Nucleotide Sequence of the Gene for Bacteriophage T7 RNA Polymerase

Abstract

Differences between two previously published nucleotide sequences for bacteriophage T7 gene 1 have been resolved. The revised sequence has eight changes from the sequence that was used to compile the complete nucleotide sequence of T7 DNA. The revisions do not change the total number of nucleotides in T7 DNA or the predicted number of amino acids in T7 RNA polymerase. Only one of the changes introduces any change in predicted cleavage sites for known restriction endonucleases, and the correctness of the revised sequence at this position has been confirmed by cutting T7 DNA with the appropriate enzyme. However, the revisions do make a substantial difference in the amino acid sequence predicted for T7 RNA polymerase: 37 of the 883 amino acids are changed, 35 because of a shift in reading frame for one stretch of 37 amino acids. The predicted reading frame through this region now agrees with that predicted for the same region of the homologous T3 RNA polymerase. The calculated molecular weight for T7 RNA polymerase is now 98,856 .

We have recently published a nucleotide sequence for the entire bacteriophage T7 DNA, 39,936 base-pairs (Dunn \& Studier, 1983). The only part of this sequence not determined by us was nucleotides 3283 to 5901 , the region that contains most of the coding sequence of gene 1 (T7 RNA polymerase, 3171 to 5822), a promoter for T7 RNA polymerase (5831 to 5853) and an RNAase III cleavage site (5847 to 5899). The sequence we used for nucleotides 3283 to 5821 was determined by Stahl \& Zinn (1981), who sequenced a cloned copy of gene 1 (3127 to 5821), and the sequence we used for nucleotides 5822 to 5901 was determined by Oakley \& Coleman (1977), who sequenced an HpaII fragment directly from T7 DNA (5764 to 5901).

Grachev \& Pletnev (1981) have also reported a sequence for nucleotides 2858 to 5855 , but their sequence is different from ours in six places in the region where the two sequences overlap, and it disagrees with the Stahl \& Zinn (1981) sequence in an additional 37 places. We used the Stahl \& Zinn sequence in compiling the complete sequence of T7 DNA because it was in complete agreement with our sequence in the region of overlap, and with all of the restriction mapping we had done. The Grachev \& Pletnev sequence, on the other hand, was discrepant in several respects with our restriction mapping data, most notably in restriction sites for $A v a \mathrm{II}, B s t \mathrm{NI}, E c o \mathrm{~B}$ and $X m n \mathrm{I}$.

In terms of the biology of T7, the most serious discrepancies between the Stahl \& Zinn and the Grachev \& Pletnev sequences for gene 1 are the four places where single nucleotides are inserted or deleted relative to the other sequence. These insertions and deletions shift the reading frame for translation, giving sequences that predict substantial differences in the amino acid sequence in two regions

Table 1
Revisions to the Stahl \& Zinn (1981) nucleotide sequence for T'7 gene 1, and to the Dunn \& Studier (1983) nucleotide sequence for Ty DNA

Position	Stahl \& Zinn	Revised	DNA strand sequenced \dagger
4331	A i__ $^{\text {A }}$	AliciA	1. r
4442	($\mathrm{xTT}^{\text {a }}$	(${ }^{\text {T }}$ (:	l. r
4498-9	(${ }^{\text {a T }}$ ((TGO	l, l
4590	'TTT ${ }^{\text {c/ }}$	TTers	l
4595	'TTT	TTC:	l
4916	CTG(CTAC	r
5222	TCOC		l

Hyphens in sequences have been omitted for clarity.
\dagger The l strand has its 5 ' end at the genetic left end of T7llNA; the r strand is its complement.
totalling about 20 amino acids. The problem was compounded by the recent determination of the nucleotide sequence of the RNA polymerase gene of a related bacteriophage, T3, by McAllister et al. (1983). Their sequence of this homologous gene agrees with the Stahl \& Zinn sequence for two of the four insertions or deletions, and agrees with the Grachev \& Pletnev sequence for the other two.

Because of the central importance of T7 RNA polymerase in the biology of T7, the interest in the enzyme itself, and the question of evolutionary divergence between the T3 and T7 RNA polymerases, we decided to resolve the discrepancies between the previous nucleotide sequences by making a third independent determination of the nucleotide sequence of gene 1. In so doing, we have sequenced the entire region of T7 DNA not previously determined by us, that is, nucleotides 3283 to 5901 . This was done by the techniques of Maxam \& Gilbert (1979) on fragments of DNA isolated from wild-type T7 phage particles. Because sequences were already available, the majority of the region was sequenced on one strand only, and not every restriction cleavage site was overlapped. The sequence we obtained seems unambiguous, and agrees with at least one of the previously published sequences at every position. The changes from the Stahl \& Zinn (1981) sequence (and therefore the changes from the sequence given by Dunn \& Studier. 1983) are listed in Table 1. The revised nucleotide sequence of gene 1 and the amino acid sequence it predicts for T7 RNA polymerase are given in Figure 1.

Only one of the changes from the Stahl \& Zinn sequence creates or eliminates predicted cleavage sites for restriction endonucleases whose specificities are currently known (Roberts, 1983). The G -T to T - G change at position 4498 to 4499 (Table 1) eliminates the AatII (G-A-C-G-T-C) and HgiDI (G-Pu-C-G-Py-C)

[^0]TTCTCTGACȦTCGAACTGGC்TGCTATCCCG்TTCAACACTC்TGGCTGACCȦTACGGTGAGCGTTTAGCTEGCGARCAGTİGGCCCTTGAGCATGAGTCTT 3 phe ser asp ile glu leu ala fla ile pro phe asn thr leu ala fsp his tyr gly glu arg leu fla arg glu gle leu fla leu giu his glu ser 2030 40

 $50 \quad 60$
$60 \quad 70$
AC ICCC TAAĠATGAT TGCAĆGCATCAACGÁCTGGTTTGAǴGAAGTGAAAĠCTAAGCGCGG்CAAGCGCCCG்ACACCCTTCĆAGT TCCIGCABGAAATLAAG 3SAG lej fro lys met ile ala arg lle asn asp trp phe glu quu val lys ala lys rrg gly lys arg pro thr bla phe oln phe leu cln glu ile lys

CCGGAAGCCĠTAGCGTACAİCACCAT TAAĠACCACTCTGG்CTTGCCTAAĊCAGTGCTGACAATACAACEĠTTCAGGCTGİAGCAAGCGCAATCGGTCGGG 3600

140

 450160 160

170
 tyr lys lys ala phe met gan val val glu ala asp met leu ser lys gly leu leu gy gly glu ala trf ser ser trp his lys glu asp ser ile 180 190
CATGTAGGAĠTACGC FGCAİCGAGATGCTĊAT TGAGTCAACCGGAATGGİTAGCTTACAÉCGCCAARAIĠCTGGCGTAGIRGGTCARGAĊICTGAGACTA BSOO his val gly val arg cys lie glu met leu ile gu ser tmr gly met val ser leu his afg gin asn fla gly val val aly gln rsp ser glu thr 220 230

240
 ile glu leu ala pro glu itr ala glu ala ile flat thr arg bla gly ala leu bla gly lle ser pro met phe gln pro cys val yal pat pro lys pro 250

260
270
GTGGACTGGĊRITACTGGTG்GTGGCTATTGGGCTARCGGÍCGTCGTCCIĊTGGCGCTGGİGCGTACTCACAGTRAGAAAGCACTGATGCĠCTACGARGAC AIOO trf thr aly ile thr oly gly Guy tyr trf ale asn gly frg arg pro leu ala leu val arg thr his ser lys lys bla leu met arg tyr alu asp $2 B 0 \quad 3900310$
 val tyr met pro glu val tyr lys ala ile asn ile ala gln asn thr rla trp lys ile rsin lys lys val leu ala val ala rsn val lle thr lys 320330

 370
GAFARCGTGCİGCCGCTGCTG்TGTACCGCRÁGGACAAGGC TCGCAAGTCTÉGCCGTATCAGCCTTGAGTTE்ATGCTTGAGCAAGCCARTAAGTITGCTARC $44 O D$ Lys arg fla rif fla ala yal. tyr arg lys asp lys fla arg lys ser arg arg ile ser leu glu phe met leu glu gln ala asn lys phe rla asn $38 \square 390$ 400
 HIS LYS GLA ILE TRF PHE PRO TYR RSN MET ASP TRP ARG GLy ARG VAL TYR ALA VAL SER MET PHE ASN PRO GLN GLY ASN ASP MET THR LYS GLY LEU $420 \quad 430$ 440
TTACGCTGGC்GARAGGTAAȦCCAATCGGTÁAGGAAGGTTACTACTGGCTGAAAATCCACĠGTGCARACTĠTGCGGGTGTEGATAAGGTECCGTTCECTGA A6OO LEU THR LEU ALA LYS GLY LYS PRO ILE GLY LYS GLU GLY TYR TYR TRP LEU LYS ILE MIS GLY ALA PSN CYS ALA GLY VAL ASP LYS VAL PRO PME PRO GLU
 arg ile lys phe ile g.u glu asn his gub asn ile met ala cys ala lys ser pro leu glu asn thr trp trp ala glu gln asp ser pro phe cys
 phe leu bla phe cys phe glu tyr ala aly val oln his his gly leu ger tyr asn cys ser leu pro leu rla fhe asp gat ser cys ser gly fle
\qquad

 550

560
570
AGTCAACGAE்AT ICTACARG்CAGACGCARICAATGGGACĆGATAACGAAG்TAGTTACCGṪGACCGATGAG்ARCACTGGTĠARATCTCTGAGGAAGTCAAG SOOO val asn glu ile leij gln ala asp ala ile asn ghy thr asp asn glu val val thr val thr asp glu asn thr gly glu lle ser glu lys val lys
 leu gly thr lys rla leu bla gly gln trp leu ala tyr gly yal thr arg ser val thr lys arg ser val met thr leu ala tyr gly ser lys glu 620

630
640
TCGGCTTCCÓTCAACAAGTG்CTGGAAGATACCATTCAGCCAGCTATTGAITECGGCAAGG்GTC TGATGT TCACTCAGCCGAATCAGGCTG்CTGGATACAT SZOU

 ala lys leu ile trf glu ser val ser val thr val val ala ala val glu ala met asn trp leu lys ser ala bla lys leu leu ala pla glu val $680 \quad 690700710$
 LYS ASP LYS LYS thr Gly GLU ILE LEU ARG LYS ARG CYS ALA VAL HIS TRP VRL THR PRO ASP GLy PHE PRO VAL TRP GLN GLU TYR LYS LYS PRO ILE 720

730

 75 C
 ILE ALR PRO ASN PHE VAL HIS SER GLN RSP GLY SER HIS LEU ARG LYS THR VRL VRL TRP ALA HIS GLU LYS TYR GLY ILE GLU SER PHE RLA LEU ILE
780
790 800

810
 his asp ser phe gly thr ile pro ala asp ala ala asn leu phe lys ala val. arg glu thr het val rip thr tyr glu ser cys asp val leu ala 820

830
840
 asp phe tyr fisp gln fhe rla asp gln leu his glu Ser gin Leu asp lys met pro ala leu pro ala lys gy asn leu asn leu are asp ile leu glu

SER asp phe hla phe rla 880
$\mathrm{Fig}_{\mathrm{IG}} 1$.

Table 2
Predicted amino acid composition of T7 RNA polymerase

Amino acid	No. per molecule
Ala	100
Arg	41
Asn	40
Asp	43
Cys	12
Ciln	33
Clu	67
(ily	54
His	22
Ile	52
Leu	67
Lys	66
Met	26
Phe	37
Pro	37
Ser	41
Thr	44
Trp	19
Tyr	24
Val	58
Total	883
	98,856

cleavage sites that are predicted by the Stahl \& Zinn sequence. We have confirmed the absence of an HgiDI site at this position by analyzing the pattern of fragments produced from T7 DNA by this enzyme (obtained from New England Biolabs).

The changes in the predicted amino acid sequence are much more extensive, 37 of the 883 positions being affected. Two of these changes are due to base substitutions at nucleotides 4498 and 4590 (amino acids 443 and 474); the others are due to a shift in reading frame between nucleotides 4331 and 4442 , affecting amino acids 388 to 424 . This reading frame for T7 RNA polymerase is now the same as that for the equivalent region of T3 RNA polymerase, as predicted by the McAllister et al. (1983) nucleotide sequence. The amino acid composition predicted by the revised nucleotide sequence is given in Table 2; the calculated molecular weight for T7 RNA polymerase is now 98,856 instead of 98,092 .

We thank W. Crockett for able technical assistance. This research was carried out at Brookhaven National Laboratory under the auspices of the United States Department of Energy. Barbara Moffatt, a doctoral student in the Department of Medical Genetics. University of Toronto, was supported by a fellowship from the Ontario Government and the Department of Medical Genetics, University of Toronto.

Biology Department
Brookhaven National Laboratory
Upton. N.Y. 11973 , U.S.A.

Barbara A. Moffatt
John J. Denn
F. William Studier

REFERENCES

Dunn, J. J. \& Studier, F. W. (1983). J. Mol. Biol. 166, 477-536.
Grachev, M. A. \& Pletnev, A. G. (1981). FEBS Letters, 127, 53-56.
Maxam, A. M. \& Gilbert, W. (1979). In Methods in Enzymology (Grossman, L. \& Moldave. K., eds), vol. 65, pp. $499-559$, Academic Press, New York.

McAllister, W. T.. Horn, N. J., Bailey, J. N., MacWright, R. S., Jolliffe, L., Gocke, C. Klement. J. F., Dembinski, D. R. \& Cleaves, G. R. (1983). In Gene Expression. ICLA Symposia on Molecular and Cellular Biology, New Series (Hamer. D. \& Rosenberg, M., eds), vol. 8, Alan R. Liss. Inc., New York (in the press).
Oakley, J. L. \& Coleman, J. E. (1977). Proc. Nat. Acad. Sci., U.S.A. 74, 4266-4270.
Roberts, R. J. (1983). Nucl. Acids Res. 11, r135-rl67.
Stahl. S. J. \& Zinn, K. (1981). J. Mol. Biol. 148, 481-485.

Edited by S. Brenner

[^0]: Fig. 1. Nucleotide sequence of T7 gene 1 mRNA and predicted amino acid sequence of T7 RNA polymerase. The gene 1 mRNA is the product of RNAaseIII cleavages (Dunn \& Studier, 1983), and corresponds to nucleotides 3139 to 5887 of the l strand of T7 DNA (see Table 1 for definition). The INNA just past the coding sequence contains a promoter for T7 DNA polymerase that initiates RNA chains at nucleotide 5848 (Oakley \& Coleman. 1977).

