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1. An Overview of Results

Suppose thatI is a finite or infinite interval and thatw: I → [0,∞) is a measurable
function, positive on a set of positive measure, and with all moments∫

I

xjw(x)dx, j = 0,1,2, . . . ,

finite. Then we may define orthonormal polynomials

pn(x) := pn(w, x) = γnxn + · · · , γn > 0,

satisfying∫
I

pnpmw = δmn. (1)

One of their characteristic features is the three-term recurrence relation

xpn(x) = An+1pn+1(x)+ Bnpn(x)+Anpn−1(x), (2)

where

An = γn−1

γn
> 0; Bn =

∫
I

xpn (x) pn−1(x)w(x)dx ∈ R. (3)

The number of applications of orthonormal polynomials seems to grow ex-
ponentially with time; they are useful in topics ranging from combinatorics to
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quantum mechanics; from graph theory to group representations; from numerical
analysis to number theory; from statistical physics to signal processing. To review
such a vast enterprise would require a proceedings even more extensive than that
of the 1990 NATO conference [88].

Some of the applications involve orthogonal polynomials of fixed degree; others
involve the behaviour ofpn asn → ∞. In this paper, we shall focus on a small
slice of the latter. Amongst the notable applications of these asymptotics are:

(I) analysis of linear predictors in the theory of stochastic processes [43];
(II) analysis of processes of approximation such as numerical integration, conver-

gence of orthonormal expansions and polynomial and rational interpolation;
[32, 79, 110];

(III) universality conjectures in random matrix theory [21, 26, 92];
(IV) investigation of numerical analysis algorithms for finding eigenvalues of ma-

trices, for example the QD algorithm [52];
(V) Fisher–Hartwig conjectures related to Ising models with large numbers of

particles [13, 14];
(VI) estimation of entropy in various contexts [4, 5].

In attempting to review the myriad of asymptotics that are currently available,
one is forced to take account of two classifying features: theregion of validity, that
is the range ofz for which the behavior ofpn(z), n→∞ is being described; and
thestrength of the asymptotic.

Some insight into the former is provided by the Chebyshev polynomials

Tn(x) := cos(n arccosx) = 2n−1xn + · · · , n > 1,

with orthogonality relation∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

= π

2
δmn, m, n > 1.

The identity

Tn(cosθ) = cosnθ, θ ∈ [−π, π ] (4)

may be regarded as an exact asymptotic description of the behaviour ofTn through-
out [−1,1]. From this we may first deduce foru = eiθ and then for allu ∈ C\{0},
that

Tn
(

1
2(u+ u−1)

) = 1
2(u

n + u−n).
Solving the equationz = 1

2(u + u−1) leads to the familiar Joukowski or aerofoil
map

u = ϕ(z) := z+
√
z2− 1, z ∈ C\[−1,1], (5)
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that maps the exterior of[−1,1] conformally onto the exterior of the unit ball.
Since|ϕ(z)| > 1, we obtain

Tn(z) = 1

2

(
ϕ(z)n + ϕ(z)−n) = ϕ(z)n

2

(
1+ o(1)

)
, n→∞,

uniformly in closed subsets ofC\[−1,1]. This exponential growth off the interval
of orthogonality is fairly typical. Where the Chebyshev polynomials are atypical is
the fact that the asymptotic formula (4) holds uniformly on the whole interval of
orthogonality. In most cases, there is a different asymptotic behaviour insideI and
close to its endpoints. Around the latter, the description of the asymptotic involves
Bessel functions or Airy functions.

In summary, there are often three regions to distinguish when dealing withI =
[−1,1], a finite interval:

(I) Asymptotics in the exteriorC\[−1,1] of the interval of orthogonality;
(II) Asymptotics in suitable subintervals, for example compact subintervals, of

(−1,1);
(III) Asymptotics close to the endpoints±1 of I .

In describing the strength of an asymptotic, one tends to focus on the exterior
C\[−1,1], and also on the leading coefficientγn. It is a remarkable feature that in
many cases knowledge of the behaviour ofγn alone is enough to derive asymptotics
for pn(z) for z ∈ C\[−1,1]. Sincepn behaves at∞ like γnz

n and maximum
modulus principles may be applied topn(z)/ϕ(z)n in C\[−1,1], this is not all
that surprising. The following table outlines the four main asymptotics ofγn and
pn, n→∞, off the interval of orthogonality.

Name γn pn(z), z /∈ [−1,1]
(I) nth root γ

1/n
n → 2 pn(z)

1/n→ ϕ(z)

(II) ratio An = γn−1
γn
→ 1

2; Bn→ 0 pn+1(z)
pn(z)

→ ϕ(z)

(III) Szeg̋o/power γn/2n→ c0 pn(z)/ϕ(z)
n→ g(z)

(IV) strong Szeg̋o
(∏n

j=1 γj

)
/
(
2
n(n+1)

2 cn0n
c1
)
→ c2

Herecj , 06 j 6 2, are positive constants, andg is an explicitly given function. It
is fairly clear that

(IV) ⇒ (III) ⇒ (II) ⇒ (I)

and hardly surprising that none of the converse relations holds in general. The
relationship betweennth root and ratio asymptotics is similar to that between the
nth root test and ratio test for convergence of power series. Let us expand a little
on (I)–(IV).

In terms of asymptotics onI = [−1,1], thenth root asymptotic is associated
with

lim sup
n→∞

∣∣pn(x)∣∣1/n = 1, x ∈ [−1,1]\E,
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whereE has linear Lebesgue measure 0 (and in fact logarithmic capacity 0).
One of the most attractive features ofnth root asymptotics is their link to

distribution of zeros ofpn. Let us write

pn(x) = γn
n∏
j=1

(x − xjn),

where the zeros{xjn}nj=1 all lie in [−1,1]. Then (I) above is equivalent to the zeros
displaying arc sine distribution:∀ − 16 a < b 6 1,

lim
n→∞

1

n
#{j : 16 j 6 n andxjn ∈ [a, b]} =

∫ b

a

dt

π
√

1− t2 .

It was Faber who in 1922 [29], first establishednth root asymptotics, under
fairly severe conditions onw. A major advance was made by Erdős and Turan,
in the course of investigating convergence of Lagrange interpolation in the late
1930’s [27, 28]. They assumed thatI = [−1,1] andw > 0 a.e. on[−1,1]. This
was the beginning of intensive efforts to characterizenth root asymptotics in terms
of the weightw, involving authors such as A. Ambroladze, P. Erdős, G. Freud,
P. Korovkin, H. Stahl, V. Totik, J. Ullman, H. Widom and M. Wyneken, culminating
in the recent monograph of Stahl and Totik [110], see also [2]. This monograph
deals with the far more general case of orthogonal polynomials corresponding to a
measure with compact support in the complex plane. It also presents applications
to rational and Padé approximation.

Ratio asymptotics are historically probably the latest arrivals of (I)–(IV). A
most penetrating study of these was presented in a memoir of P. Nevai [84]. There
the equivalence of the asymptotic forpn+1(z)/pn(z) and that for the recurrence
coefficients, namely

lim
n→∞An =

1

2
; lim

n→∞Bn = 0 (6)

was established. It is less obvious than the corresponding link between asymptot-
ics for γn andpn in (I). One of the main achievements in ratio asymptotics has
been Rakhmanov’s theorem, which establishes (6) under merely the Erdős–Turan
criterion, namely thatw > 0 a.e. on[−1,1] [102, 103].

The main focus of Nevai’s memoir was to place hypotheses on{An}, {Bn}, such
as (6), rather than on the weightw. This is a very important alternative starting
point for analysis of orthonormal polynomials and continues to attract a lot of atten-
tion, especially when more general hypotheses than (6) are placed on the recurrence
coefficients – for example when they are asymptotically periodic, or display some
other definite asymptotic pattern. The most recent monograph on the topic seems
to be Van Assche’s lecture notes of 1987 [119]. There is certainly a need for an
extensive survey article, or even monograph, to cover subsequent developments
due to Van Assche, Aptekarev, Geronimo, Golinsky, Lopez, Magnus, Mate, Nevai,
Totik, Peherstorfer and many others [6, 8, 34 – 36, 38 – 40, 42, 98, 100, 119, 120].
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The next step up is the Szegő or power asymptotics (III). Historically, simulta-
neously with Faber’s work, it was also the first general asymptotic: it appeared in
1920–21 in papers that did not even contain the phrase ‘orthogonal polynomials’
in the title. If a vote was conducted as to the crowning achievement of orthogonal
polynomials in the 20th century, it would almost certainly be Szegő’s theory (with
more than a two-thirds majority). It has had ramifications that stretch from analytic
function theory (Hardy spaces) to best approximation to. . . zero distribution. Let
w: [−1,1] → R satisfy Szeg̋o’s condition∫ 1

−1

logw(x)√
1− x2

dx > −∞ (7)

or, equivalently,∫ π

0
logw(cosθ)dθ > −∞.

Let

f (θ) := w(cosθ)| sinθ |, θ ∈ [−π, π ] (8)

and define the associatedSzeg˝o function

D(f ; z) := exp
(

1

4π

∫ π

−π
logf (t)

eit + z
eit − z dt

)
, |z| < 1. (9)

Many would recognize this as anouter functionfrom the theory of Hardy spaces
(apart from 4 replacing 2). Szegő proved that

lim
n→∞pn(z)/ϕ(z)

n = 1√
2π

D

(
f ; 1

ϕ(z)

)−1

, (10)

uniformly for z in closed subsets ofC\[−1,1] and, consequently, takingz = ∞,

lim
n→∞ γn/2

n = 1√
2π

D(f ;0)−1. (11)

There is also a remarkable converse: ifpn(z)/ϕ(z)n is bounded independently
of n on some contour enclosing[−1,1] in its interior, then (7) must be true. In
fact a lot less is required than uniform boundedness on such a contour. In terms
of asymptotics on[−1,1], (10) or (11) are essentially equivalent to the mean
asymptotic

lim
n→∞

∫ π

0

∣∣∣∣pn(cosθ)f (θ)1/2−
√

2

π
cos
(
nθ + argD(f ;eiθ ))∣∣∣∣2 dθ = 0. (12)

If instead of this asymptotic in the mean, one wants an asymptotic that holds
uniformly for x = cosθ in a compact subinterval of(−1,1), one needs to as-
sume more than just (7): a weak smoothness condition, such as a Dini–Lipschitz
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condition suffices [32, 112]. The treatment of asymptotics near±1 is far more del-
icate and generally has been established under more severe hypotheses. For special
weights such as Jacobi weights, one may apply steepest descent to integral repre-
sentations. Another promising approach, involving hypotheses on the recurrence
coefficients, has been given by Aptekarev [3]. The Riemann–Hilbert techniques of
Deift et al. [21 – 26, 49] seem to offer a new approach for this question. Again, the
topic of pointwise asymptotics on[−1,1] is a whole subject on its own and could
well do with a lengthy survey.

Szeg̋o’s theory has been extended by Widom [122] to weights with support on
several intervals; at least one conjecture that Widom left unsolved was recently re-
solved by Peherstorfer [97]. Other extensions have been to the arcs of a circle [41],
curves in the plane,. . . . While Szeg̋o’s original theory is presented at an accessible
level in several monographs, it is a pity that its ramifications – especially Widom’s
theory – has not received an ‘entry level’ treatment.

Some 30 years after his seminal papers of the 1920’s, Szegő published another
celebrated work. He showed that it is possible to strengthen (III), giving (IV), the
first example of thestrong Szeg˝o limit theorem. He presented his results within the
framework of orthogonal polynomials on the unit circle, but they can be translated
to the form above [43, p. 91]. Szegő assumed thatf of (8) has a derivativef ′ that
satisfies a Lipschitz condition of some positive order in [−π, π ]. Subsequently this
hypothesis was weakened by especially Widom, who gave an alternative proof;
and by many others, including Tracy, Basor, Böttcher, Silbermann, Spitkovskii,
Golinskii, etc.

Strong Szeg̋o Limit Theorems have applications in statistical physics, in Ising
models, wheref has some sort of singularity, such as a jump discontinuity. There
the Fisher–Hartwig conjectures were formulated, and as far I know, they have
still not been totally resolved. The little book of Grenander and Szegő remains
an excellent introduction; more modern developments are covered by Böttcher and
Silbermann at a relatively introductory level in [14]. A deeper treatment is given in
their earlier monograph [13].

Of course there are many important asymptotics for weights on compact sets
that do not fit into the above classification. Amongst them are the comparative
asymptotics studied by Mate, Nevai, Totik, Lopez, Golinskii, Rakhmanov, Pe-
herstorfer [42, 62, 63, 75 – 77, 99, 105] and others; the asymptotics for varying
weights that have so many applications, including to orthogonal rational functions
[15, 63, 90, 91]; results on zero distribution due to Mhaskar, Saff [83] and others;
orthogonal polynomials associated with measures with discrete support [9, 53]; and
those associated withq-series; finer asymptotics for classical weights, orthogonal
polynomials for Sobolev inner products,. . . .

There are still interesting problems regarding asymptotic behaviour of orthog-
onal polynomials associated with weights satisfying Szegő’s condition on the unit
circle: how do they behaveinside the unit circle (not outside) as the degree ap-
proaches∞? See [7].
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While the developments associated with weights on a finite interval in the last
three decades have been impressive, those associated with weights on infinite in-
tervals have been spectacular. Although there is nothing as complete as Szegő’s
theory (and probably there never will be), there has been the development of as-
ymptotics of all types, valid under very general conditions. A model is provided by
the exponential weights

w(x) := exp(−2|x|α), x ∈ R, α > 0.

This led to the idea of writing very general weights in exponential form:

w(x) = exp
(−2Q(x)

)
, x ∈ I,

whereI = (c, d) may be finite or infinite. Even more fundamental has been the
systematic use of potential theory, in a form designed to deal with the exponent or
external fieldQ.

One of the striking implications of the potential theory is that when working
with weighted polynomialsP exp(−Q) (P of degree6 n), all the interesting
features occur on an interval that depends onQ and on the degreen, but not on
the particularP . This had been used in the 1970’s by G. Freud and P. Nevai [87],
but potential theory enables one to find the exact interval of interest. Suppose for
example thatQ is convex, and thatQ(x) and |Q′(x)| → ∞ asx → c, d. Then
one may define forr > 0, theMhaskar–Rakhmanov–Saff numbersa−r < ar by the
equations

r = 1

π

∫ ar

a−r

xQ′(x)√
(x − a−r )(ar − x) dx; (13)

0 = 1

π

∫ ar

a−r

Q′(x)√
(x − a−r )(ar − x) dx.

It is of course not obvious thata±r exist or are unique, but this is the case. One may
also show thata−r → c; ar → d asr →∞.

One illustration of their importance is the Mhaskar–Saff identity [80 – 82]

‖Pe−Q‖L∞(I ) = ‖Pe−Q‖L∞[a−n,an], (14)

valid for all polynomialsP of degree6 n. Moreover,[a−n, an] is asymptotically
the smallest interval for this to hold, andPe−Q decays exponentially as we re-
cede from[a−n, an]. The connection with orthonormal polynomials becomes more
obvious when one considers theL2 analogue:(∫

I

P 2w

)1/2

= ‖Pe−Q‖L2(I ) 6 C‖Pe−Q‖L2[a−n,an]

= C

(∫ an

a−n
P 2w

)1/2

,
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whereC is independent ofP andn. Moreover, ifε > 0 is fixed, the contribution of
the integral overI\[a−n(1+ ε), an(1+ ε)] decays exponentially asn→∞. This
has the consequence that most of the interesting features of weighted polynomials
Pe−Q occur in, or close to,[a−n, an]. In particular, all the zeros ofpn(x) lie in
(a−n−1/2, an+1/2) [59].

Consider the simplest example

Q(x) = |x|α, x ∈ R.
Here asQ is even,a−r = −ar and (13) simplifies to

r = 2

π

∫ 1

0

arxQ
′(arx)√

1− x2
dx.

Solving gives

ar =
(
r

[√
π

2

0(α2)

0(α+1
2 )

])1/α

.

Another example is the non-evenQ,

Q(x) :=
{
xα, x ∈ (0,∞);
|x|β, x ∈ (−∞,0].

Suppose for example thatβ > α > 1. Then [16, 17] for some constantsc1, c2 > 0

a−r = −c1r
1
α

2α−1
2β−1 ; ar = c2r

1
α .

The asymptotics associated with exponential weights are inherently more com-
plicated than those for[−1,1]. In their description, it is useful to map[−1,1]
linearly onto[a−n, an]: let δn := 1

2(an − a−n) and

x = Ln(s) := (s + 1)δn + a−n, s ∈ [−1,1]
⇐⇒ s = L[−1]

n (x) = 1

δn

[
x − an + a−n

2

]
, x ∈ [a−n, an].

One then may regard

w(x) = exp
(−2Q(x)

) = exp
(−2Q

(
Ln(s)

))
,

as a sequence of weights in the variables ∈ [−1,1]. Moreover, all the zeros of the
transformed polynomialpn(Ln(z)) lie in, or very close to,[−1,1]. Effectively this
is a normalizing transformation – and normalization plays such an important role
in so many different types of asymptotic behaviour. In the case of non-evenQ, the
linear map was first extensively used by Buyarov and Rakhmanov [16 – 18].

Following is a partial list of asymptotics asn→∞:
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Name γn pn(Ln(z)), z /∈ [−1,1]

(I) nth root γ
1/n
n δn → c0 pn(Ln(z))

1/n→ c1 exp(U(ν; z))
(II) ratio

γn−1
γnδn

→ 1
2; Bnδn → 0

pn+1(Ln(z))
pn(Ln(z))

→ g(z)

(III) Szeg̋o/power γn(
δn
2 )
n+1/2D(fn; 0)→ c2

δ
1/2
n pn(Ln(z))

ϕ(z)n
D
(
fn; 1

ϕ(z)

)−1→ h(z)

(IV) strong Szeg̋o cn2n
c4

n∏
j=1

[
γj

(
δj
2

)j+ 1
2
D(fj ; 0)

]
→ c5

Here the constantscj , 0 6 j 6 4 and the functionsfn, g, h, U may be given
an explicit representation under suitable hypotheses onw. For example,U is an
exponential of a potential,

U(z) = exp

(∫ 1

−1
log |z− t|ν(t)dt

)
, (15)

whereν is a non-negative density function of total mass 1:ν > 0 and∫ 1

−1
ν = 1.

The functionfn appearing in the power asymptotic is

fn(θ) := w
(
Ln(cosθ)

)| sinθ |, θ ∈ [−π, π ].
Historically, remarkably precise results were obtained for the Hermite weight

exp(−x2) by Plancherel–Rotach starting in the 1920’s with many other later contri-
butions. Weights such as exp(−x2m),m = 1,2,3, . . . received a detailed and very
precise treatment in the early 1980’s [12, 46, 47, 78, 85, 109]. Moreover, starting
from hypotheses on the recurrence coefficients{An}, {Bn}, Nevai and Dehesa [89]
had obtained one form of zero distribution in the 1970’s, while J. Ullman had
started to use potential theory on the problem [116, 117].

However, the first very general asymptotics were obtained independently by
E. A. Rakhmanov [104] and H. N. Mhaskar and E. B. Saff [80 – 82] in the early
1980’s. E. A. Rakhmanov considered weightsw, where

lim|x|→∞

(
log

1

w(x)

)/|x|α = c > 0.

(Mhaskar and Saff treated the underlying exponential weight exp(−2|x|α) directly
for all α > 0.) Here the weight is asymptotically equivalent to the even weight
exp(−2|x|α), apart from a scaling onx, and consequently the linear transformation
Ln above simplifies substantially, to

Ln(z) = anz = cn1/αz.

Moreover, the density functionν, which in this case is called the Ullman or Nevai–
Ullman density, admits the simple representation

ν(x) = α

π

∫ 1

|x|
tα−1

√
t2 − x2

dt, x ∈ (−1,1).
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Rakhmanov also established logarithmic asymptotics such as

lim
n→∞ log

∣∣pn(z)∣∣/n1−1/α = c| Im z|,

and even log-log asymptotics

lim
n→∞

log log|pn(z)|
logn

= 1− 1

α
.

The latter was established forz ∈ C\R when the weightw satisfies

lim
|x|→∞

log log 1
w(x)

log |x| = α > 1.

This last condition is reminiscent of the formula defining the order of an entire
function. Indeed, there are points of contact between the theory of entire functions
and weights on the real line, not least in handling rates of growth and decay at∞.

The papers [80 – 82, 104] led to a rapid series of developments. In thenth root
line, extensions to very general exponential weights have been given by Buyarov,
Gonchar, Mhaskar, Rakhmanov, Saff, Totik and others. See [79, 108]. Despite the
great generality of the results, one would guess that a complete treatment is a long
way off. After all, even for weights with compact support, advances are still being
made. In many cases, one has to replace the asymptotic forpn in (I) above by

pn
(
Ln(z)

)1/n − cn exp
(
U(νn; z)

)→ 0, n→∞,
wherecn > 0, n > 1, and the density functionνn varies withn. In the case of
convexQ,

νn(x) = δn
√

1− x2

nπ2

∫ 1

−1

Q′(Ln(s))−Q′(Ln(x))
s − x

ds√
1− s2

, x ∈ [−1,1].

As is the case with weights with compact support, there is a close relationship
betweennth root asymptotics and zero distribution. Indeed the papers of Mhaskar
and Saff and Rakhmanov, as well as the earlier work of Dehesa and Nevai and
Ullmann concentrated on zero distribution. The scaling involvingLn(z) is really a
normalization, and leads to the most natural formulation of distribution of zeros.
However, other scalings have been used, and these do lead to interesting and sig-
nificant results, most notably forQ decaying very slowly, in which case the usual
scaling does not yield much information [50, 118, 121].

Not long after the firstnth root asymptotics, ratio asymptotics were established
by the author and Mhaskar and Saff [70, 71], thereby resolving the Freud conjec-
tures for the weightsw(x) = exp(−2|x|α), α > 0. The latter asserted that the
recurrence coefficients{An} satisfy

lim
n→∞An/n

1/α = cα > 0,



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 217

or in terms of the Mhaskar–Rakhmanov–Saff numbers associated with this weight,

lim
n→∞An/an =

1

2
.

Of course, because the weight is even,Bn = 0 anda−n = −an. (The conjec-
ture had earlier been established by Alphonse Magnus [73] forα a positive even
integer and subsequently refined to an asymptotic expansion by Mate, Nevai and
Zaslavsky [78].) Beautiful and important asymptotics involving hypotheses on the
recurrence coefficients for weights with non-compact support have been estab-
lished by Van Assche, Geronimus, Kuijlaars, and others [36, 50, 55]. Some of the
latter are closer in spirit to Szegő, rather than ratio, asymptotics.

Somewhat surprisingly the techniques used to prove the ratio asymptotics turned
out to be sufficient for the stronger Szegő asymptotics [72]. The methods involved
the classical Bernstein–Szegő identities, which will be discussed in the next sec-
tion, and weighted polynomial approximations. E. A. Rakhmanov announced as-
ymptotics of this type in [65], but the proofs appeared later [106] – and contained
fundamentally new ideas.

The most general conditions to date for establishing Szegő asymptotics have
been given by Totik in his seminal lecture notes [113], which gave a new approach
to constructing weighted polynomial approximations. These ideas have been used
by the author and A. L. Levin in discussing exponential weights on a general (not
necessarily infinite interval)I [61].

In terms of asymptotics forpn(x) for x ∈ I , there is a mean asymptotic involv-
ing values ofpn(x) for x ∈ [a−n, an] that is similar to (12). Asymptotics that hold
uniformly on suitable proper subintervals ofI were established for general classes
of weights by E. A. Rakhmanov [106] and the author [66] in the late 1980’s. Recent
work in this direction, for fairly general even and non-even exponential weights on
a finite or infinite intervalI , are announced in [60] and will appear in [61].

In terms of sharper asymptotics, that imply strong Szegő limit theorems, there
are the exciting new results of the group of Deift, Kriecherbauer, McLaughlinet al.,
that use Riemann–Hilbert techniques [21 – 26, 49]. These will be briefly discussed
in Section 4. These methods are fundamentally new and different, and promise
to revolutionise much of the asymptotic theory of orthogonal polynomials. The
asymptotic (IV) in the table above follows from recent results of Kriecherbauer and
McLaughlin forγn for the weights exp(−2|x|α), α > 0 [49]. For the case ofα a
positive even integer, it is implied by the asymptotic expansions of Mate, Nevai and
Zaslavsky forAn [78]. What is interesting though, is that in both cases, the results
come out of a finer asymptotic forγn orAn, rather than out of an approach involving
Toeplitz determinants, and so is quite different from the techniques used on the
unit circle or[−1,1]. Other powerful techniques that provide sharper asymptotics
for the recurrence coefficients have been explored by Wong and his coworkers
[11, 101] and by Chen, Ismail and Van Assche [20].

Not only do the Riemann–Hilbert methods imply strong Szegő limit theorems,
but they also yield asymptotics for the orthonormal polynomials in all parts of
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the plane. In particular they yield asymptotics near the endpoints of[a−n, an], the
first methods to do this in some degree of generality. A recent lecture notes of
P. Deift [21] provides a clear introduction to the Riemann–Hilbert method.

2. Identities

Amongst the many tools that have been used in asymptotics of orthogonal poly-
nomials, possibly the most important in the last twenty years has been potential
theory. A detailed discussion of its application is available elsewhere [56, 79, 108,
110]. So in this section, we shall focus on another key ingredient of asymptotics:
identities for special weights that are useful for general classes of weights.

The philosophy is very simple: suppose that we know for a special weight,v

say, an explicit expression for itsnth orthonormal polynomial, which we denote by
qn(x). Suppose also that for a given weightw, we wish to compute the behaviour
of pn(x) = pn(w, x) asn → ∞. Then if we can ensure thatw ' v, that isw is
close tov, then one expects thatpn(x) ≈ qn(x). Of course, to justify this involves
a lot of technical detail. One of the oldest and still most useful ways to proceed
rigorously, is to use Korous’ identity. It is based on the reproducing kernel

Kn(v, x, t) :=
n−1∑
j=0

qj (x)qj (t).

Let γn(v) and γn(w) denote respectively the leading coefficients ofqn(x) and
pn(x). Then since the next left-hand side has degree6 n− 1,

pn(x)− γn(w)
γn(v)

qn(x) =
∫
I

Kn(v, x, t)

[
pn(t)− γn(w)

γn(v)
qn(t)

]
v(t)dt

=
∫
I

Kn(v, x, t)pn(t)v(t)dt

=
∫
I

Kn(v, x, t)pn(t)

[
v(t)− v(x)

w(x)
w(t)

]
dt,

by orthogonality. We next need the Christoffel–Darboux formula

Kn(v, x, t) = γn−1(v)

γn(v)

qn(x)qn−1(t)− qn−1(x)qn(t)

x − t .

Let us also define

R(t, x) := 1− v(x)

w(x)

w(t)

v(t)

x − t .

We see that

pn(x)− γn(w)
γn(v)

qn(x)
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= γn−1(v)

γn(v)

[
qn(x)

∫
I

qn−1(t)pn(t)R(t, x)v(t)dt−

−qn−1(x)

∫
I

qn(t)pn(t)R(t, x)v(t)dt

]
. (16)

Now if w ≈ v, thenR(t, x) is small in some sense. If, moreover, we have for the
special weightv, bounds onqn(x) and(γn−1(v))/γn(v), we may then use Cauchy–
Schwarz on the integrals in (16) and orthonormality ofpn with respect tow to show
that the left-hand side of (16) is small. As sketched here, this requires global esti-
mates forv/w, which are not always available. More sophisticated ‘local’ versions
of this argument are often applied [76, 77, 99, 105].

How do we choose the special weights, for which an identity is available? In
this section, we shall discuss three classes of identities that have yielded impressive
results for exponential weights:

(I) Bernstein–Szeg̋o;
(II) Fokas–Its–Kitaev (Riemann–Hilbert);

(III) Rakhmanov’s projection identity.

The next section contains a detailed treatment of Bernstein–Szegő identities,
especially as this is the technique most used by this author. In Section 2.2, we
present an application to universality limit relations, in a very special case. In
Section 2.3, we establish the Fokas–Its–Kitaev identity and briefly discuss its spec-
tacular application to the weights exp(−|x|α), α > 0. Finally, in Section 2.4, we
discuss an identity of Rakhmanov. An attempt at comparing the applications of
these three identities is given in Section 2.5.

2.1. BERNSTEIN–SZEGŐ IDENTITIES

A Bernstein–Szeg̋o weight has the form

w(x) =
√

1− x2/S(x), x ∈ (−1,1),

whereS is a polynomial that is positive on[−1,1], except possibly for simple
zeros at±1. The identities associated with them have been very widely applied in
deriving asymptotics for more general weights. They have analogues on arcs of the
unit circle and have been extended, for example, by N. I. Achieser [1] and later by
F. Peherstorfer to weights supported on finitely many disjoint intervals [93 – 95].
There are generalisations, due to P. Nevai [86], where the polynomialS is replaced
by an expression involving a Hilbert transform. It is surprising that many of these
extensions have been done so recently!

In this section, we state and prove some of the identities associated with clas-
sical Bernstein–Szegő weights on[−1,1], in several different formulations. Since
many of these are stated and proved in most of the standard texts, the reader may
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well ask why? The reason is that some of the formulations are different; moreover,
some, such as that for the Christoffel functions, are either inaccessible, or ‘hidden
away’ in the classical texts. The explicit formulae for these special weights also
illustrate asymptotics that hold more generally. We emphasise that our treatment is
not complete because of our concentration on the classical form – but that is the
one most used in asymptotics.

We begin by recalling the representation of a positive trigonometric polynomial:
let s(θ) be a trigonometric polynomial of degreek that is positive in[−π, π ]. We
may write

s(θ) = ∣∣h(eiθ )∣∣2, θ ∈ [−π, π ], (17)

whereh is an algebraic polynomial of degreek, with h(0) > 0, and with all its
zeros in{z : |z| > 1}. The proof is elementary [112, p. 4]: we may write

s(θ) = e−ikθH(eiθ ),

whereH(z) is an algebraic polynomial of degree 2k. One may choose for an
appropriatec,

h(z) := c
∏

a: H(a)=0 and|a|<1

(z− a).

Now suppose thatS is an algebraic polynomial of degree`, positive in[−1,1]
except possibly for simple zeros at±1. ThenS(cosθ) is a trigonometric polyno-
mial of degreè involving only cosine terms. IfS(x) has a zero at±1, we may
factor out a term±1− x, and then apply (17) to deduce that

S(cosθ) = ∣∣h(eiθ )∣∣2, θ ∈ [−π, π ], (18)

whereh is an algebraic polynomial of degree`, with h(0) > 0, and with all zeros
in {z : |z| > 1}, except possibly for simple zeros at±1 corresponding to zeros of
S at±1. (For the factor 1− x = 1− cosθ , we may write, withz = eiθ ,

1− cosθ = −1

2z
(z− 1)2.)

We also note that sinceS(cosθ) involves only cosine terms, the coefficients ofh
are real.

THEOREM 2.1. Let S be a polynomial of degreè, positive in[−1,1], except
possibly for simple zeros at±1, and let

w(x) :=
√

1− x2

S(x)
, x ∈ (−1,1). (19)

RepresentS in the form(18). Then forn > `/2, x = cosθ andz = eiθ ,

pn(x) =
√

2

π
(sinθ)−1 Im

{
zn+1h(z)

}; (20)



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 221

γn =
√

2

π
h(0)2n. (21)

Proof.Let us denote the right-hand side of (20) byp(x). We first note that ash
has real coefficients, say

h(z) =
`∑
j=0

hjz
j ,

then at least ifn > `,

p(x) = p(cosθ) =
√

2

π

∑̀
j=0

hj
sin(n+ 1− j)θ

sinθ
=
√

2

π

∑̀
j=0

hjUn−j (cosθ),

whereUk denotes the Chebyshev polynomial of the second kind of degreek, so
that

Uk(cosθ) = sin(k + 1)θ

sinθ
.

As Un has leading coefficient 2n, we see thatp is a polynomial of degreen with
leading coefficient given by (21). If̀/2< n < `, then we may express those terms
in the sum withn − j < 0 as 0 forn − j = −1 and as−hjUj−n−2(cosθ), for
n− j 6 −2. Then we see thatp is still of degreen.

We now establish the orthogonality relations. Write∫ 1

−1
pUkw = 1

2

∫ π

−π
p(cosθ)Uk(cosθ)w(cosθ)| sinθ |dθ.

Here we have used evenness of the latter integrand inθ . Continue this as

= 1√
2π

Im
(∫ π

−π
zn+1h(z)

sinθ

sin(k + 1)θ

sinθ

sin2 θ

S(cosθ)
dθ
)

= 1√
2π

Im

(∫ π

−π
zn+1h(z)

zk+1− z−k−1

2i

1

|h(z)|2 dθ

)
= 1√

2π
Im

(−1

2

∫
|z|=1

zn−k−1z
2k+2− 1

h(z)
dz

)
.

In the second last step, we used (18). Ifk 6 n − 1, the integrand is analytic in
the closed unit ball (the possible zeros ofh at±1 are matched by those ofz2k+2−
1), so Cauchy’s integral theorem shows the integral is 0. Sop is an orthogonal
polynomial. Ifk = n, the integrand has a simple pole at 0, and the residue calculus
gives∫ 1

−1
pUnw =

√
π

2

1

h(0)
.
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Finally we may write

Un = 2n

γn
p + polynomial of degree6 n− 1,

whence∫ 1

−1
p2w = γn

2n

√
π

2

1

h(0)
= 1,

by (21). So,p = pn. 2
The one drawback of the above formula is the need to first find the polynomialh

in the representation (18) ofS(cosθ). By expressingh in terms of a Szeg̋o function,
we obtain a more explicit representation forpn. Recall that, corresponding tow,
we may define a weightf (θ) on [−π, π ] (or equivalently on the unit circle),

f (θ) := w(cosθ)| sinθ |, θ ∈ [−π, π ] (22)

and the corresponding Szegő function

D(f ; z) := exp
(

1

4π

∫ π

−π
logf (t)

eit + z
eit − z dt

)
, |z| < 1. (23)

The latter is uniquely determined by the following three properties [112, Ch. 10]:

(I) D(f ; z) is analytic and non-zero in|z| < 1;
(II) D(f ;0) > 0;

(III) The radial limits

lim
r→1−D(f ; re

iθ ) =: D(f ;eiθ )
exist for almost allθ ∈ [−π, π ] and∣∣D(f ;eiθ )∣∣2 = f (θ) a.e.θ ∈ [−π, π ]. (24)

(For those with someHp background, of course radial limits may be replaced
by non-tangential ones.) Whenf is positive and continuous on[−π, π ], there
is the stronger boundary behaviour

lim
r→1−

max
θ∈[−π,π]

∣∣∣∣D(f ; reiθ )∣∣2− f (θ)∣∣ = 0. (25)

Moreover, the identity (24) holds for allθ ∈ [−π, π ].
In the rest of this section, we assume thatw is as in Theorem 2.1, and thatf

is given by (22). Unless otherwise specified, we also assume thatx = cosθ ∈
(−1,1), thatθ ∈ (0, π) andz = eiθ .

THEOREM 2.2. For n > `/2, x = cosθ andz = eiθ ,

pn(x) = 1√
2π

[
znD(f ; z−1)−1+ z−nD(f ; z)−1

]
(26)

=
√

2

π
Re
[
znD(f ; z−1)−1]. (27)
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Moreover,

γn = 2n√
2π
D(f ;0)−1. (28)

Proof.We first claim that

D
(
S(cos· ); z) = h(z). (29)

Let

g(z) := D(S(cos· ); z)/h(z).
Theng(0) > 0, g and 1/g are analytic in the unit ball, and if we assume thatS is
positive on all of[−1,1], (18) above shows that asr → 1−, we have uniformly for
θ ∈ [−π, π ],

∣∣g(reiθ )∣∣2 = |D(S(cos · ); reiθ )|
|h(reiθ )|2

2

→ S(cosθ)

|h(eiθ )|2 = 1.

Sinceg and g−1 are analytic in the unit ball, the maximum-modulus principle
yields in a straightforward manner thatg(z) ≡ g(0) and then alsog(0) = 1, so
g(z) ≡ 1. In the case whereS has simple zeros at±1, this argument may be
modified using, for example, the identity

1− x2 = sin2 θ =
∣∣∣∣1− z2

2

∣∣∣∣2.
This identity and the uniqueness of the Szegő function also implies that

D(sin2 · ; z) = 1− z2

2
, |z| < 1 (30)

and, hence, also

D(sin2 · ; z) = 1− z2

2
= −iz sinθ, z = eiθ . (31)

Then for|z| = 1, obvious multiplicativity properties ofD( · ; z) give

D(f ; z) = D
(

sin2 ·
S(cos · ) ; z

)
= D(sin2 · ; z)
D(S(cos · ); z) =

−iz sinθ

h(z)

so that from Theorem 2.1,

pn(x) =
√

2

π
Im

{
zn+1 h(z)

sinθ

}
=
√

2

π
Im

{
zn+1 −iz

D(f ; z)
}

=
√

2

π
Re
{
znD(f ; z)−1}

.
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Next, the evenness off implies that

D(f ; z) = D(f ; z) = D(f ; z−1).

Then (27) and (26) follow. Finally, as (31) shows that

h(0) = D(S(cos · );0) = 1

2

D(S(cos · );0)
D(sin2 · ;0) =

1

2
D (f ;0)−1,

we obtain (28) from (21). 2
One immediate consequence is a formula forp′n(x):

COROLLARY 2.3. For n > `/2, x = cosθ andz = eiθ ,

p′n(x)
√

1− x2

√
π

2

= n Im
{
znD(f ; z−1)−1}+ Im

{
zn−1D

′(f ; z−1)

D(f ; z−1)2

}
. (32)

Proof.Note that ifx = cosθ andz = eiθ , then

dz

dx
= − iz√

1− x2
.

Differentiating (27) gives

p′n(x) =
√

2

π
Re
{

d

dz

[
znD(f ; z−1)−1

]dz

dx

}
=
√

2

π

1√
1− x2

Im
{
z

d

dz

[
znD(f ; z−1)−1

]}
and then (32) follows. 2

The last identity is useful in deriving explicit representations for Christoffel
functions. Recall that thenth Christoffel function for the weightw is

λn(w, x) := inf
deg(P )6n−1

∫ 1
−1P

2w

P 2(x)
. (33)

It is well known and easy to prove that

λn(w, x) = 1
/ n−1∑

j=0

p2
j (x).
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An extensive, and still relevant, survey of the use of Christoffel functions in or-
thogonal polynomials and weighted approximation was given by Nevai [87]. From
the Christoffel–Darboux formula

Kn(x, y) :=
n−1∑
k=0

pk(x)pk(x) = γn−1

γn

pn(x)pn−1(y)− pn−1(x)pn(y)

x − y , (34)

and l’Hospital’s rule, it is easily seen that

λ−1
n (w, x) = Kn(x, x) =

γn−1

γn

[
p′n(x)pn−1(x)− p′n−1(x)pn(x)

]
. (35)

We can now prove an identity forλ−1
n (w, x). It has been proved in [112, p. 320] in

one form in the course of a proof of equiconvergence of orthonormal expansions. It
was stated with some misprints as an exercise on asymptotics in Freud [32, p. 269],
and was used in [66].

THEOREM 2.4. For n > `/2+ 1, x = cosθ andz = eiθ ,

πλ−1
n (w, x)w(x)

√
1− x2

= n− 1

2
+ Re

{
zD′(f ; z)
D(f ; z)

}
+ 1

2
√

1− x2
Im
{
z2n−1 D(f ; z)

D(f ; z−1)

}
. (36)

Proof.Let us set

F(z) := D(f ; z),
and recall that sincef is even inθ ,

F(z) = F(z), z = eiθ .

Then (35), (26) and (32) and the fact that(γn−1)/γn = 1
2 imply that

4πiλ−1
n (w, x)

√
1− x2

= 2i

{[√
π

2
p′n(x)

√
1− x2

][√
2πpn−1(x)

]−
−
[√

π

2
p′n−1(x)

√
1− x2

][√
2πpn(x)

]}
=
[
n
(
znF (z)−1− z−nF (z)−1)+ (zn−1F ′(z)

F (z)2
− z

−n+1F ′(z)
F (z)2

)]
×

× [zn−1F(z)−1+ z−n+1F(z)−1]−
−
[
(n− 1)

(
zn−1F(z)−1− z−n+1F(z)−1

)+
+
(
zn−2F ′(z)
F (z)2

− z
−n+2F ′(z)
F (z)2

)]
× [znF (z)−1+ z−nF (z)−1

]
.
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By collecting coefficients of like terms, we continue this as

= F(z)−2z2n−1+ F(z)−1F(z)−1(2n− 1){z− z−1} − F(z)−2z−2n+1+
+ F ′(z)
F (z)2F(z)

(1− z−2)+ F ′(z)
F (z)2F(z)

(−1+ z2)

= F(z)−1F(z)−1(2n− 1)2i sinθ +
+2i Im(z2n−1F(z)−2)+ 2i Im

(
F ′(z)

F (z)2F(z)
(1− z−2)

)
. (37)

Using the evenness off , we see that

F(z)F(z) = ∣∣F(z)∣∣2 = f (θ) = w(cosθ)| sinθ | = w(x)
√

1− x2

so multiplying (37) byw(x)/(4i) gives (36). 2
We also record an identity for the reproducing kernelKn(x, y):

THEOREM 2.5. Let x = cosθ , z = eiθ andy = cosφ; w = eiφ. Then for
n > `/2+ 1,

(a) pn(x)pn−1(y)− pn−1(x)pn(y)

= 1

π
Re
[
D(f ; z−1)z−n

{
D(f ;w)−1w−n(w − z)+

+ D(f ;w−1)−1wn(w−1− z)}]. (38)

(b) Kn(x, y) =
n−1∑
k=0

pk(x)pk(y)

= − 1

2π
Im

[
D(f ; z)−1z

1
2−n
{
D(f ;w−1)−1wn−

1
2

sin( θ−φ2 )
+

+ D(f ;w)−1w
1
2−n

sin( θ+φ2 )

}]
. (39)

Proof. (a) LetF(z) := D(f ; z) as before. By (26),

(2π)[pn(x)pn−1(y)− pn−1(x)pn(y)]
= [

znF (z−1)−1+ z−nF (z)−1
][
wn−1F(w−1)−1+w−n+1F(w)−1

]−
− [zn−1F(z−1)−1+ z−n+1F(z)−1

][
wnF(w−1)−1+w−nF (w)−1

]
= F(z−1)−1F(w−1)−1{znwn−1− zn−1wn} +
+F(z)−1F(w)−1{z−nw−n+1− z−n+1w−n} +
+F(z)−1F(w−1)−1{z−nwn−1− z−n+1wn} +
+F(z−1)−1F(w)−1{znw−n+1− zn−1w−n}
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= 2 Re
{
F(z)−1F(w)−1(zw)−n{w − z}}+

+2 Re
{
F(z)−1F(w−1)−1(z−1w)n{w−1− z}}

= 2 Re
{
F(z)−1z−n

[
F(w)−1{w − z}w−n + F(w−1)−1{w−1− z}wn]}.

Then (38) follows.
(b) We use the Christoffel–Darboux formula (34) and (28) to deduce that

Kn(x, y) = 1

2

pn(x)pn−1(y)− pn(y)pn(x)
x − y .

Here

x − y = −2 sin

(
θ − φ

2

)
sin

(
θ + φ

2

)
and

w − z = −(wz)1/22i sin
(
θ − φ

2

)
;

w−1− z = −(w−1z)1/22i sin

(
θ + φ

2

)
.

These last four identities and (a) give

2πKn(x, y)

= − Im

{
F(z)−1z

1
2−n
[
F(w)−1w

1
2−n

sin( θ+φ2 )
+ F(w

−1)−1wn− 1
2

sin( θ−φ2 )

]}
. 2

We next rewrite some of the above formulae in terms of the argument ofD(f ; z).
If we write

D(f ; z) = ∣∣D(f ; z)∣∣exp
(
i argD(f ; z)),

then

argD(f ; reiθ ) = 1

4π

∫ π

−π
logf (t) Im

(
eit + reiθ
eit − reiθ

)
dt

= 1

2π

∫ π

−π
logf (t)

r sin(θ − t)
1+ r2− 2r cos(θ − t) dt.

As r → 1−,

r sin(θ − t)
1+ r2− 2r cos(θ − t) →

sin(θ − t)
2(1− cos(θ − t)) =

1

2
cot

(
θ − t

2

)
,

so one expects that argD(f ; reiθ ) approaches

1

4π
PV

∫ π

−π
logf (t) cot

(
θ − t

2

)
dt =: 0(f ; θ). (40)
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Here because of the non-integrable singularity of cot((θ − t)/2) at t = θ , the
integral must be taken in aCauchy principal valuesense:

PV

∫ π

−π
logf (t) cot

(
θ − t

2

)
dt

:= lim
ε→0+

∫
[−π,π]\[θ−ε,θ+ε]

logf (t) cot
(
θ − t

2

)
dt.

It is a well known fact in the theory of singular integrals, that the above limits (as
r → 1− andε → 0+) exist a.e. assuming just logf ∈ L1[−π, π ]. For ourf
of (22), which is differentiable in(−1,1), the limit exists everywhere in(−1,1).
0(f ; · ) is often called theconjugate functionof 1

2 logf and sometimes, itsHilbert
transform on the circle[33, 44, 48, 111, 123].

Recalling (24), we see that

D(f ;eiθ ) = f (θ)1/2 exp
(
i0(f ; θ)), (41)

and differentiating formally with respect toθ gives

eiθD′(f ;eiθ )
D(f ;eiθ ) = −

i

2

f ′(θ)
f (θ)

+ 0′(f ; θ). (42)

This formula is meaningful when0′(f ; θ) exists. Forf given by (22) andθ ∈
[−π, π ]\{0}, we shall effectively prove its existence in Lemma 2.7(b) below.

In some applications it is useful to express the formulae forpn, p′n andλ−1
n in

terms of0:

THEOREM 2.6. For n > `/2+ 1, x = cosθ andz = eiθ ,

(a) pn(x)w(x)
1/2(1− x2)1/4

√
π

2
= cos

(
nθ + 0(f ; θ)). (43)

(b) p′n(x)w(x)
1/2(1− x2)3/4

√
π

2
= (n+ 0′(f ; θ)) sin

(
nθ + 0(f ; θ))+

+ 1

2

f ′(θ)
f (θ)

cos
(
nθ + 0(f ; θ)). (44)

(c) πλ−1
n (w, x)w(x)

√
1− x2

= n− 1

2
+ 0′(f ; θ)+

+ 1

2
√

1− x2
sin
(
(2n− 1)θ + 20(f ; θ)). (45)
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Proof. This follows from (27), (32), (36), (41), (42) and the fact that the even-
ness off ( · ) and the oddness of cot imply that0(f ; · ) is odd – see (40). 2

We shall present one final set of formulae, couched in language that is appro-
priate in the context of exponential weights. Forg ∈ L1[−1,1], define its Hilbert
transform

H [g](x) := PV
∫ 1

−1

g(t)

t − x dt, a.e.x ∈ (−1,1). (46)

If alsog′( · )√1− · 2 ∈ L1[−1,1], we define for a.e.x ∈ (−1,1),

L[g](x) := 1

π
H
[
g′( · )

√
1− · 2](x) = PV

π

∫ 1

−1

g′(t)
√

1− t2
t − x dt. (47)

Using the identity (see, for example, [108, p. 225])

PV

π

∫ 1

−1

1

t − x
dt√

1− t2 = 0, x ∈ (−1,1), (48)

we may write for a.e.x ∈ (−1,1),

L[g](x) = PV

π

∫ 1

−1

g′(t)(1− t2)− g′(x)(1− x2)

t − x
dt√

1− t2 . (49)

Since
√

1− t2
t − x =

(1− x2)√
1− t2(t − x) −

x√
1− t2 −

t√
1− t2 ,

we see from (47) that

L[g](x) = π
√

1− x2σ [g](x)− x

π

∫ 1

−1

g′(t)√
1− t2 dt −

− 1

π

∫ 1

−1

tg′(t)√
1− t2 dt, (50)

where

σ [g](x) =
√

1− x2

π2
PV

∫ 1

−1

g′(t)
t − x

dt√
1− t2 . (51)

Of course, this will be meaningful only if all the integrals in (50) and (51) converge
in a suitable sense.

If we write our weightw of (19) in the form

w(x) = exp(−2Q(x)) (52)
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so that

Q(x) = −1

4
log(1− x2)+ 1

2
logS(x), (53)

and if we takeg := Q, then the expressionσ [g] = σ [Q] is one of the most
commonly used formulae for the density function of the equilibrium distribution
for Q, provided the interval of support ofQ is [−1,1]. For further orientation on
this, see [79] or [108]. Moreover, one frequently then has

1

π

∫ 1

−1

Q′(t)√
1− t2 dt = 0; 1

π

∫ 1

−1

tQ′(t)√
1− t2 dt = n (54)

so that

L[Q](x) = π
√

1− x2 σ [Q](x)− n. (55)

Unfortunately for theQ of (53), the integrals in (50) and (51) diverge, due to a
non-integrable singularity at±1. In contrast,L[Q](x) is well defined forx ∈
(−1,1). Nevertheless, (55) provides insight into the relationship betweenL[Q]
and quantities more commonly used in potential theory.

Before stating our final formulae forpn andλ−1
n in terms ofL[Q], we need to

establish the relationship between0 andL:

LEMMA 2.7. Let w, f be given by(19) and (22) respectively and writex =
cosθ, θ ∈ (0, π). Let0 andL be defined by(40) and (47) respectively.

(a) 0(f ; θ) = θ − π
2
−
√

1− x2

2π

∫ 1

−1

logS(s)− logS(x)

s − x
ds√

1− s2
. (56)

(b) 0′(f ; θ) = 1

2
+ L[Q](x). (57)

(c) 0(f ; θ) = θ

2
− τ +

∫ 1

x

L[Q](t)√
1− t2 dt, (58)

where

τ :=
{

π
2 , S(1) 6= 0;
0, S(1) = 0.

(59)

Proof. (a) Recall that

f (θ) = sin2 θ/S(cosθ),

so that

0(f ; θ) = 0(sin2 · ; θ)− 0(S(cos · ); θ). (60)
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But by (31), forz = eiθ ,

D(sin2 · ; z) = −iz sinθ

⇒ 0(sin2 · ; θ) = argD(sin2 · ;eiθ ) = θ − π
2
. (61)

Next, we make the substitutionsx = cosθ; s = cost in the integral in the right-
hand side of (56), namely in

H(x) :=
√

1− x2

2π

∫ 1

−1

logS(s)− logS(x)

s − x
ds√

1− s2
. (62)

Using (48), we obtain

H(x) = sinθ

4π
PV

∫ π

−π
logS(cost)

cost − cosθ
dt.

(The substitution in the principal value integral is easily justified.) Since

sinθ

cost − cosθ
= sin( θ−t2 ) cos( θ+t2 )+ cos( θ−t2 ) sin( θ+t2 )

2 sin( θ−t2 ) sin( θ+t2 )
,

we see that

H(x) = PV

8π

∫ π

−π
logS(cost)

[
cot
(
θ + t

2

)
+ cot

(
θ − t

2

)]
dt

= PV

4π

∫ π

−π
logS(cost) cot

(
θ − t

2

)
dt

= 0
(
S(cos · ); θ). (63)

Together (60)–(63) give (56).
(b) Now from (56) and (62),

0′(f ; θ) = 1+H ′(x) sinθ

= 1− x

2π

∫ 1

−1

logS(s)− logS(x)

s − x
ds√

1− s2
+

+ 1− x2

2π

∫ 1

−1

d

dx

(
logS(s)− logS(x)

s − x
)

ds√
1− s2

= 1− x

2π

∫ 1

−1

logS(s)− logS(x)

s − x
ds√

1− s2
+

+1− x2

2π

∫ 1

−1

logS(s)− logS(x)− S ′(x)
S(x)

(s − x)
(s − x)2

ds√
1− s2

. (64)

The interchange of series and derivative is justified by the uniform convergence
in x in the last integral, providedx is restricted to a closed subinterval of(−1,1)
(recall that logS is infinitely differentiable in(−1,1)). Using the identity

1− x2

s − x =
1− s2

s − x + s + x
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in the second integral in (64), and using also (48) gives

0′(f ; θ) = 1+ PV
2π

∫ 1

−1

logS(s)− logS(x)

s − x ×

×
{
−x + 1− s2

s − x + s + x
}

ds√
1− s2

= 1− PV
2π

∫ 1

−1

[
logS(s)− logS(x)

] d

ds

{√
1− s2

s − x
}

ds.

Integrating by parts gives

0′(f ; θ) = 1+ PV
2π

∫ 1

−1

S′(s)
S(s)

√
1− s2

s − x ds. (65)

This may be justified by first integrating by parts over(−1+ ε, x − ε) and(x +
ε,1 − ε) and then lettingε → 0+. The limits exist as(S ′(s)/S(s))

√
1− s2 is

differentiable in(−1,1) and isO(1/
√

1− s2) ass →±1. Using again (48) gives

0′(f ; θ)
= 1+ 1

2π

∫ 1

−1

(S′/S)(s)(1− s2)− (S′/S)(x)(1− x2)

s − x
ds√

1− s2
. (66)

Finally, since

Q(x) = −1

2
logw(x) = 1

2
logS(x) − 1

4
log(1− x2),

we see from (49) that

L[Q](x) = 1

π

∫ 1

−1

Q′(s)(1− s2)−Q′(x)(1− x2)

s − x
ds√

1− s2

= 1

2π

∫ 1

−1

(S′/S)(s)(1− s2)− (S′/S)(x)(1− x2)

s − x
ds√

1− s2
+

+ 1

2π

∫ 1

−1

ds√
1− s2

= 0′(f ; θ)− 1+ 1

2
,

by (66). So we have (57).
(c) Integrating (57) forθ from 0 to someφ ∈ (0, π) gives

0(f ;φ)− 0(f ;0) = φ

2
+
∫ φ

0
L[Q](cosθ)dθ.

Now asx → 1−, or equivalently asθ → 0+, we see from (56) that ifS(1) 6= 0,

0(f ; θ)→−π
2
.
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Then (58) follows if we changeφ to θ . If S has a simple zero at 1, then we write

f (θ) := 1/S1(cosθ),

whereS1(1) 6= 0. As in (a),

0(f ; θ) = 0(1; θ)− 0(S1(cos · ); θ) = −0(S1(cos · ; θ))
= −

√
1− x2

2π

∫ 1

−1

logS1(s)− logS1(x)

s − x
ds√

1− s2
,

just as in (a). Since logS1(x) is differentiable atx = 1, we may show as above that
0(S1(cos · ); θ)→ 0 asθ → 0+, and then (58) follows as before. 2

We may now reformulate Theorem 2.6 in terms ofL[Q]:
THEOREM 2.8. Letw be given by(19)andQ be given by(53). Letτ be given by
(59). For n > `/2+ 1, x = cosθ andz = eiθ ,

(a) pn(x)w(x)
1/2(1− x2)1/4

√
π

2

= cos

((
n+ 1

2

)
θ − τ +

∫ 1

x

L[Q](t)√
1− t2 dt

)
. (67)

(b) p′n(x)w(x)
1/2(1− x2)3/4

√
π

2

=
(
n+ 1

2
+ L[Q](x)

)
sin

((
n+ 1

2

)
θ − τ +

∫ 1

x

L[Q](t)√
1− t2 dt

)
+

+ 1

2

f ′(θ)
f (θ)

cos

((
n+ 1

2

)
θ − τ +

∫ 1

x

L[Q](t)√
1− t2 dt

)
. (68)

(c) πλ−1
n (w, x)w(x)

√
1− x2

= n+ L[Q](x)+ 1

2
√

1− x2
sin

(
2nθ − 2τ + 2

∫ 1

x

L[Q](t)√
1− t2 dt

)
. (69)

Proof.This follows directly from Theorem 2.6 and Lemma 2.7(b), (c). 2

2.2. BERNSTEIN–SZEGŐ IN UNIVERSALITY LIMITS

We have stressed that the main applications of the Bernstein–Szegő identity has
been to asymptotics of orthogonal polynomials. Its cousin on the circle underlies
the Szeg̋o/power asymptotics for orthogonal polynomials both on the unit circle
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and [−1,1], and the identity on[−1,1] underlies one of the main approaches
for proving asymptotics for orthogonal polynomials associated with exponential
weights on the real line [61, 72, 113].

In this section, we shall illustrate a different application, to universality limit
relations. In the theory of random matrices, the distribution of eigenvalues of ma-
trices in small intervals reduces to a technical limit relation involving orthogonal
polynomials. For a weightw, with nth reproducing kernel,

Kn(x, y) =
n−1∑
k=0

pk(x)pk(y),

one form of the universality limit relation is

lim
n→∞K

∗
n

(
u+ s

K∗n(u, u)
, u+ t

K∗n(u, u)

)/
K∗n (u, u) =

sinπ(s − t)
π(s − t) , (70)

wheres, t ∈ R, u ∈ I and

K∗n (x, y) := Kn(x, y)w(x)1/2w(y)1/2. (71)

Various forms and analogues of this have been explored in [21, 26, 92], etc. The
most impressive rigorous approach has been given in [26].

In this section, we illustrate the limit (70) in the very simple case of Bernstein–
Szeg̋o weights. In addition toK∗n , we use

K#
n(x, y) := Kn(x, y)

[
w(x)(1− x2)1/2

]1/2[
w(y)(1− y2)1/2

]1/2
. (72)

We also need the modulus of continuity of a function restricted to an interval[a, b]:
if this interval is contained in the domain of definition of a real valued functiong,
then we define forε > 0,

ω[a,b](g; ε) := sup
{∣∣g(s)− g(t)∣∣ : |s − t| 6 ε ands, t ∈ [a, b]}.

We can now prove:

THEOREM 2.9. Letw be given by(19) andn > `/2+ 1. Letu ∈ (−1,1) and
write u = cosψ , whereψ ∈ (0, π). Lets, t ∈ R and assume that

δ := |s − t|
K#
n(u, u)

∈ [0, π ]. (73)

Let [a, b] ⊂ (0, π) and assume that it containsψ , ψ + s/(K#
n(u, u)) andψ +

t/(K#
n(u, u)). Then∣∣∣∣K#

n

(
cos
(
ψ + s

K#
n(u, u)

)
, cos

(
ψ + t

K#
n(u, u)

))
−

− sin(π(s − t))
2π sin( s−t

2K#
n(u,u)

)

∣∣∣∣
6 1

2
ω[a,b](0′(f ; · ); δ)+

(
1

4
+ 1

2π

)
1

min{sina, sinb} . (74)
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Proof.Let us write

θ := ψ + s

K#
n(u, u)

; x := cosθ;

φ := ψ + t

K#
n(u, u)

; y := cosφ. (75)

By the Christoffel–Darboux formula, the fact that(γn−1)/γn = 1
2, and (43),

π(x − y)K#
n(x, y) = cosα cos(β − φ)− cosβ cos(α − θ),

where

α := nθ + 0(f ; θ); β := nφ + 0(f ;φ).
Then we deduce that

−2π sin

(
θ − φ

2

)
sin

(
θ + φ

2

)
K#
n(x, y)

= 1

2

[
cos(α + β − φ)+ cos(α − β + φ)]−

−1

2

[
cos(α + β − θ)+ cos(α − β − θ)]

= − sin

(
α + β − θ + φ

2

)
sin

(
θ − φ

2

)
−

− sin

(
α − β + φ − θ

2

)
sin

(
θ + φ

2

)
.

Hence∣∣∣∣K#
n(x, y) −

sin(α − β + φ−θ
2 )

2π sin( θ−φ2 )

∣∣∣∣
6 1

2π | sin( θ+φ2 )|
6 1

2π min{sina, sinb} . (76)

Next,

α − β + φ − θ
2
=
(
n− 1

2

)
(θ − φ)+ 0(f ; θ)− 0(f ;φ).

Here by (45),

πK#
n(u, u) = πλ−1

n (w, u)w(u)
√

1− u2

= n− 1

2
+ 0′(f ;ψ)+ η,
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where

η := 1

2
√

1− u2
sin
(
(2n− 1)ψ + 20(f ;ψ)).

Thus, substituting forn− 1/2,

α − β + φ − θ
2
= πK#

n(u, u)(θ − φ)+ 0(f ; θ)−
− 0(f ;φ)− (0′(f ;ψ)+ η)(θ − φ)

= π(s − t)+ (θ − φ)(0′(f ; ξ)− 0′(f ;ψ)− η)
=: π(s − t)+ ε,

whereξ is betweenθ andφ and we have used our choice (75) ofθ, φ. Then we see
that by our choice (73) ofδ,∣∣∣∣sin

(
α − β + φ − θ

2

)
− sin

(
π(s − t))∣∣∣∣ 6 |ε|

6 δ
(
ω[a,b]

(
0′(f ; · ); δ)+ 1

2
√

1− u2

)
and hence∣∣∣∣sin(α − β + φ−θ

2 )

2π sin( θ−φ2 )
− sin(π(s − t))

2π sin( s−t
2K#

n(u,u)
)

∣∣∣∣
6 δ

2π sin δ
2

(
ω[a,b]

(
0′(f ; · ); δ)+ 1

2
√

1− u2

)
6 1

2

(
ω[a,b]

(
0′(f ; · ); δ)+ 1

2
√

1− u2

)
,

by the inequality sinδ/2 > δ/π . This, (76), and the fact thatψ ∈ [a, b] yield the
result. 2

Note that the estimate in (74) holds without a division byK∗n (u, u). We can now
transform that estimate into:

THEOREM 2.10. Letw be given by(19). LetJ be a closed subinterval of(−1,1)
and K ⊂ R be bounded. Then uniformly foru ∈ J , andσ, τ ∈ K, we have as
n→∞,

K∗n

(
u+ σ

K∗n (u, u)
, u+ τ

K∗n(u, u)

)/
K∗n(u, u)

= sin(π(σ − τ))
π(σ − τ) +O

(
1

n

)
. (77)
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Proof.We first show that the right-hand side of (74) may be bounded indepen-
dently ofn. Now by (57) and (47),

0′(f ; θ) = L[Q](cosθ)+ 1

2
= 1

π
H
[
Q′( · )

√
1− · 2](cosθ)+ 1

2
.

Here,Q is given by (53). SinceQ is infinitely differentiable in(−1,1), Privalov’s
Theorem (see, for example, [44, p. 94]) shows that0′(f ; · ) satisfies a Lipschitz
condition of orderα in each compact subinterval of(−1,1) and for any 0< α < 1.
Then it follows that

ω[a,b]
(
0′(f ; · ); δ) 6 Cδa, δ > 0,

whereC depends on[a, b] ⊂ (0, π). Next, it follows from (69) that providedx is
restricted to a compact subinterval of(−1,1),

πK#
n(x, x) = n+O(1),

so fors, t in a compact set, we see thatδ of (73) satisfies, uniformly inu, s, t ,

δ = O
(

1

n

)
.

Thus we obtain uniformly foru = cosψ ∈ J , s, t in a compact set∣∣∣∣K#
n

(
cos

(
ψ + s

K#
n(u, u)

)
, cos

(
ψ + t

K#
n(u, u)

))
−

− sin(π(s − t))
2π sin( s−t

2K#
n(u,u)

)

∣∣∣∣ 6 C. (78)

Next, forσ, τ ∈ K, u ∈ J and large enoughn, we may write for somes = s(σ ),
cosψ + σ

K∗n(u, u)
= cosψ + σ sinψ

K#
n(u, u)

= cos
(
ψ + s

K#
n(u, u)

)
,

where s also varies in a compact subset ofR. This follows by a Taylor series
expansion to second order, and since sin is bounded below by a positive constant
in each compact subinterval of(0, π). Similarly, for somet = t (τ ),

cosψ + τ

K∗n(u, u)
= cosψ + τ sinψ

K#
n(u, u)

= cos

(
ψ + t

K#
n(u, u)

)
.

Then

σ − τ
s − t =

cos(ψ + s

K#
n(u,u)

)− cos(ψ + t

K#
n(u,u)

)

(s − t)/K∗n (u, u)
= − sin

(
ψ + ξ

K#
n(u, u)

)
K∗n(u, u)
K#
n(u, u)

=
(
− sinψ +O

(
1

n

))
1

sinψ

= −1+O

(
1

n

)
,
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uniformly for σ, τ ∈ K, u ∈ J and with the convention that the left-hand side is
taken as−1 if σ = τ . Since the functionv → sinv/v, with value 1 atv = 0, is
continuously differentiable in(−π, π), we deduce that uniformly inσ, t ∈K,

sin(π(σ − τ))
π(σ − τ) = sin(π(s − t))

π(s − t) +O

(
1

n

)
and also uniformly inσ, τ ∈K, u ∈ J ,

sin

(
s − t

2K#
n(u, u)

)/( s − t
2K#

n(u, u)

)
= 1+O

(
1

n

)
so we may reformulate (78) as∣∣∣∣K#

n

(
u+ σ

K∗n(u, u)
, u+ τ

K∗n(u, u)

)/
K#
n(u, u)−

sin(π(σ − τ))
π(σ − τ)

∣∣∣∣ 6 C

n
,

uniformly in u, σ , τ . Finally,(
1−

[
u+ σ

K∗n (u, u)

]2)1/4

= (1− u2)1/4+O
(

1

n

)
,

uniformly in u, σ , τ , with a similar relation whenτ replacesσ , and then (77)
follows. 2

Obviously the very narrow class of weights treated in Theorem 2.10 limits its
interest. However, via Korous’ method – as outlined in the beginning of this section
– one may extend Theorem 2.9 to more general weights, that admit suitable poly-
nomial approximation. This would still be for weights on a fixed interval. The real
question, which seems well worth exploring, is whether a Korous type approach
can yield universality limits for varying weights and hence for exponential weights
on the real line. Would this, for example, compete with the strength of results in
[26, Lemma 6.1]?

2.3. THE FOKAS–ITS–KITAEV (RIEMANN–HILBERT) IDENTITY

While the Bernstein–Szegő identity is based ultimately on Cauchy’s integral theo-
rem and integral formula, the Fokas–Its–Kitaev identity is based on the Sokhotskii–
Plemelj formulas. These may be viewed as the boundary behaviour form of Cauchy’s
integral formula: an excellent introduction appears in Henrici’s ode to complex
analysis [44]. Suppose for example, that we have a measurable functionh: R→ R
such that∫ ∞

−∞
|h(t)|
1+ |t| dt <∞. (79)
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Then one may define its Cauchy transform

C[h](z) := 1

2πi

∫ ∞
−∞

h(t)

t − z dt, z ∈ C\R.

(Sometimes, this is called the Stieltjes transform, or Hilbert transform,. . . .) This
is of course analytic inC\R. Let us define the boundary values from the upper and
lower half planes,

C[h]+(x) := lim
y→0+

C[h](x + iy);
C[h]−(x) := lim

y→0+
C[h](x − iy),

whenever the limits exist. (For those familiar with boundary behaviour of analytic
functions, of course the radial limits may be replaced by non-tangential ones.) The
Sokhotskii–Plemelj formulas assert that whenever the limits exist,

C[h]+(x)− C[h]−(x) = h(x); (80)

C[h]+(x)+ C[h]−(x) = 1

πi
PV

∫ ∞
−∞

h(t)

t − x dt.

Here, as earlier,PV denotes Cauchy principal value. In particular (79) ensures that
the limits and hence (80) hold a.e. Moreover, ifh satisfies a Lipschitz condition of
some positive order in an interval, then (80) holds in the interior of that interval.

Riemann–Hilbert problems involve replacing a difference of boundary values
by their ratio: for example, one looks for a functionG analytic inC\R satisfying

G+(x) = h(x)G−(x), x ∈ R,
for a given functionh, and subject to some normalization condition onG. An
applicable connection between Riemann–Hilbert problems and orthogonal poly-
nomials was first drawn in the early 1990’s [30, 31] by Fokas, Its and Kitaev for
a weightw on I = R. The formulation involves 2× 2 complex valued matrix
functionsY ( · ): we writeY (z) ∈ C2×2.

THEOREM 2.11. Let w: R → [0,∞) have all moments
∫
R x

jw(x)dx, j =
0,1,2, . . . finite and assume that for eachj > 0, w(s)sj satisfies a Lipschitz
condition of some positive order throughoutR. Letn > 1. Consider the following
Riemann–Hilbert problem:

(I) Y : C\R→ C2×2 is analytic;

(II) Y+(x) = Y−(x)
(

1 w(x)

0 1

)
, x ∈ R. (81)

(III) Y (z)

(
z−n 0
0 zn

)
=
(

1 0
0 1

)
+O

(
1

|z|
)
, |z| → ∞. (82)
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The problem has a unique solution

Y (z) =
(
pn(z)/γn C[pnw] (z) /γn
−2πiγn−1pn−1(z) −2πiγn−1C[pn−1w](z)

)
. (83)

Proof.We follow [26, 49]: first we establish

Uniqueness. Firstly, by taking determinants in (81), we see that

detY+(x) = detY−(x), x ∈ R.
The fact thatw satisfies a Lipschitz condition of positive order inR ensures that
each of the entries in the matricesY+, Y− does the same, at least in finite intervals
– by Privalov’s theorem on singular integrals. In particular detY± are continuous
there. (Alternatively, the Lipschitz condition implies uniform convergence in com-
pact intervals to the boundary values and hence also continuity.) So detY± are
continuous onR, while detY (z) is analytic inC\R and hence detY (z) is actually
an entire function. The order relation (82) forces

detY (z)→ 1, |z| → ∞,
and so by Liouville’s Theorem,Y (z) ≡ 1 inC.

If Z is another solution of (I)–(III), we let

R(z) := Z(z)Y (z)−1,

which is analytic inC\R. Using (81) onY andZ, we see that forx ∈ R,

R+(x) =
[
Z−(x)

(
1 w(x)

0 1

)][
Y−(x)

(
1 w(x)

0 1

)]−1

= R−(x).

So as above,R is entire. Finally, (82) shows that

R(z) =
(

1 0
0 1

)
+O

(
1

|z|
)
, |z| → ∞,

and again Liouville’s Theorem shows that each of the entries ofR is constant. Thus
R is the identity matrix, and we have established uniqueness.

Existence. We now show thatY of (83) solves (I)–(III). Firstly, (I) is immediate. To
verify (II), we must satisfy four equations, two of which reduce to

pj+(x) = pj−(x), x ∈ R,
namely continuity ofpj , j = n− 1, n. The other two are

C[pnw]+(x)/γn = pn−(x)w(x)/γn + C[pnw]−(x)/γn;
−2πiγn−1C[pn−1w]+(x)
= −2πiγn−1pn−1,−(x)w(x)− 2πiγn−1C[pn−1w]−(x).
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These follow immediately from the Sokhotskii–Plemelj formula (80). The veri-
fication of (III) also reduces to four order relations. Two are immediate because
pn(z)/γn = zn + · · · and becausepn−1(z) has degreen − 1. The non-trivial ones
are

znC[pnw](z)/γn = O
(

1

z

)
; |z| → ∞, (84)

−2πiγn−1z
nC[pn−1w](z) = 1+O

(
1

z

)
; |z| → ∞. (85)

These are more complex, because the integral defining the Cauchy transform ex-
tends over the whole real line, andz can be close to, or even on, the real line. So
we take some care over them. Let us establish (85). We write

1

s − z =
sn

zn(s − z) −
n−1∑
k=0

sk

zk+1

and use orthogonality to deduce that

−2πiγn−1z
nC[pn−1w](z)

= −γn−1

∫ ∞
−∞

(pn−1w)(s)s
n

s − z ds + γn−1

∫ ∞
−∞
(pn−1w)(s)s

n−1 ds.

Because of orthonormality, the second term on the right-hand side equals

γn−1

∫ ∞
−∞
(pn−1w)(s)s

n−1 ds =
∫ ∞
−∞
(pn−1w)

2(s)ds = 1.

We must show that∫ ∞
−∞

(pn−1w)(s)s
n

s − z ds = O

(
1

z

)
, |z| → ∞ (86)

and then (85) follows. (Ifz ∈ R, the integral must be taken in a Cauchy principal
value sense.) We split the integral into three pieces. Firstly,∣∣∣∣∣

∫
{s:|s−z|> |z|2 }

(pn−1w)(s)s
n

s − z ds

∣∣∣∣∣ 6 2

|z|
∫ ∞
−∞
|pn−1w|(s)|s|n ds.

Secondly,∣∣∣∣∣
∫
{s:16|s−z|6 |z|2 }

(pn−1w)(s)s
n

s − z ds

∣∣∣∣∣ 6 2

|z|
∫ ∞
−∞
|pn−1w|(s)|s|n+1 ds.
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Write z = x + iy. To deal with the remaining range, namely{s : |s − z| < 1}, we
note that it is non-empty only when|y| < 1. We write∫

{s:|s−z|<1}
(pn−1w)(s)s

n

s − z ds

=
∫ x+
√

1−y2

x−
√

1−y2

(pn−1w)(s)s
n+1 − (pn−1w)(x)x

n+1

s − z
ds

s
+

+(pn−1w)(x)x
n+1

∫ x+
√

1−y2

x−
√

1−y2

ds

(s − z)s
=: I1+ I2.

Firstly, for largez, and equivalently for largex (recall |y| < 1),

|I1| 6 2

|z|
∫ x+1

x−1

∣∣∣∣ (pn−1w)(s)s
n+1 − (pn−1w)(x)x

n+1

s − z
∣∣∣∣ ds

6 2

|z|
∫ x+1

x−1

∣∣∣∣ (pn−1w)(s)s
n+1 − (pn−1w)(x)x

n+1

s − x
∣∣∣∣ ds.

Our hypothesis thatw(s)sj , j > 0, satisfies a Lipschitz condition uniformly on the
real line implies that this last integral is bounded independently ofx. Next, because
of symmetry of the interval of integration aboutx,

|I2| = |(pn−1w)(x)x
n+1|

|z|

∣∣∣∣∣
∫ x+
√

1−y2

x−
√

1−y2

(
1

s − z −
1

s

)
ds

∣∣∣∣
= |(pn−1w)(x)x

n+1|
|z|

∣∣∣∣∣
∫ x+
√

1−y2

x−
√

1−y2

iy ds

(s − x)2+ y2
−

− log

(
x +√1− y2

x −√1− y2

)∣∣∣∣∣
6 |(pn−1w)(x)x

n+2 − (pn−1w)(0)0n+2|
|z||x| ×

×
[∫ ∞
−∞

du

u2+ 1
+ log

( |x| + 1

|x| − 1

)]

6 C

|z|,

whereC is independent ofz. We have again used the fact that for eachk, w(s)sk

satisfies a Lipschitz condition uniformly on the real line, and we can assume that
the Lipschitz constant is< 1. So we have (86) and hence (85). The proof of (84) is
similar, but easier. 2
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Who would have guessed that the above identities could be so useful in estab-
lishing asymptotic properties of orthogonal polynomials? A one variable problem
has been converted into a 2× 2 matrix problem involving singular integrals and
boundary values! Compare this with the Bernstein–Szegő formula, whose util-
ity is almost immediate, especially when one recalls how much is known about
polynomial approximation.

But in the hands of the group around P. Deift, to whom Riemann–Hilbert prob-
lems are bread and butter, the identities above (and some extensions of them)
have yielded remarkably precise results. The above problem is transformed by
a succession of maps/substitutions, some of which boil down to the mapping of
the Mhaskar–Rakhmanov–Saff interval[a−n, an] onto [−1,1], and to use of po-
tential theory. Then, the real line is deformed into a suitable contour, and a two-
dimensional version of steepest descent is applied. The details are of course non-
trivial. Historically, the first use of this circle of ideas was by Bleher and Its [10],
though their method differs substantially from that of the group around Deift.

As an illustration of the power of the method, we quote a small part of the
impressive recent results of Kriecherbauer and McLaughlin [49]:

THEOREM 2.12. Letα > 0 and

w(x) := exp
(−2|x|α), x ∈ R.

Let

an = an(α) := n1/α

[√
π

2

0(α2)

0(α+1
2 )

]1/α

, n > 1.

Then

γn

(
an

2

)n+ 1
2

e−n/α
√

2π = 1+ α − 4

24αn
+ εn
n
, n→∞, (87)

where

εn = O
(
(logn)−2

)
, n→∞. (88)

Consequently, for somec1, c2 independent ofn,

n∏
j=1

[
γj

(
aj

2

)j+ 1
2

e−j/α
√

2π
]
= c1n

c2
(
1+ o(1)

)
, n→∞. (89)

What is so impressive is the precision in the asymptotic in (87), leading to the
strong Szeg̋o limit (89) for all α > 0. Forα a positive even integer, the asymptotic
expansion for the recurrence coefficients given by Mate, Nevai and Zaslavsky [78]
implied both (87) and (89). We emphasise that more detailed information regarding
εn is given in [49]. That, together with the asymptotics forpn that are established
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in all parts of the plane – most notably near±an, illustrate the impressive power of
the Riemann–Hilbert technique.

Undoubtedly investigations in the next few years will reveal the full potential of
this exciting new method.

2.4. RAKHMANOV ’ S PROJECTION IDENTITY

Rakhmanov’s projection identity first appeared in his 1992 paper [106], as part of
his proof of asymptotics for orthonormal polynomials for the weights exp(−|x|α),
α > 1, on the real line. There the identity was applied on a growing sequence of in-
tervals, namely the Mhaskar–Rakhmanov–Saff intervals[−ar, ar ] for appropriate
choices ofr.

Here we shall present the identity for a weightw on [−1,1] and for a fixed
n. We are forced to use some potential theory but have attempted to keep it to a
minimum. Those readers requiring further orientation can refer to [79] or [108].
We write

w(x) = exp
(−2Q(x)

)
, x ∈ (−1,1) (90)

and assume that there is a finite, absolutely continuous measure

dν(x) = ν′(x)dx on [−1,1] (91)

of total massn, that is∫ 1

−1
dν = n, (92)

satisfying the equilibrium condition∫ 1

−1
log |x − t|−1 dν(t)+Q(x) = α, x ∈ (−1,1). (93)

Hereα is a (real) constant. A positive measure dν satisfying this last relation is
called the equilibrium measure of total massn for the external fieldQ. It exists
and is unique, if, for example,Q is convex on(−1,1) and satisfies some other
conditions that guarantee that dν has massn. (The argument that follows does not
seem to require that dν is positive though!) Let us set

dµ(x) := dν(x)+ 1

2

dx

π
√

1− x2
, x ∈ (−1,1) (94)

so that∫ 1

−1
dµ = n+ 1

2
. (95)
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Also let

cn := 1√
π

exp(α); (96)

φn(x) := π
∫ 1

x

dµ(t)− π
4
; (97)

A(x) := [2π√1− x2w(x)
]−1/2; (98)

Rn(x) : = 2A(x) cosφn(x)

=
√

2

π

[√
1− x2w(x)

]−1/2
cos

(
π

∫ 1

x

dµ(t)− π
4

)
. (99)

We note thatRn(x) is the expression expected to describe the behaviour ofpn(x)

asn→∞:

(1− x2)1/4w(x)1/2pn(x)

=
√

2

π
cos

(
π

∫ 1

x

dµ(t)− π
4

)
+ o(1).

Compare (67) and (55). Of course here we are fixingn and adjustingw so that the
equilibrium measure dν for w has total massn and is supported on[−1,1].

Define an inner product and norm with respect to the weightw by

(f, g) :=
∫ 1

−1
fgw; (100)

‖f ‖ := (f, f )1/2 =
(∫ 1

−1
f 2w

)1/2

.

Finally, let as usual,Kn(x, t) denote thenth reproducing kernel forw, as at (34).
We can now state:

THEOREM 2.13. Let w = exp(−2Q) be a weight on[−1,1] and assume that
there is a measuredν satisfying(91)–(93)and, moreover, that in each compact
subinterval of(−1,1), ν′(x) satisfies a Lipschitz condition of positive order. As-
sume the notation(94) and (96)–(99). Let

En := inf
deg(P )6n

‖Rn − P‖. (101)

Then theinf is attained by(cn/γn)pn and only this polynomial, so that

En =
∥∥∥∥Rn − cnγnpn

∥∥∥∥. (102)
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Moreover,

cn

γn
pn(x) =

∫ 1

−1
Kn+1(x, t)Rn(t)w(t)dt, (103)

and

E2
n = 1−

(
γn

cn

)2

+ en, (104)

where

en := 1

π

∫ 1

−1
cos
(
2φn(x)

) dx√
1− x2

. (105)

What is remarkable is that the expression that we expect to describe the as-
ymptotic behaviour ofpn, asn → ∞, namelyRn(x), appears in an extremal
problem which is uniquely solved bypn (suitably normalized). This really helps to
motivate the asymptotic form. Furthermore, it seems immediately obvious that it
should be useful in studying asymptotics. It was used by E. A. Rakhmanov to good
effect in [106] in providing a compact proof of asymptotics for the orthonormal
polynomials for exponential weights. There, though, this was not the only new
identity: to estimateen,En, and hence to show thatγn/cn → 1−, other strikingly
original ideas and identities were developed and used.

We shall need three lemmas as a prelude to the proof of Theorem 2.13. The first
involves the Cauchy transform of dµ. Recall that

C[dµ](z) := 1

2πi

∫ 1

−1

dµ(t)

t − z , z ∈ C\[−1,1].
The Sokhotskii–Plemelj formulas (80) may be recast in the form

C[dµ]±(x) = PV

2πi

∫ 1

−1

dµ(t)

t − x ±
1

2
µ′(x), x ∈ (−1,1). (106)

Our hypothesis of the Lipschitz condition onν′ is enough to guarantee that this
last relation holds pointwise, and that all functions involved also satisfy a Lipschitz
condition. We shall apply this to the complex potential associated with dµ. Define

V ν(z) :=
∫ 1

−1
log |z− t|−1 dν(t);

V (z) :=
∫ 1

−1
log |z− t|−1 dµ(t).

Notice that we use a superscript to distinguish the potentialV ν for dν from that for
dµ. Note too that by definition ofµ,

V (x) = V ν(x)+ 1

2

∫ 1

−1
log |x − t|−1 dt

π
√

1− t2
= V ν(x)+ 1

2
log 2, x ∈ [−1,1]. (107)
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The last step involves an elementary identity of potential theory – see, for example,
[72, p. 30]. Define the complex potential for dµ,

U(z) :=
∫ 1

−1
log(z− t)−1 dµ(t), z ∈ C\[−1,1] (108)

and define the conjugate function forV by

U(z) =: V (z)+ iV ∗(z), z ∈ C\[−1,1]. (109)

Both V ∗ andU are multivalued inC\[−1,1], but we consider the singlevalued
branch ofV ∗ in C\(−∞,1] normalized by

V ∗(z) = 0, z ∈ [1,∞). (110)

Our first lemma deals with the boundary valuesU± of U from the upper and lower
half planes:

LEMMA 2.14. The complex potentialU has a continuous extension to[−1,1]. In
addition forx ∈ (−1,1),

U±(x) = V (x)∓ iπ
∫ 1

x

dµ. (111)

Proof.Now for z ∈ C\[−1,1],

U ′(z) =
∫ 1

−1

dµ(t)

t − z = 2πiC[dµ](z).

Then the Sokhotskii–Plemelj formulas (106) give

V ∗′± (x) = ImU ′±(x) = 2π ReC[dµ]±(x) = ±πµ′(x), x ∈ (−1,1). (112)

Both the functionsV ∗± are continuous in(−1,1) and the assertion concerning the
continuous extension ofU follows. Next, by our choice of branches,V ∗±(1) = 0,
so forx ∈ (−1,1),

U±(x) = V±(x)+ i0+ i
∫ x

1
V ∗
′
± (t)dt

= V (x)± iπ
∫ x

1
dµ,

by (112) and the absolute continuity of dµ with respect to Lebesgue measure.2
Now define

W(z) := cn(z2− 1)−1/4 exp
(−U(z)), z ∈ C\[−1,1], (113)
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where the branch of(z2− 1)−1/4 is chosen so that

(z2− 1)−1/4 > 0, z ∈ (1,∞).
Sinceµ has total massn+ 1

2, we see that (with a multivalued log),

U(z) = −
(
n+ 1

2

)
logz+ o(1), |z| → ∞

so

W(z)/zn→ cn, |z| → ∞. (114)

ThusW(z) has a single valued analytic continuation toC\[−1,1] with pole at∞.
We need a technical lemma:

LEMMA 2.15. For x ∈ (−1,1),

(i) W±(x) = A(x)exp
(±iφn(x)); (115)

(ii) ReW±(x) = 1

2
Rn(x); (116)

(iii)
∣∣W±(x)∣∣−2 = 2πw(x)

√
1− x2. (117)

Proof.From (107) and then (93),

V (x) = V ν(x)+ 1
2 log 2= −Q(x)+ α + 1

2 log 2.

Also (
(z2− 1)−1/4

)
±(x) = (1− x2)−1/4 exp(∓iπ/4),

so from (113) and then (111) and (96),

W±(x) = cn(1− x2)−1/4 exp(∓iπ/4)exp(−U±(x))

= 1√
2π
(1− x2)−1/4 exp

(
Q(x)

)
exp

(
±i
[
π

∫ 1

x

dµ− π
4

])
= A(x)exp

(±iφn(x)).
Thus we have (i). Then (ii) follows from (99), and (iii) follows from the definition
(98) ofA. 2

Our final lemma is:

LEMMA 2.16. If q is a polynomial of degreen with real coefficients and leading
coefficientk,

(q,Rn) =
∫ 1

−1
qRnw = k/cn. (118)
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Proof.Now

u(z) := Re
(
q

W
(z)

)
is harmonic inC\[−1,1] and by (114),

u(z)→ k/cn, |z| → ∞,
so it is also harmonic at∞. Let

g(z) :=
{
u
(

1
2(z+ z−1)

)
, 0< |z| < 1,

k/cn, z = 0.

Theng is harmonic in the open unit ball. Ifθ ∈ (0, π), then asz → e±iθ from
inside the unit ball,

g(z)→ Re

(
q

W±
(cosθ)

)
= Re

(
(qW±)(cosθ)

|W±(cosθ)|2
)

= π(qRnw)(cosθ)| sinθ |,
by (116) and (117). The mean value property for harmonic functions gives

k/cn = g(0) = 1

2π

∫ π

−π
g(eiθ )dθ

= 1

2

∫ π

−π
(qRnw)(cosθ)| sinθ |dθ

=
∫ 1

−1
qRnw. 2

We turn to

The Proof of Theorem 2.13.First note that ifq is a polynomial of degree6 n,
with real coefficients and leading coefficientk, orthonormality gives(

pn
γn

cn
, q

)
=
(
γn

cn
pn,

k

γn
pn

)
= k

cn
= (Rn, q)

by Lemma 2.16, so(
Rn − pnγn

cn
, q

)
= 0. (119)
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Then

‖Rn − q‖2 =
∥∥∥∥(Rn − pn γncn

)
+
(
pn
γn

cn
− q

)∥∥∥∥2

=
∥∥∥∥Rn − pn γncn

∥∥∥∥2

+
∥∥∥∥pnγncn − q

∥∥∥∥2

.

It follows that

E2
n = min

deg(P )6n
‖Rn − P‖2

=
∥∥∥∥Rn − pn γncn

∥∥∥∥2

= ‖Rn‖2− 2

(
pn
γn

cn
, Rn

)
+
∥∥∥∥pn γncn

∥∥∥∥2

= ‖Rn‖2− 2

(
pn
γn

cn
, pn

γn

cn

)
+
∥∥∥∥pn γncn

∥∥∥∥2

= ‖Rn‖2−
(
γn

cn

)2

. (120)

We have used (119). Next, using the identity

2(Rez)2 = Re(z2)+ |z|2, z ∈ C,
and Lemma 2.15(ii), (iii), we see that

Rn(x)
2 = 4(ReW±(x))2

= 2 Re
(
W±(x)2

)+ 2
∣∣W±(x)∣∣2

= 2A2(x) cos
(
2φn(x)

)+ 1

πw(x)
√

1− x2

so that

‖Rn‖2 =
∫ 1

−1
R2
nw

= 1

π

∫ 1

−1
cos
(
2φn(x)

) dx√
1− x2

+ 1

π

∫ 1

−1

dx√
1− x2

= en + 1.

Putting this in (120) gives (104). Finally, (103) follows directly from (102), since∫ 1
−1Kn+1(t, x)Rn(t)w(t)dt is the(n+ 1)st partial sum of the orthonormal expan-

sion ofRn and so is the unique polynomial giving the minimum inEn. Thus by
uniqueness, it equalspn(γn/cn). 2
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2.5. A COMPARISON?

In attempting to compare the three identities presented above, and their applicabil-
ity to asymptotics, I am forced to admit my own lack of expertise – my experience
has been primarily with Bernstein–Szegő identities. Another criticism is that the
three identities presented in the previous three sections vary in their distance to the
actual asymptotic: I have not presented the full passage from identity to asymptotic.
Nevertheless at least personally I find it instructive to contrast them.

• The connection between the Bernstein–Szegő identity, or Rakhmanov’s pro-
jection identity, and asymptotics is intuitively fairly obvious. The Fokas–
Kitaev–Its identity seems more distant.

• Historically Bernstein–Szegő on [−1,1] and its cousin on the circle underlie
Szeg̋o asymptotics on the circle and[−1,1] and also on the real line. It has
a proven record of giving Szegő or power asymptotics in fairly general sit-
uations, as well as pointwise asymptotics for orthogonal polynomials on the
interval of orthogonality. Nevertheless, it does not provide good error terms.

• The Fokas–Its–Kitaev identity in the hands of Deift, Kriecherbauer, McLaugh-
lin and others has proved to be a very powerful tool, yielding very precise as-
ymptotics, with error terms, and even asymptotic expansions. Its applicability
at the moment requires some sort of analyticity ofQ.

• The Rakhmanov projection identity applies to very general weights but so far
the estimation of the quantities that lead from the identity to the asymptotic
also require some sort of analyticity ofQ. It yields better error terms than
does Bernstein–Szegő but at present does not yield the precision of the Deift–
Kriecherbauer–McLaughlin approach based on the Fokas–Its–Kitaev identity.

In summary, my own feelings (which must be taken with a pinch of salt!) is
that there is place for all three identities in the field of asymptotics of orthogonal
polynomials. At present it seems that the Fokas–Its–Kitaev identity will lead to
very precise asymptotics for restricted classes of weights, while I believe that
Rakhmanov’s projection identity and Bernstein–Szegő will lead to asymptotics
for more general weights, but with weaker error estimates. It is too early to tell
if Rakhmanov’s projection identity will push out Bernstein–Szegő for general ex-
ponential weights – but then even the full potential of the Deift–Kriecherbauer–
McLaughlin approach is not clear.

As we head into a new century and a new millenium, there is clearly plenty of
scope for research into asymptotics of orthogonal polynomials!
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