- 1. (a) Show that $l_1^* = l_{\infty}$.
 - (b) Describe all infinite matrices $T = [t_{ij}]_{i,j=1}^{\infty}$ which act as bounded operators from l_1 to itself.
- 2. Suppose that $T : \mathcal{H} \to \mathcal{H}$ is a linear map on a Hilbert space \mathcal{H} such that $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in \mathcal{H}$. Prove that T is bounded.
- 3. Let Y be a closed subspace of a Banach space X. Show that there are *isometric* isomorphisms $Y^* \simeq X^*/Y^{\perp}$ and $(X/Y)^* \simeq Y^{\perp}$.
- 4. Let $\varphi(f) = \int_0^1 f(t) dt$ for $f \in C_{\mathbb{R}}[0,1]$. Let Φ be any Hahn–Banach extension of φ to the Banach space $B_{\mathbb{R}}[0,1]$ of all bounded real-valued functions on [0,1] with the sup norm.
 - (a) Show that $\Phi(\chi_{[0,.5]}) = .5$.
 - (b) Show that $\Phi(\chi_{\mathbb{Q}\cap[0,1]})$ may be any real number in [0, 1].
- 5. Let X be a *separable* Banach space.
 - (a) Show that X is isometrically isomorphic to a subspace of l^{∞} . Hint: find a countable set of linear functionals $\{\varphi_n\}$ of norm one so that $\sup |\varphi_n(x)| = ||x||$ for all $x \in X$.
 - (b) Show that X is a quotient of l^1 . **Hint:** define a norm one linear map of l^1 onto X so that the image of the unit ball of l^1 is dense in the ball of X. Prove that the quotient norm coincides with the norm on X.
- 6. (a) Prove that every finite dimensional subspace of a Banach space is closed.
 - (b) Prove that no infinite dimensional Banach space has a countable basis as a vector space (i.e. a collection $\{e_n : n \ge 1\}$ so that every vector in X is a finite linear combination of $\{e_n : n \ge 1\}$).

Bonus Problem

- 7. A basis for a Banach space X is a sequence $\{e_n : n \ge 1\}$ such that for each $x \in X$, there are unique scalars $\{c_n\}$ such that $x = \lim_{n \to \infty} \sum_{i=1}^n c_i e_i$. For convenience, normalize so that $||e_n|| = 1$ for $n \ge 1$.
 - (a) Show that $\varphi_n(x) = c_n$ is a linear functional.
 - (b) Define $S_n x = \sum_{i=1}^n c_i e_i$, and set $|||x||| = \sup_{n \ge 1} ||S_n x||$. Prove that $||| \cdot |||$ is a norm.
 - (c) Show that $(X, \|\cdot\|)$ is complete.
 - (d) Prove that the identity map T from $(X, || \cdot ||)$ to $(X || \cdot ||)$ is an isomorphism. Hence deduce that $\sup_{n\geq 1} ||S_n|| = ||T^{-1}||$ and that each φ_n is continuous.