b)]
2 dλa,b(t). (1.4.24)

(The minus sign in (1.4.24) comes from changing the factor (t− a)(t− b) in the
node polynomial to (t− a)(b− t) to make it, and with it, dλa,b(t) = (t− a)(b−
t) dλ(t), positive on [a, b].) The two quadrature rules, therefore, have degrees of
exactness respectively equal to dR = 2n and dL = 2n+ 1. Both formulae remain
valid if one takes τa

0 < a resp. τL
0 < a and/or τL

n+1 > b.

Example 1.50 Gauss–Lobatto formula for the Chebyshev measure dλ(t) =
(1 − t2)−1/2 dt.

With τL
0 = −1, τL

n+1 = 1 in (1.4.22), the internal nodes τL
ν are the zeros of the

polynomial of degree n orthogonal with respect to the measure (1 − t2) dλ(t) =
(1− t2)1/2 dt, that is, the Chebyshev polynomial Un of the second kind (cf. Com-
mentary to Table 1.1). Thus, τL

ν = cos((n + 1 − ν)π/(n + 1)), ν = 1, 2, . . . , n.
Moreover, known explicit formulae for the weights (see, e.g. Gautschi (2000b))
yield λL

0 = λL
n+1 = π/(2n+ 2) and λL

ν = π/(n+ 1), ν = 1, 2, . . . , n. The Gauss–
Lobatto formula in this case, therefore, is

∫ 1

−1

f(t)(1 − t2)−1/2 dt =
π

2(n+ 1)
[f(−1) + f(1)]

+
π

n+ 1

n∑

ν=1

f

(
cos

n+ 1 − ν

n+ 1
π

)
+R±1

n (f)
(1.4.25)

and has the distinguishing feature of having the same constant weight multiplying
all internal terms and half that weight multiplying the boundary terms.

1.5 Classical orthogonal polynomials

There is no generally accepted definition of classical orthogonal polynomials,
but loosely speaking they are those satisfying a linear second-order differential
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or difference equation and possessing a Rodrigues-type formula. Jacobi polyno-
mials and their special cases, and Laguerre, Hermite, and Meixner–Pollaczek
polynomials, are probably the most widely used classical orthogonal polynomi-
als of a continuous variable, and are certainly those most extensively studied.
For their theory, Szegö (1975) is still the best source. Among the classical or-
thogonal polynomials of a discrete variable, the best known are those of Cheby-
shev, Krawtchouk, Charlier, Meixner, and Hahn. Some of the classical orthog-
onal polynomials, notably Chebyshev polynomials of the first two kinds, are
of considerable importance for purposes of approximation. From the perspec-
tive of numerical computation, however, classical orthogonal polynomials are of
marginal interest only, as their computation from the three-term recurrence rela-
tion is straightforward. Nevertheless, having recursion coefficients αk, βk that are
known explicitly, they are useful in defining modified moments, which in turn of-
ten allows us to generate in a stable manner nonclassical orthogonal polynomials
close, in some sense, to classical ones (cf. §2.1.7).

We limit ourselves, therefore, to providing in tabular form (Tables 1.1 and
1.2) a summary of the most commonly used classical orthogonal polynomials and
their recursion coefficients, both for absolutely continuous and discrete measures.
This will be supplemented by appropriate commentary.

1.5.1 Classical orthogonal polynomials of a continuous variable

Commentary to Table 1.1 Classical orthogonal polynomials, as convention-
ally used, are neither monic nor orthonormal, but are normalized in some ad hoc
fashion. We comment on the normalizations in use and the notations that go
with them. We also identify the leading coefficients kn and squared norms hn,
that is,

pn(t) = knt
n + · · · , hn = ‖pn‖2, (1.5.1)

where pn is the respective orthogonal polynomial of degree n. Where appropriate,
some special extremal properties of interest in applications are included. The OPQ
Matlab routines for generating the recurrence coefficients of the monic orthogonal
polynomials are also referenced.

Legendre polynomials

The usual notation for the nth-degree Legendre polynomial is Pn and corresponds
to the normalization Pn(1) = 1. One has kn = (2n)!/(2nn!2) and hn = 1/(n+ 1

2 ).
In terms of the Pn, the recurrence relation is

(k + 1)Pk+1(t) = (2k + 1)tPk(t) − kPk−1(t), P0(t) = 1, P1(t) = t.

Each Pn is bounded by 1 on [−1, 1]. The shifted Legendre polynomials are
denoted by P ∗

n ; one has P ∗
n(t) = Pn(2t − 1). Matlab routines: r jacobi.m,

r jacobi01.m.
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Chebyshev polynomials

The Chebyshev polynomials of the first kind, Tn, are defined by

Tn(cos θ) = cosnθ, (1.5.2)

so that Tn(1) = 1. One has k0 = 1, kn = 2n−1 (n ≥ 1) and h0 = π, hn = 1
2π

(n ≥ 1). Evidently, |Tn| ≤ 1 on [−1, 1].
The importance of the Chebyshev polynomials Tn in approximation stems

from the extremal property in the uniform norm ‖u‖∞ = max−1≤t≤1 |u(t)| sat-
isfied by the monic Chebyshev polynomial T ◦

n = 21−nTn, n ≥ 1,

‖p‖∞ ≥ ‖T ◦
n‖∞ = 21−n for all p ∈ P◦

n. (1.5.3)

Here, P◦
n is the class of monic polynomials of degree n. Equality in (1.5.3) holds

if and only if p = T ◦
n . It is also true that for any a > 1

‖p‖∞ ≥
∥∥∥∥

Tn

Tn(a)

∥∥∥∥
∞

for all p ∈ Pn(a) := {p ∈ Pn : p(a) = 1}, (1.5.4)

with equality holding if and only if p = Tn/Tn(a). The norm is the same as in
(1.5.3).

The Chebyshev polynomial of the second kind, Un, is defined by

Un(cos θ) =
sin(n+ 1)θ

sin θ
, (1.5.5)

so that Un(1) = n + 1. One has kn = 2n and hn = 1
2π. The monic polynomial

U◦
n = 2−nUn also satisfies an extremal property, but this time in the L1-norm

‖u‖1 =
∫ 1

−1
|u(t)| dt,

‖p‖1 ≥ ‖U◦
n‖1 for all p ∈ P◦

n, (1.5.6)

with equality if and only if p = U◦
n.

The Chebyshev polynomials Vn, Wn of the third and fourth kinds are defined,
respectively, by

Vn(cos θ) =
cos(n+ 1

2 )θ

cos 1
2θ

, Wn(cos θ) =
sin(n+ 1

2 )θ

sin 1
2θ

(1.5.7)

and are normalized by Vn(1) = 1, Wn(1) = 2n+ 1. Replacing θ by θ + π yields
Wn(t) = (−1)nVn(−t). One has kn = 2n and hn = π for both Un and Vn.

All four Chebyshev polynomials satisfy the same recurrence relation

yk+1 = 2tyk − yk−1, k = 1, 2, . . . , (1.5.8)

where

y0 = 1 and y1 =





t for Tn(t),
2t for Un(T ),
2t− 1 for Vn(t),
2t+ 1 for Wn(t).

Matlab routine: r jacobi.m.
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Table 1.1 Recurrence coefficients for classical monic orthogonal polynomials with
respect to dλ(t) = w(t) dt.

w(t) Support Name αk β0 βk, k ≥ 1

1 [−1, 1] Legendre 0 2 1/(4 − k−2)
1 [0, 1] Shifted Legendre 1

2 1 1/(4(4 − k−2))

(1 − t2)−1/2 [−1, 1] Chebyshev #1 0 π 1
2 (k = 1), 1

4 (k > 1)
(1 − t2)1/2 [−1, 1] Chebyshev #2 0 1

2π
1
4

(1 − t)−1/2(1 + t)1/2 [−1, 1] Chebyshev #3 1
2 (k = 0) π 1

4
0 (k > 0)

(1 − t)1/2(1 + t)−1/2 [−1, 1] Chebyshev #4 − 1
2 (k = 0) π 1

4
0 (k > 0)

(1 − t2)λ−1/2, λ > − 1
2 [−1, 1] Gegenbauer 0

√
π

Γ(λ+ 1
2 )

Γ(λ+1)
k(k+2λ−1)

4(k+λ)(k+λ−1)

(1 − t)α(1 + t)β [−1, 1]
α > −1, β > −1 Jacobi αJ

k βJ
0 βJ

k

e−t [0,∞] Laguerre 2k + 1 1 k2

tαe−t, α > −1 [0,∞] Generalized 2k + α+ 1 Γ(1 + α) k(k + α)
Laguerre

e−t2 [−∞,∞] Hermite 0
√
π 1

2k

|t|2µe−t2 , µ > − 1
2 [−∞,∞] Generalized 0 Γ(µ+ 1

2 ) 1
2k (k even)

Hermite 1
2k + µ (k odd)

1
2π e(2φ−π)t|Γ(λ+ it)|2 [−∞,∞] Meixner–

λ > 0, 0 < φ < π Pollaczek − k+λ
tan φ

Γ(2λ)
(2 sin φ)2λ

k(k+2λ−1)
4 sin2 φ

αJ
k = β2−α2

(2k+α+β)(2k+α+β+2)
∗

βJ
0 = 2α+β+1Γ(α+1)Γ(β+1)

Γ(α+β+1) , βJ
k = 4k(k+α)(k+β)(k+α+β)

(2k+α+β)2(2k+α+β+1)(2k+α+β−1)
†

∗If k = 0, the common factor α + β in the numerator and denominator of αJ
0

should be (must be, if α + β = 0) cancelled.
†If k = 1, the last factors in the numerator and denominator of βJ

1
should be (must be, if α + β + 1 = 0) cancelled.
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Gegenbauer polynomials

These are customarily defined in terms of Jacobi polynomials P
(α,β)
n (see below)

by

P (λ)
n (t) =

Γ(λ+ 1
2 )

Γ(2λ)

Γ(n+ 2λ)

Γ(n+ λ+ 1
2 )
P

(λ− 1
2 ,λ− 1

2 )
n (t) if λ 6= 0.

Special cases are P
(1/2)
n = Pn and P

(1)
n = Un. Note that P

(λ)
0 = 1, also as λ→ 0.

If n ≥ 1, however, P
(0)
n ≡ 0, but

lim
λ→0

P
(λ)
n (t)

λ
=

2

n
Tn(t), n ≥ 1.

For λ 6= 0, one has P
(λ)
n (1) =

(
n+2λ−1

n

)
, n ≥ 1, and

kn =
2n

n!

Γ(n+ λ)

Γ(λ)
, hn =

21−2λΓ(n+ 2λ)

n!(n+ λ)Γ2(λ)
π.

The three-term recurrence relation for the P
(λ)
n , λ 6= 0, is

(k + 1)P
(λ)
k+1(t) = 2(k + λ)tP

(λ)
k (t) − (k + 2λ− 1)P

(λ)
k−1(t),

k = 1, 2, 3, . . . ,

P
(λ)
0 (t) = 1, P

(λ)
1 (t) = 2λt.

In the limit λ→ 0, after division of P
(λ)
n , n ≥ 1, by λ, it becomes the recurrence

relation for the Chebyshev polynomials Tn. Matlab routine: r jacobi.m.

Jacobi polynomials

The standard notation for the Jacobi polynomial of degree n is P
(α,β)
n . It is

normalized by P
(α,β)
n (1) =

(
n+α

n

)
, giving

kn =
1

2n

(
2n+ α+ β

n

)
, hn =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
.

The three-term recurrence relation then is

2(k + 1)(k + α+ β + 1)(2k + α+ β)P
(α,β)
k+1 (t)

= (2k + α+ β + 1)[(2k + α+ β + 2)(2k + α+ β)t+ α2 − β2]P
(α,β)
k (t)

−2(k + α)(k + β)(2k + α+ β + 2)P
(α,β)
k−1 (t), k = 1, 2, 3, . . . ,

P
(α,β)
0 (t) = 1, P

(α,β)
1 (t) = 1

2 (α+ β + 2)t+ 1
2 (α− β).

Interchanging the parameters α and β has the effect of reflecting the argument
at the origin,

P (β,α)
n (t) = (−1)nP (α,β)

n (−t).
Matlab routines: r jacobi.m, r jacobi01.m.
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There are weight functions that are less conventional and yet have orthogonal
polynomials expressible in terms of Jacobi polynomials. An example is w(t) =
|t|γ(1 − t2)α on [−1, 1], where γ > −1 and α > −1. The respective orthogonal

polynomials of even degree are P
(α,(γ−1)/2)
n/2 (2t2 − 1), and those of odd degree

tP
(α,(γ+1)/2)
bn/2c (2t2 − 1) (see Szegö (1975, eqn (4.1.6)) for α = 0 and Laščenov

(1953) or Chihara (1978, p. 156) for general α > −1).

Laguerre polynomials

The Laguerre and generalized Laguerre polynomials are usually denoted by Ln =

L
(0)
n resp. L

(α)
n . They are normalized by L

(α)
n (0) =

(
n+α

n

)
and satisfy

kn =
(−1)n

n!
, hn =

Γ(α+ n+ 1)

n!
.

Note that the leading coefficient kn is alternately positive and negative, contrary
to general convention. The three-term recurrence relation is

(k + 1)L
(α)
k+1(t) = (2k + α+ 1 − t)L

(α)
k (t) − (k + α)L

(α)
k−1(t),

k = 1, 2, 3, . . . ,

L
(α)
0 (t) = 1, L

(α)
1 (t) = α+ 1 − t.

Matlab routine: r laguerre.m. The following bounds are valid for t ≥ 0,

e−t/2|L(α)
n (t)| ≤





2 − Γ(α+ n+ 1)

n!Γ(α+ 1)
if − 1 < α < 0,

Γ(α+ n+ 1)

n!Γ(α+ 1)
if α ≥ 0.

Hermite polynomials

The Hermite polynomials Hn, as customarily defined, satisfy

kn = 2n, hn =
√
π 2nn!

and obey the three-term recurrence relation

Hk+1(t) = 2tHk(t) − 2kHk−1(t), k = 1, 2, 3, . . . ,

H0(t) = 1, H1(t) = 2t.

Matlab routine: r hermite.m. The following bound holds for t ∈ R,

e−t2/2|Hn(t)| ≤
√

2nn!.
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The generalized Hermite polynomials H
(µ)
n are normalized by

kn = 2n, hn = 22n Γ

(⌊
n+ 2

2

⌋) (
Γ

(⌊
n+ 1

2

⌋)
+ µ+

1

2

)
.

They are related to generalized Laguerre polynomials via the formulae (Chihara,
1978, Chapter V, eqn (2.43))

2−nH(µ)
n (t) =

{ (
n
2

)
!L

(µ−1/2)
n/2 (t2), n even,

−
(

n−1
2

)
! tL

(µ+1/2)
(n−1)/2(t

2), n odd.

Meixner–Pollaczek polynomials

The Meixner–Pollaczek polynomial of degree n, denoted by P
(λ)
n (t;φ), has

kn =
(2 sinφ)n

n!
, hn =

Γ(n+ 2λ)

(2 sinφ)2λn!
,

and satisfies the three-term recurrence relation

(k + 1)P
(λ)
k+1(t;φ) = 2[t sinφ+ (k + λ) cosφ]P

(λ)
k (t;φ) − (k + 2λ− 1)P

(λ)
k−1(t;φ),

k = 1, 2, 3, . . . ,

P
(λ)
0 (t;φ) = 1, P

(λ)
1 (t;φ) = 2(t sinφ+ λ cosφ).

For φ = 1
2π, the polynomial P

(λ)
n (t; 1

2π) is even or odd depending on the parity
of n. Matlab routine: r meixner pollaczek.m.

1.5.2 Classical orthogonal polynomials of a discrete variable

Commentary to Table 1.2 Notations vary in the literature; we follow the
one used in the Appendix of Askey and Wilson (1985).

Discrete Chebyshev polynomials

These are the polynomials tn( · ) = tn( · ;N) of Example 1.15. They satisfy

kn =
(2n)!

n!2
, hn =

(N + n)!

(2n+ 1)(N − n− 1)!
,

and obey the recurrence relation

(n+ 1)tn+1(x) = 2(2n+ 1)(x− 1
2 (N − 1))tn(x) − n(N2 − n2)tn−1(x),

n = 0, 1, . . . , N − 1,

t0(x) = 1, t1(x) = 2x−N + 1.

Matlab routine: r hahn.m.
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Table 1.2 Recurrence coefficients for monic discrete orthogonal polynomials with
respect to dλ(x) =

∑M
k=0 w(x)δ(x − xk) dx.

w(xk) M xk Name αn β0 βn, 1 ≤ n ≤M

1 N − 1 k Discrete
N

2

(
1 − 1

N

)
N

N2

4

1 − (n/N)2

4 − 1/n2

Chebyshev(
N

k

)
pk(1 − p)N−k N k Krawtchouk n+ p(N − 2n) 1 p(1 − p)n(N − n+ 1)

0 < p < 1
e−aak

k!
, a > 0 ∞ k Charlier n+ a 1 an

ck

Γ(β)

Γ(k + β)

k!
∞ k Meixner

(1 + c)n+ βc

1 − c
(1 − c)−β c

(1 − c)2
n(n+ β − 1)

0 < c < 1, β > 0(
α+ k

k

) (
β +N − k

N − k

)
N k Hahn αH

n βH
0 βH

n

αH
n = An + Cn, βH

0 = (α+ β + 2)N/N !, βH
n = An−1Cn (n ≥ 1)

An =
(n+ α+ β + 1)(n+ α+ 1)(N − n)

(2n+ α+ β + 1)(2n+ α+ β + 2)
, Cn =

n(n+ α+ β +N + 1)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)



34 BASIC THEORY

The choice xk = k, k = 0, 1, . . . , N − 1, of the support points is a canonical
one, corresponding to the interval [0, N−1]. A linear transformation of variables
t = a+ (x/(N − 1))(b− a) will map the points xk to equally spaced points tk =
a+(k/(N −1))(b−a) on the interval [a, b]. The corresponding monic orthogonal
polynomials in the t-variable then satisfy the recurrence relation πn+1(t) = (t−
an)πn(t) − bnπn−1(t), π−1(t) = 0, π0(t) = 1, where

an = a+
b− a

N − 1
αn, bn =

(
b− a

N − 1

)2

βn, n = 1, 2, . . . , N − 1.

Thus, for example, if a = 0, b = 1, then an = 1
2 , bn = 1

4 (1 + (1/(N − 1)))2(1 −
(n/N)2)/(4 − 1/n2), which for N → ∞ tend to the recursion coefficients of the
shifted Legendre polynomials (cf. Table 1.1).

Krawtchouk polynomials with parameter p

Krawtchouk polynomials are widely used in coding theory; see, for example,
Bannai (1990). Denoted by Kn( · ) = Kn( · ; p,N) and normalized by

kn =
1

n!
, hn =

(
N

n

)
[p(1 − p)]n,

they satisfy the three-term recurrence relation

(n+ 1)Kn+1(x) = [x− (n+ p(N − 2n))]Kn(x) − (N − n+ 1)p(1 − p)Kn−1(x),

n = 0, 1, . . . , N,

K0(x) = 1, K1(x) = x− pN.

Charlier polynomials with parameter a

Charlier polynomials are used in statistics. Their notation is Cn( · ) = Cn( · ; a)
if normalized by

kn =
(−1)n

an
, hn =

n!

an
ea.

(Note again the unconventional sign of the leading coefficient.) The recurrence
relation is

aCn+1(x) = (n+ a− x)Cn(x) − nCn−1(x), n = 0, 1, 2, . . . ,

C0(x) = 1, C1(x) = −1

a
x.
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Meixner polynomials with parameters β, c

These are denoted by Mn( · ) = Mn( · ;β, c) and satisfy

kn =
1

(β)n

(
c− 1

c

)n

, hn =
1

(β)n

n!

cn(1 − c)β
,

where (β)n = β(β + 1) · · · (β + n− 1). Their recurrence relation is

(n+ β)cMn+1(x) = [(c− 1)x+ (1 + c)n+ βc]Mn(x) − nMn−1(x),

n = 0, 1, 2, . . . ,

M0(x) = 1, M1(x) =
c− 1

βc
x+ 1.

The Charlier polynomials are a limit case of Meixner polynomials,

Cn(x; a) = lim
β→∞

Mn

(
x;β,

a

β + a

)
.

Hahn polynomials with parameters α, β

Here, the notation is Qn( · ) = Qn( · ;α, β,N), and the normalization

kn =
Γ(α+ 1)Γ(2n+ α+ 1)

Γ(n+ α+ 1)Γ(n+ α+ β + 1)
,

hn =
Γ(α+ 1)Γ(n+ β + 1)Γ(n+ α+ β +N + 2)n!

(2n+ α+ β + 1)Γ(β + 1)Γ(n+ α+ 1)Γ(n+ α+ β + 1)(N − n)!
.

The recurrence relation in Table 1.2, rewritten in terms of the Qns, becomes

kn+1

kn
Qn+1(x) = [x− (An + Cn)]Qn(x) − kn

kn−1
An−1CnQn−1(x),

n = 0, 1, . . . , N,

Q0(x) = 1, Q1(x) = 1 − α+ β + 2

(α + 1)N
x,

where An, Cn are as defined in Table 1.2. For α = β = 0, the Hahn polynomials
become the discrete Chebyshev polynomials,

Qn(x; 0, 0, N) = tn(x;N + 1).

Matlab routine: r hahn.m.

1.6 Kernel polynomials

In this section, the class of measures dλ is extended to include real or complex-
valued measures on R. The assumption of all moments (1.1.1) being finite, how-
ever, is maintained and will be tacitly made.
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1.6.1 Existence and elementary properties

Definition 1.51 A real or complex-valued measure dλ is said to be quasi-definite
if all its Hankel determinants (1.1.5) are nonzero,

∆n = detMn 6= 0, n = 1, 2, 3, . . . . (1.6.1)

A system of monic polynomials π0, π1, π2, . . . is called formal orthogonal with
respect to dλ if (1.1.8) holds with the positivity requirement replaced by ‖πk‖dλ 6=
0 for k = 0, 1, 2, . . . .

Theorem 1.52 There exists a unique system π0, π1, π2 . . . of monic formal or-
thogonal polynomials with respect to dλ if and only if dλ is quasi-definite.

Proof Let n ≥ 1 and πn(t) = tn + an−1t
n−1 + · · ·+ a0. Orthogonality requires

(πn, t
k) = 0 for k = 0, 1, . . . , n− 1, which is a system of linear equations for the

vector aT = [a0, a1, . . . , an−1] with the coefficient matrix being Mn. The system
has a unique solution if and only if Mn is nonsingular. Since this must hold for
each n ≥ 1, quasi-definiteness is a necessary condition for the existence of formal
orthogonal polynomials. The condition is also sufficient since (πn, πn) = 0 would
imply (πn, t

n) = 0, which, adjoined to the previous system, would yield

Mn+1

[
a

1

]
= 0.

This contradicts nonsingularity of Mn+1. Therefore, (πn, πn) 6= 0. 2

All the properties of orthogonal polynomials that do not depend on positivity
arguments continue to remain in force. This includes the symmetry properties
of §1.2.1 and, more importantly, Theorem 1.27, guaranteeing the existence of
a three-term recurrence relation. The coefficients αk(dλ) and βk(dλ) in (1.3.2),
however, are now in general real or complex numbers, and all we can say about
βk is that

βk(dλ) 6= 0, k = 0, 1, 2, . . . . (1.6.2)

(The case k = 0 follows from β0 = ∆1 and ∆1 6= 0.)
For an arbitrary z ∈ C let

αk = z + qk + ek−1

βk = ek−1qk−1



 k = 0, 1, 2, . . . ; e−1 = q−1 = 0, (1.6.3)

where αk = αk(dλ), βk = βk(dλ). The monic formal orthogonal polynomials are
denoted, as before, by πk( · ) = πk( · ; dλ).
Lemma 1.53 Let dλ be quasi-definite.
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(a) If πn(z) 6= 0 for n = 1, 2, 3, . . . , then the relations (1.6.3) uniquely deter-
mine q0, e0, q1, e1, . . . in this order, and

qn = −πn+1(z)

πn(z)
, n = 0, 1, 2, . . . . (1.6.4)

(b) If πn(z) 6= 0 only for n ≤ d, and πd+1(z) = 0, then (1.6.4) holds for n < d
and qd = 0. All en for n < d are uniquely defined, but ed remains undefined.

Proof (a) The quantities q0, e0, q1, e1, . . . are uniquely defined if and only if
in the process of generating the qs none of them vanishes. It suffices, therefore,
to prove (1.6.4). We do this by induction on n. For n = 0, the first relation in
(1.6.3) gives

q0 = α0 − z = −(z − α0) = −π1(z),

which by virtue of π0(z) = 1 proves (1.6.4) for n = 0. Now assume (1.6.4) is true
for n = k − 1, k ≥ 1. Then by (1.6.3),

qk = αk − z − ek−1 = αk − z − βk

qk−1
= αk − z + βk

πk−1(z)

πk(z)
.

Therefore,

qk = − 1

πk(z)
[(z − αk)πk(z) − βkπk−1(z)] = −πk+1(z)

πk(z)

by (1.3.2) with t replaced by z. This is (1.6.4) for n = k.
(b) The argument used in (a) establishes (1.6.4) for n ≤ d. In particular,

qn 6= 0 for n < d, implying that en for n < d is well defined from the second
relation in (1.6.3). On the other hand, qd = 0, which leaves ed undefined. 2

Definition 1.54 Let dλ be quasi-definite and πk( · ) = πk( · ; dλ) be the monic
formal orthogonal polynomials with respect to dλ. Let z ∈ C and assume that
πk(z) 6= 0 for k = 1, 2, 3, . . . . Then,

π̂n(t; z) =
1

t− z

[
πn+1(t) −

πn+1(z)

πn(z)
πn(t)

]
(1.6.5)

is called the kernel polynomial for the measure dλ.

Evidently, π̂n ∈ Pn. Since π̂n(t; z) ∼ tn as t → ∞, the kernel polynomial π̂n

is in fact a monic polynomial of degree n.

Theorem 1.55 Let dλ be quasi-definite and z ∈ C be such that πk(z) 6= 0 for

k = 1, 2, 3 . . . . Let dλ̂(t) = (t− z) dλ(t). Then, dλ̂ is also quasi-definite and the
kernel polynomials π̂0, π̂1, π̂2, . . . are the monic formal orthogonal polynomials
relative to dλ̂.
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Proof It suffices to prove the last statement of the theorem. Quasi-definiteness
of dλ̂ then follows from Theorem 1.52.

By definition,

(π̂n, t
k)dλ̂ = (πn+1, t

k)dλ − πn+1(z)

πn(z)
(πn, t

k)dλ,

which is zero for k < n and nonzero for k = n. 2

Lemma 1.56 Let the inner product for dλ be positive definite and assume
πn(z; dλ) 6= 0 for n = 1, 2, 3, . . . . Then, there holds

(a) π̂n(z; z) 6= 0 for n = 1, 2, 3, . . . if z ∈ R ;
(b) π̂n(z; z) 6= 0 for n = 1, 2, 3, . . . if z ∈ C.

Proof (a) Taking the limit t→ z in (1.6.5) gives

π̂n(z; z) =
Dn(z)

πn(z)
, Dn(z) := πn(z)π′

n+1(z) − πn+1(z)π
′
n(z).

A simple calculation based on the recurrence relation (1.3.2) for πk yields

D−1(z) = 0, Dn(z) = π2
n(z) + βnDn−1(z), n = 0, 1, 2, . . . ,

from which, in succession, D0(z) > 0, D1(z) > 0, D2(z) > 0, . . . , since z is real
and βn > 0 by assumption. Therefore, π̂n(z; z) 6= 0 for all n.

(b) If z is real, the assertion reduces to the one in (a). Assume, therefore,
that Im z 6= 0. Then,

π̂n(z; z) =
En(z)

(z − z)πn(z)
, En(z) := πn(z)πn+1(z) − πn+1(z)πn(z).

Since πk are real polynomials,

En(z) = πn(z)πn+1(z) − πn+1(z)πn(z) = 2i Im{πn(z)πn+1(z)}.
With z = x + iy and vn = Im{πn(z)πn+1(z)}, the recurrence relation (1.3.2)
again yields

v−1 = 0, vn = −y|πn(z)|2 + βnvn−1, n = 0, 1, 2, . . . ,

hence, in succession, sgn(vn) = −sgn(y) for n = 0, 1, 2, . . . , and En(z) 6= 0 for
all n, so that π̂n(z; z) 6= 0 for all n. 2

1.6.2 Recurrence relation

Let α̂k and β̂k be the recursion coefficients for the kernel polynomials π̂n( · ) =
π̂n( · ; z) in (1.6.5),

π̂k+1(t) = (t− α̂k)π̂k(t) − β̂kπ̂k−1(t), k = 0, 1, 2, . . . ,

π̂−1(t) = 0, π̂0(t) = 1.
(1.6.6)

The following theorem shows how the coefficients α̂k and β̂k can be generated in
terms of the quantities qk and ek of Lemma 1.53.
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Theorem 1.57 Let dλ be quasi-definite and z ∈ C be such that πn(z; dλ) 6= 0
for all n. Let qk and ek be the quantities uniquely determined by (1.6.3). Then,

α̂k = z + qk + ek

β̂k = qkek−1



 k = 0, 1, 2, . . . . (1.6.7)

Remarks to Theorem 1.57 1. In (1.6.7), β̂0 is set equal to zero; it could be

assigned any other convenient value, such as β̂0 =
∫

R
dλ̂(t).

2. For computational purposes, it is better to write the first relation in (1.6.7),
using (1.6.3), in the form

α̂k = αk − ek−1 + ek.

The reason is that, by (1.6.4), when |z| > 1,

qk = −πk+1(z)

πk(z)
∼ −z for k → ∞,

so that the term z + qk in (1.6.7) is subject to cancellation error. Depending on
the magnitude of ek, this could be detrimental to the relative accuray of α̂k.

Proof By (1.6.5) and (1.6.4), one has

π̂k(t) =
1

t− z
[πk+1(t) + qkπk(t)], (1.6.8)

hence
πk+1(t) = (t− z)π̂k(t) − qkπk(t), k = 0, 1, 2, . . . . (1.6.9)

Substituting (1.6.3) into the recurrence relation for πk gives

πk+1(t) = (t− z)πk(t) − (qk + ek−1)πk(t) − ek−1qk−1πk−1(t),

from which

πk+1(t) + qkπk(t)

t− z
= πk(t) − ek−1

πk(t) + qk−1πk−1(t)

t− z
,

or, by (1.6.8),

π̂k(t) = πk(t) − ek−1π̂k−1(t), k = 0, 1, 2, . . . . (1.6.10)

Replacing k by k + 1 in (1.6.10), and applying first (1.6.9), and then again
(1.6.10), yields

π̂k+1(t) = πk+1(t) − ekπ̂k(t)

= (t− z)π̂k(t) − qkπk(t) − ekπ̂k(t)

= (t− z)π̂k(t) − qk[π̂k(t) + ek−1π̂k−1(t)] − ekπ̂k(t),
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that is,

π̂k+1(t) = (t− z − qk − ek)π̂k(t) − qkek−1π̂k−1(t), k = 0, 1, 2, . . . . (1.6.11)

The assertion (1.6.7) now follows immediately by comparing (1.6.11) with (1.6.6).
2

Theorem 1.57 is closely related to the QD algorithm of Rutishauser (Rutishauser,
1957; Stiefel, 1958). Indeed, if in analogy to (1.6.3) one writes

α̂k = z + q̂k + êk−1

β̂k = êk−1q̂k−1



 k = 0, 1, 2, . . . ; ê−1 = q̂−1 = 0,

then (1.6.7) immediately yields the “rhombus rules” of the QD scheme,

q̂k + êk−1 = qk + ek,

êk−1q̂k−1 = qkek−1.

For q̂k, êk to be well defined, it must be assumed that π̂n(z; z) 6= 0 for all n,
which by Lemma 1.56(a) is true, provided z is real and dλ positive definite.

1.7 Sobolev orthogonal polynomials

Classical orthogonal polynomials originated in connection with polynomial least
squares problems. A relatively recent extension of the notion of orthogonality
also was motivated by a least squares problem, namely to approximate a function
simultaneously with some of its derivatives. This gives rise to an inner product
involving derivatives,

(u, v)S = (u, v)dλ0 + (u′, v′)dλ1 + · · · + (u(s), v(s))dλs
, (1.7.1)

where dλσ are positive measures not necessarily having the same support or
being of the same type. Indeed, very often, dλ0 is absolutely continuous whereas
some or all of the other measures dλσ , σ ≥ 1, are discrete. An inner product of
the type (1.7.1) is called a Sobolev inner product (hence the subscript S on the
left-hand inner product). Positive definiteness of ( · , · )S is defined exactly as in
Definition 1.1 for the case s = 0. In particular, ( · , · )S is positive definite on P

if dλ0 is, or if dλ1 is and
∫

R
dλ0(t) > 0, etc.

The Sobolev norm is defined by

‖u‖S =
√

(u, u)S =

(
s∑

σ=0

∫

R

[u(σ)(t)]2 dλσ(t)

)1/2

. (1.7.2)
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1.7.1 Definition and properties

Definition 1.58 Monic real polynomials πk(t) = tk + · · · , k = 0, 1, 2, . . . , are
called monic orthogonal polynomials of Sobolev type (or Sobolev orthogonal
polynomials for short) with respect to the measures dλσ if

(πk, π`)S = 0 for k 6= `, k, ` = 0, 1, 2, . . . and

‖πk‖S > 0 for k = 0, 1, 2, . . . .
(1.7.3)

They will be denoted by πk( · ) = πk( · ;S). The normalized Sobolev orthogonal
polynomials are π̃k = πk/‖πk‖S, k = 0, 1, 2, . . . .

Properties of the usual orthogonal polynomials which depend only on the
basic properties of inner products and not on their particular form carry over
immediately to Sobolev orthogonal polynomials. This is the case, in particular,
for unique existence as well as extremal and symmetry properties. We simply
state the respective facts.

Theorem 1.59 If the inner product (1.7.1) is positive definite on P, there exists
a unique infinite sequence {πk( · ;S)} of monic orthogonal polynomials of Sobolev
type.

Theorem 1.60 With P◦
n denoting the class of monic polynomials of degree n,

there holds
‖π‖S ≥ ‖πn( · ;S)‖S for all π ∈ P◦

n,

with equality if and only if π = πn.

Definition 1.61 The Sobolev inner product (1.7.1) is called symmetric if each
measure dλσ is symmetric in the sense of Definition 1.16.

Theorem 1.62 If the inner product (1.7.1) is symmetric, then

πk(−t;S) = (−1)kπk(t;S), k = 0, 1, 2, . . . .

1.7.2 Recurrence relation and zeros

The Sobolev inner product (1.7.1), when s ≥ 1, no longer satisfies the shift
property (1.3.1). In the case s = 1, for example, one finds

(tu, v)S − (u, tv)S =

∫

R

(uv′ − u′v)(t) dλ1(t),

which for u(t) ≡ 1, v(t) = t gives
∫

R
dλ1(t) > 0. As a consequence, one can

no longer expect (cf. the proof of Theorem 1.27) to have three-term recurrence
relations for Sobolev orthogonal polynomials. However, as for any sequence of
monic polynomials whose degrees increase by 1 from one member to the next,
they must satisfy a recurrence relation of the extended form

πk+1(t) = tπk(t) −
k∑

j=0

βk
j πk−j(t), k = 0, 1, 2, . . . . (1.7.4)
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Theorem 1.63 The sequence of monic polynomials defined by (1.7.4) is orthog-
onal with respect to the Sobolev inner product (1.7.1) if and only if

βk
j =

(tπk, πk−j)S

(πk−j , πk−j)S
, j = 0, 1, . . . , k; k = 0, 1, 2, . . . . (1.7.5)

Proof (a) Assume πk( · ) = πk( · ;S), k = 0, 1, 2, . . . . Taking the inner product
of both sides of (1.7.4) with πk−j then gives

0 = (πk+1, πk−j)S = (tπk, πk−j)S − βk
j (πk−j , πk−j)S , j = 0, 1, . . . , k,

from which (1.7.5) follows.
(b) Assume (1.7.5). Then (π1, π0)S = (tπ0, π0)S − β0

0(π0, π0)S = 0, that
is, π0 and π1 are Sobolev-orthogonal. We proceed by induction on k. Suppose
π0, π1, . . . , πk is a system of monic Sobolev orthogonal polynomials. Then,

(πk+1, πk−j)S = (tπk, πk−j)S − βk
j (πk−j , πk−j)S = 0, j = 0, 1, . . . , k.

Thus, the system π0, π1, . . . , πk, πk+1 is also Sobolev-orthogonal. 2

In cases of symmetry, the recurrence formula (1.7.4) simplifies.

Theorem 1.64 If the inner product (1.7.1) is symmetric in the sense of Defi-
nition 1.61, then

βk
2r = 0, r = 0, 1, . . . , bk/2c. (1.7.6)

Proof In the inner product (tπk, πk−2r)S , the two members tπk and πk−2r by
Theorem 1.62 are polynomials of opposite parity, that is, one is even and the
other odd, or vice versa, so that their product is odd. The same is true for all
derivatives. By the symmetry of the measures dλσ it follows that (tπk, πk−2r)S =
0; hence, βk

2r = 0. 2

Let

Hn =




β0
0 β1

1 β2
2 · · · βn−2

n−2 βn−1
n−1

1 β1
0 β2

1 · · · βn−2
n−3 βn−1

n−2

0 1 β2
0 · · · βn−2

n−4 βn−1
n−3

...
...

...
...

...
0 0 0 · · · βn−2

0 βn−1
1

0 0 0 · · · 1 βn−1
0




(1.7.7)

be the n × n Hessenberg matrix of the coefficients βk
j arranged upward in the

kth column, and let

π(t) = [π0(t), π1(t), . . . , πn−1(t)]
T. (1.7.8)

Theorem 1.65 The zeros τ1, τ2, . . . , τn of πn( · ;S) are the eigenvalues of Hn,
with πT(τν) being a left eigenvector belonging to the eigenvalue τν .
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Proof Write the first n equations of (1.7.4) in matrix form as

tπT(t) = πT(t)Hn + πn(t)eT
n ,

where eT
n = [0, 0, . . . , 1] ∈ Rn. Putting t = τν yields

τνπT(τν) = πT(τν)Hn, ν = 1, 2, . . . , n,

which proves the assertion, since πT(τν) is a nonzero vector, its first component
being π0(τν) = 1. 2

Remark In the case s = 0, one has βk
j = 0 for j > 0, and the matrix Hn is

tridiagonal. It can be symmetrized by a (real) diagonal similarity transformation
and then becomes the Jacobi matrix Jn(dλ0) (cf. (1.3.15)). In the case s > 0, a
symmetrization is no longer possible, since some of the eigenvalues of Hn may
well be complex.

1.8 Orthogonal polynomials on the semicircle

In a sense, orthogonal polynomials on the semicircle are halfway between or-
thogonal polynomials on the real line and orthogonal polynomials on the unit
circle. With the latter, they share the property of being complex-valued, with
the former having the distinction of satisfying a three-term recurrence relation.
We give a brief account of these polynomials, relegating some of the proofs to
the literature.

1.8.1 Definition, existence, and representation

Let w(z) be a weight function which is positive on (−1, 1), has moments of all
orders, and is extendible to a function analytic in the half-disk D+ = {z ∈
C : |z| < 1, Im z > 0}. Let Γ be the circular part of ∂D+. For the inner product
(1.1.2) we now use the notation

[u, v] =

∫ 1

−1

u(t)v(t)w(t) dt, (1.8.1)

and define, along with it, a complex inner product by

(u, v) =

∫

Γ

u(z)v(z)w(z)(iz)−1 dz =

∫ π

0

u(eiθ)v(eiθ)w(eiθ) dθ, (1.8.2)

assuming the integral exists for polynomials u and v. We further assume

Re (1, 1) = Re

∫ π

0

w(eiθ) dθ 6= 0. (1.8.3)

Note that the inner product (1.8.2) is not Hermitian, that is, (u, u) = ‖u‖2 is
not necessarily real, let alone positive.
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In slight deviation from the notation in Definition 1.3, the monic orthogonal
polynomials with respect to the inner product (1.8.1) will be denoted by pk,

[pk, p`] = 0 for k 6= `, pk(t) = tk + · · · , (1.8.4)

and the recurrence relation they satisfy by

yk+1 = (z − ak)yk − bkyk−1, k = 0, 1, 2, . . . . (1.8.5)

Thus, if y−1 = 0, y0 = 1, then yk = pk(z); if y−1 = −1, y0 = 0, then yk =
qk(z), where qk are the polynomials of the second kind (denoted earlier by σk;
cf. Theorem 1.39),

qk(z) =

∫ 1

−1

pk(z) − pk(t)

z − t
w(t) dt. (1.8.6)

The moments associated with the inner products (1.8.1) and (1.8.2) will be
denoted by mr and µr, respectively,

mr = [tr, 1], µr = (tr, 1), r = 0, 1, 2, . . . . (1.8.7)

Recall that b0 = m0 and note that the quantity in (1.8.3) is Reµ0.
The question of interest is whether or not the complex inner product (1.8.2)

also admits a sequence of (complex) monic orthogonal polynomials πk, and if
so, how they are related to the polynomials pk. The next theorem answers these
questions in the affirmative.

Theorem 1.66 (Gautschi, Landau, and Milovanović, 1987) Under assumption
(1.8.3) and the assumptions made about the weight function w, there exists a
unique system of (complex) monic orthogonal polynomials πk( · ) = πk( · ;w) with
respect to the inner product (1.8.2). In fact,

πn(z) = pn(z) − iθn−1pn−1(z), n = 0, 1, 2, . . . , (1.8.8)

where

θn−1 =
µ0pn(0) + iqn(0)

iµ0pn−1(0) − qn−1(0)
, n = 0, 1, 2, . . . . (1.8.9)

Alternatively,

θn = ian +
bn
θn−1

, n = 0, 1, 2, . . . ; θ−1 = µ0, (1.8.10)

where an, bn are the recursion coefficients in (1.8.5) and µ0 = (1, 1). In partic-
ular, if an = 0 for all n, then all θn are real (in fact, positive). Finally,

(πn, πn) = θn−1[pn−1, pn−1] 6= 0, n = 1, 2, 3, . . . , (π0, π0) = µ0. (1.8.11)

Proof See Gautschi et al. (1987, pp. 392–393). 2
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The polynomials πk of Theorem 1.66 are referred to as orthogonal polynomi-
als on the semicircle relative to the weight function w. Equation (1.8.8) shows
how they are related to the ordinary orthogonal polynomials pk. The latter, con-
versely, can be expressed in terms of the former by (cf. Gautschi et al. (1987,
eqn (2.17)))

pn(z) =
n∑

k=0

(
n∏

ν=k+1

iθν−1

)
πk(z). (1.8.12)

Example 1.67 w(z) = (1 − z)α(1 + z)β, α > −1, β > −1.
For real z = x on (−1, 1), this is the Jacobi weight function; see Table 1.1.

For complex z, the fractional powers are to be understood in terms of their
principal branches. The quantity µ0 crucial for the existence of the polynomials
πk is µ0 =

∫
Γ w(z)(iz)−1 dz. To compute it, we apply Cauchy’s theorem, using

the contour Cε, ε > 0, consisting of ∂D+ with a small semicircle of radius ε
about the origin spared out. This gives

0 =

∫

Γ

w(z)(iz)−1 dz +

(∫ −ε

−1

+

∫ 1

ε

)
w(x)(ix)−1 dx+

∫

cε

w(z)(iz)−1 dz,

where cε is the upper semicircle of radius ε centered at the origin. Letting ε ↓ 0,
one gets

0 = µ0 − i

∫ 1

−1

− w(x)

x
dx− πw(0),

where the integral is a Cauchy principal value integral, that is,

µ0 = π + i

∫ 1

−1

− w(x)

x
dx.

Hence, Reµ0 6= 0, and the polynomials orthogonal on the semicircle with respect
to the Jacobi weight function do indeed exist.

1.8.2 Recurrence relation

Since the inner product (1.8.2) clearly satisfies the shift property (1.3.1), the
orthogonal polynomials πk, if they exist, must satisfy a three-term recurrence
relation. The precise details are contained in the following theorem.

Theorem 1.68 Under assumption (1.8.3), the (monic complex) polynomials
πk( · ) = πk( · ;w) orthogonal with respect to the inner product (1.8.2) satisfy
the recurrence relation

πk+1(z) = (z − iαk)πk(z) − βkπk−1(z), k = 0, 1, 2, . . . ,

π−1(z) = 0, π0(z) = 1,
(1.8.13)

where the coefficients αk, βk are given by
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α0 = θ0 − ia0, αk = θk − θk−1 − iak, k = 1, 2, 3, . . . , (1.8.14)

βk = θk−1(θk−1 − iak−1), k = 1, 2, 3, . . . , (1.8.15)

with θn defined in (1.8.9) [or (1.8.10)] and an in (1.8.5).

Remark to Theorem 1.68 The coefficient β0 is arbitrary, but may conve-
niently be defined by β0 = µ0. Alternative expressions for the αk are

α0 =
m0

µ0
, αk = −θk−1 +

bk
θk−1

, k = 1, 2, 3, . . . ,

where bk are the coefficients in (1.8.5).

Proof Writing the three-term recurrence relation in the form (1.8.13), we de-
termine αk, βk. Inserting (1.8.8) into (1.8.13) yields, for k ≥ 1,

pk+1(z)− iθkpk(z) = (z− iαk)[pk(z)− iθk−1pk−1(z)]−βk[pk−1(z)− iθk−2pk−2(z)].

Now substitute zpk(z) and zpk−1(z) from the recurrence relation (1.8.5) to obtain

[ak + i(θk − θk−1 − αk)]pk(z) + [bk − βk − θk−1(αk + iak−1)]pk−1(z)
+i[βkθk−2 − bk−1θk−1]pk−2(z) ≡ 0, k ≥ 1.

Since {pn} are linearly independent, one concludes that

ak + i(θk − θk−1 − αk) = 0, k ≥ 1,
bk − βk − θk−1(αk + iak−1) = 0, k ≥ 1,

βkθk−2 − bk−1θk−1 = 0, k ≥ 2.
(1.8.16)

The last relation in (1.8.16), in conjunction with (1.8.10), yields (1.8.15) for
k ≥ 2. The first relation in (1.8.16) gives (1.8.14) for k ≥ 1. To verify (1.8.15) for
k = 1, it suffices to apply the second relation in (1.8.16) for k = 1 and combine
the result with (1.8.10) and (1.8.14) for k = 1. With αk, βk thus determined, the
second relation in (1.8.16) is automatically satisfied, as one checks readily from
(1.8.10). Finally, from π1(z) = z − iα0 = p1(z) − iθ0 = z − a0 − iθ0 one obtains
the formula for α0 in (1.8.14). 2

The alternative formulae in the Remark follow from the relations (1.8.14)
and (1.8.15) by applying (1.8.10).

The existence of the polynomials πk( · ;w) is guaranteed for any weight func-
tion w that is symmetric on (−1, 1) and does not vanish at the origin.

Theorem 1.69 If the weight function w satisfies

w(−z) = w(z), w(0) > 0, (1.8.17)

then
µ0 = πw(0), (1.8.18)

and the system of orthogonal polynomials {πk( · ;w)} exists uniquely.
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Proof Proceeding as in Example 1.67, one finds

0 = µ0 − i

∫ 1

−1

− w(x)

x
dx− πw(0).

Here, the Cauchy principal value integral vanishes because of symmetry, and
(1.8.18) follows. 2

Symmetry also simplifies the formulae for the recursion coefficients in (1.8.13),
since ak = 0 for all k ≥ 0. Hence,

α0 = θ0, αk = θk − θk−1, βk = θ2k−1 (k ≥ 1), (1.8.19)

and by (1.8.10) and (1.8.18),

θ0 =
m0

πw(0)
, θ1 =

b1
θ0
,

θ2m = θ0
b2b4 · · · b2m

b1b3 · · · b2m−1

θ2m+1 =
1

θ0

b1b3 · · · b2m+1

b2b4 · · · b2m





m = 1, 2, 3, . . . .

(1.8.20)

Example 1.70 Gegenbauer weight w(λ)(z) = (1 − z2)λ− 1
2 , λ > − 1

2 .
Here (cf. Table 1.1)

m0 =
√
π

Γ(λ+ 1
2 )

Γ(λ+ 1)
,

bk =
k(k + 2λ− 1)

4(k + λ)(k + λ− 1)
, k = 1, 2, 3, . . . ,

and from (1.8.20) one finds by induction

θ0 =
1√
π

Γ(λ+ 1
2 )

Γ(λ+ 1)
, θk =

1

λ+ k

Γ(1
2 (k + 2))Γ(λ+ 1

2 (k + 1))

Γ(1
2 (k + 1))Γ(λ+ 1

2k)
, k ≥ 1.

For λ = 1
2 (i.e. w(z) = 1), this reduces to

θk =
2

2k + 1

(
Γ(1

2 (k + 2))

Γ(1
2 (k + 1))

)2

, k ≥ 0 (w(z) = 1).

1.8.3 Zeros

Similarly as for ordinary and Sobolev orthogonal polynomials, the zeros of πn( · ) =
πn( · ;w), here too, can be characterized as eigenvalues of a certain matrix, this
time a complex matrix, giving rise to complex eigenvalues.
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We let again π(z) = [π0(z), π1(z), . . . , πn−1(z)]
T and introduce the (complex

tridiagonal) matrix

Jn(w) =




iα0 1 0

β1 iα1 1

β2 iα2 1

. . .
. . .

. . .

βn−2 iαn−2 1

0 βn−1 iαn−1




(1.8.21)

in order to write (1.8.13) in the form

zπ(z) = Jn(w)π(z) + πn(z)en. (1.8.22)

In the same manner as before in §1.3.2 and §1.7.2, there follows:

Theorem 1.71 The zeros τ1, τ2, . . . , τn of πn( · ;w) are the eigenvalues of the
matrix Jn(w) in (1.8.21), with π(τν) being an eigenvector belonging to the eigen-
value τν .

If the weight function w is symmetric, then βk = θ2k−1 is positive (cf. (1.8.20))
and a similarity transformation with the diagonal matrix Dn = diag(1, iθ0, i

2θ0θ1,
i3θ0θ1θ2, . . .) ∈ Cn×n transforms (1.8.21) into a real (nonsymmetric) tridiagonal
matrix

−iD−1
n Jn(w)Dn =




α0 θ0 0

−θ0 α1 θ1

−θ1 α2 θ2
. . .

. . .
. . .

−θn−3 αn−2 θn−2

0 −θn−2 αn−1




. (1.8.23)

The zeros τν , therefore, are the eigenvalues of the real matrix on the right in
(1.8.23) multiplied by i.

Example 1.72 Gegenbauer weight function w(λ)(z) = (1 − z2)λ− 1
2 , λ > − 1

2 .
It can be shown (Gautschi, Landau, and Milovanović, 1987, §6.3) that all

zeros τ (λ) of πn( · ;w(λ)), n ≥ 2, are simple, distributed symmetrically with
respect to the imaginary axis, and are all contained in the open half-disk D+ =
{z ∈ C : |z| < 1, Im z > 0}. The inclusion statement may well hold for arbitrary
Jacobi weight functions w(α,β)(z) = (1−z)α(1+z)β, but this is still a conjecture.
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1.9 Notes to Chapter 1

The standard text on orthogonal polynomials is Szegö (1975). It deals largely
with classical orthogonal polynomials and polynomials orthogonal on the unit
circle. Many topics not considered in this book can be found there, among them
asymptotics and inequalities of orthogonal polynomials and their zeros, and ex-
pansions in orthogonal polynomials. A text similar in outlook, though limited
to polynomials on the real line, is Suetin (1979). The theory of orthogonal poly-
nomials for more general measures of orthogonality is treated in Freud (1971)
and, more recently, in Stahl and Totik (1992). The latter is a particularly rich
source on nth-root asymptotics. Another useful source on asymptotics is Van
Assche (1987), whereas Deift (1999) develops asymptotics from the rather differ-
ent viewpoint of Riemann–Hilbert problems. A text strongly rooted in continued
fraction theory and recurrence relations is Chihara (1978). For orthogonal poly-
nomials with exponential weight functions, see the research monograph Levin
and Lubinsky (2001). Orthogonal polynomials with respect to discrete measures
are dealt with extensively in Nikiforov, Suslov, and Uvarov (1991). The roles
of classical orthogonal polynomials in algebraic combinatorics, or in stochastic
processes, are discussed, respectively, in Bannai (1990) and Schoutens (2000).
Bultheel and Van Barel (1997) consider orthogonal polynomials in the context
of rational approximation and linear algebra.

While in this book only polynomials are considered that are orthogonal rela-
tive to a single measure, there are interesting polynomials—the so-called multiple
orthogonal polynomials—that satisfy orthogonality relations relative to a finite
number r of measures supported either on mutually distinct intervals, or on one
common interval. These arise in simultaneous rational approximation of r func-
tions. For a detailed account of multiple orthogonal polynomials, see Aptekarev
(1998) and Nikishin and Sorokin (1991, Chapter 4), for a number of concrete
examples involving continuous and discrete measures Van Assche and Cousse-
ment (2001), Coussement and Van Assche (2003), Aptekarev, Branquinho, and
Van Assche (2003), Arvesú, Coussement, and Van Assche (2003), Beckermann,
Coussement, and Van Assche (2004), and for computational aspects Milovanović
and Stanić (2003).

For recent expositions of orthogonal polynomials on the unit circle and re-
lated quadrature methods, see, for example, Jones, Nj̊astad, and Thron (1989),
Gragg (1993), Bultheel, González-Vera, Hendriksen, and Nj̊astad (1994), Daruis
and González-Vera (2001), and Bultheel, Daruis, and González-Vera (2001), the
last work exhibiting the close connection between Gauss quadrature formulae
on [−1, 1] and Szegö quadrature formulae on the unit circle for measures ap-
propriately related. For Jacobi-type weight functions, Szegö orthogonal polyno-
mials and quadrature rules have been obtained in Daruis, González-Vera, and
Nj̊astad (2001). Rational Szegö quadrature formulae exact on spaces of ratio-
nal functions having prescribed poles are discussed in Bultheel, González-Vera,
Hendriksen, and Nj̊astad (2001). Formally orthogonal polynomials on arcs in the
complex plane and related (complex) Gaussian quadrature formulae are consid-
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ered in Saylor and Smolarski (2001) in connection with the biconjugate gradient
algorithm of numerical linear algebra.

Orthogonal polynomials of several variables and matrix orthogonal polyno-
mials are beyond the scope of this book. For the former, see, for example, Dunkl
and Xu (2001), and for the latter, Sinap and Van Assche (1996) and Freund
(2001).

§1.1. There is a theory of formal orthogonal polynomials which is based on
three-term recurrence relations with arbitrary real or complex coefficients αk,
βk 6= 0, and associated complex Jacobi matrices (cf. also §1.6). These are of
considerable interest in such areas as the iterative solution of large systems of
linear algebraic equations and Padé approximation. For a recent account, see
Beckermann (2001).

§1.2.4. There is some work, particularly by Italian researchers, on s-orthogonal
polynomials and generalizations thereof, called σ-orthogonal polynomials; see, for
example, Gautschi (1981b, §2.2.3). Interestingly, the Chebyshev polynomials Tn

(cf. Table 1.1) are s-orthogonal on [−1, 1] for each s = 0, 1, 2, . . . with respect
to the Chebyshev weight function w(t) = (1 − t2)−1/2.

§1.3. For Jacobi matrices that are positive definite (and hence have only
positive eigenvalues), one can use the Cholesky decomposition of the Jacobi
matrix to arrive at a pair of coupled two-term recurrence relations. The potential
advantages of two-term vs three-term recursion are discussed in Laurie (1999b).

§1.4.1. It is difficult to trace the origin of Theorem 1.45. Jacobi must have
been aware of it; the technique in the proof of this theorem of dividing one
polynomial by another is due to Jacobi (1826).

§1.4.2. Gauss (1814), in an attempt to improve upon the Newton–Cotes
formula, discovered the quadrature rule named after him in the simplest case
dλ(t) = dt on [−1, 1] using continued fractions. The generalization to arbitrary
weight functions is due to Christoffel (1877). The original reference to Theorem
1.48 is Markoff (1885).

Gauss-type quadrature rules (with dλ(t) = dt) having prescribed nodes on
the boundary of, or outside, the support interval have been studied already
by Christoffel (1858). Radau’s formula, which is a special case, is mentioned
in Radau (1880), while the Lobatto formula appears in Lobatto (1852). Anti-
Gauss rules, introduced by Laurie (1996), are (n + 1)-point rules having degree
of exactness 2n− 1, which integrate polynomials of degree 2n+ 1 with an error
that is equal in modulus, but opposite in sign, to the error of the n-point Gauss
rule. Modified anti-Gauss rules are defined and applied to two-sided estimation
of integrals in Calvetti and Reichel (2003a).

The problem of approximating r (>1) weighted integrals of the same function
by a Gauss-like quadrature rule having the same set of nodes has been considered
in Borges (1994). Although not explicitly stated by the author, the problem is
related to multiple orthogonal polynomials.

Extensions of Gaussian quadrature formulae to matrix-valued weight func-
tions and their relation to orthogonal matrix polynomials is discussed in Durán
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and Polo (2002) and Durán and Defez (2002). Other generalizations involve
exactness for systems of nonpolynomial functions. For recent work on this, in-
cluding computational algorithms, see Cheng, Rokhlin, and Yarvin (1999); the
case of rational functions is discussed in §3.1.4.

§1.6. Kernel polynomials for positive definite measures dλ were introduced
by Stiefel (1958) and applied to problems of numerical linear algebra. For the
extension to quasi-definite measures, see Chihara (1978). The exposition in §1.6
follows closely the treatment in Gautschi (1982a). The argumentation in the
proof of Theorem 1.57 goes back to Stiefel (1958, §5), but does not require the
assumption of positive definiteness of ( · , · )dλ. The second remark to Theorem
1.57 is due to Chinellato (2003).

§1.7. Simultaneous least squares approximation to a function and its deriva-
tives has already been studied by Lewis (1947), where the emphasis is on the
Peano representation of the error. The use, in this context, of polynomials orthog-
onal with respect to a Sobolev inner product was first suggested by Althammer
(1962), who considered s = 1, dλ0(t) = dt, dλ1(t) = γ dt on [−1, 1] where γ > 0
is a constant. The problem, and in particular the polynomials involved, were
subsequently studied by Gröbner (1967) and Brenner (1969). Since these early
days, the literature on the subject has mushroomed enormously, most of the work
having been done for its own sake, with little regard to applications. Recent sur-
veys can be found in Marcellán, Alfaro, and Rezola (1993), Marcellán, Pérez,
Piñar, and Ronveaux (1996), Meijer (1996), and an extensive bibliography in
Marcellán and Ronveaux (1995).

For very special measures there are recurrence relations of a different type,
which are shorter than (1.7.4); see, for example, Marcellán and Ronveaux (1990),
Evans, Littlejohn, Marcellán, Markett, and Ronveaux (1995), Gautschi (1997c),
and the Notes to §2.5.

§1.8. Polynomials orthogonal on the semicircle were first introduced by
Gautschi and Milovanović (1986a) and given a more definitive treatment in
Gautschi, Landau, and Milovanović (1987). The theory has been extended to
arbitrary arcs in the complex plane by de Bruin (1990), Milovanović and Ra-
jković (1990), (1994). For polynomials orthogonal on radial rays in the complex
plane, see Milovanović (2002), and Milovanović and Cvetković (2004) for polyno-
mials formally orthogonal with respect to the complex measure dλ(t) = teimt dt
on [−1, 1].
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COMPUTATIONAL METHODS

The fundamental problem is to compute the first n recursion coefficients αk(dλ),
βk(dλ), k = 0, 1, . . . , n− 1 (cf. §1.3.1), where n ≥ 1 is a (typically large) integer
and dλ a positive measure given either implicitly via moment information or
explicitly. In the former case, an important aspect is the sensitivity of the problem
with respect to small perturbations in the data (the first 2n moments or modified
moments); this is the question of conditioning. In principle, there is a simple
algorithm, essentially due to Chebyshev, that produces the desired recursion
coefficients from given moment information. The effectiveness of this algorithm,
however, depends critically on the conditioning of the underlying problem. If
the problem is ill-conditioned, as it often is, recourse has to be made either
to symbolic computation or to the explicit form of the measure. A procedure
applicable in the latter case is discretization of the measure and subsequent
approximation of the desired recursion coefficients by those relative to a discrete
measure.

Other problems calling for numerical methods are the evaluation of Cauchy
integrals of orthogonal polynomials and the problem of passing from the recur-
sion coefficients of a measure to those of a modified measure—the original mea-
sure multiplied by a rational function. Finally, Sobolev orthogonal polynomials
present their own problems of calculating recursion coefficients and zeros.

2.1 Moment-based methods

Orthogonal polynomials as well as their recursion coefficients are expressible in
determinantal form in terms of the moments of the underlying measure. Indeed,
much of the classical theory of orthogonal polynomials is moment-oriented. This
is true, in particular, of a classical algorithm due to Chebyshev, which generates
the recursion coefficients directly from the moments, bypassing determinants.

The use of moments, unfortunately, is numerically problematic inasmuch as
they give rise to severe ill-conditioning. In many cases, particularly for measures
with bounded support, it is possible, however, to work with the so-called “mod-
ified moments,” which lead to better conditioned problems and a more stable
analog of the Chebyshev algorithm.

2.1.1 Classical approach via moment determinants

As in (1.1.5), we let ∆n denote the Hankel determinant of order n in the moments
µr = µr(dλ) given by (1.1.1),

52
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∆0 = 1, ∆n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
...

...
µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, . . . . (2.1.1)

In addition, we define

∆′
0 = 0, ∆′

1 = µ1, ∆′
n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−2 µn

µ1 µ2 · · · µn−1 µn+1

...
...

...
...

µn−1 µn · · · µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣
, n = 2, 3, . . . .

(2.1.2)
Thus, ∆′

n is the Hankel determinant ∆n+1 with the penultimate column and the
last row removed. By transposition, this is the same as the Hankel determinant
∆n+1 with the penultimate row and the last column removed.

Theorem 2.1 Let πk( · ) = πk( · ; dλ) be the monic orthogonal polynomial of
degree k with respect to the measure dλ (cf. Definition 1.3). Then,

πk(t) =
1

∆k

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk

µ1 µ2 · · · µk+1

...
...

...
µk−1 µk · · · µ2k−1

1 t · · · tk

∣∣∣∣∣∣∣∣∣∣∣

= tk − ∆′
k

∆k
tk−1 + · · · , k = 1, 2, . . . . (2.1.3)

Proof The determinantal expression in (2.1.3) is clearly a monic polynomial of
degree k. Denote it by dk(t). Let C0, C1, . . . , Ck be the (signed) cofactors of the
elements in the last row of ∆k+1. From

trdk(t) =
1

∆k

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk

µ1 µ2 · · · µk+1

...
...

...
µk−1 µk · · · µ2k−1

tr tr+1 · · · tr+k

∣∣∣∣∣∣∣∣∣∣∣

,

using Laplace expansion of the determinant with respect to the last row, one
gets

trdk(t) =
1

∆k

k∑

`=0

C`t
r+`.

Thus, upon integration,

∫

R

trdk(t) dλ(t) =
1

∆k

k∑

`=0

C`µr+` = 0, r = 0, 1, . . . , k − 1,

since the sum is the Laplace expansion with repect to the last row of the Hankel
determinant ∆k+1 in which the last row has been replaced by one of the earlier
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rows. This proves orthogonality of dk to all polynomials of lower degree; hence,
by uniqueness, dk ≡ πk. The coefficient of tk−1 in the determinant of (2.1.3) is
the (signed) cofactor of tk−1, which is −∆′

k. 2

Theorem 2.2 The recursion coefficients αk = αk(dλ), βk = βk(dλ) (cf. Theo-
rem 1.27) for the monic orthogonal polynomials πk( · ; dλ) are given by

αk =
∆′

k+1

∆k+1
− ∆′

k

∆k
, k = 0, 1, 2, . . . , (2.1.4)

βk =
∆k+1∆k−1

∆2
k

, k = 1, 2, 3, . . . . (2.1.5)

Proof By (1.3.3) and (1.3.4), one has

αk =
(tπk, πk)

(πk, πk)
, k ≥ 0; βk =

(πk, πk)

(πk−1, πk−1)
, k ≥ 1.

On the other hand, using (2.1.3),

(tπk, πk) =

(
tk+1 − ∆′

k

∆k
tk + · · · , πk

)
= (tk+1, πk) − ∆′

k

∆k
(tk, πk),

which holds also for k = 0. By an argument similar to the one in the proof of
Theorem 2.1 and noting the sentence immediately preceding Theorem 2.1, one
finds

(tk+1, πk) =
∆′

k+1

∆k
, (tk, πk) = (πk, πk) =

∆k+1

∆k
.

Therefore,

αk =

(
∆′

k+1

∆k
− ∆′

k

∆k

∆k+1

∆k

)/
∆k+1

∆k
=

∆′
k+1

∆k+1
− ∆′

k

∆k
,

βk =
∆k+1

∆k

/
∆k

∆k−1
=

∆k+1∆k−1

∆2
k

.

2

Remark to Theorem 2.2 If one defines ∆−1 = 1, eqn (2.1.5) holds also for
k = 0, since ∆1 = µ0 = β0 (cf. (1.3.6)).

The formulae (2.1.4) and (2.1.5) are not recommended as a method for com-
puting the recursion coefficients. For one, they require the evaluation of deter-
minants or, equivalently, triangular factorization of the respective matrices. This
can be bypassed by Chebyshev’s algorithm (cf. §2.1.7). For another, the problem
solved by (2.1.4) and (2.1.5), namely the computation of the coefficients αk(dλ)
and βk(dλ), from the moments of dλ, can be severely ill-conditioned (cf. §2.1.6).
Nevertheless, formulae (2.1.4) and (2.1.5), when evaluated in higher-precision
arithmetic, do have applications, for example, in testing the accuracy of the
nodes and weights of Gaussian quadrature rules; cf. Gautschi (1983).
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2.1.2 Condition of nonlinear maps

Consider first the simplest map R → R defined by y = f(x), where f is a real-
valued nonlinear function of a real variable x. With x assumed fixed, our interest
is in the effect of a small perturbation ∆x of x upon the value y of f . We denote
by ∆y the change in y caused by ∆x. Assuming f differentiable at x, one has by
Taylor’s formula

∆y ≈ f ′(x)∆x, (2.1.6)

an approximation that, in the limit as ∆x → 0, becomes an identity. Thus, in
terms of absolute perturbations, the value of |f ′(x)| measures the sensitivity of
f at the point x with respect to small perturbations.

Definition 2.3 If f : R → R is differentiable at the point x, then

(condabs f)(x) = |f ′(x)| (2.1.7)

is called the absolute condition number of f at the point x.

In practice, it is often more relevant to know the sensitivity of f in terms of
relative perturbations. Thus, assuming x 6= 0 and y = f(x) 6= 0, writing (2.1.6)
equivalently as

∆y

y
≈ xf ′(x)

f(x)

∆x

x
(2.1.8)

motivates the following definition.

Definition 2.4 If f : R → R is differentiable at x 6= 0 and y = f(x) 6= 0, then

(condrel f)(x) =

∣∣∣∣
xf ′(x)

f(x)

∣∣∣∣ (2.1.9)

is called the relative condition number of f at x.

Remark to Definition 2.4 If x = 0 and y 6= 0, one should consider an ab-
solute perturbation of x and a relative perturbation of y, and the other way
around if x 6= 0 and y = f(x) = 0. The respective condition numbers then are
(cond f)(x) = |f ′(x)/f(x)| and (cond f)(x) = |xf ′(x)|. If x = y = 0, the appro-
priate condition number is the one in Definition 2.3. Since these modifications
create discontinuities in the behavior of the condition number, it is preferable,
and in fact quite natural, to use relative error only if the quantity in question is
greater than 1 in modulus, and absolute error otherwise. This gives rise to the
mollified condition number

(condmol f)(x) =
m(x)|f ′(x)|
m(f(x))

, (2.1.10)

where m( · ) is the mollifier function

m(t) =

{
1 if |t| < 1,
|t| otherwise.

(2.1.11)
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A map f : R → R is called ill-conditioned at the point x if its condition
number at x is much larger than 1 (typically by many decimal orders of magni-
tude) and well-conditioned otherwise. A condition number of the order 10d means
roughly a loss of d decimal digits when the data are perturbed by one unit in the
last decimal. Whether or not this is acceptable depends both on the accuracy
desired and the precision available. For example, if the working precision is 15
decimal digits, and the condition number is 108, the result will be accurate to
about 15− 8 = 7 digits, which is acceptable if one needs 7-digit accuracy or less.

Suppose now that f is a map Rm → Rn defined by y = f(x), where f =
[f1, f2, . . . , fn]T is a vector of n nonlinear real-valued functions fν = fν(x) in m
real variables x = [x1, x2, . . . , xm]T. The analog of the derivative in (2.1.6) then
is the Fréchet derivative

∂f(x)

∂x
=




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xm

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xm

...
...

...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xm




(x), (2.1.12)

that is, the linear transformation defined by the Jacobian matrix of f at x. This
suggests

Definition 2.5 If f : Rm → Rn is Fréchet-differentiable at the point x ∈ Rm,
then

(condabs f)(x) =

∥∥∥∥
∂f(x)

∂x

∥∥∥∥ , (2.1.13)

where the norm on the right is an appropriate matrix norm, is called the absolute
condition number of f at x.

Since orders of magnitude is all that counts when considering the conditioning
of maps, and since matrix norms are equivalent, the choice of norm in (2.1.13)
is not all that critical. Choices frequently made are either the infinity norm

∥∥∥∥
∂f(x)

∂x

∥∥∥∥
∞

= max
1≤ν≤n

m∑

µ=1

∣∣∣∣
∂fν(x)

∂xµ

∣∣∣∣ , (2.1.14)

or the Frobenius norm

∥∥∥∥
∂f(x)

∂x

∥∥∥∥
F

=

(
m∑

µ=1

n∑

ν=1

∣∣∣∣
∂fν(x)

∂xµ

∣∣∣∣
2
)1/2

. (2.1.15)

In analogy to Definition 2.4, one can define a relative condition number as
follows.
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Definition 2.6 Let f : Rm → Rn be Fréchet-differentiable at x = [x1, x2, . . . ,
xm]T, where xµ 6= 0, µ = 1, 2, . . . ,m, and y = f (x) = [y1, y2, . . . , yn]T be such
that yν = fν(x) 6= 0, ν = 1, 2, . . . , n. Let C(x) ∈ Rn×m be defined by

C(x) = [cνµ(x)], cνµ(x) =

∣∣∣∣
xµ(∂fν(x)/∂xµ)

fν(x)

∣∣∣∣ , ν = 1, . . . , n; µ = 1, . . . ,m.

(2.1.16)
Then, a relative condition number of f at x may be defined by

(condrel f )(x) = ‖C(x)‖, (2.1.17)

where the norm on the right is an appropriate matrix norm. If one of the compo-
nents of x or of f(x) vanishes, cνµ(x) must be modified as described in Remark
to Definition 2.4. Using the mollifier function (2.1.11), one may also take

cνµ(x) =
m(xµ)|∂fν(x)/∂xµ|

m(fν(x))
. (2.1.18)

Definition 2.6 provides the most detailed description of the conditioning of
f in terms of relative perturbations. It essentially takes each component fν of f

and measures its relative condition with respect to one single variable xµ; this
is the meaning of cνµ(x). One can thus think of C(x) as a relative condition
matrix. To obtain a condition number, one takes a norm of C(x).

Remark to Definition 2.6 A simpler, but less detailed, definition of a rela-
tive condition number, which is meaningful for any x 6= 0 and f 6= 0, is

(condrel f )(x) =
‖x‖Rm ‖∂f(x)/∂x‖Rn×m

‖f(x)‖Rn

, (2.1.19)

where the norms on the right are suitable vector and matrix norms. In general,
however, the condition number so defined can be misleading, since norms have a
tendency to destroy detail. A simple instance of this is given in Gautschi (1997b,
Chapter 1, p. 26) and more relevant instances are discussed in Examples 2.15
and 2.16.

2.1.3 The moment maps Gn and Kn

There are several moment maps of interest in computing orthogonal polynomials,
depending on what is to be computed and from what kind of moment informa-
tion. A first map, denoted by Gn, relates to the computation of n-point Gauss
quadrature rules, that is, the computation of the n weights λν = λG

ν and n nodes
τν = τG

ν in (1.4.7). These are collected in the vector

γ = γ(dλ) = [λ1, λ2, . . . , λn, τ1, τ2, . . . , τn]T. (2.1.20)

The simplest, but what turns out to be an ill-conditioned, map Gn is the one
that takes the first 2n moments
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µ = µ(dλ) = [µ0, µ1, . . . , µ2n−1]
T, µr =

∫

R

tr dλ(t), (2.1.21)

into the vector γ,
Gn : R2n → R2n µ 7→ γ. (2.1.22)

Other, hopefully better conditioned, maps Gn take as input modified moments
m = m(dλ) = [m0,m1, . . . ,m2n−1]

T. In the most general case, these are defined
in terms of a basis {pk}2n−1

k=0 of P2n−1, where pk = pk,n may depend on n. In
fact,

mk = mk(dλ) :=

∫

R

pk(t) dλ(t), k = 0, 1, . . . , 2n− 1, (2.1.23)

and
Gn : R2n → R2n m 7→ γ. (2.1.24)

Example 2.7 Powers pk(t) = tk, k = 0, 1, . . . , 2n− 1. In this case, m = µ and
one has the map Gn of (2.1.22).

Example 2.8 Orthogonal polynomials pk( · ) = pk( · ; d`), k = 0, 1, . . . , 2n − 1,
the first 2n monic polynomials orthogonal with respect to a positive measure
d`. (Nonmonic orthogonal polynomials are also used sometimes.) By choosing
d` near dλ in some sense, one hopes to arrive at a map Gn in (2.1.24) that is
well, or at least better, conditioned (cf., e.g. Example 2.29).

Example 2.9 Bernstein polynomials pk,n(t) = Bk,n(t), t ∈ [0, 1], where

Bk,n(t) =

(
2n− 1

k

)
tk(1 − t)2n−1−k, k = 0, 1, . . . , 2n− 1. (2.1.25)

These are appropriate for measures dλ supported on [0, 1].

Example 2.10 Lagrange interpolation polynomials. Given 2n distinct nodes
t0, t1, . . . , t2n−1 in the support interval of dλ, one takes

pk,n(t) = `k,2n(t), `k,2n(t) =

2n−1∏

`=0
` 6=k

t− t`
tk − t`

, k = 0, 1, . . . , 2n− 1. (2.1.26)

The second type of map, Kn, relates to the computation of the first 2n
recursion coefficients αν = αν(dλ), βν = βν(dλ), ν = 0, 1, 2, . . . , n−1 (cf. §1.3.1),
which again are collected in a vector

ρ = ρ(dλ) = [α0, . . . , αn−1, β0, . . . , βn−1]
T. (2.1.27)

Thus,
Kn : R2n → R2n µ (resp. m) 7→ ρ, (2.1.28)

where, as before, µ resp. m is the vector of the first 2n ordinary resp. modified
moments. The latter are defined in (2.1.23) and may be chosen as in Examples
2.7–2.10.
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In principle, the map Kn can be represented as a composition of two maps,

Kn = Hn ◦ Gn, (2.1.29)

where Gn, as above, maps µ (resp. m) into the Gauss rule γ, and Hn maps the
Gauss rule into the recursion coefficients,

Hn : R2n → R2n γ 7→ ρ. (2.1.30)

Since, as will be seen later in §3.1.1, the map Hn is generally well-conditioned,
the condition of Kn is more or less the same as the condition of Gn. Hence, we
will often consider the latter instead of the former.

2.1.4 Condition of Gn : µ 7→ γ

Let n be a fixed, but arbitrary, integer ≥1 and the measure dλ positive definite
on P. Then ∆n > 0 by Theorem 1.2, and Theorem 2.1 shows that πn( · ; dλ) exists
and depends continuously and regularly on the moments µr, r = 0, 1, . . . , 2n−1,
in a neighborhood of the given moment vector µ(dλ). The same is true, therefore,
of the zeros τν of πn, that is, of the Gaussian nodes, and also of the Gaussian
weights λν in view of (1.4.5) and (1.4.4). It makes sense, therefore, to talk about
the condition of the map Gn : µ 7→ γ at µ = µ(dλ).

We begin by considering the absolute condition number of Definition 2.5,

(condGn)(µ) =

∥∥∥∥
∂Gn(µ)

∂µ

∥∥∥∥ ,

where ‖ · ‖ is the infinity norm (2.1.14). Since the Gauss quadrature formula is
exact on P2n−1, there holds

n∑

ν=1

λντ
r
ν = µr, r = 0, 1, . . . , 2n− 1. (2.1.31)

The map Gn, therefore, amounts to solving the nonlinear system (2.1.31) for
λ1, . . . , λn, τ1, . . . , τn. (The system is actually linear in the λs.) If F n denotes
the map γ 7→ µ defined by (2.1.31), then by an elementary computation

∂F n

∂γ
= TΛ,

where Λ ∈ R2n×2n is the diagonal matrix

Λ = diag (1, . . . , 1, λ1, . . . , λn) (2.1.32)

and T a confluent Vandermonde matrix

T =




1 · · · 1 0 · · · 0
τ1 · · · τn 1 · · · 1
τ2
1 · · · τ2

n 2τ1 · · · 2τn
...

...
...

...
τ2n−1
1 · · · τ2n−1

n (2n− 1)τ2n−2
1 · · · (2n− 1)τ2n−2

n



. (2.1.33)
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Since the map Gn is the inverse of F n, one has

∂Gn

∂µ
=

(
∂F n

∂γ

)−1

= Λ−1T−1, (2.1.34)

and thus
(cond Gn)(µ) = ‖Λ−1T−1‖. (2.1.35)

A lower bound of the condition number (2.1.35) can be found if one assumes
that the measure dλ has support contained in the positive real line R+.

Theorem 2.11 Let dλ be a positive definite measure having support in R+ and
let πn( · ) = πn( · ; dλ) be the monic polynomial of degree n orthogonal with respect
to dλ. Then, the absolute condition number (2.1.35) satisfies

(cond Gn)(µ) ≥ min

(
1,

1

maxν λν

)
· [πn(−1)]2

min
1≤ν≤n

{(1 + τν)[π′
n(τν)]2} , (2.1.36)

where λν and τν are the weights and nodes of the n-point Gauss quadrature rule
(1.4.7).

Proof Recalling that λν > 0 (cf. Theorem 1.46), we have from (2.1.35) that

(cond Gn)(µ) ≥ min

(
1,

1

maxν λν

)
‖T−1‖. (2.1.37)

The infinity norm of T−1 has been studied in Gautschi (1963) and further es-
timated in Gautschi (1968). In particular, it has been shown (Gautschi, 1968,
Theorem 2.1) that

‖T−1‖ ≥ max
1≤ν≤n





(1 + τν)

n∏

µ=1
µ6=ν

(
1 + τµ
τν − τµ

)2




.

Writing the expression in curled brackets in the form

∏n
µ=1(1 + τµ)2

(1 + τν)
∏

µ6=ν(τν − τµ)2

and noting from πn(t) =
∏n

µ=1(t − τµ) that πn(−1) = (−1)n
∏n

µ=1(1 + τµ) and
π′

n(τν) =
∏

µ6=ν(τν − τµ) yields

‖T−1‖ ≥ [πn(−1)]2

min
1≤ν≤n

{(1 + τν)[π′
n(τν)]2}

.

Together with (2.1.37), this proves the theorem. 2
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The lower bound in (2.1.36) is computed by the OPQ routine acondGlow.m.

Remark to Theorem 2.11 The bound in (2.1.36) remains unchanged if πn

is multiplied by any constant cn, and hence does not depend on the particular
normalization of the orthogonal polynomial.

Example 2.12 Chebyshev measure on [0, 1].
Here, dλ(t) = [t(1 − t)]−1/2 dt and, taking advantage of the Remark to The-

orem 2.11, one can take πn(t) = Tn(2t− 1). Then,

[πn(−1)]2 = [Tn(−3)]2 = [Tn(3)]2, (2.1.38)

and since (cf. (1.4.17))

τν = 1
2 (1 + cos θν), θν =

2ν − 1

2n
π, (2.1.39)

one has
π′

n(τν) = 2T ′
n(2τν − 1) = 2T ′

n(cos θν).

Differentiating the identity Tn(cos θ) = cosnθ (see (1.5.2)) gives T ′
n(cos θ) =

n sinnθ/ sin θ, and thus

(1 + τν)[π′
n(τν)]2 = (3

2 + 1
2 cos θν) · 4n2

(
sinnθν

sin θν

)2

.

The minimum of this expression taken over ν = 1, 2, . . . , n is less than, or equal
to, its value at any fixed ν = ν0. Taking ν0 = bn

2 c + 1, hence sinnθν0 = (−1)ν0 ,
and cos θν0 = 0, sin θν0 = 1 if n is odd, cos θν0 = − sin(π/2n), sin θν0 = cos(π/2n)
if n is even, one finds, using cos(π/2n) ≥ 1/

√
2 for n ≥ 2, that

min
ν

{(1 + τν)[π′
n(τν)]2} ≤ (1 + τν0)[π

′
n(τν0)]

2 ≤ 12n2, n ≥ 2. (2.1.40)

Moreover, λν = π/n (cf. (1.4.20), transformed to the interval [0, 1]), so that
λν < 1 if n ≥ 4, and thus

min

(
1,

1

maxν λν

)
= 1, n ≥ 4. (2.1.41)

Combining (2.1.38), (2.1.40), and (2.1.41) in (2.1.36) yields

(cond Gn)(µ) ≥ [Tn(3)]2

12n2
, n ≥ 4. (2.1.42)

A more quantitative bound can be obtained by noting that yk = Tk(3) satis-
fies (see (1.5.8))

yk+1 − 6yk + yk−1 = 0, y0 = 1, y1 = 3,
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so that from the theory of linear difference equations with constant coefficients,

yn = Tn(3) = 1
2 (tn1 + tn2 ) , t1 = 3 +

√
8, t2 = 3 −

√
8.

There follows Tn(3) > 1
2 t

n
1 , and thus, from (2.1.42),

(cond Gn)(µ) >
(17 + 6

√
8)n

48n2
, n ≥ 4. (2.1.43)

It is seen that the condition number grows exponentially fast with n, at the rate
exp[n ln(17 + 6

√
8)] = exp(3.52549 . . . n), which, incidentally, coincides with the

rate of growth of the (Turing) condition number for the nth-order segment of
the Hilbert matrix as estimated by Todd (1954).

Although Example 2.12 may appear to be rather special, it is actually in-
dicative of a much wider class of measures (supported on [0, 1]), the so-called
Szegö class (cf. (1.3.10)), for which it is known that the Gauss nodes τν = τG

ν as
n→ ∞ indeed assume the arccos-distribution of (2.1.39).

For measures supported on an infinite interval, which are likely to have mo-
ments µr that grow rapidly, a relative condition number, for example (2.1.17),
may be more appropriate. Simple results such as (2.1.36) then no longer exist,
but in turn, no assumptions are required on the support of dλ. Applied to the
map Gn(µ), and using the mollified condition number of (2.1.18), one obtains

Theorem 2.13 Let dλ be a positive measure. Then, the relative condition num-
ber of Gn(µ), according to (2.1.17) and (2.1.18), is given by

(cond Gn)(µ) = ‖C(µ)‖, (2.1.44)

where
C(µ) = [cκλ(µ)]2n

κ,λ=1,

and

cκλ(µ) =
m(µλ−1)(T

−1)κλ

m(λκ)
, cn+κ,λ(µ) =

m(µλ−1)(T
−1)n+κ,λ

λκm(τκ)
,

κ = 1, 2, . . . , n; λ = 1, 2, . . . , 2n.

(2.1.45)

Here, (T−1)rs denotes the element of T−1 in row r and column s and m( · ) is
the mollifier function (2.1.11).

The elements of T−1 are computed by the OPQ routine Tinv.m, and the rela-
tive condition number (2.1.44), in the infinity norm, by rcondG.m with
iopt= 1.

The simpler, but more global, relative condition number (2.1.19) applied to
the map Gn, when using infinity norms, takes the form

(condGn)(µ) =
‖µ‖∞‖Λ−1T−1‖∞

‖γ‖∞
. (2.1.46)

It is computed by the OPQ routine gcondG.m.
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It is interesting to compare the theoretical condition numbers with error
magnifications observed numerically. We do this by applying the Chebyshev al-
gorithm of §2.1.7, which actually implements the map Kn : µ 7→ ρ, but whose
condition is similar to the one of Gn; cf. the remark at the end of §2.1.3. By “er-
ror magnification” we mean the absolute value of the observed error divided by
the machine precision, where “error” is a “mollified” error, that is, the absolute
error if the respective quantity is less than 1 in modulus, and the relative error
otherwise. We illustrate this for the Legendre, Laguerre, and Hermite measures,
using the OPQ routines Table2 1.m, Table2 2.m, and Table2 3.m.

Example 2.14 Legendre measure dλ(t) = dt on [0, 1].
The moments µr = 1/(r + 1), r = 0, 1, 2, . . . , are between 0 and 1, and

the same is true for the nodes τν and weights λν of the Gauss quadrature rule.
Therefore, both absolute and mollified relative condition numbers, and even the
simplified condition number in (2.1.46), are appropriate. The three columns after
the first in Table 2.1 display the lower bound of the condition number in (2.1.36),
the infinity norm of the condition matrix in (2.1.44), and the simplified condition
number in (2.1.46), for n = 2, 5, 8, 11, 14. The remaining two columns show the
maximum observed error magnifications magα and magβ in the coefficients αk

resp. βk, k = 0, 1, . . . , n− 1.

Table 2.1 Condition number and error magnification
for Legendre measure on [0, 1].

n (2.1.36) (2.1.44) (2.1.46) magα magβ
2 1.16(1) 3.17(1) 4.02(1) 2.00(0) 6.25(–2)
5 1.34(5) 4.72(5) 4.95(5) 3.32(3) 5.04(2)
8 2.20(9) 1.21(10) 1.24(10) 2.77(8) 1.30(6)
11 4.62(13) 3.45(14) 3.48(14) 8.33(12) 5.50(11)
14 1.15(18) 1.07(19) 1.08(19) 4.85(16) 4.31(17)

It can be seen that all three condition numbers grow very rapidly, the first,
being a lower bound, at a slightly slower rate. The simplified condition number
(2.1.46), in this example, is practically identical with the more detailed condition
number in (2.1.44). The actually observed error magnifications exhibit the same
trend of rapid growth, but are generally a few orders of magnitude smaller than
predicted, and this in spite of additional errors committed during the execution
of the algorithm. The reason for this seems to be a certain amount of internal
cancellation of errors.

Example 2.15 Generalized Laguerre measure dλ(t) = tαe−t dt on [0,∞] with
α = − 1

2 .
The case α = 0 of ordinary Laguerre measures would be atypical inasmuch

as Matlab produces exact integer results, at least up to n = 11, and hence zero
errors. This is not so for nonzero α, say α = − 1

2 .
Here, the moments µr = Γ(α + r + 1), r = 0, 1, 2, . . . , grow very rapidly, so
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that the absolute condition number in (2.1.36) is inappropriate and (2.1.46) is
likely to be too pessimistic. This is confirmed in Table 2.2 giving information

Table 2.2 Condition number and error magnification
for Laguerre measure with parameter α = 0.5.

n (2.1.36) (2.1.44) (2.1.46) magα magβ
2 1.83(0) 3.62(0) 7.57(0) 8.00(–1) 2.50(–1)
5 2.62(1) 1.25(3) 1.20(6) 3.36(2) 2.37(2)
8 2.32(2) 4.32(5) 1.52(13) 2.19(6) 7.77(5)
11 1.16(3) 2.10(8) 2.01(21) 3.03(9) 2.36(9)
14 4.61(3) 1.10(11) 1.36(30) 4.47(11) 2.26(11)

analogous to that in Table 2.1: the column headed by (2.1.36) has little to do
with the actual error magnifications in the last two columns, and the one headed
(2.1.46) is grossly misleading, overestimating the error growth by many orders of
magnitude, especially when n is large. The relative condition number in (2.1.44),
on the other hand, predicts the error magnification rather accurately.

Example 2.16 Hermite measure dλ(t) = e−t2 dt on R.
While the moments µr for r odd are zero, those for even r are Γ((r + 1)/2)

and as in Example 2.15 grow rapidly. Not only is the absolute condition number
in (2.1.36) inappropriate, but the lower bound in fact is not even applicable. As
can be seen from Table 2.3, no errors have been observed in the αs, which are
all zero, and the error magnification in the βs is more or less as predicted by
(2.1.44), but decidedly lower than in Example 2.15. As in the previous example,
the condition number (2.1.46) is not a reliable indicator of error growth.

Table 2.3 Condition number and error magnifica-
tion for Hermite measure.

n (2.1.36) (2.1.44) (2.1.46) magα magβ
2 — 2.65(0) 4.54(0) 0 0.00(0)
5 — 1.07(1) 4.20(1) 0 1.33(0)
8 — 9.97(1) 2.21(4) 0 6.57(1)
11 — 1.51(3) 3.36(7) 0 2.21(3)
14 — 2.88(4) 1.28(11) 0 1.50(5)

2.1.5 Condition of Gn : m 7→ γ

As was already mentioned at the beginning of §2.1, modified moments can be
expected to yield maps Gn that are better conditioned. This will now be analyzed
in the case where modified moments are defined in terms of monic polynomials
pk( · ) = pk( · ; d`) orthogonal with respect to a positive measure d` (cf. Example
2.8). The support of d` may be bounded or unbounded, and need not necessarily
coincide with the support of the given measure dλ. (See, however, the remarks
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after the proof of Theorem 2.17.) All moments of d` are assumed to exist.
It will be convenient to consider the slightly modified map

G̃n : R2n → R2n m̃ 7→ γ, (2.1.47)

where m̃ = [m̃0, m̃1, . . . , m̃2n−1]
T is the vector of normalized modified moments

m̃k =
1√
dk

mk, dk =

∫

R

p2
k(t) d`(t), k = 0, 1, . . . , 2n− 1, (2.1.48)

with mk as defined in (2.1.23). This has the theoretical advantage of making
the m̃k independent of the normalization of the orthogonal polynomials {pk}.
For algorithmic purposes, however, the passage from m to m̃ is not required,
and in fact not recommended; cf. §2.1.7. The additional diagonal map introduced,
Dn : m 7→ m̃, of course, is harmless, since each individual transformationmk 7→
m̃k involves just one multiplication and is therefore perfectly well-conditioned.

We study the condition of G̃n in terms of the Frobenius matrix norm ‖ · ‖F .
With τν = τν(dλ) and λν = λν(dλ) denoting the nodes and weights of the

Gauss quadrature rule (1.4.7), we denote by hν and kν , as in (1.4.13), the ele-
mentary Hermite interpolation polynomials associated with the nodes τ1, . . . , τn,
which satisfy

hν(τµ) = δνµ, h′ν(τµ) = 0,
ν, µ = 1, 2, . . . , n.

kν(τµ) = 0, k′ν(τµ) = δνµ,
(2.1.49)

Theorem 2.17 The absolute condition number of the map G̃n, in the sense of
Definition 2.5, with ‖ · ‖ the Frobenius norm, is given by

(cond G̃n)(m̃) =

{∫

R

gn(t; dλ) d`(t)

}1/2

, (2.1.50)

where

gn(t; dλ) =

n∑

ν=1

(
h2

ν(t) +
1

λ2
ν

k2
ν(t)

)
(2.1.51)

and hν , kν are the elementary Hermite interpolation polynomials (1.4.13) asso-
ciated with the Gaussian nodes τ1, . . . , τn.

Proof The map G̃n : m̃ 7→ γ, similarly as in (2.1.31), amounts to solving the
system of nonlinear equations

1√
dk

n∑

ν=1

λνpk(τν) = m̃k, k = 0, 1, . . . , 2n− 1. (2.1.52)

If F̃ n denotes the map γ 7→ m̃ defined by (2.1.52), it is elementary to show that



66 COMPUTATIONAL METHODS

∂F̃ n

∂γ
= D−1PΛ, (2.1.53)

where D and Λ are diagonal matrices of order 2n,

D = diag(
√
d0,
√
d1, . . . ,

√
d2n−1 ), Λ = diag(1, . . . , 1, λ1, . . . , λn)

and

P =




p0(τ1) · · · p0(τn) p′0(τ1) · · · p′0(τn)
p1(τ1) · · · p1(τn) p′1(τ1) · · · p′1(τn)

...
...

...
...

p2n−1(τ1) · · · p2n−1(τn) p′2n−1(τ1) · · · p′2n−1(τn)


 . (2.1.54)

Therefore, noting that G̃n is the inverse map of F̃ n, one has

∂G̃n

∂m̃
=

(
∂F̃ n

∂γ

)−1

= Λ−1P−1D (2.1.55)

and, thus,
(cond G̃n)(m̃) = ‖Λ−1P−1D‖F . (2.1.56)

The principal issue at hand is the inversion of matrix P in (2.1.54). To
accomplish this, we expand the Hermite polynomials hν and kν in the orthogonal
polynomials {pk},

hν(t) =

2n∑

µ=1

aνµpµ−1(t), kν(t) =

2n∑

µ=1

bνµpµ−1(t), (2.1.57)

and solve the system of linear equations

n∑

λ=1

{pµ−1(τλ)uλ + p′µ−1(τλ)un+λ} = vµ, µ = 1, 2, . . . , 2n,

whose coefficient matrix is P . Multiplying the µth equation by aνµ and adding
over µ = 1, 2, . . . , 2n, one obtains, in view of the first of (2.1.57) and (2.1.49),

uν =

2n∑

µ=1

aνµvµ, ν = 1, 2, . . . , n.

Similarly, multiplying the µth equation by bνµ and adding yields

un+ν =

2n∑

µ=1

bνµvµ, ν = 1, 2, . . . , n.
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There follows

P−1 =

[
A

B

]
, A = [aνµ], B = [bνµ]. (2.1.58)

Since

(Λ−1P−1D)νµ =
√
dµ−1aνµ, (Λ−1P−1D)n+ν,µ =

1

λν

√
dµ−1bνµ, ν = 1, . . . , n,

(2.1.59)
one obtains

‖Λ−1P−1D‖2
F =

n∑

ν=1

2n∑

µ=1

dµ−1

(
a2

νµ +
1

λ2
ν

b2νµ

)
. (2.1.60)

On the other hand,

∫

R

h2
ν(t) d`(t) =

∫

R

2n∑

µ=1

aνµpµ−1(t)

2n∑

κ=1

aνκpκ−1(t) d`(t)

=

2n∑

µ,κ=1

aνµaνκ

∫

R

pµ−1(t)pκ−1(t) d`(t)

=

2n∑

µ=1

dµ−1a
2
νµ

by virtue of the orthogonality of the pk. Similarly,

∫

R

k2
ν(t) d`(t) =

2n∑

µ=1

dµ−1b
2
νµ.

Therefore,

‖Λ−1P−1D‖2
F =

∫

R

n∑

ν=1

(
h2

ν(t) +
1

λ2
ν

k2
ν(t)

)
d`(t),

which in view of (2.1.56) and (2.1.51) proves the theorem. 2

Theorem 2.17 shows clearly how, for given n, the absolute condition of G̃n

depends on the two measures, dλ and d`, involved. The dependence on dλ man-
ifests itself entirely through the Gaussian nodes and weights τν = τν(dλ) and
λν = λν(dλ), belonging to the measure dλ, the former of which uniquely deter-
mine the Hermite polynomials hν and kν . The influence of d` is usually weaker
inasmuch as this measure only plays a role as an integration measure in the
integral on the right of (2.1.50).

The polynomial gn( · ) = gn( · ; dλ) has some noteworthy properties: it triv-
ially is positive,

gn(t) > 0 on R, (2.1.61)

and it satisfies
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gn(τν) = 1, g′n(τν) = 0, ν = 1, 2, . . . , n, (2.1.62)

as follows immediately from (2.1.49). These properties suggest that gn cannot
deviate too much from 1 on the support of dλ, especially if the latter is a finite in-
terval and the nodes τν have an arccos-distribution on that interval. (For equally
spaced τν , the polynomial gn could well exhibit large oscillations reminiscent of
those occurring in Lagrange interpolation.) Since gn outside the support of dλ
grows very rapidly, it is prudent to choose d` to have its support contained in, or
identical with, that of dλ. For large classes of measures with compact support, it
is in fact necessary to have supp(d`)=supp(dλ) if exponential growth of the con-
dition number is to be avoided; see Beckermann and Bourreau (1998, Theorem
11).

In Gautschi (1986), a distinction is made between weak and strong nodes τν ,
for which g′′n(τν) < 0 resp. g′′n(τν) > 0. Between consecutive weak nodes, gn very
likely (though not necessarily) remains < 1, whereas in the neighborhood of a
strong node, gn assumes values larger, and potentially very much larger, than
1 on either side. It is also very likely that between consecutive strong nodes gn

remains >1.
An elementary computation based on (1.4.13) and (2.1.51) will show that

1

2
g′′n(τν) = 2`′′ν(τν) − 6[`′ν(τν)]2 +

1

λ2
ν

= 2
∑

k 6=ν

∑

` 6=ν
` 6=k

1

(τν − τk)(τν − τ`)
− 6


∑

k 6=ν

1

τν − τk




2

+
1

λ2
ν

.
(2.1.63)

The node τν , therefore, is weak or strong depending on whether the expression
on the right of (2.1.63) is negative or positive.

Example 2.18 Chebyshev nodes τν = cos θν , θν = (2ν−1)π/2n, ν = 1, 2, . . . , n.
These, for each n = 2, 3, . . . , on the basis of (2.1.63) turn out to be all weak

nodes (Gautschi, 1986, Theorem 4.1). In this case, gn(t) indeed is ≤ 1 for all
−1 ≤ t ≤ 1; cf. Example 2.20.

Theorem 2.19 The relative condition number of G̃n(m̃), according to (2.1.17)
and (2.1.18), is given by

(cond G̃n)(m̃) = ‖C(m̃)‖, (2.1.64)

where
C(m̃) = [cνµ(m̃)]2n

ν,µ=1

and

cνµ(m̃) =
√
dµ−1

m(m̃µ−1)|aνµ|
m(λν)

, cn+ν,µ(m̃) =
√
dµ−1

m(m̃µ−1)|bνµ|
λνm(τν)

,

ν = 1, . . . , n.

(2.1.65)
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Here, aνµ and bνµ are the coefficients in the expansions (2.1.57) of hν and
kν , dµ−1 the constants defined in (2.1.48), and m( · ) is the mollifier function
(2.1.11).

Proof The results (2.1.64) and (2.1.65) are immediate consequences of (2.1.55),
(2.1.59), and (2.1.18). 2

OPQ routines for the absolute condition number (2.1.50) and for the relative
condition number in (2.1.64) are acondG.m and rcondG.m, respectively.

In order to compute the absolute condition number, note that gn is a polyno-
mial of degree ≤4n− 2, so that the integral in (2.1.50) can be evaluated exactly
(up to rounding errors) by means of the (2n)-point Gauss quadrature rule asso-
ciated with the measure d`. This is unproblematic since d` is usually one of the
classical integration measures and, besides, the integrand is positive. A similar re-
mark applies to the evaluation of the quantities aνµ = d−1

µ−1

∫
R
hν(t)pµ−1(t) d`(t)

and bνµ = d−1
µ−1

∫
R
kν(t)pµ−1(t) d`(t), which are needed to compute the relative

condition number.
As regards the computation of the polynomials hν , kν , and gn, recall from

(1.4.13) that the former two are expressible in terms of the elementary Lagrange
polynomials `ν of (1.4.4) and `′ν(τν), which in turn can be written as

`ν(t) = [(t− τν)ρν ]−1ωn(t), `′ν(τν) = σν , (2.1.66)

where ωn(t) =
∏n

κ=1(t− τκ) and

ρν =
n∏

µ=1
µ6=ν

(τν − τµ), σν =
n∑

µ=1
µ6=ν

1

τν − τµ
. (2.1.67)

Since

1 ≡
n∑

κ=1

`κ(t) =

(
n∑

κ=1

`κ(t)

)2

= ω2
n(t)

(
n∑

κ=1

[(t− τκ)ρκ]−1

)2

, (2.1.68)

one gets from (1.4.13)

hν(t) = (1 − 2(t− τν)σν)`2ν(t) =
(1 − 2(t− τν)σν)`2ν(t)

(
∑n

κ=1 `κ(t))
2 ,

and thus from (2.1.66) and (2.1.68),

hν(t) =
(1 − 2(t− τν)σν)[(t− τν)ρν ]−2

(
∑n

κ=1[(t− τκ)ρκ]−1)
2 . (2.1.69)

Similarly,

kν(t) =
[(t− τν)ρν ]−2(t− τν)

(
∑n

κ=1[(t− τκ)ρκ]−1)
2 . (2.1.70)
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Using (2.1.69) and (2.1.70) finally yields

gn(t) =

∑n
ν=1[(t− τν)ρν ]−4

(
(1 − 2(t− τν)σν)2 + 1

λ2
ν
(t− τν)2

)

(
∑n

κ=1[(t− τκ)ρκ]−1)
4 . (2.1.71)

The OPQ routine g n.m computes gn(t) from the representation (2.1.71).

Example 2.20 Chebyshev measure dλ(t) = (1 − t2)−1/2 dt on [−1, 1].
It was conjectured in Gautschi (1986, §4.1) and proved by Fischer (1998) that

for all n ≥ 2
gn(t; dλ) ≤ 1 on [−1, 1]. (2.1.72)

Theorem 2.17, in this case, implies that

(cond G̃n)(m̃) ≤
∫

R

d`(t), n ≥ 2, (2.1.73)

provided the support of d` is contained in [−1, 1]. Rather remarkably, the ab-

solute condition of G̃n is uniformly bounded in n, and this regardless of the
particular choice of d`, that is, the particular choice of the modified moments.

2.1.6 Condition of Kn : m 7→ ρ

Although the map Kn can be expressed in terms of the map Gn via the com-
position (2.1.29) with a well-conditioned map Hn, it is possible to analyze the
condition of Kn directly, indeed for arbitrary modified moments as defined in
§2.1.3.

Note, to begin with, that the first 2n modified moments

mk =

∫

R

pk(t) dλ(t), k = 0, 1, . . . , 2n− 1, (2.1.74)

are expressible linearly in terms of the first 2n ordinary moments, the matrix
involved being nonsingular because of the pk forming a basis of P2n−1 by as-
sumption. Conversely, therefore, the first 2n ordinary moments are expressible
as a nonsingular linear transformation of the first 2n modified moments. From
(1.3.3) and (1.3.4), it can be seen that the recursion coefficients αk = αk(dλ),
βk = βk(dλ), k = 0, 1, . . . , n − 1, are rational functions of the first 2n ordinary
moments, with positive denominator polynomials in some neighborhood of the
given moments µ = µ(dλ). The same is, therefore, true for the modified mo-
ments. It thus makes sense to talk about the condition (cond Kn)(m) of the
map Kn : m 7→ ρ at the given vector m = m(dλ) of modified moments.

Since {pj}2n−1
j=0 is a basis of P2n−1, every real polynomial q ∈ P2n−1 has a

unique representation

q(t) =
2n−1∑

j=0

cj [q] pj(t) (2.1.75)

in terms of the polynomials pj, the coefficients cj[q] being linear continuous
functionals cj : P2n−1 → R. In order to compute the Jacobian matrix ∂Kn/∂m,
the following lemma will be useful.
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Lemma 2.21 Let q ∈ P2n−1 be a polynomial which depends on the first 2n
modified moments m0,m1, . . . ,m2n−1 and has continuous partial derivatives in
the neighborhood of some point m = [m0,m1, . . . ,m2n−1]. Then,

∂

∂mk

∫

R

q(t) dλ(t) = ck[q] +

∫

R

∂q(t)

∂mk
dλ(t). (2.1.76)

Proof From (2.1.75) one has

∫

R

q(t) dλ(t) =

2n−1∑

j=0

cj [q]mj . (2.1.77)

Differentiating with respect to mk yields

∂

∂mk

∫

R

q(t) dλ(t) = ck[q] +
2n−1∑

j=0

∂cj [q]

∂mk
mj.

Since cj [ · ] is a continuous linear functional, differentiation of the functional cj
with respect to mk can be interchanged with the application of the functional
to the derivative. Thus,

∂

∂mk

∫

R

q(t) dλ(t) = ck[q] +

2n−1∑

j=0

cj

[
∂q

∂mk

]
mj

= ck[q] +

∫

R

∂q(t)

∂mk
dλ(t),

the last equation following from (2.1.77) with q replaced by ∂q/∂mk. This proves
the lemma. 2

Theorem 2.22 Let π̃k( · ) = π̃k( · ; dλ) denote the orthonormal polynomials with
respect to the measure dλ (cf. §1.3.2). Then,

∂Kn

∂m
=




∂α

∂m
∂β

∂m


 ,

∂α

∂m
=

[
∂αj

∂mk

]
∈ Rn×2n,

∂β

∂m
=

[
∂βj

∂mk

]
∈ Rn×2n,

(2.1.78)
where

∂αj

∂mk
= ck[ψ̃2j+1],

∂βj

∂mk
= ck[ψ̃2j ], j = 0, 1, . . . , n− 1; k = 0, 1, . . . , 2n− 1,

(2.1.79)
and ψ̃0, ψ̃1, . . . , ψ̃2n−1 are polynomials defined by

ψ̃2j(t) = βj

(
π̃2

j (t) − π̃2
j−1(t)

)
,

ψ̃2j+1(t) =
√
βj+1π̃j(t)π̃j+1(t) −

√
βj π̃j−1(t)π̃j(t),

j = 0, 1, . . . , n− 1,

(2.1.80)
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with π̃−1 and β0 defined by π̃−1 = 0 resp. β0 =
∫

R
dλ(t). (Note that ψ̃r is a

polynomial of exact degree r for r = 0, 1, . . . , 2n− 1.)

Proof Differentiating the orthonormality relations
∫

R

π̃i(t)π̃j(t) dλ(t) = 0 (i < j),

∫

R

π̃2
j (t) dλ(t) = 1 (2.1.81)

with respect to mk and using Lemma 2.21, one obtains from the first relation,
for i < j,

0 = ck[π̃iπ̃j ] +

∫

R

∂π̃i(t)

∂mk
π̃j(t) dλ(t) +

∫

R

π̃i(t)
∂π̃j(t)

∂mk
dλ(t)

= ck[π̃iπ̃j ] +

∫

R

π̃i(t)
∂π̃j(t)

∂mk
dλ(t),

where the second equality follows from orthogonality. Thus,
∫

R

π̃i(t)
∂π̃j(t)

∂mk
dλ(t) = −ck[π̃iπ̃j ], i < j. (2.1.82)

The second relation in (2.1.81), similarly, gives

0 = ck[π̃2
j ] + 2

∫

R

π̃j(t)
∂π̃j(t)

∂mk
dλ(t),

that is, ∫

R

π̃j(t)
∂π̃j(t)

∂mk
dλ(t) = − 1

2ck[π̃2
j ]. (2.1.83)

Next, we differentiate the three-term recurrence relation (see (1.3.13))
√
βj+1π̃j+1(t) = (t− αj)π̃j(t) −

√
βj π̃j−1(t), j = 0, 1, 2, . . . , (2.1.84)

with respect to mk to get

∂
√
βj+1

∂mk
π̃j+1(t) +

√
βj+1

∂π̃j+1(t)

∂mk

= − ∂αj

∂mk
π̃j(t) + (t− αj)

∂π̃j(t)

∂mk
− ∂

√
βj

∂mk
π̃j−1(t) −

√
βj
∂π̃j−1(t)

∂mk
.

(2.1.85)
To focus on the derivative of βj+1, we multiply (2.1.85) by π̃j+1 and integrate.
Using (2.1.83) with j replaced by j + 1 and orthonormality of the π̃k, one finds

∂
√
βj+1

∂mk
− 1

2

√
βj+1ck[π̃2

j+1] =

∫

R

(t− αj)π̃j+1(t)
∂π̃j(t)

∂mk
dλ(t). (2.1.86)

Now note from the three-term recurrence relation (2.1.84), with j replaced by
j + 1, that
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(t− αj)π̃j+1(t) =
√
βj+2 π̃j+2(t) + (αj+1 − αj)π̃j+1(t) +

√
βj+1 π̃j(t).

Inserting this into the right-hand side of (2.1.86) and using again orthonormality
and (2.1.83) gives

∂
√
βj+1

∂mk
− 1

2

√
βj+1ck[π̃2

j+1] = − 1
2

√
βj+1ck[π̃2

j ],

that is,
∂
√
βj+1

∂mk
= 1

2

√
βj+1ck[π̃2

j+1 − π̃2
j ],

or, multiplying by 2
√
βj+1,

∂βj+1

∂mk
= ck[βj+1(π̃

2
j+1 − π̃2

j )]. (2.1.87)

This holds not only for j ≥ 0, but also for j = −1, since β0 =
∫

R
1 · dλ(t), hence,

by Lemma 2.21,

∂β0

∂mk
= ck[1] = β0ck[1/β0] = β0ck[π̃2

0 − π̃2
−1]

since π̃2
0 = 1/β0 and π̃2

−1 = 0.
To isolate the derivative of αj in (2.1.85), we multiply by π̃j and integrate.

Similarly as above, but now using (2.1.82), one gets

−
√
βj+1 ck[π̃j π̃j+1] = − ∂αj

∂mk
+

∫

R

(t− αj)π̃j(t)
∂π̃j(t)

∂mk
dλ(t),

and from (2.1.84) solved for (t− αj)π̃j(t), using again orthonormality,

−
√
βj+1 ck[π̃j π̃j+1] = − ∂αj

∂mk
−
√
βj ck[π̃j−1π̃j ],

that is,
∂αj

∂mk
= ck[

√
βj+1 π̃j π̃j+1 −

√
βj π̃j−1π̃j ]. (2.1.88)

Equations (2.1.88) and (2.1.87) (with j replaced by j− 1) prove (2.1.79) in view
of (2.1.80). 2

Corollary 1 to Theorem 2.22 Let Ψ̃ ∈ R2n×2n be the matrix with elements
(Ψ̃)`k = ck[ψ̃`], k = 0, 1, . . . , 2n − 1; ` = 0, 1, . . . , 2n − 1. Then, the absolute
condition number of Kn at the point m, with the matrix norm being the infinity
or Frobenius norm, is given by

(cond Kn)(m) = ‖Ψ̃‖. (2.1.89)

Specifically,

‖Ψ̃‖∞ = max
0≤`≤2n−1

2n−1∑

k=0

|ck[ψ̃`]|, ‖Ψ̃‖F =

(
2n−1∑

`=0

2n−1∑

k=0

c2k[ψ̃`]

)1/2

. (2.1.90)
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Proof Matrix Ψ̃ differs from ∂Kn/∂m in (2.1.78) only in the ordering of the
rows. Since neither the infinity nor the Frobenius norm depends on the ordering
of rows, eqn (2.1.89) follows immediately from Definition 2.5 of the absolute
condition number. Equation (2.1.90) follows trivially from (2.1.79). 2

Corollary 2 to Theorem 2.22 The relative condition number of Kn in the
sense of (2.1.17) and (2.1.18) is given by

(condKn)(m) = ‖C(m)‖, (2.1.91)

where

C(m) = [cjk(m)]2n−1
j,k=0

and

cjk(m) =
m(mk)|ck[ψ̃2j+1]|

m(αj)
, cj+n,k(m) =

m(mk)|ck[ψ̃2j ]|
m(βj)

,

j = 0, 1, . . . , n− 1.

(2.1.92)

Here, the polynomials ψ̃0, ψ̃1, . . . , ψ̃2n−1 are as defined in (2.1.80) and m( · ) is
the mollifier function (2.1.11).

Proof An immediate consequence of Theorem 2.22. 2

Corollary 3 to Theorem 2.22 Let πk( · ) = πk( · ; dλ) denote the monic or-
thogonal polynomials with respect to the measure dλ (cf. Definition 1.3), and
define

ψ2j(t) =
1

β0β1 · · ·βj−1

(
π2

j (t) − βjπ
2
j−1(t)

)
,

ψ2j+1(t) =
1

β0β1 · · ·βj
(πj(t)πj+1(t) − βjπj−1πj(t)),

j = 0, 1, . . . , n− 1,

(2.1.93)

where for j = 0 the empty product of the βs in the first relation is to be taken
equal to 1. With Ψ ∈ R2n×2n defined by (Ψ)`k = ck[ψ`], there holds

(cond Kn)(m) = ‖Ψ‖, (2.1.94)

with the norm ‖ · ‖ as in Corollary 1.

Proof One easily checks, on the basis of (1.3.12), (1.3.7), and (2.1.80), that
ψ̃2j = ψ2j and ψ̃2j+1 = ψ2j+1. 2

It may be worth noting that the condition of Kn depends on the measure
dλ entirely through the polynomials ψ̃k resp. ψk. The choice of the modified
moments is reflected in the linear functionals ck.
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Example 2.23 Chebyshev measure on [0, 1] and ordinary moments.
As in Example 2.12, we take dλ(t) = [t(1 − t)]−1/2 dt and assume m = µ,

that is, pk(t) = tk, or ck[q] = q(k)(0)/k! in (2.1.75). Well-known properties of
Chebyshev polynomials can be used to show that (Fischer, 1996, pp. 229–230)
ψ̃1 = 1

2T
∗
1 , ψ̃2 = 1

8T
∗
2 , and ψ̃2j+1 = 1

4 (T ∗
2j+1 − T ∗

2j−1), ψ̃2j = 1
16 (T ∗

2j − T ∗
2j−2),

j ≥ 1, where T ∗
k (t) = Tk(2t − 1) are the “shifted” Chebyshev polynomials. It

then follows from Corollary 1 to Theorem 2.22 that (Fischer, 1996, Theorem 2)
∥∥∥∥
∂Kn

∂µ

∥∥∥∥
∞

= 4U2n−3(3), n ≥ 2, (2.1.95)

where U2n−3 is the Chebyshev polynomial of the second kind of degree 2n − 3
(cf. (1.5.5)). It is interesting to compare this with the lower bound for (condGn)(µ)
in (2.1.43). Equation (2.1.95) gives

∥∥∥∥
∂Kn

∂µ

∥∥∥∥
∞

=
2(17 − 6

√
8)√

8
(17 + 6

√
8)n, (2.1.96)

whereas (2.1.43) is

(cond Gn)(µ) >
1

48n2
(17 + 6

√
8)n. (2.1.97)

Thus, the exponential rate of growth is exactly the same in either case, although
the coefficient in (2.1.97) naturally is smaller than in (2.1.96).

Example 2.24 Chebyshev measure on [0, 1] and Bernstein polynomials.
Choosing for pk the Bernstein polynomials (cf. Example 2.9), one computes

from (2.1.89) that (Fischer, 1996, Theorem 3)

(cond Kn)(µ) ∼ 1

8

√
πn

2
4n, n→ ∞. (2.1.98)

This still exhibits exponential growth, though at a considerably slower rate than
in (2.1.96).

Example 2.25 Chebyshev measure on [−1, 1] and Lagrange interpolation poly-
nomials.

Choosing for pk Lagrange interpolation polynomials (cf. Example 2.10), one
finds, rather surprisingly, that (Fischer, 1996, Theorem 5)

(cond Kn)(µ) ≤ 2n, (2.1.99)

independently of the choice of interpolation nodes (as long as they are distinct
and contained in [−1, 1]). Slow polynomial growth, as in (2.1.99), looks extremely
attractive, but unfortunately no algorithm is presently known that would com-
pute recursion coefficients from Lagrange modified moments. (The latter could
be computed by Gaussian quadrature.)
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2.1.7 Modified Chebyshev algorithm

For the choice of modified moments indicated in Example 2.8, which involves
orthogonal polynomials pk( · ) = pk( · ; d`), we now develop an algorithm imple-
menting the map Kn : m 7→ ρ. The algorithm is a generalization from ordinary
to modified moments of an algorithm due to Chebyshev (1859, Oeuvres I, p. 482);
in Gautschi (1982b, §2.4) we, therefore, called it the modified Chebyshev algo-
rithm. It actually can be applied with any system of monic polynomials {pk}
that satisfies a three-term recurrence relation

pk+1(t) = (t− ak)pk(t) − bkpk−1(t), k = 0, 1, 2, . . . ,

p−1(t) = 0, p0(t) = 1
(2.1.100)

with ak ∈ R and bk ≥ 0. In the case ak = bk = 0, it reduces to Chebyshev’s
original algorithm.

We introduce the “mixed moments”

σk` =

∫

R

πk(t)p`(t) dλ(t), k, ` ≥ −1, (2.1.101)

where πk( · ) = πk( · ; dλ) are the monic orthogonal polynomials with respect to
the given measure dλ (cf. Theorem 1.27). By orthogonality, one has σk` = 0 for
k > `, and since tpk−1(t) = πk(t) + · · · , where dots stand for a polynomial of
degree <k, there holds

∫

R

π2
k(t) dλ(t) =

∫

R

πk(t)tpk−1(t) dλ(t) = σkk, k ≥ 1.

The relation σk+1,k−1 = 0, together with the three-term recurrence relation for
πk (see (1.3.2)),

πk+1(t) = (t− αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,
(2.1.102)

thus yields, again using orthogonality,

0 =

∫

R

[(t− αk)πk(t) − βkπk−1(t)]pk−1(t) dλ(t) = σkk − βkσk−1,k−1,

that is,

βk =
σkk

σk−1,k−1
, k = 1, 2, 3, . . . . (2.1.103)

(Recall that β0 =
∫

R
dλ(t) = m0.) Similarly, σk+1,k = 0 gives

0 =

∫

R

[(t− αk)πk(t) − βkπk−1(t)]pk(t) dλ(t)

=

∫

R

πk(t)tpk(t) dλ(t) − αkσkk − βkσk−1,k.
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Using (2.1.100) in the form

tpk(t) = pk+1(t) + akpk(t) + bkpk−1(t) (2.1.104)

then yields

0 = σk,k+1 + (ak − αk)σkk − βkσk−1,k,

hence, together with (2.1.103) and the fact that σ−1,` = 0,

α0 = a0 +
σ01

σ00
,

αk = ak − σk−1,k

σk−1,k−1
+
σk,k+1

σkk
, k = 1, 2, 3, . . . .

The σs, in turn, satisfy the recursion

σk` = σk−1,`+1 − (αk−1 − a`)σk−1,` − βk−1σk−2,` + b`σk−1,`−1,

as follows from (2.1.102) (with k replaced by k−1) and (2.1.104) (with k replaced
by `). Thus, to compute the first n recursion coefficients from the first 2nmodified
moments, one has the following algorithm.

Algorithm 2.1 (Modified Chebyshev algorithm)
Initialization:

α0 = a0 +
m1

m0
,

β0 = m0,

σ−1,` = 0, ` = 1, 2, . . . , 2n− 2,

σ0,` = m`, ` = 0, 1, . . . , 2n− 1.

(2.1.105)

Continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

σk` = σk−1,`+1 − (αk−1 − a`)σk−1,` − βk−1σk−2,`

+b`σk−1,`−1, ` = k, k + 1, . . . , 2n− k − 1,

αk = ak +
σk,k+1

σkk
− σk−1,k

σk−1,`−1
,

βk =
σkk

σk−1,k−1
.

(2.1.106)

The algorithm requires as input {m`}2n−1
`=0 and {ak, bk}2n−2

k=0 , and produces
{αk, βk}n−1

k=0 . The complexity in terms of arithmetic operations is O(n2).
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Fig. 2.1. The modified Chebyshev algorithm, schematically.

The algorithm is summarized schematically in Fig. 2.1. The computing sten-
cil indicates the location of the five entries in the σ-tableau that are involved in
relation (2.1.106). The circled entry in the stencil is the one the algorithm com-
putes in terms of the other four. The entries in boxes are those used to compute
αk and βk. The OPQ routine chebyshev.m implements the algorithm.

The success of Algorithm 2.1 depends on the ability to compute all required
modified moments m` accurately and reliably. Most frequently, these moments
are obtained from recurrence relations, judiciously employed, as, for example, in
the case of Chebyshev or Gegenbauer moments (Piessens and Branders (1973),
Lewanowicz (1979), (1994a)). Sometimes they can be computed directly in terms
of special functions, or in integer form (Gautschi (1970, Examples (ii) and (iii)),
Wheeler and Blumstein (1972), Blue (1979), Gautschi (1979), Gatteschi (1980)).

Another possibility is to run Algorithm 2.1 with approximate modified mo-
ments obtained by discretizing the integral defining them; see §2.2.6.

2.1.8 Finite expansions in orthogonal polynomials

Mixed moments and the recurrence relation for them have other applications;
for example, to convert a finite expansion of a polynomial in terms of orthogonal
polynomials into one in terms of another set of orthogonal polynomials. Before
discussing this, we develop an efficient algorithm for evaluating certain finite
expansions.

2.1.8.1 Clenshaw’s algorithm Let yk = yk(t) be functions satisfying a three-
term recurrence relation
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yk+1 = (t− αk)yk − βkyk−1, k = 0, 1, 2, . . . , (2.1.107)

with given initial values y0 and y−1. We are interested in finite sums

r(t) =

n∑

j=0

cjyj(t). (2.1.108)

The following algorithm is an efficient way to evaluate them.

Algorithm 2.2 (Clenshaw’s algorithm)
Initialization:

un = cn, un+1 = 0. (2.1.109)

Continuation (if n > 0): for k = n− 1, n− 2, . . . , 0 do

uk = (t− αk)uk+1 − βk+1uk+2 + ck. (2.1.110)

Result:

r(t) = u0y0 − β0u1y−1. (2.1.111)

The validity of Algorithm 2.2 is best seen by writing (2.1.107) in matrix form
as

Ly(t) = ρ, ρ = [y0,−β0y−1, 0, . . . , 0]T ∈ Rn+1,

where

L =




1 0

α0 − t 1
β1 α1 − t 1

. . .
. . .

. . .

0T βn−1 αn−1 − t 1



, y(t) =




y0(t)
y1(t)
y2(t)

...
yn(t)



.

The recurrence relation in Algorithm 2.2 is then simply LTu = c, where uT =
[u0, u1, . . . , un], cT = [c0, c1, . . . , cn]. Thus,

r(t) = cTy(t) = cTL−1ρ = ((LT)−1c)Tρ = uTρ,

proving (2.1.111).
Algorithm 2.2 is implemented in the OPQ routine clenshaw.m.
In the case yk = πk of monic orthogonal polynomials, one has y0 = 1, y−1 = 0,

so that r(t) = u0. For the important special case of a Chebyshev expansion,

s(t) = 1
2d0 +

n∑

j=1

djTj(t), (2.1.112)

Algorithm 2.2 can be given the following form.
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Algorithm 2.3 (Clenshaw’s algorithm for a Chebyshev expansion)
Initialization:

vn = dn, vn+1 = 0, vn+2 = 0. (2.1.113)

Continuation (if n > 0): for k = n− 1, n− 2, . . . , 0 do

vk = 2tvk+1 − vk+2 + dk. (2.1.114)

Result:
s(t) = 1

2 (v0 − v2). (2.1.115)

(The last relation in (2.1.113) seems redundant, but is included to make the
algorithm work also for n = 0.) To verify Algorithm 2.3, one must first write
(2.1.112) in terms of the monic Chebyshev polynomials, T 0

j (t) = Tj(t)/2
j−1

(j ≥ 1), T 0
0 (t) = T0(t), so that c0 = 1

2d0, cj = 2j−1dj (j ≥ 1). Moreover,
the recursion coefficients are αk = 0, β1 = 1

2 , βk = 1
4 (k ≥ 2); cf. Table 1.1.

Algorithm 2.2 then becomes

un = 2n−1dn, un+1 = 0,

uk = tuk+1 − 1
4uk+2 + 2k−1dk,

k = n− 1, n− 2, . . . , 1,

u0 = tu1 − 1
2u2 + 1

2d0.

Letting vk = uk/2
k−1 (k ≥ 1), v0 = u0 yields Algorithm 2.3 except for the last

step of the recursion, which should be v0 = tv1 − v2 + d0/2, but instead defines
v∗0 = 2tv1 − v2 + d0. To compensate for this, one writes

v0 = tv1 − v2 + 1
2d0 = tv1 + v∗0 − 2tv1 − d0 + 1

2d0

= −tv1 − 1
2d0 + v∗0 = −v0 − v2 + 1

2d0 − 1
2d0 + v∗0

= −v0 − v2 + v∗0 ,

that is, 2v0 = v∗0 − v2, and hence the result (2.1.115) for s(t) = v0.
Algorithm 2.3 is implemented in the OPQ routine clenshaw cheb.m

2.1.8.2 Conversion algorithm Let {p`} be the monic orthogonal polynomials
of §2.1.7 satisfying the three-term recurrence relation (2.1.100) with coefficients
ak ∈ R and bk ≥ 0 and orthogonal with respect to a measure d` if bk > 0.
Consider

p(t) =

n∑

`=0

c`p`(t). (2.1.116)

Let {πk} as in §2.1.8.1 be another set of monic polynomials, orthogonal with
respect to the measure dλ, satisfying the three-term recurrence relation (2.1.102)
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with coefficients αk and βk. The problem is to find the expansion of p in terms
of the πk,

p(t) =

n∑

k=0

γkπk(t), (2.1.117)

knowing the expansion (2.1.116). An algorithm that computes the coefficients γk

from the known coefficients c` is called a conversion algorithm.
We start by expressing p` in terms of the πk,

p`(t) =
∑̀

k=0

d`kπk(t). (2.1.118)

By orthogonality of πk,

(p`, πk)dλ = d`k(πk, πk)dλ = d`k(pk, πk)dλ,

or, by the symmetry of the inner product,

d`k =
σk`

σkk
, k = 0, 1, . . . , `, (2.1.119)

where σk` are the mixed moments of (2.1.101). Inserting (2.1.118) and (2.1.119)
in (2.1.116) yields

p(t) =

n∑

`=0

c`p`(t) =

n∑

`=0

c`
∑̀

k=0

σk`

σkk
πk(t) =

n∑

k=0

(
1

σkk

n∑

`=k

σk`c`

)
πk(t),

that is,

γk =
1

σkk

n∑

`=k

σk`c`, k = 0, 1, . . . , n.

Since σ00 = β0, σ−1,` = σk,−1 = 0, and σk` = 0 for k > `, we can compute σk`,
k = 0, 1, . . . , n; ` = k, k+1, . . . , n by the scheme indicated in Fig. 2.1, but solving
for the East entry in the computing stencil rather than for the North entry. Thus,
one computes σk` in the order σ01, σ11; σ02, σ12, σ22; . . .; σ0n, σ1n, . . . , σnn; using
the recursion in (2.1.106). This gives rise to the following algorithm.

Algorithm 2.4 (Conversion algorithm)
Initialization:

σ00 = β0,

σ−1,` = 0, ` = 0, 1, . . . , n,

σk,k−1 = σk+1,k−1 = 0, k = 0, 1, . . . , n.

(2.1.120)

Continuation (if n > 0): for ` = 0, 1, . . . , n− 1 do
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σk,`+1 = σk+1,` + (αk − a`)σk` + βkσk−1,` − b`σk,`−1,

k = 0, 1, . . . , `+ 1.
(2.1.121)

Conversion:

γk =
1

σkk

n∑

`=k

σk`c`, k = 0, 1, . . . , n. (2.1.122)

The algorithm is implemented in the OPQ routine convert.m.

2.1.9 Examples

Our interest, as in Examples 2.14–2.16, is again to compare theory with practice,
that is, to see how condition numbers correlate with actual error growth. The
precise meaning of the latter is described in the paragraph preceding Example
2.14.

We begin with a measure of discrete type for which Chebyshev originally,
in connection with discrete least squares approximation (cf. §3.2), developed his
algorithm.

Example 2.26 dλN (t) = (1/N)
∑N−1

k=0 δ(x− k/N) dt.

The monic orthogonal polynomials πk( · ) = πk( · ; dλN ) are the discrete
Chebyshev polynomials transformed to the interval [0, 1). Although the recursion
coefficients are known explicitly (cf. Commentary to Table 1.2 regarding discrete
Chebyshev polynomials), it is instructive to examine the condition of the map
Gn, both in the case of ordinary moments

µr =

∫ 1

0

tr dλN (t) =
1

N

N−1∑

k=0

(
k

N

)r

, r = 0, 1, . . . , 2n− 1 (2.1.123)

(the case considered by Chebyshev), and modified moments; for example, those
relative to monic shifted Legendre polynomials P ∗0

r (cf. Table 1.1),

mr =

∫ 1

0

P ∗0
r (t) dλN (t) =

1

N

N−1∑

k=0

P ∗0
r

(
k

N

)
, r = 0, 1, . . . , 2n− 1, (2.1.124)

where n ≤ N − 1. In the former case, we compute the lower bound of Theorem
2.11 for (condGn)(µ), in the latter case the integral expression in Theorem

2.17 for (cond G̃n)(m̃). Both are appropriate since all moments and recursion
coefficients are less than 1 in modulus. The Gaussian nodes τν and weights λν

needed for this computation are generated by the methods of §3.1.1 using the
known recursion coefficients of dλN .
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Table 2.4 Condition number and error magnifi-
cation for discrete 20-point Chebyshev measure on
[0, 1) using ordinary moments.

n (2.1.36) magα magβ
2 1.11(1) 2.25(0) 1.25(–1)
5 1.24(5) 4.34(4) 2.32(3)
8 2.50(9) 7.71(8) 3.40(7)
11 1.00(14) 2.60(13) 1.01(12)

Table 2.4, computed with the OPQ routine Table2 4.m, illustrates (once again!)
the ill-conditioning of the map Gn(µ). Here, N = 20 and n = 2, 5, 8, 11, and ac-
curacy is seen to be lost at a rate somewhat faster than one decimal digit per
degree!

More stable, though not entirely unproblematic, is the modified Chebyshev
algorithm using the Legendre moments (2.1.124). This is shown in Table 2.5,
computed with the OPQ routine Table2 5.m, for N = 10, 20, 40, 80 and selected
values of n. It is seen that as n approaches N , the condition of G̃n(m̃), and with

Table 2.5 Condition number and error magnification for discrete N-point
Chebyshev measure on [0, 1) using Legendre moments.

N n (2.1.50) magα magβ N n (2.1.50) magα mag β
10 5 2.47(0) 5.00(–1) 6.25(–2) 40 15 3.71(1) 6.75(0) 2.00(0)

10 5.01(4) 4.05(3) 1.22(2) 25 2.34(6) 4.67(5) 4.65(4)
20 5 1.01(0) 2.50(–1) 6.25(–2) 35 8.22(14) 1.10(14) 3.97(12)

10 2.50(1) 9.00(0) 1.22(0) 80 10 9.26(–1) 2.50(–1) 6.25(–2)
15 3.67(4) 1.90(4) 1.37(3) 20 1.56(1) 4.00(0) 7.19(–1)
20 3.72(10) 1.65(10) 2.00(8) 30 1.04(4) 1.89(3) 3.10(2)

40 5 8.90(–1) 2.50(–1) 2.00(0) 40 1.29(8) 1.03(7) 1.43(6)
10 1.73(0) 5.00(–1) 2.00(0) 50 4.45(13) 2.00(12) 1.62(11)

it the error magnification, grows very significantly. The reason for this lies in the
distribution of the Gauss nodes τν for dλN , which, though apparently all weak
in the sense described before Theorem 2.19, become more equally spaced as n
approaches N . (They are equally spaced for n = N .) The Hermite interpolation
polynomials hν and kν in (2.1.51), therefore, begin to exhibit the violent oscil-
lations characteristic of equally spaced points, which lead to large peaks of gn

between the first few, and last few, Gaussian nodes τν and to large maxima at
the end points of [0, 1]. Related to this is an instability phenomenon associated
with the three-term reccurence relation; cf. §2.2.3.1.

The next two examples illustrate cases of almost perfect stability.
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Example 2.27 dλ(t) = tα ln(1/t) dt on [0, 1], α > −1.
Here, the modified moments mr with respect to the monic shifted Legen-

dre polynomials pk(t) = (k!2/(2k)!)Pk(2t − 1) can be obtained in closed form;
cf. Gautschi (1979). If α is not an integer, for example, one finds

(2r)!

r!2
mr =

1

α+ 1

{
1

α+ 1
+

r∑

ρ=1

(
1

α+ 1 + ρ
− 1

α+ 1 − ρ

)} r∏

ρ=1

α+ 1 − ρ

α+ 1 + ρ
,

r = 0, 1, 2, . . . .
(2.1.125)

(Similar formulae hold for integral α; see Blue (1979) for α = 0 and Gautschi
(1979) for α > 0. Modified moments relative to shifted Jacobi polynomials of the
more general measure tα(1 − t)β ln(1/t) dt, α > −1, β > −1, are computed ex-
plicitly in Gatteschi (1980).) The modified Chebyshev algorithm for this example
is implemented in the OPQ routine r jaclog.m. Using it for α = − 1

2 , 0,
1
2 yields

the results in Table 2.6, displayed in a format similar to the one adopted in Ta-
ble 2.5. The errors are computed by comparison with quadruple-precision results

Table 2.6 Condition number and error magnifi-
cation for the measure in Example 2.27 using Leg-
endre moments.

α n (2.1.50) magα magβ
− 1

2 25 5.35(1) 1.65(1) 4.12(0)
50 1.49(2) 3.72(1) 9.38(0)
75 2.72(2) 3.72(1) 9.38(0)
100 4.18(2) 3.72(1) 9.38(0)

0 25 5.39(1) 5.00(–1) 9.38(–2)
50 1.50(2) 7.50(–1) 2.50(–1)
75 2.73(2) 1.50(0) 3.75(–1)
100 4.19(2) 1.50(0) 3.75(–1)

1
2 25 5.46(1) 7.50(–1) 1.25(–1)

50 1.51(2) 7.50(–1) 1.25(–1)
75 2.74(2) 1.25(0) 2.81(–1)
100 4.21(2) 1.50(0) 3.44(–1)

obtained by the ORTHPOLq routine qtest2.m. For the details of the computa-
tions, see the OPQ routine Table2 6.m. The first 100 recurrence coefficients for
the three values of α are available to 25 decimal places in the OPQ file abjaclog.

The condition of G̃n(m̃) is seen to remain relatively small, even for values
of n as large as 100, and the error magnification even smaller. The gradual (but

slow) increase of (cond G̃n)(m̃) can be ascribed to a phenomenon similar to
the one observed in Example 2.26, except that this time not all nodes τν are
weak, but only about the first two-thirds of them (when ordered increasingly).
All remaining nodes appear to be strong, giving rise to the development of peaks
and final upward surges of gn as in Example 2.26. The height of the peaks,
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nevertheless, is much lower here than before.
Some of the entries in the columns headed magα and magβ are seen to be

identical for different values of n. This is because the maximum error magnifi-
cation in αk or βk may be attained at the same value of k for different values of
n.

Example 2.28 dλ(t) = tα[ln(1/t)]2 dt on [−1, 1], α > −1.
With pk again the monic shifted Legendre polynomials, the modified moments

can be obtained from those of Example 2.27 by differentiation with respect to α
and changing the sign. The result is

(2r)!

r!2
mr =

2

(α+ 1)3
{
1 − 2(α+ 1)Σ1 + 2(α+ 1)2Σ2

1 − 2(α+ 1)3Σ2

}
Π,

where

Σ1 =

r∑

ρ=1

ρ

(ρ+ α+ 1)(α+ 1 − ρ)
,

Σ2 =

r∑

ρ=1

ρ

(ρ+ α+ 1)2(α+ 1 − ρ)2
,

Π =

r∏

ρ=1

α+ 1 − ρ

α+ 1 + ρ
.

Example 2.29 dλ(t) = w(t) dt on [−1, 1] with w(t) = [(1 − k2t2)(1 − t2)]−1/2,
0 < k < 1.

This is an example already considered by Christoffel (1877, Example 6) and
much later by Rees (1945). What intrigued Christoffel was the fact that the
orthogonal polynomials πr( · ) = πr( · ; dλ), when considered as functions of x =∫ t

0 w(t) dt, constitute a sequence of doubly periodic functions orthogonal in the
sense ∫ K

−K

πr(t)πs(t) dx = 0, r 6= s,

where K denotes the complete elliptic integral K =
∫ 1

0
w(t) dt. Rees called the

polynomials πr elliptic orthogonal polynomials and the measure may be called
elliptic Chebyshev.

Since (1−k2t2)1/2 is analytic in a neighborhood of [−1, 1], the elliptic orthog-
onal polynomials must be “close” to the Chebyshev polynomials of the first kind
and the associated Gaussian nodes τν close to Chebyshev points. As a matter
of fact, numerical evidence suggests that for all 0 < k < 1, and all n, the Gauss

nodes τν = τ
(n)
ν (dλ) are all weak nodes and, moreover, the polynomial gn( · ; dλ)

never exceeds 1 on [−1, 1] (cf. Examples 2.18 and 2.20). This has been verified
for values of n as large as 80, and values of k as close to 1 as k2 = 0.999. It
appears, therefore, that the absolute condition of G̃n(m̃) is uniformly bounded,
irrespective of the choice of modified moments. For the latter, it seems natural to
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take those relative to the monic Chebyshev polynomials p0 = T0, pk = 21−kTk,
k = 1, 2, . . . . The modified Chebyshev algorithm then is found to work ex-
tremely well, producing results essentially accurate to machine precision for all
values of n and k referred to above. (The errors were determined by comparison
with quadruple-precision results obtained by the (simplified) ORTHPOLq routine
qtest1.) For numerical illustrations, see the OPQ routine Example2 29.m, which
uses the routine r elliptic.m that implements the modified Chebyshev algo-
rithm for this example.

The computation of the modified moments

mr =

∫ 1

−1

pr(t) dλ(t), r = 0, 1, 2, . . . , (2.1.126)

however, is not entirely trivial. A procedure that has been utilized in Gautschi
(1982b, Example 4.4) is the following. Let t = cos θ in (2.1.126) to write

m0 =

∫ π

0

dθ

(1 − k2 cos2 θ)1/2
, mr =

1

2r−1

∫ π

0

cos rθ

(1 − k2 cos2 θ)1/2
dθ. (2.1.127)

Then, put ϕ = π/2 − θ in the Fourier expansion

1

(1 − k2 sin2 ϕ)1/2
= C0(k

2) + 2

∞∑

n=1

Cn(k2) cos 2nϕ

and substitute the result in (2.1.127). By virtue of the orthogonality of the cosine
functions, one obtains

m0 = πC0(k
2),

m2r = (−1)r π

22r−1
Cr(k

2), r = 1, 2, 3, . . . ,
(2.1.128)

while, of course, m2r−1 = 0, r = 1, 2, 3, . . . . On the other hand, yn = Cn(k2),
n = 0, 1, 2, . . . , is a minimal solution in the sense of Definition 1.42 of the three-
term recurrence relation

(n+ 1
2 )yn+1 + n

1 + q2

q
yn + (n− 1

2 )yn−1 = 0, n = 1, 2, 3, . . . , (2.1.129)

where

q =
k2

2 − k2 + 2(1 − k2)1/2
, (2.1.130)

and it satisfies

y0 + 2
∞∑

n=1

yn = 1 (2.1.131)

(see Luke (1969, p. 36)). Our continued fraction algorithm in Gautschi (1967a,
eqn (3.9)), in conjunction with the normalizing condition (2.1.131), then yields
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the Fourier coefficients Cn(k2), hence the modified moments in (2.1.128), very
accurately and efficiently. The algorithm works well even when k2 is quite close
to 1. Note, in fact, that (2.1.129) is a difference equation of Poincaré type, with
characteristic equation

u2 +
1 + q2

q
u+ 1 = 0, 0 < q < 1,

having two real roots u1 and u2 with |u1| > 1 > |u2| and

∣∣∣∣
u1

u2

∣∣∣∣ =
1

q2
.

(The minimal solution yn = Cn(k2) “corresponds” to u2.) If k2 = 1−ε, 0 < ε < 1,
then by (2.1.130),

1

q2
=

(
1 +

√
ε

1 −√
ε

)2

= 1 + 4
√
ε+ 8ε+ 12ε

√
ε+ 16ε2 + o(ε2), ε→ 0,

so that, when k2 = 0.999, for example, one has ε = 10−3, hence |u1/u2| ≈ 1.13,
which is still an adequate separation of the roots for the minimality of the solution
yn to take hold. The algorithm is implemented in the OPQ routine mm ell.m.

Example 2.30 A measure of interest in the diatomic linear chain model (Wheeler,
1984) (cf. also Example 1.12).

This is the measure

dλ(t) =





1
π |t− 1

2 |{t(1 − t)(t− 1
3 )(t− 2

3 )}−1/2 dt, t ∈ [0, 1
3 ] ∪ [ 23 , 1],

0 otherwise,

(2.1.132)
supported on two separate intervals, [0, 1

3 ] and [23 , 1], at each end point of which
there is a “singularity of Chebyshev type.” Although the recursion coefficients
αk(dλ) and βk(dλ) can be computed in closed form (cf. Gautschi (1984b)), the
example is interesting since it provides a case for illustrating the proper choice
of modified moments.

One could be tempted, and in fact it was tried in Wheeler (1984), to take
modified moments based on the shifted Chebyshev polynomials, that is, to take
d`(t) = π−1[t(1− t)]−1/2 dt on [0, 1]. (For the accurate calculation of these mod-
ified moments, we refer to the cited article.) This, however, leads to serious
instabilities. The reason is the particular pattern in which the Gaussian nodes
τν = τν(dλ) are distributed. In view of Theorem 1.21, they are necessarily con-
strained to stay in the two support intervals except when n is odd, in which case
one node is at the midpoint t = 1

2 . As a consequence, the polynomial gn( · ; dλ)
wiggles rapidly on these two intervals, remaining ≤1 there, but shoots up to a
huge peak (double peak, if n is odd) on the central interval [13 ,

2
3 ]. When n = 40,
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for example, the peak value is of the order 1020. Since the support of the chosen
d` is the whole interval [0, 1], the integral in (2.1.50) extends also over the center
interval and therefore, of necessity, is very large. For example,

{∫ 1

0

gn(t; dλ) d`(t)

}1/2
.
= 2.0 × 109 if n = 40,

and hence the same large magnitude for the condition number (cond G̃n)(m̃).
Clearly, the “hole” [ 13 ,

2
3 ] must be avoided at all cost. A possibility in this regard,

suggested by Wheeler (1984), is

d`(t) =





18π−1|t− 1
2 |−1{t(1 − t)(t− 1

3 )(t− 2
3 )}1/2 dt, t ∈ [0, 1

3 ] ∪ [ 23 , 1],

0 otherwise,

(2.1.133)
for which the corresponding modified moments as well as the polynomials pk =
pk( · ; d`) are explicitly computable (Wheeler, 1984). The polynomial gn being,
of course, the same as before, one now has

(cond G̃n)(m̃) =

{∫

[0, 13 ]∪[ 23 ,1]

gn(t; dλ) d`(t)

}1/2

< 1 (2.1.134)

for all n, in striking contrast with the previous choice of d`.

The last example is one in which the modified Chebyshev algorithm fails.

Example 2.31 The half-range Hermite measure dλ(t) = e−t2 dt on [0,∞].
We apply the modified Chebyshev algorithm with two choices of modified

moments, the first relative to monic Hermite polynomials, pH
k = 2−kHk, the sec-

ond relative to monic Laguerre polynomials, pL
k = (−1)kk!Lk (cf. Commentary

to Table 1.1). The respective recursion coefficients are

ak = 0 (k ≥ 0); b0 =
√
π, bk = 1

2 k (k ≥ 1) (Hermite) (2.1.135)

and

ak = 2k + 1 (k ≥ 0); b0 = 1, bk = k2 (k ≥ 1) (Laguerre). (2.1.136)

For the Hermite moments mH
k =

∫∞
0
pH

k (t)e−t2 dt, one finds from the recurrence
relation for the Hermite polynomials, integration by parts, and from the identity
H ′

k = 2kHk−1, that

mH
k = 1

2 p
H
k−1(0), k = 1, 2, . . . ,

mH
0 = 1

2

√
π.

(2.1.137)

Here, pH
k−1(0) = 0 if k is even, and pH

k−1(0) = (−1)(k−1)/2(k−1)!/2k−1((k−1)/2)!
if k is odd. The latter can be computed recursively. The modified Chebyshev
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algorithm furnished with the data in (2.1.135) and (2.1.137) performs as shown
in Table 2.7 in a format similar to the one in Table 2.6. (High-accuracy values
of the αk(dλ) and βk(dλ) were obtained in quadruple precision by methods
discussed in §2.2. The first 100 of them are available to 25 decimal places in
the OPQ file abhrhermite.) It seems natural, here, to show the relative condition
numbers of (2.1.64), although the absolute condition numbers of (2.1.50) are
almost the same, but consistently a bit larger.

It is seen that the modified Chebyshev algorithm becomes quickly unstable,

Table 2.7 Condition number and error magnifi-
cation for the half-range Hermite measure using
Hermite moments.

n (2.1.64) magα magβ
2 1.94(1) 1.50(0) 5.00(–1)
4 4.60(3) 1.21(2) 3.75(1)
6 1.67(6) 3.15(3) 3.65(3)
8 6.79(8) 4.81(6) 1.69(6)
10 2.91(11) 2.62(9) 1.10(9)

though not quite as fast as predicted by the condition numbers.
For the Laguerre moments mL

k =
∫∞
0
pL

k (t)e−t2 dt, one finds from the explicit
power representation of the Laguerre polynomials that1

mL
k =

(−1)kk!

2

k∑

ρ=0

(−1)ρ k!Γ((ρ+ 1)/2)

(k − ρ)!ρ!2
, k = 0, 1, 2, . . . . (2.1.138)

The terms in the sum for ρ even and for ρ odd can be generated recursively from
initial values

√
π resp. −k.

With these Laguerre moments, and the data in (2.1.136), the modified Cheby-
shev algorithm, surprisingly, is found to perform worse than with Hermite mo-
ments, in spite of the fact that the Laguerre measure has support identical to
the one of dλ, unlike the Hermite measure. The latter, however, has a stronger
damping power as |x| → ∞, which probably accounts for its better performance
in the modified Chebyshev algorithm. The results are shown in Table 2.8.

Tables 2.7 and 2.8 are computed with the OPQ routines Table2 7.m and
Table2 8.m.

As Example 2.31 demonstrates, there are limitations in the potential useful-
ness of moment-related methods, particularly for measures dλ having unbounded
support. Fortunately, there are other methods available that work also in these

1Equation (5.29) in Gautschi (1984c) contains a misprint: the factor k! in the summation
on the far right should be k!2.
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Table 2.8 Condition number and error magnifi-
cation for the half-range Hermite measure using
Laguerre moments.

n (2.1.64) magα magβ
2 9.54(1) 2.70(1) 3.75(–1)
4 2.41(6) 2.56(6) 5.63(4)
6 2.99(11) 2.15(11) 7.20(9)
8 8.73(16) 1.40(17) 6.28(15)
10 5.45(22) 1.40(17) 6.10(18)

difficult circumstances, although they may be more labor-intensive and also re-
quire a certain amount of creativity on the part of the user. These will be dis-
cussed in the next section.

2.2 Discretization methods

The basic idea behind discretization methods is very simple. One approximates
the given measure dλ by a discreteN -point measure dλN , computes the recursion
coefficients αk,N = αk(dλN ), βk,N = βk(dλN ) of the discrete measure dλN , and
then lets N go to infinity. If the discretizations are done in a meaningful manner,
the process will converge in the sense that, for fixed k, limN→∞ αk,N = αk

and limN→∞ βk,N = βk, where αk = αk(dλ) and βk = βk(dλ) are the desired
recursion coefficients of the given measure. There are, however, a number of
issues—some theoretical and some practical—that need to be considered. The
first concerns the question of convergence, the second the problem of computing
recursion coefficients of discrete measures, and the third and most important
one, appropriate choices of discretizations. These issues will be discussed in turn
in §2.2.1–2.2.4. Nontrivial examples illustrating the power of these methods will
be given in §2.2.5. The same apparatus of discretization, created to approximate
inner products, can be applied to approximate modified moments instead, which,
in combination with the modified Chebyshev algorithm, then provides another
approach toward computing recursion coefficients. This will be briefly discussed
in §2.2.6.

2.2.1 Convergence of discrete orthogonal polynomials to continuous ones

We first assume that the measure dλ is supported on a finite interval, say [−1, 1],
and that the support points of dλN are also contained in [−1, 1].

It is reasonable to expect that the discrete orthogonal polynomials πn,N ( · ) =
πn( · ; dλN ) converge to the continuous orthogonal polynomials πn( · ) = πn( · ; dλ)
as N → ∞ if the inner product

(p, q)dλN
:=

∫

R

p(t)q(t) dλN (t) =

N∑

ν=1

wνp(tν)q(tν) (2.2.1)
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(where tν and wν depend on N) converges to (p, q)dλ as N → ∞ whenever p
and q are polynomials. This is borne out by the following theorem.

Theorem 2.32 Let dλ be a positive measure on [−1, 1] having finite moments
of all orders (cf. §1.1.1) and dλN the discrete measure (2.2.1) with tν = tν,N

distinct numbers in [−1, 1] and wν = wν,N > 0 for each N . Assume that

lim
N→∞

(p, q)dλN
= (p, q)dλ if p ∈ P, q ∈ P, (2.2.2)

where P is the class of real polynomials. Then, for any fixed k, the recursion
coefficients αk,N and βk,N for the discrete orthogonal polynomials relative to the
measure dλN converge to those of the continuous orthogonal polynomials,

lim
N→∞

αk,N = αk, lim
N→∞

βk,N = βk, (2.2.3)

where αk = αk(dλ), βk = βk(dλ). Furthermore,

lim
N→∞

πn(t; dλN ) = πn(t; dλ) (2.2.4)

uniformly for t in [−1, 1].

Proof The proof is based on the formulae (cf. Theorem 1.27)

αk =
(tπk, πk)dλ

(πk, πk)dλ
, k = 0, 1, 2, . . . , (2.2.5)

βk =
(πk, πk)dλ

(πk−1, πk−1)dλ
, k = 1, 2, . . . , (2.2.6)

where πk( · ) = πk( · ; dλ) are the (monic) orthogonal polynomials relative to dλ,
and the corresponding formulae

αk,N =
(tπk,N , πk,N )dλN

(πk,N , πk,N )dλN

, k = 0, 1, 2, . . . , (2.2.7)

βk,N =
(πk,N , πk,N )dλN

(πk−1,N , πk−1,N )dλN

, k = 1, 2, . . . , (2.2.8)

for the discrete polynomials. By definition,

β0 = (1, 1)dλ, β0,N = (1, 1)dλN
. (2.2.9)

We begin with the observation that for any f, g ∈ C[−1, 1] there holds

|(f, g)dλN
| ≤ ‖f‖∞‖g‖∞(1, 1)dλN

, (2.2.10)

where the infinity norm is the one with respect to the interval [−1, 1].
Proceeding by induction on n, assume that (2.2.4) is true for some n = s and

n = s− 1. (This is trivial when s = 0.) In order to prove (2.2.4) for n = s+ 1, it
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suffices to prove (2.2.3) for k = s since this, by the three-term recurrence relation
πs+1,N (t) = (t−αs,N )πs,N (t)−βs,Nπs−1,N (t) and the induction hypothesis, will
imply πs+1,N (t) → (t−αs)πs(t)−βsπs−1(t) = πs+1(t). In order to prove (2.2.3),
on the other hand, it suffices to show that all the inner products appearing in
(2.2.7) and (2.2.8), when k = s, converge to the corresponding ones in (2.2.5)
and (2.2.6) as N → ∞. We show this for the inner product (πs,N , πs,N )dλN

; for
the others, the proof is analogous.

We have

(πs,N , πs,N )dλN
= (πs + (πs,N − πs), πs + (πs,N − πs))dλN

= (πs, πs)dλN
+ 2(πs, πs,N − πs)dλN

+ (πs,N − πs, πs,N − πs)dλN
.

(2.2.11)

The first term on the far right, by (2.2.2), converges to (πs, πs)dλ. To the second
term we apply (2.2.10) with the result that

|(πs, πs,N − πs)dλN
| ≤ ‖πs‖∞‖πs,N − πs‖∞(1, 1)dλN

.

Since by assumption (1, 1)dλN
→ (1, 1)dλ and by the induction hypothesis,

πs,N → πs, the bound on the right tends to zero. By the same reasoning, the
last term in (2.2.11) also tends to zero. Consequently,

lim
N→∞

(πs,N , πs,N )dλN
= (πs, πs)dλ.

2

Note that according to the last relation in the proof of Theorem 2.32, one
has ‖πn,N‖dλN

→ ‖πn‖dλ, which, combined with (2.2.4), shows that Theorem
2.32 also holds for orthonormal polynomials (cf. §1.3.2), that is,

lim
N→∞

π̃n(t; dλN ) = π̃n(t; dλ). (2.2.12)

Theorem 2.32 has the following simple corollary.

Corollary to Theorem 2.32 Let n be fixed and the zeros of πn, in decreasing
order, be denoted by τ1, τ2, . . . , τn and those of πn,N , in the same order, by
τ1,N , τ2,N , . . . , τn,N . Then, under the assumptions of Theorem 2.32, there holds

lim
N→∞

τν,N = τν , lim
N→∞

πm,N (τν,N ) = πm(τν), ν = 1, 2, . . . , n; m 6= n.

(2.2.13)

Proof The first relation in (2.2.13) is a consequence of the continuity of poly-
nomial zeros. The second relation follows from

πm,N (τν,N ) − πm(τν) = (πm,N (τν,N ) − πm(τν,N )) + (πm(τν,N ) − πm(τν))

by observing that |πm,N (τν,N )−πm(τν,N )| ≤ ‖πm,N−πm‖∞ → 0 and πm(τν,N ) →
πm(τν) as N → ∞. 2
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Remark The first relation in (2.2.13) can be interpreted by saying that the
nodes of the n-point Gauss quadrature rule for dλN (cf. §1.4.2) tend to the
nodes of the n-point Gauss quadrature rule for dλ. The same holds also for the
respective weights λG

ν,N and λG
ν . This follows by applying the second relation in

(2.2.13) (for orthonormal polynomials) to the formula (cf. eqn (3.1.7))

λG
ν,N =

1
∑n−1

m=0 π̃
2
m,N (τν,N )

, ν = 1, 2, . . . , n. (2.2.14)

2.2.2 A general-purpose discretization procedure

Discretizations (p, q)dλN
of (p, q)dλ as in (2.2.1) can be obtained by applying

suitable quadrature formulae. We illustrate this in the case dλ(t) = w(t) dt,
where w is continuous on (−1, 1) but may have integrable singularities at ±1.
We seek an approximation of the form

∫ 1

−1

f(t)w(t) dt ∼=
N∑

ν=1

wνf(tν)w(tν ), (2.2.15)

which can then be used, with f(t) = p(t)q(t), to obtain the discrete inner product
(2.2.1). There are of course other possibilities, for example, weighted quadrature

rules
∫ 1

−1 f(t)w(t) dt ∼=
∑N

ν=1 wνf(tν), the construction of which, however, will
depend on the particular nature of the weight function w. The choice (2.2.15) is
made with the intention in mind of providing a general-purpose discretization.
Since w may be singular at the end points ±1, the nodes tν are preferably chosen
away from these points unless one wants to play the risky game of “ignoring” the
singularity (cf. Davis and Rabinowitz (1984, §2.12.7)). Moreover, a high degree
of exactness is desirable whenever w happens to be smooth on [−1, 1]. This
suggests to use an interpolatory quadrature rule (cf. §1.4.1) and nodes tν that
are denser near the end points ±1; for example, exhibiting an arccos-distribution.
A quadrature rule that fits this bill is the interpolatory quadrature rule based
on the Chebyshev points, also called the Fejér quadrature rule. Thus, its nodes
are

tFν = cos θF
ν , θF

ν =
2ν − 1

2N
π, ν = 1, 2, . . . , N, (2.2.16)

and its weights are explicitly known,

wF
ν =

2

N


1 − 2

bN/2c∑

n=1

cos 2nθF
ν

4n2 − 1


 , ν = 1, 2, . . . , N. (2.2.17)

Fejér (1933) indeed has shown that wF
ν > 0 for all ν, and, therefore, by a well-

known theorem of Pólya (cf. Davis and Rabinowitz (1984, p. 130)), the Fejér
quadrature rule converges for continuous functions. In particular, (2.2.15) with
tν = tFν , wν = wF

ν , converges as N → ∞ whenever f is a polynomial and w
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continuous on [−1, 1]. Interestingly, convergence persists even if w has integrable
singularities at ±1 provided w is monotonic nearby (Gautschi, 1967b). Little is
known, however, about the rate of convergence in such cases, and it may well
be that convergence is quite slow (cf. Example 2.33). Fejér quadrature rules are
generated in the OPQ routine fejer.m.

If dλ contains also a discrete component, it suffices to add this component
to the discrete approximation of the absolutely continuous part of dλ. This does
not affect in any way the convergence properties of the discretization.

An arbitrary support interval [a, b], −∞ ≤ a < b ≤ ∞, can be reduced to the
canonical interval [−1, 1] by a suitable transformation of variables,

∫ b

a

f(t)w(t) dt =

∫ 1

−1

f(φ(τ))w(φ(τ))φ′ (τ) dτ. (2.2.18)

If [a, b] is finite, a linear transformation will do, otherwise a simple fractional
transformation. In our work, we have used

φ(τ) =





1
2 (b− a)τ + 1

2 (b+ a) if −∞ < a < b <∞,

b− 1 − τ

1 + τ
if −∞ = a < b <∞,

a+
1 + τ

1 − τ
if −∞ < a < b = ∞,

τ

1 − τ2
if −∞ = a < b = ∞.

(2.2.19)

The OPQ routine quadgp.m in combination with the routine fejer.m provides
the quadrature nodes and weights for use in (2.2.18) if one applies the Fejér rule
to the integral on the right.

Such transformations, in fact, can be useful also if, in an attempt to speed
up convergence, one decides to partition the interval [a, b] into a number of
subintervals and to apply Fejér quadrature to each one of them. But how should
such a partition be produced? Here is a systematic way of going about it. Assume,
for the sake of argument, that the singularity lies at the left end point a and
that b is a regular point. Suppose also that we are trying to achieve a result with
error ≤ ε and are willing to use Fejér rules with as many as Nmax points, but
not more, on each subinterval. Pick a t01 with a < t01 < b (and fairly close to a).
Apply the n-point Fejér rule to the interval [a, t01] with n = 2, 3, . . . and monitor
the absolute value of the difference bewtween two successive approximations to
the integral. If this difference becomes ≤ε for some n < Nmax, increase t01 to t11
and try again on the interval [a, t11]. Otherwise, decrease t01 and repeat until the
error condition can be satisfied with n < Nmax. Eventually, a t1 will be found for
which the Fejér rule with about Nmax points applied to [a, t1] yields the desired
accuracy. We accept t1 as the first point of the partition. The same process is
then repeated on some interval [t1, t

0
2], t1 < t02 ≤ b, to produce the second point
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t2 of the partition, and so on. The process terminates once the right end point
of a subinterval reaches the end point b.

Example 2.33 f(t) = 1 and w(t) = tt(1 − t)1−t on [0, 1].
By the symmetry w(1 − t) = w(t), it suffices to compute

∫ 1

0

w(t) dt = 2

∫ 1/2

0

w(t) dt. (2.2.20)

With the choice ε = 1
210−14 and Nmax = 50, the partition procedure described

above, when applied to [0, 1/2], produces the partition [0, 0.5] = [0, 0.00115] ∪
[0.00115, 0.0844]∪ [0.0844, 0.5]. Applying the composite Fejér rule on this parti-
tion, using n quadrature points on each subinterval until an n = N is reached
for which the total error is ≤ ε yields N = 108 (in Matlab) with the result
having an error of 0.4996 × 10−14. (Quadruple-precision computation of the in-
tegral yields the value 0.617826964729011473 . . . , which was used as a reference
value for computing errors.) The fact that N is rather larger than Nmax may
at first surprise, but on reflection (and testing) can be ascribed to the more
rigorous testing against the exact result as opposed to comparing two consecu-
tive approximations, as was done in the generation of the partition. In contrast,
applying the Fejér rule with N = 108 and N = 3 × 108 = 324 over the whole
interval [0, 1/2] yields 0.6178269656443711 resp. 0.6178269647402954 with errors
0.9154 × 10−9 and 0.1128 × 10−10. The partition of the interval thus proves to
be beneficial in this example. See the OPQ routine Example2 33.m for details.

Example 2.34 The integral
∫∞
0

e−t2 dt = 1
2

√
π.

Here, f(t) = 1 and w is the half-range Hermite weight function. With the
same choice of ε as in Example 2.33, but Nmax = 20, the partition becomes
[0,∞] = [0, 1.013]∪ [1.013, 3.639]∪ [3.639,∞], on which the Fejér composite rule
with N = 22 points on each subinterval yields the desired accuracy ε. See the
OPQ routine Example2 34.m

2.2.3 Computing the recursion coefficients of a discrete measure

We discuss two procedures, one already briefly alluded to by Stieltjes (1884,
p. 415 or p. 383 of Œuvres, Vol. I) in 1884, and another implementing ideas of
Lanczos and Rutishauser.

2.2.3.1 Stieltjes procedure The formulae (2.2.7) and (2.2.8) for the recursion
coefficients provide a natural framework for computing them. All inner products

(p, q)dλN
=

N∑

ν=1

wνp(tν)q(tν) (2.2.21)

appearing in these formulae indeed are finite sums and therefore trivial to com-
pute. The only problem is the appearance of the polynomials πk,N and πk−1,N

themselves, which are not known. However, they can be built up successively, and
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in tandem with the recursion coefficients, by the three-term recurrence relation
(cf. §1.3.1).

πk+1,N (t) = (t− αk,N )πk,N (t) − βk,Nπk−1,N (t), k = 0, 1, . . . , N − 1. (2.2.22)

Since π0,N = 1, the coefficient α0,N indeed can be computed from (2.2.7) with
k = 0, and so can β0,N = (1, 1)dλN

. This allows us to compute π1,N (t), for all
values t = tν needed, by means of (2.2.22) with k = 0. In possession of the values
π1,N (tν) and π0,N (tν), the formulae (2.2.7) and (2.2.8) now become applicable
and yield α1,N and β1,N . This, in turn, can be used in (2.2.22) to generate π2,N .
In this manner, alternating between (2.2.22) and (2.2.7), (2.2.8), we can proceed
until all recursion coefficients, or as many as are needed, have been computed.
The procedure is implemented in the OPQ routine stieltjes.m.

The procedure is not entirely foolproof, numerically. For one, there is some
danger of overflow or underflow occurring during the course of the procedure.
This may happen for one of two reasons: over- resp. underflow of the weights wν ,
or over- resp. underflow of the orthogonal polynomials πk,N or, more precisely,
of their squared norms. A remedy in the former case is to multiply all weights
by a sufficiently large resp. small number c prior to running the procedure. In
the latter case, a scaling of the polynomials is required, which is most easily
accomplished by multiplying π0,N by c (assuming π−1,N = 0). In either case, the
recursion coefficients remain the same except for β0,N , which, at the end, must
be divided by c.

A potentially more serious problem is the tendency of the recurrence rela-
tion (2.2.22) to develop instabilities as k approaches N . The phenomenon—a
type of pseudostability—has been pointed out and analyzed in Gautschi (1993b),
(1997a, §3.4.2). If it occurs, and it is likely to do so if the support points tν,N

are equally, or nearly equally, spaced, then the numerical performance of the
Stieltjes procedure is seriously impaired in its advanced stages. Nevertheless, in
applications such as discretization methods it is usually the case that N is much
larger than the number of recursion coefficients to be computed. The problem of
pseudostability then need not be of any concern.

Example 2.35 The discrete Chebyshev polynomials, revisited.
The Stieltjes procedure is applied to generate the (known) recursion coeffi-

cients αn,N and βn,N of the equally spaced and equally weighted discrete mea-
sure of Example 2.26. The results, produced by the OPQ routine Table2 9.m, are
shown in Table 2.9. The columns headed errα and errβ display the absolute
errors in the α- and β-coefficients for selected values of n and, at the bottom of
each record, the largest errors taken over all n, 0 ≤ n ≤ N − 1.

As is evident from these results, when N is large, a good portion of the higher-
order coefficients αn,N and βn,N has extremely poor accuracy, the relative size
of this portion growing with N .

The example also provides an illustration of the underflow problem mentioned
above: when N = 320, the squared norms of the polynomials πk,N were found
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Table 2.9 Errors in the recursion coefficients of discrete Chebyshev polyno-
mials computed by the Stieltjes procedure.

N n errα errβ N n errα errβ
40 ≤37 ≤1.0(–14) ≤1.0(–14) 160 82 2.143(–15) 3.490(–15)

38 2.577(–13) 3.370(–15) 89 8.978(–11) 1.208(–11)
39 1.932(–11) 1.257(–13) 96 8.466(–07) 1.026(–07)

1.932(–11) 1.257(–13) 103 1.874(–02) 2.195(–03)
80 ≤55 ≤1.0(–14) ≤1.0(–14) 1.952(–01) 7.075(–02)

56 1.266(–14) 1.422(–15) 320 ≤115 ≤1.0(–14) ≤1.0(–14)
60 2.478(–11) 1.769(–12) 116 2.287(–14) 3.990(–15)
64 9.651(–08) 5.504(–09) 127 1.238(–10) 2.204(–11)
68 1.197(–03) 5.132(–05) 138 1.768(–06) 2.967(–07)

2.756(–01) 5.650(–02) 149 3.483(–02) 7.498(–03)
160 ≤81 ≤1.0(–14) ≤1.0(–14) 1.416(–01) 6.224(–02)

to underflow beginning around k = 245. The results of Table 2.9, in this case,
were obtained by scaling the polynomials by the factor c = 1050.

We add another, more favorable, example lest the reader dismisses Stieltjes’s
procedure as untrustworthy.

Example 2.36 The discrete Fejér measure on [−1, 1], that is, the inner product
(2.2.21) in which tν = tFν , wν = wF

ν are the Fejér nodes and weights (2.2.16),
(2.2.17).

As demonstrated by the OPQ routine Table2 10.m, using the same values
of N as in Table 2.9, the results of Stieltjes’s procedure are now perfect in all
respects. The maximum errors for each N are shown in Table 2.10. (Reference

Table 2.10 Maximum errors in the recursion co-
efficients of discrete Fejér polynomials computed
by the Stieltjes procedure.

N errα errβ
40 2.585(–15) 1.055(–15)
80 3.088(–15) 1.388(–15)
160 6.594(–15) 2.442(–15)
320 1.254(–14) 4.829(–15)

values to 18 decimal places for the β-coefficients are available in the OPQ files
befej40–befej320.)

Example 2.36 provides additional support for the use of Fejér quadrature
in discretization processes when no better and more natural alternatives are
available.

2.2.3.2 A Lanczos-type algorithm Given a real symmetric matrix A, there ex-
ists an orthogonal similarity transformation QTAQ = T to a tridiagonal sym-



98 COMPUTATIONAL METHODS

metric matrix T having nonnegative elements on the two side diagonals. In gen-
eral, the orthogonal matrix Q and the matrix T are uniquely determined by A

and the first column of Q (cf. Parlett (1998, §7-2)). Lanczos’s algorithm (see also
§3.1.7.1) is a method that produces Q and T , given A.

With the nodes tν and positive weights wν of the discrete inner product
(2.2.1), we form the vector

√
w and diagonal matrix Dt defined by

√
w =




√
w1√
w2

...√
wN


 , Dt =




t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tN


 . (2.2.23)

Then, it is true (cf. §3.1.1.1) that there exists an orthogonal matrix Q1 of order
N such that


 1 0T

0 QT
1




 1

√
w

T

√
w Dt




 1 0T

0 Q1


 =


 1

√
β0,NeT

1√
β0,Ne1 JN (dλN )


 , (2.2.24)

where eT
1 = [1, 0, . . . , 0] ∈ RN and JN (dλN ) is the Nth-order Jacobi matrix

(cf. Definition 1.30) of the discrete measure dλN in (2.2.1). Thus, we are in the
situation described in the opening paragraph of this subsection, where

A =


 1

√
w

T

√
w Dt


 , Q =


 1 0T

0 Q1


 , (2.2.25)

and T is the “extended” Jacobi matrix on the right of (2.2.24). The nonzero ele-
ments of the latter are precisely the recursion coefficients αk,N and βk,N that we
wish to determine. Since A is given, and so is the first column e1 ∈ RN+1 of Q,
the Lanczos algorithm can, in principle, be applied to compute the desired recur-
sion coefficients. We say “in principle” since, unfortunately, the process is numer-
ically unstable. A stable variant, however, following ideas of Rutishauser (1963),
has been developed by Gragg and Harrod (1984), who use a sequence of Givens
rotations to construct the orthogonal similarity transformation in (2.2.24). The
construction is summarized in their pseudocode RKWW, which we transcribed
into Matlab to produce the OPQ routine lanczos.m.

Example 2.37 This repeats Example 2.35 with the routine lanczos.m used in
place of stieltjes.m.

It is found that all errors, when N = 40, 80, 160, 320, are now bounded,
respectively, by 4.996× 10−16, 1.554× 10−15, 2.554× 10−15, and 5.773× 10−15.
Thus, in this example, lanczos.m is vastly superior to stieltjes.m in terms of
accuracy. Timings, however, reveal that lanczos.m is about eight times slower
than stieltjes.m. For details, see the OPQ routine Example2 37.m.

There are instances in which Stieltjes’s procedure outperforms the Lanczos
algorithm outright; some are described in Examples 2.40 and 2.44 of §2.2.5.



DISCRETIZATION METHODS 99

2.2.4 A multiple-component discretization method

We begin with an example intended to motivate the seemingly complicated pro-
cedure to be described later in this section.

Example 2.38 Chebyshev weight function plus a constant, w(t; c) = (1−t2)−1/2

+ c on [−1, 1], c > 0; see also Example 3.45.

What quadrature rule should be used to discretize w(t; c)? It would be dif-
ficult to come up with one that can be applied over the whole interval [−1, 1]
and would converge reasonably fast. The Fejér rule, for example, when c = 1,
requires 690 points to integrate w( · ; 1) just to get three correct decimal places,
and the Gauss–Legendre rule even more. Factoring out (1− t2)−1/2 and applying
Gauss–Chebyshev quadrature to the rest, 1+ c(1− t2)1/2, works better, yielding
three decimal places with 29 points, but still requires 287 points to get five dec-
imal places. (See the OPQ routine Example2 38.m.) Clearly, it is more expedient
to discretize the two parts of the weight function separately and combine the
results. Thus, one treats the first term, (1 − t2)−1/2, as a weight function and
applies Gauss–Chebyshev quadrature to the function 1, and then applies Gauss–
Legendre quadrature to the constant c to deal with the second term. Taking M
points in each quadrature and adding the results yields an N -point discretization
with N = 2M which is exact for all M , even for M = 1.

In the context of generating the recursion coefficients βk(w) of w( · ; c) (all
αk(w) = 0) by the Stieltjes procedure, one needs to integrate not only w but also
polynomials against the weight function w. The degree of these polynomials is
at most 2n−1 if we are interested in the first n coefficients β0, β1, . . . , βn−1. The
choice M = n in the proposed procedure then performs all integrations exactly
by virtue of the two quadrature rules being Gauss rules. This means that the
2n-point discrete inner product generated by the procedure has recursion coef-
ficients βk,2n(w), k = 0, 1, . . . , n− 1, which are identical with the corresponding
coefficients βk of w that we set out to determine. We can compute them by either
the Stieltjes procedure or the Lanczos algorithm as described in §2.2.3.

As an aside, note that the orthogonal polynomials relative to the weight
function w( · ; c) (which, to the best of our knowledge, are not explicitly known)
may be thought of as “interpolating” between the Chebyshev polynomials (c = 0)
and the Legendre polynomials (c = ∞). It is interesting, therefore, to observe
the behavior of the coefficients βk(w( · ; c)), k ≥ 1, as a function of c. (The
first coefficient is β0 = π + 2c and has no resemblance with the corresponding
coefficient β0 = 2 for Legendre polynomials.) Graphs of the first four coefficients
are shown in Fig. 2.2; they are produced by the OPQ routine Figure2 2.m.

Example 2.38 suggests the idea of decomposing the given measure dλ into
one with multiple components. Thus, if dλ(t) = w(t) dt is absolutely continuous,
for example, and has support [a, b], −∞ ≤ a < b ≤ ∞, then the interval [a, b] is
decomposed into a union of m subintervals,
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Fig. 2.2. Recursion coefficients for the weight function w( · ; c) of Example 2.38,
0 ≤ c ≤ 80.

[a, b] =

m⋃

µ=1

[aµ, bµ], m ≥ 1, (2.2.26)

which may or may not be disjoint, and each subinterval is endowed with its own
weight function wµ, which may or may not be identical with w. More precisely,
the integral of a polyomial f against the measure dλ is represented in the form

∫ b

a

f(t)w(t) dt =

m∑

µ=1

∫ bµ

aµ

fµ(t)wµ(t) dt, (2.2.27)

where we allowed for the possibility that fµ differs from f and may depend on
µ; in fact, fµ may no longer be a polynomial but is assumed to be a smooth
function. It may also be the case that the union of intervals in (2.2.26) differs
from [a, b] (see, e.g. Example 2.44).

A simple illustration of (2.2.27) is provided by Example 2.38, where the weight
function w on [a, b] is a sum of two weight functions, w = w1 + w2. In this
case, m = 2, and the two intervals [aµ, bµ] are both equal to [a, b], but the first
carries the weight function w1 and the second w2. Alternatively, one may simply
want to partition the interval [a, b] into smaller subintervals as in Examples 2.33
and 2.34, and keep the original weight function w the same in all subintervals.
Yet another scenario is the situation in which the original weight function has
multiple support intervals to begin with; these can then be taken as the intervals
[aµ, bµ] in (2.2.26) or can be decomposed still further. In all these cases, fµ is
the same as f . There are examples, however, where this is no longer true (see
Examples 2.40, 2.44, and 2.45).

Now in order to discretize (2.2.27), one applies a quadrature rule to each
constituent integral on the right. Depending on the nature of the weight function
wµ, the rule could be a weighted quadrature, such as a Gauss rule relative to the
weight function wµ, or the general-purpose Fejér rule as in §2.2.2. If one takes the
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same number M of nodes in each quadrature rule, one ends up with an N -point
discretization of (2.2.27) with N = mM . If the original measure dλ, in addition
to the absolutely continuous component has also a discrete p-point component,
one simply adds on this component and extends the (mM)-point discretization
to an (mM + p)-point discretization.

The multiple-component discretization procedure now consists in the fol-
lowing. Apply discretizations of the type described with a monotone increas-
ing sequence M0,M1,M2, . . . of M -values to obtain discrete measures dλmMi+p,
i = 0, 1, 2, . . . . For each i, compute by one of the methods of §2.2.3 the discrete

recursion coefficients α
[i]
k = αk,mMi+p, β

[i]
k = βk,mMi+p for k = 0, 1, . . . , n − 1,

where n is the number of recursion coefficients desired. Continue until the pro-
cess converges. A convenient measure for convergence is the relative error in the
β-coefficients, since they are all positive. Thus, the iteration is stopped at the
first value of i ≥ 1 for which

|β[i]
k − β

[i−1]
k | ≤ εβ

[i]
k , k = 0, 1, 2, . . . , n− 1, (2.2.28)

where ε is a given error tolerance. In view of (2.2.7) and (2.2.8), it is reasonable
to expect, and in fact is borne out by experience, that satisfaction of (2.2.28)

entails sufficient accuracy also for the α-coefficients α
[i]
k —absolute accuracy if

they are zero or small, and relative accuracy otherwise.
It remains to elaborate on the choice of the sequence {Mi}. Through a bit of

experimentation, we have settled on the following sequence:

Mi = M0 + ∆i, i = 1, 2, 3, . . . ,

∆1 = 1, ∆i = 2bi/5c · n, i = 2, 3, . . . .
(2.2.29)

The default value of M0 is M0 = 2n. However, one can do better. If the
quadrature rules used in the discretization process all have algebraic degree
of exactness ≥ d(M) with d(M)/M = δ + O(M−1) as M → ∞, then taking
M0 = 1 + b(2n− 1)/δc may well give exact answers after one iteration. This is
the case, for example, when all quadrature rules are Gauss rules, hence δ = 2, in
which case M0 = n and the process terminates after one iteration. An instance
of this has been noted in Example 2.38. For interpolatory quadratures, one has
δ = 1, giving M0 = 2n, the default value of M0.

The procedure described is implemented in the OPQ routine mcdis.m. It out-
puts not only the desired recursion coefficients, but also Mcap, the value of Mi

that achieves convergence, and kount, the corresponding number of iterations.

2.2.5 Examples

In this section, we demonstrate the considerable power inherent in the multiple-
component discretization method as a means for generating orthogonal polyno-
mials even relative to measures that are unconventional and highly nontrivial. In
a number of examples it will be shown how to take advantage of the flexibility
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built into the method in order to achieve efficiency and accuracy. At the same
time, comparisons will be made between the multiple-component discretization
method used with the Stieltjes procedure and used with Lanczos’s algorithm.

Example 2.39 Jacobi weight function plus a discrete measure.
The measure to be considered is the normalized Jacobi weight function on

[−1, 1] with a discrete p-point measure added to it,

dλ(t) = [βJ
0 ]−1(1− t)α(1 + t)β dt+

p∑

j=1

yjδ(t− tj) dt, α > −1, β > −1, yj > 0.

(2.2.30)

Here, βJ
0 =

∫ 1

−1(1 − t)α(1 + t)β dt and δ( · ) is the Dirac delta function. The
orthogonal polynomials belonging to the measure (2.2.30) are explicitly known
only in very special cases. The case of one mass point at one end point, that
is, p = 1 and t1 = −1, has been studied by Chihara (1985, §6(E)), who man-
aged to express the recursion coefficients in terms of the classical ones for the
Jacobi weight function.2 The formulae are rather complicated; see, for exam-
ple, Gautschi (1994, eqns (4.19)–(4.21)). Adding a second mass at the other end
point makes the analytical determination of the recursion coefficients virtually
intractable, although analytic expressions of the orthogonal polynomials them-
selves in terms of hypergeometric functions are still known (Koornwinder, 1984).
Any kind of analytic treatment, however, will become quite unfeasible if further
masses are added, inside and/or outside the interval [−1, 1]. It is, therefore, all
the more remarkable that, numerically, it makes no difference how many mass
points there are and where they are located. The procedure is always the same:
discretize the continuous part of the measure by the appropriate Gauss–Jacobi
quadrature, add on the discrete part, and then use either the Stieltjes or Lanczos
algorithm, as described in §2.2.3, to generate the recursion coefficients of the dis-
cretized measure. If we need n of each and use n-point Gauss–Jacobi quadrature,
then, as noted at the end of §2.2.4, the answers turn out to be the exact recur-
sion coefficients of (2.2.30) and no iteration is required. We found, however, that
Stieltjes’s procedure becomes extremely unstable if one or more mass points are
located outside the interval [−1, 1]. In this case, the use of Lanczos’s algorithm
is imperative.

The OPQ routine r jacplusdis.m generates the recursion coefficients of (2.2.30)
for arbitrary values of the parameters subject to the conditions stated.

Table 2.11, computed by the OPQ routine Table2 11.m, illustrates the per-
formance of the procedure in the case of one mass point of various strengths
located at the left end point −1. We generate 40 recursion coefficients for 100
values α = −0.8(0.2)1.0, β = −0.8(0.2)1.0 of the Jacobi parameters, and with
masses y1 = 0.5, 2, 10. In each run, we produce two results, one using Stieltjes’s

2Chihara takes the interval [0, 2] rather than [−1, 1]. There appears to be a typo in the first
formula of his eqn (6.23), which should have the numerator 2β + 2 instad of 2β + 1.
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Table 2.11 Stieltjes procedure vs Lanczos algorithm in the multi-
ple-component method for Example 2.39 with one mass point at t = −1.

y n αn βn discrα discrβ
0.5 0 3.7037037037(–2) 1.5000000000(+0) 1.18(–16) 0.00(+00)

6 3.2391629514(–2) 2.3060042904(–1) 1.39(–17) 1.11(–16)
17 4.4564744879(–3) 2.4754733005(–1) 2.13(–16) 3.89(–16)
39 8.6966173737(–4) 2.4953594220(–1) 7.05(–16) 3.61(–16)

5.24(–15) 1.55(–15)
2 0 –4.8148148148(–1) 3.0000000000(+0) 1.67(–16) 1.48(–16)

6 3.2967435170(–2) 2.3019023360(–1) 1.21(–15) 8.33(–17)
17 4.4611147047(–3) 2.4754467376(–1) 1.76(–15) 3.89(–16)
39 8.6975321827(–4) 2.4953589362(–1) 1.85(–15) 2.78(–16)

4.78(–15) 1.47(–15)
10 0 –8.5858585859(–1) 1.1000000000(+1) 3.33(–16) 1.61(–16)

6 3.3122514092(–2) 2.3007952696(–1) 5.41(–16) 0.00(+00)
17 4.4623528161(–3) 2.4754396497(–1) 3.80(–16) 4.16(–16)
39 8.6977761461(–4) 2.4953588066(–1) 5.57(–17) 3.33(–16)

4.37(–15) 1.42(–15)

procedure and the other using the Lanczos algorithm, and determine their dis-
crepancy. (By discrepancy between two answers we mean their absolute or rela-
tive difference, as the answer is ≤1 resp. >1 in modulus.) The table shows the
recursion coefficients αn(dλ) and βn(dλ) for α = −0.6, β = 0.4 to 10 decimal
places for selected values of n, followed by their discrepancies. At the bottom of
each record, the maximum discrepancy is shown, where the maximum is taken
over all n = 0, 1, 2, . . . , 39 and all 100 Jacobi parameters. It can be seen that
the Stieltjes and Lanczos algorithms produce essentially identical results within
machine precision, although Lanczos is about eight times slower.

The results are very much alike if a second mass point is added at the end
point +1, or yet a third one at the origin (see the routine Table2 11.m). Mat-
ters change significantly (see the OPQ routine Table2 12.m) when a mass point
is placed outside [−1, 1], regardless of whether or not the other mass points on
[−1, 1] are retained. This is illustrated in Table 2.12 for a single mass point of
strength y1 = 1 at t = 2. Since we allowed only one iteration in the multiple-
component discretization method (in theory, this yields exact answers), the rou-
tine mcdis.m, when using Stieltjes’s procedure (irout=1), returns with the mes-
sage that the error criterion could not be achieved. No such message is issued
when the Lanczos algorithm is used. The reason for this must be attributed to
the instability phenomenon, already mentioned in §2.2.3.1, inherent in Stieltjes’s
procedure, and this also explains the large values of the discrepancies seen in
Table 2.12.

Example 2.40 The generalized Jacobi measure.
This is the measure
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Table 2.12 Stieltjes procedure vs Lanczos algorithm in the multi-
ple-component method for Example 2.39 with one mass point at t = 2.

y n αn βn discrα discrβ
1 0 1.2777777778(+0) 2.0000000000(+0) 0.00(+00) 0.00(+00)

6 –1.9575723334(–3) 2.4959807576(–1) 3.07(–16) 2.78(–16)
17 –1.9175655273(–4) 2.4998241443(–1) 2.48(–15) 4.72(–16)
39 –3.4316341540(–5) 2.4999770643(–1) 2.37(–06) 7.60(–07)

1.00(+00) 7.50(–01)

dλ(t) = (1 − t)α(1 + t)β
m∏

µ=2

|t− tµ|γµ dt, α > −1, β > −1, (2.2.31)

on [−1, 1], where m ≥ 2, −1 < t2 < · · · < tm < 1, and γµ are nonzero parameters
with γµ > −1. Some authors include a smooth factor ϕ(t) in the definition of
the generalized Jacobi measure, but in the context of numerical quadrature ϕ
can be absorbed by the integrand function f . If one defines t1 = −1, tm+1 = 1
and correspondingly γ1 = β, γm+1 = α, one can write

dλ(t) =

m+1∏

ν=1

|t− tν |γν dt.

This suggests the decomposition

[−1, 1] =

m⋃

µ=1

[tµ, tµ+1],

and integration of a polynomial f against the measure dλ takes the form

∫ 1

−1

f(t) dλ(t) =
m∑

µ=1

∫ tµ+1

tµ

f(t)
m+1∏

ν=1
ν 6=µ;ν 6=µ+1

|t− tν |γν wµ(t) dt, (2.2.32)

where
wµ(t) = (tµ+1 − t)γµ+1(t− tµ)γµ , tµ < t < tµ+1, (2.2.33)

is a Jacobi weight function on the interval [tµ, tµ+1] with parameters γµ+1, γµ.
The representation (2.2.32) is precisely of the form (2.2.27): on each interval
[tµ, tµ+1], instead of the polynomial f one must integrate the function fµ obtained
from f by multiplication with the product appearing on the right of (2.2.32). It
is clear, then, how the inner product (p, q)dλ must be discretized: apply a Gauss–
Jacobi quadrature relative to the interval [tµ, tµ+1], with Jacobi parameters γµ+1

and γµ, to each integral on the right of (2.2.32), where f = pq. This, in general,
will no longer produce exact answers as in the previous example since the product
in (2.2.32) is not a polynomial. However, convergence can be expected to be quite
fast; see Tables 2.13–2.14.
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The OPQ routine r gjacobi.m implements this procedure and generates the
recursion coefficients of the measure (2.2.31) for any parameters satisfying the
conditions stated.

As a test example for r gjacobi.m, we took the simple case m = 2, α =
β = −1/2, t2 = 0, γ2 = 1. By symmetry, all αk(dλ) vanish, and βk(dλ) can
be determined explicitly. Indeed, consider the polynomials p+

k and p−k defined
by π2k(t) = p+

k (t2), π2k+1(t) = tp−k (t2) (cf. Theorem 1.18). One easily checks
that these are (ordinary) Jacobi polynomials relative to the interval [0, 1], in
fact p+

k (x) = Gk(1
2 , 1, x), p

−
k (x) = Gk(3

2 , 2, x) in the notation of Abramowitz
and Stegun (1992, 22.2.2). Writing the recurrence relation π2k+1(t) = tπ2k(t)−
β2kπ2k−1(t) in terms of p+

k and p−k , one finds tp−k (t2) = tp+
k (t2) − β2ktp

−
k−1(t

2);
hence,

β2k =
p+

k (t2) − p−k (t2)

p−k−1(t
2)

→ c+k − c−k as t→ ∞, k ≥ 1,

where c+k and c−k are the coefficients of xk−1 in p+
k (x) and p−k (x), respectively.

From 22.3.3 of Abramowitz and Stegun (1992), these are c+k = k2/(2k − 1/2)
resp. c−k = k(k + 1)/(2k + 1/2). There follows

β2k(dλ) = k
k − 1/2

4k2 − 1/4
, k ≥ 1. (2.2.34)

Similarly, one finds

β2k+1(dλ) = (k + 1)
k + 1/2

(2k + 1)2 − 1/4
, k ≥ 0. (2.2.35)

The OPQ routine gjactest.m calls on r gjacobi.m to compute the first N
recursion coefficients, N = 10, 40, 80, 160, for the test example. It determines the
maximum absolute error in the α-coefficients and the maximum relative error
of the β-coefficients, and also prints the integers Mcap, kount from the routine
mcdis.m, which give an indication of the convergence behavior of the multiple-
component discretization method (for the error tolerance eps0=1000×eps). The
results are shown in Table 2.13. Convergence is seen to be very fast, and in fact

Table 2.13 Results for the test example.

N Mcap kount errα errβ
10 31 3 1.494(–15) 2.911(–15)
40 41 1 5.938(–16) 4.323(–15)
80 81 1 1.229(–15) 9.150(–15)
160 161 1 4.881(–15) 1.915(–14)

is achieved after one iteration when N ≥ 40. The accuracy is as good as can
be hoped for. The results shown are those obtained using Stieltjes’s procedure;
Lanczos yields essentially the same answers but is about eight times slower.
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To illustrate our procedure on a more elaborate example, we consider the
(t, γ)-configuration

t –1 –1/2 0 1/2 1
γ –1/2 1/3 1 –1/3 1/2

and use r gjacobi.m to generate the first 160 recursion coefficients. Selected
values of these coefficients are shown in Table 2.14 together with the corre-
sponding discrepancies (between the Stieltjes and Lanczos results). Shown at
the bottom of the table are the maximum discrepancies taken over all values
n = 0, 1, 2, . . . , 159. (For details, see the OPQ routine Table2 14.m.) The multiple-
component discretization method, run with an error tolerance eps0=1000×eps,
converged in one iteration exiting with an M -value (cf. (2.2.29)) of M = 161.
Difficulties must be expected if some of the tµ are bunched together very closely,
as, for example, in the “crowding” phenomenon in Schwarz–Christoffel mappings
(Driscoll and Trefethen, 2002, §2.6).

Table 2.14 Stieltjes procedure vs Lanczos algorithm in the multi-
ple-component method for Example 2.40.

n αn βn discrα discrβ
0 7.2811345991(–1) 3.2069708827(+0) 1.11(–16) 0.00(+00)
39 –4.4829921025(–3) 2.4184615756(–1) 9.01(–15) 1.67(–16)
79 –2.2131034661(–3) 2.4727751247(–1) 4.73(–15) 2.78(–17)
119 –3.2863129782(–3) 2.4909284690(–1) 5.33(–15) 3.89(–16)
159 –1.1138360928(–3) 2.4796821583(–1) 5.67(–15) 2.78(–17)

1.06(–14) 1.61(–15)

Example 2.41 The half-range Hermite measure dλ(t) = e−t2 dt on [0,∞], re-
visited.

We have seen in Example 2.31 that for this measure moment-related meth-
ods are ineffective. Discretization is here a more viable alternative, even though
there are no special features of the measure that would suggest particularly nat-
ural discretizations. We therefore use the general-purpose discretization based
on Fejér quadrature, but decompose the inverval into four subintervals, [0,∞] =
[0, 3] ∪ [3, 6] ∪ [6, 9] ∪ [9,∞] (obtained by trial and error). This is implemented
in the OPQ routine r hrhermite.m and run by the routine Table2 15.m with
N=40, Mmax=100, and eps0=1000×eps. The multiple-component discretization
routine mcdis.m returns with output parameters Mcap=81, kount=1, indicating
convergence after one iteration. The results are displayed in Table 2.15, where
the errors errα and errβ are obtained by comparison with quadruple-precision
results available to 25 decimal places in the OPQ file abhrhermite.
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Table 2.15 The multiple-component method (with Stieltjes’s proce-
dure) applied to Example 2.41.

n αn βn errα errβ
0 5.6418958355(–1) 8.8622692545(–1) 5.55(–16) 2.22(–16)
1 9.8842539285(–1) 1.8169011382(–1) 1.78(–15) 1.67(–16)
6 2.0806203364(+0) 1.0023478510(+0) 6.40(–16) 0.00(+00)
15 3.2142706361(+0) 2.5009279171(+0) 4.14(–16) 1.78(–16)
26 4.2030485789(+0) 4.3338679012(+0) 2.32(–15) 2.05(–16)
39 5.1315328869(+0) 6.5003562377(+0) 2.42(–15) 5.47(–16)

3.02(–15) 1.33(–15)

Example 2.42 Einstein and Fermi distributions.
Distributions frequently encountered in solid state physics are the Einstein

distribution

dλ(t) = ε(t) dt, ε(t) =
t

et − 1
on [0,∞],

and the Fermi distribution

dµ(t) = ϕ(t) dt, ϕ(t) =
1

et + 1
on [0,∞],

as well as distributions involving powers of ε and ϕ,

dλ[r](t) = [ε(t)]r dt, dµ[r](t) = [ϕ(t)]r dt, r ≥ 1.

Table 2.16 Recurrence coefficients for Einstein measures computed
by the discretization method.

r n αn(dλ[r]) βn(dλ[r]) errα errβ
1 4 9.8286605540(0) 1.9473894450(1) 1.81(–16) 7.30(–16)

9 1.9881441597(1) 8.9117330865(1) 2.50(–15) 2.07(–15)
19 3.9916946226(1) 3.7862460617(2) 5.34(–16) 4.65(–15)

2.50(–15) 4.65(–15)
2 4 5.2618141802(0) 5.6467693899(0) 2.19(–15) 1.26(–15)

9 1.0334264562(1) 2.4163978775(1) 1.89(–15) 2.79(–15)
19 2.0383323902(1) 9.8826669339(1) 0.00(+00) 1.44(–15)

3.02(–15) 5.85(–15)

With regard to the Einstein distribution, a natural discretization of the inner
product (u, v)dλ[r] can be obtained by writing the respective integrals in the form
∫ ∞

0

p(t) dλ[r](t) =

∫ ∞

0

p(t)

(
t

et − 1

)r

dt =
1

r

∫ ∞

0

p(t/r)

(
t/r

1 − e−t/r

)r

e−t dt

(where p = uv) and applying M -point Gauss–Laguerre quadrature to the in-
tegral on the right. To obtain the first n = 20 recursion coefficients αk(dλ[r]),
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βk(dλ[r]), k = 0, 1, . . . , n− 1, to an accuracy of about 14 decimal digits (eps0=
100×eps≈ 2.22 × 10−14) requires M = 121 for r = 1 and M = 81 for r = 2;
see the OPQ routine Example2 42.m. Selected results, with respective errors and
maximum errors, are shown in Table 2.16. The (mollified) errors (cf. the para-
graph preceding Example 2.14) are computed by comparison with quadruple-
precision results available to 25 decimal places in the OPQ files abeinstein1 and
abeinstein2.

The results for the two Fermi distributions dµ[r], r = 1, 2, are quite similar
except that it takes larger values of M to achieve the same accuracy—M=161
and M=121, respectively. The reason for this is the location of the poles of
ϕ, which are twice as close to the real axis compared to the poles of ε. See
Example2 42.m for numerical results and abfermi1, abfermi2 for quadruple-
precision values of αk(dµ[r]), βk(dµ[r]), r = 1, 2.

Example 2.43 Modified Einstein and Fermi distributions.
In applications to slowly convergent series (cf. §3.4, Examples 3.63 and 3.68–

3.69), it is required to deal with Einstein and Fermi distributions modified by
square-root factors,

dλ̃
[r]
± (t) = t±1/2 dλ[r](t), dµ̃

[r]
± (t) = t±1/2 dµ[r](t) on [0,∞]. (2.2.36)

In this case, the discretization used in Example 2.42 has to be modified to take
account of the square-root singularity at t = 0. It was found convenient to
split the interval [0,∞) into two parts, [0, 10] and [10,∞), and apply Gauss–
Jacobi quadrature with parameters α = 0, β = ± 1

2 on the first, and Gauss–
Laguerre quadrature on the second interval. This works rather well, the values
of M required being M = 61 in all cases. Results for the modified Einstein

distributions dλ̃
[r]
+ , analogous to those in Table 2.16, are shown in Table 2.17.

For modified Fermi distributions, the results are very similar; see the OPQ rou-
tine Example2 43.m. Quadruple-precision values of the first 80 recursion coeffi-

Table 2.17 Recurrence coefficients for modified Einstein measures
computed by a two-component discretization method.

r n αn(dλ̃
[r]
+ ) βn(dλ̃

[r]
+ ) errα errβ

1 4 1.0334741121(1) 2.1678201766(1) 5.16(–16) 0.00(+00)
9 2.0383465049(1) 9.3837339797(1) 1.22(–15) 1.06(–15)
19 4.0417639589(1) 3.8835425850(2) 2.99(–15) 5.85(–16)

2.99(–15) 5.26(–15)
2 4 5.5191016116(0) 6.2493698392(0) 2.57(–15) 1.42(–15)

9 1.0586711541(1) 2.5398321854(1) 0.00(+00) 1.12(–15)
19 2.0634174813(1) 1.0131580628(2) 5.17(–16) 1.54(–15)

3.44(–15) 2.94(–15)

cients, stored in the files absqp1einstein1, absqp1einstein2, absqp1fermi1,
and absqp1fermi2, were used to compute the errors.
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Example 2.44 Logistic density function

w(t) =
e−t

(1 + e−t)2
, −∞ < t <∞. (2.2.37)

Logistic density and distribution functions are widely used in applied statis-
tics; see, for example, Johnson et al. (1995, Chapter 23). Integrals involving the
weight function w are required in order to compute expected values of functions
relative to the logistic distribution. A representation of the type (2.2.27) for such
integrals is obtained in a natural way by splitting the integral into two parts,
one from −∞ to 0 and the other from 0 to ∞, and changing variables in the first
part. The result is
∫ ∞

−∞
f(t)w(t) dt =

∫ ∞

0

f(−t)
(1 + e−t)2

w1(t) dt+

∫ ∞

0

f(t)

(1 + e−t)2
w1(t) dt, (2.2.38)

where w1(t) = e−t is the Laguerre weight function. Since (1+e−t)2 tends rapidly
to 1 as t → ∞, the two integrals on the right are best discretized by applying
Gauss–Laguerre quadrature to the functions f(∓t)(1+e−t)−2. The performance
of the multiple-component discretization method can be easily tested since the
recursion coefficients are explicitly known: all αk(dλ) = 0 by symmetry, and β0 =
1, βk(dλ) = k4π2/(4k2 − 1), k ≥ 1 ; see Chihara (1978, eqn (8.7)) where λ = 0,
x = t/π. Table 2.18 (computed by the OPQ routine Table2 18.m) shows selected
results when the routine mcdis.m is run with N=40 and eps0=1000×eps, and
with Stieltjes’s procedure used to compute the recursion coefficients. (Lanczos’s
algorithm gives essentially the same results but takes about 10 times as long.)
Again, the maximum errors are shown at the bottom of the table.

Table 2.18 The multiple-component discretiza-
tion method applied to Example 2.44.

n βn errα errβ
0 1.0000000000(0) 7.18(–17) 3.33(–16)
1 3.2898681337(0) 1.29(–16) 2.70(–16)
6 8.9447603523(1) 4.52(–16) 1.43(–15)
15 5.5578278399(2) 2.14(–14) 0.00(+00)
26 1.6685802223(3) 1.23(–14) 6.81(–16)
39 3.7535340252(3) 6.24(–14) 4.48(–15)

6.24(–14) 8.75(–15)

Example 2.45 A weight function involving a modified Bessel function,

w(t) = tαK0(t) on [0,∞], α > −1. (2.2.39)

The recursion coefficients for this weight function can be used to generate
associated Gauss quadrature rules (cf. §3.1.1), which in turn are useful to obtain
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asymptotic approximations to oscillatory integral transforms (Wong, 1982). The
choice of decomposition and discretization appropriate here should reflect, and
make optimal use of, the special properties of the weight function w(t), especially
its behavior for small and large t. This can be done by observing that

K0(t) =




R(t) + I0(t) ln(1/t) if 0 < t ≤ 1,

t−1/2e−tS(t) if 1 ≤ t <∞,
(2.2.40)

where I0 is the “regular” modified Bessel function and R,S are well-behaved
smooth functions for which good rational approximations are available (Russon
and Blair, 1969). This leads naturally to a decomposition [0,∞] = [0, 1]∪ [0, 1]∪
[0,∞] and

∫ ∞

0

f(t)w(t) dt =

∫ 1

0

[R(t)f(t)]tα dt+

∫ 1

0

[I0(t)f(t)]tα ln(1/t) dt

+ e−1

∫ ∞

0

[(1 + t)α−1/2S(1 + t)f(1 + t)]e−t dt.
(2.2.41)

Thus, in the notation of (2.2.27),

f1(t) = R(t)f(t), w1(t) = tα on [0, 1],

f2(t) = I0(t)f(t), w2(t) = tα ln(1/t) on [0, 1],

f3(t) = e−1(1 + t)α−1/2S(1 + t)f(1 + t), w3(t) = e−t on [0,∞].

The appropriate discretization, therefore, is Gauss–Jacobi quadrature (with pa-
rameters 0 and α) of f1 on [0, 1], Gauss quadrature of f2 relative to the weight
function w2 on [0, 1], and Gauss–Laguerre quadrature of f3 on [0,∞]. While the
first and last quadratures are classical, the middle one is not, but can be accu-
rately generated by methods discussed in §3.1.1 once the recursion coefficients
for w2 are known. These, in turn, can be computed by means of the modified
Chebyshev algorithm as described in Example 2.27.

The OPQ routine r modbess.m implements this procedure for arbitrary pa-
rameter α.

As an illustration, we consider the integral (cf. Gradshteyn and Ryzhik (2000,
6.621.3)) ∫ ∞

0

e−ttαK0(t) dt =

√
π

2α+1

Γ2(α+ 1)

Γ(α+ 3/2)
.

The routine Table2 19.m uses r modbess.m to obtain Gauss quadrature ap-
proximations to this integral for selected values of α, requesting an accuracy of
105eps = 2.22×10−11. The number n of Gauss points required is shown in Table
2.19. The maximum relative error observed is 3.21 × 10−12.
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Table 2.19 Gauss quadrature of a Bessel func-
tion integral.

α –0.9 –0.5 0 0.8 2.3 5.8
n 10 12 13 14 15 18

2.2.6 Discretized modified Chebyshev algorithm

We note that the idea of multiple-component discretization, embodied in eqn
(2.2.27), and subsequent discretizations of the subintegrals on the right of (2.2.27)
can be used to approximate any integral

∫
R
f(t) dλ(t). In the discretization

method of §2.2.4, the integral in question is an inner product, f(t) = p(t)q(t), and
the discretization procedure is used to approximate the inner product (p, q)dλ

by a multiple-component discrete inner product (p, q)dλmM
(or more generally

(p, q)dλmM+p
if dλ contains a p-point discrete measure); cf. the second paragraph

following eqn (2.2.27). The same procedure, however, could also be applied to
approximate modified moments, mr =

∫
R
pr(t) dλ(t), in the modified Chebyshev

algorithm. Here, f(t) = pr(t) (cf. (2.1.23)). Thus, one constructs a sequence
of discretizations, as in §2.2.4, with M -values M0,M1,M2, . . . , and for each i
applies the modified Chebyshev algorithm using discretized modified moments

m
[i]
r =

∫
R
pr(t) dλmMi+p to generate approximate recursion coefficients α

[i]
k , β

[i]
k .

The same stopping criterion (2.2.28) as before can be used to terminate the it-
eration. In fact, it is essential that convergence be tested on the βs and not,
for example, on the modified moments, since the latter may vanish and, besides,
need not be required to have full relative precision (see Gautschi (1982b, p. 311)).
The procedure is implemented in the OPQ routine mcchebyshev.m.

It is important to realize, however, that any ill-conditioning present in the
modified Chebyshev algorithm must be expected to manifest itself also in its
discretized version. There are fewer such problems with discretization procedures
based on inner products.

Example 2.46 Example 2.29, revisited.
We have seen in Example 2.29 that computing exact values of modified mo-

ments (relative to Chebyshev polynomials) for the “elliptic” weight function
w(t) = [(1− k2t2)(1− t2)]−1/2 can be highly nontrivial. Approximate values, on
the other hand, can easily be obtained via the Gauss–Chebyshev quadrature rule

∫ 1

−1

f(t)(1 − k2t2)−1/2(1 − t2)−1/2 dt ≈ π

M

M∑

m=1

f(tm)(1 − k2t2m)−1/2,

where tm = cos((2m − 1)π/2M), by applying it with f(t) = 21−rTr(t) resp.
f(t) = 1 to compute the modified moment mr, r ≥ 1, resp. m0. The discretized
modified Chebyshev algorithm, run with k2 = 0.1, 0.5, 0.9, and 0.999, and with
N = 40, using the error tolerance eps0= 1000×eps, produces results essentially
identical with those of Example 2.29; see the OPQ routine Example2 46.m.
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2.3 Computing Cauchy integrals of orthogonal polynomials

Cauchy’s theorem in the theory of complex variables expresses the value of an
analytic function at some point z by means of a contour integral extended over
a simple closed curve in the complex plane encircling the point z. The type of
integral involved is referred to as a Cauchy integral. The same integral is also of
interest if the function on the contour is not analytic and/or the contour is not a
closed curve but an open arc. One continues to call such integrals Cauchy inte-
grals. There is a vast literature on them and their applications; see, for example,
Henrici (1986, Chapter 14). Here we are interested in Cauchy integrals over an
interval on the real line involving a positive measure of integration dλ and the
orthogonal polynomial πn( · ; dλ) associated with this measure. Thus,

(Cπn)(z; dλ) =

∫

R

πn(t; dλ)

z − t
dλ(t). (2.3.1)

(We omit the factor 1/(2πi) normally associated with Cauchy integrals, and for
convenience also changed the sign.) The support interval [a, b] of dλ is typically
a finite, half-infinite, or doubly infinite interval. In the first two cases, (2.3.1)
represents an analytic function in the connected domain C\[a, b], in the last case
two separate analytic functions, one in the upper half-plane and the other in the
lower half-plane.

Cauchy integrals of orthogonal polynomials (also known as functions of the
second kind) occur in many applications; for example, in the study of the Gauss
quadrature error for analytic functions, where they appear as numerator in the
kernel of the remainder term (Example 2.47), in modification algorithms in-
volving division of a measure by a polynomial (Example 2.49 and §2.4.1), in
the Stieltjes–Perron inversion formula recovering the measure of an orthogonal
polynomial from its recurrence coefficients (Example 2.50), and in evaluating
the Hilbert transform of a measure (Example 2.51). It is useful, therefore, to
have reliable methods available for computing Cauchy integrals. The method we
consider here is one that utilizes the basic three-term recurrence relation in the
complex plane (cf. §1.3.5).

2.3.1 Characterization in terms of minimal solutions

The integral in (2.3.1) is nothing but the function ρn(z) already introduced in
(1.3.39),

(Cπn)(z; dλ) = ρn(z; dλ), n = 0, 1, 2, . . . . (2.3.2)

If, as in Theorem 1.43, we define

ρ−1(z) = 1 (2.3.3)

and assume that the moment problem for the measure dλ is determined, then
from Corollary to Theorem 1.43 we know that (2.3.2), (2.3.3), when z ∈ C\[a, b],
is a minimal solution (cf. Definition 1.42) of the three-term recurrence relation
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yk+1 = (z − αk)yk − βkyk−1, k = 0, 1, 2, . . . , (2.3.4)

where αk = αk(dλ), βk = βk(dλ). Moreover,

ρn(z)

ρn−1(z)
=

βn

z − αn−
βn+1

z − αn+1−
βn+2

z − αn+2−
· · · , n = 0, 1, 2, . . . , z ∈ C\[a, b].

(2.3.5)
Computing ρn(z) for z ∈ C\[a, b] thus amounts to computing the minimal solu-
tion of (2.3.4) satisfying (2.3.3).

It is important to note that the “strength” of minimality of ρn(z) weakens as
z approaches the support interval [a, b] of dλ and ceases altogether in the limit.
If x is in the open interval (a, b), then (2.3.1) has to be interpreted as a Cauchy
principal value integral,

ρn(x) =

∫

R

− πn(t; dλ)

x− t
dλ(t); (2.3.6)

it also satisfies the recurrence relation (2.3.4), but with initial values

ρ−1(x) = 1, ρ0(x) =

∫

R

− dλ(t)

x− t
. (2.3.7)

The ρn(x) can be computed from (2.3.4) (where z = x) in a stable manner by
forward recursion. By Sokhotskyi’s formulas (cf. Henrici (1986, Theorems 14.1a–
c)) one has

ρn(x) =
1

2

(
lim
z↓x

ρn(z) + lim
z↑x

ρn(z)

)
, (2.3.8)

where the two limits on the right are taken as z approaches x from above, resp.
from below, the real axis. Since z ↑ x is the same as z ↓ x and ρn(z) = ρn(z), we
can write (2.3.8) in the form

ρn(x) = lim
z↓x

Re ρn(z). (2.3.9)

For each z, this requires only one evaluation of ρn.

2.3.2 A continued fraction algorithm

There are a number of algorithms available for computing minimal solutions of
three-term recurrence relations (see, e.g. Wimp (1984)). In the case at hand, we
have found most satisfactory an algorithm developed in Gautschi (1967a, §3),
which is based on the continued fraction (2.3.5); see Gautschi (1981a, §5).

Suppose we wish to compute ρn(z), z ∈ C\[a, b], for n = 0, 1, 2, . . . , N . (The
value at n = −1 is known from (2.3.3).) Define

rn =
ρn+1(z)

ρn(z)
, n = −1, 0, 1, 2, . . . , (2.3.10)
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and suppose for the moment that rν is known for some ν ≥ N . Then, by (2.3.5),

rn−1 =
βn

z − αn−
βn+1

z − αn+1−
βn+2

z − αn+2−
· · · , n = 0, 1, 2, . . . ,

from which

rn−1 =
βn

z − αn − rn
, n = ν, ν − 1, . . . , 0. (2.3.11)

Since the initial value of the desired solution is ρ−1(z) = 1, we now obtain from
(2.3.10) that

ρ−1(z) = 1, ρn(z) = rn−1ρn−1(z), n = 0, 1, . . . , N. (2.3.12)

This completes the algorithm under the assumption made.
The actual algorithm follows this procedure very closely, except that in place

of rν one uses zero. Thus, we define

r[ν]
ν = 0, r

[ν]
n−1 =

βn

z − αn−
βn+1

z − αn+1−
· · · βν

z − αν
, (2.3.13)

and proceed according to

r
[ν]
ν = 0, r

[ν]
n−1 =

βn

z − αn − r
[ν]
n

, n = ν, ν − 1, . . . , 0,

ρ
[ν]
−1 = 1, ρ

[ν]
n = r

[ν]
n−1ρ

[ν]
n−1, n = 0, 1, . . . , N.

(2.3.14)

It will presently be shown that for any fixed n ≥ 0,

lim
ν→∞

ρ[ν]
n = ρn(z). (2.3.15)

Our algorithm consists in repeating (2.3.14) for a sequence of increasing values
of ν until convergence in (2.3.15) is obtained for n = 0, 1, . . . , N to within a
prescribed accuracy.

To convince ourselves of (2.3.15), we first provide the following alternative

interpretation of (2.3.14). Let η
[ν]
k be the solution of the recurrence relation (2.3.4)

defined by the starting values

η[ν]
ν = 1, η

[ν]
ν+1 = 0. (2.3.16)

The values of η
[ν]
k for −1 ≤ k ≤ ν − 1 may be obtained by applying (2.3.4) in

the backward direction, starting at k = ν. We then define

y[ν]
n :=

ρ−1(z)

η
[ν]
−1

η[ν]
n , −1 ≤ n ≤ N, (2.3.17)

and will show that
y[ν]

n = ρ[ν]
n . (2.3.18)

In this form, the algorithm is known as Miller’s algorithm; it was proposed by
J. C. P. Miller in 1952 in the context of computing spherical Bessel functions
(British Association for the Advancement of Science, 1952, p. xvii).
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Clearly, (2.3.18) holds when n = −1, since y
[ν]
−1 = ρ−1(z) = 1 = ρ

[ν]
−1. For

n > −1, we note that

r
[ν]
n−1 =

η
[ν]
n

η
[ν]
n−1

, 0 ≤ n ≤ ν + 1.

Indeed, this is trivial for n = ν + 1, and for n ≤ ν follows from the fact that
the ratio on the right satisfies the same nonlinear recursion (2.3.11) satisfied

by r
[ν]
n−1. By (2.3.17), we have y

[ν]
n /y

[ν]
n−1 = η

[ν]
n /η

[ν]
n−1; hence, y

[ν]
n /y

[ν]
n−1 = r

[ν]
n−1,

0 ≤ n ≤ N . Thus, y
[ν]
n satisfies the same recursion as ρ

[ν]
n in (2.3.14) and has the

same initial value 1, proving (2.3.18).
Now, let {yn} = {yn(z)} be any solution of the recurrence relation (2.3.4)

linearly independent of {ρn} = {ρn(z)}, so that by the minimality of {ρn}

lim
n→∞

ρn

yn
= 0.

Since {η[ν]
n } is a solution of the same recurrence relation, it follows from the

theory of linear difference equations that

η[ν]
n = a[ν]ρn + b[ν]yn (2.3.19)

for some constants a[ν], b[ν]. In view of the two starting values (2.3.16), we have

a[ν]ρν + b[ν]yν = 1,

a[ν]ρν+1 + b[ν]yν+1 = 0,

hence b[ν] = −(ρν+1/yν+1)a
[ν], so that

η[ν]
n = a[ν]

(
ρn − ρν+1

yν+1
yn

)
, n = −1, 0, 1, 2, . . . .

Inserting this in (2.3.17) and noting (2.3.18) finally yields

ρ[ν]
n = ρn

1 − ρν+1

yν+1

yn

ρn

1 − ρν+1

ρ−1yν+1
y−1

. (2.3.20)

By the minimality of {ρn}, we have ρν+1/yν+1 → 0 as ν → ∞, which proves
(2.3.15).

The continued fraction algorithm based on (2.3.14) for computing ρn(z),
0 ≤ n ≤ N , is implemented in the OPQ routine cauchy.m. Testing for conver-

gence in this routine is done on the quantities r
[ν]
n−1, n = 0, 1, . . . , N , and only

after convergence has occurred are ρn(z) generated according to (2.3.12). The
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routine, moreover, expects the user to provide a suitable starting value ν0 for
(2.3.14) to be employed with ν-values ν0, ν0 + 5, ν0 + 10, . . . until convergence.
Some classical measures dλ allow realistic starting values ν0 to be derived from
asymptotic properties of the solutions of (2.3.4); see Gautschi (1981a, §5). They
are implemented in the OPQ routines nu0jac.m, nu0lag.m, nu0her.m in the case
of Jacobi, generalized Laguerre, and Hermite measures, respectively.

2.3.3 Examples

In our first example we return to the Gauss quadrature formula (1.4.7) and
develop an alternative representation for the remainder term when the function
to be integrated is analytic. The expression for the remainder given earlier in
Corollary to Theorem 1.48 is of limited practical use since it requires knowledge
of a high-order derivative of the integrand.

Example 2.47 Remainder term of the Gauss quadrature formula for analytic
functions.

Theorem 2.48 Let dλ be a measure supported on the finite interval [a, b] and
D ⊂ C a domain in the complex plane containing [a, b] in its interior. If f is
analytic in D, the Gauss quadrature remainder RG

n (cf. (1.4.7)) can be expressed
in the form

RG
n (f) =

1

2πi

∮

Γ

Kn(z)f(z) dz, (2.3.21)

where Γ is a simple closed curve in D encircling [a, b] (in the positive sense) and
Kn, the kernel of the remainder, is given by

Kn(z) = Kn(z; dλ) =
ρn(z; dλ)

πn(z; dλ)
, n = 0, 1, 2, . . . . (2.3.22)

Remark to Theorem 2.48 If n = 0, the quadrature sum is empty, and, there-
fore, RG

0 (f) =
∫

R
f(t) dλ(t).

Proof Apply Cauchy’s formula to f , both in the integral and the quadrature
sum of (1.4.7), to obtain

∫

R

1

2πi

∮

Γ

f(z) dz

z − t
dλ(t) =

n∑

ν=1

λG
ν

2πi

∮

Γ

f(z)

z − τG
ν

dz +RG
n (f).

Interchanging the order of integration, one finds

RG
n (f) =

1

2πi

∮

Γ

Kn(z)f(z) dz,

with Kn in the form

Kn(z) =

∫

R

dλ(t)

z − t
−

n∑

ν=1

λG
ν

z − τG
ν

, n ≥ 0. (2.3.23)

By Theorem 1.47, the sum on the right equals σn(z)/πn(z), so that (2.3.22)
follows from (2.3.23) and (1.3.40). 2
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The OPQ routine kernel.m evaluates Kn(z), n = 0, 1, . . . , N , from (2.3.22) in
conjunction with the routine cauchy.m.

From (2.3.21) one obtains the simple error bound

|RG
n (f)| ≤ `(Γ)

2π
max
z∈Γ

|Kn(z; dλ)| · max
z∈Γ

|f(z)|, (2.3.24)

where `(Γ) is the length of the contour Γ, or else

|RG
n (f)| ≤ 1

2π
max
z∈Γ

|Kn(z; dλ)|
∮

Γ

|f(z)|| dz|. (2.3.25)

While the value of the error in (2.3.21) does not depend on the choice of the
contour Γ, the bounds in (2.3.24) and (2.3.25) do. There are two classes of
contours Γ often used in these bounds. Assuming [a, b] = [−1, 1], they are the
circles

Cr = {z ∈ C : |z| = r}, r > 1, (2.3.26)

and confocal ellipses

Eρ = {z ∈ C : z = 1
2 (ρeiϑ + ρ−1e−iϑ), 0 ≤ ϑ ≤ 2π}, ρ > 1, (2.3.27)

with foci at ±1 and sum of semiaxes equal to ρ. As ρ ↓ 1, the ellipse Eρ shrinks to
the interval [−1, 1], while with increasing ρ it becomes more and more circle-like.
Poles of f that may be present in the vicinity of [−1, 1] can thus be avoided by
taking ρ sufficiently small. Circular contours are less flexible in this regard.

Problems of interest in connection with the bounds in (2.3.24) and (2.3.25)
are (1) to locate and evaluate (or estimate) the maximum of the kernel Kn on
Γ = Cr resp. Γ = Eρ, and (2) to optimize the bounds over r resp. ρ.

For the classical Gauss–Legendre formula (dλ(t) = dt on [−1, 1]), a con-
tour map of |K10(z; dt)|, produced by the OPQ routine Figure2 3.m, is shown in
Fig. 2.3. The contours are symmetric with respect to both axes, so that the map
is shown only in the first quadrant of the complex plane. The curves correspond
to the moduli 10−4, 10−6, 10−8, . . . , 10−16, as partially labeled in the figure.

The problem of computing recurrence coefficients for a modified measure—a
measure multiplied by a rational function—will be solved in §2.4 by means of
nonlinear recurrence algorithms. These, when the modification involves division
by a polynomial, also require Cauchy integrals and hence the application of the
continued fraction algorithm. Alternatively, as in Example 2.49, the use of ap-
propriate modified moments and the modified Chebyshev algorithm (see §2.1.7)
is another option.

Example 2.49 Division of a measure by a polynomial.
Let dλ be a positive measure on R and q(t) a polynomial having constant

sign as t varies on the support interval [a, b] of dλ. We wish to compute the

recurrence coefficients α̂k and β̂k for the modified measure dλ̂ = dλ/q. (When

q is negative on [a, b], the measure dλ̂ will be negative definite, hence β̂0 < 0.
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Fig. 2.3. Contour map of the kernel K10(z) for Gauss–Legendre quadrature.

One could avoid this by multiplying q by −1, but we will not bother doing this
here.) It suffices to consider linear and quadratic divisors since algorithms that
work for these can then be applied in succession after q has been factored into its
linear and quadratic factors. Thus, we may assume that q is either q(t) = t− x
or q(t) = (t− x)2 + y2, y > 0, where in the first case [a, b] is not all of R and x
outside of [a, b]. The modified measure, therefore, is either

dλ̂(t) =
dλ(t)

t− x
, x ∈ R\[a, b], (2.3.28)

or

dλ̂(t) =
dλ(t)

(t− x)2 + y2
, x ∈ R, y > 0. (2.3.29)

To compute α̂k, β̂k, k = 0, 1, . . . , n, we propose to use the modified Chebyshev
algorithm, using the polynomials πk( · ; dλ) to define the modified moments mk

(cf. (2.1.23)),

mk =

∫

R

πk(t; dλ) dλ̂(t), k = 0, 1, . . . , 2n− 1. (2.3.30)

In the case (2.3.28), this yields

mk =

∫

R

πk(t; dλ)

t− x
dλ(t) = −ρk(x), (2.3.31)

where ρk(x) is the Cauchy integral (Cπk)(x; dλ) of (2.3.1). In the case (2.3.29),
we let z = x+ iy and write

1

(x− t)2 + y2
= − 1

2iy

(
1

z − t
− 1

z − t

)
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to obtain

mk =

∫

R

πk(t; dλ)

(x− t)2 + y2
dλ(t) = − Im ρk(z)

Im z
. (2.3.32)

In either case, the continued fraction algorithm of §2.3.2 can be applied to com-
pute the modified moments in (2.3.30), which then can be employed by the

modified Chebyshev algorithm to compute the recurrence coefficients α̂k and β̂k.
This is implemented in the OPQ routines gchri1.m and gchri2.m. Numerical
examples and comparisons with other (more efficient) modification algorithms
will be given later in §2.4.6.

The case where n = 0 in (2.3.1) or (2.3.6) is not without interest, as the
remaining two examples are to show.

Example 2.50 Stieltjes–Perron inversion formula.
Assume dλ(t) = w(t) dt in (2.3.1) absolutely continuous, and suppose we

know the recurrence coefficients αk and βk of dλ. We may be asked to determine
the support interval [a, b] of dλ and to compute w(x) for any x ∈ (a, b). In a
sense, this is the inverse of the main problem considered in this book. We will
not consider here the first part of the problem—that of determining [a, b]. There
is a detailed discussion of this in Chihara (1978, Chapter 4). A solution of the
second part can be given in terms of the Stieltjes–Perron formula (cf. Henrici
(1986, §14.6)), which in our notation asserts that

w(x) = − 1

π
lim
z↓x

Im ρ0(z), x ∈ (a, b). (2.3.33)

To implement this computationally, put z = x + iy and let y approach 0
over a sequence of monotonically decreasing values y = yj , j = 1, 2, . . . . If we
denote zj = x+iyj , wj = −Im ρ0(zj)/π, then limj→∞ wj = w(x). Each wj can be
computed by the continued fraction algorithm (2.3.14), where z = zj and N = 0,

hence ρ
[ν]
0 = r

[ν]
−1. Thus, only backward recursion is required in (2.3.14). It is in

this part of the algorithm where the known recurrence coefficients αk and βk find
their use. Since the minimality of {ρn(zj)} weakens with increasing j, larger and
larger values of ν will be needed to achieve convergence in (2.3.15). Moreover,
convergence of wj to w(x) as j → ∞ may be quite slow, all of which suggests
that the method as described may be impractical. This indeed is found to be
true. Nevertheless, the method can be turned into a viable algorithm, at least
for finite intervals [a, b] and for accuracy requirements that are not too stringent,
if the generation of the wj is combined with a suitable convergence acceleration
procedure. Specifically, we have chosen yj = 2−j, j = 1, 2, . . . , and applied to
wj , j = 1, 2, . . . , the well-known ε-algorithm (cf. Brezinski and Redivo Zaglia
(1991, §2.3)).

The algorithm is embodied in the OPQ routine SPHT.m, with iopt=1, which for
given J ≥ 1 generates wj , j = 1, 2, . . . , J , and applies on them the ε-algorithm.
The latter is provided in the routine epsalg.m, a simple implementation of the
“progressive form” of the ε-algorithm.
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A feel for the method can be obtained by applying it to the recurrence co-
efficients of the Jacobi polynomials with parameters α and β and regenerating
from them the Jacobi weight. We considered selected values of α and β in the
region −1 < α ≤ β ≤ 1 and selected x-values in −1 < x < 1, and computed
wj , j = 1, 2, . . . , J , to a prescribed accuracy eps0. Among these, wJ is the most
accurate approximation to w(x); we want to observe how much the ε-algorithm
can improve it. Using J = 9 and eps0=10−6, we found that wJ approximates
w(x) generally to within an error of 10−3, whereas the ε-algorithm was able, in
general, to reduce the error to 10−5−10−6, but occasionally to an error as small
as 10−9. For x very close to the end points of [−1, 1], the procedure becomes
ineffective; see the OPQ routine SPjac.m.

A more interesting example is provided by the recurrence coefficients αk =

α
[1]
k , βk = β

[1]
k of the first numerator polynomials π

[1]
k ( · ; dt) of the Legendre

measure (cf. Definition 1.35), that is, α
[1]
k = αL

k+1, β
[1]
k = βL

k+1, k = 0, 1, 2, . . . ,

where αL
k and βL

k are the ordinary Legendre coefficients. The corresponding
measure is known to be dλ[1](t) = w[1](t) dt, where

w[1](t) =
1

[ln(1 + t)/(1 − t)]2 + π2
, −1 < t < 1

(cf. Example 1.37). For β
[1]
0 one must take the integral

∫ 1

−1 w
[1](t) dt (not βL

1 ),
which was found (numerically) to be 1/6. We applied SPHT.m with iopt=1 for
x = 0 and J = 9, asking for an accuracy of eps0=10−6 and limiting ν in (2.3.14)
to ν ≤ numax=4000. (The actual value of ν that yielded convergence was found
to be ν = 3895.) We used the standard estimate nu0=.75×numax=3000. The
results are displayed in the upper part of Table 2.20, which in the second column

Table 2.20 Stieltjes–Perron inversion for the first numera-
tor Legendre polynomials.

j err wj err ε2 err ε4 err ε6 err ε8
1 3.715(–2) 4.583(–3) 2.456(–5) 5.718(–8) 5.140(–8)
2 2.107(–2) 8.626(–4) 9.450(–7) 9.632(–9)
3 1.118(–2) 1.865(–4) 1.148(–8) 1.147(–8)
4 5.754(–3) 4.327(–5) 9.628(–9)
5 2.918(–3) 1.042(–5) 3.435(–7)
6 1.469(–3) 2.555(–6)
7 7.370(–4) 8.330(–7)
8 3.691(–4)
9 1.847(–4)

x .2 .4 .6 .8 .9 .99
errw9 1.859(–4) 1.898(–4) 1.995(–4) 2.294(–4) 2.858(–4) 1.005(–3)
err ε8 9.197(–8) 1.108(–7) 6.150(–7) 5.965(–9) 5.315(–6) 7.315(–4)
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shows the errors |wj −w(x)|, j = 1, 2, . . . , J , and in the subsequent columns the
errors of the respective accelerated approximations produced by the ε-algorithm.
As can be seen, the best of these, rather remarkably, is about 10−8, which is
smaller than the requested accuracy by two orders of magnitude. Similar results
were obtained for other values of x, although the effectiveness of the procedure
deteriorates as x approaches 1. This is shown in the lower part of Table 2.20,
which displays errw9 and err ε8 for selected values of x. (For the corresponding
negative values the results are the same by symmetry.) The computations are
performed in the OPQ routine Table2 20.m.

Unfortunately, and not unexpectedly, the procedure has difficulty with un-
bounded intervals [a, b] because of the exceedingly high values of ν required to
achieve convergence in (2.3.15) when z approaches [a, b]. Even a sequence yj

converging to zero more slowly than 2−j proved unsuccessful.

Example 2.51 Hilbert transform of a measure.

Given a measure dλ(t) = w(t) dt, its Hilbert transform is defined by

h(x) = (Hw)(x) :=

∫

R

− w(t)

t− x
dt, a < x < b, (2.3.34)

where [a, b] is the support interval of dλ. (We omit the factor 1/π normally
associated with Hilbert transforms.) By (2.3.7), h(x) is the same as −ρ0(x), and
thus by (2.3.9),

h(x) = − lim
z↓x

Re ρ0(z). (2.3.35)

The same procedures as developed in Example 2.50 and implemented in
SPHT.m are again applicable, the only difference being that in place of the imag-
inary part we now use the real part of ρ0(z). The Jacobi weight function w(t) =
(1 − t)α(1 + t)β now presents a more interesting example since computing its
Hilbert transform is a highly nontrivial task (cf., e.g. Gautschi and Wimp (1987)).
We illustrate the procedure in the two cases α = β = − 1

2 and α = β = 1
2 (Cheby-

shev weight functions of the first and second kind). For these, the Hilbert trans-
form is known explicitly: h(x) = 0 on (−1, 1) in the former, and h(x) = −πx on
(−1, 1) in the latter case. Table 2.21 shows the results for the same x-values as
in the lower part of Table 2.20; the first two lines correspond to α = β = − 1

2 ,
the next two lines to α = β = 1

2 . See the OPQ routine HTjac.m.

2.4 Modification algorithms

Let dλ be a positive measure and
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Table 2.21 Hilbert transform of two Chebyshev measures.

x 0.2 0.4 0.6 0.8 0.9 0.99
errw9 1.305(–3) 3.188(–3) 7.190(–3) 2.272(–2) 6.666(–2) 2.114(0)
err ε8 8.584(–7) 8.072(–7) 2.563(–7) 2.046(–6) 1.411(–3) 6.661(–1)
errw9 1.252(–3) 2.678(–3) 4.602(–3) 8.181(–3) 1.267(–2) 4.286(–2)
err ε8 2.285(–8) 1.043(–7) 2.438(–8) 3.858(–8) 9.364(–6) 3.187(–2)

u(t) = ±
∏̀

λ=1

(t− uλ), v(t) =

m∏

µ=1

(t− vµ) (2.4.1)

two real polynomials, relatively prime and not vanishing on the support [a, b] of
dλ, the sign + or – in the former being chosen so that the ratio u/v is positive
on [a, b]. We consider the modified measure

dλ̂(t) =
u(t)

v(t)
dλ(t), t ∈ [a, b], (2.4.2)

and pose the problem of determining the recurrence coefficients of the modi-
fied measure, α̂k = αk(dλ̂), β̂k = βk(dλ̂), from those of the original measure,
αk = αk(dλ), βk = βk(dλ). Methods that accomplish the passage from the αs

and βs to the α̂s and β̂s are called modification algorithms. They can be broken
up into elementary steps, since the transition from dλ to dλ̂ need not be accom-
plished all at once but can be carried out one factor of u resp. v at a time. It
suffices, therefore, to consider real linear factors u(t) = t− x and real quadratic
factors u(t) = (t− x)2 + y2 and analogous divisors. The respective modification
algorithms are developed in §2.4.2–2.4.5. Examples are given in §2.4.6.

More classical is the related problem of expressing the orthogonal polynomials
π̂n = πn( · ; dλ̂) in terms of the πn = πn( · ; dλ). Solutions involving determinants
will be briefly given in §2.4.1.

2.4.1 Christoffel and generalized Christoffel theorems

Christoffel was the first to express u( · )π( · ; dλ̂) in the case v(t) ≡ 1 and dλ(t) =
dt in determinantal form as a linear combination of πn, πn+1, . . . , πn+` (Christof-
fel (1858)). It was only 100 years later, in 1959, that the general case with v(t) 6≡ 1
was solved by Uvarov (1959), (1969). For simplicity, we will assume that the ze-
ros u1, u2, . . . , u` of u and v1, v2, . . . , vm of v are simple; extensions to multiple
zeros are straightforward and involve derivatives of orthogonal polynomials. The
results take on different forms depending on whether m ≤ n or m > n.

Theorem 2.52 (Uvarov) Let m ≤ n and assume that u and v in (2.4.1) have
only simple zeros. Then,
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u(t)πn(t; dλ̂) = const ×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πn−m(t) · · · πn−1(t) πn(t) πn+1(t) · · · πn+`(t)

πn−m(u1) · · · πn−1(u1) πn(u1) πn+1(u1) · · · πn+`(u1)

· · · · · · · · · · · · · · · · · · · · ·
πn−m(u`) · · · πn−1(u`) πn(u`) πn+1(u`) · · · πn+`(u`)

ρn−m(v1) · · · ρn−1(v1) ρn(v1) ρn+1(v1) · · · ρn+`(v1)

· · · · · · · · · · · · · · · · · · · · ·
ρn−m(vm) · · · ρn−1(vm) ρn(vm) ρn+1(vm) · · · ρn+`(vm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
(2.4.3)

where

ρk(z) =

∫

R

πk(t; dλ)

z − t
dλ(t), k = 0, 1, 2, . . . . (2.4.4)

Note that we have here another application of the Cauchy integrals of or-
thogonal polynomials.

The special case m = 0 is Christoffel’s theorem, and (2.4.3) along with (2.4.5)
may be referred to as generalized Christoffel theorems. If the new polynomial
πn( · ; dλ̂) is to be monic, the const in (2.4.3) has to be equal to the reciprocal of
the (signed) cofactor of the element πn+` in the determinant of (2.4.3).

In the case m > n, a similar formula holds.

Theorem 2.53 (Uvarov) Let m > n and assume that u and v in (2.4.1) have
only simple zeros. Then,

u(t)πn(t; dλ̂) = const ×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 π0(t) π1(t) · · · πn+`(t)

0 0 0 · · · 0 π0(u1) π1(u1) · · · πn+`(u1)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 π0(u`) π1(u`) · · · πn+`(u`)

1 v1 v2
1 · · · vm−n−1

1 ρ0(v1) ρ1(v1) · · · ρn+`(v1)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 vm v2

m · · · vm−n−1
m ρ0(vm) ρ1(vm) · · · ρn+`(vm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
(2.4.5)

with ρk(z) as defined in (2.4.4).

These results continue to hold for complex uλ and vµ if orthogonality is
understood in the sense of formal orthogonality (cf. §1.6.1).

While Christoffel theorems are mathematically interesting and have found
applications (in the asymptotic theory of orthogonal polynomials, for example),
they are, in this generality, less useful for computational purposes. When m and
n are small, however, the theorems will be used to derive modification algorithms.
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2.4.2 Linear factors

Consider the modification

dλ̂(t) = (t− z) dλ(t), z ∈ C\[a, b]. (2.4.6)

Here, m = 0, ` = 1, and the monic polynomial π̂n( · ) = πn( · ; dλ̂), by (2.4.3), is
given by

(t− z)π̂n(t) =

∣∣∣∣
πn(t) πn+1(t)
πn(z) πn+1(z)

∣∣∣∣
−πn(z)

= πn+1(t) −
πn+1(z)

πn(z)
πn(t),

that is, π̂n is the kernel polynomial of (1.6.5), in agreement with Theorem 1.55.
In this and the following subsection, we shall use the notation

rn = rn(z) =
πn+1(z)

πn(z)
, n = 0, 1, 2, . . . , (2.4.7)

which is well defined since z is outside the support interval of dλ. Thus,

(t− z)π̂n(t) = πn+1(t) − rnπn(t). (2.4.8)

To obtain the connection between the new recurrence coefficients α̂k, β̂k for
{π̂n} and the old ones, αk, βk for {πn}, we write (t − z)tπ̂k(t) in two different
ways. First, we use the three-term recurrence relation for πk in (2.4.8) to write

(t− z)tπ̂k(t) = tπk+1(t) − rk · tπk(t)

= πk+2(t) + αk+1πk+1(t) + βk+1πk(t) − rk[πk+1(t) + αkπk(t) + βkπk−1(t)]

= πk+2(t) + (αk+1 − rk)πk+1(t) + (βk+1 − rkαk)πk(t) − rkβkπk−1(t),

(2.4.9)
and then use the three-term recurrence relation for π̂k in combination with (2.4.8)
to write

(t− z)tπ̂k(t) = (t− z)[π̂k+1(t) + α̂kπ̂k(t) + β̂kπ̂k−1(t)]

= πk+2(t) − rk+1πk+1(t) + α̂k[πk+1(t) − rkπk(t)] + β̂k[πk(t) − rk−1πk−1(t)]

= πk+2(t) + (α̂k − rk+1)πk+1(t) + (β̂k − rkα̂k)πk(t) − rk−1β̂kπk−1(t).

(2.4.10)
Comparing the coefficients in these two identities then yields

α̂k − rk+1 = αk+1 − rk,

β̂k − rkα̂k = βk+1 − rkαk,

rk−1β̂k = rkβk,
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and thus, from the first and third relations,

α̂k = αk+1 + rk+1 − rk, k ≥ 0,

β̂k = rkβk/rk−1, k ≥ 1.

The middle relation is automatically satisfied, as can be verified by expressing
β̂k and α̂k in terms of βk and αk, and using the relation

rk+1 = z − αk+1 − βk+1/rk, (2.4.11)

which follows from the recurrence relation for {πk}. The constant β̂0, in line with
our convention (1.3.6), should be defined by

∫

R

dλ̂(t) =

∫

R

(t− z) dλ(t) =

∫

R

(t− α0 + α0 − z) dλ(t)

=

∫

R

π1(t) dλ(t) + (α0 − z)

∫

R

dλ(t),

hence, since the first integral on the right vanishes by orthogonality,

β̂0 = (α0 − z)β0.

We thus arrive at the following algorithm.

Algorithm 2.5 (Modification by a linear factor)
Initialization:

r0 = z − α0, r1 = z − α1 − β1/r0,

α̂0 = α1 + r1 − r0, β̂0 = −r0β0.
(2.4.12)

Continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

rk+1 = z − αk+1 − βk+1/rk,

α̂k = αk+1 + rk+1 − rk,

β̂k = βkrk/rk−1.

(2.4.13)

Note that the algorithm requires αn, βn in addition to the αk, βk for k ≤ n− 1.
Algorithm 2.5 is implemented in the OPQ routine chri1.m.

2.4.3 Quadratic factors

The modified measure to be considered here is

dλ̂(t) = (t− z)(t− z) dλ(t) =
(
(t− x)2 + y2

)
dλ(t), (2.4.14)

where z = x+ iy, x ∈ R, y > 0. We are now in the case m = 0, ` = 2 of (2.4.3),
where u1 = z and u2 = z, and consequently
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(t− z)(t− z)π̂n(t) =

∣∣∣∣∣∣

πn(t) πn+1(t) πn+2(t)
πn(z) πn+1(z) πn+2(z)
πn(z) πn+1(z) πn+2(z)

∣∣∣∣∣∣
∣∣∣∣
πn(z) πn+1(z)
πn(z) πn+1(z)

∣∣∣∣
.

An elementary computation will show that

(t− z)(t− z)π̂n(t) = πn+2 + snπn+1 + tnπn(t), (2.4.15)

where

sn = −
(
r′n+1 +

r′′n+1

r′′n
r′n

)
, tn =

r′′n+1

r′′n
|rn|2.

Here, the notation

r′n = Re rn(z), r′′n = Im rn(z), |rn|2 = |rn(z)|2, n = 0, 1, 2, . . . ,

is used, where rn(z) continues to be the quantity defined in (2.4.7). To the iden-
tity (2.4.15) we now apply the same procedure that was used in (2.4.8)–(2.4.10),
expanding (t − z)(t− z) · tπ̂k(t) in two different ways into a linear combination
of the five orthogonal polynomials πk+3, πk+2, . . . , πk−1. Comparison of the re-
spective coefficients yields five equations relating the new recurrence coefficients
to the old ones. The first and last of these equations are, respectively,

sk+1 + α̂k = sk + αk+2, k ≥ 0,

tk−1β̂k = tkβk, k ≥ 1.

For β̂0, we have

β̂0 =

∫

R

(
(t− x)2 + y2

)
dλ(t) =

∫

R

(
(t− α0 + α0 − x)2 + y2

)
dλ(t)

=

∫

R

(
(t− α0)

2 + (α0 − x)2 + y2
)
dλ(t),

where
∫

R
(t − α0) dλ(t) =

∫
R
π1(t) dλ(t) = 0 has been used in the last equality.

Furthermore (cf. (1.3.7)),

∫

R

(t− α0)
2 dλ(t) = ‖π1‖2 = β0β1,

so that

β̂0 = β0(β1 + (α0 − x)2 + y2).

Making use of (2.4.11) again, we are led to the following algorithm.
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Algorithm 2.6 (Modification by a quadratic factor)
Initialization:

r0 = z − α0, r1 = z − α1 − β1/r0, r2 = z − α2 − β2/r1,

α̂0 = α2 + r′2 +
r′′2
r′′1
r′1 −

(
r′1 +

r′′1
r′′0
r′0

)
,

β̂0 = β0(β1 + |r0|2).

(2.4.16)

Continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

rk+2 = z − αk+2 − βk+2/rk+1,

α̂k = αk+2 + r′k+2 +
r′′k+2

r′′k+1

r′k+1 −
(
r′k+1 +

r′′k+1

r′′k
r′k

)
,

β̂k = βk

r′′k+1r
′′
k−1

[r′′k ]2

∣∣∣∣
rk
rk−1

∣∣∣∣
2

.

(2.4.17)

Here, we need αk, βk for k ≤ n + 1. Algorithm 2.6 is implemented in the OPQ

routine chri2.m.
In the special case where dλ is a symmetric measure (hence αk = 0 for all k)

and x = 0, that is, for

dλ̂(t) = (t2 + y2) dλ(t), dλ symmetric,

Algorithm 2.6 simplifies since all rk are purely imaginary.

Algorithm 2.7 (Modification by a simplified symmetric quadratic factor)
Initialization:

r′′0 = y, r′′1 = y + β1/y, r′′2 = y + β2/r
′′
1 ,

α̂0 = 0, β̂0 = β0(β1 + y2).
(2.4.18)

Continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

r′′k+2 = y + βk+2/r
′′
k+1,

α̂k = 0, β̂k = βkr
′′
k+1/r

′′
k−1.

(2.4.19)

Algorithm 2.7 is implemented in the OPQ routine chri3.m. Algorithms 2.6 and
2.7 both appear to be numerically stable.

Another quadratic factor of interest is

dλ̂(t) = (t− x)2 dλ(t), x ∈ R, (2.4.20)

which still produces a nonnegative definite measure dλ̂ but one that will vanish
inside the support [a, b] of dλ if x is in (a, b). In this case, one could be tempted
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to apply the algorithm for linear factors twice in succession, with the same value
of x. But that could be risky since the underlying assumption πn(x; dλ) 6= 0,
all n, may no longer be true. It is possible, however, to solve the problem by
techniques of numerical linear algebra (cf. Gautschi (2002, §3.3)): apply one
step of the QR algorithm with shift x to the Jacobi matrix Jn+2(dλ) of order
n + 2 (cf. (1.3.15)) and discard the last two rows and columns of the resulting

matrix to obtain Jn(dλ̂). This is implemented in the OPQ routine chri7.m.

2.4.4 Linear divisors

Let

dλ̂(t) =
dλ(t)

t− z
, z ∈ C\[a, b], (2.4.21)

where [a, b] is the support interval of dλ. We are in the case ` = 0, m = 1, v1 = z

of Theorem 2.52, and therefore, letting π̂n( · ) = πn( · ; dλ̂),

π̂n(t) =

∣∣∣∣
πn−1(t) πn(t)
ρn−1(z) ρn(z)

∣∣∣∣
−ρn−1(z)

= πn(t) − ρn(z)

ρn−1(z)
πn−1(t), n ≥ 1.

In analogy to (2.4.7), we now redefine rn to be

rn = rn(z) =
ρn+1(z)

ρn(z)
, n = −1, 0, 1, 2, . . . ; ρ−1(z) = 1, (2.4.22)

where the last relation is consistent with (2.3.3). Thus,

π̂n(t) = πn(t) − rn−1πn−1(t), n = 1, 2, . . . . (2.4.23)

Expressing tπ̂k(t), as in §2.4.2–2.4.3, in two different ways as a linear combination
of πk+1, πk, πk−1, and πk−2, and comparing coefficients, yields for k ≥ 2

α̂k = αk + rk − rk−1,

β̂k = βk−1rk−1/rk−2.
(2.4.24)

The same argument confirms the validity of the first relation in (2.4.24) for k = 1,
and for k = 0 it gives

α̂0 = α0 + r0.

For β̂1, however, the procedure yields

β̂1 = β1 + r0(α̂1 − α0).

From the discussion in §2.3.1, we recall that

ρk+1(z) = (z − αk)ρk(z) − βkρk−1(z), k = 0, 1, 2, . . . ,
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hence

rk = z − αk − βk/rk−1, k = 0, 1, 2, . . . ,

r−1 = ρ0(z).
(2.4.25)

In particular,

r0 = z − α0 − β0/ρ0, r1 = z − α1 − β1/r0.

Inserting the second relation in

β̂1 = β1 + r0(α1 + r1 − r0 − α0),

and then making use of the first, yields β̂1 = β0r0/ρ0, which is the second relation
in (2.4.24) for k = 1. Finally, by convention,

β̂0 =

∫

R

dλ̂(t) =

∫

R

dλ(t)

t− z
= −ρ0(z).

In summary, then, we have the following algorithm.

Algorithm 2.8 (Modification by a linear divisor)
Initialization:

α̂0 = α0 + r0, β̂0 = −ρ0(z). (2.4.26)

Continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

α̂k = αk + rk − rk−1,

β̂k = βk−1rk−1/rk−2.
(2.4.27)

In contrast to Algorithm 2.5, no coefficients αk, βk beyond k ≤ n−1 are needed,
in fact not even βn−1.

It remains to discuss the computation of the quantities rk in Algorithm 2.8.
Since they are ratios ρk+1/ρk of the minimal solution {ρk} of the basic three-term
recurrence relation (cf. Theorem 1.43), they can be computed by the continued
fraction algorithm of §2.3.2. As a matter of fact, they are simply the limits, as

ν → ∞, of the quantities r
[ν]
k in (2.3.14) and are furnished in one of the output

arrays of the routine cauchy.m. Moreover, ρ0 = r−1 is also produced by the
continued fraction algorithm.

As z approaches the support interval [a, b], minimality of {ρk} weakens, and
convergence of the continued fraction algorithm slows down. For z very close to
the support interval and n not too large, on the other hand, we can safely generate
the rk by forward recursion as in (2.4.25). This, however, requires knowledge of
ρ0(z). The routine chri4.m, which implements Algorithm 2.8, provides both
options: with input parameter iopt=1 it uses the continued fraction algorithm,
otherwise forward recursion.
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2.4.5 Quadratic divisors

We now consider

dλ̂(t) =
dλ(t)

(t− z)(t− z)
=

dλ(t)

(t− x)2 + y2
, z = x+ iy, x ∈ R, y > 0. (2.4.28)

We begin by observing that

α̂0 =

∫

R

tdλ(t)/|t− z|2
∫

R

dλ(t)/|t− z|2
= x+ y

Re ρ0(z)

Im ρ0(z)
, β̂0 = −1

y
Im ρ0(z),

where ρ0(z) is the Cauchy integral (2.4.4) for k = 0. We are in the case ` = 0,
m = 2 of the generalized Christoffel theorems (2.4.3) and (2.4.5), which give, for

π̂n( · ) = πn( · ; dλ̂),

π̂n(t) =

∣∣∣∣∣∣

πn−2(t) πn−1(t) πn(t)
ρn−2(z) ρn−1(z) ρn(z)
ρn−2(z) ρn−1(z) ρn(z)

∣∣∣∣∣∣
∣∣∣∣
ρn−2(z) ρn−1(z)
ρn−2(z) ρn−1(z)

∣∣∣∣
, n ≥ 2; π̂1(t) =

∣∣∣∣∣∣

0 π0(t) π1(t)
1 ρ0(z) ρ1(z)
1 ρ0(z) ρ1(z)

∣∣∣∣∣∣
∣∣∣∣
1 ρ0(z)
1 ρ0(z)

∣∣∣∣
. (2.4.29)

We continue to use the notation

rn(z) = r′n + ir′′n, ρn(z) = ρ′n + iρ′′n, |rn(z)|2 = |rn|2, |ρn(z)|2 = |ρn|2.

Lemma 2.54 There holds

π̂n(t) = πn(t) + snπn−1(t) + tnπn−2(t), n ≥ 1, (2.4.30)

where

sn = −
(
r′n−1 +

r′′n−1

r′′n−2

r′n−2

)
, n ≥ 1; tn =

r′′n−1

r′′n−2

|rn−2|2, n ≥ 2, (2.4.31)

and rn is given by (2.4.22).

Proof Let first n ≥ 2. Then, by the first of (2.4.29),

sn = − ρn−2(z)ρn(z) − ρn−2(z)ρn(z)

ρn−2(z)ρn−1(z) − ρn−2(z)ρn−1(z)
.

Dividing the numerator and the denominator by ρn−2(z)ρn−2(z) yields

sn = −rn−1(z)rn−2(z) − rn−1(z)rn−2(z)

rn−2(z) − rn−2(z)
= − Im [rn−1(z)rn−2(z)]

Im rn−2(z)
,
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from which the first relation in (2.4.31) follows for n ≥ 2. Similarly,

tn =
ρn−1(z)ρn(z) − ρn−1(z)ρn(z)

ρn−2(z)ρn−1(z) − ρn−2(z)ρn−1(z)

=
rn−1(z) − rn−1(z)

rn−2(z) − rn−2(z)
|rn−2(z)|2 =

Im rn−1(z)

Im rn−2(z)
|rn−2(z)|2,

which is the second relation in (2.4.31).
It remains to prove the assertion for s1. Here, we use the second formula in

(2.4.29),

π̂1(t) = π1(t) + s1π0(t),

and find

s1 = −ρ1(z) − ρ1(z)

ρ0(z) − ρ0(z)
= −r0(z)ρ0(z) − r0(z)ρ0(z)

ρ0(z) − ρ0(z)
= − Im [r0(z)ρ0(z)]

Im ρ0(z)
,

which is (2.4.31) for n = 1, recalling that r−1(z) = ρ0(z). 2

We now use the procedure, already applied repeatedly in §2.4.2–2.4.4, of
expressing tπ̂k(t) in two different ways as linear combinations of the original
polynomials πk+1, πk, . . . , and comparing the corresponding coefficients. With
π̂k given in (2.4.30) and (2.4.31), this results in

α̂k = αk − sk+1 + sk, β̂k = βk−2 tk/tk−1 for k ≥ 3,

α̂2 = α2 − s3 + s2, β̂2 = β2 + s2(α1 − α̂2) − t3 + t2 for k = 2,

and

α̂1 = α1 − s2 + s1, β̂1 = β1 + s1(α0 − α̂1) − t2 for k = 1.

We have obtained the following algorithm.

Algorithm 2.9 (Modification by a quadratic divisor)
Initialization:

α̂0 = x+ ρ′0y/ρ
′′
0 , β̂0 = −ρ′′0/y,

α̂1 = α1 − s2 + s1, β̂1 = β1 + s1(α0 − α̂1) − t2,

α̂2 = α2 − s3 + s2, β̂2 = β2 + s2(α1 − α̂2) − t3 + t2.

(2.4.32)

Continuation (if n > 3): for k = 3, 4, . . . , n− 1 do

α̂k = αk − sk+1 + sk, β̂k = βk−2 tk/tk−1, (2.4.33)

where the sn and tn are as defined in (2.4.31).
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Algorithm 2.9 is implemented in the OPQ routine chri5.m. Like the routine
chri4.m, it provides for two options, as explained in the last paragraph of §2.4.4.

Substantial simplifications occur if dλ is symmetric and x = 0, that is, in the
case

dλ̂(t) =
dλ(t)

t2 + y2
, dλ symmetric, y > 0.

Then, αk = α̂k = 0 for all k, and Algorithm 2.9 becomes

Algorithm 2.10 (Modification by a simplified symmetric quadratic divisor)
Initialization:

α̂0 = 0, β̂0 = −ρ′′0/y,
α̂1 = 0, β̂1 = β1 − t2,

α̂2 = 0, β̂2 = β2 − t3 + t2.

(2.4.34)

Continuation (if n > 3): for k = 3, 4, . . . , n− 1 do

α̂k = 0, β̂k = βk−2 tk/tk−1, (2.4.35)

where the tn are as defined in (2.4.31).

Algorithm 2.10 is implemented in the OPQ routine chri6.m.
In quadrature problems that involve a pair of poles located symmetrically

with respect to the origin just barely outside the (symmetric) interval [a, b] of
integration (cf. §3.1.4), modification by a special quadratic divisor,

dλ̂(t) =
dλ(t)

t2 − x2
, x ∈ R\[a, b], (2.4.36)

is of interest. This can be treated exactly as before by replacing z by x and z by
−x. It is convenient to write

ρn(x) = ρ+
n , ρn(−x) = ρ−n and rn(x) = r+n , rn(−x) = r−n .

A simple computation then shows that

α̂0 = x
ρ+
0 + ρ−0
ρ+
0 − ρ−0

, β̂0 = − 1

2x
(ρ+

0 − ρ−0 ),

and Lemma 2.54 becomes

Lemma 2.55 For π̂n( · ) = πn( · ; dλ̂), with dλ̂ given by (2.4.36), there holds

π̂n(t) = πn + snπn−1 + tnπn−2(t), n ≥ 1, (2.4.37)

where

sn = −
r−

n−1

r+
n−2

− r+
n−1

r−
n−2

1
r+

n−2

− 1
r−

n−2

, n ≥ 1; tn =
r−n−1 − r+n−1

1
r+

n−2

− 1
r−

n−2

, n ≥ 2. (2.4.38)
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The rest of the argument remains unchanged and gives rise to the following
algorithm.

Algorithm 2.11 (Modification by the special quadratic divisor in (2.4.36))
Initialization:

α̂0 = x
ρ+
0 + ρ−0
ρ+
0 − ρ−0

, β̂0 = − 1

2x
(ρ+

0 − ρ−0 ),

α̂1 = α1 − s2 + s1, β̂1 = β1 + s1(α0 − α̂1) − t2,

α̂2 = α2 − s3 + s2, β̂2 = β2 + s2(α1 − α̂2) − t3 + t2.

(2.4.39)

Continuation (if n > 3): for k = 3, 4, . . . , n− 1 do

α̂k = αk − sk+1 + sk, β̂k = βk−2 tk/tk−1, (2.4.40)

where the sn and tn are as defined in (2.4.38).

Algorithm 2.11 is implemented in the OPQ routine chri8.m with two options
analogous to those in chri4.m and chri5.m. Note that dλ̂ in (2.4.36) is negative
definite.

2.4.6 Examples

The first example is to show an application of the modification algorithm for
the special quadratic factor (t− x)2 (cf. the last paragraph of §2.4.3). The next
example applies Algorithm 2.8 (just the initialization part) to compute the com-
plex exponential integral. The two examples that follow illustrate the superiority
in efficiency of Algorithms 2.8 and 2.9 over the modified Chebyshev algorithm
as used in Example 2.49. For zeros close to the support of dλ, the respective
modified measures dλ̂ and corresponding recurrence coefficients have applica-
tions to Gaussian quadrature of functions having poles close to the interval of
integration. An illustration of this is given in the remaining two examples.

Example 2.56 Induced orthogonal polynomials.
Given an orthogonal polynomial πm( · ; dλ) of fixed degree m ≥ 1, the se-

quence of induced orthogonal polynomials π̂k,m( · ) = πk( · ;π2
mdλ), k = 0, 1, 2, . . . ,

has been introduced by Gautschi and Li (1993). Their measure

dλ̂m(t) =

m∏

µ=1

(t− xµ)2 dλ(t), (2.4.41)

where xµ are the zeros of πm, modifies the given measure dλ by a product
of quadratic factors of the type (2.4.20), so that the routine chri7.m can be

applied m times in succession to compute the n coefficients α̂k,m = αk(dλ̂m),

β̂k,m = βk(dλ̂m), k = 0, 1, . . . , n − 1, from the n +m coefficients αk = αk(dλ),
βk = βk(dλ), k = 0, 1, . . . , n − 1 + m. This is implemented in the OPQ routine
indop.m. Selected results for the Legendre measure dλ = dt on [−1, 1], for which
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Table 2.22 Induced Legendre polynomials.

k β̂k,0 β̂k,2 β̂k,6 β̂k,11

0 2.0000000000 0.1777777778 0.0007380787 0.0000007329
1 0.3333333333 0.5238095238 0.5030303030 0.5009523810
6 0.2517482517 0.1650550769 0.2947959861 0.2509913424
12 0.2504347826 0.2467060415 0.2521022519 0.1111727541
19 0.2501732502 0.2214990335 0.2274818789 0.2509466619

α̂k,m = 0, are shown in Table 2.22; see the routine Table2 22.m. The procedure
was found to be remarkably stable, not only for the Legendre measure, but also
for other classical measures, and for n and m as large as 320 (see Gautschi (1994,
Tables X and XI)).

Example 2.57 Complex exponential integral
Let z ∈ C be in the complex plane cut along the negative real axis. The ex-

ponential integral E1(z) can be expressed in the form (Abramowitz and Stegun,
1992, eqn 5.1.28)

ezE1(z) =

∫ ∞

0

e−t

t+ z
dt,

which is simply the Cauchy integral −ρ0(−z; e−t dt) for the Laguerre measure. It
thus suffices to compute −r−1(z) by the first half of the continued fraction algo-
rithm (2.3.14). The results for z = reiϕ, r = 1

2 , 1, 2, 5 and ϕ = 0, π/4, π/2, 3π/4
are shown in Table 2.23 along with the index ν that yields convergence for the

Table 2.23 Complex exponential integral.

r ϕ real(E1(re
iϕ)) imag(E1(re

iϕ)) ν
0.5 0.0000 0.559773594774 0.000000000000 104

0.7854 0.465188800576 –0.489467676815 119
1.5708 0.177784078811 –1.077688908750 193
2.3562 –0.232023710149 –1.935271237334 606

1.0 0.0000 0.219383934395 0.000000000000 58
0.7854 0.099862719160 –0.289974554119 66
1.5708 –0.337403922900 –0.624713256429 105
2.3562 –1.233466915671 –1.361233788765 320

2.0 0.0000 0.048900510708 0.000000000000 33
0.7854 –0.039584645207 –0.082292060497 37
1.5708 –0.422980828775 0.034616650007 57
2.3562 –2.169393589174 0.317338393619 166

5.0 0.0000 0.001148295591 0.000000000000 17
0.7854 –0.002413269237 0.004504243431 19
1.5708 0.190029749657 –0.020865081850 26
2.3562 6.311949478582 4.228204825282 66
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given error tolerance 1
2 × 10−12. (To get an accurate reading on the index ν,

the routine cauchy.m has been altered by letting ν increase in steps of 1 rather
than 5.) It can be seen that, as expected, the algorithm has to work harder as z
approaches the cut, but less if |z| is large. See the OPQ routine Table2 23.m used
to produce Table 2.23.

Example 2.58 Modified Chebyshev algorithm vs modification algorithm in the
case of linear divisors.

The routines gchri1.m and chri4.m were run with n = 40 and eps0=100×
eps for Jacobi measures dλ(α,β) with parameters α, β = −0.8(0.4)0.8, β ≥ α; see
the OPQ routine Table2 24.m. Since the results do not differ greatly for different
values of the parameters α and β, we show in Table 2.24 only the results for
α = β = 0. In addition to the zero x of the divisor t − x, Table 2.24 shows

Table 2.24 The performance of gchri1.m and
chri4.m in the case of the Legendre measure.

x ν0 ν ν0 ν discr α̂ discr β̂
–1.001 431 436 392 397 5.00(–16) 8.88(–16)
–1.010 191 196 152 157 2.22(–16) 4.44(–16)
–1.040 135 140 96 101 1.67(–16) 4.44(–16)
–1.070 122 127 83 88 1.67(–16) 4.44(–16)
–1.100 115 120 76 81 1.11(–16) 4.44(–16)

the estimated values ν0 (provided by the routine nu0jac.m) in gchri1.m and
chri4.m and the respective observed values of ν that yield convergence of the
continued fraction algorithm (2.3.14) used in the two routines. This is followed
by the maximum absolute resp. relative discrepancy between the coefficients α̂k

and β̂k produced by the two routines, the maximum being taken over all k with
0 ≤ k ≤ 39. Both routines gchri1.m and chri4.m produce essentially identical
results, but the latter is about five times faster.

Similar phenomena occur in division by a quadratic divisor. This is illustrated
in the next example, which uses the routines gchri2.m and chri5.m.

Example 2.59 Modified Chebyshev algorithm vs modification algorithm in the
case of quadratic divisors.

Here, we use division by (t−x)2+y2, where z = x+iy is taken along the upper
half of the ellipse Eρ for selected values of ρ. (For the definition of Eρ, see (2.3.27).)
These ellipses are contours of constant ν0 for Jacobi measures. Information is
generated similar to the one in Example 2.58, except that all quantities are
averaged over 19 points on Eρ corresponding to ϑ = jπ/20, j = 1, 2, . . . , 19. The
results for the Legendre measure are again typical and are shown in Table 2.25
(bars indicate averaging). Both routines gchri2.m and chri5.m again produce
essentially identical results, but the latter is now about five-and-a-half times as
fast as the former. See the OPQ routine Table2 25.m.
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Table 2.25 The performance of gchri2.m and
chri5.m in the case of the Legendre measure.

ρ ν0 ν ν0 ν discr α̂ discr β̂
1.0500 402 411 363 372 6.18(–15) 1.32(–14)
1.1625 184 192 145 153 1.70(–15) 3.46(–15)
1.2750 144 152 105 113 6.25(–16) 1.37(–15)
1.3875 127 135 88 96 4.40(–16) 9.70(–16)
1.5000 118 125 79 86 2.31(–16) 7.64(–16)

Example 2.60 Gauss quadrature of the integral

F (x, y) =

∫ ∞

−∞
e−xt cos t

e−t2

t2 + y2
dt, y > 0. (2.4.42)

Here, dλ is the Hermite measure dλ(t) = e−t2dt on R, and the objective is to

compute the recurrence coefficients β̂k = βk(dλ̂), where dλ̂(t) = dλ(t)/(t2 + y2).

(By symmetry, α̂k = αk(dλ̂) = 0 for all k.) Once these coefficients are at hand,

we can generate Gauss quadrature rules for dλ̂ by the method of §3.1.1 and apply
them to the function f(t) = e−xt cos t. To generate the β̂k, we use the routine
chri6.m with iopt=2 (if y is small) and

ρ′′0 = −y
∫ ∞

−∞

e−t2

t2 + y2
dt = −πey2

erfc y

(cf. Abramowitz and Stegun (1992, eqn 7.4.11)). Since F (x, y) is an even function
in both x and y, it suffices to consider positive values of x and y. Results,
produced by the OPQ routine Table2 26.m, are shown in Table 2.26 for y =
0.1, 0.01, and 0.001, and selected values of x. The upper number in each entry
represents the relative error of the n-point Gauss formula relative to dλ̂ applied
to f(t) = e−xt cos t, while the lower number is the relative error of the n-point
Gauss–Hermite formula applied to f(t) = e−xt cos t/(t2 + y2). The last column
shows “exact” values, which, in the absence of explicit (or even approximate

analytic) results, were taken to be the values to which our Gauss formula for dλ̂
were observed to converge in quadruple-precision arithmetic. We used Maple to
compute ρ′′0 to the same precision. (The procedure in chri6.m with iopt=1 does
not converge for such small values of y.)

The superiority of the specially constructed Gauss formula over the classical
Gauss–Hermite formula is impressive, although the latter does fairly well when
|x| is large.

Example 2.61 The integral

G(x, y, a) =

∫ ∞

−∞
J0(at)

e−t2

(t− x)2 + y2
dt,

where J0 is the Bessel function of order zero.
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Table 2.26 Gauss quadrature for the integral in (2.4.42).

y x\n 5 10 20 40 80 “exact”
.1 1.0 1.3(–07) 1.7(–14) 2.80191134379093(1)

2.4(+00) 6.5(–01) 4.9(–01) 3.2(–01) 1.7(–01)
2.0 2.3(–05) 2.1(–10) 9.5(–16) 2.98880485427655(1)

2.2(+00) 6.0(–01) 4.5(–01) 3.0(–01) 1.5(–01)
5.0 2.9(+00) 9.2(–03) 5.6(–09) 2.7(–14) –2.32413409260872(1)

4.1(+00) 6.9(–01) 5.2(–01) 3.4(–01) 1.8(–01)
10.0 1.0(+00) 1.9(+00) 1.4(+00) 3.1(–08) 2.4(–13) 3.12274649146902(8)

1.0(+00) 2.7(+00) 8.5(–01) 8.7(–09) 8.1(–09)
.01 1.0 1.2(–08) 2.4(–15) 3.10499175120235(2)

2.9(+01) 9.7(–01) 9.5(–01) 9.2(–01) 8.8(–01)
2.0 2.3(–06) 2.1(–11) 0.0(+00) 3.12740540639842(2)

2.9(+01) 9.6(–01) 9.4(–01) 9.1(–01) 8.8(–01)
5.0 2.6(–01) 8.2(–04) 5.0(–10) 6.1(–15) 2.62429881105967(2)

3.5(+01) 1.1(+00) 1.1(+00) 1.1(+00) 1.0(+00)
10.0 1.0(+00) 1.9(+00) 1.4(+00) 3.2(–08) 8.8(–15) 3.11965015566419(8)

1.0(+00) 2.7(+00) 8.5(–01) 9.1(–07) 8.8(–07)
.001 1.0 1.2(–09) 2.9(–16) 3.13790449274505(3)

3.0(+02) 1.0(+00) 9.9(–01) 9.9(–01) 9.9(–01)
2.0 2.3(–07) 2.1(–12) 4.3(–16) 3.14018771045802(3)

3.0(+02) 1.0(+00) 9.9(–01) 9.9(–01) 9.9(–01)
5.0 2.2(–02) 7.0(–05) 4.3(–11) 2.9(–16) 3.09017266953282(3)

3.0(+02) 1.0(+00) 1.0(+00) 1.0(+00) 1.0(+00)
10.0 1.0(+00) 1.9(+00) 1.4(+00) 3.2(–08) 5.0(–14) 3.11964740917142(8)

1.0(+00) 2.7(+00) 8.5(–01) 1.0(–05) 9.9(–06)

When z = x + iy is not too close to the real axis, we can use the routine
chri5.m (with iopt=1) to first generate the three-term recurrence coefficients

of the modified Hermite measure dλ̂(t) = e−t2/((t − x)2 + y2) from the known
Hermite recurrence coefficients, and then generate the respective Gauss quadra-
ture rules to evaluate G. For the purpose of illustration, we take x = 2, y = 1,
a = 7.5, and set the error tolerance at eps0= 1

2 × 10−8. The point z = 2 + i
is sufficiently close to the real axis to require a relatively large value of ν in
the continued fraction algorithm (2.3.14), for example, ν = 186 if n = 40. On
the other hand, these special Gauss quadrature approximations to G converge
considerably faster than, for example, classical Gauss–Hermite quadrature; see
Table 2.27, produced by the OPQ routine Table2 27.m.

More spectacular improvements can be had if z = x+ iy is very close to the
real axis so that forward recursion is an option. We illustrate this for x = 0,
y > 0, and the same value a = 7.5, noting from Example 2.60 that ρ′0 = 0,

ρ′′0 = −πey2

erfc y in this case. Results for y = 0.1 are shown in Table 2.28
calculated by chri6.m with option iopt=2; see the OPQ routine Table2 28.m.
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Table 2.27 n-point Gauss quadrature for
G(2, 1, 7.5).

n Modified Hermite Hermite
5 –0.01. . . 0.2. . .
10 0.041. . . 0.01. . .
15 0.0546. . . 0.052. . .
20 0.053863. . . 0.0536. . .
25 0.05386989. . . 0.05382. . .
30 0.05386988457. . . 0.05385. . .
35 0.053869884583 0.053866. . .
40 0.053869884583 0.0538696. . .

Table 2.28 n-point Gauss quadrature for
G(0, .1, 7.5).

n Modified Hermite Hermite
5 22.7. . . 94.7. . .
10 19.7. . . –0.6. . .
15 19.966. . . 55.4. . .
20 19.96350. . . 4.1. . .
25 19.96352269. . . 42.8. . .
30 19.96352266624. . . 7.3. . .
35 19.963522666263 36.5. . .
40 19.963522666263 9.6. . .

The alternately large and small results for n odd resp. n even in the last column
of Table 2.28 are due to the presence of a zero node in the Gauss–Hermite
quadrature rule when n is odd, which causes the second factor in the integrand
of G to peak at the value 102.

2.5 Computing Sobolev orthogonal polynomials

The literature on Sobolev orthogonal polynomials (cf. Definition 1.58) is quite ex-
tensive, but attention has been directed largely to algebraic and analytic proper-
ties. Results of a numerical nature are practically nonexistent. An attempt, how-
ever, has been made to extend moment-based methods (§2.1) and discretization
methods (§2.2) to general orthogonal polynomials of Sobolev type; see Gautschi
and Zhang (1995). This requires a rather formidable technical apparatus, es-
pecially for moment-based methods, and we will therefore limit ourselves in the
following to describing the principal ideas underlying the computational proce-
dures, just enough for the reader to be able to make intelligent use of the Matlab
routines that implement these procedures.

We recall from §1.7 that Sobolev inner products involve derivatives and are
of the form

(u, v)S = (u, v)dλ0 + (u′, v′)dλ1 + · · · + (u(s), v(s))dλs
, s ≥ 1, (2.5.1)
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where dλσ are positive measures. (For notations, see §1.1.1.) Sobolev polynomials
πk( · ) = πk( · ;S) are orthogonal with respect to this inner product (cf. Definition
1.58). The objective is to compute the upper Hessenberg matrix of order n,

Hn =




β0
0 β1

1 β2
2 · · · βn−2

n−2 βn−1
n−1

1 β1
0 β2

1 · · · βn−2
n−3 βn−1

n−2

0 1 β2
0 · · · βn−2

n−4 βn−1
n−3

...
...

...
...

...
0 0 0 · · · βn−2

0 βn−1
1

0 0 0 · · · 1 βn−1
0




, (2.5.2)

the entries βk
j of which allow us to express, and thus to compute, the (monic)

Sobolev orthogonal polynomial of degree k+ 1 in terms of those of lower degree,

πk+1(t) = tπk(t) −
k∑

j=0

βk
j πk−j(t), k = 0, 1, 2, . . . , n− 1. (2.5.3)

In possession of the matrix Hn, we will also have access to the zeros τ1, τ2, . . . , τn
of πn( · ;S), these being the eigenvalues of Hn (see Theorem 1.65).

2.5.1 Algorithm based on moment information

Having to deal with s + 1 different measures dλσ, σ = 0, 1, . . . , s, we introduce
s+ 1 sets of modified moments in accordance with (2.1.23),

m
(σ)
k =

∫

R

pk(t) dλσ(t), k = 0, 1, 2, . . . , σ = 0, 1, . . . , s. (2.5.4)

For simplicity, we use the same sequence of polynomials pk for each measure dλσ

and assume, as in Example 2.8, that they are orthogonal with respect to some
measure d`, hence satisfy a three-term recurrence relation

pk+1(t) = (t− ak)pk(t) − bkpk−1(t), k = 0, 1, 2, . . . ,

p−1(t) = 0, p0(t) = 1.
(2.5.5)

An algorithm can then be developed (Gautschi and Zhang, 1995, §2), resembling
the modified Chebyshev algorithm of §2.1.7, that takes as input the first 2n

coefficients ak, bk, 0 ≤ k ≤ 2n − 1, of (2.5.5), the modified moments m
(0)
k ,

0 ≤ k ≤ 2n− 1, and m
(σ)
k , 0 ≤ k ≤ 2n− 2 (if n ≥ 2), 1 ≤ σ ≤ s, of (2.5.4), and

computes from them the matrix Hn in (2.5.2). The complexity of the algorithm
is O(n3), which is one order higher than the one for the modified Chebyshev
algorithm for ordinary orthogonal polynomials.

As in the modifed Chebyshev algorithm, important ingredients of the algo-
rithm are the “mixed moments” σk` = (πk, p`)S , now relative to the Sobolev in-
ner product (2.5.1). These, in turn, require for their computation “mixed deriva-

tive moments” µ
(i,j)
k,`,σ = (π

(i)
k , p

(j)
` )dλσ

, σ = 1, 2, . . . , s, i, j ≤ σ, relative to the
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individual inner products involving derivatives in (2.5.1). Accordingly, there will
be a tableau containing the mixed moments σk` much like the tableau in Fig. 2.1,
and for each i, j, and σ, another auxiliary tableau containing the mixed derivative
moments. Both have the trapezoidal shape of Fig. 2.1, but the latter with height
n− 2 instead of n− 1. Each quantity in these tableaux is computed recursively
in terms of the three nearest quantities on the next lower level, and in terms of
all quantities vertically below. The initialization of these tableaux engages the

modified moments (2.5.4), since σ0` = m
(0)
` and µ

(0,0)
0,`,σ = m

(σ)
` , σ ≥ 1, but the

complete initialization of all the quantities µ
(i,j)
0,`,σ is a rather involved process.

Once the tableau for the σk` has been computed, one obtains first

β0
0 =

σ01

σ00
+ a0, (2.5.6)

and then, successively, for k = 1, 2, . . . , n− 1,

βk
0 =

σk,k+1

σkk
+ ak − σk−1,k

σk−1,k−1
,

βk
k−j =

σj,k+1

σjj
+ ak

σjk

σjj
+ bk

σj,k−1

σjj
− σj−1,k

σj−1,j−1
−

k−1∑

`=j

β`
`−j

σ`k

σ``
,

j = k − 1, k − 2, . . . , 1 (if k ≥ 2),

βk
k =

σ0,k+1

σ00
+ ak

σ0k

σ00
+ bk

σ0,k−1

σ00
−

k−1∑

`=0

β`
`

σ`k

σ``
,

(2.5.7)

where ak and bk are the coefficients in (2.5.5).
The procedure is implemented for s = 1 in the OPQ routine chebyshev sob.m.

It takes as input arguments, apart from the parameter n, the 2× (2n) array mom

containing the first 2n modified moments m
(σ)
k , k = 0, 1, . . . , 2n− 1, σ = 0, 1, of

the two measures dλ0 and dλ1, and the (2n− 1)× 2 array abm of the first 2n− 1
coefficients ak, bk, k = 0, 1, . . . , 2n− 2 in (2.5.5). A call to the routine thus has
the form

[B, normsq] = chebyshev sob(n, mom, abm)

where the output argument B is the n× n upper triangular matrix of the coeffi-
cients βk

j , 0 ≤ j ≤ k, 0 ≤ k ≤ n−1, with βk
j occupying the position (j+1, k+1)

in the matrix, and normsq is the n-vector of the squared norms ‖πk( · ;S)‖2,
k = 0, 1, . . . , n − 1. If the input argument abm is omitted, the routine assumes
abm=zeros(2*n-1,2), that is, ordinary moments.

A large class of Sobolev orthogonal polynomials, in particular those origi-
nally introduced in the early 1960s, correponds to the case s = 1 and depends
essentially on one measure only, by virtue of

dλ0(t) = dλ(t), dλ1(t) = γ dλ(t), γ > 0. (2.5.8)

In the limit as γ ↓ 0, one recovers the ordinary orthogonal polynomials.
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Example 2.62 The polynomials of Althammer.
These are the Sobolev orthogonal polynomials in the “Legendre case” of

(2.5.8), that is, dλ(t) = dt on [−1, 1], first studied by Althammer (1962). To
indicate their dependence on the parameter γ, we denote them here by πn( · ) =
πn( · ; γ). As γ ↓ 0, they approach the Legendre polynomials, and as γ → ∞, up
to the factor t2 − 1, the (monic) Jacobi polynomials with parameters α = β = 1
(cf. Cohen (1975)),

πn(t; γ) → (t2 − 1)π
(1,1)
n−2 (t) as γ → ∞, n ≥ 2. (2.5.9)

We illustrate this by computing the matrix B of order n = 21 for the Althammer
polynomials with parameter γ = 100. We choose the (monic) Legendre poly-
nomials in the role of the pk in (2.5.5), so that all modified moments are zero

except for m
(0)
0 = 2 and m

(1)
0 = 2γ. The following Matlab script accomplishes

the task:
n=21; g=100;

mom=zeros(2,2*n); mom(1,1)=2; mom(2,1)=2*g;

abm=r jacobi(2*n-1);

B=chebyshev sob(n,mom,abm);

Since the polynomials πk on the right of (2.5.9) satisfy the recurrence relation

πk+1(t) = tπk(t) − β
(1,1)
k−2 πk−1(t), where β

(1,1)
0 , β

(1,1)
1 , . . . are the recurrence co-

efficients of the Jacobi polynomials in question, one expects, for large γ, that

βk
1 ≈ β

(1,1)
k−2 and βk

j ≈ 0 for j ≥ 2. This is confirmed in Table 2.29; see the OPQ

routine Table2 29.m.

Table 2.29 The behavior of βk
j for large γ (=100).

k βk
1 max2≤j≤k |βk

j | β
(1,1)
k−2

5 .23813. . . 3.62(–5) .23809. . .
10 .247680. . . 8.96(–7) .247678. . .
15 .24904270. . . 1.80(–7) .24904214. . .
20 .24948046. . . 6.34(–8) .24948024. . .

2.5.2 Stieltjes-type algorithm

The idea, here, is to extend the Stieltjes procedure of §2.2.3.1 to Sobolev orthog-
onal polynomials, combining formula (1.7.5) of Theorem 1.63,

βk
j =

(tπk, πk−j)S

(πk−j , πk−j)S
, j = 0, 1, . . . , k; k = 0, 1, . . . , n− 1, (2.5.10)

with the recurrence relation (2.5.3). Specifically, the inner products in both nu-
merator and denominator of (2.5.10) are evaluated by numerical quadrature.
Since they involve polynomials of degree at most 2n − 1, they can be com-
puted exactly by appropriate n-point Gauss quadrature rules. The polynomials
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themselves, and their derivatives, are computed recursively by (2.5.3) and its dif-
ferentiated version, employing coefficients βk

j already computed. Thus, initially,
by (2.5.10) and the definition (2.5.1) of the Sobolev inner product,

β0
0 =

(t, 1)S

(1, 1)S
=

(t, 1)dλ0

(1, 1)dλ0

= α0(dλ0).

Assuming α0(dλ0) to be known, we can use β0
0 to compute π1 from (2.5.3).

With π0 and π1 both at hand, formula (2.5.10) allows us to compute β1
0 and

β1
1 , which, in turn, can be used in (2.5.3) to compute π2. In this way, much like

in the Stieltjes procedure for ordinary orthogonal polynomials, we can continue,
using alternately (2.5.10) and (2.5.3), to successively generate πk, and thus βk

j ,
0 ≤ j ≤ k, up to k = n− 1.

The procedure is much simpler, conceptually, than the moment-based algo-
rithm of §2.5.1, but is considerably slower, being, in general, of complexity O(n4).
The procedure has been observed, however, to often provide better accuracy.

In the OPQ routine stieltjes sob.m that implements this procedure for any
s ≥ 1, it is assumed that each measure dλσ consists of an absolutely continuous
part, dλac

σ , and a discrete part, dλdis

σ ,

dλσ(t) = dλac

σ (t) + dλdis

σ (t), σ = 0, 1, . . . , s, (2.5.11)

where one or the other could possibly be empty, and

dλdis

σ (t) =

rσ∑

ρ=1

y(σ)
ρ δ(t− t(σ)

ρ ) dt, y(σ)
ρ > 0, (2.5.12)

with δ( · ) the delta function. The basic assumption in the design of the routine
stieltjes sob.m is that for each measure dλσ, an nσ-point quadrature rule

∫

R

p(t) dλσ(t) =

nσ∑

ν=1

λ(σ)
ν p(τ (σ)

ν ), p ∈ P2(n−σ)−1, σ = 0, 1, . . . , s, (2.5.13)

be available that integrates polynomials exactly up to degree 2(n−σ)−1. These
quadrature rules, in fact, constitute the principal information, apart from the
parameters n, s, and α0(dλ0), which must be furnished as input to the routine.
This is done by means of two arrays, nd and xw. The first is a vector of dimension
s+1, having the number of points in the quadrature rules (2.5.13) as components,

nd = [n0, n1, . . . , ns].

The other array, xw, is an array of dimensionN×(2s+2), whereN = max0≤σ≤s nσ,
and contains the nodes and weights of the quadrature rules,
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xw =




τ
(0)
1 τ

(1)
1 · · · τ (s)

1 λ
(0)
1 λ

(1)
1 · · · λ(s)

1

τ
(0)
2 τ

(1)
2 · · · τ (s)

2 λ
(0)
2 λ

(1)
2 · · · λ(s)

2

τ
(0)
3 τ

(1)
3 · · · τ (s)

3 λ
(0)
3 λ

(1)
3 · · · λ(s)

3

...
...

...
...

...
...



∈ RN×(2s+2).

In each column of xw the entries after τ
(σ)
nσ resp. λ

(σ)
nσ (if any) are not used by the

routine. There is finally a logical input variable, same, which has to be set equal

to 1 if n0 = n1 = · · · = ns = N and τ
(0)
ν = τ

(1)
ν = · · · = τ

(s)
ν for ν = 1, 2, . . . , N ,

that is, if all quadrature rules have the same nodes. Otherwise, same has to be
set equal to 0. The role of this parameter is to switch to a simplified, and thus
faster, procedure if same=1. A call to the routine, therefore, has the form

[B, normsq] = stieltjes sob(n, s, nd, xw, a0, same)

with B and normsq having the same meaning as in the routine chebyshev sob.m

of §2.5.1.
Here are three typical setups for handling measures like (2.5.11):
(1) Use an (n− σ)-point Gauss rule relative to the measure dλac

σ to integrate∫
R
p(t) dλac

σ (t) and then add on the contribution
∫

R
p(t) dλdis

σ (t) from the discrete
part of the measure. This will produce a quadrature rule (2.5.13) with nσ =
n− σ + rσ, where the first n− σ terms come from the Gauss rule for dλac

σ and
the remaining terms from the discrete measure dλdis

σ .
(2) Use an (n− σ)-point Gauss rule for the entire measure dλσ. In this case,

nσ = n− σ.
(3) If all measures dλσ are the same except for constant positive factors,

use the same n-point Gauss rule for all of them, multiplied by the appropriate
factors, either for the absolutely continuous part of the measure or for the entire
measure. In this case, nσ = n+ r resp. nσ = n, where r is the common value of
the rσ.

The third setup, for example, is one that is appropriate for the Althammer
polynomials of Example 2.62. This gives rise to the script althammer.m:

n=21; g=100; s=1; nd=[n n]; a0=0; same=1;

ab=r jacobi(n); zw=gauss(n,ab);

xw=[zw(:,1) zw(:,1) zw(:,2) g*zw(:,2)];

B=stieltjes sob(n,s,nd,xw,a0,same);

The results produced are the same as those in Table 2.29.

2.5.3 Zeros

All the nice properties known for the zeros of ordinary orthogonal polynomials
(cf. §1.2.2) do not necessarily carry over to Sobolev orthogonal polynomials.
This is why much of the recent and current literature on Sobolev orthogonal
polynomials is devoted to a study of their zeros. In this regard, computational
methods are an important exploratory tool (see, e.g. Gautschi and Zhang (1995,
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§3.2–3.4)). According to Theorem 1.65, the zeros τ1, τ2, . . . , τn of πn( · ;S) can be
computed as the eigenvalues of the matrix Hn of (2.5.2). This is implemented
in the OPQ routine sobzeros.m, having the calling sequence

z = sobzeros(n, N, B)

where B is the matrix returned by chebyshev sob.m or stieltjes sob.m, and
z is the n-vector of the zeros of the Sobolev orthogonal polynomial of degree n,
1 ≤ n ≤ N . For large n, the eigenvalues of Hn are potentially ill-conditioned.

We illustrate the routine in two examples. The first, due to Meijer (1994), is
an example of Sobolev orthogonal polynomials that have only a few real zeros.

Example 2.63 The Sobolev inner product

(u, v)S =

∫ 3

−1

u(t)v(t) dt+γ

∫ 1

−1

u′(t)v′(t) dt+

∫ 3

1

u′(t)v′(t) dt, γ > 0. (2.5.14)

Meijer (1994) proved that for n (even)≥ 2 and γ sufficiently large, the Sobolev
orthogonal polynomial πn( · ;S) has exactly two real zeros, one in [−3,−1], the
other in [1, 3]. Likewise, if n (odd)≥ 3, there is exactly one real zero, located
in [1, 3], if γ is sufficiently large. We can use our numerical methods to explore
what, concretely, “sufficiently large” means, and what happens when γ is not
sufficiently large. We will do this for 2 ≤ n ≤ 6 with the help of the routines
stieltjes sob.m and sobzeros.m. We have s = 1 and dλ0(t) = dt on [−1, 3],
dλ1(t) = γ dt if t ∈ [−1, 1], and dλ1(t) = dt if t ∈ (1, 3]. We then write

∫
p(t) dλ0(t) = 2

∫ 1

−1

p(2x+ 1) dx,

∫
p(t) dλ1(t) =

∫ 1

−1

[γp(x) + p(x+ 2)] dx

and apply n-point Gauss–Legendre quadrature to the integrals on the right-hand
sides. This requires nd = [n, 2n] and calls for an array xw of the form

xw =




2τG
1 + 1 τG

1 2λG
1 γλG

1

...
...

...
...

2τG
n + 1 τG

n 2λG
n γλG

n

τG
1 + 2 λG

1

...
...

τG
n + 2 λG

n




∈ R2n×4,

where τG
ν , λG

ν are the nodes and weights of the Gauss–Legendre quadrature rule.
Furthermore, α0(dλ0) = 1, and same = 0. We are now ready to call the routine
stieltjes sob.m to generate the matrix B and sobzeros.m to compute the zeros
of πn( · ;S). This is done in the OPQ routine Example2 63.m, the core of which
looks as follows:
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N=6; s=1; a0=1; same=0; nd=[N 2*N];

for g=[43646.1 43646.2]

ab=r jacobi(N); zw=gauss(N,ab);

xw=zeros(2*N,2*(s+1));

xw(1:N,1)=2*zw(:,1)+1; xw(1:N,2)=zw(:,1);

xw(1:N,3)=2*zw(:,2); xw(1:N,4)=g*zw(:,2);

xw(N+1:2*N,2)=zw(:,1)+2; xw(N+1:2*N,4)=zw(:,2);

B=stieltjes sob(N,s,nd,xw,a0,same);

z=sobzeros(N,N,B)

end

Experimenting with this routine for various values of n and γ, we were able to
obtain the more concrete information, displayed in Table 2.30, about the zeros of
the respective Sobolev polynomials. It can be seen that the distribution of zeros

Table 2.30 Zeros of the Sobolev polynomials orthogonal with
respect to the inner product in (2.5.14).

n γ Real zeros
2 0 ≤ γ ≤ 10.333 2 real zeros

10.334 ≤ γ <∞ 2 real zeros in [−3,−1]∪ [1, 3]
4 0 ≤ γ ≤ 7.4773 4 real zeros

7.4774 ≤ γ ≤ 61.745 2 real zeros
61.746 ≤ γ ≤ 153.23 4 real zeros
153.24 ≤ γ <∞ 2 real zeros in [−3,−1]∪ [1, 3]

6 0 ≤ γ ≤ 45.011 6 real zeros
45.012 ≤ γ ≤ 50.226 4 real zeros
50.227 ≤ γ ≤ 41868.5 2 real zeros
41868.6 ≤ γ ≤ 42155.5 4 real zeros
42155.6 ≤ γ ≤ 43512.6 6 real zeros
43512.7 ≤ γ ≤ 43646.1 4 real zeros
43646.2 ≤ γ <∞ 2 real zeros in [−3,−1]∪ [1, 3]

3 0 ≤ γ ≤ 21.461 3 real zeros
21.462 ≤ γ <∞ 1 real zero in [1, 3]

5 0 ≤ γ ≤ 10.193 5 real zeros
10.194 ≤ γ ≤ 1811.7 3 real zeros
1811.8 ≤ γ ≤ 2153.6 5 real zeros
2153.7 ≤ γ ≤ 2183.4 3 real zeros
2183.5 ≤ γ <∞ 1 real zero in [1, 3]

is rather complicated for values of γ before the theorem of Meijer takes hold.

In the next example, we will have occasion to combine the present routines
with earlier ones to explore the existence and location of complex zeros for certain
Sobolev orthogonal polynomials of Gegenbauer type.
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Example 2.64 The Sobolev inner product

(u, v)S =

∫ 1

−1

u(t)v(t)(1 − t2)α−1 dt+ γ

∫ 1

−1

u′(t)v′(t)
(1 − t2)α

t2 + y2
dt, α > 0.

(2.5.15)
Groenevelt (2002, Theorem 5.9) proved that in the case γ → ∞ the Sobolev

orthogonal polynomials of even degree n ≥ 4 have complex zeros if y < y0
and y0 is sufficiently small. Could it be that this is also true for finite values
of γ? We explore, and seem to confirm, this in the case γ = 1 and α = 1

2
and at the same time try to determine what “sufficiently small” means for
n = 4, 6, . . . , 12. To apply our routine sobzeros.m, we must first determine
the matrix B that goes with the inner product (2.5.15). We compute it with
stieltjes sob.m, noting that dλ0(t) = (1 − t2)α−1 dt is a Gegenbauer mea-
sure for which the Gauss quadrature rules are easily generated, while dλ1(t) =
(1− t2)α dt/(t2 +y2) calls for Algorithm 2.10 to obtain its recurrence coefficients
and hence the required Gauss quadrature rules. Either option in Algorithm 2.10
can be used, the one with iopt=1 being more computer intensive, but returns
more accurate answers. This is all put together in the routine Example2 64.m,
the core of which has the following appearance:

N=12; s=1; same=0; eps0=1000*eps; numax=1000; nd=[N N]:

alpha=.5;

for y=[.0914 .0913 .09 .07 .03]

ab0=r jacobi(numax,alpha);

z=complex(0,y);

nu0=nu0jac(0,z,eps0);

iopt=1; rho0=0;

ab1=chri6(N,ab0,y,eps0,nu0,numax,rho0,iopt);

zw1=gauss(N,ab1);

ab=r jacobi(N,alpha-1); zw=gauss(N,ab);

xw=[zw(:,1) zw1(:,1) zw(:,2) zw1(:,2)];

a0=ab(1,1);

B=stieltjes sob(N,s,nd,xw,a0,same);

z=sobzeros(N,N,B)

end

The routine is used to determine lower and upper bounds of y0 for n = 4, 6, . . . , 12.
These are shown in Table 2.31.

Similar results are observed for other values of α, for example, α = 1
4 ,

3
4 , 1,

3
2 ,

and 2. When complex zeros occur, they are purely imaginary.

2.5.4 Finite expansions in Sobolev orthogonal polynomials

In some applications, for example, least squares approximation (cf. §3.2.3), one
needs to evaluate finite sums in Sobolev orthogonal polynomials,
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Table 2.31 Complex zeros of the Sobolev polyno-
mials orthogonal with respect to the inner product
in (2.5.15).

n Lower bound of y0 Upper bound of y0
4 0.2975 0.2976
6 0.2065 0.2066
8 0.1449 0.1450
10 0.1119 0.1120
12 0.0913 0.0914

r(t) =

n∑

j=0

cjπj(t), (2.5.16)

and, perhaps, some of their derivatives as well. Here, πj satisfy the recurrence
relation (2.5.3), with coefficients βk

j taken from the columns of the matrix Hn

of (2.5.2). An algorithm for doing this efficiently, which resembles Clenshaw’s
algorithm for ordinary orthogonal polynomials, can be developed as follows.

Suppose we want to evaluate r(t) and its first s derivatives. We write the
recurrence relation (2.5.3) for the Sobolev orthogonal polynomials, and the re-
currence relations obtained from it by repeated differentiation, in matrix form
as

Lπ(t) = ρ, (2.5.17)

where π = π(t) and ρ = ρ(t) are the (n+ 1) × (s+ 1) matrices

π =




π0 0 0 · · · 0
π1 π′

1 0 · · · 0
π2 π′

2 π′′
2 · · · 0

...
...

...
...

πs π′
s π′′

s · · · π(s)
s

...
...

...
...

πn−1 π
′
n−1 π

′′
n−1 · · · π(s)

n−1

πn π′
n π′′

n · · · π(s)
n




, ρ =




π0 0 0 · · · 0
0 π0 0 · · · 0
0 π1 2π′

1 · · · 0
...

...
...

...

0 πs−1 2π′
s−1 · · · sπ(s−1)

s−1
...

...
...

...

0 πn−2 2π′
n−2 · · · sπ(s−1)

n−2

0 πn−1 2π′
n−1 · · · sπ(s−1)

n−1




,

and

L =




1 0 0 · · · 0 0

β0
0 − t 1 0 · · · 0 0

β1
1 β1

0 − t 1 · · · 0 0

...
...

...
...

...

βn−2
n−2 βn−2

n−3 βn−2
n−4 · · · 1 0

βn−1
n−1 βn−1

n−2 βn−1
n−3 · · · βn−1

0 − t 1




.
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We define the vector u = [u0, u1, . . . , un]T by

LTu = c, cT = [c0, c1, . . . , cn], (2.5.18)

which is equivalent to the relations

un = cn,

uk = (t− βk
0 )uk+1 −

n−1−k∑

`=1

βk+`
` uk+`+1 + ck,

k = n− 1, n− 2, . . . , 0.

(2.5.19)

Then,

cTπ(t) = [r(t), r′(t), . . . , r(s)] (2.5.20)

is the vector of the sum (2.5.16) and its first s derivatives. On the other hand,
by (2.5.17) and (2.5.18), since π0 = 1,

cTπ = cTL−1ρ = ((LT)−1c)Tρ = uTρ

=


u0,

n−1∑

j=0

uj+1πj , 2

n−1∑

j=1

uj+1π
′
j , . . . , s

n−1∑

j=s−1

uj+1π
(s−1)
j


.

(2.5.21)

Thus, r(t) = u0 can be computed by the algorithm (2.5.19). From (2.5.20) and
(2.5.21) it is seen that r′(t) is also a sum of the type (2.5.16), with leading
coefficient equal to zero and the other coefficients cj replaced by uj+1. Thus,
r′(t) can be computed by the same algorithm (2.5.19) suitably modified. Now
that we have an algorithm for r′(t), we can use it, with appropriate modifications,
to compute the next component in (2.5.21), and so on. This is implemented for
the first two derivatives in the OPQ routine clenshaw sob.m, which finds an
application in §3.2.3, Example 3.53.

2.6 Notes to Chapter 2

§2.1.2. The condition numbers of functions and maps, as defined in this section,
are widely adopted, explicitly or implicitly. See, for example, Gautschi (1984c),
(1997b, Chapter 1, §3). The idea of a mollified condition number, though natural,
appears to be new.

§2.1.3. The moment map Gn was introduced and studied as early as 1968 by
Gautschi (1968). It has been further studied, along with the maps Kn and Hn,
in Gautschi (1982b).

§2.1.4. Theorem 2.11 is due to Gautschi (1968) (see also Gautschi (1982b,
§3.2)). Example 2.12, slightly sharpened, is taken from Gautschi (1968). Theorem
2.13 is similar to ideas expressed in Gautschi (1982b, p. 301). Examples 2.14–2.16
are new.
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§2.1.5. Theorem 2.17 is due to Gautschi (1982b, Theorem 3.1). So are the
discussions regarding the computation of the function gn (ibid., p. 304).

§2.1.6. Theorem 2.22 and Examples 2.23–2.25 are due to Fischer (1996). The
results of this section are used in Beckermann and Bourreau (1998) to derive
upper and lower bounds for the condition number of Kn.

§2.1.7. Algorithm 2.1, in the form given, is due to Wheeler (1974), and in a
somewhat different form, to Sack and Donovan (1969), (1972). (Equation (3.4)
in Wheeler (1974) is misprinted: ak, bk should read a` and b`, respectively.)
The discretized version of the algorithm, described at the end of the section,
is suggested in Gautschi (1981b, §5.3). A generalization of the modified Cheby-
shev algorithm to indefinite inner products is discussed in Golub and Gutknecht
(1990) along with relevant matrix interpretations and an “inverse” Chebyshev
algorithm. Modified moments relative to polynomials pk satisfying an extended
(not necessarily three-term) recurrence relation and the required modifications
in the modified Chebyshev algorithm are considered in Gragg and Gutknecht
(1994).

An analog of the modified Chebyshev algorithm for Szegö polynomials, in-
cluding a study of the conditioning of the underlying map, is developed in Jagels
and Reichel (1993). For an extension of the modified Chebyshev algorithm to
matrix orthogonal polynomials, see Bourreau (2000).

§2.1.8.1. The original reference for Clenshaw’s algorithm is Clenshaw (1955).
The matrix interpretation of Algorithm 2.2 is taken from Deuflhard (1974). The
algorithm is applicable also to nonpolynomial functions satisfying a three-term
recurrence relation, but should be avoided for minimal solutions of such recur-
rence relations because of potentially large cancellation errors (Elliott, 1968). A
more stable algorithm, in this case, is proposed in Deuflhard (1977). For other
possible extensions, see Saffren and Ng (1971). There are Clenshaw-type algo-
rithms also for derivatives of finite orthogonal series; see Smith (1965), Cooper
(1967), and Hunter (1970). Error analyses of Clenshaw’s algorithm can be found
in Elliott (1968), Oliver (1977), Barrio (2002), and Smoktunowicz (2002), and
implementations on parallel computers in Barrio (2000).

A Clenshaw-type algorithm for Szegö polynomials is developed in Ammar
et al. (1993).

§2.1.8.2. An ingenious conversion algorithm, in part based on Clenshaw’s
algorithm, was already devised by Salzer (1973). Algorithm 2.4, proposed in
Laurie (1997, §3), simplifies Salzer’s algorithm at the expense of having to store
a matrix of mixed moments.

For an algorithm converting a linear combination of Szegö polynomials into
polynomial form, see Ammar et al. (1993).

§2.1.9. Example 2.26 was first considered, from the point of view of condition-
ing, in Gautschi (1982b, Example 4.1) and further discussed in Gautschi (1984c,

Example 5.1). Note, however, that cond G̃n(m) in eqn (3.15) of Gautschi (1982b)
is defined somewhat differently than in (2.1.50), containing an extra factor. Ex-
ample 2.29 is also taken from Gautschi (1982b), and so is Example 2.27 for α = 0.



150 COMPUTATIONAL METHODS

The general case α > −1 is treated in Gautschi (1984c, Example 5.3); see also
Gautschi (1994, Example 3.2). Example 2.31 and the inadequacy of Hermite and
Laguerre modified moments is pointed out in Gautschi (1982b, Example 4.6) and
is further analyzed in Gautschi (1984c, Example 5.4). An important generaliza-
tion involves the Hermite measure on the interval [0, c], 0 < c ≤ ∞ (cf. Example
1.11), which is discussed in Gautschi (1990, pp. 196–197) and Gautschi (1991b,
pp. 64–66). The latter reference, in particular, contains graphs of the polynomial
gn showing how instability develops as c is increased from c = 0.5 to c = 5. For
this, see also Gautschi (1996, p. 86). For Hermite measures on finite intervals,
see also Chin (1992).

Other notable measures for which the modified Chebyshev algorithm fails
are singular measures supported on Cantor-like sets; see, in particular, Mantica
(1996), and also Mantica (2000).

§2.2.1. Theorem 2.32 and its Corollary are given in Gautschi (1968, §4); it
can also be obtained from a more general theorem of Kripke (1964) on best
approximation with respect to nearby norms.

§2.2.2. The idea of discretizing inner products and, in particular, to use the
Fejér quadrature rule for this purpose goes back to Gautschi (1968) and is fur-
ther developed in Gautschi (1982b). The procedure proposed for partitioning an
interval, and the related Examples 2.33 and 2.34, are new.

§2.2.3.1. The bootstrap procedure of generating the recurrence coefficients of
discrete orthogonal polynomials, attributed to Stieltjes, has been developed and
used independently by Forsythe (1957) in the context of data fitting. Example
2.35 is from Gautschi (1994, Example 4.1) and Example 2.36 from Gautschi
(1982b, Example 4.2).

§2.2.3.2. Example 2.37 is from Gautschi (1982b, Example 4.1). For a variant
and extension of the Gragg–Harrod algorithm, and comparison with Stieltjes’s
procedure, see Reichel (1993).

§2.2.4. Example 2.38 was first given in Gautschi (1982b, Example 4.9), follow-
ing a suggestion by M. Golomb. The multiple-component discretization method,
essentially as described in this subsection, was developed in Gautschi (1994,
§4.3), and in a more rudimentary form already in Gautschi (1982b, §2.2).

§2.2.5. Example 2.39 is from Gautschi (1994, Example 4.3), where the data on
errors have been replaced with comparisons between the Stieltjes and Lanczos
algorithms. The application to generalized Jacobi measures was mentioned in
Gautschi (1996, Example 6.2), but the numerical tests provided in Example
2.40 are new. Examples 2.41 and 2.44 are from Gautschi (1994, Examples 4.5
and 4.4), and Example 2.45 from Gautschi (1982b, Example 4.10), with the
numerical examples given being new. A (partly empirical) nonlinear recurrence
procedure for the recursion coefficients of the generalized half-range Hermite
measure tαe−t2 dt on [0,∞] (cf. Example 2.41) has been developed recently by
Ball (2003).

§2.2.6. The idea of using discretized modified moments in the modified Cheby-
shev algorithm was first advanced in Gautschi (1981b, §5.3). Example 2.46 is
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from Gautschi (1982b, Example 4.6).
§2.3.1. Minimality of the Cauchy integrals ρn(z) has been noted in Gautschi

(1981a). The recursive computation of the integrals ρn(x) is applied in Gautschi
(1981b, §3.2.3) to compute Cauchy principal value integrals.

§2.3.2. The computation of Cauchy integrals by the continued fraction algo-
rithm was proposed in Gautschi (1981a, §5). The algorithm itself, and underlying
theory, goes back to Gautschi (1967a, §3).

§2.3.3. The application of Cauchy integrals to Gauss quadrature remainders
and their estimates, given in Example 2.47, is the subject of Gautschi and Varga
(1983) and Gautschi, Tychopoulos, and Varga (1990). Further advances on this
topic can be found in Gautschi and Li (1990), Gautschi (1991d), Schira (1994),
(1996), (1997), Scherer and Schira (2000), Hunter and Nikolov (2000), and Milo-
vanović and Spalević (2003). The procedure described in Example 2.49 is from
Gautschi (1981a, §4). The material in Examples 2.50 and 2.51 is original.

§2.4. Modification by a linear factor was originally considered by Galant
(1971). A solution to all the other modifications discussed in this section was
first given in Gautschi (1982a). Other approaches have been described in Kautský
and Golub (1983) and Fischer and Golub (1992); see also Gautschi (2002, §3).
The algorithms presented in this section are new and were motivated by work
of Verlinden (1999), who considered linear and quadratic divisors. (The middle
term in eqn (17) of Verlinden (1999) should be removed.)

§2.4.5. Algorithm 2.11 is new and supersedes an earlier algorithm derived
in Gautschi (1999, §3.3) in connection with Gauss quadrature rules for rational
functions. For other treatments of special quadratic divisors, see Berti and Sri
Ranga (2001).

§2.4.6. Example 2.56 comes from Gautschi (1994, Example 5.2) and Exam-
ples 2.58 and 2.59 from Gautschi (1994, Example 5.3), except that actual er-
rors are replaced by discrepancies between the results produced by the modified
Chebyshev and the modification algorithms. Example 2.57 is new. Example 2.60
repeats the numerical example given in Gautschi (1982a, §6), but provides the
exact answers to higher precision. Example 2.61 is new. Example 2.56 has been
generalized by Li (1999), who considers modification of the measure dλ by an
arbitrary even power of πm.

§2.5. The methods described in this section are discussed more completely in
Gautschi and Zhang (1995), not only with regard to algorithmic details, but also
with regard to numerical accuracy. For special classes of Sobolev inner products
there are simpler recurrence relations of finite order; cf. the Notes to §1.7. An
example of this is an inner product that involves one single derivative and a
discrete one-point measure associated therewith; see Marcellán and Ronveaux
(1990). Computational methods for these special Sobolev orthogonal polynomials
are developed in Gautschi (1997c).

§2.5.1. Example 2.62 is from Gautschi and Zhang (1995, §3.1).
§2.5.3. Examples 2.63 and 2.64 are new.
§2.5.4. The material in this subsection is original.
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APPLICATIONS

3.1 Quadrature

The connection between orthogonal polynomials and quadrature rules has al-
ready been elucidated in §1.4. The centerpieces were the Gaussian quadrature
rule and its close relatives—the Gauss–Radau and Gauss–Lobatto rules (§1.4.2).
There are, however, a number of further extensions of Gauss’s approach to nu-
merical quadrature. Principal among them are Kronrod’s idea of extending an
n-point Gauss rule to a (2n+ 1)-point rule by inserting n + 1 additional nodes
and choosing all weights in such a way as to maximize the degree of exactness
(cf. Definition 1.44), and Turán’s extension of the Gauss quadrature rule allowing
not only function values, but also derivative values, to appear in the quadrature
sum. More recent extensions relate to the concept of accuracy, requiring exact-
ness not only for polynomials of a certain degree, but also for rational functions
with prescribed poles. Gauss quadrature can also be adapted to deal with Cauchy
principal value integrals, and there are other applications of Gauss’s ideas, for
example, in combination with Stieltjes’s procedure or the modified Chebyshev
algorithm, to generate polynomials orthogonal on several intervals, or, in comn-
bination with Lanczos’s algorithm, to estimate matrix functionals. The present
section is to discuss these questions in turn, with computational aspects foremost
in our mind.

3.1.1 Computation of Gauss-type quadrature formulae

We have previously seen in Chapter 2 how Gauss quadrature rules can be effec-
tively employed in the context of computational methods; for example, in com-
puting the absolute and relative condition numbers of moment maps (§2.1.5),
or as a means of discretizing measures in the multiple-component discretization
method for orthogonal polynomials (§2.2.5) and in Stieltjes-type methods for
Sobolev orthogonal polynomials (§2.5.2). It is time now to discuss the actual
computation of these, and related, quadrature rules.

3.1.1.1 Gauss quadrature formula We begin with the Gauss quadrature for-
mula (cf. (1.4.7)),

∫

R

f(t) dλ(t) =

n∑

ν=1

λG
ν f(τG

ν ) +RG
n (f). (3.1.1)

A clue towards computing it comes from the spectral decomposition of the Ja-
cobi matrix Jn(dλ) of the (positive) measure dλ (cf. Definition 1.30). We al-
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ready know from Theorem 1.31 that the Gauss nodes τG
ν = τ

(n)
ν —the zeros of

πn( · ; dλ)—are the eigenvalues of Jn(dλ). With vν , as in (1.3.19), denoting the
corresponding normalized eigenvectors, let V = [v1,v2, . . . ,vn], so that V is the
orthogonal matrix effecting the spectral decomposition of J = Jn(dλ),

JV = V Dτ , Dτ = diag(τG
1 , τ

G
2 , . . . , τ

G
n ). (3.1.2)

Theorem 3.1 The nodes τG
ν , ν = 1, 2, . . . , n, of the n-point Gauss quadrature

rule (3.1.1) are the eigenvalues of the Jacobi matrix Jn(dλ), and the weights λG
ν ,

ν = 1, 2, . . . , n, are
λG

ν = β0v
2
ν,1, (3.1.3)

where β0 =
∫

R
dλ(t) and vν,1 is the first component of the normalized eigenvector

vν belonging to the eigenvalue τG
ν .

Proof Let π̃k(t) = π̃k(t; dλ) be the orthonormal polynomials relative to the
measure dλ and π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)]

T, as in (1.3.17), the vector of
the first n of them. By Theorem 1.31 and its Corollary,

β0v
2
ν,1 =

1
∑n−1

k=0 [π̃k(τG
ν )]2

, ν = 1, 2, . . . , n. (3.1.4)

On the other hand, letting f(t) = π̃k(t), k ≤ n− 1, in the Gauss formula (3.1.1)

and noting that π̃0 = β
−1/2
0 , one obtains by orthogonality,

β
1/2
0 δk,0 =

n∑

ν=1

λG
ν π̃k(τG

ν ), δk,0 the Kronecker delta,

or, in matrix form,

PλG = β
1/2
0 e1, (3.1.5)

where P is the matrix of eigenvectors and λG the vector of Gauss weights,

P = [π̃(τG
1 ), π̃(τG

2 ), . . . , π̃(τG
n )], λG = [λG

1 , λ
G
2 , . . . , λ

G
n ]T, (3.1.6)

and eT
1 = [1, 0, . . . , 0] ∈ Rn the first coordinate vector. Since the columns of P

are mutually orthogonal, there holds

P TP = Dπ, Dπ = diag(d0, d1, . . . , dn−1), dν−1 =

n−1∑

k=0

[π̃k(τG
ν )]2.

Multiplying (3.1.5) from the left by P T, one gets

DπλG = β
1/2
0 P Te1 = β

1/2
0 · β−1/2

0 e = e,

where e = [1, 1, . . . , 1]T ∈ Rn. There follows λG = D−1
π e, that is,

λG
ν =

1
∑n−1

k=0 [π̃k(τG
ν )]2

, ν = 1, 2, . . . , n. (3.1.7)

Assertion (3.1.3) now follows from (3.1.4). 2
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Theorem 3.1 is implemented in the OPQ routine gauss.m.

Remark to Theorem 3.1 If f is sufficiently smooth, for example analytic
in an interval containing all the Gauss nodes τG

ν , then f(J), J = Jn(dλ), is
meaningful and the Gauss quadrature sum in (3.1.1) can be expressed as follows:

n∑

ν=1

λG
ν f(τG

ν ) = β0e
T
1 f(J)e1, eT

1 = [1, 0, . . . , 0] ∈ Rn. (3.1.8)

Indeed, using (3.1.2) and (3.1.3), one has

β0e
T
1 f(J)e1 = β0e

T
1 V f(Dτ )V Te1 = β0

n∑

ν=1

v2
ν,1f(τG

ν ) =

n∑

ν=1

λG
ν f(τG

ν ).

Corollary to Theorem 3.1 Let λG be as in (3.1.6), and Dτ as in (3.1.2).
Then, there exists an orthogonal matrix Q ∈ Rn such that


 1 0T

0 QT




 1

√
λG

T

√
λG Dτ




 1 0T

0 Q


 =


 1

√
β0e

T
1

√
β0e1 Jn(dλ)


 . (3.1.9)

The matrix on the right may be thought of as an “extended” Jacobi matrix
of the measure dλ.

Proof We claim that Q = V T. In order to see this, we write (3.1.3) in matrix
form as

√
λ

T
=
√
β0e

T
1 V ,

√
λ =

[√
λG

1 ,
√
λG

2 , . . . ,
√
λG

n

]T
, (3.1.10)

where the first components of the normalized eigenvectors are assumed to be
positive. We now combine (3.1.10) (after transposing the first relation) with
(3.1.2) to obtain

V DτV T = J , V
√

λ =
√
β0e1.

Thus,



1 0T

0 V







1
√

λ
T

√
λ Dτ







1 0T

0 V T


 =




1
√

λ
T
V T

V
√

λ V DτV T


 =




1
√
β0e

T
1

√
β0e1 J


 ,

which proves (3.1.9) with Q = V T. 2

We make two observations: (1) The orthogonal similarity transformation
(3.1.9) suggests, though not necessarily proves,3 that the passage from the Gauss

3See, however, Theorem 1 and Corollary 8 in Beckermann and Bourreau (1998) or the
theorem on p. 168 of Laurie (1999a).
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quantities (more precisely, the n square roots
√
λG

ν and n nodes τG
ν ) to the re-

cursion coefficients (more precisely, the 2n quantities
√
βν , αν in Jn(dλ)) is a

stable process. (2) If dλ = dλN is a discrete measure with N support points tk
and positive weights wk, then by definition

∫

R

p(t) dλN (t) =

N∑

k=1

wkp(tk). (3.1.11)

In particular, this holds for any polynomial p of degree ≤ 2N − 1. The sum on
the right, therefore, may be interpreted as the N -point Gauss formula for the

measure dλN . If
√

w
T

= [
√
w1,

√
w2, . . . ,

√
wN ] and Dt = diag(t1, t2, . . . , tN ),

we have by (3.1.9),




1 0T

0 QT







1
√

w
T

√
w Dt







1 0T

0 Q


 =




1
√
β0,NeT

1

√
β0,Ne1 JN (dλN )


 (3.1.12)

for some orthogonal matrix Q ∈ RN . This provides the basis for a Lanczos-type
algorithm computing the extended Jacobi matrix of a discrete measure dλN from
the weights wk and abscissae tk of the measure (cf. §2.2.3.2).

3.1.1.2 Gauss–Radau formula We recall from §1.4.2, eqn (1.4.21), that the
(n+ 1)-point Gauss–Radau quadrature rule, having a = inf supp(dλ) as a fixed
node, is given by

∫

R

f(t) dλ(t) = λa
0f(τa

0 ) +

n∑

ν=1

λa
νf(τa

ν ) +Ra
n(f). (3.1.13)

Here, τa
0 = a, and τa

ν are the zeros of πn( · ; dλa), where dλa(t) = (t − a) dλ(t).
An eigenvalue/eigenvector characterization similar to the one in Theorem 3.1
holds also for the Gauss–Radau formula.

Theorem 3.2 Define the Jacobi–Radau matrix of order n+ 1 by

J
R,a
n+1(dλ) =




Jn(dλ)
√
βnen

√
βneT

n αR
n


 , eT

n = [0, 0, . . . , 1] ∈ Rn,

αR
n = a− βn

πn−1(a)

πn(a)
,

(3.1.14)

where βn = βn(dλ) and πm( · ) = πm( · ; dλ). Then, the nodes τa
0 (= a), τa

1 , . . . , τ
a
n

of the Gauss–Radau formula (3.1.13) are the eigenvalues of J
R,a
n+1(dλ), and the

weights λa
0 , λ

a
1 , . . . , λ

a
n are
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λa
ν = β0v

2
ν,1, ν = 0, 1, 2, . . . , n, (3.1.15)

where β0 =
∫

R
dλ(t) and vν,1 is the first component of the normalized eigenvector

vν of J
R,a
n+1(dλ) corresponding to the eigenvalue τa

ν .

Proof As in the proof of Theorem 3.1, let π̃k denote the orthonormal polyno-
mials relative to the measure dλ, and let π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n(t)]T be the
vector of the first n+ 1 of them. Recall from Theorem 1.29 that

tπ̃k(t) = αkπ̃k(t) +
√
βkπ̃k−1(t) +

√
βk+1π̃k+1(t),

k = 0, 1, 2, . . . , n− 1,
(3.1.16)

to which we now adjoin the additional relation

tπ̃n(t) = αR
n π̃n(t) +

√
βnπ̃n−1(t) +

√
βn+1π

R
n+1(t). (3.1.17)

Here, βn+1 = βn+1(dλ), and αR
n for the moment is a parameter to be determined;

once αR
n is known, eqn (3.1.17) defines πR

n+1. Written in matrix form, (3.1.16)
and (3.1.17) yield

tπ̃(t) = J
R,a
n+1π̃(t)+

√
βn+1π

R
n+1(t)en+1, eT

n+1 = [0, 0, . . . , 1] ∈ Rn+1, (3.1.18)

where J
R,a
n+1 = J

R,a
n+1(dλ). We now choose αR

n in such a way that πR
n+1(a) = 0,

so that τa
0 = a is an eigenvalue of J

R,a
n+1 (with π̃(a) a corresponding eigenvector)

and (3.1.17) gives

aπ̃n(a) − αR
n π̃n(a) −

√
βnπ̃n−1(a) = 0.

Solving for αR
n and reverting to monic orthogonal polynomials, noting that

π̃n−1/π̃n =
√
βnπn−1/πn, yields the formula for αR

n in (3.1.14). Since (by con-
struction) a is a zero of πR

n+1, we can write

πR
n+1(t) = (t− a)ωn(t), ωn ∈ Pn. (3.1.19)

The zeros tν , ν = 1, 2, . . . , n, of ωn, by (3.1.18), all are eigenvalues of J
R,a
n+1,

with π̃(tν) corresponding eigenvectors. We now show that tν = τa
ν —the internal

nodes of the Gauss–Radau formula (3.1.13). For this, we must show that, up to
a constant factor,

ωn(t) = πn(t; dλa),

or, by (3.1.19), equivalently,

∫

R

πR
n+1(t)p(t) dλ(t) = 0 for all p ∈ Pn−1.

This follows by (3.1.17), which implies
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√
βn+1

∫

R

πR
n+1(t)p(t) dλ(t)

=

∫

R

[(t− αR
n )π̃n(t) −

√
βnπ̃n−1(t)]p(t) dλ(t)

=

∫

R

[(t− αn + αn − αR
n )π̃n(t) −

√
βnπ̃n−1(t)]p(t) dλ(t)

=

∫

R

[
√
βn+1π̃n+1(t) + (αn − αR

n )π̃n(t)]p(t) dλ(t)

= 0

by orthogonality. This proves the first part of the theorem.
The second part follows along the same lines as in the proof of Theorem 3.1,

noting that the normalized eigenvectors vν , ν = 0, 1, . . . , n, of J
R,a
n+1 are

vν =

(
n∑

k=0

[π̃k(τa
ν )]2

)−1/2

π̃(τa
ν ), ν = 0, 1, 2, . . . , n,

and, hence, by comparing the first component on each side and squaring,

β0v
2
ν,1 =

1∑n
k=0[π̃k(τa

ν )]2
, ν = 0, 1, 2, . . . , n (3.1.20)

(cf. Corollary to Theorem 1.31). The rest of the proof is virtually identical with
the proof of Theorem 3.1. 2

Theorem 3.2 is implemented in the OPQ routine radau.m.

Remarks to Theorem 3.2 (a) Theorem 3.2 remains valid if a < inf supp(dλ).
(b) If supp(dλ) is bounded from above, there is an analogous Gauss–Radau

formula

∫

R

f(t) dλ(t) =

n∑

ν=1

λb
νf(τ b

ν ) + λb
n+1f(τ b

n+1) +Rb
n(f), b ≥ sup supp(dλ),

(3.1.21)
for which Theorem 3.2 again holds with a replaced by b throughout, and τa

0 = a,
λa

0 replaced, respectively, by τb
n+1 = b, λb

n+1. The internal nodes τb
ν are the zeros

of πn( · ; dλb), where dλb(t) = (b− t) dλ(t).
(c) For smooth f , the Gauss–Radau quadrature sum in (3.1.13), similarly as

in Remark to Theorem 3.1, can be expressed in matrix form as β0e
T
1 f(JR,a

n+1)e1.

Theorem 3.3 If the support of dλ is a finite interval [a, b] and f ∈ C2n+1[a, b],
then the remainders Ra

n, Rb
n in (3.1.13) resp. (3.1.21) have the property

Ra
n(f) > 0, Rb

n(f) < 0 if sgn f (2n+1) = 1 on [a, b], (3.1.22)

with the inequalities reversed if sgn f (2n+1) = −1.
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Thus, one of the Gauss–Radau approximants is a lower bound, and the other
an upper bound for the exact value of the integral.

Proof This follows from the formula (cf. (1.4.23))

Ra
n(f) = γa

n

f (2n+1)(τa)

(2n+ 1)!
, γa

n =

∫ b

a

[πn(t; dλa)]2 dλa(t), a < τa < b,

and the analogous formula for Rb
n,

Rb
n(f) = −γb

n

f (2n+1)(τ b)

(2n+ 1)!
, γb =

∫ b

a

[πn(t; dλb)]
2 dλb(t), a < τ b < b.

(The minus sign in Rb
n comes from changing the factor t − b in the node poly-

nomial to b− t to make it, and with it dλb(t) = (b− t) dλ(t), positive on [a, b].)
2

Example 3.4 Gauss–Radau formula for the Jacobi measure.
Here, dλ is the Jacobi measure dλ(α,β)(t) = (1 − t)α(1 + t)β dt on [−1, 1]. In

this case, the quantity αR
n , n ≥ 1, in the Jacobi–Radau matrix (3.1.14) can be

expressed explicitly in terms of the Jacobi parameters α, β,

αR
n =





−1 +
2n(n+ α)

(2n+ α+ β)(2n+ α+ β + 1)
if a = −1,

1 − 2n(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
if a = 1.

(3.1.23)

To see this, let πk = π
(α,β)
k denote the monic Jacobi polynomials and Pk =

P
(α,β)
k the Jacobi polynomials as conventionally defined. Then (cf. Commentary

to Table 1.1),

Pn(t) = knπn(t), kn =
1

2n

(
2n+ α+ β

n

)
, Pn(−1) = (−1)n

(
n+ β

n

)
.

Therefore, in the case a = −1, by (3.1.14),

αR
n = −1 − βn

πn−1(−1)

πn(−1)
= −1 − βn

kn

kn−1

Pn−1(−1)

Pn(−1)
. (3.1.24)

A simple computation shows that

kn

kn−1
=

1

2

(2n+ α+ β)(2n+ α+ β − 1)

n(n+ α+ β)
,

Pn−1(−1)

Pn(−1)
= − n

n+ β
.

Substituting this in (3.1.24) and using the expression for βn = βJ
n from Table

1.1 yields the first relation in (3.1.23). The second is obtained analogously.
For a Matlab implementation, see the OPQ routine radau jacobi.m. Explicit

expressions are also known for all the weights in the Gauss–Radau formula,
obviating the need to compute eigenvectors; see Gautschi (2000a, §3 and 4).
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Example 3.5 Gauss–Radau formula for the generalized Laguerre measure.
Here, the measure is dλ(α)(t) = tαe−t dt on [0,∞], α > −1, and the explicit

formula for αR
n turns out to be particularly simple,

αR
n = n if a = 0. (3.1.25)

Indeed, with π
(α)
k and L

(α)
k denoting the monic resp. conventional Laguerre poly-

nomials, there holds (cf. Commentary to Table 1.1)

L(α)
n (t) =

(−1)n

n!
π(α)

n (t), L(α)
n (0) =

(
n+ a

n

)
,

from which

αR
n = −βn

π
(α)
n−1(0)

π
(α)
n (0)

= βn

L
(α)
n−1(0)

nL
(α)
n (0)

= n(n+ α) · 1

n+ α
= n,

since βn = n(n+ α) (cf. Table 1.1).
Example 3.5 is implemented in the OPQ routine radau laguerre.m. Explicit

formulae for the weights in the Gauss–Radau rule are provided in Gautschi
(2000b, §5).

3.1.1.3 Gauss–Lobatto formula For measures dλ with finite support interval
[a, b], the (n+2)-point Gauss–Lobatto quadrature rule is (cf. §1.4.2, eqn (1.4.22))

∫ b

a

f(t) dλ(t) = λL
0 f(τL

0 ) +

n∑

ν=1

λL
ν f(τL

ν ) + λL
n+1f(τL

n+1) +Ra,b
n (f), (3.1.26)

where τL
0 = a, τL

n+1 = b, and the internal nodes τL
ν are the zeros of πn( · ; dλa,b)

with dλa,b(t) = (t− a)(b− t) dλ(t). The Gauss–Lobatto formula enjoys an eigen-
value/vector characterization similar to the ones in Theorems 3.1 and 3.2.

Theorem 3.6 Define the Jacobi–Lobatto matrix of order n+ 2 by

JL
n+2(dλ) =


 Jn+1(dλ)

√
βL

n+1en+1√
βL

n+1e
T
n+1 αL

n+1


 , eT

n+1 = [0, 0, . . . , 1] ∈ Rn+1,

(3.1.27)
where αL

n+1, β
L
n+1 solve the 2×2 linear system


πn+1(a) πn(a)

πn+1(b) πn(b)




α

L
n+1

βL
n+1


 =


aπn+1(a)

bπn+1(b)


 (3.1.28)

with πm( · ) = πm( · ; dλ). Then, the nodes τL
0 (= a), τL

1 , . . . , τ
L
n , τ

L
n+1 (= b) of the

Gauss–Lobatto formula (3.1.26) are the eigenvalues of JL
n+2(dλ), and the weights

λL
0 , λ

L
1 , . . . , λ

L
n , λ

L
n+1 are
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λL
ν = β0v

2
ν,1, ν = 0, 1, . . . , n, n+ 1, (3.1.29)

where β0 =
∫ b

a
dλ(t) and vν,1 is the first component of the normalized eigenvector

vν of JL
n+2(dλ) corresponding to the eigenvalue τL

ν .

Proof The recurrence relations (3.1.16) for the orthonormal polynomials are
now adjoined by two additional relations,

tπ̃n(t) = αnπ̃n(t) +
√
βnπ̃n−1(t) +

√
βL

n+1π
L
n+1(t),

tπL
n+1(t) = αL

n+1π
L
n+1(t) +

√
βL

n+1π̃n(t) +
√
βn+2π

L
n+2(t),

(3.1.30)

where, for the moment, αL
n+1 and βL

n+1 are parameters to be determined, and
αn = αn(dλ), βn = βn(dλ), βn+2 = βn+2(dλ). Once the parameters αL

n+1 and
βL

n+1 have been assigned real values, with βL
n+1 > 0, the first relation in (3.1.30)

defines πL
n+1, and the second πL

n+2, both as real polynomials. Relations (3.1.16)
and (3.1.30) together can be written in matrix form,

tπ̃(t) = JL
n+2π̃(t) +

√
βn+2π

L
n+2(t)en+2, (3.1.31)

where JL
n+2 = JL

n+2(dλ) and π̃(t) = [π̃0(t), . . . , π̃n(t), πL
n+1(t)]

T. The parameters
αL

n+1, β
L
n+1 are now chosen so as to have πL

n+2(a) = πL
n+2(b) = 0, which by

(3.1.31) means that a and b are both eigenvalues of JL
n+2 (with π̃(a) and π̃(b)

corresponding eigenvectors). By the second relation of (3.1.30), this requires

(t− αL
n+1)π

L
n+1(t) −

√
βL

n+1π̃n(t) = 0 for t = a, b,

or, multiplying by
√
βL

n+1 and substituting
√
βL

n+1π
L
n+1(t) from the first relation

of (3.1.30),

(t− αL
n+1)[(t− αn)π̃n(t) −

√
βnπ̃n−1(t)] − βL

n+1π̃n(t) = 0 for t = a, b.

The expression in brackets is
√
βn+1π̃n+1(t), so that

(t− αL
n+1)

√
βn+1π̃n+1(t) − βL

n+1π̃n(t) = 0 for t = a, b.

Converting this to monic orthogonal polynomials yields the system (3.1.28).
We must check that βL

n+1 so determined is positive. This follows from

[πn+1(a)πn(b) − πn+1(b)πn(a)]βL
n+1 = (b − a)πn+1(a)πn+1(b),

since the expression in brackets—the determinant of the system (3.1.28)—has
the sign (−1)n+1 and so does the right-hand side.
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Since (by construction) a and b are zeros of πL
n+2, we can write

πL
n+2(t) = (t− a)(b− t)ωn(t), ωn ∈ Pn. (3.1.32)

The zeros tν , ν = 1, 2, . . . , n, of ωn, by (3.1.31), all are eigenvalues of JL
n+2, with

π̃(tν) corresponding eigenvectors. We show that they are precisely the internal
nodes τL

ν of the Gauss–Lobatto formula (3.1.26). For this, we must show that,
up to a constant factor,

ωn(t) = πn(t; dλa,b),

or, by (3.1.32),

∫ b

a

πL
n+2(t)p(t) dλ(t) = 0 for all p ∈ Pn−1.

This follows from (3.1.30), which implies

√
βL

n+1βn+2

∫ b

a

πL
n+2(t)p(t) dλ(t)

=
√
βL

n+1

∫ b

a

[(t− αL
n+1)π

L
n+1(t) −

√
βL

n+1π̃n(t)]p(t) dλ(t)

=

∫ b

a

{(t− αL
n+1)[(t− αn)π̃n(t) −

√
βnπ̃n−1(t)] − βL

n+1π̃n(t)}p(t) dλ(t)

=

∫ b

a

[(t− αL
n+1)

√
βn+1π̃n+1(t) − βL

n+1π̃n(t)]p(t) dλ(t)

= 0

by orthogonality. This proves the first part of the theorem. The second part
follows in the same manner as in the proof of Theorem 3.2, by letting f in the
Gauss–Lobatto formula be in turn π̃0, π̃1, . . . , π̃n, and πL

n+1. 2

Theorem 3.6 is implemented in the OPQ routine lobatto.m.

Remarks to Theorem 3.6 (a) Theorem 3.6 remains valid if τL
0 < a and/or

τL
n+1 > b, provided a and/or b in (3.1.28) are replaced, respectively, by τL

0 and
τL
n+1.

(b) As in Remark to Theorem 3.1, for smooth f the Gauss–Lobatto quadra-
ture sum in (3.1.26) can be expressed in matrix form as β0e

T
1 f(JL

n+2)e1.

Theorem 3.7 If f ∈ C2n+2[a, b], the remainder Ra,b
n in (3.1.26) has the prop-

erty

Ra,b
n (f) < 0 if sgn f (2n+2) = 1 on [a, b], (3.1.33)

with the inequality reversed if sgn f (2n+2) = −1.

Proof This is an immediate consequence of (1.4.24). 2
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Example 3.8 Gauss–Lobatto formula for the Jacobi measure.
For the Jacobi measure dλ = dλ(α,β) on [−1, 1], the quantities αL

n+1 and βL
n+1

can be expressed explicitly in terms of the Jacobi parameters α and β,

αL
n+1 =

α− β

2n+ α+ β + 2
,

βL
n+1 = 4

(n+ α+ 1)(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)2
.

(3.1.34)

In fact, with notations used in Example 3.4, the determinant ∆n of system
(3.1.28) (where a = −1, b = 1) is

∆n =
1

knkn+1
Dn,

where

Dn =

∣∣∣∣∣∣∣∣

Pn+1(−1) Pn(−1)

Pn+1(1) Pn(1)

∣∣∣∣∣∣∣∣
.

Using the formula for Pn(−1) in Example 3.4 and the companion formula Pn(1) =(
n+α

n

)
, one finds

Dn =
(−1)n+1

n+ 1
(2n+ α+ β + 2)

(
n+ α

n

)(
n+ β

n

)
.

Writing the solution of system (3.1.28) in the form

αL
n+1 =

1

Dn
[−Pn+1(−1)Pn(1) − Pn+1(1)Pn(−1)],

βL
n+1 =

2kn

kn+1

1

Dn
[Pn+1(−1)Pn+1(1)],

and inserting the explicit expressions for the quantities appearing on the right-
hand side yields (3.1.34).

Explicit expressions are also known for the weights in the Gauss–Lobatto
formula; see Gautschi (2000b, §3 and 4).

When n is very large, the determinant ∆n of system (3.1.28) may be so
small as to underflow on a computer, causing the system to become numerically
singular. In this event, the use of (3.1.34) is imperative. The respective OPQ

routine is lobatto jacobi.m.

3.1.1.4 Generalized Gauss–Radau and Gauss–Lobatto formulae It is sometimes
useful, for example in the context of boundary value problems, to have at dis-
posal Gauss-type quadrature rules that involve not only function values, but
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also derivative values, at the end point(s). These are referred to as generalized
Gauss–Radau resp. Gauss–Lobatto formulae.

We begin with the former, and consider

∫ ∞

a

f(t) dλ(t) =

r−1∑

ρ=0

λ
(ρ)
0 f (ρ)(a) +

n∑

ν=1

λR
ν f(τR

ν ) +RR
n,r(f), (3.1.35)

where r > 1 is the multiplicity of the end point τ0 = a and the degree of exactness
is 2n− 1 + r,

RR
n,r(f) = 0 for all f ∈ P2n−1+r. (3.1.36)

The support of dλ may, or may not, be bounded. The internal nodes and weights
are easily obtained according to the following theorem.

Theorem 3.9 Let dλ[r](t) = (t− a)r dλ(t) and τ
[r]
ν , λ

[r]
ν , ν = 1, 2, . . . , n, be the

Gauss nodes and weights for the measure dλ[r]. Then,

τR
ν = τ [r]

ν , λR
ν =

λ
[r]
ν

(τR
ν − a)r

, ν = 1, 2, . . . , n. (3.1.37)

In particular, all λR
ν are positive; if r = 2, the same is true for λ0 and λ′0.

Proof If g ∈ P2n−1, formula (3.1.35) is exact for f(t) = (t − a)rg(t). There
follows

∫ ∞

a

g(t) dλ[r](t) =

n∑

ν=1

λR
ν (τR

ν − a)r · g(τR
ν ) for all g ∈ P2n−1,

proving (3.1.37). The positivity of the weights λR
ν is a consequence of the posi-

tivity of dλ[r] and the fact that τR
ν > a. If r = 2, putting in turn f(t) = π2

n(t)
and f(t) = (t− a)π2

n(t), where πn(t) =
∏n

ν=1(t− τR
ν ), yields

π2
n(a)λ0 + 2πn(a)π′

n(a)λ′0 =

∫ ∞

a

π2
n(t) dλ(t),

π2
n(a)λ′0 =

∫ ∞

a

(t− a)π2
n(t) dλ(t),

from which the positivity of λ0 and λ′0 follows by virtue of the right-hand sides
being positive and πn(a)π′

n(a) < 0. 2

In general, the boundary weights λ
(ρ)
0 have to be obtained by solving a linear

system of equations, for example, the upper triangular system that obtains by
applying (3.1.35) in turn for πn(t), (t− a)πn(t), . . . , (t− a)r−1πn(t), where πn is
as defined in the proof of Theorem 3.9.

Example 3.10 Gauss–Radau formula with double end points for the Legendre
measure.
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The measure here is dλ(t) = dt on [−1, 1], and the formula in question is

∫ 1

−1

f(t) dt = λ0f(−1) + λ′0f
′(−1) +

n∑

ν=1

λR
ν f(τR

ν ) +RR
n,2(f),

where τR
ν and λR

ν are the Gauss nodes and weights for dλ[2](t) = (1+ t)2 dt. The
boundary weights are given by

λ0 =
8

3

2n2 + 6n+ 3

(n+ 1)2(n+ 2)2
, λ′0 =

8

(n+ 1)2(n+ 2)2
.

This can be seen by inserting f(t) = P
(0,2)
n (t) and f(t) = (1+ t)P

(0,2)
n (t) into the

quadrature rule and solving the two linear equations thus obtained for λ0 and λ′0.

For the values of P
(0,2)
n (−1) and (d/dt)P

(0,2)
n (−1) = 1

2 (n+ 3)P
(1,3)
n−1 (−1), see the

Commentaries to Table 1.1, and Erdélyi, Magnus, Oberhettinger, and Tricomi

(1954, 16.4(1), p. 284) for the integrals
∫ 1

−1 P
(0,2)
n (t) dt,

∫ 1

−1(1 + t)P
(0,2)
n (t) dt.

Example 3.11 Gauss–Radau formula with double end points for the Chebyshev
measure.

Here,

∫ 1

−1

f(t)(1 − t2)−1/2 dt = λ0f(−1) + λ′0f
′(−1) +

n∑

ν=1

λR
ν f(τR

ν ) +RR
n,2(f),

where τR
ν and λR

ν are the Gauss nodes and weights for the Jacobi weight function
(1− t)−1/2(1+ t)3/2. The boundary weights are given by (Gautschi and Li, 1991,
Theorem 2.3)

λ0 =
3

5
π

6n2 + 12n+ 5

(n+ 1)(2n+ 1)(2n+ 3)
, λ′0 =

3π

(n+ 1)(2n+ 1)(2n+ 3)
.

We write the generalized Gauss–Lobatto formula in the form

∫ b

a

f(t) dλ(t) =
r−1∑

ρ=0

λ
(ρ)
0 f (ρ)(a) +

n∑

ν=1

λL
ν f(τL

ν ) +
r−1∑

ρ=0

(−1)ρλ
(ρ)
n+1f

(ρ)(b) +RL
n,r(f)

(3.1.38)

to reflect its symmetry λ
(ρ)
0 = λ

(ρ)
n+1, ρ = 0, 1, . . . , r − 1, when dλ is a symmetric

measure (cf. Definition 1.16). There holds RL
n,r(f) = 0 if f ∈ P2n−1+2r.

Theorem 3.12 Let dλ[r](t) = [(t−a)(b−t)]r dλ(t) and τ
[r]
ν , λ

[r]
ν , ν = 1, 2, . . . , n,

be the Gauss nodes and weights for the measure dλ[r]. Then,

τL
ν = τ [r]

ν , λL
ν =

λ
[r]
ν

[(τL
ν − a)(b − τL

ν )]r
, ν = 1, 2, . . . , n.

In particular, all λL
ν are positive; if r = 2, the same is true for λ0, λ

′
0 and λn+1,

λ′n+1.
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Proof Similar to the proof of Theorem 3.9. The last statement for r = 2 with
regard to λ0 and λ′0 follows by inserting in succession f(t) = π2

n(t)(b − t)2 and
(t−a)π2

n(t)(b−t)2 into (3.1.38) and noting that πn(a)(b−a)[π′
n(a)(b−a)−πn(a)] <

0. Similarly for λn+1, λ
′
n+1. 2

Example 3.13 Gauss–Lobatto formula with double end points for the Legendre
measure.

Similarly as in Example 3.10 (or see Gatteschi (1964)), one derives

∫ 1

−1

f(t) dt = λ0[f(−1) + f(1)] + λ′0[f
′(−1) − f ′(1)] +

n∑

ν=1

λL
ν f(τL

ν ) +RL
n,2(f)

with τL
ν and λL

ν the Gauss nodes and weights for the Gegenbauer weight function
(1 − t2)2 and

λ0 =
8

3

2n2 + 10n+ 9

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
, λ′0 =

8

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Example 3.14 Gauss–Lobatto formula with double end points for the Cheby-
shev measure.

Here,

∫ 1

−1

f(t)(1−t2)−1/2 dt = λ0[f(−1)+f(1)]+λ′0[f
′(−1)−f ′(1)]+

n∑

ν=1

λL
ν f(τL

ν )+RL
n,2(f),

where τL
ν and λL

ν are the Gauss nodes and weights for the Gegenbauer weight
function (1− t2)3/2. The boundary weights are (Gautschi and Li, 1991, Theorem
3.3)

λ0 =
3

10
π

3n2 + 12n+ 10

(n+ 1)(n+ 2)(n+ 3)
, λ′0 =

3π

4(n+ 1)(n+ 2)(n+ 3)
.

3.1.2 Gauss–Kronrod quadrature formulae and their computation

3.1.2.1 Gauss–Kronrod formula Given an n-point Gauss quadrature rule
(3.1.1), one may wish to extend it to a (2n + 1)-point rule by inserting n + 1
additional nodes—preferably all in the support interval of dλ and alternating
with the Gauss nodes—and choosing them, together with all weights, in such a
manner as to achieve maximum degree of exactness (cf. Definition 1.44). This
is an idea that was first put forward and implemented (in the case dλ(t) = dt)
by Kronrod in the mid-1960s (Kronrod, 1965). His motivation was to estimate
the error in the Gauss formula, using the result of the extended formula as a
reference value for the integral. The point is that the n function values already
computed for the Gauss formula are being reused, and only n + 1 additional
function values need to be computed to perform the error estimation. This is the
same amount of work that an (n+ 1)-point Gauss formula would entail, but the
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latter would produce a reference value much less accurate, in general, than the
one produced by the extended (2n+ 1)-point formula.

The extended formula, thus, has the form

∫

R

f(t) dλ(t) =

n∑

ν=1

λK
ν f(τG

ν ) +

n+1∑

µ=1

λ∗K
µ f(τK

µ ) +RK
n (f), (3.1.39)

where τG
ν are the Gauss nodes in (3.1.1), and all weights λK

ν , λ∗K
µ as well as the

new nodes τK
µ are parameters that can be freely chosen. Since there are 3n+ 2

of them, one can expect to be able to choose them so as to yield a degree of
exactness as high as 3n+ 1,

RK
n (f) = 0 for all f ∈ P3n+1. (3.1.40)

A quadrature rule (3.1.39) satisfying (3.1.40) is called a Gauss–Kronrod formula,
and the nodes τK

µ are referred to as Kronrod nodes.
In the terminology of §1.4.1, where n has to be replaced by 2n+ 1, the node

polynomial of (3.1.39) is

ω2n+1(t) = πn(t; dλ)πK
n+1(t), πK

n+1(t) =

n+1∏

µ=1

(t− τK
µ ), (3.1.41)

and by Theorem 1.45, in order to have (3.1.40) (which corresponds to k = n+ 1
in Theorem 1.45), it must satisfy

∫
R
ω2n+1(t)p(t) dλ(t) = 0 for all polynomials

of degree ≤n, that is,

∫

R

πK
n+1(t)p(t)πn(t; dλ) dλ(t) = 0 for all p ∈ Pn. (3.1.42)

This is a condition on the Kronrod nodes; once they are determined and none
of them coincides with a Gauss node, the weights in (3.1.39) then follow from
the interpolatory nature of (3.1.39), that is, from the fact that RK

n (f) = 0 for
all f ∈ P2n.

Condition (3.1.42) is a new type of orthogonality: it requires the polynomial
πK

n+1 of degree n+ 1 to be orthogonal to all polynomials of lower degree relative
to the measure dλK

n (t) = πn(t; dλ) dλ(t), which not only depends on n but
is also oscillating on the support of dλ. Historically, such polynomials (in the
case of dλ(t) = dt) were first considered in 1894 by Stieltjes in his last letter to
Hermite (Baillaud and Bourget, 1905, Vol. II, p. 439). The polynomial πK

n+1( · ) =
πK

n+1( · ; dλ), therefore, is nowadays referred to as the Stieltjes polynomial of
degree n+ 1 relative to the measure dλ.

Theorem 3.15 If dλ is a positive measure, the Stieltjes polynomial πK
n+1( · ; dλ)

exists uniquely for each n ≥ 1.
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Proof If we write πK
n+1(t) = tn+1 +

∑n
k=0 ckt

k, condition (3.1.42) takes the
form ∫

R

(
tn+`+1 +

n∑

k=0

ckt
k+`

)
πn(t) dλ(t) = 0, ` = 0, 1, . . . , n,

which is a linear system for the coefficients ck whose matrix, by orthogonality, has
nonzero elements only in its right lower triangle, those on the upward diagonal
being

∫
R
tnπn(t) dλ(t) = ‖πn‖2

dλ > 0. Therefore, the system is nonsingular.
2

Although the unique existence of the Stieltjes polynomial is assured, it is
by no means clear, and in fact often not the case, that its zeros—the Kron-
rod nodes—are all real, let alone contained in the support interval of dλ and
interlacing with the Gauss nodes.

Example 3.16 Gauss–Kronrod formula for the Chebyshev measure dλ(t) =
(1 − t2)−1/2 dt.

It turns out that this is precisely the Gauss–Lobatto formula (1.4.25) in which
n is replaced by 2n− 1, that is, for n ≥ 2,

∫ 1

−1

f(t)(1 − t2)−1/2 dt =
π

4n
[f(−1) + f(1)] +

π

2n

2n−1∑

ν=1

f
(
cos

νπ

2n

)
+RK

n (f).

(3.1.43)
Indeed, the n nodes in the summation corresponding to odd values of ν are the
Gauss nodes for dλ (cf. Example 1.49), and since (3.1.43) has degree of exactness
4n− 1 (≥3n+ 1), the remaining nodes must be the Kronrod nodes.

There are similar explicit formulae of elevated degree for all the other three
Chebyshev measures; see Mysovskih (1964).

The Gauss–Kronrod formula of Example 3.16 is atypical for two reasons: first,
there are two nodes on the boundary of [−1, 1], and second, its degree of exact-
ness exceeds the one normally expected for a Gauss–Kronrod rule. More typical,
in this regard, are the Gauss–Kronrod formulae for the Gegenbauer measure
dλ(α,α)(t) = (1− t2)α dt when − 1

2 < α ≤ 3
2 . In this case, and hence in particular

in the case α = 0 originally considered by Kronrod, it has been shown by Szegö
(1935) that all nodes are strictly inside the interval [−1, 1] and the Kronrod nodes
alternate with the Gauss nodes. Rabinowitz (1980) proved that the degree of ex-
actness is precisely 3n+1 (for n even, and 3n+2 for n odd, by symmetry) except
when α = 1

2 , in which case it is 4n+ 1. Moreover, Monegato (1978a) has shown
that all weights are positive if − 1

2 ≤ α ≤ 1
2 . For results and conjectures in the

case 3
2 < α ≤ 5

2 , see Petras (1999) and Peherstorfer and Petras (2000), where
nonexistence of Gauss–Kronrod formulae is shown for n sufficiently large and
α > 5

2 . Analogous results for the Jacobi measure dλ(α,β)(t) = (1− t)α(1 + t)β dt
can be found in Peherstorfer and Petras (2003), in particular nonexistence for
large n of Gauss–Kronrod formulae when min(α, β) ≥ 0 and max(α, β) > 5

2 .
The case of Gegenbauer measures, and also of Jacobi measures, has been further
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explored for n ≤ 40 by numerical means with regard to interlacing, reality and
containment in the open support interval of the Kronrod nodes, and positivity of
the weights; see Gautschi and Notaris (1988). Classical measures on an infinite
interval fare less well. Kahaner and Monegato (1978), in fact, show that for the
generalized Laguerre measure dλ(α)(t) = tαe−t dt on [0,∞], with −1 < α ≤ 1,
a Kronrod extension of the Gauss–Laguerre formula having real nodes and pos-
itive weights does not exist when n ≥ 23 and, if α = 0, not even for n > 1.
As a corollary of this, an n-point Gauss–Hermite formula cannot be so extended
unless n = 1, 2, or 4.

3.1.2.2 Computation of the Gauss–Kronrod formula We sketch a computa-
tional algorithm due to Laurie; for more details, see Laurie (1997). We assume
that a Gauss–Kronrod formula exists with real nodes and positive weights. The
idea is to obtain an eigenvalue/vector characterization of the Gauss–Kronrod
formula similar to the ones derived in §3.1.1.1–3.1.1.3 for Gauss-type quadra-
ture rules. The matrix in question—now called the Jacobi–Kronrod matrix—is
a Jacobi matrix of order 2n + 1 (cf. Definition 1.30), JK

2n+1, with coefficients
αK

0 , β
K
1 , α

K
1 , β

K
2 , . . . , β

K
2n. The Gauss–Kronrod formula having degree of exact-

ness 3n + 1 implies that the first 3n + 1 of these coefficients are those relative
to the measure dλ, that is, α0, β1, α1, β2, . . . , where αk = αk(dλ), βk = βk(dλ).
This means that JK

2n+1 has the form

JK
2n+1(dλ) =




Jn(dλ)
√
βn en 0

√
βn eT

n αn

√
βn+1 eT

1

0
√
βn+1 e1 J∗

n



, (3.1.44)

where ek denotes the kth coordinate vector in Rn, and J∗
n is a real symmetric

tridiagonal matrix whose form depends on the parity of n,

J∗
n =




Jn+1:(3n−1)/2(dλ)
√
β(3n+1)/2 e(n−1)/2

√
β(3n+1)/2 eT

(n−1)/2 J∗
(3n+1)/2:2n




(n odd), (3.1.45)

J∗
n =




Jn+1:3n/2(dλ)
√
β∗

(3n+2)/2 en/2

√
β∗

(3n+2)/2 eT
n/2 J∗

(3n+2)/2:2n




(n even). (3.1.46)

Here, Jp:q(dλ) is the principal minor matrix of the (infinite) Jacobi matrix J(dλ)
having diagonal elements αp, αp+1, . . . , αq. The parameter β∗

(3n+2)/2 when n is
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even, and the (real symmetric tridiagonal) matrices in the right lower corner of
J∗

n, are to be determined.
The following lemma is crucial for the algorithm.

Lemma 3.17 The matrices J∗
n and Jn(dλ) in (3.1.44) have the same eigenval-

ues.

Proof Let φk(t) and ψk(t) be the (monic) characteristic polynomials of the
leading, respectively trailing, k × k principal minor matrix of JK

2n+1. Evidently,

φk(t) = πk(t; dλ) when k ≤ n + 1. Expanding φ2n+1(t) = det(tI2n+1 − JK
2n+1)

along the (n+ 1)st row, one finds, after some computation, that

φ2n+1(t) = βnπn−1(t)ψn(t) + (t− αn)πn(t)ψn(t) + βn+1πn(t)ψn−1(t). (3.1.47)

Since the Gauss nodes τG
ν —the zeros of πn—are to be eigenvalues of JK

2n+1, the
polynomial πn must be a factor of φ2n+1, and hence, by (3.1.47), since βn > 0, a
factor of πn−1ψn. By Theorem 1.20, the zeros of πn−1, however, alternate with
those of πn. There follows that πn must be a factor of ψn. Both polynomials are
monic of degree n. Consequently, πn ≡ ψn. 2

Remark According to a result of Monegato (1976), the positivity of all λ∗K
µ

is equivalent to the reality of the Kronrod nodes and their interlacing with the
Gauss nodes.

Once the Jacobi–Kronrod matrix has been determined, the Gauss–Kronrod
formula is computed in terms of the eigenvalues and eigenvectors of JK

2n+1 in
much the same way as the Gauss formula in Theorem 3.1. It suffices, therefore,
to compute the unknown elements in JK

2n+1; the recursion coefficients αk(dλ)
and βk(dλ) are assumed to be known.

To conform with notation used in §2.1.7–2.1.8, we write

J∗
n =




α∗
0

√
β∗

1 0
√
β∗

1 α∗
1

. . .

. . .
. . .

√
β∗

n−1

0
√
β∗

n−1 α∗
n−1



. (3.1.48)

We thus have two Jacobi matrices—Jn(dλ) and J∗
n—both of order n and having

the same eigenvalues. Each of these matrices generates its own set of orthogonal
polynomials, the former the polynomials πk( · ; dλ), k = 0, 1, . . . , n, orthogonal
with respect to the measure dλ, the latter polynomials π∗

k, k = 0, 1, . . . , n, or-
thogonal with respect to some measure dλ∗ (in general unknown). We are in
a situation reminiscent to the one surrounding the modified Chebyshev algo-
rithm in §2.1.7 and the conversion algorithm in §2.1.8.2, which suggests similar
approaches here. In particular, we define mixed moments by

σk` = (π∗
k, π`)dλ∗ . (3.1.49)
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Although the measure dλ∗ is unknown, a few things about these moments are
known. For example,

σk` = 0 if ` < k, (3.1.50)

by the orthogonality of π∗
k, and also

σkn = 0 if k < n, (3.1.51)

again by orthogonality, since πn = π∗
n by Lemma 3.17. Now recall the recurrence

relation (2.1.121), which in the present context reads

σk,`+1 − σk+1,` − (α∗
k − α`)σk` − β∗

kσk−1,` + β`σk,`−1 = 0. (3.1.52)

Some of the coefficients α∗
k and β∗

k are known according to the structure of the
matrices (3.1.45) and (3.1.46). Indeed, if for definiteness we assume n odd, then

α∗
k = αn+1+k for 0 ≤ k ≤ (n− 3)/2, β∗

k = βn+1+k for 0 ≤ k ≤ (n− 1)/2.
(3.1.53)

Thus, similarly as in Algorithm 2.4, by solving (3.1.52) for σk,`+1, we can compute
the entries σk` in the triangular array indicated by black dots in Fig. 3.1 (drawn
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0

0

0
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0 0

00 0
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X
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l

nn(   =7)

Fig. 3.1. Laurie’s algorithm.

for n = 7), if we use the initialization σ00 =
∫

R
dλ∗(t) = β∗

0 = βn+1, σ−1,` = 0 for
` = 0, 1, . . . , n−1, σ0,−1 = 0, and σk,k−2 = σk,k−1 = 0 for k = 1, 2, . . . , (n−1)/2.
All the α∗

k and β∗
k required are, in fact, known by (3.1.53) except for the top

element in the triangle. For this entry, the α∗
k for k = (n − 1)/2 is not yet

known, but by a stroke of good fortune, it multiplies the entry σ(n−1)/2,(n−3)/2

in (3.1.52), which is zero by (3.1.50).
At this point, one switches to a recursion from bottom up, using the recur-

sion (3.1.52) solved for σk+1,`. This computes all entries indicated by a cross in
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Fig. 3.1, proceeding from the very bottom to the very top of the array. For this
to be possible, it is crucial to have, by (3.1.51), the known zero entries for ` = n.
For each k with (n − 1)/2 ≤ k ≤ n − 1, the entries in Fig. 3.1 surrounded by
boxes are those used, as in Algorithm 2.1, to compute the as yet unknown α∗

k

and β∗
k according to

α∗
k = αk +

σk,k+1

σkk
− σk−1,k

σk−1,k−1
, β∗

k =
σkk

σk−1,k−1
. (3.1.54)

The complexity of the algorithm is O(n2). If any of the β∗
k turns out to be

nonpositive, this would be an indication that a real Gauss–Kronrod formula does
not exist.

Laurie in Appendix A of Laurie (1997) gives a pseudocode of the algorithm
and kindly communicated to the author a Matlab version, which is incorporated
in the OPQ routine r kronrod.m. The latter is used in the routine kronrod.m to
generate the respective quadrature rules.

Example 3.18 Kronrod’s original formulae.
These refer to dλ(t) = dt on [0, 1]. The Matlab script

ab=r jacobi01(61);

for N=[5 10 25 40]

xw=kronrod(N,ab)

end

computes them for n = 5, 10, 25, 40 and produces results that agree with those
tabulated in Kronrod (1965) within an error of usually a few units, and maxi-
mally 13 units, in the 16th decimal place.

Example 3.19 Gauss–Kronrod formulae for logarithmic measures.
As was already observed in Caliò, Gautschi, and Marchetti (1986), the loga-

rithmic measure dλ(t) = ln(1/t) dt on [0, 1] appears to admit satisfactory Gauss–
Kronrod formulae for all n, that is, formulae with real Kronrod nodes in (0, 1)
interlacing with the Gauss nodes, and with positive weights. The Matlab script

ab=r jaclog(39);

for N=5:5:25

xw=kronrod(N,ab)

end

computes them for n = 5, 10, 15, 20, 25. Comparison with results in Caliò et al.
(1986, S57–S63), obtained by Newton’s method, reveals a level of agreement only
slightly inferior to the one observed in Example 3.18, the maximum error now
being 27 units in the 16th decimal place.

Exploring the more general logarithmic measure dλ(α)(t) = tα ln(1/t) dt, we
found for α > 0 that there seems to exist an integer-valued function n0(α) such
that for n < n0(α) a real, and in fact satisfactory, Gauss–Kronrod extension
exists, but not so when n = n0(α). Figure 3.2 shows a graph of the function
n0(α) experimentally determined by the OPQ routine Example3 19.m. The graph
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Fig. 3.2. The function n0(α).

suggests that there might be a vertical asymptote at some α ≥ 0, so that the
conjecture expressed at the beginning of the example is, in fact, true.

In the range −1 < α < 0, a new phenomenon appears: when n = 2, there
exists an α0 in (−1, 0) such that β∗

4 > 0 for α0 < α < 0 and β∗
4 < 0 for −1 <

α < α0. In the latter case, a real Gauss–Kronrod formula, therefore, does not
exist if n = 2. It was determined, numerically, that −0.71417 < α0 < −0.71416.
As α moves further toward −1, more and more even values of n give rise to
nonreal Gauss–Kronrod formulae. When real formulae exist—and that seems to
be the case for all odd values of n—it was found (at least when α ≥ −0.99 and
n ≤ 150) that the Kronrod nodes interlace with the Gauss nodes and are < 1,
and all weights are positive. The only defect observed was that initially, when n
is odd, and eventually for all n that admit real formulae, the smallest Kronrod
node is negative (though small in absolute value).

3.1.3 Gauss–Turán quadrature formulae and their computation

3.1.3.1 Gauss–Turán formula Turán (1950) was the first to apply Gauss’s
principle to quadrature formulae involving derivatives, that is, multiple nodes.
We assume here that each node has the same multiplicity r ≥ 1, so that

∫

R

f(t) dλ(t) =

n∑

ν=1

[λνf(τν)+λ′νf
′(τν)+· · ·+λ(r−1)

ν f (r−1)(τν)]+Rn(f). (3.1.55)

The interpolation process underlying this formula is now Hermite interpolation,
which, given any set of distinct nodes τν , will yield degree of exactness d = rn−1
for (3.1.55). The formula is, therefore, called interpolatory if Rn(f) = 0 for all f ∈
Prn−1. The theory of interpolatory quadrature formulae, expressed in Theorem
1.45 for ordinary quadrature rules, easily extends to the case of quadrature rules
with multiple nodes (replace ωn in §1.4.1 by ωr

n). As a result, formula (3.1.55)
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has degree of exactness d = rn − 1 + k (0 ≤ k ≤ n) if and only if (3.1.55) is
interpolatory and

∫

R

ωr
n(t)p(t) dλ(t) = 0 for all p ∈ Pk−1, (3.1.56)

where ωn(t) =
∏n

ν=1(t − τν) is the node polynomial of (3.1.55). Thus, it is now
the rth power of ωn, not ωn, which must be orthogonal to all polynomials of
degree ≤k−1. This is referred to as power orthogonality (cf. also §1.2.4). Unless
k = 0, the integer r must be odd, since otherwise

∫
R
ωr

n(t) dλ(t) > 0, and ωr
n

cannot be orthogonal to a constant, let alone to Pk−1. We assume, therefore,

r = 2s+ 1, s ≥ 0, (3.1.57)

so that (3.1.55) becomes

∫

R

f(t) dλ(t) =

n∑

ν=1

2s∑

σ=0

λ(σ)
ν f (σ)(τν) +Rn,s(f). (3.1.58)

We then have necessarily k ≤ n, since otherwise p = ωn would be admissible
in (3.1.56), which would require

∫
R
ωr+1

n (t) dλ(t) = 0. This, when r is odd, is
clearly impossible. The maximum degree of exactness of (3.1.58), therefore, is
d = (2s+ 2)n− 1, and is achieved precisely if

∫

R

[ωn(t)]2s+1p(t) dλ(t) = 0 for all p ∈ Pn−1, (3.1.59)

and the weights λ
(σ)
ν in (3.1.58) are determined by (Hermite) interpolation. This

is the Gauss–Turán quadrature formula.
Recall from §1.2.4 that the (monic) polynomial ωn satisfying (3.1.59) is the

s-orthogonal polynomial ωn = πn,s, which by Theorem 1.25 exists uniquely as
the solution of the extremal problem

min
π∈P◦

n

∫

R

[π(t)]2s+2 dλ(t), (3.1.60)

where P◦
n is the class of monic polynomials of degree n. Moreover, by Theorem

1.26, its zeros—the nodes τν of (3.1.58)—are real, simple, and contained in the
interior of the support interval of dλ. The Gauss–Turán formula is thus seen to
preserve many of the properties enjoyed by the ordinary Gauss quadrature rule.
One of the important properties, the positivity of the weights, however, does not

completely carry over. For the case s = 1, Turán already proved that λ
(2)
ν > 0,

while for general s, Micchelli (1972, Theorem 3) and Ossicini and Rosati (1978)

prove λ
(σ)
ν > 0 for even σ ≥ 0. When σ is odd, λ

(σ)
ν may have either sign, in

general.
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Theorem 3.20 If dλ is a symmetric measure (cf. Definition 1.16) and the nodes
τν are ordered (either increasingly or decreasingly), then

τn+1−ν + τν = 0

λ
(σ)
n+1−ν = (−1)σλ

(σ)
ν



 ν = 1, 2, . . . , n. (3.1.61)

In particular, λ
(σ)
(n+1)/2 = 0 if n and σ are both odd.

Proof The symmetry of the nodes follows from the fact that π̂n,s(t) = (−1)n

× πn,s(−t) is a monic polynomial of degree n that satisfies the same power or-
thogonality condition as does πn,s and, hence, by uniqueness, must be identically
equal to πn,s(t). The symmetry of the weights is a consequence of the symmetry
of the underlying Hermite interpolation process. 2

Example 3.21 Gauss–Turán formula for the Chebyshev measure dλ(t) =
(1 − t2)−1/2 dt.

By a result of Bernstein (1930), the extremal polynomial of (3.1.60) is the
monic Chebyshev polynomial 21−nTn(t) for each s ≥ 0. Therefore, the Chebyshev
points τν = cos((2ν − 1)/2n)π serve as nodes for all Gauss–Turán formulae

(3.1.58) with s = 0, 1, 2, . . . , that is, there are weights λ
(σ)
ν such that

∫ 1

−1

f(t)(1−t2)−1/2 dt =

n∑

ν=1

2s∑

σ=0

λ(σ)
ν f (σ)(τν)+Rn,s(f), s = 0, 1, 2, . . . , (3.1.62)

where Rn,s(f) = 0 for all f ∈ P2(s+1)n−1. There are no simple explicit formulae

for the weights λ
(σ)
ν , but by a result of Kis (1957) they can be obtained, in

principle, from the alternative trigonometric form of (3.1.62),

∫ 1

−1

f(t)(1 − t2)−1/2 dt =
π

ns!2

n∑

ν=1

s∑

j=0

Sj

4jn2j
[D2jf(cos θ)]θ=θν

+Rn,s(f),

(3.1.63)
whereD = d/dθ, θν = (2ν−1)π/2n, and Ss−j , j = 0, 1, . . . , s, are the elementary
symmetric polynomials in the numbers 12, 22, . . . , s2, that is,

Ss = 1, Ss−1 = 12 + 22 + · · · + s2, . . . , S0 = 12 · 22 · · · s2.

For s = 1, for example, one finds

λ(0)
ν =

π

n
, λ(1)

ν = − τν
4n3

, λ(2)
ν =

π

4n3
(1 − τ2

ν ) (s = 1),

and for s = 2,

λ(0)
ν =

π

n
, λ(1)

ν = − πτν
64n5

(20n2 − 1), λ(2)
ν =

π

64n5
[(20n2 − 7)(1 − τ2

ν ) + 3],

λ(3)
ν = −3πτν

32n5
(1 − τ2

ν ), λ(4)
ν =

π

64n5
(1 − τ2

ν )2 (s = 2).
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Formulae for s = 3 are given in Gautschi and Milovanović (1997, p. 215). Note

that, indeed, λ
(σ)
ν > 0 if σ is even.

3.1.3.2 Computation of the Gauss–Turán formula There are two separate is-
sues: the generation of the s-orthogonal polynomials and their zeros τν , and the

computation of the weights λ
(σ)
ν . We begin with the first.

The basic idea is to reinterpret the power orthogonality condition (3.1.59),
where ωn = πn,s, as an ordinary orthogonality condition relative to the (positive)
measure dλn,s(t) = [πn,s(t)]

2s dλ(t),
∫

R

πn,s(t)p(t) dλn,s(t) = 0 for all p ∈ Pn−1. (3.1.64)

This suggests to consider a sequence of n+ 1 (monic) polynomials π0,s, π1,s, . . . ,
πn,s orthogonal with respect to the measure dλn,s and to generate them by the
usual three-term recurrence relation. The last of these polynomials is the one we
are actually interested in. The catch, of course, is that the measure depends on
the (as yet unknown) polynomial πn,s. Nevertheless, there must exist a three-
term recurrence relation (1.3.2) for the polynomials πk = πk,s, with certain
(unknown) coefficients αk and βk given by (1.3.3) and (1.3.4), where dλ is to be
replaced by dλn,s. Writing out the first n of formulae (1.3.3), and the first n− 1
of (1.3.4), yields a system of 2n− 1 nonlinear equations

f (ρ) = 0, ρT = [α0, . . . , αn−1;β1 . . . , βn−1], (3.1.65)

where fT = [f1, f2, . . . , f2n−1] is given by

f2ν+1 =

∫

R

(αν − t)π2
ν(t)π2s

n (t) dλ(t), ν = 0, 1, . . . , n− 1,

f2ν =

∫

R

(βνπ
2
ν−1(t) − π2

ν(t))π2s
n (t) dλ(t), ν = 1, . . . , n− 1.

(3.1.66)

Each of the fk is, indeed, a function of the coefficients α0, α1, . . . ;β1, β2 . . . ,
which appear on the right-hand sides of (3.1.66) either explicitly or implicitly
through the polynomials π1, π2, . . . , πn, which must be generated recursively by
means of these coefficients. Thus, given a set of coefficients, the integrands in
(3.1.66) can be computed recursively for any given t. Since they are polynomials
of degrees ≤2(s+ 1)n− 1, the integrals themselves can be computed exactly by
an (s+ 1)n-point Gauss quadrature rule relative to the measure dλ. The latter,
in turn, can be computed as described in §3.1.1.1. The same quadrature rule can
be used, if need be, to compute β0 =

∫
R
[πn,s(t)]

2s dλ(t), once the coefficients αν

and βν have been obtained.
In order to solve (3.1.65) by Newton’s method, we need the Jacobian matrix

∂f/∂ρ of f . This requires the auxiliary quantities

aνµ =
∂πν

∂αµ
, µ = 0, 1, . . . , n−1; bνµ =

∂πν

∂βµ
, µ = 1, 2, . . . , n−1; ν = 0, 1, . . . , n,
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which may be placed in two matrices A and B of dimensions (n + 1) × n and
(n+ 1)× (n− 1), respectively. It is clear that aνµ = bνµ = 0 if ν ≤ µ, so that A

and B are lower triangular matrices with zeros on the diagonal. The µth column,
µ = 0, 1, . . . , n− 1, of A is obtained by differentiating the three-term recurrence
relation (1.3.2) with respect to αµ. This yields the recursion

aµ+1,µ = −πµ(t), aµµ = 0,

aν+1,µ = (t− αν)aνµ − βνaν−1,µ, ν = µ+ 1, µ+ 2, . . . , n− 1.

Similarly, one finds for the µth column, µ = 1, 2, . . . , n− 1, of B,

bµ+1,µ = −πµ−1(t), bµµ = 0,

bν+1,µ = (t− αν)bνµ − βνbν−1,µ, ν = µ+ 1, µ+ 2, . . . , n− 1.

Differentiating (3.1.66) with respect to αµ and βµ, we can express the elements
of the Jacobian in terms of the auxiliary quantities aνµ and bνµ as follows:

∂f2ν+1

∂αµ
= 2

∫

R

π2s−1
n (t)[(αν − t)pνµ(t) + 1

2δνµπ
2
ν(t)πn(t)] dλ(t),

∂f2ν+1

∂βµ
= 2

∫

R

π2s−1
n (t)(αν − t)qνµ(t) dλ(t),

∂f2ν

∂αµ
= 2

∫

R

π2s−1
n (t)(βνpν−1,µ(t) − pνµ(t)) dλ(t),

∂f2ν

∂βµ
= 2

∫

R

π2s−1
n (t)[(βνqν−1,µ(t) − qνµ(t)) + 1

2δνµπ
2
ν−1(t)πn(t)] dλ(t) (if ν > 0),

(3.1.67)
where

pνµ(t) = πν(t)(aνµπn(t) + sanµπν(t)), qνµ(t) = πν(t)(bνµπn(t) + sbnµπν(t)).

(When ν = 0 in the third relation of (3.1.67), one has p−1,µ = 0 and p0µ = sanµ.)
By examining the degrees of the integrands in (3.1.67), one finds that the same
(s+ 1)n-point Gauss quadrature rule applicable for (3.1.66) can also be applied
to (3.1.67).

Newton’s iteration for solving (3.1.65) can now easily be implemented. There
remains the difficulty, however, of procuring good initial approximations to αk,
βk, k = 0, 1, . . . , n − 1. For given n and s, a natural choice are the coefficients
αk(dλ) and βk(dλ) corresponding to s = 0, which are assumed known. If this
does not work, we recommend one of two alternatives, or a combination of both:
(1) Lower the accuracy requirement until convergence is achieved, and then use
the results as new initial approximations for a next higher accuracy level. Con-
tinue in this manner until the desired accuracy level is attained. (2) Use a discrete
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homotopy approach in the variable s by considering a chain of problems corre-
sponding to values s′ = 0, 1, . . . , s of s. The first problem in this chain has the
solution αk(dλ) and βk(dλ), and the last problem is the one we want to solve.
Each problem, starting with s′ = 1, is now solved in succession, using as intitial
approximations the solution of the preceding problem. Once Newton’s method
has converged, the solution vector ρ of the recursion coefficients αk and βk yields
the Jacobi matrix Jn(dλn,s), whose eigenvalues are the desired nodes τν .

As far as the weights are concerned, it turns out that for each ν the weights

λ
(0)
ν , λ

(1)
ν , . . . , λ

(2s)
ν are the solution of a triangular system of linear equations (for

details, see Gautschi and Milovanović (1997, §3)). Indeed, let4

λ̂σ = σ!λ(σ)
ν , σ = 0, 1, . . . , 2s,

and

µ̂σ =

∫

R

(t− τν)σ




n∏

µ=1
µ6=ν

t− τµ
τν − τµ




2s+1

dλ(t), σ = 0, 1, . . . , 2s,

and let λ̂, µ̂ be the respective vectors of dimension 2s + 1. Define the upper
triangular Toeplitz matrix Â = [âik] of order 2s+ 1 with diagonal elements

âkk = 1, k = 1, 2, . . . , 2s+ 1,

and the jth upper paradiagonal, j = 1, 2, . . . , 2s, defined by

âk,k+j = −2s+ 1

j

j∑

`=1

u`â`j, k = 1, 2, . . . , 2s+ 1 − j,

where

u` =

n∑

µ=1
µ6=ν

(
1

τµ − τν

)`

, ` = 1, 2, . . . , 2s.

Then,

Âλ̂ = µ̂. (3.1.68)

Since the integral defining µ̂σ involves a polynomial of degree at most 2(s+1)n−
n−1, it can be computed exactly by the same (s+1)n-point Gauss formula used
before in (3.1.66) and (3.1.67).

The procedure is implemented in the OPQ routine turan.m.

Example 3.22 Symmetric measure and n = 2, s = 1 or s = 2.

4In the corresponding formula for bk on p. 213 of Gautschi and Milovanović (1997), the
factorial sign was inadvertently omitted.
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From the proof of Theorem 3.20, it follows that αk = 0 for all k, and hence
π1(t) = t, π2(t) = tπ1(t)−β1 = t2 −β1, so that the system of equations (3.1.65),
for n = 2, can be written as

∫

R

t(t2 − β1)
2s dλ(t) = 0,

∫

R

t3(t2 − β1)
2s dλ(t) = 0,

∫

R

(t2 − β1)
2s+1 dλ(t) = 0.

The first two equations are automatically satisfied by symmetry. The third equa-
tion, for s = 1, is a cubic equation in β1,

µ0β
3
1 − 3µ2β

2
1 + 3µ4β1 − µ6 = 0 (s = 1),

where µk are the moments of dλ. By the uniqueness of π2, there can be only
one real (in fact, positive) root. Likewise, for s = 2, one obtains for β1 a quintic
equation,

µ0β
5
1 − 5µ2β

4
1 + 10µ4β

3
1 − 10µ6β

2
1 + 5µ8β1 − µ10 = 0 (s = 2).

By straightforward, though tedious, calculations, the generating elements for the
Toeplitz matrix Â for ν = 1 and ν = 2 are found to be (assuming τ1 > 0 > τ2 =
−τ1)

â11 = 1, â12 = − 3
2 (−1)ντ−1

1 , â13 = 3
4 τ

−2
1 (s = 1),

and

â11 = 1, â12 = − 5
2 (−1)ντ−1

1 , â13 = 5
2τ

−2
1 , â14 = − 5

4 (−1)ντ−3
1 , â15 = 5

16 τ
−4
1

(s = 2),

while the components of the vectors µ̂ are, for s = 1,

µ̂0 = 1
8 (µ0 − 3(−1)νµ1τ

−1
1 + 3µ2τ

−2
1 − (−1)νµ3τ

−3
1 ),

µ̂1 = 1
8 ((−1)νµ0τ1 − 2µ1 + 2µ3τ

−2
1 − (−1)νµ4τ

−3
1 ),

µ̂2 = 1
8 (µ0τ

2
1 − (−1)νµ1τ1 − 2µ2 + 2(−1)νµ3τ

−1
1 + µ4τ

−2
1 − (−1)νµ5τ

−3
1 ),

and, for s = 2,
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µ̂0 = 1
32 (µ0 − 5(−1)νµ1τ

−1
1 + 10µ2τ

−2
1 − 10(−1)νµ3τ

−3
1 + 5µ4τ

−4
1 − (−1)νµ5τ

−5
1 ),

µ̂1 = 1
32 ((−1)νµ0τ1 − 4µ1 + 5(−1)νµ2τ

−1
1 − 5(−1)νµ4τ

−3
1 + 4µ5τ

−4
1 − (−1)νµ6τ

−5
1 ),

µ̂2 = 1
32 (µ0τ

2
1 − 3(−1)νµ1τ1 + µ2 + 5(−1)νµ3τ

−1
1 − 5µ4τ

−2
1 − (−1)νµ5τ

−3
1

+3µ6τ
−4
1 − (−1)νµ7τ

−5
1 ),

µ̂3 = 1
32 ((−1)νµ0τ

3
1 − 2µ1τ

2
1 − 2(−1)νµ2τ1 + 6µ3 − 6µ5τ

−2
1 + 2(−1)νµ6τ

−3
1

+2µ7τ
−4
1 − (−1)νµ8τ

−5
1 ),

µ̂4 = 1
32 (µ0τ

4
1 − (−1)νµ1τ

3
1 − 4µ2τ

2
1 + 4(−1)νµ3τ1 + 6µ4 − 6(−1)νµ5τ

−1
1 − 4µ6τ

−2
1

+4(−1)νµ7τ
−3
1 + µ8τ

−4
1 − (−1)νµ9τ

−5
1 ).

The explicit formulae assembled here have been found useful in the develop-
ment and testing of the routine turan.m.

Example 3.23 Gauss–Turán formulae for the Legendre measure.
Here, dλ(t) = dt on [−1, 1]. The Matlab script

eps0=1.e-14;

ab0=r jacobi(21); hom=1;

for n=2:7

for s=1:2

xw=turan(n,s,eps0,ab0,hom);

end

end

computes formulae (3.1.58) for n = 2, 3, . . . , 7, s = 1, and s = 2, with a requested
accuracy level of 10−14. The value hom=1 of the parameter hom means that
homotopy in the variable s is used. Newton’s method in this case never required
more than seven iterations. Without homotopy (hom=0), it required as much as
12 iterations (for n = 7 and s = 2). Comparing the results with the 20-decimal
values in Tables 1 and 2 of Stroud and Stancu (1965), we found that the error
is usually a few units in the 16th decimal place, more precisely, 1–2 units for

the weights λ
(σ)
ν , 1 ≤ σ ≤ 2s, up to 18 units for λ

(0)
ν , and less than 6 units

for the nodes; see the OPQ routine Example3 23.m. This high degree of accuracy
is achieved in spite of the fact that the condition of the Jacobian matrices in
Newton’s method, and especially that of the matrices Â, becomes fairly bad
with increasing n. For n = 7 and s = 2, the respective condition numbers are
2.0 × 104 and as large as 5.3 × 1010.

Example 3.24 Gauss–Turán formulae for the Laguerre and Hermite measures.
Similarly as in Example 3.23, and with comparable success, we reproduced the

results for the Laguerre measure given in Table 5 of Stroud and Stancu (1965). It
was observed, however, that the Jacobian matrices become ill conditioned much
more rapidly, reaching a condition number of the order 109 already for n = 4,
when s = 2. The method failed to converge when n = 5. For the Hermite measure,
we reproduced all results in Tables 3 and 4 of Stroud and Stancu (1965) except
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those for n = 7. However, n = 6 and s = 1 required 26 iterations for Newton’s
method to converge. It failed to converge when n = 7, in part because of the
ill-conditioning of the Jacobian matrices. See the OPQ routine Example3 24.m.

3.1.4 Quadrature formulae based on rational functions

The Gauss and Gauss-type quadrature formulae discussed so far, including the
Gauss–Kronrod and Gauss–Turán formulae, are all polynomial-based; they are
optimal with respect to polynomial degree of exactness. This is meaningful if the
functions to be integrated are indeed polynomial-like, but may be questionable
otherwise. As is often the case, for example, the integrand has poles outside the
interval of integration, perhaps even infinitely many. It would then be natural
to require exactness not only for polynomials of certain degrees, but also for
elementary rational functions having the same poles, or at least the more impor-
tant ones among them (those closest to the interval of integration). This calls for
quadrature rules of mixed polynomial/rational degree of exactness. The present
section is devoted to a study of these “rational” quadrature rules.

3.1.4.1 Rational Gauss formulae We begin with a quadrature rule of the usual
form ∫

R

f(t) dλ(t) =

n∑

ν=1

λνf(τν) +Rn(f), (3.1.69)

where dλ is a positive measure and f is assumed to have poles in the complex
plane away from the support interval of dλ. Let m be an integer satisfying

0 ≤ m ≤ 2n (3.1.70)

and Qm the linear space of rational functions defined by

Qm = span{r : r(t) = (1 + ζµt)
−s, s = 1, 2, . . . , sµ; µ = 1, 2, . . . ,M},

M∑

µ=1

sµ = m.

(3.1.71)
Thus, Qm is a space of dimension m consisting of all linear combinations of
the elementary rational functions (1 + ζµt)

−s. The parameters ζµ are distinct
real or complex numbers meant to be chosen such that −1/ζµ, the poles of the
elementary rational functions, are equal to, or approximate, the most relevant
poles of f . The integers sµ are the multiplicities of the respective poles. We
assume that

ζµ 6= 0, 1 + tζµ 6= 0 for t ∈ [a, b], µ = 1, 2, . . . ,M, (3.1.72)

where [a, b] is the support interval of dλ. We denote by S2n the space of dimension
2nmade up of the space Qm of dimensionm adjoined by the space of polynomials
of degree ≤2n− 1 −m,
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S2n = Qm ⊕ P2n−1−m. (3.1.73)

Our objective is to construct formula (3.1.69) in such a way that

Rn(f) = 0 for all f ∈ S2n. (3.1.74)

The integer m is a parameter that can be chosen at our discretion, subject
to (3.1.70). In the limit case m = 0, the space Qm is empty, S2n = P2n−1,
and we are back in the polynomial case. The other extreme, m = 2n, yields for
S2n a space of genuinely rational functions (P−1 is empty), and the resulting
quadrature formula will not be exact for any polynomial, not even constants. In
practice, a middle ground is probably best, that is, a value of m about halfway
between 0 and 2n.

The manner in which the desired quadrature rule can be constructed is the
content of the following theorem.

Theorem 3.25 Define the polynomial (of exact degree m)

ωm(t) =

M∏

µ=1

(1 + ζµt)
sµ . (3.1.75)

Assume that the measure dλ/ωm admits an n-point (polynomial) Gaussian quadra-
ture formula

∫

R

p(t)
dλ(t)

ωm(t)
=

n∑

ν=1

λG
ν p(τ

G
ν ) for all p ∈ P2n−1, (3.1.76)

having distinct nodes τG
ν contained in the support interval [a, b] of dλ. Then,

τν = τG
ν , λν = λG

ν ωm(τG
ν ), ν = 1, 2, . . . , n, (3.1.77)

yields the desired formula (3.1.69) satisfying (3.1.74).
Conversely, if (3.1.69) and (3.1.74) hold with τν in the support interval of

dλ, then so does (3.1.76) with τG
ν and λG

ν as obtained from (3.1.77).

Proof Assume first (3.1.76), with all τG
ν contained in the support interval of

dλ. Let

qµ,s(t) =
ωm(t)

(1 + ζµt)s
, µ = 1, 2, . . . ,M ; s = 1, 2, . . . , sµ. (3.1.78)

Since m ≤ 2n and s ≥ 1, one has qµ,s ∈ Pm−s ⊆ P2n−1, and, therefore, by
(3.1.76),

∫

R

dλ(t)

(1 + ζµt)s
=

∫

R

qµ,s(t)
dλ(t)

ωm(t)
=

n∑

ν=1

λG
ν qµ,s(τ

G
ν )

=
n∑

ν=1

λG
ν

ωm(τG
ν )

(1 + ζµτG
ν )s

=
n∑

ν=1

λν

(1 + ζµτν)s
.

Here, (3.1.77) has been used in the last step, and none of the denominators on the
far right vanishes because of (3.1.72) and the assumption τν ∈ [a, b]. This proves
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(3.1.74) for the rational part Qm of S2n. The assertion for the polynomial part
P2n−1−m follows similarly: If p is any polynomial in P2n−1−m, then pωm ∈ P2n−1,
and (3.1.76) yields

∫

R

p(t) dλ(t) =

∫

R

p(t)ωm(t)
dλ(t)

ωm(t)
=

n∑

ν=1

λG
ν p(τ

G
ν )ωm(τG

ν ) =

n∑

ν=1

λνp(τν),

again by (3.1.77).
To prove the converse, note first of all that λG

ν is well defined by (3.1.77), since
ωm(τG

ν ) 6= 0 by (3.1.72) and the assumption τG
ν ∈ [a, b]. One then verifies that

(3.1.76) holds for all polynomials (3.1.78) (of degrees <m) and all polynomials
of the form pωm, p ∈ P2n−1−m, the union of which spans P2n−1. 2

Remark to Theorem 3.25 It is sometimes useful to consider in place of
(3.1.69) the more specific quadrature rule

∫

R

f(t)s(t) dλ(t) =

n∑

ν=1

λνf(τν) +Rn(f), (3.1.79)

where s is a function that exhibits difficult behavior unrelated to the poles of f ,
and dλ is one of the standard integration measures. Theorem 3.25 then remains
valid if (3.1.76) is replaced by

∫

R

p(t)
s(t) dλ(t)

ωm(t)
=

n∑

ν=1

λG
ν p(τ

G
ν ), p ∈ P2n−1. (3.1.80)

Since the numbers ζµ, in general, are complex, the “modified measure” dλ/ωm

in (3.1.76) may be complex-valued, and the existence of the Gauss formula
(3.1.76) is not ensured. There is no such uncertainty, however, if ωm is of con-
stant sign on [a, b], a situation that occurs in a number of special cases, all of
interest in applications. We mention here some of the more important ones.

Example 3.26 Simple real poles.

Here, all sµ = 1 (hence M = m), and ζµ = ξµ are real and distinct, with
ξµ 6= 0, µ = 1, 2, . . . ,m. The polynomial ωm then becomes

ωm(t) =

m∏

µ=1

(1 + ξµt).

Since by assumption ωm does not vanish on the support interval [a, b], the poly-
nomial ωm has constant sign on [a, b], that is, dλ/ωm is a (positive or negative)
definite measure. All of its moments evidently exist. The Gauss formula (3.1.76),
therefore, exists uniquely for every n, and all its nodes are in [a, b].
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Example 3.27 Simple conjugate complex poles.
This is the case where all sµ = 1, m is even, and

ζµ = ξν + iην , ζµ+1 = ξν − iην (ν = 1 + bµ/2c),
µ(odd) = 1, 3, . . . ,m− 1,

where all ξν are real and all ην positive. Then,

ωm(t) =

m/2∏

ν=1

[(1 + ξνt)
2 + η2

νt
2], 2 ≤ m(even) ≤ 2n.

This is clearly positive on R, and the hypotheses of Theorem 3.25 are satisfied.

Example 3.28 Same as Examples 3.26 or 3.27, but with sµ = 2 (hence m =
2M).

Example 3.29 Simple conjugate complex poles plus a real simple pole.
Here, all sµ = 1, m is odd ≥3, and

ζµ = ξν + iην , ζµ+1 = ξν − iην (ν = 1 + bµ/2c),
µ(odd) = 1, 3, . . . ,m− 2,

ζm = ξm ∈ R,

with ξν ∈ R, ην > 0. This yields

ωm(t) = (1 + ξmt)

(m−1)/2∏

ν=1

[(1 + ξνt)
2 + η2

νt
2],

which again has constant sign on [a, b].

Example 3.30 Same as Example 3.29, but with two simple poles instead of
one.

Note that all weights λν in (3.1.69) are positive in each of these examples.
This is clear if ωm > 0 on [a, b], but also if ωm < 0, since then λG

ν < 0 in (3.1.76)
and thus λν > 0 by (3.1.77).

Given an ωm of constant sign on [a, b], the problem thus boils down to con-

struct the Gauss quadrature rule (3.1.76) for the measure dλ̂m = dλ/ωm or,
what suffices in view of §3.1.1, the computation of the first 2n recurrence coef-
ficients α̂k = αk(dλ̂m), β̂k = βk(dλ̂m), k = 0, 1, . . . , n − 1. Unless some of the
zeros of ωm, that is, some of the respective poles, are close to the interval [a, b], a
simple-minded discretization method (cf. §2.2.4) will do, the discretizations be-
ing accomplished by Gaussian quadrature rules relative to the measure dλ. This
is implemented in the OPQ routine r mod.m, which calls on the routine mcdis.m

to do the discretization. The output α̂k, β̂k, k = 0, 1, . . . , n − 1, of the routine
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r mod.m is then fed into the routine gauss rational.m, which generates the de-
sired n-point rational Gauss formula according to Theorem 3.25. In the case of
“difficult” poles, that is, poles close to [a, b], additional work is required, which
will be described in §3.1.4.2.

Example 3.31 The integral
∫ 1

−1
(πt/ω)/ sin(πt/ω) dt, ω > 1.

The poles of the integrand are all simple and located at the integer multiples
of ω; we are in the case of Example 3.26. To set up the space Qm, it is natural
to let m be even and to incorporate the m poles closest to, and on either side
of, the interval [−1, 1]. The corresponding values of ξν (the negative reciprocals
of the poles) are then

ξν =
(−1)ν

b(ν + 1)/2cω , ν = 1, 2, . . . ,m. (3.1.81)

The discretization procedure described for computing the quadrature rule (3.1.76)
works quite well, unless ω is very close to 1. For this latter case, see Example

Table 3.1 The integral of Example 3.31 with ω = 1.1
evaluated by rational Gauss quadrature.

n m Integral Error Ncap kount

1 2 3.34897468149577 2.504(–01) 51 16
4 8 4.46777134878307 5.143(–07) 49 8
7 14 4.46777364638772 9.741(–15) 57 6
10 20 4.46777364638777 0.000(+00) 81 6

1 2 3.34897468149577 2.504(–01) 51 16
4 4 4.46773974921780 7.587(–06) 49 8
7 8 4.46777364638446 7.399(–13) 57 6
10 10 4.46777364638776 1.392(–15) 81 6

1 2 3.34897468149577 2.504(–01) 51 16
4 2 4.46735807863000 9.302(–05) 49 8
7 2 4.46777355977115 1.939(–08) 57 6
10 2 4.46777364637083 3.792(–12) 81 6

1 0 2.00000000000000 5.524(–01) — —
4 0 4.24804106331922 4.918(–02) — —
7 0 4.45139788821468 3.665(–03) — —
10 0 4.46659960850924 2.628(–04) — —

3.34. Typical choices of m are m = 2n, m = 2b(n+ 1)/2c, and m = 2. For these,
and also for m = 0, selected results produced by the rational Gauss quadrature
rule are shown for ω = 1.1 in Table 3.1; they are obtained by the OPQ routine
Example3 31.m, the core of which looks as follows:
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ab0=r jacobi(Nmax);

eps0=100*eps; sgn=1;

for m=1:M

sgn=-sgn;

Z(m,1)=sgn/(om*floor((m+1)/2)); Z(m,2)=1;

end

[abmod,Ncap,kount]=r mod(N,ab0);

xw=gauss rational(N,abmod);

The first command provides sufficiently many (Nmax) recursion coefficients for
the Legendre measure dλ(t) = dt on [−1, 1]. The choice Nmax =100 turned out
to be adequate in all cases. The error tolerance eps0 is used in the routine
mcdis.m (called by r mod.m), which also returns the integers Ncap and kount.
They indicate the maximum number of Legendre recurrence coefficients, resp. the
number of iterations, actually needed for the discretization process to converge.
The array Z containing the ζµ and their multiplicities is used in the quadrature
routine that generates the discretizations in mcdis.m. The (relative) errors shown
in Table 3.1 were determined by comparison with results obtained by Maple to
20 decimals. It can be seen that incorporating the maximum number m = 2n of
poles yields the best results in this example. The accuracy deteriorates noticeably
asm is decreased and is distinctly inferior whenm = 0 (ordinary Gauss–Legendre
quadrature).

Example 3.32 The integral
∫ 1

0
Γ(1 + t)t−1/2 dt/(t+ ω), ω > 0.

The measure here is dλ(t) = t−1/2 dt on [0, 1], and the poles are at −ω and
at the negative natural numbers. Accordingly, we take

ξν =
1

ν
, ν = 1, 2, . . . ,m− 1; ξm =

1

ω
.

Selected results for ω = 0.1, m = 2n, m = n, m = 2, and m = 0, analogous
to those in Example 3.31, are produced by the OPQ routine Example3 32.m and
are shown in Table 3.2. The core of the routine is almost identical to the one
exhibited in Example 3.31, except for the obvious change in the generation of
ξν and the fact that we now need the routine r jacobi01(Nmax,0,-1/2). In
this example, the results for m = n, and even those for m = 2, are slightly more
accurate than those for m = 2n (except when n = m = 1). The strong showing
of m = 2 in this example, compared to Example 3.31, may at first surprise,
but on reflection seems quite natural, given that the two most relevant poles in
Example 3.31 are at the same distance from the support interval, whereas here
they are not.

3.1.4.2 Difficult poles Poles that lie close to the support interval [a, b] of dλ are
difficult to handle by the discretization procedure in mcdis.m, since the measure
dλ̂m = dλ/ωm is nearly singular. It is better, in such cases, to first process
the “benign” poles, that is, apply the procedure described in §3.1.4.1 to the
measure dλ̃ = dλ/ω̃m, where ω̃m is the (constant-sign) polynomial corresponding
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Table 3.2 The integral of Example 3.32 with ω = 0.1
evaluated by rational Gauss quadrature.

n m Integral Error Ncap kount

1 2 7.54645695430477 1.642(–02) 31 13
4 8 7.67246131529514 1.657(–07) 41 7
7 14 7.67246258637016 5.163(–14) 57 6
10 20 7.67246258637055 1.158(–15) 61 5

1 1 7.46180867023317 2.746(–02) 31 13
4 4 7.67246240210902 2.402(–08) 41 7
7 7 7.67246258637054 2.894(–15) 57 6
10 10 7.67246258637056 5.788(–16) 61 5

1 2 7.54645695430477 1.642(–02) 31 13
4 2 7.67246253098169 7.219(–09) 41 7
7 2 7.67246258637053 3.936(–15) 57 6
10 2 7.67246258637055 1.042(–15) 61 5

1 0 4.12144389955038 4.628(–01) — —
4 0 7.56688893903608 1.376(–02) — —
7 0 7.66991858256827 3.316(–04) — —
10 0 7.67240170362946 7.935(–06) — —

to all poles other than the difficult ones, and then do some postprocessing to
incorporate the difficult poles. We describe the relevant procedures in the special
(but important) case where all benign poles are simple and either all real, or all
complex occurring in conjugate complex pairs. With regard to the difficult poles,
we assume that there is either one such pole, which is real and simple, or a pair
of simple real poles located symmetrically with respect to the origin.

We begin with the case of a single difficult pole x ∈ R. Suppose we have
already generated by the method of §3.1.4.1 sufficiently many recursion coeffi-
cients α̃k and β̃k for the (partially modified) measure dλ̃ = dλ/ω̃m. The problem

then is to compute the recursion coefficients α̂k and β̂k for the (fully modified)
measure

dλ̂(t) =
dλ̃(t)

t− x
, (3.1.82)

where x is close to, but outside the support interval [a, b] of dλ̃ (or of dλ, which
is the same). This is precisely the problem discussed in §2.4.4 and can be solved
by Algorithm 2.8. Recall, however, that this algorithm requires knowledge of the
Cauchy integral

ρ0(x; dλ̃) =

∫

R

dλ̃(t)

x− t
. (3.1.83)
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One possibility of computing it is to apply the continued fraction algorithm of
§2.3.2. Unfortunately, and especially when x is close to [a, b], as we assume here,
this would require a large number of recurrence coefficients α̃k and β̃k. We prefer
another technique that relies more on the original measure dλ. It is based on the
decomposition of ω̃−1

m into partial fractions. We consider separately the case
where all zeros of ω̃m are real, and the case where all are complex, occurring in
conjugate complex pairs.

In the first case,

1

ω̃m(t)
=

1∏
ν(1 + ξνt)

=
∑

ν

cν/ξν
1/ξν + t

,

where the sum and product are extended over all benign poles (or, perhaps,
approximations thereof), and where

cν =
∏

µ6=ν

1

1 − ξµ/ξν
. (3.1.84)

Empty products (if there is only one, or no, benign pole) are understood to be
equal to 1. We then have from (3.1.83), since dλ̃ = dλ/ω̃m,

ρ0(x; dλ̃) =

∫

R

dλ(t)

(x− t)ω̃m(t)
=
∑

ν

∫

R

1

x− t

cν/ξν
1/ξν + t

dλ(t).

Writing
1

x− t

1

1/ξν + t
=

ξν
1 + ξνx

(
1

x− t
+

1

1/ξν + t

)
,

we get

ρ0(x; dλ̃) =
∑

ν

cν
1 + ξνx

[ρ0(x; dλ) − ρ0(−1/ξν ; dλ)]. (3.1.85)

Both terms in brackets can be computed by the continued fraction algorithm
alluded to above, but now for the underlying measure dλ, which is usually one
of the classical measures. The required recursion coefficients αk = αk(dλ) and
βk = βk(dλ), therefore, are easily generated, in large numbers if necessary. For
special measures, the Cauchy integral ρ0(x; dλ) is known explicitly (cf. Examples
3.33 and 3.34); for others (cf. Example 3.36), it may be evaluated analytically.

In the second case of conjugate complex zeros, similar ideas apply, but they
are a bit more complicated. The partial fraction decomposition of ω̃−1

m now has
the form

1

ω̃m(t)
=
∑

ν

cν + dνt

(t+ 1/ζν)(t+ 1/ζν)
, (3.1.86)

where the sum is extended over all pairs of conjugate complex (benign) poles.
By an elementary computation one finds
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cν =
Im(pν/ζν)

Im ζν
, dν =

Im pν

Im ζν
, (3.1.87)

where

pν =
∏

µ6=ν

1

(1 − ζµ/ζν)(1 − ζµ/ζν)
.

There follows

ρ0(x; dλ̃) =

∫

R

dλ(t)

(x− t)ω̃m(t)
=
∑

ν

∫

R

1

x− t

cν + dνt

(t+ 1/ζν)(t+ 1/ζν)
dλ(t).

Here, we can write

1

x− t

cν + dνt

(t+ 1/ζν)(t+ 1/ζν)
=

Aν

x− t
+

Bν

t+ 1/ζν
+

Cν

t+ 1/ζν

,

where

Aν =
cν + dνx

|x+ 1/ζν|2
, Bν =

i

2Im(1/ζν)

cν − dν/ζν
x+ 1/ζν

, Cν = Bν , (3.1.88)

to get

ρ0(x; dλ̃) =
∑

ν

(Aνρ0(x; dλ) − 2Re[Bνρ0(−1/ζν ; dλ)] ) . (3.1.89)

Both terms in the sum can again be computed as indicated immediately after
(3.1.85). For an application of this procedure, see Example 3.36 of §3.1.4.3.

Example 3.33 Example 3.32, revisited, with ω = 0.001.
The difficult pole here is the one at −ω. The Cauchy integral ρ0(x; dλ) for

dλ(t) = t−1/2 dt on [0, 1] and x < 0, required in the two occurrences on the right
of (3.1.85), can be obtained in closed form. Indeed,

ρ0(x; dλ) =

∫ 1

0

t−1/2 dt

x− t
= −

∫ 1

0

t−1/2 dt

|x| + t
(x < 0),

and the transformation t = s2 in the last integral on the right gives

ρ0(x; dλ) = −
∫ 1

0

s−1 · 2s ds

|x| + s2
= − 2

|x|

∫ 1

0

ds

1 + s2/|x|

= − 2

|x|

∫ 1/
√

|x|

0

√
|x| dt

1 + t2
= − 2√

|x|
tan−1

(
1√
|x|

)
.

There follows from (3.1.85), in which x = −ω, that
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ρ0(x; dλ̃) = ρ0(x; dλ) = − 2√
|x|

tan−1

(
1√
|x|

)
if m = 1,

ρ0(x; dλ̃) =
m−1∑

ν=1

2cν
1 + ξνx

{
− 1√

|x|
tan−1

(
1√
|x|

)
+
√
ξν tan−1

√
ξν

}
if m > 1,

(3.1.90)
where cν is given by (3.1.84). When m = 1, the benign poles are ignored and only
the difficult one is taken into account. When m > 2 is large, the second relation
in (3.1.90) is vulnerable to serious cancellation errors, since the constants cν
can assume large values of either sign; see, in this connection, Gautschi (1993a,
p. 124). No such problem occurs when m = 2, the summation in (3.1.90) then
consisting of just one term.

The procedure is implemented in the OPQ routine Example3 33.m and was
run for ω = 0.001, m = 2n, m = n, m = 2, m = 1, and m = 0. In the first three
cases, the results are quite similar, those for m = 2 being slightly more accurate
than the others. The latter are shown in Table 3.3 together with the results for
the last two cases. Note from the relatively small values of Ncap the ease with

Table 3.3 The integral of Example 3.32 with ω = 0.001
evaluated by rational Gauss quadrature.

n m Integral Error Ncap kount

1 2 96.5045731403309 2.059(–03) 13 8
4 2 96.7036881308250 1.019(–09) 17 4
7 2 96.7036882293812 2.939(–16) 22 3

1 1 96.2844423124649 4.335(–03) — —
4 1 96.7036780981287 1.048(–07) — —
7 1 96.7036882291188 2.713(–12) — —

1 0 5.34185151487088 9.448(–01) — —
4 0 23.4324747952258 7.577(–01) — —
7 0 39.9488620667821 5.869(–01) — —

which accurate results can be obtained when m > 1. As expected, this is in
stark contrast with the extremely poor answers furnished by the ordinary Gauss
formulae (m = 0). We also note the benefit accrued from the special treatment
of the pole at −ω. Without it, the routine r mod.m would have to work much
harder. In the case m = 2n, n = 7, for example, it returns Ncap=351.

Suppose now that we have two difficult poles ±x outside the support of dλ.
Then, in place of (3.1.82), the modified measure is

dλ̂(t) =
dλ̃(t)

t2 − x2
,
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and we need to compute its recurrence coefficients α̂k and β̂k. This is the last
problem discussed in §2.4.5 and is solved by Algorithm 2.11. It again requires
the Cauchy integral (3.1.83) in the combinations ρ0(x; dλ̃) + ρ0(−x; dλ̃) and
ρ0(x; dλ̃)−ρ0(−x; dλ̃), or, by virtue of (3.1.85), the Cauchy integrals ρ0(±x; dλ)
(in addition to ρ0(−1/ξν ; dλ) corresponding to the m− 2 benign poles).

Example 3.34 Example 3.31, revisited, with ω = 1.001.
There is a pair, ±ω, of difficult poles, and correspondingly ξ1,2 = ±1/ω in

(3.1.81). The remaining (benign) poles do not necessarily have to be accounted
for to high precision. Since ω ≈ 1, we can, therefore, replace ξν+2 in (3.1.81) by

ξ̃ν =
(−1)ν

b(ν + 3)/2c , ν = 1, 2, . . . ,m− 2,

and define ω̃m(t) =
∏m−2

ν=1 (1+ ξ̃νt) (=1 if m = 2). We then have (approximately)

ωm(t) =

(
1 − 1

ω2
t2
)
ω̃m(t) = − 1

ω2
(t2 − ω2)ω̃m(t),

so that the modified measure is

dλ̂(t) =
dt

ωm(t)
= −ω2 dt

(t2 − ω2)ω̃m(t)
= −ω2 dλ̃(t)

t2 − ω2
,

and Algorithm 2.11 is applicable with x = ω. The required Cauchy integrals

Table 3.4 The integral of Example 3.31 with ω = 1.001
evaluated by rational Gauss quadrature.

n m Integral Error Ncap kount

1 2 7.60900373691843 4.115(–01) — —
4 8 12.9292490747847 6.014(–07) 25 5
7 14 12.9292568506327 4.873(–11) 29 4

1 4 9.41774621137573 2.716(–01) 15 9
4 4 12.9291016962906 1.200(–05) 25 5
7 4 12.9292568467483 2.517(–10) 29 4

1 2 7.60900373691843 4.115(–01) — —
4 2 12.9270894147078 1.676(–04) — —
7 2 12.9292560307169 6.337(–08) — —

ρ0(±x; dλ̃) are given by (3.1.85) and (3.1.84), where the ξν are to be replaced by
ξ̃ν and where ρ0(x; dλ) = ρ0(x; dt) is computable explicitly. There follows
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ρ0(x; dλ̃) = ρ0(x; dt) = log

∣∣∣∣
x+ 1

x− 1

∣∣∣∣ if m = 2,

ρ0(x; dλ̃) =

m−2∑

ν=1

cν

1 + ξ̃νx
log

∣∣∣∣∣
(x+ 1)(ξ̃ν + 1)

(x− 1)(ξ̃ν − 1)

∣∣∣∣∣ if m > 2.

(3.1.91)

This is implemented in the OPQ routine Example3 34.m, which for ω = 1.001 and
m = 2n, m = 4, and m = 2, produces results as shown in Table 3.4. Note that
for the last value of m, only the difficult poles, and none of the benign poles, are
incorporated.

3.1.4.3 Fermi–Dirac and Bose–Einstein integrals These are integrals of inter-
est in solid state physics when Fermi–Dirac and Bose–Einstein distributions are
involved. We consider here generalized versions of these integrals containing an
extra parameter θ related to temperature.

Example 3.35 Generalized Fermi–Dirac integral

Fk(η, θ) =

∫ ∞

0

tk
√

1 + θt/2

e−η+t + 1
dt, η ∈ R, θ ≥ 0.

Here, k is the Boltzmann constant whose values of physical interest are the half-
integers k = 1

2 , k = 3
2 , and k = 5

2 . The parameter η, which can be positive or
negative, is a “degeneracy parameter” (Pichon, 1989).

For numerical purposes, it is convenient to write the integral in the form

Fk(η, θ) =

∫ ∞

0

√
1 + θt/2

e−η + e−t
tke−t dt, (3.1.92)

which suggests the generalized Laguerre measure (cf. Table 1.1) dλ(t) = tke−t dt
as the appropriate measure of integration. The poles of the integrand are all
simple and occur in conjugate complex pairs on the line Im ζ = η at odd integer
multiples of π away from the real axis. All these poles are benign. We are in the
case of Example 3.27 and thus take m even and

ζµ = − 1

η + µiπ
, ζµ+1 = − 1

η − µiπ
, µ(odd) = 1, 3, . . . ,m− 1,

that is, in the notation of Example 3.27,

ξν =
−η

η2 + (2ν − 1)2π2
, ην =

(2ν − 1)π

η2 + (2ν − 1)2π2
, ν = 1, 2, . . . ,m/2.

This gives rise to the positive polynomial ωm shown in Example 3.27. The n-
point rational Gauss formula for (3.1.92) can now be computed as described in
the paragraph preceding Example 3.31.

The procedure is implemented in the OPQ routine fermi dirac.m and was run
for θ = 10−4, η = ±1, and the three values of k, using m = 2n, m = 2b(n+1)/2c,
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Table 3.5 The Fermi–Dirac integral (3.1.92) for η = −1,
k = 1

2 , and θ = 10−4, evaluated by rational Gauss quadra-
ture.

n m Integral Error Ncap kount

1 2 0.275409029983064 5.199(–02) 43 15
4 8 0.290512275644047 4.866(–07) 73 10
7 14 0.290512417018931 1.933(–12) 85 8
10 20 0.290512417019493 1.720(–15) 101 7

1 2 0.275409029983064 5.199(–02) 43 15
4 4 0.290512392000444 8.612(–08) 73 10
7 8 0.290512417019499 2.102(–14) 85 8
10 10 0.290512417019493 5.733(–16) 101 7

1 2 0.275409029983064 5.199(–02) 43 15
4 2 0.290512145362808 9.351(–07) 73 10
7 2 0.290512416447331 1.970(–09) 85 8
10 2 0.290512417025901 2.206(–11) 101 7

1 0 0.301304326552001 3.715(–02) — —
4 0 0.290442503440480 2.407(–04) — —
7 0 0.290513664399923 4.294(–06) — —
10 0 0.290512463028434 1.584(–07) — —

m = 2, and m = 0. Table 3.5 shows the results for k = 1
2 , η = −1, which are

typical. It can be seen that the second choice of m, as in Example 3.32, yields
slightly more accurate answers than the first, and significantly better accuracy
than the other choices of m; see the routine Example3 35.m for implementational
details. To determine the (relative) errors, we used a quadruple-precision Fortran
routine to generate reference values to 24 decimal digits.

Example 3.36 Generalized Bose–Einstein integral

Gk(η, θ) =

∫ ∞

0

tk
√

1 + θt/2

e−η+t − 1
dt, η < 0, θ ≥ 0.

The values of k of interest are the same half-integers k = 1
2 , k = 3

2 , and k = 5
2

as in Example 3.35, but η now has to be negative.
For numerical work, we choose to write

Gk(η, θ) =

∫ ∞

0

t
√

1 + θt/2

e−η − e−t
tk−1e−t dt, (3.1.93)

where a factor t is split off to make the integrand regular at t = 0 even in the
case η = 0 (which, however, is excluded). The measure of integration, therefore,
is dλ(t) = tk−1e−t dt.
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There are again infinitely many simple conjugate complex poles on the line
Im ζ = η, now at a distance of multiples of 2π away from the real axis. This makes
them even more benign than the poles in Example 3.35. There is, however, an
additional real pole at t = η. We are, thus, in the case of Example 3.29, which
suggests to take m ≥ 3 odd, and to put

ζµ = − 1

η + (µ+ 1)iπ
, ζµ+1 = − 1

η − (µ+ 1)iπ
, µ(odd) = 1, 3, . . . ,m− 2,

ζm = −1

η
.

Therefore, in the notation of Example 3.29,

ξν =
−η

η2 + 4ν2π2
, ην =

2νπ

η2 + 4ν2π2
, ν = 1, 2, . . . , (m− 1)/2. (3.1.94)

The rational Gauss quadrature rule appropriate for (3.1.93) can be generated

Table 3.6 The Bose–Einstein integral (3.1.93) evaluated
by rational Gauss quadrature.

n m Integral Error Ncap kount

1 1 0.284309031568454 2.512(–01) 91 20
4 7 0.379707663443525 3.167(–06) 121 13
7 13 0.379708865993066 1.319(–11) 155 11
10 19 0.379708865998074 5.848(–16) 141 9

1 1 0.284309031568454 2.512(–01) 91 20
4 3 0.379708550494209 8.309(–07) 121 13
7 7 0.379708865998149 1.981(–13) 155 11
10 9 0.379708865998074 7.310(–16) 141 9

1 1 0.284309031568454 2.512(–01) 91 20
4 1 0.379698902772340 2.624(–05) 121 13
7 1 0.379708897989683 8.425(–08) 155 11
10 1 0.379708865562790 1.146(–09) 141 9

1 0 0.419669711250205 1.052(–01) — —
4 0 0.381220851941995 3.982(–03) — —
7 0 0.379832656726223 3.260(–04) — —
10 0 0.379725201927930 4.302(–05) — —

in the same manner as in Example 3.35, provided |η| is not very small. The
procedure is implemented in the OPQ routine bose einstein.m and used in the
routine Example3 36.m to obtain the results shown in Table 3.6 for θ = 10−4,
η = −1, k = 1

2 . For the other values of k, the results are similar. Since m, if
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positive, should be odd, we took m = 2n− 1, m = 2b(n+ 1)/2c− 1, m = 1, and
m = 0.

For very small values of |η|, the real pole at t = η must be treated separately
as described in §3.1.4.2. According to Example 3.29, we have

ωm(t) = (1 − t/η)ω̃m(t), ω̃m(t) =

(m−1)/2∏

ν=1

[(1 + ξνt)
2 + η2

νt
2], (3.1.95)

hence

dλ̂(t) =
dλ(t)

ωm(t)
=

dλ̃(t)

1 − t/η
= −ηdλ̃(t)

t− η
.

Algorithm 2.8 is thus applicable with x = η. To compute the Cauchy inte-
gral ρ0(x; dλ̃) in (3.1.89), we need the partial fraction decomposition of ω̃−1

m in
(3.1.86). Since |η| is very small, we can simplify (3.1.94) by letting ξν ≈ ξ̃ν ,
ην ≈ η̃ν , where

ξ̃ν = 0, η̃ν =
1

2νπ
, ν = 1, 2, . . . , (m− 1)/2, (3.1.96)

and redefining ω̃m in (3.1.95) by replacing ξν and ην by ξ̃ν and η̃ν , respectively.
This makes ω̃m independent of η. An elementary computation based on (3.1.87)
and (3.1.88), and using the approximations (3.1.96), then yields

ρ0(x; dλ̃) = ρ0(x; dλ) if m = 1,

ρ0(x; dλ̃) =

(m−1)/2∑

µ=1

2µπpµ

x2 + 4µ2π2
(2µπρ0(x; dλ)

−Re[(2µπ − ix)ρ0(2µπi; dλ)]) if m ≥ 3,

where

pµ =

(m−1)/2∏

κ=1
κ6=µ

κ2

κ2 − µ2
.

The Cauchy integrals ρ0(2µπi; dλ) are computable by the continued fraction
algorithm of §2.3.2, which converges rapidly. The same algorithm applied to
ρ0(x; dλ), when x < 0 is close to zero, would converge very slowly. Fortunately,
we can compute ρ0(x; dλ) analytically. Indeed,

ρ0(x; dλ) =

∫ ∞

0

tk−1e−t

x− t
dt = −

∫ ∞

0

tk−1e−t

|x| + t
dt,

and by the change of variables t 7→ |x|t,
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ρ0(x; dλ) = −|x|k−1

∫ ∞

0

tk−1e−|x|t

1 + t
dt.

The integral on the right is expressible in terms of the incomplete gamma function
as Γ(k)e|x|Γ(1 − k, |x|) = Γ(k)e|x|{Γ(1− k)− γ(1− k, |x|)} (see Gradshteyn and
Ryzhik (2000, eqn 3.383.10)), which, upon using Γ(k)Γ(1− k) = π/ sin(πk) and
the power series expansion of γ(1 − k, |x|), yields

ρ0(x; dλ) = −e|x|


 π

sin(πk)
|x|k−1 − Γ(k)

∞∑

j=0

(−1)j |x|j
(j + 1 − k)j!


 .

The series on the right converges quite rapidly when |x| is small. The procedure
is impemented in the OPQ procedure bose einstein diffpole.m.

Example 3.37 Example 3.36, revisited, with η = −0.001.
Here, the pole at t = η is clearly difficult, calling for the procedure embodied

in the routine bose einstein diffpole.m. The results produced by this rou-
tine, when θ = 10−4 and the m are chosen as in Example 3.36, are displayed in
Table 3.7 for the case k = 1

2 . The other values of k yield similar results, although
not quite as bad when m = 0; see the routine Example3 37.m. The integers Ncap
and kount characterize, as before, the computer intensity of the discretization

Table 3.7 The Bose–Einstein integral (3.1.93) with
η = −0.001 evaluated by rational Gauss quadrature.

n m Integral Error Ncap kount nu1

1 1 1.69040669641165 2.376(–01) — — —
4 7 2.21714386900473 2.811(–06) 49 8 30
7 13 2.21715010087722 1.543(–11) 71 7 30

1 1 1.69040669641165 2.376(–01) — — —
4 3 2.21714726128018 1.281(–06) 49 8 30
7 7 2.21715010090452 3.110(–12) 71 7 30

1 1 1.69040669641165 2.376(–01) — — —
4 1 2.21713613862449 6.297(–06) — — —
7 1 2.21714956475764 2.418(–07) — — —

1 0 2.24665592228785 1.331(–02) — — —
4 0 2.30358500893463 3.899(–02) — — —
7 0 2.29973499254897 3.725(–02) — — —

procedure in the routine mcdis.m for generating the recurrence coefficients of the
(partially) modified measure dλ̃ = dλ/ω̃m. Table 3.7 shows in addition the inte-
ger nu1, which is related to the computation of the Cauchy integral ρ0(2µπi; dλ)
for µ = 1, indicating the integer ν required for the continued fraction algorithm
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(2.3.14) to converge. Since all complex poles are benign, and the argument 2µπi
in the Cauchy integral is comfortably far away from the real axis, neither Ncap

nor nu1 are particularly large. Note that in the case m = 1, only the real pole
at t = η is taken into account.

All the numerical illustrations, so far, used the rather small value of θ = 10−4

taken from the physics literature (Sagar, 1991). The performance of the ratio-
nal Gauss formulae, as constructed, is bound to deteriorate with increasing θ,
on account of the square root singularity at t = −2/θ. To prevent this from
happening, one incorporates the factor s(t) =

√
1 + θt/2 into the modified mea-

sure, as indicated in the Remark to Theorem 3.25. This puts the burden on
the discretization procedure in the routine mcdis.m, which will have to work
harder. But once the respective coefficients α̂k(sdλ/ωm) and β̂k(sdλ/ωm) have
been generated, the quadrature rule (3.1.80) is readily obtained, and so are the
rational Gauss formulae, which now, even for large values of θ, enjoy again the
rapid convergence that we have seen in the previous examples. The modification,
incidentally, necessitates only one small change in the quadrature routine used
by mcdis.m (called by r mod.m) and in the function routine evaluating the in-
tegrand. (The necessary changes are identified in comments within the routines
quadrat.m and fex35.m, fex37.m.) But the effect of these changes can be rather
dramatic, as is illustrated in the next example.

Example 3.38 The generalized Fermi–Dirac integral for large θ.
We reran Example3 35.m, with the changes noted above, for θ = 1, θ = 10,

and θ = 100. In the last case, the error tolerance eps0 was lowered from 102×eps

to 106×eps= 2.22 × 10−10 in order to ease the burden on the routine mcdis.m.
The results for η = −1, k = 1

2 are shown in Table 3.8. Note the large values of
Ncap that are required, but the good accuracies achieved. The last column, in
contrast, shows the errors incurred when no changes are incorporated.

Table 3.8 The Fermi–Dirac integral (3.1.92) for large θ.

θ n m Integral Error Ncap kount Error0
1.0 1 2 0.361184320447425 5.910(–02) 51 16 9.834(–02)

4 8 0.383869494230472 7.153(–07) 73 10 1.439(–06)
7 14 0.383869768810864 3.325(–12) 85 8 7.033(–09)

10.0 1 2 0.769108163428219 6.228(–02) 251 27 1.247(–01)
4 8 0.820187855482118 8.348(–07) 265 18 4.588(–04)
7 14 0.820188540206230 4.059(–12) 351 16 6.872(–05)

100.0 1 2 2.2667230470 6.191(–02) 571 33 1.249(–01)
4 8 2.4163266837 8.397(–07) 617 24 1.791(–03)
7 14 2.4163287128 1.499(–11) 743 21 5.367(–04)

The same treatment is applicable in the case of Bose–Einstein integrals with
similar results. The case θ = 100, however, proved to strain the routine mcdis.m
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more than before, and the error tolerance eps0 had to be reduced some more
to 107×eps=2.22×10−9 to achieve convergence within the limit Nmax=1000 of
the discretization parameter N . The results for η = −1, k = 1

2 are shown in
Table 3.9; they were produced by a slightly changed routine Example3 36.m.
(The specific changes are indicated in comment lines.)

Table 3.9 The Bose–Einstein integral (3.1.93) for large θ.

θ n m Integral Error Ncap kount Error0
1.0 1 1 .354699024506360 2.725(–01) 91 20 3.720(–01)

4 7 .487528382100474 4.623(–06) 121 13 1.445(–05)
7 13 .487530635992235 2.280(–11) 155 11 1.418(–08)

10.0 1 1 .722916404688393 2.799(–01) 283 28 5.436(–01)
4 7 1.00386348178076 5.524(–06) 265 18 8.699(–04)
7 13 1.00386902658501 2.871(–11) 351 16 1.140(–04)

100.0 1 1 2.1604929294 2.606(–01) 763 35 5.991(–01)
4 7 2.9219317372 5.484(–06) 745 25 3.033(–03)
7 13 2.9219477618 4.323(–11) 743 21 8.530(–04)

3.1.4.4 Rational Gauss–Radau and Gauss–Lobatto formulae The discussion of
§3.1.4.1 for rational Gauss formulae extends almost verbatim to Gauss–Radau
and Gauss–Lobatto formulae. It suffices, therefore, to simply state the respective
facts, referring to eqn (3.1.71) for the definition of the space Qm and to eqn
(3.1.75) for the definition of the polynomial ωm.

With regard to the “left-handed” Gauss–Radau formula

∫

R

f(t) dλ(t) = λ0f(a) +

n∑

ν=1

λνf(τν) +Rn(f), (3.1.97)

where a = inf supp(dλ), we now assume, in place of (3.1.70), that

0 ≤ m ≤ 2n+ 1, (3.1.98)

and the appropriate rational/polynomial space is

S2n+1 = Qm ⊕ P2n−m. (3.1.99)

We then have the following characterization of rational Gauss–Radau formulae.

Theorem 3.39 Given the integer m satisfying (3.1.98), assume that the mea-
sure dλ/ωm admits an (n+ 1)-point Gauss–Radau formula

∫

R

p(t)
dλ(t)

ωm(t)
= λR

0 p(a) +

n∑

ν=1

λR
ν p(τ

R
ν ) for all p ∈ P2n, (3.1.100)

with distinct internal nodes τR
ν in the open support interval (a, b) of dλ. If S2n+1

is defined by (3.1.99), then
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τν = τR
ν , λν = λR

ν ωm(τR
ν ), ν = 0, 1, 2, . . . , n, (3.1.101)

yields formula (3.1.97) exact for f ∈ S2n+1.

There is, of course, an analogous result for “right-handed” Gauss–Radau
formulae.

For Gauss–Lobatto formulae,

∫

R

f(t) dλ(t) = λ0f(a) +

n∑

ν=1

λνf(τν) + λn+1f(b) +Rn(f), (3.1.102)

we assume
0 ≤ m ≤ n+ 2 (3.1.103)

and define the space
S2n+2 = Qm ⊕ P2n+1−m. (3.1.104)

Theorem 3.40 Given the integer m satisfying (3.1.103), assume that the mea-
sure dλ/ωm admits an (n+ 2)-point Gauss–Lobatto formula

∫

R

p(t)
dλ(t)

ωm(t)
= λL

0 p(a)+

n∑

ν=1

λL
ν p(τ

L
ν )+λL

n+1p(b) for all p ∈ P2n+1, (3.1.105)

with distinct internal nodes τL
ν in the open support interval (a, b) of dλ. If S2n+2

is defined by (3.1.104), then

τν = τL
ν , λν = λL

ν ωm(τL
ν ), ν = 0, 1, . . . , n, n+ 1, (3.1.106)

yields formula (3.1.102) exact for all f ∈ S2n+2.

For implementations in Matlab, see the OPQ routines radau rational.m and
lobatto rational.m.

3.1.4.5 Rational Gauss–Kronrod formulae Recall that a Gauss–Kronrod for-
mula for the measure dλ has the form (cf. (3.1.39))

∫

R

f(t) dλ(t) =

n∑

ν=1

λνf(τν) +

n+1∑

µ=1

λ∗µf(τ∗µ) +Rn(f), (3.1.107)

where τν are the Gauss nodes for dλ, and the remaining nodes τ∗µ and all the
weights are such that Rn(f) = 0 for all f ∈ P3n+1. To make the formula exact
on a rational/polynomial space, one defines an integer m with

0 ≤ m ≤ 3n+ 2, (3.1.108)

and the space
S3n+2 = Qm ⊕ P3n+1−m, (3.1.109)

where Qm is defined by (3.1.71). If the polynomial ωm is defined as in (3.1.75),
then, exactly as in §3.1.4.1, one proves the following theorem.
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Theorem 3.41 Given the integer m satisfying (3.1.108), assume that the mea-
sure dλ/ωm admits a (2n+ 1)-point Gauss–Kronrod formula

∫

R

p(t)
dλ(t)

ωm(t)
=

n∑

ν=1

λK
ν p(τ

G
ν ) +

n+1∑

µ=1

λ∗K
µ p(τK

µ ) for all p ∈ P3n+1, (3.1.110)

having distinct nodes τG
ν and τK

µ 6= τG
ν contained in the support interval [a, b] of

dλ. If S3n+2 is defined by (3.1.109), then

τν = τG
ν , τ

∗
µ = τK

µ ; λν = λK
ν ωm(τG

ν ), λ∗µ = λ∗K
µ ωm(τK

µ ),

ν = 1, 2, . . . , n; µ = 1, 2, . . . , n+ 1,
(3.1.111)

yields formula (3.1.107) exact for all f ∈ S3n+2.

Recall from §3.1.2.1 that τG
ν in (3.1.110) are the zeros of the orthogonal poly-

nomial πn( · ; dλ/ωm) and τK
µ the zeros of the Stieltjes polynomial πK

n+1( · ; dλ/ωm).
The procedure implied by Theorem 3.41 is embodied in the OPQ routine
kronrod rational.m.

Example 3.42 Example 3.31, revisited.
The integral of Example 3.31 is now evaluated by the rational Gauss–Kronrod

quadrature rule generated according to Theorem 3.41. This is done by the OPQ

routine Example3 42.m, the core of which looks very similar to the one exhibited
in Example 3.31:

ab0=r jacobi(Nmax);

eps0=100*eps; sgn=1;

for m=1:M

sgn=-sgn;

Z(m,1)=sgn/(om*floor((m+1)/2)); Z(m,2)=1;

end

[abmod,Ncap,kount]=r mod(ceil(3*N/2)+1,ab0);

xw=kronrod rational(N,abmod);

The results obtained for the same value ω = 1.1 as in Table 3.1 and for m =
2b(3n + 2)/2c, m = 2n, m = 2b(n + 1)/2c, m = 2 are displayed in Table 3.10.
For comparison, we also include the results for m = 0 corresponding to ordinary
Gauss–Kronrod quadrature. Compared to ordinary or rational Gauss rules (Table
3.1) as well as to ordinary Gauss–Kronrod rules (m = 0 in Table 3.10), the
improvement provided by the rational Gauss–Kronrod rule is rather spectacular,
even if only the first pair of poles (m = 2) is incorporated.

3.1.4.6 Rational Gauss–Turán formulae For the Gauss–Turán formula (cf.
(3.1.58))

∫

R

f(t) dλ(t) =

n∑

ν=1

2s∑

σ=0

λ(σ)
ν f (σ)(τν) +Rn,s(f), (3.1.112)
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Table 3.10 The integral of Example 3.31 with ω = 1.1
evaluated by rational Gauss–Kronrod quadrature.

n m Integral Error Ncap kount

1 4 4.46666779324154 2.475(–04) 43 9
2 8 4.46777619256081 5.699(–07) 49 8
3 10 4.46777364646169 1.655(–11) 61 7
4 14 4.46777364638776 1.193(–15) 57 6

1 2 4.46120976114983 1.469(–03) 43 9
2 4 4.46780896475528 7.905(–06) 49 8
3 6 4.46777364819601 4.047(–10) 61 7
4 8 4.46777364638719 1.290(–13) 57 6
5 10 4.46777364638776 1.590(–15) 73 6

1 2 4.46120976114983 1.469(–03) 43 9
2 2 4.46816030252371 8.654(–05) 49 8
3 4 4.46777366865229 4.983(–09) 61 7
4 4 4.46777364631047 1.730(–11) 57 6
5 6 4.46777364638776 1.590(–15) 73 6

1 2 4.46120976114983 1.469(–03) 43 9
3 2 4.46777488157599 2.765(–07) 61 7
5 2 4.46777364637416 3.044(–12) 73 6
7 2 4.46777364638776 1.392(–15) 73 5

1 0 3.95672776447190 1.144(–01) — —
4 0 4.46883197103820 2.369(–04) — —
7 0 4.46779291459554 4.313(–06) — —
10 0 4.46777387752509 5.173(–08) — —

we assume

0 ≤ m ≤ 2(s+ 1)n (3.1.113)

and define

S2(s+1)n = Qm ⊕ P2(s+1)n−m−1, (3.1.114)

where Qm is the space of rationals defined in (3.1.71). (We trust the reader will
not confuse the running index s used in (3.1.71) with the s in the Gauss–Turán
formula (3.1.112).) Our objective is to make (3.1.112) exact on the space S2(s+1)n

in (3.1.114). If m = 0, this gives the classical Gauss–Turán formula exact for all
polynomials of degree ≤2(s+ 1)n− 1 (cf. §3.1.3.1). Let again ωm be defined by
(3.1.75). The following theorem provides the answer to our objective.

Theorem 3.43 Given the integer m satisfying (3.1.113), assume that the mea-
sure dλ/ωm admits a Gauss–Turán formula
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∫

R

p(t)
dλ(t)

ωm(t)
=

n∑

ν=1

2s∑

σ=0

λ(σ)T
ν p(σ)(τT

ν ) for all p ∈ P2(s+1)n−1, (3.1.115)

having distinct nodes τT
ν contained in the support interval [a, b] of dλ. If S2(s+1)n

is defined as in (3.1.114), then

τν = τT
ν , ν = 1, 2, . . . , n,

λ(σ)
ν =

2s∑

ρ=σ

λ(ρ)T
ν

( ρ
σ

)
ω(ρ−σ)

m (τT
ν ),

ν = 1, 2, . . . , n; σ = 0, 1, . . . , 2s,

(3.1.116)

yields formula (3.1.112) exact for all f ∈ S2(s+1)n.

Proof To prove exactness on S2(s+1)n, let f be an arbitrary element of this
space. Then, either f ∈ Qm or f ∈ P2(s+1)n−m−1. In either case, ωmf ∈
P2(s+1)n−1. Indeed, in the former case we have, say, f(t) = (1 + ζµt)

−r, so that
ωmf ∈ Pm−r, and since m ≤ 2(s + 1)n by (3.1.113), and r ≥ 1, the assertion
follows. In the other case, it follows trivially. Consequently, by (3.1.115),

∫

R

f(t) dλ(t) =

∫

R

ωm(t)f(t)
dλ(t)

ωm(t)
=

n∑

ν=1

2s∑

ρ=0

λ(ρ)T
ν (ωmf)(ρ)(τT

ν ).

Applying Leibniz’s rule of differentiation, and then interchanging the order of
summation, we obtain for the inner sum

2s∑

ρ=0

λ(ρ)T
ν

ρ∑

σ=0

( ρ
σ

)
ω(ρ−σ)

m (τT
ν )f (σ)(τT

ν )

=
2s∑

σ=0

f (σ)(τT
ν )

2s∑

ρ=σ

λ(ρ)T
ν

( ρ
σ

)
ω(ρ−σ)

m (τT
ν )

=

2s∑

σ=0

λ(σ)
ν f (σ)(τν),

the last expression by definition of λ
(σ)
ν and τν in (3.1.116). Summing over ν

yields (3.1.112) with zero remainder term. 2

The computation of λ
(σ)
ν in (3.1.116) requires successive derivatives of ωm.

They can be obtained as follows. Let

sk(t) =

m∑

µ=1

(
ζµ

1 + ζµt

)k

and note that
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s′k(t) = −ksk+1(t).

From
ω′

m(t)

ωm(t)
=

m∑

µ=1

ζµ
1 + ζµt

= s1(t),

that is, ω′
m = s1ωm, repeated differentiation then yields

ω′′
m = s′1ωm + s1ω

′
m = −s2ωm + s1 · s1ωm = (−s2 + s21)ωm,

ω′′′
m = (−s′2 + 2s1s

′
1)ωm + (−s2 + s21)s1ωm

= (2s3 − 2s1s2)ωm + (−s1s2 + s31)ωm

= (2s3 − 3s1s2 + s31)ωm,

ω′′′′
m = (2s′3 − 3s′1s2 − 3s1s

′
2 + 3s21s

′
1)ωm + (2s3 − 3s1s2 + s31)s1ωm

= (−6s4 + 3s22 + 6s1s3 − 3s21s2)ωm + (2s1s3 − 3s21s2 + s41)ωm

= (−6s4 + 8s1s3 + 3s22 − 6s21s2 + s41)ωm,

etc.

For an illustration of the rational Gauss–Turán formula as applied to the integral
of Example 3.31, see Gautschi, Gori, and Lo Cascio (2000, Example 2.2).

3.1.5 Cauchy principal value integrals

In analogy to (2.3.1), we define the Cauchy principal value integral of a function
f by

(Cf)(x; dλ) =

∫

R

− f(t)

x− t
dλ(t), (3.1.117)

where dλ is a positive measure supported on an interval [a, b], −∞ ≤ a < b ≤ ∞,
and x is an interior point of [a, b]. It is possible to adapt Gaussian quadrature
rules to evaluating Cauchy principal value integrals of the form (3.1.117). In
principle, one may distinguish between two types of quadrature rules: one in
which x appears as a node, and one in which it does not. In the former case, the
quadrature rule has the form

(Cf)(x; dλ) = c0(x)f(x) +
n∑

ν=1

cν(x)f(τν ) +Rn(f ;x), (3.1.118)

and in the latter case the form

(Cf)(x; dλ) =

n∑

ν=1

c∗ν(x)f(τ∗ν ) +R∗
n(f ;x). (3.1.119)

In either case, the nodes τν and τ∗ν are assumed independent of x. We call
(3.1.118) a modified quadrature rule, and (3.1.119) a quadrature rule in the strict
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sense. The two rules have essentially different character: formula (3.1.118) can
be made “Gaussian,” that is, to have degree of exactness 2n, whereas (3.1.119)
cannot. In fact, the degree of exactness of (3.1.119) cannot exceed n − 1, since
otherwise (Cf)(x; dλ) ≡ 0 when f(t) =

∏n
ν=1(t − τ∗ν ), which contradicts a well-

known inversion formula for Cauchy principal value integrals (cf. Gakhov (1990,
§42.3); Muskhelishvili (1977, §86)). We discuss the two types of quadrature rules
separately.

3.1.5.1 Modified Gauss quadrature formula The basic idea is to write (3.1.117)
in the form

(Cf)(x; dλ) = f(x)

∫

R

− dλ(t)

x− t
−
∫

R

f(x) − f(t)

x− t
dλ(t) (3.1.120)

and to apply the n-point Gauss quadrature rule (1.4.7) to the second integral
on the right. If we observe from (1.3.40) and (1.4.8), by letting z → x in these
formulae, that ∫

R

− dλ(t)

x− t
=
ρn(x)

πn(x)
+

n∑

ν=1

λG
ν

x− τG
ν

,

where ρn(x) is defined by (2.3.6), then the result is

(Cf)(x; dλ) =
ρn(x)

πn(x)
f(x) +

n∑

ν=1

λG
ν

f(τG
ν )

x− τG
ν

+Rn(f ;x). (3.1.121)

This is exact whenever f ∈ P2n. Note from (1.4.9) and (1.3.40) that

λG
ν = −ρn(τG

ν )

π′
n(τG

ν )
, ν = 1, 2, . . . , n. (3.1.122)

We remark that (3.1.121) and (3.1.122) remain valid if τG
ν and λG

ν are re-
placed by nodes and weights of any interpolatory quadrature rule and πn by
the respective node polynomial, except that the degree of exactness will be cor-
respondingly smaller. In particular, therefore, we may construct for (3.1.117)
modified versions of the Gauss–Radau, Gauss–Lobatto, etc., quadrature rules.

Since π′
n has opposite signs at two consecutive zeros τG

ν and τG
ν+1 of πn, it

follows by (3.1.122) and λG
ν > 0 that the same is true for ρn. Thus, between any

two consecutive zeros of πn, there is at least one zero of ρn. If x is a zero of ρn,
formula (3.1.121) becomes particularly noteworthy,

∫

R

− f(t)

x− t
dλ(t) =

n∑

ν=1

λG
ν

f(τG
ν )

x− τG
ν

+Rn(f ;x) (ρn(x) = 0). (3.1.123)

This is just the Gauss formula applied to the integral on the left, as if it were an
ordinary integral! An instance of (3.1.123) occurs if dλ is a symmetric measure
(cf. Definition 1.16). Then πn, for n even, is an even polynomial by Theorem 1.17,
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and consequently ρn(0) = 0. Thus, (3.1.123) becomes applicable with x = 0, and
we obtain the pretty formula

∫

R

− f(t)

t
dλ(t) =

n∑

ν=1

λG
ν

f(τG
ν )

τG
ν

−Rn(f ; 0) (dλ symmetric, n even), (3.1.124)

a formula that is also exact whenever f ∈ P2n.
On the other hand, as x approaches one of the nodes τG

ν , the first term on the
right of (3.1.121) becomes infinite and, therefore, since (Cf)(τG

ν ; dλ) is finite, a
term in the summation of (3.1.121) must also tend to infinity, but with opposite
sign. This means that for x near a node τG

ν , the numerical use of (3.1.121) is
subject to severe cancellation error. Similar difficulties occur with quadrature
rules in the strict sense, as will be seen in the next subsection. They can be
overcome by organizing the computation in a different way. This will be discussed
in 3.1.5.3.

3.1.5.2 Gauss quadrature formula in the strict sense A formula of the type
(3.1.119) can be obtained by approximating f in (3.1.117) by the polynomial of
degree ≤n− 1 interpolating f at the nodes τG

ν ,

f(t) = pn−1(f ; t) + En−1(f ; t), pn−1(f ; t) =
n∑

ν=1

πn(t)

(t− τG
ν )π′

n(τG
ν )

f(τG
ν ),

where En−1(f ; t) ≡ 0 if f ∈ Pn−1. Integration then yields

(Cf)(x; dλ) =

n∑

ν=1

f(τG
ν )

π′
n(τG

ν )

∫

R

− πn(t)

(x − t)(t− τG
ν )

dλ(t) +R∗
n(f ;x),

where R∗
n(f ;x) =

∫
R
− En−1(f ; t)dλ(t)/(x − t). Here we write

1

(x− t)(t− τG
ν )

=
1

x− τG
ν

(
1

x− t
+

1

t− τG
ν

)

and obtain the desired quadrature rule in the form

(Cf)(x; dλ) =

n∑

ν=1

ρn(x) − ρn(τG
ν )

π′
n(τG

ν )(x − τG
ν )

f(τG
ν ) +R∗

n(f ;x). (3.1.125)

By construction, it has degree of exactness n − 1, and as was observed earlier,
this is the maximum degree possible, unless ρn(x) = 0, in which case (3.1.125)
reduces to (3.1.123) by virtue of (3.1.122). Written in the form (3.1.125), the
quadrature rule is again subject to cancellation errors when x is near τG

ν .

3.1.5.3 Computational considerations Formulae (3.1.121) and (3.1.125) are of-
ten used as a means of discretization, for example in the context of singular
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integral equations. For the purpose of simply evaluating Cauchy principal value
integrals, it may be better to rework these formulae because of the cancellation
problems mentioned. The quadrature sums in question indeed can be evaluated
in a stable manner for any x in the support interval of dλ by writing them in a
different manner. We first show this for formula (3.1.125).

We expand pn−1(f ; · ) in the orthogonal polynomials πk,

pn−1(f ; t) =

n−1∑

k=0

akπk(t). (3.1.126)

By Theorem 1.22 and the fact that pn−1(f ; τG
ν ) = f(τG

ν ), we have

ak =
1

‖πk‖2
dλ

n∑

ν=1

λG
ν πk(τG

ν )f(τG
ν ).

Integration of (3.1.126) in the sense of (3.1.117) then yields

(Cf)(x; dλ) =

n−1∑

k=0

akρk(x) +R∗
n(f ;x). (3.1.127)

Recall from §2.3.1 that ρk(x) can be computed from the basic three-term recur-
rence relation (2.3.4),

ρk+1(x) = (x− αk)ρk(x) − βkρk−1(x), k = 0, 1, . . . , n− 2, (3.1.128)

started with the initial values in (2.3.7),

ρ−1(x) = 1, ρ0(x) =

∫

R

− dλ(t)

x− t
. (3.1.129)

This is an entirely stable procedure, but it requires the Hilbert transform ρ0(x) of
dλ. The latter is often available analytically, or can be computed as in Example
2.51.

With regard to formula (3.1.121), we first observe that it, too, can be in-
terpreted as the result of integrating an interpolation polynomial, but now the
polynomial of degree ≤n that interpolates f at x and the τG

ν ,

f(t) = pn(f ; t) + En(f ; t),

pn(f ; t) =
πn(t)

πn(x)
f(x) +

n∑

ν=1

(t− x)πn(t)

(t− τG
ν )(τG

ν − x)π′
n(τG

ν )
f(τG

ν ).
(3.1.130)

Integrating in the sense of (3.1.117) and noting (3.1.122) then, indeed, yields
(3.1.121). Therefore, in place of (3.1.126) and (3.1.127), we write
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pn(f ; t) =
n∑

k=0

bkπk(t) (3.1.131)

and

(Cf)(x; dλ) =

n∑

k=0

bkρk(x) +Rn(f ;x), (3.1.132)

where Rn(f ;x) =
∫

R
− En(f ; t) dλ(t)/(x − t). The first n coefficients bk turn out

to be the same as those in (3.1.127). Indeed,

bk =
1

‖πk‖2

∫

R

pn(f ; t)πk(t) dλ(t), (3.1.133)

where the integrand, if k < n, is a polynomial of degree ≤2n−1. Hence, n-point
Gauss quadrature applied to the integral yields

bk =
1

‖πk‖2

n∑

ν=1

λG
ν f(τG

ν )πk(τG
ν ) = ak, k < n, (3.1.134)

by virtue of the interpolation property of pn(f ; · ). If k = n, we insert in (3.1.133)
the expression for pn(f ; · ) from (3.1.130) and obtain

bn =
1

‖πn‖2

∫

R

[
πn(t)

πn(x)
f(x) +

n∑

ν=1

(t− x)πn(t)

(t− τG
ν )(τG

ν − x)π′
n(τG

ν )
f(τG

ν )

]
πn(t) dλ(t).

Here, we note from the fact that the elementary Lagrange interpolation polyno-
mials sum up to 1 that

1

πn(x)
=

n∑

ν=1

1

(x− τG
ν )π′

n(τG
ν )

,

and, furthermore, that

1

‖πn‖2

∫

R

(t− x)πn(t)

t− τG
ν

πn(t) dλ(t) = 1,

since the fraction in the integrand is a monic polynomial of degree n. There
follows

bn =
n∑

ν=1

f(x) − f(τG
ν )

(x − τG
ν )π′

n(τG
ν )

. (3.1.135)

Given any function f , the fraction on the right needs to be evaluated with some
care in order to avoid cancellation, but this is less of a problem than in (3.1.125).

We note that the sums in (3.1.127) and in (3.1.132) can be evaluated by Clen-
shaw’s algorithm (cf. §2.1.8.1). The approximations in (3.1.127) and (3.1.132) are
incorporated in the OPQ routine cauchyPVI.m with input parameter iopt=1 and
iopt6= 1, respectively.
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Example 3.44 The Cauchy principal value integral

∫ 1

−1

− cos t

x− t
dt = cosx[Ci(1 + x) − Ci(1 − x)] + sinx[Si(1 + x) + Si(1 − x)],

where −1 < x < 1 and Ci and Si are the cosine and sine integrals, respectively
(cf. Abramowitz and Stegun (1992, eqns 5.2.1 and 5.2.2)).

We applied both (3.1.127) and (3.1.132) with x = 1/3 and show the results
in Table 3.11. For the computation of the errors, Maple was used to obtain

Table 3.11 The Cauchy principal value integral of Example 3.44 eval-
uated by (3.1.127) and (3.1.132).

n (3.1.127) Error (3.1.132) Error
2 0.58079622092461 3.954(–01) 0.97612959894783 8.041(–05)
4 0.96503213749523 1.118(–02) 0.97621000982213 1.048(–09)
6 0.97613431261510 7.570(–05) 0.97621001086992 2.220(–16)
9 0.97621001166259 7.927(–10) — —
13 0.97621001086992 1.332(–15) — —

20-decimal values of the cosine and sine integrals. Convergence is seen to be
quite fast, but the exceptionally fast convergence of the modified Gauss quadra-
ture rule (3.1.132) is worth noting. The computation is done in the OPQ routine
Example3 44.m.

3.1.6 Polynomials orthogonal on several intervals

The problem we wish to consider here is the following. We are given a finite set
of intervals [cj , dj ], disjoint or not, and on each interval [cj , dj ] a positive mea-
sure dλj . Define dλ(t) =

∑
j χ[cj ,dj](t) dλj(t), where χ[cj ,dj] is the characteristic

function of the interval [cj , dj ],

χ[cj,dj ](t) =

{
1 if t ∈ [cj , dj ],
0 otherwise.

Assuming the Jacobi matrices J (j) = Jn(dλj) for the measures dλj to be known,
find the Jacobi matrix J = Jn(dλ) for dλ. We will give two solutions to this
problem, one based on Stieltjes’s procedure and the other based on the modified
Chebyshev algorithm. Gauss quadrature is an essential tool in both solutions.

3.1.6.1 Solution by Stieltjes’s procedure In §2.2.3.1, we described Stieltjes’s
procedure for calculating the recurrence coefficients for polynomials orthogonal
relative to a discrete measure. The same algorithm, in principle, works for any
measure dλ if there is a good way to calculate the inner products involved. Thus,
to recall, one computes α0 from (1.3.3) for k = 0 and β0 from (1.3.6). Then, the
recurrence relation (1.3.2) is used with k = 0 to obtain π1. This allows us to
compute α1 and β1 from (1.3.3) and (1.3.4) with k = 1, and thus π2 from (1.3.2)
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with k = 1. Proceeding in this manner, one is able to successively compute
all recurrence coefficients αk(dλ), βk(dλ), k = 0, 1, . . . , n − 1, hence the Jacobi
matrix Jn(dλ).

Since all inner products that must be calculated in this procedure require
integration (with respect to dλ) of polynomials of degree ≤ 2n− 1, we can use
n-point Gauss quadrature

∫ dj

cj

p(t) dλj(t) =

n∑

ν=1

λ(j)
ν p(τ (j)

ν ), p ∈ P2n−1,

for the measure dλj on each constituent interval [cj , dj ] of dλ, or else, by virtue
of the Remark to Theorem 3.1, the formula

∫ dj

cj

p(t) dλj(t) = β
(j)
0 eT

1 p(J
(j))e1,

where β
(j)
0 =

∫ dj

cj
dλj(t). Therefore,

∫

R

p(t) dλ(t) =
∑

j

β
(j)
0 eT

1 p(J
(j))e1, p ∈ P2n−1. (3.1.136)

This allows us to compute the inner products in Stieltjes’s procedure entirely in
terms of matrix manipulations involving the Jacobi matrices J (j).

We illustrate this for the inner product

(tπk, πk)dλ =

∫

R

tπ2
k(t) dλ(t) =

∑

j

∫ dj

cj

tπ2
k(t) dλj(t). (3.1.137)

Define
ζ

(j)
k = πk(J (j))e1, eT

1 = [1, 0, . . . , 0] ∈ Rn. (3.1.138)

Then, by (3.1.137) and (3.1.136),

(tπk, πk)dλ =
∑

j

β
(j)
0 eT

1 J (j)[πk(J (j))]2e1 =
∑

j

β
(j)
0 eT

1 πk(J (j))J (j)πk(J (j))e1,

that is,

(tπk, πk)dλ =
∑

j

β
(j)
0 ζ

(j)T
k J (j)ζ

(j)
k .

Similarly (in fact, a bit simpler), one finds

(πk, πk)dλ =
∑

j

β
(j)
0 ζ

(j)T
k ζ

(j)
k .

The updating of ζ
(j)
k required in Stieltjes’s procedure follows immediately from

(1.3.2) and (3.1.138). We summarize as follows.
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Algorithm 3.1 (Stieltjes procedure for polynomials orthogonal on several in-
tervals)

Initialization:

ζ
(j)
0 = e1, ζ

(j)
−1 = 0 (all j),

α0 =

∑
j β

(j)
0 eT

1 J(j)e1
∑

j β
(j)
0

, β0 =
∑

j

β
(j)
0 .

Continuation (if n > 1): for k = 0, 1, . . . , n− 2 do

ζ
(j)
k+1 = (J (j) − αkI)ζ

(j)
k − βkζ

(j)
k−1 (all j),

αk+1 =

∑
j β

(j)
0 ζ

(j)T
k+1 J (j)ζ

(j)
k+1∑

j β
(j)
0 ζ

(j)T
k+1 ζ

(j)
k+1

, βk+1 =

∑
j β

(j)
0 ζ

(j)T
k+1 ζ

(j)
k+1∑

j β
(j)
0 ζ

(j)T
k ζ

(j)
k

.

It can be seen that the basic matrix/vector operations, apart from vector addi-
tions, that are required in this algorithm are premultiplication of a vector by a
Jacobi matrix and the formation of scalar products.

The OPQ routine implementing Algorithm 3.1 is r multidomain sti.m.

Example 3.45 Example 2.38, revisited.
This is the case of two identical intervals [−1, 1], the first carrying a multiple

c of the Legendre and the second the Chebyshev weight function. The combined
measure has recurrence coefficients that can be computed either by the multiple-
component discretization procedure, as described in Example 2.38, or by the

Table 3.12 The Chebyshev weight function plus a
multiple c of the Legendre weight function.

n c = 1 c = 10 c = 100
0 5.1415926536 23.1415926536 203.1415926536
1 0.4351692451 0.3559592080 0.3359108398
5 0.2510395775 0.2535184776 0.2528129500
12 0.2500610870 0.2504824840 0.2505324193
25 0.2500060034 0.2500682357 0.2501336338
51 0.2500006590 0.2500082010 0.2500326887
79 0.2500001724 0.2500021136 0.2500127264

multidomain algorithm described in this section. The Matlab program for the
latter looks something like this:

ab1=r jacobi(N); ab1(1,2)=2*c;

ab2=r jacobi(N,-.5);

abmd=[ab1 ab2];

ab=r multidomain sti(N,abmd);
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For the complete program, see the routine Example3 45.m with iopt=1. The
results for c = 1, c = 10, and c = 100, and for selected values of n are shown in
Table 3.12. They are in complete agreement (except for one small discrepancy
in the last digit) with those in Gautschi (1994, Table VI).

3.1.6.2 Solution by the modified Chebyshev algorithm Let pk be a set of monic
polynomials satisfying a three-term recurrence relation

pk+1(t) = (t− ak)pk(t) − bkpk−1(t), k = 0, 1, 2, . . . ,

p0(t) = 1, p−1(t) = 0

with known coefficients ak and bk, and let

mk =

∫

R

pk(t) dλ(t), k = 0, 1, 2, . . . ,

denote the modified moments of dλ relative to the polynomials pk. The first
2n − 1 coefficients ak, bk, k = 0, 1, . . . , 2n − 2, and the first 2n moments mk,
k = 0, 1, . . . , 2n−1, suffice for Algorithm 2.1, the modified Chebyshev algorithm,
to be able to generate the desired recursion coefficients αk(dλ), βk(dλ), k =
0, 1, . . . , n − 1, and with them, the Jacobi matrix Jn(dλ). The choice of the
polynomials pk is at our discretion.

The computation of the modified moments by Gauss quadrature is entirely
analogous to the computation of the inner products in §3.1.6.1. One defines

z
(j)
k = pk(J (j))e1

and then obtains
mk =

∑

j

β
(j)
0 z

(j)T
k e1.

Algorithm 3.2 (Computing the first 2n modified moments of dλ)
Initialization:

z
(j)
0 = e1, z

(j)
−1 = 0 (all j), m0 =

∑

j

β
(j)
0 .

Continuation: for k = 0, 1, . . . , 2n− 2 do

z
(j)
k+1 = (J (j) − akI)z

(j)
k − bkz

(j)
k−1,

mk+1 =
∑

j

β
(j)
0 z

(j)T
k+1 e1.

The modified Chebyshev algorithm in conjunction with Algorithm 3.2 is im-
plemented in the OPQ routine r multidomain cheb.m. It was used, employing
Legendre moments, to redo Example 3.45, producing results that are identi-
cal with those in Table 3.12 but taking about three times as long to run. See
Example3 45.m with iopt6= 1.
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3.1.7 Quadrature estimation of matrix functionals

Let A ∈ RN×N be a positive definite matrix and f a function analytic on an
interval containing the spectrum of A. The problem to be considered is to find
lower and upper bounds for the bilinear form

uTf(A)v, (3.1.139)

where u,v ∈ RN are given vectors. At first sight, this seems to be unrelated to
quadrature, but on closer inspection it turns out that (3.1.139) can be expressed
as an integral of f relative to some (admittedly unknown) discrete measure. This
is the key observation that will allow us to solve the problem posed.

Assume for simplicity that A has distinct5 eigenvalues λn,

0 < λN < λN−1 < · · · < λ1, (3.1.140)

and denote the respective (orthonormal) eigenvectors by vn,

Avn = λnvn, vT
nvm = δnm, n,m = 1, 2, . . . , N.

(We trust the reader will not confuse these λs with the weights in the Gauss
quadrature rule (3.1.1).) Then, we have the spectral decomposition of A,

AV = V Λ, Λ = V TAV , (3.1.141)

where V = [v1,v2, . . . ,vN ], Λ = diag(λ1, λ2, . . . , λN ). If we assume, for the
moment, that u = v in (3.1.139), we put

u =

N∑

k=1

ρkvk, (3.1.142)

where for simplicity (cf. footnote) ρk 6= 0, all k. Then, u = V ρ, where ρ =
[ρ1, ρ2, . . . , ρN ]T, and from (3.1.141) we have f(A) = V f(Λ)V T, so that

uTf(A)u = ρTV TV f(Λ)V TV ρ = ρTf(Λ)ρ.

Thus,

uTf(A)u =

N∑

k=1

ρ2
kf(λk) =:

∫

R+

f(t) dρN (t), (3.1.143)

where dρN is the discrete measure supported on the eigenvalues λk of A and
having positive jumps ρ2

k at λk. Without loss of generality we may assume that
‖u‖ = 1, where ‖ · ‖ is the Euclidean vector norm; then,

∫

R+

dρN (t) = 1. (3.1.144)

5Otherwise, some terms in (3.1.142) consolidate, so that N becomes smaller.



212 APPLICATIONS

The case u 6= v can be handled by using, for example, the polarization
identity

uTf(A)v = 1
4 (pTf(A)p − qTf(A)q), (3.1.145)

where p = u + v, q = u − v. Applying appropriate bounds to the two terms on
the right yields bounds for the term on the left.

We also observe that the assumption of positive definiteness for A can be
lifted and replaced by nonsingularity in the special (but important) case f(t) =
t−1. It suffices to note that

uTA−1v = uT(ATA)−1w with w = ATv. (3.1.146)

If there is a simple method to generate the orthogonal polynomials relative
to dρN or, equivalently, the Jacobi matrix JN (dρN ), then the desired bounds
for (3.1.143) can be obtained by appropriate Gauss-type quadrature rules (for
examples, see §3.1.7.2). One such method is Lanczos’s algorithm.

3.1.7.1 Lanczos’s algorithm Let v1,v2, . . . ,vN , as in (3.1.141), be the normal-
ized eigenvectors of the matrix A, and let h0 be a given vector of unit length,
represented in the basis of eigenvectors as

h0 =

N∑

k=1

ρkvk, ‖h0‖ = 1. (3.1.147)

Let dρN be the discrete measure in (3.1.143) with jumps ρ2
k, the squares of the

ρk in (3.1.147). Lanczos’s algorithm is a procedure that allows us to generate
the orthonormal polynomials π̃k( · ; dρN ), k = 0, 1, . . . , N − 1, or else, the Jacobi
matrix JN (dρN ), entirely by matrix–vector multiplications involving the matrix
A. It is defined as follows.

Algorithm 3.3 (Lanczos algorithm)
Initialization:

h0 prescribed with ‖h0‖ = 1, h−1 = 0.

Continuation: for j = 0, 1, . . . , N − 1 do

αj = hT
j Ahj ,

h̃j+1 = (A − αjI)hj − γjhj−1,

γj+1 = ‖h̃j+1‖,
hj+1 = h̃j+1/γj+1.

Note that γ0 can be arbitrary (it multiplies h−1 = 0), but, in accordance
with (3.1.144), is often defined by γ0 = 1.

The vectors h0,h1, . . . ,hN are called Lanczos vectors. They enjoy the follow-
ing properties, as can be checked by induction.
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1. The Lanczos vectors are mutually orthonormal.

2. The vectors {hj}n
j=0, n < N , form an orthonormal basis of the Krylov

space

Kn(A,h0) = span(h0,Ah0, . . . ,A
nh0).

3. There holds

hj = pj(A)h0, j = 0, 1, . . . , N, (3.1.148)

where pj is a polynomial of degree j satisfying the three-term recurrence
relation

γj+1pj+1(λ) = (λ− αj)pj(λ) − γjpj−1(λ),

j = 0, 1, . . . , N − 1,

p0(λ) = 1, p−1(λ) = 0.

(3.1.149)

We claim that pk( · ) = π̃k( · ; dρN ). Indeed, from (3.1.141) one has

pn(Λ) = V Tpn(A)V ;

hence, by (3.1.148),

hn = V pn(Λ)V Th0.

Orthonormality hT
nhm = δnm of the Lanczos vectors hj then yields

hT
0 V pn(Λ)V TV pm(Λ)V Th0 = hT

0 V pn(Λ)pm(Λ)V Th0 = δnm.

Since, by (3.1.147), V Th0 =
∑N

k=1 ρkek, with ek the kth coordinate vector, one
gets

N∑

k,`=1

ρkeT
k diag(pn(λ1)pm(λ1), . . . , pn(λN )pm(λN ))ρ`e`

=

N∑

k,`=1

ρkρ`e
T
k pn(λ`)pm(λ`)e` =

N∑

k=1

ρ2
kpn(λk)pm(λk) = δnm,

as claimed.
The recurrence relation (3.1.149), therefore, must be identical with the one

in Theorem 1.29 for dλ = dρN , that is, γj =
√
βj .

If the measure dρN is not normalized, and one puts as usual

β0 =

∫

R+

dρN (t), (3.1.150)

the recurrence relation (3.1.149) continues to hold, except that one must define
p0(λ) = 1/

√
β0.
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3.1.7.2 Examples We illustrate the techniques proposed in this section with
two examples.

Example 3.46 Error bounds for linear algebraic systems.
Consider the system of linear algebraic equations

Ax = b, (3.1.151)

where A ∈ RN×N is symmetric and positive definite. Given an approximation
x∗ to the exact solution x = A−1b, we wish to estimate the error x−x∗ in some
norm, say the Euclidean vector norm ‖ · ‖.

Since x∗ is known, we can compute the residual r of x∗,

r = b − Ax∗. (3.1.152)

From x− x∗ = A−1r and the symmetry of A, it then follows immediately that

‖x − x∗‖2 = rTA−2r.

This is a functional of the type (3.1.143), with u = r and f(t) = t−2, and,
therefore,

‖x− x∗‖2 =

∫

R+

t−2 dρN (t). (3.1.153)

The discrete orthonormal polynomials belonging to the measure dρN can be
generated by Lanczos’s algorithm applied with

h0 = r/‖r‖.

Hence, we have access to the Gauss-type quadrature rules of §3.1.1 with dλ =
dρN and are in the fortunate situation of the derivatives of f(t) = t−2 being of
constant sign on R+, namely

f (2n)(t) > 0, f (2n+1)(t) < 0 for t ∈ R+. (3.1.154)

It then follows from Corollary to Theorem 1.48 that n-point Gauss quadrature
(with n < N) applied to the integral in (3.1.153) yields a lower bound for the
squared error ‖x − x∗‖2. Likewise, by Theorems 3.3 and 3.7, if the spectrum of
A can be enclosed in an interval [a, b], 0 < a < b, the “left-handed” (n+1)-point
Gauss–Radau formula (3.1.13) and the (n + 2)-point Gauss–Lobatto formula
(3.1.26) yield upper bounds, and the “right-handed” formula (3.1.21) a lower
bound for (3.1.153).

Analogous results hold for the A-norm ‖u‖2
A = uTAu, since then

‖x − x∗‖2
A = rTA−1r,

and f(t) = t−1 satifies the same inequalities as in (3.1.154).
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Example 3.47 Diagonal elements of the inverse of a matrix.
Let A ∈ RN×N be positive definite. The problem is to find bounds for the

diagonal elements (A−1)ii of A−1, i = 1, 2, . . . , N .
Here, we have

(A−1)ii = eT
i A−1ei,

where ei is the ith coordinate vector. This is (3.1.143) with u = ei and f(t) =
t−1, and we are in the case mentioned at the end of the previous example. Hence,
Gauss-type quadrature rules again provide lower and upper bounds. The Jacobi
matrix Jn = Jn(dρN ) required for generating these rules can be obtained by
Lanczos’s algorithm applied with h0 = ei.

In the case of the n-point Gauss formula, using the Remark to Theorem 3.1
and noting that β0 = 1, we obtain

(A−1)ii =

∫

R+

t−1 dρN (t) > eT
1 J−1

n e1, eT
1 = [1, 0, . . . , 0] ∈ Rn. (3.1.155)

Let us use this for n = 2. We apply two steps of the Lanczos algorithm with
h0 = ei to compute

J2 =


α0 γ1

γ1 α1


 .

According to Algorithm 3.3, we have

α0 = aii,

h̃1 = (A − α0I)ei = [a1i, . . . , ai−1,i, 0, ai+1,i, . . . , aNi]
T,

γ1 =

√∑

k 6=i

a2
ki =: si,

h1 = h̃1/si,

α1 =
1

s2i
h̃

T

1 Ah̃1 =
1

s2i

∑

k 6=i

∑

` 6=i

ak`akia`i.

(3.1.156)

Since

J−1
2 =

1

α0α1 − γ2
1


 α1 −γ1

−γ1 α0


 ,

one has
eT

1 J−1
2 e1 =

α1

α0α1 − γ2
1

, (3.1.157)

and, therefore, by (3.1.155) with n = 2, and (3.1.156),

(A−1)ii >

∑
k 6=i

∑
` 6=i ak`akia`i

aii

∑
k 6=i

∑
` 6=i ak`akia`i −

(∑
k 6=i a

2
ki

)2 . (3.1.158)
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In the case of (n + 1)-point Gauss–Radau formulae, we can proceed in the
same manner, using Remark (c) to Theoree 3.2 and an analogous remark relating
to (3.1.21). When n = 1, one gets from (3.1.14) and the fact that βj = γ2

j ,

J
R,a
2 (dρN ) =


α0 γ1

γ1 α
R
1


 , αR

1 = a+
γ2
1

α0 − a
,

where α0 = aii and γ1 = si from (3.1.156). Replacing a by b in αR
1 gives

J
R,b
2 (dρN ). From (3.1.157), where α1 is replaced by αR

1 , and recalling that the
left-handed (right-handed) Gauss–Radau formula yields an upper (lower) bound,
one finds by a simple computation that

aii − b+ s2i /b

a2
ii − aiib+ s2i

< (A−1)ii <
aii − a+ s2i /a

a2
ii − aiia+ s2i

. (3.1.159)

We finally note from Theorem 3.7 and the first inequality in (3.1.154) that
the (n+2)-point Gauss–Lobatto formula provides another upper bound. Taking
n = 0 in (3.1.27), we have

JL
2 (dρN ) =


 α0 γ

L
1

γL
1 αL

1


 ,

where by (3.1.28) the quantities αL
1 and γL

1 satisfy the 2×2 system


a− α0 1

b− α0 1




 αL

1

(γL
1 )2


 =


a(a− α0)

b(b− α0)


 , α0 = aii.

Solving for αL
1 , (γL

1 )2 and substituting the result in (3.1.157) in place of α1 and
γ2
1 yields

(A−1)ii <
a+ b − aii

ab
. (3.1.160)

The bounds in (3.1.160) and (3.1.159) look simpler than those in (3.1.158),
but unlike (3.1.158), they require information about the spectrum of A.

3.2 Least squares approximation

Since (discrete) orthogonal polynomials arose in Chebyshev’s (1859) work on
polynomial fitting of discrete data by means of the least squares principle, it
seems appropriate to begin with a brief account of the problem and its solution.
This will be followed by various extensions.
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3.2.1 Classical least squares approximation

GivenN discrete data points (tk, fk), k = 1, 2, . . . , N , and corresponding positive
weights wk, the problem is to determine a polynomial p̂n ∈ Pn of degree n < N
such that

N∑

k=1

wk[p̂n(tk) − fk]2 ≤
N∑

k=1

wk[p(tk) − fk]2 for all p ∈ Pn. (3.2.1)

It is natural to associate with this problem the discrete measure dλN supported
on the points t1, t2, . . . , tN and having jumps wk at tk, and the inner product
and norm (cf. (1.1.12))

(u, v)dλN
=

N∑

k=1

wku(tk)v(tk), ‖u‖dλN
=
√

(u, u)dλN
. (3.2.2)

Then, (3.2.1) can be given the form

‖p̂n − f‖2
dλN

≤ ‖p− f‖2
dλN

for all p ∈ Pn. (3.2.3)

Thus, we want to minimize the squared error E2
n on the right of (3.2.3) over all

polynomials p ∈ Pn.
The solution is immediate if we express p in terms of the discrete orthogonal

polynomials πk( · ) = πk( · ; dλN ) (not necessarily monic) as

p(t) =

n∑

i=0

ciπi(t), n < N, (3.2.4)

and write, using the orthogonality of the πk,

E2
n =




n∑

i=0

ciπi − f,
n∑

j=0

cjπj − f


 =

n∑

i,j=0

cicj(πi, πj) − 2
n∑

i=0

ci(f, πi) + ‖f‖2

=

n∑

i=0

(
‖πi‖ci −

(f, πi)

‖πi‖

)2

+ ‖f‖2 −
n∑

i=0

(f, πi)
2

‖πi‖2
.

(3.2.5)
(Here and in the following, all inner products and norms are relative to the
measure dλN .) The minimum is clearly attained for ci = ĉi(f), where

ĉi(f) =
(f, πi)

‖πi‖2
, i = 0, 1, . . . , n. (3.2.6)

These are nothing but the “Fourier coefficients” of f relative to the orthogonal
system π0, π1, . . . , πN−1. Moreover, the least squares error Ên becomes

Ên =

(
‖f‖2 −

n∑

i=0

|ĉi(f)|2‖πi‖2

)1/2

, (3.2.7)
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as follows from (3.2.5) with ci = ĉi(f) and (3.2.6). Since the error is nonnegative,
we have that

n∑

i=0

|ĉi(f)|2‖πi‖2 ≤ ‖f‖2, n < N. (3.2.8)

In the limit case n = N−1, the error Ên can be driven down to zero by taking for
p̂n the polynomial of degree ≤N − 1 interpolating f at the points t1, t2, . . . , tN .
Therefore,

N−1∑

i=0

|ĉi(f)|2‖πi‖2 = ‖f‖2, (3.2.9)

which may be called the (discrete) completeness relation.
While expression (3.2.7) for the error is mathematically elegant, it is not

recommended for computation. The reason is that the quantity under the radical
sign, when evaluated in machine arithmetic, is in the best of circumstances of
the order of the machine precision ε, hence Ên of the order

√
ε, which may be

unrealistically large. In contrast, if the error is evaluated from its definition

Ên =

(
N∑

k=1

wk[p̂n(tk) − fk]2

)1/2

,

then for errors near machine precision, the radicand is O(ε2); hence, Ên = O(ε).
Numerical problems may also arise in computing the Fourier coefficients ĉi(f)

in (3.2.6), as the evaluation of the inner product in the numerator of (3.2.6) may
be subject to cancellation. As i becomes large, the problem typically worsens,
but can be mitigated somewhat by replacing (3.2.6) with

ĉi(f) =
1

‖πi‖2


f −

i−1∑

j=0

ĉj(f)πj , πi


 , i = 0, 1, . . . , n, (3.2.10)

which is mathematically, though not numerically, equivalent to (3.2.6). The
empty sum (when i = 0), of course, is meant to be zero.

From the N × (n + 1) array of orthogonal polynomials πi, i = 0, 1, . . . , n,
evaluated at the points tk, the corresponding array of least squares polynomials
p̂i, along with the (n + 1)-vector of Fourier coefficients ĉi can be generated as
shown in Algorithm 3.4. The values fk of the given data are input through the
N -vector f .

Algorithm 3.4 (Polynomial least squares approximation)
Initialization:

p̂−1 = 0, e−1 = f.

Continuation: for i = 0, 1, . . . , n do
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ĉi =
1

‖πi‖2
(ei−1, πi),

p̂i = p̂i−1 + ĉiπi,

ei = ei−1 − ĉiπi (if i < n).

Algorithm 3.4 is implemented in the OPQ routine least squares.m.

Example 3.48 Least squares approximation on equally spaced points.
We apply Algorithm 3.4 in the case of N equally spaced points tk = −1 +

2(k − 1)/(N − 1) on [−1, 1] and equal weights wk = 2/N . The orthogonal poly-
nomials πi are then the appropriately scaled discrete Chebyshev polynomials of
Example 1.15. The computations are done in the OPQ routine Example3 48.m,
the core of which is shown below.

k=(1:N)’; E2=zeros(N,1); Einf=zeros(N,1);

xw(k,1)=-1+2*(k-1)/(N-1); xw(:,2)=2/N; d=ones(1,N);

ab=r hahn(N-1);

ab(:,1)=-1+2*ab(:,1)/(N-1);

ab(:,2)=(2/(N-1))^2*ab(:,2); ab(1,2)=2;

%

% The (Nx1)-vector f is assumed to contain the values

% of f at xw(:,1).

%

[phat,c]=least squares(N-1,f,xw,ab,d);

t=linspace(-1,1); p=zeros(100,N);

%

% The (100x1)-vector ft is assumed to contain the

% values of f at t.

%

for n=1:N

E2(n)=sqrt(sum(xw(:,2).*((phat(:,n)-f).^2)));

p(:,n)=clenshaw(n-1,t,1,0,ab,c);

Einf(n)=max(abs(p(:,n)-ft));

end

Although, in practice, the algorithm is most useful for experimental data, we
apply it here to mathematically defined functions f of various degrees of smooth-
ness, specifically to f(t) = e−t, f(t) = ln(2 + t), f(t) =

√
1 + t, and f(t) = |t|.

The errors achieved for N = 10 and selected values of n are shown in Table 3.13,
not only the least squares errors Ên, but also the maximum errors E∞

n over 100
equally spaced points on [−1, 1]. Note that ÊN−1 is essentially zero in all cases,
reflecting the interpolation property of p̂N−1. Otherwise, the two errors Ên and
E∞

n are of comparable magnitude, their rate of convergence decreasing as one
proceeds from left to right, that is, from functions with higher to functions with
lower regularity.

An (absolutely continuous) measure dλ given on some interval [a, b] generates
interesting classes of least squares approximants. Indeed, we may take for the
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Table 3.13 Least squares and maximum errors for Example 3.48.

f(t) = e−t f(t) = ln(2 + t) f(t) =
√

1 + t f(t) = |t|
n Ên E∞

n Ên E∞
n Ên E∞

n Ên E∞
n

0 1.05(+00) 1.50(+00) 4.88(–01) 6.37(–01) 5.86(–01) 9.10(–01) 4.44(–01) 5.46(–01)
3 6.16(–03) 6.61(–03) 2.96(–03) 3.49(–03) 4.83(–02) 1.01(–01) 1.02(–01) 1.98(–01)
6 2.45(–06) 6.25(–06) 2.07(–05) 7.06(–05) 4.73(–03) 7.99(–02) 1.86(–02) 8.51(–02)
9 6.08(–16) 3.84(–09) 1.74(–16) 3.44(–06) 1.56(–16) 6.79(–02) 1.35(–16) 6.50(–02)

points tk and weights wk either the nodes and weights

tk = τG
k , wk = λG

k , k = 1, 2, . . . , N, (3.2.11)

of the N -point Gauss quadrature rule for the measure dλ (cf. (3.1.1)), or else, if
[a, b] is finite, the nodes and weights

tk = τL
k , wk = λL

k , k = 1, 2, . . . , N, (3.2.12)

of the N -point Gauss–Lobatto quadrature rule (cf. (3.1.26)) (in which case t1 =
a, tN = b). In either case, by Theorems 1.22 and 1.23, the discrete orthogonal
polynomials are πk( · ; dλN ) = πk( · ; dλ), k = 0, 1, . . . , N − 1, that is, the first
N orthogonal polynomials belonging to dλ. We illustrate this for the Chebyshev
measure dλ(t) = (1 − t2)−1/2dt on [−1, 1].

Example 3.49 Least squares approximants with Gauss points and weights.
From Example 1.49 we have

tk = cos
2k − 1

2N
π, wk =

π

N
, k = 1, 2, . . . , N,

and we may take for the πi the Chebyshev polynomials Ti of the first kind. We
recall from the Commentary to Table 1.1 and the fact that the N -point Gauss
rule is exact for polynomials of degree ≤2N − 1 that

‖T0‖2 = π, ‖Ti‖2 = 1
2 π, i = 1, 2, . . . , N − 1.

The Fourier coefficients (3.2.6), therefore, become

ĉi(f) =
2

N

N∑

k=1

f(tk)Ti(tk), i = 0, 1, . . . , N − 1, (3.2.13)

except for a factor 1
2 when i = 0. The least squares approximant, thus, is

p̂n(t) = 1
2 ĉ0(f) +

n∑

i=1

ĉi(f)Ti(t), n < N,

with ĉi(f) as defined in (3.2.13). The approximant can be evaluated by Clen-
shaw’s algorithm; see Algorithm 2.3. The Fourier coefficients ĉi(f) in (3.2.13)
are evaluated by the OPQ routine fourier gauss.m.
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Example 3.50 Least squares approximants with Gauss–Lobatto points and
weights.

Here, we have, from Example 1.50 (where n is replaced by N − 2),

tk = cos
N − k

N − 1
π, k = 1, 2, . . . , N,

and
w1 = wN =

π

2(N − 1)
, wk =

π

N − 1
, k = 2, 3, . . . , N − 1.

By Theorem 1.23 (with n replaced by N − 2), we may take again πi = Ti and
proceed as in Example 3.49, the only difference being that now ‖TN−1‖2 = π
(not 1

2 π) because of the extra term on the right of (1.2.5). Therefore,

ĉi(f) =
2

N − 1

N∑′′

k=1

f(tk)Ti(tk), i = 0, 1, . . . , N − 1, (3.2.14)

except that a factor 1
2 is to be applied when i = 0 and i = N − 1. The double

prime on the summation sign indicates that the first and last terms in the sum
are to be multiplied by 1

2 . Therefore,

p̂n(t) = 1
2 ĉ0(f) + χn

n∑

k=1

ĉi(f)Ti(t), n < N,

where χN−1 = 1
2 and χn = 1 for 1 ≤ n < N − 1. This again can be evaluated by

Clenshaw’s Algorithm 2.3. The Fourier coefficients ĉi(f) in (3.2.14) are evaluated
by the OPQ routine fourier lobatto.m.

The two approximants in Examples 3.49 and 3.50 give virtually identical
answers when applied with N = 10 to the functions of Example 3.48, and answers
very similar, though generally slightly better for the errors E∞

n , to those in Table
3.13. See the routine Example3 49.m.

3.2.2 Constrained least squares approximation

It is sometimes desirable in least squares approximation to match a certain num-
ber of data points exactly, that is, to impose the constraints

p(sj) = fj , j = 1, 2, . . . ,m; m ≤ n, (3.2.15)

where {s1, s2, . . . , sm} may or may not be a subset of the points {t1, t2, . . . , tN}.
We will denote by ν, 0 ≤ ν ≤ m, the number of sj that are equal to one of the tk.
Let pm(f ; · ) be the polynomial of degree ≤m− 1 interpolating f at the points
sj . We write

p(t) = pm(f ; t) + σm(t)q(t), q ∈ Pn−m, (3.2.16)

where σm(t) =
∏m

j=1(t− sj) and q is a polynomial of degree n−m that can be
freely varied. With notation as in §3.2.1, we then have
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E2
n = ‖f − p ‖2

dλN
= ‖f − pm(f ; · ) − σmq ‖2

dλN
.

Here, the function to be minimized vanishes trivially at the points sj , so that the
discrete measure dλN may be replaced by dλ∗N−ν whose support is supp dλN with
ν of the sj (those equal to some tk) deleted, and whose jumps at the surviving
support points are the original jumps of dλN . Therefore,

E2
n = ‖f − pm(f ; · ) − σmq ‖2

dλ∗
N−ν

=

∫

R

[
f(t) − pm(f ; t)

σm(t)
− q(t)

]2

σ2
m(t)dλ∗N−ν ,

and we are led to the unconstrained least squares problem

minimize : ‖f∗ − q ‖dλ∗
N
, q ∈ Pn−m, (3.2.17)

for a new function f∗ and a new measure dλ∗N given by

f∗(t) =
f(t) − pm(f ; t)

σm(t)
, dλ∗N (t) = σ2

m(t)dλ∗N−ν (t). (3.2.18)

If q̂n−m is the solution of this problem, then

p̂n(t) = pm(f ; t) + σm(t)q̂n−m(t)

solves the constrained least squares problem.
The (discrete) orthogonal polynomials belonging to dλ∗N can be generated by

m successive applications of the OPQ routine chri7.m (cf. the end of §2.4.3), or
else, by the Stieltjes procedure stieltjes.m (or Lanczos procedure lanczos.m);
cf. §2.2.3.

As far as computing the function f∗ is concerned, it is well known from the
theory of polynomial interpolation that f∗ can be written in terms of a divided
difference of order m as

f∗(t) = [s1, s2, . . . , sm, t ]f, t ∈ supp dλ∗N−ν . (3.2.19)

This can be computed either by the explicit formula

f∗(t) =
m∑

j=1

f(sj)

(sj − t)
∏

i6=j(sj − si)
+

f(t)∏
j(t− sj)

, (3.2.20)

or generated “in place” by the following algorithm, written as a Matlab script,

for i=1:m+1, d(i)=f(i); end

for k=1:m

for i=1:m-k+1

d(i)=(d(i+1)-d(i))/(s(i+k)-s(i));

end

end
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At the beginning of the algorithm, the (m + 1)-vector d contains the values of
f at the points s1, s2, . . . , sm, sm+1, where sm+1 is one of the support points
of dλ∗N−ν . After completion of the algorithm, d contains the divided differences
[si, si+1, . . . , sm, sm+1]f , i = 1, 2, . . . ,m+ 1. In particular, d(1) = f∗(sm+1).

Example 3.51 The Bessel function J0 on [0, j0,3].
We approximate the Bessel function J0 of order zero on the interval from 0 to

the third positive zero j0,3 of J0 and impose the constraint that the approximant
vanish exactly at the first three zeros of J0.

Here, s1 = j0,1, s2 = j0,2, s3 = j0,3 are the first three zeros of J0, and the
interpolation polynomial p3(J0; · ) is identically zero, since we are interpolating
at the zeros of J0. Furthermore, by (3.2.20),

f∗(t) =
J0(t)

σ3(t)
, σ3(t) = (t− j0,1)(t− j0,2)(t− j0,3).

The following routine, extracted from the OPQ routine Example3 51.m, calculates
the constrained least squares polynomial p̂n(t) of degree n at a given scalar- or
vector-valued t, using N equally spaced points tk on [0, j0,3] (end points included)
and equal weights wk = 1/N , k = 1, 2, . . . , N . Since s3 coincides with tN , the
measure dλ∗N in (3.2.17) is dλ∗N = σ2

3(t)dλ
∗
N−1.

s=[2.4048255577 5.5200781103 8.6537279129];

t1=linspace(0,s(3),N)’;

N=N-1; m=3;

xw=zeros(N,2); d=ones(1,N);

t0=t1(1:N); f=bessel(0,t0);

xw=[t0,((t0-s(1)).*(t0-s(2)).*(t0-s(3))).^2/N];

ab=r hahn(N-1);

ab(:,1)=t0(N)*ab(:,1)/(N-1); ab(:,2)=(t0(N)/(N-1))^2*ab(:,2);

ab(1,2)=1;

ab1=ab; ab=chri7(N-1,ab1,s(1));

ab1=ab; ab=chri7(N-2,ab1,s(2));

ab1=ab; ab=chri7(N-3,ab1,s(3));

f0=f./((t0-s(1)).*(t0-s(2)).*(t0-s(3)));

[qhat,c]=least squares(n-m,f0,xw,ab,d);

x=linspace(0,s(3))’; p=zeros(100,n-m+1);

q=clenshaw(n-m,x,1,0,ab,c);

p(:,n-m+1)=(t-s(1)).*(t-s(2)).*(t-s(3)).*q;

When run with N = 51 and n=3:5:18, the routine produces least squares errors
Ên and maximum errors E∞

n (over 100 equally spaced points on [0, j0,3]) shown
in Table 3.14. The approximants for n = 3, 4, and 5 are depicted in Fig. 3.3
(produced by the routine Figure3 3.m), where the solid curve represents the
exact function, and the dashdotted, dashed, and dotted curves the constrained
least squares approximants for n = 3, 4, and 5, respectively.
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Table 3.14 Least squares and maximum errors
for Example 3.51.

n Ên E∞
n

3 1.607(–01) 4.198(–01)
8 6.528(–04) 1.614(–03)
13 6.733(–08) 2.182(–07)
18 3.414(–12) 2.110(–11)
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Fig. 3.3. Constrained least squares approximants to the Bessel function.

It is, in principle, possible to handle derivative constraints as well. The poly-
nomial pm(f ; · ) in (3.2.16) then must be the appropriate Hermite interpolation
polynomial and the factor t − sj in σm(t) has to be endowed with the appro-
priate multiplicity. Computing the divided difference in (3.2.19), which now has
multiple points, may be cumbersome in general, but is relatively straightforward
in special cases.

Example 3.52 The Bessel function J0 on [0, j0,3], revisited.
The spurious behavior of the approximants near t = 0, exhibited in Fig. 3.3,

can be eliminated, and the overall quality of the approximation enhanced, if we
add the two constraints

p(0) = 1, p′(0) = 0,

to the three already imposed in Example 3.51. Then m = 5, since to the three
points s1, s2, s3 a double point is added at the origin. The Hermite interpolation
polynomial is found to be
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p5(J0; t) = 1 − 1

s21
t2 +

1

s21s
2
2

(s1 + s2)t
2(t− s1)

− 1

s21s
2
2s

2
3

(s1s2 + s1s3 + s2s3)t
2(t− s1)(t− s2),

and the polynomial σ5 in (3.2.16) becomes

σ5(t) = t2(t− s1)(t− s2)(t− s3).

An elementary computation will show that

f∗(t) := [0, 0, s1, s2, s3, t ]J0 =
J0(t)

σ5(t)
+

1 + ( 1
s1

+ 1
s2

+ 1
s3

)t

s1s2s3t2
.

The routine displayed in Example 3.51 and the routine Figure3 3.m re-
quire only minor modifications (two additional applications of chri7.m with
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Fig. 3.4. Derivative-constrained least squares approximants to the Bessel func-
tion.

zero shifts, and changing the function f0 and the polynomial p; see the routines
Example3 52.m and Figure3 4.m). Yet, as is shown in Fig. 3.4, the approximants
with n = 5, 6, and 7 are markedly improved compared with the corresponding
approximants in Fig. 3.3.

3.2.3 Least squares approximation in Sobolev spaces

An extension of the classical least squares problem of §3.2.1, which attempts to
simultaneously approximate function and derivative values, can be formulated
as follows:

minimize :

s∑

σ=0

N∑

k=1

w
(σ)
k [p(σ)(tk) − f

(σ)
k ]2, p ∈ Pn, (3.2.21)
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where the minimum is taken over all polynomials p of degree ≤ n. Here, f
(σ)
k ,

σ = 0, 1, . . . , s, s ≥ 1, are function and derivative values of f at tk, and w
(σ)
k

are positive weights often chosen in terms of one set of positive weights wk by
defining

w
(σ)
k = γσwk, γσ > 0, k = 1, 2, . . . , N. (3.2.22)

The appropriate inner product and norm are those of Sobolev type,

(u, v)S =

s∑

σ=0

N∑

k=1

w
(σ)
k u(σ)(tk)v(σ)(tk), ‖u‖S =

√
(u, u)S. (3.2.23)

The solution of (3.2.21) is entirely analogous to the classical solution pro-
cess, except that inner products and norms are to be replaced throughout by the
Sobolev inner products and Sobolev norms of (3.2.23) and the orthogonal poly-
nomials are the Sobolev orthogonal polynomials (cf. §1.7). Thus, in particular,
we can write the solution p̂n in the form

p̂n(t) =

n∑

i=0

ĉiπi(t), ĉi =
(f, πi)S

‖πi‖2
S

, (3.2.24)

where the data f now consist of the values and the first s derivatives of the
given function at the points tk, and πi are the Sobolev orthogonal polynomials
belonging to the inner product (3.2.23). Likewise, Algorithm 3.4 has its exact
analog in the present context, producing the least squares approximants and
their first s derivatives at the points tk, along with the Fourier coefficients.

Algorithm 3.5 (Polynomial least squares approximation in Sobolev spaces)
Initialization:

p̂−1 = 0, e−1 = f.

Continuation: for i = 0, 1, . . . , n do

ĉi =
1

‖πi‖2
S

(ei−1, πi)S ,

p̂i = p̂i−1 + ĉiπi,

ei = ei−1 − ĉiπi (if i < n).

Algorithm 3.5 is implemented in the OPQ routine least squares sob.m.
This kind of approximation is attractive when derivatives are easy to come

by.

Example 3.53 Complementary error function.
Consider the function

f(t) = et2erfc t =
2√
π

et2
∫ ∞

t

e−u2

du
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on the interval [0, 2]. Its derivatives are easily generated; the first two are

f ′(t) = 2tf(t) − 2√
π
, f ′′(t) = 2(1 + 2t2)f(t) − 4√

π
t.

We apply the OPQ routine least squares sob.m with s = 2 using N = 5 equally
spaced points tk on [0, 2] (end points included) and the same equal weights

w
(σ)
k = 1/N for σ = 0, 1, 2. In Table 3.15 (which is analogous to Table 3.13), we

show in the top half selected results for the Sobolev least squares error Ên and the

Table 3.15 Sobolev least squares errors vs ordinary least
squares errors, and maximum errors, for Example 3.53.

n Ên E∞
n,0 E∞

n,1 E∞
n,2

0 1.153(+00) 4.759(–01) 1.128(+00) 2.000(+00)
2 7.356(–01) 8.812(–02) 2.860(–01) 1.411(+00)
4 1.196(–01) 1.810(–02) 5.434(–02) 1.960(–01)
9 2.178(–05) 4.710(–06) 3.011(–05) 3.159(–04)
14 3.653(–16) 1.130(–09) 1.111(–08) 1.966(–07)

0 2.674(–01) 4.759(–01) 1.128(+00) 2.000(+00)
2 2.245(–02) 3.865(–02) 3.612(–01) 1.590(+00)
4 1.053(–16) 3.516(–03) 5.160(–02) 4.956(–01)
9 1.053(–16) 5.409(–03) 8.124(–02) 7.959(–01)
14 1.053(–16) 5.478(–03) 8.226(–02) 8.057(–01)

maximum errors E∞
n,0, E

∞
n,1, E

∞
n,2 over 100 equally spaced points on [0, 2] for the

function and its first two derivatives. In the bottom half are shown the analogous
results for ordinary least squares approximation (s = 0). Complete results can
be had by running the routine Example3 53.m. Note that in the case of Sobolev
least squares, the L2 error Ê3N−1 is essentially zero, as it should be, given that
the Hermite interpolation polynomial of degree 3N − 1 interpolates the data
exactly. In contrast, we have Ên = 0 for n ≥ N − 1 in the case of ordinary least
squares. The table also shows rather convincingly, and as expected, that Sobolev
least squares approximation approximates the derivatives decidedly better than
ordinary least squares approximation, and even the function itself when n is
sufficiently large.

3.3 Moment-preserving spline approximation

The moments of a function (or a distribution) often have physical meaning.
When trying to approximate the function, it may be desirable to preserve the
moments, that is, to choose the approximation in such a way that as many of
its moments as possible are the same as those of the given function. Instances of
this have appeared in the physics literature, for example in the approximation
of the Maxwell velocity distribution by a linear combination of Dirac δ-functions
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(Laframboise and Stauffer, 1969) or by a linear combination of Heaviside step
functions (Calder and Laframboise, 1986). The solutions given in the cited refer-
ences use classical methods—Prony’s method in the former, and a reduction to
a Hankel matrix eigenvalue problem in the latter reference. Both approaches are
sensitive to rounding errors, and thus require high-precision calculations. It is
possible, however, to exploit the close connection of these problems with Gaus-
sian quadrature to arrive at more stable solution procedures that are applicable
also in the case of more general approximation problems involving variable-knot
polynomial spline functions. We begin in §3.3.1 with the physically important
case of approximation on the positive real line and discuss the more difficult case
of a compact interval in §3.3.2.

3.3.1 Approximation on the positive real line

3.3.1.1 Approximation by step functions We consider a function f = f(t) de-
fined on the positive real line R+ = {t : 0 ≤ t <∞} and wish to approximate it
by a linear combination of Heaviside step functions,

sn(t) =
n∑

ν=1

aνH(tν − t), t ∈ R+, (3.3.1)

where H is defined by

H(u) =

{
1 if u ≥ 0,
0 if u < 0.

(3.3.2)

The “knots” tν are assumed distinct and ordered increasingly, 0 < t1 < t2 <
· · · < tn, and aν ∈ R. We seek an approximation such that

∫ ∞

0

sn(t)tj dt = µj , j = 0, 1, . . . , 2n− 1, (3.3.3)

where6

µj =

∫ ∞

0

f(t)tj dt (3.3.4)

are the moments of f . Note that all aν and tν in (3.3.1) are considered unknowns
that can be freely chosen subject to the ordering of tν . Since there are 2n of them,
it seems plausible that 2n conditions, such as those in (3.3.3), can be imposed
to uniquely determine them. That this, under suitable conditions, is indeed the
case is the content of the following theorem, which also tells us how sn, if it
exists, can be constructed.

Theorem 3.54 For fixed n ∈ N, let f satisfy the following conditions:

6In applications to physics, the moments may be defined with respect to a surface differential
dV . Depending on the geometry of the problem, the differential, up to unimportant numerical
factors, is dV = dt for rectilinear geometry, dV = t dt for cylindrical geometry, and dV = t2 dt

for spherical geometry. Our discussion is for dV = dt, but can easily be adapted to the other
two cases.



MOMENT-PRESERVING SPLINE APPROXIMATION 229

(i) f ∈ C1(R+);

(ii) the first 2n moments (3.3.4) of f exist;

(iii) f(t) = o(t−2n) as t→ ∞.

Then, the approximation problem (3.3.1)–(3.3.3) has a unique solution if and
only if the measure

dλ(t) = −tf ′(t) dt on R+ (3.3.5)

admits a Gaussian quadrature formula (cf. (3.1.1))

∫ ∞

0

g(t) dλ(t) =

n∑

ν=1

λG
ν g(τ

G
ν ) for all g ∈ P2n−1, (3.3.6)

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, the knots tν and

coefficients aν in (3.3.1) are given by

tν = τG
ν , aν =

λG
ν

τG
ν

, ν = 1, 2, . . . , n. (3.3.7)

Proof We first use integration by parts to express the moments of f in terms
of those of the measure dλ in (3.3.5),

µj =
1

j + 1

∫ ∞

0

tj dλ(t), j = 0, 1, . . . , 2n− 1. (3.3.8)

Indeed, for any T > 0, there holds

∫ T

0

f(t)tj dt =
1

j + 1
tj+1f(t)

∣∣∣∣
T

0

− 1

j + 1

∫ T

0

f ′(t)tj+1 dt.

As T → ∞, the left-hand side tends to the moment µj by assumption (ii) and
the first term on the right to zero by assumption (iii). Therefore, the second term
on the right-hand side also has a finite limit as T → ∞, which, in fact, is given
by (3.3.8) by virtue of the definition of dλ in (3.3.5).

The moments of sn, on the other hand, are easily computed to be

∫ ∞

0

sn(t)tj dt =

n∑

ν=1

aν

∫ tν

0

tj dt =
1

j + 1

n∑

ν=1

aνt
j+1
ν .

The moment-matching equations (3.3.3), thus, become

n∑

ν=1

(aνtν)tjν =

∫ ∞

0

tj dλ(t), j = 0, 1, . . . , 2n− 1,

which are precisely the equations stating that tν = τG
ν and aνtν = λG

ν for
ν = 1, 2, . . . , n. 2
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If the function f , in addition to satisfying the conditions (i)–(iii) of Theorem
3.54, is decreasing on R+, then the measure dλ of (3.3.5) is positive, and the
Gauss formula (3.3.6) exists. The step function sn satisfying (3.3.3), therefore,
exists uniquely.

Example 3.55 The Maxwell distribution.
This is the case f(t) = e−t2 , for which dλ(t) = 2t2e−t2 dt on R+. The Gauss

formula for dλ is readily obtained from the recurrence coefficients αk(dλ) and
βk(dλ), which, in turn, can be obtained from those of the half-range Hermite mea-
sure (Example 2.31) by two applications of Algorithm 2.5. The desired step func-
tion approximation is computed and plotted by the OPQ routine Example3 55.m,
using the following script for calculating the knots tν and coefficients aν (stored
in the array ta):

load -ascii abhrhermite;

ab0=abhrhermite(1:n+2,:);

ab1=chri1(n+1,ab0,0);

ab=chri1(n,ab1,0); ab(1,2)=sqrt(pi)/2;

ta=gauss(n,ab);

ta(:,2)=ta(:,2)./ta(:,1);

The file abhrhermite contains the first 100 recurrence coefficients of the half-
range Hermite measure. The results for n = 5 are shown in Table 3.16 and
depicted in Figure 3.5.

Table 3.16 Step function approximation of the
Maxwell distribution.

ν tν aν

1 0.3384096 0.2504936
2 0.8266625 0.4613997
3 1.4328544 0.2418570
4 2.1454082 0.0332937
5 3.0141725 0.0006839

3.3.1.2 Approximation by Dirac delta functions The approximant now takes
the form

dn(t) =
n∑

ν=1

aνδ(t− tν), t ∈ R+, (3.3.9)

where δ( · ) is the Dirac delta function, and the moment-matching conditions as
before are ∫ ∞

0

dn(t)tj dt = µj , j = 0, 1, . . . , 2n− 1. (3.3.10)

In this case there is always a unique solution if f is positive on R+. The following
theorem indeed is almost self-evident.
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Fig. 3.5. Moment-preserving step function approximation to the Maxwell dis-
tribution.

Theorem 3.56 Let f ≥ 0 on R+ (and f > 0 on a set of positive measure), and
assume that the first 2n moments µj, j = 0, 1, . . . , 2n− 1, of f exist. Then, the
approximation problem (3.3.9)–(3.3.10) has a unique solution given by

tν = τG
ν , aν = λG

ν , ν = 1, 2, . . . , n, (3.3.11)

where τG
ν , λG

ν are the nodes and weights of the n-point Gauss quadrature rule for
the measure dλ(t) = f(t) dt.

3.3.1.3 Approximation by spline functions The theory developed in the pre-
vious subsections can be extended to spline functions of arbitrary degree m,
the case m = 0 corresponding to step functions, and m = −1 (in a manner of
speaking) to Dirac delta functions. Since we continue to consider approximation
on the positive real line R+, and the approximants are to have finite moments,
the splines cannot have a purely polynomial component and, hence, must van-
ish at infinity. Such splines, of degree m ≥ 0 with n distinct positive knots tν ,
ν = 1, 2, . . . , n, can be written in the form

sn,m(t) =

n∑

ν=1

aν(tν − t)m
+ , t ∈ R+, (3.3.12)

where u+ = uH(u), with H the Heaviside step function (3.3.2), 0 < t1 < t2 <
· · · < tn, and aν ∈ R. We seek to determine sn,m such that

∫ ∞

0

sn,m(t)tj dt = µj , j = 0, 1, . . . , 2n− 1, (3.3.13)

where µj are the moments (3.3.4) of the given function f .
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Theorem 3.57 For fixed m,n ∈ N, let f satisfy the following conditions:

(i) f ∈ Cm+1(R+);

(ii) the first 2n moments (3.3.4) of f exist;

(iii) f (µ)(t) = o(t−2n−µ) as t→ ∞, µ = 0, 1, . . . ,m.

Then, the approximation problem (3.3.12)–(3.3.13) has a unique solution if and
only if the measure

dλ[m](t) =
(−1)m+1

m!
tm+1f (m+1)(t) dt on R+ (3.3.14)

admits a Gaussian quadrature formula

∫ ∞

0

g(t) dλ[m](t) =

n∑

ν=1

λG
ν g(τ

G
ν ) for all g ∈ P2n−1, (3.3.15)

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, the knots tν and

coefficients aν in (3.3.12) are given by

tν = τG
ν , aν =

λG
ν

[τG
ν ]m+1

, ν = 1, 2, . . . , n. (3.3.16)

Proof Substituting (3.3.12) into (3.3.13) yields, since tν > 0,

n∑

ν=1

aν

∫ tν

0

tj(tν − t)m dt =

∫ ∞

0

tjf(t) dt, j = 0, 1, . . . , 2n− 1. (3.3.17)

The left-hand side, through m integrations by parts, can be seen to equal

m!

(j + 1)(j + 2) · · · (j +m)

n∑

ν=1

aν

∫ tν

0

tj+m dt

=
m!

(j + 1)(j + 2) · · · (j +m+ 1)

n∑

ν=1

aνt
j+m+1
ν .

(3.3.18)

The integral on the right in (3.3.17) is transformed similarly bym+1 integrations
by parts. We carry out the first of them in detail to exhibit the reasonings
involved. For any T > 0, we have

∫ T

0

tjf(t) dt =
1

j + 1
tj+1f(t)

∣∣∣∣
T

0

− 1

j + 1

∫ T

0

tj+1f ′(t) dt.

The integrated term clearly vanishes at t = 0 and tends to zero as t = T → ∞
by assumption (iii) with µ = 0. Since j ≤ 2n − 1 and the integral on the left
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converges as T → ∞ by assumption (ii), we infer the convergence of the integral
on the right. Therefore,

∫ ∞

0

tjf(t) dt = − 1

j + 1

∫ ∞

0

tj+1f ′(t) dt.

Continuing in this manner, using assumption (iii) to show convergence to zero
of the integrated term at the upper limit (its value at t = 0 always being zero)
and the existence of

∫∞
0
tj+µf (µ)(t) dt already established to infer the existence

of
∫∞
0 tj+µ+1f (µ+1)(t) dt, µ = 1, 2, . . . ,m, we arrive at

∫ ∞

0

tjf(t) dt =
(−1)m+1

(j + 1)(j + 2) · · · (j +m+ 1)

∫ ∞

0

tj+m+1f (m+1)(t) dt.

(3.3.19)
Comparing this with (3.3.18), we see that eqns (3.3.17), and hence eqns (3.3.13),
are equivalent to

n∑

ν=1

(aνt
m+1
ν )tjν =

∫ ∞

0

[
(−1)m+1

m!
tm+1f (m+1)(t)

]
tj dt,

j = 0, 1, . . . , 2n− 1,

which are precisely the equations stating that tν = τG
ν are the nodes, and

aνt
m+1
ν = λG

ν the weights, of the n-point Gauss formula for the measure dλ[m]

given in (3.3.14).
The nodes τG

ν , being the zeros of the orthogonal polynomial πn( · ; dλ[m]) (if
it exists), are uniquely determined, hence also the weights λG

ν . 2

Theorem 3.57 reduces to Theorem 3.54 when m = 0. It becomes Theorem
3.56 if m = −1 and the factorial m! in (3.3.14) is omitted. If f is completely
monotonic on R+, that is, such that (−1)mf (m)(t) > 0 for all t ∈ R+ and all
m = 0, 1, 2, . . . , then the measure dλ[m] in (3.3.14) is positive. Moreover, by
(3.3.19), the first 2n moments of dλ[m] exist, so that the Gauss formula (3.3.15)
exists and has distinct positive nodes τG

ν and positive weights λG
ν . The latter

implies aν > 0 in (3.3.12) and thus the complete monotonicity of the spline

approximant in the weak sense (−1)ms
(m)
n,m(t) ≥ 0.

Theorem 3.58 Let

σ
[m]
t (s) = s−(m+1)(s− t)m

+ , s > 0, t > 0. (3.3.20)

Then, in the affirmative case of Theorem 3.57, there holds, for any t > 0,

f(t) − sn,m(t) = Rn(σ
[m]
t ), (3.3.21)

where Rn(σ) is the remainder term of the Gauss quadrature formula (3.3.15),

∫ ∞

0

σ(s) dλ[m](s) =
n∑

ν=1

λG
ν σ(τG

ν ) +Rn(σ). (3.3.22)
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Proof For any T > 0, one has by Taylor’s formula

f(t) = f(T ) + f ′(T )(t− T ) + · · · + 1

m!
f (m)(T )(t− T )m

+
1

m!

∫ t

T

(t− s)mf (m+1)(s) ds.
(3.3.23)

Since by assumption (iii) of Theorem 3.57, limT→∞ T µf (µ)(T ) = 0 for µ =
0, 1, . . . ,m, letting T → ∞ in (3.3.23) gives

f(t) =
(−1)m+1

m!

∫ ∞

t

(s− t)mf (m+1)(s) ds =
(−1)m+1

m!

∫ ∞

0

(s− t)m
+f

(m+1)(s) ds.

Therefore, by (3.3.20) and (3.3.14),

f(t) =

∫ ∞

0

σ
[m]
t (s) dλ[m](s). (3.3.24)

On the other hand, by (3.3.12) and (3.3.16),

sn,m(t) =

n∑

ν=1

λG
ν

[τG
ν ]m+1

(τG
ν − t)m

+ =

n∑

ν=1

λG
ν σ

[m]
t (τG

ν ).

Subtracting this from (3.3.24) yields (3.3.21). 2

To discuss convergence as n → ∞ (for fixed m), we assume that f satisfies
assumptions (i)–(iii) of Theorem 3.57 for all n = 1, 2, 3, . . . . Then, according to
Theorem 3.58, our approximation process converges pointwise (at t), as n→ ∞,
if and only if the Gauss quadrature formula (3.3.22) converges when applied

to the particular function σ(s) = σ
[m]
t (s) in (3.3.20). Since σ

[m]
t is uniformly

bounded on R, this is true, for example, if dλ[m] is a positive measure and the
moment problem for dλ[m] on R (with dλ[m](s) = 0 for s < 0) is determined
(cf. Freud (1971, Chapter 3, Theorem 1.1)).

Example 3.59 Exponential distribution.
Here, f(t) = e−t on R+, and the measure dλ[m] in (3.3.14) becomes the

generalized Laguerre measure

dλ[m](t) =
1

m!
tm+1e−t dt on R+.

The knots tν of the spline (3.3.12), therefore, are the zeros of the generalized

Laguerre polynomial L
(α)
n with parameter α = m+ 1 (cf. Commentary to Table

1.1), and the coefficients aν are readily computed from (3.3.16) in terms of the
corresponding Gaussian weights λG

ν . The OPQ routine Example3 59.m computes
‖sn,m − f‖∞ for selected values of m and n, where the ∞-norm is relative to a
set of 100 equally spaced points on [0, tn]. (For t > tn, one clearly has |sn,m(t)−
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Table 3.17 The errors ‖sn,m − f‖∞ in Example
3.59.

n m = 1 m = 2 m = 3
5 4.7619(–2) 1.7857(–2) 7.9365(–3)
10 1.5405(–2) 3.4965(–3) 9.9900(–4)
20 5.1584(–3) 9.5823(–4) 1.3567(–4)
40 1.1614(–3) 3.7782(–4) 3.9944(–5)
80 3.0111(–4) 8.7392(–5) 7.1035(–6)

f(t)| = f(t).) Since the moment problem for the generalized Laguerre measure
is determined (Freud, 1971, Chapter 2, Theorem 5.2), it follows from the remark
made in the sentence preceding this example that sn,m(t) → f(t) as n → ∞ for
any fixed m and t > 0. Convergence, however, is relatively slow, as is shown by
the numerical results of Table 3.17.

The key commands of the routine Example3 59.m are as follows:

ab=r laguerre(n,m+1); ab(1,2)=ab(1,2)/prod(1:m);

xw=gauss(n,ab);

ta(1:n,1)=xw(:,1); ta(1:n,2)=xw(:,2)./(xw(:,1).^(m+1));

x=linspace(0,ta(n,1));

errmax=max(abs(splinefunc(n,m,x,ta)-exp(-x)));

The routine splinefunc.m evaluates sn,m(x) for any vector-valued x and for
knots tν and coefficients aν input through the n× 2 array ta.

Example 3.60 The Maxwell distribution, revisited.
For f(t) = e−t2 , the measure (3.3.14) becomes

dλ[m](t) =
1

m!
tm+1Hm+1(t)e

−t2 dt on R+,

where Hm+1 is the Hermite polynomial of degree m + 1 (cf. Commentaries to
Table 1.1). If, as we assume, m > 0, then Hm+1 changes sign at least once on
R+, so that dλ[m] is no longer a positive measure. The existence of a Gauss
quadrature formula (3.3.15) with distinct positive nodes is, therefore, in doubt,
and thus also the existence of the respective spline approximant (3.3.12).

In order to explore these issues, we attempt to generate the three-term re-
currence relation for the monic orthogonal polynomials πk( · ) = πk( · ; dλ[m]),

πk+1(t) = (t− αk(dλ[m]))πk(t) − βk(dλ[m])πk−1(t). (3.3.25)

They exist uniquely as long as the β-coefficients do not vanish. (We can no longer
expect them to be positive, however.) Since the inner product is

(u, v)dλ[m] =
1

m!

∫

R+

u(t)v(t)tm+1Hm+1(t)e
−t2 dt,

that is, up to a polynomial factor of degree 2m + 2, the one for the half-range
Hermite measure, it is relatively straightforward to implement the discretization
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method of §2.2.4, using Gauss quadrature formulae for the half-range Hermite
measure to do the discretizations. The procedure furnishes exact answers if we
use an (n+m+1)-point quadrature rule, assuming we want the first n recurrence
coefficients. The quadrature rule in question, on the other hand, can be gener-
ated in the usual way (cf. §3.1.1.1) from the first n+m+ 1 half-range Hermite
recurrence coefficients, which, in turn, are computable as described in Example
2.41. (The first 100 of them are available to 25 decimal places in the OPQ file
abhrhermite.)

If βk = βk(dλ[m]) 6= 0 for k = 0, 1, . . . , n, the desired Gauss nodes τG
ν are the

eigenvalues of the (nonsymmetric) Jacobi matrix

J̃n(dλ[m]) =




α0 1 0

β1 α1 1

β2 α2
. . .

. . .
. . . 1

0 βn−1 αn−1



. (3.3.26)

Since some of the βs may well be negative, we are not attempting to symmetrize
the matrix as is customarily done for positive measures. It is still true, however,
that our spline approximation problem has a unique solution if and only if all
eigenvalues of (3.3.26) are simple and positive. In that case, we can proceed to
compute the required Gauss weights λG

ν . By putting g(t) = πµ−1(t; dλ
[m]), µ =

1, 2, . . . , n, in (3.3.15), it is easily seen that the vector λG = [λG
1 , λ

G
2 , . . . , λ

G
n ]T is

the solution of the linear system

P n(dλ[m])λG = β0e1, eT
1 = [1, 0, . . . , 0], (3.3.27)

where P n is the matrix whose element in position (µ, ν) is πµ−1(τ
G
ν ), µ, ν =

1, 2, . . . , n.
The computations were carried out for n = 1 : 20 and m = 1 : 3 (see the OPQ

routine Example3 60.m). All coefficients βk were found to be different from zero,
but quite a few of them negative; see Table 3.18. Interestingly, the negative βs
seem to occur in pairs of two.

Table 3.18 The signs of the coefficients βk in
(3.3.25).

m βk < 0 for k =
1 2–3, 6–7, 10–11, 15–16
2 1–2, 4–5, 7–8, 11–12, 14–15, 18–19
3 1–2, 4–5, 9–10, 16–17

In case all eigenvalues of the Jacobi matrix (3.3.26) are positive, we can take
them as the nodes tν of the spline (3.3.12) and obtain the coefficients aν by means
of (3.3.16) in terms of the solution λG of (3.3.27). A summary of the results is
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Table 3.19 Existence and accuracy of the spline approxima-
tions of Example 3.60.

n m = 1 m = 2 m = 3 n m = 1 m = 2 m = 3
1 6.9(–2) 1.8(–1) 2.6(–1) 11 — 1.1(–3) 1.1(–4)
2 8.2(–2) — 2.3(–1) 12 — — *
3 — 1.1(–2) 2.5(–3) 13 7.8(–3) 6.7(–4) *
4 3.5(–2) 6.7(–3) 2.2(–3) 14 8.3(–3) 5.6(–4) 8.1(–5)
5 2.6(–2) — 1.6(–3) 15 7.7(–3) — 7.1(–5)
6 2.2(–2) 3.1(–3) * 16 — 4.9(–4) 7.8(–5)
7 — 2.4(–3) * 17 — 3.8(–4) 3.8(–5)
8 1.4(–2) — 3.4(–4) 18 5.5(–3) 3.8(–4) *
9 1.1(–2) 1.7(–3) 2.5(–4) 19 5.3(–3) — *
10 9.0(–3) 1.1(–3) — 20 5.4(–3) 3.1(–4) *

presented in Table 3.19. A dash indicates the presence of a negative eigenvalue
and an asterisk the presence of a pair of conjugate complex eigenvalues. In all
cases computed, there were never more than one negative eigenvalue, or more
than one pair of complex eigenvalues. The numbers shown in Table 3.19 represent
‖sn,m − f‖∞ computed as in Example 3.59. In the case n = 16, m = 3, the
matrix P n is close to singular and, therefore, the corresponding entry in Table
3.19 possibly inaccurate.

3.3.2 Approximation on a compact interval

We consider now moment-preserving spline approximation on a finite interval,
which, without loss of generality, may be assumed to be the interval [0, 1]. The
spline function sn,m then has an additional polynomial component, so that

sn,m(t) = p(t) +

n∑

ν=1

aν(tν − t)m
+ , p ∈ Pm, 0 ≤ t ≤ 1, (3.3.28)

and we assume that all knots tν are strictly inside the interval [0, 1],

0 < t1 < t2 < · · · < tn < 1. (3.3.29)

There are two approximation problems that seem worth considering.
Problem I. Find sn,m in (3.3.28) such that

∫ 1

0

sn,m(t)tj dt = µj , j = 0, 1, . . . , 2n+m. (3.3.30)

Compared to (3.3.13), we can match m + 1 additional moments, since we have
that many more parameters (the coefficients of p) at our disposal.

Problem II. Find sn,m in (3.3.28) such that

∫ 1

0

sn,m(t)tj dt = µj , j = 0, 1, . . . , 2n− 1, (3.3.31)
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and
s(µ)

n,m(1) = f (µ)(1), µ = 0, 1, . . . ,m. (3.3.32)

Here, we must assume that the first m derivatives of f at the end point t = 1

exist and are known. These immediately determine p, since s
(µ)
n,m(1) = p(µ)(1).

If f is a polynomial of degree m, then sn,m = f is a trivial solution of either
problem. We will, therefore, assume that f 6∈ Pm.

Theorem 3.61 Assume that f ∈ Cm+1[0, 1] and f 6∈ Pm. Then, Problem I has
a unique solution if and only if the measure

dλ[m](t) =
(−1)m+1

m!
f (m+1)(t) dt on [0, 1] (3.3.33)

admits a generalized Gauss–Lobatto quadrature formula (cf. §3.1.1.4)

∫ 1

0

g(t) dλ[m](t) =
m∑

µ=0

[λ
(µ)
0 g(µ)(0) + (−1)µλ

(µ)
n+1g

(µ)(1)]

+

n∑

ν=1

λL
ν g(τ

L
ν ) for all g ∈ P2n+2m+1,

(3.3.34)

satisfying 0 < τL
1 < τL

2 < · · · < τL
n < 1. If that is the case, the knots tν and

coefficients aν in (3.3.28) are given by

tν = τL
ν , aν = λL

ν , ν = 1, 2, . . . , n, (3.3.35)

and the polynomial p in (3.3.28) is uniquely determined by its derivative values
at t = 1 given by

p(µ)(1) = f (µ)(1) + (−1)mm!λ
(m−µ)
n+1 , µ = 0, 1, . . . ,m. (3.3.36)

Proof See Frontini, Gautschi, and Milovanović (1987, §2.2, Corollary 1 to The-
orem 2.3). 2

Note that complete monotonicity of f (cf. the paragraph preceding Theorem
3.58) again implies positivity of dλ[m], hence the unique existence of sn,m for
any n ≥ 1 and m ≥ 0. In turn, by Theorem 3.12 this implies aν > 0 in (3.3.28),
but complete monotonicity of sn,m (in the weak sense) only if (−1)kp(k)(t) ≥ 0
for all k. Since by Taylor’s theorem

(−1)kp(k)(t) = (−1)k

(
m∑

µ=0

(−1)µ p
(µ)(1)

µ!
(1 − t)µ

)(k)

,

the latter is true if (−1)µp(µ)(1) ≥ 0 for µ = 0, 1, . . . ,m, or, by (3.3.36), if

(−1)µf (µ)(1) +m!(−1)m−µλ
(m−µ)
n+1 ≥ 0, µ = 0, 1, . . . ,m.

Since the first term is positive by assumption, these inequalities restrict only

those weights in (3.3.34) for which (−1)ρλ
(ρ)
n+1 < 0.
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Theorem 3.62 Assume that f ∈ Cm+1[0, 1] and f 6∈ Pm. Then, Problem II has
a unique solution if and only if the measure dλ[m] in (3.3.33) admits a generalized
Gauss–Radau quadrature formula (cf. §3.1.1.4)

∫ 1

0

g(t) dλ[m](t) =

m∑

µ=0

λ
(µ)
0 g(µ)(0) +

n∑

ν=1

λR
ν g(τ

R
ν ) for all g ∈ P2n+m, (3.3.37)

satisfying 0 < τR
1 < τR

2 < · · · < τR
n < 1. If that is the case, the knots tν and

coefficients aν in (3.3.28) are given by

tν = τR
ν , aν = λR

ν , ν = 1, 2, . . . , n, (3.3.38)

and (trivially)

p(t) =

m∑

µ=0

f (µ)(1)

µ!
(t− 1)µ. (3.3.39)

Proof See Frontini, Gautschi, and Milovanović (1987, §2.2, Corollary 1 to The-
orem 2.4). 2

Complete monotonicity of f , as before, implies the unique existence of sn,m

for all n and m, but now also complete monotonicity (in the weak sense) of each
sn,m.

There are error estimates in terms of the remainder terms of the generalized
Gauss–Lobatto and Gauss–Radau quadrature rules that are entirely analogous
to the one in Theorem 3.58. For this, as well as for convergence results as n→ ∞
and numerical examples, we refer to Frontini, Gautschi, and Milovanović (1987,
§3 and 4).

3.4 Slowly convergent series

There are many ways slowly convergent series can be evaluated. A large class of
methods is based on linear or nonlinear sequence transformations, that is, the
sequence of partial sums of the series is transformed into another sequence that
converges faster to the same limit. For texts along these lines, see, for example,
Wimp (1981), Delahaye (1988), and Brezinski and Redivo Zaglia (1991). An al-
ternative approach, more in the spirit of this book, consists in first representing
the series as a definite integral involving a positive measure, and then applying
Gaussian quadrature to the integral. This also produces a new sequence—the se-
quence of Gauss quadrature approximations—but it originates from the integral
representation of the series and not from its partial sums. In the following, we
consider simple examples of this idea, involving series

S =
∞∑

k=1

ak (3.4.1)

whose general term is expressible in terms of the Laplace transform, or its deriva-
tive, of a known function.
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3.4.1 Series generated by a Laplace transform

We assume that the term ak in the series (3.4.1) is the Laplace transform

(Lf)(s) =

∫ ∞

0

e−stf(t) dt (3.4.2)

evaluated at s = k of some known function f ,

ak = (Lf)(k), k = 1, 2, 3, . . . . (3.4.3)

Such series typically converge slowly. For example, if f ∼ tσ, σ > 0, as t → 0,
and f grows at most exponentially at infinity, one has by Watson’s Lemma (see,
e.g. Wong (1989, p. 20)) that ak ∼ k−σ−1 as k → ∞, showing slow convergence
of (3.4.1) unless σ is large. We can write, however,

S =

∞∑

k=1

(Lf)(k) =

∞∑

k=1

∫ ∞

0

e−ktf(t) dt,

and, upon interchanging summation with integration and some minor regroup-
ing,

S =

∫ ∞

0

∞∑

k=1

e−(k−1)t · e−tf(t) dt =

∫ ∞

0

1

1 − e−t
e−tf(t) dt,

that is,

S =

∫ ∞

0

t

1 − e−t

f(t)

t
e−t dt. (3.4.4)

This is the desired integral representation of the series. If the series converges at
least as fast as

∑
k−ν−1, ν > 0, then f(t)/t in (3.4.4) is integrable at t = 0.

The task is now shifted from one of summation to one of integration. There
are, in fact, several ways we can proceed. One that comes to mind immediately
is Gauss–Laguerre quadrature of

t

1 − e−t

f(t)

t

in (3.4.4) or, possibly, generalized Gauss–Laguerre quadrature if f(t)/t is not
regular at t = 0. On the surface, this seems like a natural approach, but it
ignores the presence of poles (located at the integer multiples of 2πi) in the first
factor of the integrand. These poles have the effect of slowing down convergence
of Gauss–Laguerre quadrature. A better way is to incorporate these poles (or at
least some of them) into a rational Gauss–Laguerre formula of the kind discussed
in §3.1.4.1, Example 3.27, where ξν = 0 and ην = 1/(2νπ). (Experience gained in
§3.1.4.3 suggests incorporating the first m = 2b(n+ 1)/2)c poles in the n-point
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quadrature rule.) Alternatively, they can be integrated, as in Example 2.42, into
an Einstein weight function by writing

S =

∫ ∞

0

f(t)

t
dλ(t), dλ(t) =

t

et − 1
dt. (3.4.5)

Then, if f(t)/t is a smooth function, the correponding Gauss–Einstein quadrature
rule converges rapidly. If f(t)/t ∼ tν−1, ν > 0, as t → 0, then modified Gauss–
Einstein quadrature (cf. Example 2.43) is called for.

Example 3.63 The Theodorus constant

T =

∞∑

k=1

1

k3/2 + k1/2
= 1.860025079221190307 . . . .

So called by Davis (1993) because of its relation to a spiral attributed to the
ancient Greek mathematician Theodorus of Cyrene, it is an example of (3.4.3).
Indeed,

1

s3/2 + s1/2
= s−1/2 1

s+ 1
,

so that the Convolution Theorem for Laplace transforms can be applied if one
notes that s−1/2 = (L1/

√
πt)(s) and (s+ 1)−1 = (Le−t)(s),

s−1/2(s+ 1)−1 =

(
L 1√

πt
∗ e−t

)
(s).

Here, the star indicates convolution,

1√
πt

∗ e−t =

∫ t

0

1√
πτ

e−(t−τ) dt =
e−t

√
π

∫ t

0

eτ

√
τ

dτ.

Substituting τ = u2, one gets

1√
πt

∗ e−t =
2√
π

e−t

∫ √
t

0

eu2

du

and, therefore,

f(t) =
2√
π
F (

√
t),

where

F (x) = e−x2

∫ x

0

et2 dt

is Dawson’s integral (cf. Abramowitz and Stegun (1992, Chapter 7)).
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The integral representation for T can now be written in the form

T =
2√
π

∫ ∞

0

t

1 − e−t

F (
√
t)√
t

t−1/2e−t dt (3.4.6)

or, alternatively, as

T =
2√
π

∫ ∞

0

F (
√
t)√
t

t−1/2 dλ(t), dλ(t) =
t

et − 1
dt. (3.4.7)

The three quadrature schemes mentioned above—generalized Gauss–Laguerre
and rational Gauss–Laguerre quadrature of (3.4.6), and modified (by t−1/2)
Gauss–Einstein quadrature of (3.4.7)—are compared with respect to relative
errors in Table 3.20; see the OPQ routine Example3 63.m.

Table 3.20 Relative errors of three quadrature schemes to evaluate
the Theodorus constant.

n Gauss–Laguerre Rational Gauss–Laguerre Gauss–Einstein
1 9.6799(–03) 1.5635(–02) 1.3610(–01)
4 5.5952(–06) 1.1893(–08) 2.1735(–04)
7 4.0004(–08) 5.9689(–16) 3.3459(–07)
10 5.9256(–10) 5.0254(–10)
15 8.2683(–12) 9.4308(–15)
20 8.9175(–14) 4.7751(–16)

Timing: 10.8 Timing: 8.78 Timing: 10.4

It is seen that rational Gauss–Laguerre quadrature is the clear winner, fol-
lowed, at a distance, by Gauss–Einstein and ordinary Gauss–Laguerre quadra-
tures. This is true not only in terms of accuracy, but also in terms of machine
time, the timing for rational Gauss–Laguerre being, as shown, about 80% of the
one for the other quadrature schemes.

Example 3.64 The Hardy–Littlewood function

H(x) =

∞∑

k=1

1

k
sin

x

k
, x > 0.

This function has an interesting history. It was introduced by Hardy and Lit-
tlewood (1936) in connection with a summation procedure of Lambert. Hardy
and Littlewood showed that there are infinitely many (though rare) values of
x with x → ∞ such that H(x) > C(log log x)1/2. The function, therefore, is
unbounded from above. Recently, Clark and Ismail (2003) studied the complete
monotonicity on [0,∞] of the function −(xmψ(m)(x))(m), where ψ is the loga-
rithmic derivative of the gamma function. They proved complete monotonicity
for m = 1, 2, . . . , 16 and conjectured it to hold for all m. The conjecture was
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shown by Alzer, Berg, and Koumandos (2004) to be equivalent to H(x) > −π/2
on [0,∞], and eventually disproved by showing that H(x) < −C(log log x)1/2 for
infinitely many (but rare) values of x going to infinity.

To express the general term of the series as a Laplace transform, we recall
(Abramowitz and Stegun, 1992, eqn 29.3.81) that

1

s
ex/s =

(
L(t)I0(2

√
xt)
)

(s), (3.4.8)

where I0 is the modified Bessel function of order zero. Therefore, by Euler’s
formula,

1

s
sin(x/s) =

1

s

1

2i
(eix/s − e−ix/s) =

1

2i

(
L(t)[I0(2

√
ixt) − I0(2

√
−ixt)](s)

)
,

so that

f(t) = f(t;x) =
1

2i
[I0(2

√
ixt) − I0(2

√
−ixt)]. (3.4.9)

This is an entire function of u = xt, and it is readily seen from its power series
expansion that limt→0 f(t;x)/t = x. For purposes of calculation, however, the
power series is of limited use, since it suffers from severe cancellation of terms
when u = xt is large.

A more suitable expression for f can be obtained from the integral represen-
tation (cf. Abramowitz and Stegun (1992, eqn 9.6.16))

I0(z) =
1

π

∫ π

0

ez cos θ dθ,

which, substituted in (3.4.9), yields

f(t;x) =
1

π

∫ π

0

e
√

2u cos θ sin(
√

2u cos θ) dθ, u = xt. (3.4.10)

Since the integrand is a 2π-periodic, even, and entire function of θ, integration
in (3.4.10) is in effect over the full period, and the composite trapezoidal rule
the method of choice for evaluating the integral. See the OPQ routine fHL.m.

In analogy to (3.4.4) and (3.4.5), we now have

H(x) =

∫ ∞

0

t

1 − e−t

f(t;x)

t
e−t dt

or

H(x) =

∫ ∞

0

f(t;x)

t
dλ(t), dλ(t) =

t

et − 1
dt,

and the same three methods as in Example 3.63 can be used to evaluate these
integrals. The third one—Gauss–Einstein quadrature—is now performing best,
both with regard to speed of convergence and machine time, but shares with the
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other two methods their propensity of losing accuracy owing to cancellation of
terms in the quadrature sum. A measure of cancellation is the absolutely largest
term of the quadrature rule divided by the absolute value of the quadrature sum.
This measure is shown in the column of Table 3.21 headed by “can.” The smallest
integer n for which two consecutive quadrature approximations (with n resp.

Table 3.21 Performance of three quadrature
schemes to evaluate the Hardy–Littlewood func-
tion.

x n H(x) can Nf
Gauss–Laguerre

1 10 1.472828 3.780(–01) 30
5 13 0.944182 2.956(+00) 40
10 20 0.759295 2.377(+01) 50
20 28 2.197003 1.299(+03) 60
40 45 2.970698 1.893(+07) 70
Timing: 24.7

Rational Gauss–Laguerre
1 7 1.472828 4.080(–01) 30
5 12 0.944182 2.507(+00) 40
10 16 0.759295 2.415(+01) 40
20 25 2.197003 1.279(+03) 50
40 49 2.970699 1.579(+07) 80
Timing: 487.3

Gauss–Einstein
1 5 1.472828 5.017(–01) 30
5 9 0.944182 3.596(+00) 40
10 13 0.759295 3.569(+01) 40
20 21 2.197003 1.359(+03) 60
40 39 2.970699 1.689(+07) 70
Timing: 16.0

n+ 1 terms) differ in absolute value by less than ε0 = 109 × eps = 2.22 × 10−7

are shown in the column headed by “n.” The last column shows how many
terms (in steps of 10) are needed in the composite trapezoidal rule to obtain the
function f in (3.4.10) within an error of ε1 = 103 × eps = 2.22 × 10−13. The
rational Gauss–Laguerre method, when x = 40, experiences overflow problems in
the routine stieltjes.m used in mcdis.m for generating the rational quadrature
rule. To eliminate them, we used the routine lanczos.m in place of stieltjes.m,
paying the heavy price associated with this choice already noted in Examples 2.39
and 2.40. The results in Table 3.21, showing the superiority of Gauss–Einstein
quadrature, are produced by the routine Example3 64.m. For a graph of H(x)
for 0 ≤ x ≤ 100, see Figure 3.6.
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Fig. 3.6. The Hardy–Littlewood function on [0, 100].

3.4.2 “Alternating” series generated by a Laplace transform

These are series (3.4.1) in which

ak = (−1)k−1(Lf)(k), k = 1, 2, 3, . . . , (3.4.11)

that is, the signs of the Laplace transforms, not necessarily those of ak, alternate.
Here, in place of (3.4.4), one finds

S =

∫ ∞

0

1

1 + e−t
f(t)e−t dt. (3.4.12)

We have the same three options as in §3.4.1 of evaluating this integral, the third
one being based on

S =

∫ ∞

0

f(t) dλ(t), dλ(t) =
1

et + 1
dt,

that is, on Gauss quadrature relative to a Fermi distribution (cf. §3.1.4.3).

Example 3.65 A logarithmic series
∑∞

k=1(−1)k−1(k + 1)−1 = 1 − ln 2.
Since (s+ 1)−1 = (Le−t)(s), we have f(t) = e−t and S =

∫∞
0

e−t dt/(et + 1).
The OPQ routine Example3 65.m implements the three quadrature methods. The
results are summarized in Table 3.22, showing relative errors and timings.

It is seen that ordinary Gauss–Laguerre quadrature is rather slow in con-
verging, more so than in the preceding examples because of the poles of the
integrand being at integer multiples of πi rather than 2πi as before. In contrast,
rational Gauss–Laguerre converges quite fast, but is more costly. Gauss–Fermi
quadrature, converging reasonably fast and being also exceptionally fast in terms
of machine time, appears to be a good compromise.
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Table 3.22 Relative errors of three quadrature schemes to evalu-
ate the logarithmic series of Example 3.65.

n Gauss–Laguerre Rational Gauss–Laguerre Gauss–Fermi
1 1.2355(–01) 6.1564(–02) 3.1044(–01)
4 7.6210(–05) 1.2730(–06) 9.2350(–04)
7 9.8184(–06) 1.9494(–11) 1.7364(–06)
10 3.2281(–06) 9.0452(–16) 2.9055(–09)
15 6.4151(–08) 6.1689(–14)
20 4.3124(–09) 1.9090(–16)
35 6.1327(–13)
50 4.5226(–15)

Timing: 6.95 Timing: 19.3 Timing: 1.59

Example 3.66 The series
∑∞

k=1(−1)k−1k−1e−1/k = 0.19710793639795065 . . . .
From (3.4.8) one obtains s−1e−1/s = (LJ0(2

√
t))(s), so that f(t) = J0(2

√
t),

and, therefore,

S =

∫ ∞

0

1

1 + e−t
J0(2

√
t)e−t dt,

or

S =

∫ ∞

0

J0(2
√
t) dλ(t), dλ(t) =

1

et + 1
dt.

The OPQ routine Example3 66.m, a slight variation of Example3 65.m, produces
results as shown in Table 3.23. They are similar to those in Table 3.22 except
for Gauss–Fermi quadrature, which is now the most efficient in all respects.

Table 3.23 Relative errors of three quadrature schemes to evalu-
ate the series of Example 3.66.

n Gauss–Laguerre Rational Gauss–Laguerre Gauss–Fermi
1 1.6961(–01) 1.0310(–01) 5.6994(–01)
4 4.4754(–03) 4.6605(–05) 9.6454(–07)
7 1.7468(–04) 1.8274(–09) 9.1529(–15)
10 3.7891(–06) 1.5729(–13) 2.8163(–16)
15 2.6569(–07) 1.5490(–15)
20 8.6155(–09)
40 1.8066(–13)

Timing: 12.7 Timing: 19.5 Timing: 4.95

3.4.3 Series generated by the derivative of a Laplace transform

We now consider the case where

ak = − d

ds
(Lf)(s)

∣∣∣∣
s=k

, k = 1, 2, 3, . . . . (3.4.13)
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A short calculation similar to the one leading to (3.4.4) will show in this case
that

S =

∫ ∞

0

t

1 − e−t
f(t)e−t dt, (3.4.14)

or, alternatively,

S =

∫ ∞

0

f(t) dλ(t), dλ(t) =
t

et − 1
dt, (3.4.15)

that is, integration relative to the Einstein measure. The three quadature meth-
ods used previously continue to be applicable.

Example 3.67 The series
∑∞

k=1(k − 1)k−3e−1/k = 0.34291894384460978 . . . .
The general term in this series is the negative derivative of the Laplace trans-

form used in Example 3.66, so that again f(t) = J0(2
√
t) and

S =

∫ ∞

0

t

1 − e−t
J0(2

√
t)e−t dt

or

S =

∫ ∞

0

J0(2
√
t) dλ(t), dλ(t) =

t

et − 1
dt.

The performance of the three quadrature methods, not surprisingly, is similar to
the one shown in Table 3.23; see the OPQ routine Example3 67.m for details.

Example 3.68 The series
∑∞

k=1(
3
2k+1)k−2(k+1)−3/2 = 1.2859748161552402 . . . .

It is known (Abramowitz and Stegun, 1992, eqn 29.3.44) that

(L erf
√
t)(s) =

1

s

1√
s+ 1

,

the negative derivative of which, for s = k, yields the general term of the series.
Thus, f(t) = erf

√
t, and

S =

∫ ∞

0

t

1 − e−t
erf

√
t e−t dt.

To remove the square-root singularity at t = 0, we write this as

S =

∫ ∞

0

t

1 − e−t

erf
√
t√
t
t1/2e−t dt,

or else as

S =

∫ ∞

0

erf
√
t√
t
t1/2 dλ(t), dλ(t) =

t

et − 1
dt.

To evaluate this effectively requires the generalized Laguerre measure (with pa-
rameter α = 1

2 ) in the former, and the modified (by t1/2) Einstein measure in the
latter integral. Modified in this manner, the three quadrature methods used in
the previous examples perform as expected. See Table 3.24 for numerical results,
and the OPQ routine Example3 68.m for implementational details.
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Table 3.24 Relative errors of three quadrature schemes to evaluate
the series of Example 3.68.

n Gauss–Laguerre Rational Gauss–Laguerre Gauss–Einstein
1 4.0125(–03) 5.1071(–02) 8.1715(–02)
4 1.5108(–05) 4.5309(–08) 1.6872(–04)
7 4.6576(–08) 1.3226(–13) 3.1571(–07)
10 3.0433(–09) 1.2087(–15) 5.4661(–10)
15 4.3126(–11) 1.2605(–14)
20 7.6664(–14)
30 3.4533(–16)

Timing: 6.50 Timing: 10.8 Timing: 1.58

3.4.4 “Alternating” series generated by the derivative of a Laplace transform

This is the case of

ak = −(−1)k−1 d

ds
(Lf)(s)

∣∣∣∣
s=k

, k = 1, 2, 3, . . . , (3.4.16)

which gives rise to

S =

∫ ∞

0

t

1 + e−t
f(t)e−t dt (3.4.17)

or

S =

∫ ∞

0

tf(t) dλ(t), dλ(t) =
1

et + 1
dt. (3.4.18)

Example 3.69 The series

∞∑

k=1

(−1)k−1(3
2 + 1)k−2(k + 1)−3/2 = 0.74288076461170605 . . . .

This is the alternating counterpart of the series in Example 3.68, hence again
f(t) = erf

√
t. With the same adjustments made as in Example 3.68 to take care

of the square-root singularity, we need to evaluate

S =

∫ ∞

0

√
t erf

√
t

1 + e−t
t1/2e−t dt

and

S =

∫ ∞

0

√
t erf

√
t · t1/2 dλ(t), dλ(t) =

1

et + 1
dt.

This is done as before, using, however, generalized ordinary and rational Gauss–
Laguerre quadrature for the first of these integrals, and modified (by t1/2) Gauss–
Fermi quadrature for the second. Implemented in the OPQ routine
Example3 69.m, the results are similar to those in Table 3.24, except that the
first quadrature rule (generalized Gauss–Laguerre) requires n = 50 to reach an
accuracy near the level of machine precision.
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3.4.5 Slowly convergent series occurring in plate contact problems

The series to be considered here are series of the type

Rp(z) =
∞∑

k=0

z2k+1

(2k + 1)p
(3.4.19)

or the type

Sp(z) =

∞∑

k=0

(−1)k z2k+1

(2k + 1)p
, (3.4.20)

where

z ∈ C, |z| ≤ 1, p = 2 or 3. (3.4.21)

Of particular interest is the case where |z| is close or equal to 1, in which case
both series converge very slowly. It suffices to concentrate on the first of these
series, Rp, since Sp(z) = iRp(−iz). Attention, moreover, can be restricted to the

first quadrant in the complex plane, since Rp(−z) = −Rp(z) and Rp(z) = Rp(z).
Series of the type (3.4.19) with

z = x, 0 < x ≤ 1 or z = eiα, α ∈ R (3.4.22)

occur in the mathematical treatment of unilateral plate contact problems. When
z = eiα is on the unit circle, some of these series can be summed explicitly as
Fourier series. For example, see Hansen (1975, eqns (17.2.16) and (14.2.21)),

∞∑

k=0

cos(2k + 1)α

(2k + 1)2
=

1

8
π(π − 2|α|), −π ≤ α ≤ π, (3.4.23)

or
∞∑

k=0

sin(2k + 1)α

(2k + 1)3
=

1

8
πα(π − |α|), −π ≤ α ≤ π, (3.4.24)

and there are analogous formulae for the alternating series. When z = 1, the sum
of (3.4.19) is expressible in terms of the Riemann zeta function (Abramowitz and
Stegun, 1992, eqn 23.2.20),

Rp(1) = (1 − 2−p)ζ(p), (3.4.25)

whereas S2(1) is known as Catalan’s constant, and S3(1) = π3/32.

3.4.5.1 The summation procedure We follow the same idea as described in
§3.4.1 except that only a part of the general term of the series (3.4.19)—namely
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the coefficient—is expressed as a Laplace transform (cf. Abramowitz and Stegun
(1992, eqn 29.3.11)),

1

(k + 1
2 )p

= (Lf)(k), f(t) =
1

(p− 1)!
tp−1e−t/2. (3.4.26)

Then,

Rp(z) =
z

2p

∞∑

k=0

z2k

(k + 1
2 )p

=
z

2p

∞∑

k=0

z2k

∫ ∞

0

e−kt · t
p−1e−t/2

(p− 1)!
dt

=
z

2p(p− 1)!

∫ ∞

0

∞∑

k=0

(z2e−t)k · tp−1e−t/2 dt

=
z

2p(p− 1)!

∫ ∞

0

1

1 − z2e−t
tp−1e−t/2 dt,

that is,

Rp(z) =
z

2p(p− 1)!

∫ ∞

0

tp−1et/2

et − z2
dt. (3.4.27)

We distinguish two cases.
Case 1: z = 1. In this case, (3.4.27) can be given the forms

Rp(1) =
1

2p(p− 1)!

∫ ∞

0

tp−1et/2

1 − e−t
e−t dt (3.4.28)

or

Rp(1) =
1

2p(p− 1)!

∫ ∞

0

tp−2et/2 dλ(t), dλ(t) =
t

et − 1
dt, (3.4.29)

and the three quadrature methods of §3.4.1 again become applicable. Alterna-
tively, we may use the explicit formula (3.4.25) in conjunction with tabulated
values of the Riemann zeta function (cf., e.g. McLellan IV (1968)). In particular,
R2(1) = π2/8.

Case 2: z 6= 1. Here we could proceed similarly as in Case 1 and write, for
example,

Rp(z) =
z

2p(p− 1)!

∫ ∞

0

et − 1

et − z2
tp−2et/2 dλ(t).

Unfortunately, the first factor in the integrand is rather ill-behaved when |z| is
close to 1, exhibiting a steep boundary layer near t = 0. Gaussian quadrature,
therefore, will no longer be effective.

Instead, we make the change of variable e−t = τ in (3.4.27) (and then replace
τ again by t) to obtain

Rp(z) =
1

2p(p− 1)!z

∫ 1

0

t−1/2[ln(1/t)]p−1

z−2 − t
dt. (3.4.30)
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This expresses Rp(z) as a Cauchy integral of the measure

dλ[p](t) = t−1/2[ln(1/t)]p−1 dt (3.4.31)

(cf. (2.3.1) and (2.3.2)). Since under our assumptions z−2 lies outside of the
interval [0, 1], the integral in (3.4.30) can be evaluated by the continued fraction
algorithm of §2.3.2. This is quite cheap and effective (unless z−2 is very close to
[0, 1]), once sufficiently many of the recurrence coefficients for the measure dλ[p]

have been precomputed. For p = 2, p = 3, the first 100 of them are available to 25
resp. 20 decimal digits in the OPQ files absqm1log1 and absqm1log2. They have
been computed in quadruple precision by a simplified and extended version of the
ORTHPOLq routine qtest2 implementing the procedures discussed in Examples
2.27 and 2.28.

Example 3.70 Rp(x), p = 2 and 3, and x = 0.8, 0.9, 0.95, 0.99, 0.999 and 1.0.
We apply (3.4.30) for z = x in conjunction with the continued fraction algo-

rithm of §2.3.2, using the recurrence coefficients in absqm1log1 and absqm1log2.
For the first four values of x we selected eps0= 102×eps, for the others eps0=105

×eps resp. eps0=1010×eps. The OPQ routine Example3 70.m produces the re-

Table 3.25 Numerical results for Example 3.70.

x p = 2 p = 3 R2(x) R3(x)
0.8 12 11 0.87728809392147 0.82248858052014
0.9 17 15 1.02593895111111 0.93414857586540
0.95 24 21 1.11409957792905 0.99191543992243
0.99 49 40 1.20207566477686 1.03957223187364
0.999 95 57 1.22939819733 1.05056774973
1.000 57 12 1.233625 1.051795

sults shown in Table 3.25. The entries in the second and third column indicate the
final starting value7 of the backward recurrence index ν that yields convergence
for the given accuracy tolerance eps0. For x ≥ 0.999, full accuracy could not
be achieved with numax=100 recurrence coefficients, only the partially accurate
results shown in Table 3.25. Interestingly, the continued fraction algorithm seems
to converge even for x = 1, albeit slowly, but there is no theoretical justification
for it (to the best of our knowledge).

Example 3.71 Rp(e
iα) for p = 2 and 3, and α = ωπ/2, ω = 0.2, 0.1, 0.05, 0.01,

0.001, 0.000.
The same procedure as in Example 3.70 was applied, except that the error

tolerance for the fifth value of ω was increased to 106×eps. The results, produced
by the OPQ routine Example3 71.m, are shown in Table 3.26. Those for Re(R2)

7The starting value of the recurrence index ν in the routine cauchy.m has been increased
in steps of 1 rather than 5 to produce the results of Table 3.25.
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and Im(R3) were checked against the formulae in (3.4.23) and (3.4.24) and found
to agree in all but the last digit, which occasionally is off by one unit.

Table 3.26 Numerical results for Example 3.71.

p ω ν Re(Rp(z)) Im(Rp(z))
2 0.2 16 0.98696044010894 0.44740227008596
3 15 0.96915102126252 0.34882061265337
2 0.1 21 1.11033049512255 0.27830297928558
3 19 1.02685555765937 0.18409976778928
2 0.05 28 1.17201552262936 0.16639152396897
3 25 1.04449441539672 0.09447224926029
2 0.01 56 1.22136354463481 0.04592009281744
3 47 1.05140829197388 0.01928202831056
2 0.001 97 1.232466849 0.006400460
3 55 1.051794454 0.001936923
2 0.000 57 1.2336 0.0000
3 12 1.0518 0.0000

3.4.5.2 Series involving ratios of hyperbolic cosine and sine functions Series
of the types

Tp(x, b) =

∞∑

k=0

1

(2k + 1)p

cosh(2k + 1)x

cosh(2k + 1)b
(3.4.32)

and

Up(x, b) =

∞∑

k=0

1

(2k + 1)p

sinh(2k + 1)x

cosh(2k + 1)b
, (3.4.33)

where
0 ≤ x ≤ b, b > 0 and p = 2, 3, (3.4.34)

also are of interest in plate contact problems. They present a more challenging
problem of summation, but yield to the procedure of §3.4.5.1 if the ratios of
hyperbolic functions are suitably expanded. In the case of (3.4.32), for example,
one writes

cosh(2k + 1)x

cosh(2k + 1)b
=

∞∑

n=0

(−1)n
{

e−(2k+1)[(2n+1)b−x] + e−(2k+1)[(2n+1)b+x]
}

and combines this in (3.4.32) with the Laplace transform technique (3.4.26) to
obtain (after an elementary calculation using an interchange of the summations
over k and n)

Tp(x, b) =
1

2p(p− 1)!

∞∑

n=0

(−1)ne(2n+1)b[ϕn(−x) + ϕn(x)], (3.4.35)
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where

ϕn(s) = es

∫ 1

0

dλ[p](t)

e2[(2n+1)b+s] − t
, −b ≤ s ≤ b, (3.4.36)

with dλ[p] as given in (3.4.31). The integral in (3.4.36) is again a Cauchy trans-
form of the measure dλ[p], this time evaluated at u = exp(2[(2n + 1)b + s]).
Clearly, u > 1, unless n = 0 and s = −b, in which case, by (3.4.30) and (3.4.25),

ϕ0(−b) = e−b

∫ 1

0

dλ[p](t)

1 − t
= (2p − 1)(p− 1)!ζ(p)e−b.

The integral in (3.4.36), hence both ϕn(x) and ϕn(−x) in (3.4.35) (the latter
if n > 0 or x < b), can be computed by the continued fraction algorithm as in
§3.4.5.1. For large n, this algorithm converges almost instantaneously. We also
note that the series in (3.4.35) converges geometrically with ratio e−b, which is
quite satisfactory unless b is small.

For the series (3.4.33) one finds similarly

Up(x, b) =
1

2p(p− 1)!

∞∑

n=0

(−1)ne(2n+1)b[ϕn(−x) − ϕn(x)], (3.4.37)

with convergence behavior similar to the one for the series in (3.4.35). Numerical
details can be found in Gautschi (1991c, §5).

Series which include alternating sign factors in (3.4.32) and (3.4.33) can be
treated similarly.

3.5 Notes to Chapter 3

§3.1.1. Classical Gauss quadrature formulae (for dλ(t) = dt) have been computed
on digital computers as early as 1955; see Davis and Rabinowitz (1956), (1958),
who used Newton’s method to compute the nodes.

§3.1.1.1. The characterization of the Gauss quadrature nodes as eigenvalues
of the Jacobi matrix has been known for some time, among others by physicists,
but it is difficult to trace its origin. More recent is the characterization of the
Gauss weights in terms of eigenvectors, which was noted in 1962 by Wilf (1978,
Chapter 2, Exercise 9) and previously, around 1954, by Goertzel (Wilf, 1980). It
has also been used in physics by Gordon (1968). Golub and Welsch (1969) must
be credited for having recognized the importance of these characterizations in
computing and for having developed a detailed computational procedure based
on the QR algorithm.

The eigenvalue/vector characterization of Gauss quadrature rules has become
the basis of current methods for computing Gaussian quadrature formulae. This
is not to say that they are necessarily the most accurate methods. In special cases,
for example Gauss–Legendre formulae, there may well be more efficient and more
accurate ways to compute them; for a discussion of this, see Swarztrauber (2002)
and the literature cited therein.
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Even when adhering to eigenvalue/vector computation, there are alternatives
to the Golub–Welsch algorithm based, for example, on rational QR methods
or divide-and-conquer algorithms, which may provide better accuracy (Laurie,
2001). In the case of positive definite Jacobi matrices, algorithms based on two-
term recursion may also prove to be advantageous; cf. Notes to §1.3 and Laurie
(2001).

The remainder term of a Gauss quadrature formula can be estimated either,
as in Example 2.47 and Notes to §2.3.3, by contour integration in the complex
plane, or by Gauss–Kronrod formulae (§3.1.2.1) or other functionals employing
function values on the real line (Ehrich, 2001). The latter technique is frequently
used in adaptive quadrature routines.

There is considerable literature on nonpolynomial Gaussian quadrature; see,
for example, Gautschi (1981b, §2.3.3). A recent example of interest in dealing
with oscillatory integrals is Ixaru and Paternoster (2001); see also Milovanović
and Cvetković (2004).

For Gauss quadrature on the unit circle and related Szegö polynomials, see
the references cited in the Notes to Chapter 1.

Interval quadrature formulae involve integral averages, rather than point eval-
uations, of functions in their quadrature sums. The extent to which they can be
made “Gaussian” has been discussed by several authors; see Bojanov and Petrov
(2001), (2003) and the literature cited therein.

§3.1.1.2. Theorem 3.2 is due to Golub (1973a); the proof given here differs
somewhat from the one given in the cited reference. Examples 3.4 and 3.5 are
taken from Gautschi (2000a).

§3.1.1.3. Theorem 3.6 is due to Golub (1973a), with the proof given here
differing somewhat from the one given in the cited reference. Example 3.8 is
from Gautschi (2000b). The numerical problem for very large n, alluded to at
the end of this section, was noticed by Velamparambil (1998).

§3.1.1.4. Generalized Gauss–Radau and Gauss–Lobatto formulae with double
end points can be found for all four Chebyshev measures in Gautschi and Li
(1991).

§3.1.2.1. Soon after Kronrod’s work, it has occurred to a number of people,
probably first to Patterson (1968), that other quadrature rules can be extended
in the manner of Kronrod, for example, Gauss–Radau and Gauss–Lobatto rules.
For more recent work on this, see Baratella (1979) and Laurie (2004). Patter-
son also was the first to consider repeated Kronrod extensions. Starting with
a 3-point Gauss–Legendre formula, he was able (numerically) to extend it to
a 7-point formula, then extend this formula to a 15-point formula, etc., until
reaching a 255-point formula. Rather remarkably, all these extensions have dis-
tinct real nodes in (−1, 1) and positive weights; see Patterson (1968), (1973).
Gauss–Kronrod extensions for Bernstein–Szegö measures, that is, Chebyshev
measures divided by a positive polynomial, are considered in Gautschi and Rivlin
(1988), Gautschi and Notaris (1989), and Notaris (1990). Repeated Kronrod ex-
tensions of certain interpolatory quadrature rules involving a Bernstein–Szegö
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measure are discussed in Peherstorfer (1990b). For Kronrod extensions of gen-
eralized Gauss–Radau and Gauss–Lobatto formulae, see Li (1996). A large class
of weight functions admitting satisfactory Kronrod extensions for n sufficiently
large is identified in Peherstorfer (1990a).

In cases where a satisfactory Kronrod extension does not exist, one may either
try to increase the number of Kronrod nodes, as has been done with some success
in Kahaner, Waldvogel, and Fullerton (1982), (1984) for the Laguerre measure,
or lower the degree of exactness requirement, as has been done in Begumisa
and Robinson (1991) for the Hermite measure, among others. An alternative
approach, for both these measures, is taken by Ehrich (2002), who suggests using
the stratified and anti-Gauss rules of Laurie (1992), (1996) and generalizations
thereof. Anti-Gauss rules (see Notes to §1.4.2) rather than Kronrod rules have
also been suggested as a means of estimating Gauss quadrature errors; see Laurie
(1996). For related work, see also Calvetti and Reichel (2003a).

There are a number of reviews on Gauss–Kronrod quadrature and Stieltjes
polynomials; see, for example, Monegato (1979), (1982), (2001), Gautschi (1988),
and Notaris (1994). Results on the error of Gauss–Kronrod quadrature formulae
are reviewed in Ehrich (1999).

§3.1.2.2. If the Gauss nodes τν are already known, there is a certain redun-
dancy in Laurie’s algorithm inasmuch as these Gauss nodes are recomputed along
with the Kronrod nodes τK

µ . This redundancy is eliminated in an algorithm of
Calvetti, Golub, Gragg, and Reichel (2000), which bypasses the computation of
the trailing block in (3.1.44) and focuses directly on the Kronrod nodes and the
weights of the Gauss–Kronrod formula. Both algorithms assume positivity of
the Gauss–Kronrod formula. In the absence of positivity, there are alternative
algorithms developed by Ammar, Calvetti, and Reichel (1999).

Most of the earlier work, including Kronrod’s, for computing Gauss–Kronrod
rules separates the computation of the nodes from that of the weights. Patterson
(1968) and Piessens and Branders (1974) expand the Stieltjes polynomial in
Legendre resp. Chebyshev polynomials prior to computing its zeros. Monegato
(1976), (1978b), Baratella (1979), and Dagnino and Fiorentino (1984) use similar
methods to compute πK

n+1 for Gegenbauer measures. Kautsky and Elhay (1984)
and Elhay and Kautsky (1984) compute the Kronrod nodes as eigenvalues of a
certain matrix derived by matrix decomposition methods. A method computing
the Kronrod nodes and all weights in one sweep, using Newton’s method applied
to an appropriate system of nonlinear equations, is discussed in Caliò, Gautschi,
and Marchetti (1986). The phenomena noted in the second part of Example 3.19
are new.

§3.1.3.1. Turán’s quadrature formula has been generalized by a number of au-
thors to nodes with arbitrary (usually odd) multiplicities, with or without some
of the nodes being preassigned. This gives rise to the concept of σ-orthogonality,
which generalizes s-orthogonality. For surveys of the relevant literature, see
Gautschi (1981b, §2.2.2–2.2.4) and Milovanović (2001). For error estimates and
constructive methods, see also Milovanović and Spalević (2002). Kronrod ex-
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tensions of the Turán formula are considered in Li (1994) and Shi (1996), and
generalized Turán–Radau and Turán–Lobatto formulae in Spalević (2002).

There is a large class of measures having the property that all zeros of the cor-
responding s-orthogonal polynomials are independent of s (Gori and Micchelli,
1996). The respective Gauss–Turán quadrature formulae are useful in evaluating
Hilbert transforms and other strongly singular integrals (Cauchy principal value
and Hadamard finite part integrals); see, respectively, Gori and Santi (1995) and
Gori and Santi (1999).

§3.1.3.2. The basic idea of the method described in this subsection is due
to Milovanović (1988). The implementation in Gautschi and Milovanović (1997)
uses a slightly different method for computing the weights. In both references,
the initial approximations are generated by a discrete homotopy in n (rather
than in s, as described here). The method is generalized in Milovanović and
Spalević (2002) to σ-orthogonal polynomials and related quadrature rules.

§3.1.4. The original source for quadrature rules of mixed polynomial/rational
degree of exactness is Gautschi (1993a), with implementational detail provided
later in Gautschi (1999). Another approach, which leads to an eigenvalue/vector
characterization similar to the one in §3.1.1.1, has been developed in Bultheel
et al. (2003).

There are other ways to deal with poles, especially nearby poles. One is to
add a correction term to a standard, in particular Gaussian, quadrature rule.
This is an approach taken by Lether, who in Lether (1977b) uses the method
of subtracting the singularity, and in Lether (1977a) uses the principal part of
the Laurent expansion at each pole to obtain the correction term. The latter,
however, requires the evaluation of the regular part of the integrand at each pole.
This is avoided in a method proposed by Hunter and Okecha (1986).

§3.1.4.1. Quadrature rules for integrals
∫

R
f(t) dλ(t)/ωm(t) and dλ supported

on [−1, 1] have been studied by López Lagomasino and Illán (1984) from the
point of view of convergence, when f is analytic in a domain containing [−1, 1]
in its interior. They assumed m = 2n and ζµ ∈ (−1, 1) with sµ = 1. Theorem
3.25 in this case has been given independently by Van Assche and Vanherwegen
(1993, Theorem 1). These authors also consider quadrature rules (3.1.69) with
supp(dλ) = [−1, 1] whose nodes are the zeros of the rational function (1+ζnt)

−1+∑n−1
µ=1 cµ(1 + ζµt)

−1 orthogonal (in the measure dλ) to 1 and to (1 + ζνt)
−1,

ν = 1, 2, . . . , n− 1. Although no longer “Gaussian” rules, they require for their
construction polynomials orthogonal with respect to the measure dλ/ωn−1ωn.
The use of conjugate complex parameters ζµ is considered in López Lagomasino
and Illán González (1987). Theorem 3.25 in the general form stated here is from
Gautschi (1993a), and so are the Examples 3.31–3.32.

The implementation of Theorem 3.25 given here is based on the discrete
Stieltjes procedure, which enjoys general applicability. Alternatively, one could
try to use the modified Chebyshev algorithm with modified moments defined
by mk =

∫
R
pk(t) dλ(t)/ωm(t). The major difficulty with this is the accurate

computation of the moments. This is true even in the simple case of dλ(t) = dt on
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[−1, 1] and pk = Tk the Chebyshev polynomials, which, however, was successfully
resolved in Weideman and Laurie (2000) by a skillful use of recurrence relations.
The same authors also develop rational Fejér quadrature rules.

Rational Gauss formulae for the Chebyshev measure and real poles of mul-
tiplicity 2, with the space S2n = Q2n being purely rational, are studied in Min
(1998a).

§3.1.4.2. The procedures developed here for treating difficult poles were pro-
posed in Gautschi (1999, §3.4).

§3.1.4.3. The application of rational Gauss formulae to generalized Fermi–
Dirac and Bose–Einstein integrals is further discussed in Gautschi (1993c). The
modification suggested for large θ is from Gautschi (1999, §5).

§3.1.4.4. The material in this subsection is new. Rational Gauss–Lobatto
quadrature rules for the Chebyshev measure, however, have been studied by
Min (1998b).

§3.1.4.5–3.1.4.6. This follows closely the treatment in Gautschi, Gori, and Lo
Cascio (2000).

§3.1.5. Quadrature formulae for Cauchy principal value integrals, especially
the elegant formula (3.1.123), but also the numerical implementations in §3.1.5.3,
are due to Kornĕıčuk (1964). Many of these formulae have been rediscovered later
on by other authors. For references, see Gautschi (1981b, §3.2).

§3.1.5.3. Another way of circumventing the loss of accuracy when x is near
a Gauss node τG

ν is to evaluate Cf(x; dλ) by either (3.1.121) or (3.1.125) at
the nodes of the (n + 1)-point Gauss formula and then use polynomial (or
other) interpolation to evaluate Cf(x; dλ) for arbitrary x. This was proposed by
Diethelm (1999) and implemented for the Hermite measure dλ(t) = exp(−t2) dt
on R. Similar methods for the Hermite and Laguerre measures are discussed,
respectively, in De Bonis, Della Vecchia, and Mastroianni (2002a) and De Bonis,
Della Vecchia, and Mastroianni (2002b); see also Capobianco, Criscuolo, and
Giova (2001).

§3.1.6. The techniques discussed in this section, the one based on Stieltjes’s
procedure and the one based on the modified Chebyshev algorithm, and es-
pecially also the matrix formulation of Gauss quadrature sums used in these
techniques, are due to Fischer and Golub (1991). Example 3.45 is new.

§3.1.7. Solutions to the problem of estimating matrix functionals of the type
considered have many applications, besides those mentioned in §3.1.7.2. See, for
example, Golub and von Matt (1991) for applications to constrained matrix least
squares problems, and Calvetti, Hansen, and Reichel (2002), Calvetti and Reichel
(2003b) (also Hanke (2003)) for applications to the evaluation of regularization
parameters in Tikhonov regularization. The case f(t) = (λ−t)−1 with λ outside
the spectrum of A has important applications in physical chemistry and solid
state physics; see Golub and Strakoš (1994, §1) for references.

The use of orthogonal polynomials for discrete measures supported on the
spectrum of positive definite matrices has been pioneered by Hestenes and Stiefel
(1952) and Stiefel (1958).
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Calvetti, Reichel, and Sgallari (1999) use anti-Gauss quadrature rules (see
Notes to §1.4.2) instead of Gauss–Radau and Gauss–Lobatto rules for estimating
matrix functionals.

§3.1.7.1. The original source for the Lanczos algorithm is Lanczos (1950).
Some of the uses of this algorithm in numerical linear algebra are reviewed in
Golub (1973b).

§3.1.7.2. The use of quadrature methods in obtaining error bounds for the
solution of linear algebraic systems goes back to Dahlquist, Eisenstat, and Golub
(1972). The results for estimating diagonal elements of the inverse of a positive
definite matrix are from Golub and Meurant (1994, Theorem 5.1).

§3.2.1. Much of the material in this subsection is well established. The device
in (3.2.10) of improving the accuracy, and the related Algorithm 3.4, are due
to de Boor (Conte and de Boor, 1972, §4.11). The approximations discussed in
Examples 3.49 and 3.50 can be found in many texts on Chebyshev polynomials,
for example, Fox and Parker (1968, §2.13) and Mason and Handscomb (2003,
§6.3).

Equation (3.2.6) shows that least squares approximation is “moment-preserv-
ing” in terms of modified moments (cf. §3.3). For extensions of this observation,
see Bojanov and Gori (1999).

The sensitivity of the coefficients in the least squares solution to small per-
turbations in the data is studied in Beckermann and Saff (1999).

In real-time applications it is often required to process a stream of continu-
ously arriving data and to update and downdate least squares approximations
relative to moving “time windows.” For a discussion of this, see Elhay, Golub,
and Kautsky (1991) and Fuchs (1999).

§3.2.2. The reduction of constrained least squares problems to unconstrained
ones is part of folklore; an explicit mention thereof can be found in Gautschi
(1989, §8). Examples 3.51 and 3.52 are new.

§3.2.3. For the history of this problem, see the Notes to §1.7. Algorithm 3.5
is new in the context of Sobolev least squares approximation, and so is Example
3.53.

§3.3.1. The connection between moment-preserving spline approximation and
Gaussian quadrature was first observed by Gautschi (1984a) in the context of
piecewise constant, and Dirac delta function, approximation. The extension to
spline functions of arbitrary degree was carried out in Gautschi and Milovanović
(1986b); for a summary, see also Gautschi (1992). Moment-preserving approxi-
mation by defective splines is related to generalized Gauss–Turán quadrature; for
this, see Milovanović and Kovačević (1988), Kovačević and Milovanović (1996),
Gori N. Amati and Santi (1990), and Milovanović (2001, §5).

§3.3.2. Further extensions of the approximation problem on [0, 1] are discussed
by Micchelli (1988), who relates moment-preserving approximation to the theory
of monosplines. A similar approach is taken by Gori and Santi (1992) to deal
with defective splines. For these, see also Frontini and Milovanović (1989).
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§3.4.1. The summation procedure described in this subsection was first sug-
gested in Gautschi and Milovanović (1985). It was implemented using Gauss–
Einstein and Gauss–Fermi quadratures. The alternative use of rational Gauss–
Laguerre formulae, although mentioned in Gautschi (1996, §3.2), is implemented
here for the first time. The series of Example 3.63 is a special case of the se-
ries

∑
kν−1r(k), where 0 < ν ≤ 1 and r is a rational function. Summation of

these more general series and their alternating companion series is discussed in
Gautschi (1991a). An alternative approach, using Euler–Maclaurin summation,
is considered in Lewanowicz (1994b). For the Hardy–Littlewood function H(x),
see Gautschi (2004), where a more effective summation procedure is proposed
that works also for large values of x.

§3.4.2–3.4.4. The material in these subsections is taken from Gautschi and
Milovanović (1985).

§3.4.5. This section follows Gautschi (1991c). See also Boersma and Dempsey
(1992) for alternative methods.
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Bultheel, A., P. González-Vera, E. Hendriksen, and O. Nj̊astad (2001). Quadra-
ture and orthogonal rational functions. Numerical analysis 2000, Vol. 5,
Quadrature and orthogonal polynomials. J. Comput. Appl. Math. 127 (1–2),
67–91.
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Gautschi, W. and G. V. Milovanović (1997). s-orthogonality and construction
of Gauss–Turán-type quadrature formulae. Special issue dedicated to William
B. Gragg (Monterey, CA, 1996). J. Comput. Appl. Math. 86 (1), 205–218.

Gautschi, W. and S. E. Notaris (1988). An algebraic study of Gauss–Kronrod
quadrature formulae for Jacobi weight functions. Math. Comp. 51 (183), 231–
248.

Gautschi, W. and S. E. Notaris (1989). Gauss–Kronrod quadrature formulae
for weight functions of Bernstein–Szegö type. J. Comput. Appl. Math. 25 (2),
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Marcellán, F., T. E. Pérez, M. A. Piñar, and A. Ronveaux (1996). General
Sobolev orthogonal polynomials. J. Math. Anal. Appl. 200 (3), 614–634.



276 BIBLIOGRAPHY
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Boston.

Oliver, J. (1977). An error analysis of the modified Clenshaw method for evalu-
ating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), 379–391.

Ossicini, A. and F. Rosati (1978). Sulla convergenza dei funzionali ipergaussiani.
Rend. Mat. (6) 11 (1), 97–108.

Parlett, B. N. (1998). The symmetric eigenvalue problem, Volume 20 of Classics
in applied mathematics. Philadelphia, PA: SIAM. Corrected reprint of the
1980 original.

Patterson, T. N. L. (1968). The optimum addition of points to quadrature
formulae. Math. Comp. 22 (104), 847–856. Loose microfiche suppl. D1–D5.
Errata, ibid. 23(108) (1969), 892.

Patterson, T. N. L. (1973). Algorithm 468—algorithm for automatic numerical
integration over a finite interval. Comm. ACM 16 (11), 694–699.

Peherstorfer, F. (1990a). On Stieltjes polynomials and Gauss–Kronrod quadra-
ture. Math. Comp. 55 (192), 649–664.

Peherstorfer, F. (1990b). Weight functions admitting repeated positive Kronrod
quadrature. BIT 30 (1), 145–151.

Peherstorfer, F. and K. Petras (2000). Ultraspherical Gauss–Kronrod quadrature
is not possible for λ > 3. SIAM J. Numer. Anal. 37 (3), 927–948 (electronic).

Peherstorfer, F. and K. Petras (2003). Stieltjes polynomials and Gauss–Kronrod
quadrature for Jacobi weight functions. Numer. Math. 95 (4), 689–706.

Perron, O. (1957). Die Lehre von den Kettenbrüchen. Band II: Analytisch-
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Pichon, B. (1989). Numerical calculation of the generalized Fermi–Dirac inte-
grals. Comput. Phys. Comm. 55 (2), 127–136.

Pierrard, V. and A. Magnus (2003). Lorentzian orthogonal polynomials.
Preprint.

Piessens, R. and M. Branders (1973). The evaluation and application of some
modified moments. Nordisk Tidskr. Informationsbehandling (BIT) 13 (4), 443–
450.

Piessens, R. and M. Branders (1974). A note on the optimal addition of abscissas
to quadrature formulas of Gauss and Lobatto type. Math. Comp. 28 (125),
135–139. Supplement, ibid., pp. 344–347.

Posse, C. (1875). Sur les quadratures. Nouv. Ann. Math. 14, 49–62.



BIBLIOGRAPHY 279

Rabinowitz, P. (1980). The exact degree of precision of generalized Gauss–
Kronrod integration rules. Math. Comp. 35 (152), 1275–1283.

Radau, R. (1880). Étude sur les formules d’approximation qui servent à calculer
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Cvetković, A., 254, 276

Dagnino, C., 255, 265
Dahlquist, G., 258, 265
Daruis, L., 49, 263, 265
data fitting, 150
Davis, P. J., 9, 93, 241, 253, 265
Dawson’s integral, 241
De Bonis, M. C., 257, 265
de Boor, C., 258, 264
de Bruin, M. G., 51, 265
defective splines, 258
Defez, E., 51, 266
Deift, P. A., 49, 265
Delahaye, J.-P., 239, 265
Della Vecchia, B., 257, 265
Dempsey, J. P., 259, 262
density function

logistic, 109
derivative constraints

in least squares approximation, 224
Deuflhard, P., 149, 265, 266
diatomic linear chain, 5

a measure of interest in the, 87
Diethelm, K., 257, 266
difference equation

of Poincaré type, 87
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Rajković, P. M., 51, 276
rational approximation

simultaneous, 49
rational Fejér quadrature rules, 257
rational Gauss formula, 180, 191, 196

n-point, 184
construction of the, 181
for the Chebyshev measure, 257
performance of the, 196

rational Gauss quadrature formulae
applied to generalized Fermi–Dirac and

Bose–Einstein integrals, 257
rational Gauss quadrature rule, 184, 193
rational Gauss–Kronrod formula, 198

characterization of the, 198
rational Gauss–Kronrod quadrature rule,

199
rational Gauss–Laguerre formula, 241, 259
rational Gauss–Laguerre quadrature, 242,

245
rational Gauss–Lobatto formula, 197

characterization of the, 198
rational Gauss–Lobatto quadrature rule

for the Chebyshev measure, 257
rational Gauss–Radau formula, 197

characterization of the, 197
rational Gauss–Turán formula, 199

characterization of the, 200
illustration of the, 202

rational generalized Gauss–Laguerre quadra-
ture, 248

rational QR methods, 254
rational quadrature rules, 180
rcondG.m, 62, 69
recurrence relation

for Sobolev orthogonal polynomials, 147
outside the support interval, 17

recurrence relations, 49
Redivo Zaglia, M., 119, 239, 263
Rees, C. J., 85, 279
regularization parameters

evaluation of
in Tikhonov regularization, 257

Reichel, L., viii, 50, 149, 150, 255, 257, 258,
261, 263, 264, 272, 279

relative condition matrix, 57
relative condition number

of a function, 55
of a map, 57
of the map Gn, 62

of the map Kn, 74
of the map eGn, 68

remainder term
kernel of the, 112

remainder term of the Gauss quadrature
formula

for analytic functions, 116
repeated Kronrod extensions, 254

of interpolatory quadrature rules
involving a Bernstein–Szegö measure,
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Stanić, M., 49, 277
Stauffer, A. D., 228, 274
Steen, N. M., 5, 280
Stegun, I. A., 105, 136, 207, 241, 243, 247,

249, 250, 261
Stiefel, E. L., 40, 51, 257, 272, 280
Stieltjes algorithm, 102, 103, 150
Stieltjes polynomial, 17, 166, 199

expanded in Chebyshev polynomials, 255
expanded in Legendre polynomials, 255
for Gegenbauer measures, 255
unique existence of, 166
zeros of, 167

Stieltjes polynomials
reviews on, 255

Stieltjes procedure, 95–99, 102, 103, 105,
109, 150, 152, 207, 222, 257

for polynomials orthogonal on several in-
tervals, 209



300 INDEX

inner products in, 208
instability of, 102, 103
numerical performance of the, 96

Stieltjes, T. J., 19, 23, 95, 150, 166, 280
stieltjes.m, 96, 98, 222, 244
Stieltjes–Perron formula, 119
Stieltjes–Perron inversion formula, 17, 112,

119
stieltjes sob.m, 142, 144, 146
Stieltjes-type algorithm

for Sobolev orthogonal polynomials, 141
complexity of a, 142
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