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Introduction

Historically, the hope of Sophus Lie was to understand “symmetries” of partial differential equations (this has never really
been properly realized in traditional mathematics). In model theory, they try to set up models whereby there is a kind of
“Galois theory”. Whenever one sees the word “symmetry”, one should really think “groups”. In this setting, they are infinite
groups. If one tries to do this in too abstract a manner, all hope is lost. So we need some more structure. These groups will
be equipped with some topology – indeed, there is kind of a manifold structure. For the purpose of this course, we’ll always
be dealing with groups of matrices (classical Lie groups), for concreteness. When one looks at the manifold structure, one
realizes that one often understands manifolds in terms of tangent spaces. In our language, this tangent space will be fairly
concrete: it will be a Lie algebra (always of matrices). This gives a correspondence

groups of matrices ←→ Lie algebras of matrices.

The nice thing about Lie algebras is that their study essentially reduces to linear algebra. The linear algebra is probably the
toughest aspect of this course. The correspondence above does have some small degree of analysis. What we want to talk
about is a notion of distance on matrices.

1 Matrix norms

1.1 Definition. Let’s fix a field F = R or C. We consider Fn to consist of columns, i.e.

Fn =


x1

...
xn

 = x : x1, . . . , xn ∈ F


with inner product given by (x, y) :=

∑n
i=1 xiyi (where α is the complex conjugate). We then define the norm by

|x| = (x, x)1/2 =

√√√√ n∑
i=1

|xi|2.

The distance is defined by |x− y|. Let Mn(F) denote the space of n× n matrices over F. Then if

a = [aij ] ∈ Mn(F), x ∈ Fn

then we define

ax =


∑n
j=1 a1jxj

...∑n
j=1 anjxj

 .
Note that x 7→ ax is continuous. Moreover, B(Fn) = {x : |x| ≤ 1} is compact. The norm on Mn(F) is defined by

‖a‖ = sup
|x|≤1

x∈F2

|ax|.

1.2 Proposition. We have:

(i) ‖ · ‖ is a norm on Mn(F), i.e.

• (non-degeneracy) ‖a‖ = 0 iff a = 0.

• (scalar homogeneity) ‖αa‖ = |α|‖a‖, α ∈ F.

• (subadditivity) ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

(ii) ‖ · ‖ is submultiplicative, i.e. ‖ab‖ ≤ ‖a‖‖b‖.

Proof. We have:
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(i) (non-degeneracy) Let

ej =


0
...
1
...
0


(where the 1 occurs in the jth position). Then aej =

∑n
i=1 aijei, i.e.

|aej | =
( n∑
i=1

|aij |2
)1/2

.

Thus ‖a‖ ≥ maxj=1,...,n |aej | so ‖a‖ = 0 iff each aij = 0.

(scalar homogeneity) Borrow the fact from (Fn, | · |).

(subadditivity) ‖a+ b‖ = sup|x|≤1 |ax+ bx| ≤ sup|x|≤1(|ax|+ |bx|) ≤ sup|x|,|y|≤1(|ax|+ |by|) = ‖a‖+ ‖b‖.

(ii) First, if 0 6= x ∈ Fn, then ∣∣∣∣a 1

|x|
x︸︷︷︸

|·|=1

∣∣∣∣ ≤ ‖a‖.
Multiply by |x| to see |ax| ≤ ‖a‖|x|. Thus

‖ab‖ = sup
|x|≤1

|abx| ≤ sup
|x|≤1

‖a‖|bx| = ‖a‖‖b‖.

1.3 Remark (HILBERT-SCHMIDT NORM). Define for a, b ∈ Mn(F)

((a, b)) = Tr(ab∗) =

n∑
i,j=1

aijbij

where b∗ = [bji]. Identifying Mn(F) ∼= Fn2

, this is the usual inner product on Fn2

. Define ‖a‖2 = ((a, a))1/2.

1.4 Proposition. We have for a ∈ Mn(F)
1√
n
‖a‖2 ≤ ‖a‖ ≤ ‖a‖2.

Note that these estimates are sharp. Rank-one matrices realize the upper bound, and scalar multiples of the identity realize the
lower bound.

Proof. If |x| ≤ 1 in Fn, say x = x1e1 + . . .+ xnen, we have

|ax| =
∣∣∣∣ n∑
j=1

xjaej

∣∣∣∣ ≤ n∑
j=1

|xj ||aej | =
n∑
j=1

|xj |
( n∑
i=1

|aij |2
)1/2

≤
C-S

( n∑
j=1

|xj |2
)1/2( n∑

j=1

n∑
i=1

|aij |2
)1/2

≤ ‖a‖2.

Hence ‖a‖ ≤ ‖a‖2. For b ∈ Mn(F), let

b(j) =

0 b1j 0
... · · ·

... · · ·
...

0 bnj 0

 =⇒ ‖b(j)‖2 =

( n∑
i=1

|bij |2
)1/2

.

Then

‖ab‖2 =

( n∑
j=1

‖(ab)(j)‖22
)1/2

≤
( n∑
j=1

(‖a‖‖b(j)‖2)2︸ ︷︷ ︸
identifying column
w/ column vector

)1/2

≤ ‖a‖
( n∑
j=1

‖b(j)‖22
)1/2

= ‖a‖‖b‖2.

Thus ‖a‖2 = ‖aI‖2 ≤ ‖a‖‖I‖2 = ‖a‖
√
n.

1.5 Remark. The topology on Mn(F) arising from the usual norm is therefore the same as the topology on Mn(F) ∼= Fn2

from the 2-norm.
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In fancy language, equivalence of norms gives us equivalence of uniform structures – so one ends up with the same Cauchy
sequences.

1.6 Corollary. (Mn(F), ‖ · ‖) is complete.

Proof. If (a(k))∞k=1 ⊂ Mn(F) is Cauchy in the norm ‖ · ‖, then it is Cauchy in ‖ · ‖2. Since (Fn2

, ‖ · ‖2) is complete, we find
that limk→∞ a(k) exists in ‖ · ‖2 and hence in ‖ · ‖.

2 The general linear group GLn(F)

2.1 Definition. The n× n general linear group (over F) is defined by

GLn(F) = {g ∈ Mn(F) : g−1 exists} = {g ∈ Mn(F) : det g 6= 0}.

2.2 Proposition. GLn(F) is open in Mn(F), and g 7→ g−1 is continuous.

Proof #1. The map det : Mn(F) → F is continuous since it is a polynomial in the “variables” aij of a ∈ Mn(F). Hence
GLn(F) = det−1(F \ {0}) is open. Moreover, if g̃ denotes the adjugate matrix then Cramer’s rule tells us that

g−1 =
1

det g
g̃

and hence (g−1)ij is a rational function in the “variables” gij of g with non-vanishing denominators, hence it is continuous.

Proof #2. First assume that a ∈ Mn(F) for which ‖a‖ < 1. Then

Sm =

m∑
k=0

ak

(convention: a0 = I) defines a Cauchy sequence in Mn(F) i.e. if ` < m,

‖Sm − S`‖ ≤
m∑

k=`+1

‖a‖︸︷︷︸
<1

k
,

so let g =
∑∞
k=0 a

k := limm→∞ Sm. Check that then

(I − a)g = lim
m→∞

(I − a)Sm = lim
m→∞

(I − a)(I + a+ a2 + . . .+ am) = lim
m→∞

I − am+1 = I.

since 0 ≤ limm→∞ ‖am+1‖ ≤ limm→∞ ‖a‖m+1 = 0. Similarly g(I − a) = I , so that g = (I − a)−1. Now suppose
g ∈ GLn(F) and a ∈ Mn(F) are such that ‖g − a‖ < 1

‖g−1‖ . Then

a = g(I − g−1(g − a)︸ ︷︷ ︸
‖·‖≤‖g−1‖‖g−a‖<1

)

so a is invertible, since g and (I − g−1(g − a)) are. Moreover,

a−1 = (I − g−1(g − a))−1g−1 =

∞∑
k=0

(g−1(g − a))kg−1. (*)

Notice that since the k = 0 term corresponds exactly to g−1, we obtain

‖a−1 − g−1‖ =

∥∥∥∥ ∞∑
k=1

(g−1(g − a))kg−1

∥∥∥∥ ≤ . . . ≤ ∞∑
k=1

(‖g−1‖‖g − a‖)k‖g−1‖ =
‖g−1‖2‖g − a‖

1− ‖g−1‖‖g − a‖
(†)

and the latter is continuous in a and tends to zero as a→ g.

2.3 Remark. (*) shows that a−1 is analytic in the “variables” aij of a. Recall that g is fixed, i.e. in B(g, 1
‖g−1‖ ) = {a ∈

Mn(F) : ‖a− g‖ < 1
‖g−1‖} each (a−1)ij is expressible as a power series in “variables” aij .
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2.4 Remark. The map ((a, b) 7→ ab) : Mn(F) ×Mn(F) → Mn(F) is continuous. Here, we identify Mn(F) ×Mn(F) as a
subset of M2n(F) by sending

(a, b) 7→
[
a 0
0 b

]
.

Indeed, if ak
k→∞−−−−→ a and bk

k→∞−−−−→ b then

‖akbk − ab‖ ≤ ‖akbk − abk‖+ ‖abk − ab‖ ≤ ‖ak − a‖ ‖bk‖︸︷︷︸
→‖b‖

+‖a‖‖bk − b‖
k→∞−−−−→ 0.

Hence GLn(F) is a topological group, i.e.

1. (a, b) 7→ ab is continuous, and

2. a 7→ a−1 is continuous.

That is, we have a group on which both basic operations tend to play very nice with the topology. In fact, GLn(F) is even
better than a topological group. We will see later that this is a manifold, and these are differentiable operations.

One of the points of putting a topology on this infinite group is as follows. If we tried to understand it just as a group (with
no other structure), note that for one thing it’s uncountable. There’s not really a nice theory of uncountable objects with no
topology. Even in fairly constrained subsets, bad things can happen (one can still get really weird free groups and so on). We
want a lot more control, and the topology is what allows us the control.

If you study any infinite group theory, they really distinguish a class of finitely generated groups (the latter can be much better
understood than arbitrary infinite groups). We have what’s called σ-compactness.

2.5 Proposition. Let for C > 0
QC = {g ∈ GLn(F) : ‖g‖ ≤ C, ‖g−1‖ ≤ C}.

Then QC is compact.

Proof. Let (gk)∞k=1 ⊂ QC be a sequence. We will show it has a subsequence which converges to a point inside of QC . Since
‖gk‖ ≤ C, a Cauchy subsequence (gk`)

∞
`=1 exists. We observe for `′, ` that

‖g−1
k`
− g−1

k`′
‖ ≤

C2‖gk` − gk`′‖
1− C‖gk` − gk`′‖

.

Indeed, we simply use our estimate (†) from before and the fact that t 7→ t
1−t is increasing. Hence (g−1

k`
)∞`=1 is Cauchy. If

g = lim`→∞ gk` , we have by the remark above that

gg−1 = lim
`→∞

gk`g
−1
k`

= lim
`→∞

I = I.

Hence g ∈ GLn(F) and g ∈ QC .

2.6 Remark. Note that GLn(F) =

∞⋃
k=1

Qk︸︷︷︸
compact

and so GLn(F) is σ-compact.

The whole goal of this course is to gain a better understanding of groups of matrices, and thus far we’ve only introduced one:
the full general linear group.

3 Some closed subgroups of GLn(F)

(i) The special linear group SLn(F) = {g ∈ GLn(F) : det g = 1}.

Recall that det : GLn(F)→ F• = F \ {0}︸ ︷︷ ︸
mult’ve group

is a group homomorphism, and

SLn(F) = ker det = det−1 {1}︸︷︷︸
closed
in F•

.
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(ii) Define the triangular group by Tn(F) = {g ∈ GLn(F) : gij = 0 if j < i} i.e. upper triangular invertible matrices,

T ◦n(F) = {g ∈ Tn(F) : gii = 1, i = 1, . . . , n}.

(notation: invertible matrices: small letters; not necessarily invertible matrices: capital letters).

If g ∈ T ◦n(F), let N be such that g = I +N , i.e. N is the result of zeroing the diagonal of g. Observe that Nn = 0 (i.e. N
is nilpotent). Hence

g−1 = I −N +N2 + . . .+ (−1)n−1Nn−1︸ ︷︷ ︸
strictly upper triangular

∈ T ◦n(F).

Now if g ∈ Tn(F), write g = d+N , where d = diag(g11, . . . , gnn), andN is obtained as before (by zeroing g’s diagonal).
Note det g = det d, so d ∈ GLn(F). Thus

g = d(I + d−1N) =⇒ g−1 = (I + d−1N)−1d−1.

(iii) Let β : Fn × Fn → F be a bilinear form. Recall we have

β(x, y) = yT bx

for some matrix b, in fact we know exactly what b looks like: b = [β(ej , ei)] ∈ Mn(F). We will call β

• non-degenerate if for each 0 6= x ∈ Fn there is y ∈ Fn such that β(x, y) 6= 0. Note that this happens iff b−1 exists.

• symmetric if β(x, y) = β(y, x) for all x, y ∈ Fn. This happens iff b = bT .

• skew-symmetric if β(y, x) = −β(x, y) for all x, y ∈ Fn. This happens iff −b = bT .

If β is non-degenerate, we let

O(β) = {g ∈ Mn(F) : β(gx, gy) = β(x, y) for x, y ∈ Fn}.

Notice that if g, g′ ∈ O(β) then gg′ ∈ O(β). Also,

g ∈ O(β)⇔ (gy)T b(gx)︸ ︷︷ ︸
yT gT bgx

= yT bx, ∀x, y ⇔ gT bg = b.

Hence b−1gT b = g−1. Thus O(β) is a subgroup of GLn(F).

3.1 Example. We have:

(a) βn(x, y) =
∑n
i=1 xiyi, b = I . If F = R, we define the orthogonal group

O(n) = O(βn) = {g ∈ GLn(R) : (gx, gy) = (x, y) for x, y ∈ Rn} = {g ∈ GLn(R) : |gx| = |x| for x ∈ Rn}.

Note: Use polarisation

(x, y) =
1

4
[|x+ y|2 − |x− y|2].

If F = C, then
OC(n) = O(βn) = {g ∈ GLn(C) : g−1 = gT }.

(b) p, q ≥ 1, p+ q = n,

Bp,q(x, y) =

p∑
i=1

xiyi −
q∑
i=1

xp+iyp+i.

Note: b = Ip,q = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

). If F = R, we define the pseudo-orthogonal group

O(p, q) = {g ∈ GLn(R) : gT Ip,qg = Ip,q}

Similarly define OC(p, q).

3.2 Proposition (SYLVESTER’S LAW OF INERTIA). If F = R, and β is symmetric and non-degenerate there exists
g0 ∈ GLn(R) such that

g0O(β)g−1
0 =

{
O(n)

O(p, q).
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Proof. Since bT = b, there is an orthogonal matrix u such that

ubuT = diag(λ1, . . . , λn) :=

λ1

. . .
λn

 , λ1, . . . , λp > 0, λp+1, . . . , λp+q < 0;

here q could be 0. Then set

g0 = uT



1/
√
λ1

. . . 0
1/
√
λp

1/
√
−λp+1

0
. . .

1/
√
−λp+q


and check that this works.

Suppose g ∈ O(β) i.e. gT bg = b. Claim that g0gg
−1
0 preserves the matrix Ip,q . Indeed,

(g0gg
−1
0 )T Ip,q(g0gg

−1
0 ) =

(c) Let n = 2m and

Jm =

[
0 Im
−Im 0

]
.

We define the symplectic group by Sp(m) = {g ∈ Mn(R) : gTJmg = Jm}, so Sp(m) = O(β) where

β(x, y) = −
m∑
i=1

xiyi+m +

m∑
i=1

xi+myi.

3.3 Fact. Up to similarity, these are the only real matrix groups arising from skew-symmetric forms; and in this case,
n = 2m. Indeed, if bT = −b then in Mn(C)

(ib)∗ = ib

so ib is Hermitian, hence unitarily diagonalisable with real eigenvalues, hence b = −i(ib) has purely imaginary
eigenvalues. Thus b is orthogonally equivalent to a matrix of the form

0 λ1

−λ1 0
0 λ2

−λ2 0
. . .

. . .
0 λm
−λm 0


.

Proceed as before.

Note: there is a complex form SpC(m).

3.4 Remark. One can show that Sp(m) is compact, while SpC(m) is not.

(iv) Let F = C. β : Cn × Cn → C is sesquilinear if for fixed y, x 7→ B(x, y) is linear, and x 7→ β(y, x) is conjugate linear
(i.e. additive, and β(y, αx) = αβ(y, x)).

We call β

• non-degenerate if for 0 6= x ∈ Cn there is y ∈ Cn such that β(x, y) 6= 0.

• Hermitian if β(x, y) = β(y, x).

• skew-Hermitian if β(x, y) = −β(y, x).
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We always have

β(x, y) = y∗bx, where

y1

...
yn


∗

=
[
y1 . . . yn

]
and b = [β(ej , ei)].

We define the unitary (respectively, pseudo-unitary) group by

U(n) = {g ∈ Mn(C) : (gx, gy) = (x, y), x, y ∈ Cn} = {g ∈ Mn(C) : g∗g = I}.
U(p, q) = {g ∈ Mn(C) : g∗Ip,qg = Ip,q}.

As an exercise, show U(p, q) is conjugate to U(n). So in fact there is a unique group coming from a non-degenerate
Hermitian form.

(v) We define the special orthogonal (respectively, special unitary) group by

SO(n) = O(n) ∩ SLn(R)

SU(n) = U(n) ∩ SLn(C).

The following exercise is not very deep.

3.5 Exercise. O(n),U(n) are compact. Boundedness is easy; look at the descriptions in terms of how they interact with
the norms. All you have to check is they’re closed, which is not a hard exercise at all.

O(n) is defined by polynomial relations (it is Zariski-closed). U(n) is not quite an algebraic group (due to complex
conjugation), so must be checked manually. If you take O(n) and naively plunk it into n × n matrices over C, and if you
know what the Zariski topology is, I invite you to compute (in complex polynomials) the Zariski closure.

3.6 Remark (NOTATION). We define the set of positive-definite matrices by

Pn(F) = {a ∈ Mn(F) : (ax, x) > 0 for all 0 6= x ∈ Fn}.

Note if a ∈ Pn(F), we find that kerFn a = {0}, so Pn(F) ⊂ GLn(F).

(i) Pn(R) is open in GLn(R). Indeed, if a ∈ Pn(R), x 7→ (ax, x) is continuous (indeed this is true for all a ∈ GLn(R)),
so

µ = min
|x|=1

(ax, x) > 0

(infimum is attained on compact unit sphere). Now if B ∈ Mn(F) is any element with ‖B‖ < µ, then for |x| = 1,

((a−B)x, x) = (ax, x)−
|·|≤‖B‖︷ ︸︸ ︷
(Bx, x) ≥ µ− ‖B‖ > 0

so B‖·‖(a, µ) ⊂ Pn(R) so Pn(R) is open.

(ii) Pn(C) ⊂ Hermn(C) = {A ∈ Mn(C) : A∗ = A}, and is open in that set. [Hermn(C) is a R-subspace of Mn(C)]. It
suffices to show that Pn(C) ⊂ Hermn(C). Let a ∈ Pn(C), write

Re a =
1

2
(a+ a∗), Im a =

1

2
(a− a∗)

so that (Re a)∗ = Re a, (Im a)∗ = − Im a and a = Re a+ i Im a. Then for x, y ∈ Cn

(ax, y) = (Re a x, y) + i(Im a x, y) = (Re a x, y) + i
1

4

3∑
k=0

ik((Im a)(x+ iky), x+ iky)

and for any z ∈ Cn
0 < (az, z) = (Re a z, z)︸ ︷︷ ︸

∈R, check

+i (Im a z, z)︸ ︷︷ ︸
∈R

=⇒ (Im a z, z) = 0

so (ax, y) = (Re a x, y), so a = Re a is Hermitian.
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Appendices to lectures:

• Diagonalisation for real symmetric matrices

• (Almost) Jordan Form: we’re just going to prove that a matrix can be block diagonalised as scalar plus nilpotent

• Multivariable analytic functions

The first two will probably be posted tonight; the third will be posted soon.

Last time, we defined Pn(R).

3.7 Example. Note that a ∈ Pn(R) does not imply aT = a. Consider

a =

[
1 1
−1 1

]
=

[
1 0
0 1

]
+

[
0 1
−1 0

]
.

3.1 Polar decomposition

3.8 Theorem (POLAR DECOMPOSITION). Any g ∈ GLn(R) admits a unique decomposition g = up, where u ∈ O(n) and
p ∈ Pn(R) ∩ Symn(R). Moreover, the map

(u, p) 7→ up : O(n)× Pn(R) ∩ Symn(R)→ GLn(R)

is a homeomorphism.

Proof. First, let a = gT g so aT = a and (ax, x) = (gx, gx) > 0 for 0 6= x ∈ Rn. So a ∈ Pn(R)∩ Symn(R). By orthogonal
diagonalisation there is v ∈ O(n)

a = v

λ1 0
. . .

0 λn

 vT , λ1, . . . , λn > 0.

Let

p = v


√
λ1 0

. . .
0

√
λn

 vT .
Also, let

u = gp−1 so g = up.

Easily, p ∈ Symn(R) ∩ Pn(R). Compute

uTu = p−T gT gp−1 = p−1 a︸︷︷︸
p2

p−1 = I.

Hence u ∈ O(n). Now suppose that

g = u1p1, u1 ∈ O(n), p1 ∈ Pn(R) ∩ Symn(R).

Then p1 = uT1 g so
p2

1 = pT1 p1 = gTu1u
T
1 g = a.

Hence p1a = p1p
2
1 = p2

1p1 = ap1 (that is, a and p1 commute). Let f be a polynomial such that

f(λi) =
√
λi, i = 1, . . . , n.

Then f(a) = p. Hence
pp1 = f(a)p1 = p1f(a) = p1p.

Hence, by simultaneous diagonalisation,
pp1 ∈ Pn(R) ∩ Symn(R).

Now we have up = u1p1 so
uT1 u = p1p

−1
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is simultaneously orthogonal and positive definite and symmetric, hence this matrix is I . Now consider the map

(u, p) 7→ up : O(n)× Pn(R) ∩ Symn(R)→ GLn(R).

This is surjective, from the first paragraph, and injective by uniqueness. It is also continuous. Let us see that the inverse is
continuous (there is a nice topological way to do this, but we will do it manually “for fun”). Let gk

k→∞−−−−→ g in GLn(R).
Decompose gk = ukpk, as above. Since O(n) is compact, (uk)∞k=1 admits a converging subsequence (uk`)

∞
`=1 with u0 =

lim`→∞ uk` ∈ O(n). Then

pk` = u−1
k`
gk`

`→∞−−−→ u−1
0 g =: p

and, since P0
n(R) = {A ∈ Mn(R) : (Ax, x) ≥ 0, x ∈ Rn} satisfies that P0

n(R) ∩ Symn(R) is closed. We have that
p ∈ Pn(R)∩ Symn(R). Hence u0p is the unique decomposition of g. We hence observe that u0 is the unique cluster point of
(uk)∞k=1, hence limit point.

3.9 Corollary. The map
(u, p) 7→ up : SO(n)× P1

n(R) ∩ Symn(R)→ SLn(R)

is a homeomorphism, where
P1
n(R) = SLn(R) ∩ Pn(R).

Proof. We only need to note that if g ∈ SLn(R) and g = up, then u ∈ SO(n) and p ∈ P1
n(R). We note

(detu)2 = det(uTu) = 1

so detu = ±1. Also det p > 0, hence detu = 1.

3.10 Remark. A similar proof shows that

(u, p) 7→ up : U(n)× Pn(C)→ GLn(C)

or similarly
(u, p) 7→ up : SU(n)× P1

n(C)→ SLn(C)

are homeomorphisms. The only change required in proofs is to use g∗ in place of gT .

3.2 Connectedness

3.11 Definition. A set S ⊂ Rm (for us, usually m = n2 and we are identifying it with matrices) is disconnected if there are
open U, V ⊂ Rm such that

• S ⊂ U ∪ V .

• (S ∩ U) ∩ (S ∩ V ) = ∅.

• S ∩ U 6= ∅ and S ∩ V 6= ∅.

The pair {U, V } is called a disconnection. We say that S is connected if no disconnection exists.

3.12 Example. [0, 1] ⊂ R is connected.

3.13 Definition. S ⊂ Rm is path connected if for each pair x, y ∈ S there is a continuous γ : [0, 1]→ S such that γ(0) = x,
γ(1) = y.

3.14 Fact. Path-connected implies connected.

Proof sketch. If γ : [0, 1] → S were a path with endpoints in a disconnection {U, V } of S then {γ−1(U), γ−1(V )} extends
to a disconnection of [0, 1].

3.15 Fact. S ⊂ Rm1 connected and f : Rm1 → Rm2 continuous implies f(S) connected.

Proof sketch. Similar.

3.16 Fact. S1 ⊂ Rm1 , S2 ⊂ Rm2 . Then S1×S2 ⊂ Rm1+m2 is path-connected if and only if each S1 and S2 is path-connected.

Proof sketch. (γ1, γ2) ⊂ S1 × S2 is a path if and only if γj is a path in Sj , j = 1, 2.

3.17 Remark. GLn(R), O(n) are disconnected. Consider the disconnection

{det−1(R>0),det−1(R<0)}.
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3.18 Proposition. We have:

(i) SO(n) acts transitively (i.e. if we pick any two elements of the set, we can get from one to the other via some element
of the group) on

Sn−1 = {x ∈ Rn : |x| = 1}.

(ii) SO(n) is connected.

Proof. We will use induction.

(i) If n = 2, then just as in A1, one can show that

SO(2) =

{[
γ σ
−σ γ

]
: σ, γ ∈ R, σ2 + γ2 = 1

}
=

{[
cos t sin t
− sin t cos t

]
: t ∈ R

}
.

Observe that [
cos t sin t
− sin t cos t

] [
1
0

]
=

[
cos t
sin t

]
, where S1 =

{[
cos t
sin t

]
: t ∈ R

}
.

If n ≥ 3, first observe that

u 7→
[
u 0
0 1

]
: SO(n− 1)→ SO(n)

is a continuous homomorphism, whose image is exactly

{v ∈ SO(n) : ven = en}.

Given x ∈ Sn−1 write

x =


cos(t)x′1

...
cos(t)x′n−1

sin t

 , where x′ ∈ Sn−2.

Let

ht =

In−2 0

0
cos t sin t
− sin t cos t

 .
By inductive hypothesis there exists u ∈ SO(n− 1), uen−1 = x′. Thus

[
u 0
0 1

]
hten−1 =

[
u 0
0 1

]


0
...
0

cos t
sin t

 =


cos(t)x′1

...
cos(t)x′n−1

sin t

 = x.

(ii) If n = 2: the map

t 7→
[

cos t sin t
− sin t cos t

]
: R→ SO(2)

shows that SO(2) is connected (since R is).

If n ≥ 3: if v ∈ SO(n), let x = ven. As above, we may find u ∈ SO(n− 1) and t ∈ R such that[
u 0
0 1

]
hten−1 = x.

Then [
u 0
0 1

]
ht hπ/2en︸ ︷︷ ︸

en−1

= x = ven

so

vT
[
u 0
0 1

]
ht+π

2
en = en

11



and hence

vT
[
u 0
0 1

]
ht+π

2
=

[
u′ 0
0 1

]
for some u′ ∈ SO(n− 1). Thus [

u 0
0 1

]
ht+π

2

[
u′ 0
0 1

]T
︸ ︷︷ ︸

(∗)

= v

and hence
(u, t, u′) 7→ (∗) : SO(n− 1)× R× SO(n− 1)→ SO(n)

so SO(n) is connected.

3.19 Corollary. SLn(R) and GL+
n (R) = {g ∈ GLn(R) : det g > 0} are both connected.

Proof. If p ∈ P1
n(R) ∩ Symn(R) then there is v ∈ O(n) such that

p = v

λ1 0
. . .

0 λn

 vT , λ1, . . . , λn > 0
λ1λ2 · · ·λn = 1

.

Let γ : [0, 1]→ P1
n(R) ∩ Symn(R) be given by

γ(t) = v

λ
t
1 0

. . .
0 λtn

 vT
so γ(0) = I , γ(1) = p. Hence P1

n(R) ∩ Symn(R) is connected. Then the homeomorphism

(u, p) 7→ up : SO(n)× P1
n(R) ∩ Symn(R)→ SLn(R)

shows that SLn(R) is connected. Similarly,

(t, g) 7→ etg : R× SLn(R)→ GL+
n (R)

shows that GL+
n (R) is connected. Indeed, if g ∈ GL+

n (R),

g = (det g)1/n︸ ︷︷ ︸
>0

1

(det g)1/n
g︸ ︷︷ ︸

∈SLn(R)

.

A few remarks

Next, we will cover the key to Lie theory: the exponential map. Before we do this, we’re going to want to fairly liberally
switch between R and C as convenience sees fit. We note that

Mn(R) ⊂ Mn(C).

On the other hand if z ∈ C, z = x+ iy, x, y ∈ R then

z 7→
[

x y
−y x

]
: C→ M2(R)

is both additive and multiplicative. Hence there is an additive and multiplicative map

Mn(C)→ M2n(R).

For example there is a real analogue of Jordan Canonical Form, but it’s not quite as pretty as it is for complex matrices.
However, it’s not that hard to understand. The real Jordan blocks corresponding to complex eigenvalues essentially end up
looking like Jordan style blocks, but with these blocks along the diagonal. Using this identification of one with the other, you
can prove that.
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4 The exponential map

F = R or C.

4.1 Basic notions

4.1 Definition (EXPONENTIAL). If X ∈ Mn(F), let

expX =

∞∑
k=0

1

k!
Xk.

Note, if j < ` we have ∥∥∥∥∑̀
k=j

1

k!
Xk

∥∥∥∥ ≤ ∑̀
k=j

1

k!
‖X‖k︸ ︷︷ ︸

partial tail of
series defining e‖X‖

so (
∑`
k=0

1
k!X

k)∞`=1 is Cauchy in Mn(F), and hence converges.

4.2 Remark. We have the following properties:

(i) If XY = Y X then
exp(X + Y ) = expX expY.

Indeed consider

( m∑
k=0

1

k!
Xk

)( m∑
`=0

1

`!
Y `
)

=

m∑
k=0

m∑
`=0

1

k!`!
XkY ` =

m∑
j=0

1

j!

∑
k+`=j
k,`≥0

j!

k!`!
XkY ` +

Gm(X,Y )︷ ︸︸ ︷
2m∑

j=m+1

∑
k+`=j

0≤k,`≤m

1

k!`!
XkY `

=

m∑
j=0

1

j!

j∑
k=0

(
j

k

)
XkY j−k︸ ︷︷ ︸

=(X+Y )j asXY = Y X
by binomial thm

+Gm(X,Y )

We observe that

‖Gm(X,Y )‖ ≤
2m∑

j=m+1

∑
k+`=j
k,`≥0

1

k!`!
‖X‖k‖Y ‖` =

2m∑
j=m+1

1

j!
(‖X‖+ ‖Y ‖)j m→∞−−−−→ 0.

Conclusion: take m→∞ above, and we get our result. As a consequence,

exp(−X) = (expX)−1

hence expX ∈ GLn(F).

(ii) If g ∈ GLn(F), X ∈ Mn(F) then

g(expX)g−1 =

∞∑
k=0

1

k!
gXkg−1 =

∞∑
k=0

1

k!
(gXg−1)k = exp(gXg−1).

(iii) If Nn = 0, i.e. N is nilpotent then

exp(λI +N) = exp(λI) exp(N) = eλ
(
I +N +

1

2!
N2 + . . .+

1

(n− 1)!
Nn−1︸ ︷︷ ︸

N ′, (N ′)n=0

)
.
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Suppose F = C then we have JCF, there exists g ∈ GLn(C)

X = g


λ1Id1

+N1 0
λ2Id2 +N2

. . .
0 λsIds +Ns

 g−1

with each Ndk
k = 0. Hence

expX = g


eλ1(Id1

+N ′1) 0
eλ2(Id2

+N ′2)
. . .

0 eλs(Ids +N ′s)

 g−1

Note that α(Id +N ′) admits only α as an eigenvalue, so det(α(Id +N ′)) = αd. Hence

det expX = eλ1d1eλ2d2 · · · eλsds = eλ1d1+...+λsds = eTrX .

Since Mn(R) ⊂ Mn(C), this is true for X ∈ Mn(R) too.

(iv) exp t

[
0 1
−1 0

]
=

[
cos t sin t
− sin t cos t

]
(compute it out).

Consequence: for Mn(R), n ≥ 2 or Mn(C) for any n ≥ 1, then exp : Mn(F)→ GLn(F) is not injective.

We now complete our discussion of the exponential map; no discussion is complete without the logarithm. Let us say a few
words about exponential series in a matrix argument.

4.2 Review of series

4.3 Lemma. (am)∞m=1 ⊂ F is absolutely summable:
∑∞
m=1 |am| <∞. Then for any bijection σ : N→ N we have

∞∑
m=1

aσ(m) =

∞∑
m=1

am.

Proof. Let ε > 0 and let n be such that
∞∑

k=n+1

|ak| <
ε

2
.

Let N be such that {σ(1), . . . , σ(N)} ⊇ {1, . . . , n}. Then check that∣∣∣∣ N∑
k=1

aσ(k) −
N∑
k=1

ak

∣∣∣∣ ≤ N∑
k=n+1

2|ak| < ε.

4.4 Remark. Since Mn(F) is complete, the same holds for series of matrices.

4.5 Lemma (COMPOSITION OF MACLAURIN SERIES). Suppose

f : (−R,R)→ F admits Maclaurin series f(t) =

∞∑
k=0

akt
k on (−R,R)

g : (−a, a)→ F admits Maclaurin series g(t) =

∞∑
k=1

bkt
k on (−a, a)

and for 0 ≤ r < |a|,
∞∑
k=1

|bk|rk < R. Then f ◦ g : (−a, a)→ F admits a Maclaurin series

(f ◦ g)(t) =

∞∑
k=0

( k∑
`=0

a`bk,`

)
tk, where bk,` =


∑

m1+...+mk=k

bm1 · · · bmk if k > 0

1 if k = 0.

Then for any X ∈ Mn(F) with ‖X‖ < a, we have that f(g(X)) and (f ◦ g)(X) both exist and are equal.
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Proof. First, observe that g(t)0 = 1 while (using the last lemma at *)

g(t)k =

( ∞∑
`=1

b`t
`

)k
∗
=

∞∑
`=k

( bk,`︷ ︸︸ ︷∑
m1+...+mk=`

bm1 · · · bmk
)
tk

where for 0 ≤ r < a, we have
∞∑
`=k

|bk,`|r` =

( ∞∑
`=1

|b`|r`
)k

< Rk

so the rearrangements are all legitimate. Our assumptions then show that f(g(t)) does converge for all |t| < a. In particular,
we get a Maclaurin series for f ◦ g, as advertised (in fact, this series is unique). Now, if ‖X‖ < d, the series

f(g(X)) = (f ◦ g)(X)

by similar manipulations as above.

4.3 The logarithm

Recall, if |t| < 1 we have

log(1 + t) =

∫ t

0

ds

1 + s
=

∫ t

0

∞∑
k=0

(−1)ksk︸ ︷︷ ︸
convergence is uniform

for 0≤s≤t

ds =

∞∑
k=0

∫ t

0

(−1)ksk dk =

∞∑
k=0

(−1)k

k + 1
tk+1 =

∞∑
k=1

(−1)k+1

k
tk.

4.6 Definition (LOGARITHM). Now, if g ∈ Mn(F) with ‖g − I‖ < 1, then define

log(g) = log(I + (g − I)) =

∞∑
k=1

(−1)k+1

k
(g − I)k.

Note that the condition ‖g − I‖ < 1 guarantees invertibility by an earlier result.

4.7 Theorem. We have:

(i) If ‖g − I‖ < 1, then exp(log g) = g.

(ii) If ‖X‖ < log 2 then ‖ expX − I‖ < 1 and log(expX) = X .

Proof. We have:

(i) Use lemma (mostly).

(ii) We note

‖ expX − I‖ =

∥∥∥∥ ∞∑
k=1

1

k!
Xk

∥∥∥∥ ≤ ∞∑
k=1

1

k!
‖X‖k = e‖X‖ − 1 < 1

if ‖X‖ < log 2. Use lemma.

4.8 Corollary. We have:

(i) exp :

open ‖ · ‖-ball
of radius log 2︷ ︸︸ ︷
B(0, log 2)→ exp(B(0, log 2)) is a homeomorphism.

(ii) There exist neighbourhoods U of 0, V of I such that exp : U → V is a C∞-diffeomorphism.

Proof. Note (ii)→ (i).

We note that (ii) is true because for each i, j = 1, . . . , n the functions X 7→ (expX)ij and g 7→ (log g)ij are analytic about
0, I respectively (see appendix on website).

Of course, everything stated about analytic functions is real-variable analytic. This concludes the basic theory of the exponen-
tial map. We want to prove that the exponential map shows itself in a certain nice way. This is one of the manners in which
we’ll be seeing this very frequently in Lie theory.
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5 One-parameter subgroups

5.1 Definition. A one-parameter subgroup of GLn(F) is a continuous group homomorphism γ : (R,+) → GLn(F) (i.e.
we conflate γ with γ(R) ⊂ GLn(F)).

5.2 Theorem. If γ : R→ GLn(F) is a one-parameter subgroup, then

γ(t) = exp(tA)

for some A in Mn(F). We call A the infinitesimal generator of γ.

Proof. First, we will show that γ is differentiable. Let 0 < δ < 1. By continuity of γ, let a > 0 be such that

|t| < a =⇒ ‖γ(t)− I‖ ≤ 1− δ < 1.

Let

f(t) =


1∫ a

−a e
−1/(s2−a2) ds

e−1/(t2−a2) if |t| < a

0 if |t| ≥ a.

Then by A1, f is C∞. Also f ≥ 0 and
∫∞
−∞ f(t) dt = 1. Let

b =

∫ ∞
−∞

f(s)γ(−s) ds =

∫ a

−a
f(s)γ(−s) ds (Riemann integral).

Then

‖b− I‖ ≤
∫ ∞
−∞

f(s) ‖γ(−s)− I‖︸ ︷︷ ︸
≤1−δ

ds < 1.

Proposition 2.2 yields b ∈ GLn(F). Also,

γ(t) = b−1

∫ ∞
−∞

f(s)γ(−s) ds︸ ︷︷ ︸
1

·γ(t) = b−1

∫ ∞
−∞

f(s)γ(t− s) ds = b−1

∫ ∞
−∞

f(s+ t)γ(−s) ds.

Thus for h 6= 0 we have∥∥∥∥γ(t+ h)− γ(t)

h
− b−1

∫ ∞
−∞

f ′(s+ t)γ(−s) ds
∥∥∥∥ =

∥∥∥∥b−1

∫ ∞
−∞

[
f(s+ t+ h)− f(s+ t)

h
− f ′(s+ t)

]
γ(−s) ds

∥∥∥∥
=

∥∥∥∥b−1

∫ ∞
−∞

[
f(s+ h)− f(s)

h
− f ′(s)

]
γ(t− s) ds

∥∥∥∥
≤ ‖b−1‖

∫ a+|h|

−a+|h|

∣∣∣∣f(s+ h)− f(s)

h
− f ′(s)

∣∣∣∣‖γ(t− s)‖ ds (*)

We use two applications of the Mean Value Theorem to see∣∣∣∣f(s+ h)− f(s)

h
− f ′(s)

∣∣∣∣ = |f ′(s+ t∗s,h)− f ′(s)|, |t∗s,h| ≤ |h|

≤ |t∗s,h||f ′′(s+ t∗∗s,h)|
≤ |h|‖f ′′‖∞.

Hence the above expression (*) is dominated by

‖b−1‖
∫ a+|h|

−a−|h|
|h|‖f ′′‖∞M ds ≤ ‖b−1‖|h| · 2(a+ |h|) · ‖f ′′‖∞M

h→0−−−→ 0

where M = max{‖γ(t− s)‖ : s ∈ [t− a− |h|, t+ a+ |h|]}. Thus we conclude γ is differentiable.
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Recap of differentiability: find f ∈ C∞ (C2 will suffice) of “small enough” support,
∫∞
−∞ f = 1, f ≥ 0, such that

b =

∫ ∞
−∞

f(s)γ(−s) ds ∈ GLn(F).

Then

γ(t) = b−1bγ(t) = b−1

∫ ∞
−∞

f(s)γ(t− s) ds = b−1

∫ ∞
−∞

f(s+ t)γ(−s) ds

γ′(t) = b−1

∫ ∞
−∞

f ′(s+ t)γ(−s)

Next, let A = γ′(0). Then for any t ∈ R we have

γ′(t) =
d

ds

∣∣∣∣
s=0

γ(t+ s) =
d

ds

∣∣∣∣
s=0

[γ(t)γ(s)] = γ(t)γ′(0) = γ(t)A.

Hence by the matrix product rule,

d

dt
[γ(t) exp(−tA)] = γ′(t)︸︷︷︸

γ(t)A

exp(−tA) + γ(t)(−A exp(−tA)) = 0

and hence
γ(t) exp(−tA) = γ(0) exp(−0 ·A) = I =⇒ γ(t) = exp(tA).

6 Matrix Lie groups/algebras

6.1 Basic notions

6.1 Definition. A matrix (or linear) Lie group is any closed subgroup G ≤ GLn(F). Given a matrix Lie group G, its Lie
algebra is

g = Lie(G) = {X ∈ Mn(F) : exp(tX) ∈ G for all t ∈ R}.

6.2 Remark. For X to be in Lie(G), it suffices that there is ε > 0 so for t ∈ (−ε, ε) we have exp(tX) ∈ G. Indeed, for k ∈ N
we have exp(ktX) = exp(tX)k ∈ G.

6.3 Theorem. If G ≤ GLn(F) is a matrix Lie group and g = Lie(G), then for X,Y ∈ g we have

(i) X + Y, sX ∈ g for each s ∈ R (i.e. g is a R-vector space).

(ii) [X,Y ] = XY − Y X ∈ g. [X,Y ] is called the Lie bracket.

Proof. We have:

(i) It’s obvious that sX ∈ g. To see additivity, let us first show

(i’) for small |t|, we have exp(tX) exp(tY ) = exp(t(X + Y ) + t2

2 [X,Y ] + t3P1(X,Y, t)) where P1 is continuous in
X,Y, t.

To see this, consider

F (t) = exp(tX) exp(tY ) =

(
I + tX +

t2

2
X2 + t3Q1(X, t)

)(
I + tY +

t2

2
Y 2 + t3Q1(Y, t)

)
= I + t(X + Y ) +

t2

2
(X2 + 2XY + Y 2) + t3R1(X,Y, t). (*)

17



For sufficiently small |t| we have ‖F (t)− I‖ < 1 so

logF (t) = (F (t)− I)− 1

2
(F (t)− I)2 + . . .

=

[
t(X + Y ) +

t2

2
(X2 + 2XY + Y 2)

]
− 1

2
[t2(X2 +XY + Y X + Y 2)] + t3P1(X,Y, t)

= t(X + Y ) +
t2

2
[X,Y ] + t3P1(X,Y, t)

Hence

exp(tX) exp(tY ) = F (t) = exp(logF (t)) = exp

(
t(X + Y ) +

t2

2
[X,Y ] + t3P1(X,Y, t)

)
Now, if X,Y ∈ g then for k ∈ N we have(

exp
t

k
X · exp

t

k
Y

)k
︸ ︷︷ ︸

∈G

= exp

(
t

k
(X + Y ) +

t2

k2

[
1

2
[X,Y ] +

t

k
P1

(
X,Y,

t

k

)])k

= exp(t(X + Y ) +
t2

k
[bounded stuff])

Hence take k →∞, and we see that exp(t(X + Y )) ∈ G for all small |t|. Thus X + Y ∈ g.

(ii) We wish to see

(ii’) exp(tX) exp(tY ) exp(−tX) exp(−tY ) = exp(t2[X,Y ] + t4P2(X,Y, t)) where P2 is continuous in X,Y and t.
From (*), let

G(t) = exp(tX) exp(tY ) exp(−tX) exp(−tY ) = F (t)F (−t)

=

(
I + t(X + Y ) +

t2

2
(X2 + 2XY + Y 2) + t3R1(X,Y, t)

)
·(

I − t(X + Y ) +
t2

2
(X2 + 2XY + Y 2)− t3R1(X,Y,−t)

)
= I + t2(X2 + 2XY + Y 2)− t2(X2 +XY + Y X + Y 2) + t3R2(X,Y, t)

= I + t2[X,Y ] + t3R2(X,Y, t).

Now, if |t| is sufficiently small so ‖G(t)− I‖ < 1, then

logG(t) = (G(t)− I)− 1

2
(G(t)− I)2 + . . . = t2[X,Y ] + t4P2(X,Y, t).

As above, exponentiate. Now, from (ii’), if X,Y ∈ g and k ∈ N

[
exp t

kX · exp t
kY · exp

(
− t
kX
)

exp
(
− t
kY
)]±k2

= exp

(
t2

k2
[X,Y ] +

t4

k4
P2(X,Y, tk )

)±k2

= exp

(
±t2[X,Y ]± t4

k2
P2(X,Y, tk )

)
Take k →∞, we get exp(±t2[X,Y ]) ∈ G. Hence [X,Y ] ∈ g.

6.4 Definition. A matrix Lie algebra is a R-vector subspace g of Mn(F) such that X,Y ∈ g implies [X,Y ] ∈ g.

6.5 Remark. Recall
d

dt

∣∣∣∣
t=0

exp(tX) = X .

6.6 Example. We have:

(i) gln(F) = Lie(GLn(F)) = Mn(F).

(ii) sln(F) := Lie(SLn(F)) = {X ∈ gln(F) : TrX = 0}.

Proof. Recalling Remark 4.2(iii) which talks about the determinant of an exponential, we have

X ∈ sln(F) ⇐⇒ 1 = det exp tX = eTr(tX) = etTr(X) for all t ∈ R ⇐⇒ TrX = 0.

18



(iii) t0n(F) := Lie(T 0
n(F)) = {X ∈ gln(F) : Xij = 0 if j ≤ i}.

(Recall that T 0
n(F) consists of upper-triangular matrices with 1s on the diagonal).

Proof. First, if Xij = 0 for j ≤ i, then (Xk)ij = 0 if j ≤ i (this is just an induction argument). Hence exp(tX) ∈
T 0
n(F), for all t ∈ R, i.e. all elements of the RHS are in t0n(F). Conversely, if X ∈ t0n(F) then for t ∈ R,

exp(tX)ij =

{
1 if i = j

0 if j < i

Thus

Xij =
d

dt

∣∣∣∣
t=0

exp(tX)ij = 0 if j ≤ i.

(iv) tn(F) := Lie(Tn(F)) = {X ∈ gln(F) : Xij = 0 if j < i}.

(v) on(F) = o(n) := Lie(O(n)) = {X ∈ gln(R) : XT = −X} (“skew-symmetric”).

Proof. X ∈ o(n) if and only if

exp(tXT ) = exp(tX)T = exp(tX)−1 = exp(−tX)

thus

XT =
d

dt

∣∣∣∣
t=0

exp(tXT ) =
d

dt

∣∣∣∣
t=0

exp(−tX) = −X.

Conversely, if XT = −X then

exp(tX)T = exp(tXT ) = exp(−tX) = exp(tX)−1 =⇒ X ∈ o(n).

(vi) u(n) := Lie(U(n)) = {X ∈ gln(C) : X∗ = −X} (“skew-hermitian”).

WARNING: u(n) is a R-vector space, but not a C-vector space.

6.7 Proposition. If G,H are matrix Lie groups in GLn(F) with associated Lie algebras g, h then Lie(G ∩H) = g ∩ h.

Proof. X ∈ Lie(G ∩ H) if and only if for all t ∈ R, exp(tX) ∈ G and exp(tX) ∈ H , which occurs if and only if
X ∈ g ∩ h.

(vii) su(n) := Lie(SU(n)) = u(n) ∩ sln(C) = {X ∈ gln(C) : X∗ = −X and TrX = 0}.

(viii) so(n) := Lie(SO(n)) = o(n) ∩ sln(R) = o(n).

Observe, if XT = −X , i.e. X ∈ o(n) then TrX = Tr(XT ) = Tr(−X) = −Tr(X) so TrX = 0.

6.2 Manifold structure of Lie groups

6.8 Definition. Let M be a topological space (metric). A C1-coordinate system is a set {(ϕi, Ui)}i∈I such that {Ui}i∈I is an
open cover of M and

ϕi : Ui → Rmi

is continuous, injective and open for which

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui) ⊂ Rmi

is a C1 map whenever Ui, Uj are not disjoint [it follows from the inverse function theorem that mi = mj whenever Ui ∩Uj 6=
∅].

6.9 Definition. Two C1-coordinate systems {(ϕi, Ui)}i∈I and {(ψj , Vj)}j∈J are C1-equivalent if

ϕi ◦ ψ−1
j : ψj(Vj ∩ Ui)→ ϕi(Ui) ⊂ Rmi

is a C1 map whenever Ui, Vj are not disjoint.

6.10 Definition. A C1-manifold is a pair (M, {(ϕi, Ui)}i∈I) where M is a topological space and the other part is an equiva-
lence class of C1-coordinate systems on M . A similar definition holds for Ck, C∞ (smooth), analytic manifolds.
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6.11 Theorem (COORDINATES AT IDENTITY). If G is a matrix Lie group and g = Lie(G) , then there is an open neigh-
bourhoud U of 0 in g and V of I in G such that

exp : U → V

is a homeomorphism.

6.12 Remark. g is a R-Vector space, g ⊂ gln(F) = Mn(F) and gains its topological structure from ‖ · ‖.
6.13 Remark. Closed subsets of manifolds are not in general manifolds, take for example the topologist’s sine curve.

Proof of theorem. (I) Let m be a complement of g in Mn(F). We will show that there is a neighbourhood U of 0 in m such
that

exp(U) ∩G = {I}

If not then there would be a sequence Xk → 0 in m such that gk = exp(Xk) ∈ G \ {I}. Let Y be any cluster point of
( 1
‖Xk‖Xk)∞k=1. By dropping to a subsequence, we may assume

Y = lim
k→∞

1

‖Xk‖
Xk.

Note that m is closed so Y ∈ m. Fix t ∈ R and let

`k =

⌊
t

‖Xk‖

⌋
, αk =

t

‖Xk‖
− `k

so

exp(tY ) = lim
k→∞

exp(
t

‖Xk‖
Xk)

= lim
k→∞

exp(Xk)`k exp(αkXk)

We note
‖αkXk‖ = |αk|‖Xk‖ ≤ ‖Xk‖ → 0

which shows
exp(tY ) = lim

k→∞
g`kk · I ∈ G

since G is closed.

(II) The map Φ : m× g→ GLn(F) given by

Φ(X,Y ) = exp(X) exp(Y )

is C1 with derivative
DΦ(0, 0) ∈ L(m× g,Mn(F))

of full rank (L the space of linear operators). First recall that DΦ(0, 0) is the (unique) linear operator such that

1

‖X + Y ‖
‖ exp(0 +X) exp(0 + Y )− exp(0) exp(0)−DΦ(0, 0)(X,Y )‖ → 0.

Note that X 7→ exp(X), Y 7→ exp(Y ) are analytic (in coordinates) and products of analytic functions are analytic. Thus, Φ
is analytic hence C1.

Now to see that structure of DΦ(0, 0) consider

exp(0 +X) exp(0 + Y )− exp(0) exp(0)− (X + Y ) = exp(X) exp(Y )− I −X − Y

= (I +X +
1

2
X2 + . . . )(I + Y +

1

2
Y 2 + . . . )

= XY + Y X +
1

2
X2 + · · · = G(X,Y )

We observe

‖G(X,Y )‖ ≤
∞∑
k=2

1

k!
(‖X‖+ ‖Y ‖)k = e‖X‖+‖Y ‖ − 1− ‖X‖ − ‖Y ‖
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Also ‖X‖+‖Y ‖‖X+Y ‖ achieves a maximum value M on the compact sphere of points where ‖X + Y ‖ = 1. By homogeneity,

‖X‖+ ‖Y ‖
‖X + Y ‖

≤M

for ‖X + Y ‖ > 0. Thus,

‖G(X,Y )‖
‖X + Y ‖

≤ e‖X‖+‖Y ‖ − 1− ‖X‖ − ‖Y ‖
1
M (‖X‖+ ‖Y ‖)

→ 0

Hence DΦ(0, 0)(X,Y ) = X + Y so ImDΦ(0, 0) is of full dimension so DΦ(0, 0) is of full rank.

(III) By (II) and the inverse function theorem, we obtain neighbourhoods U of 0 in m and U of 0 in g such that

Φ : U × U → exp(U) exp(U) ⊂ GLn(F)

is a C1 - diffeomorphism. Moreover by (I), we may select U to satisfy

exp(U) ∩G = {I}.

Hence, let
V = (exp(U) exp(U)) ∩G = exp(U).

6.14 Remark. We can choose V ⊂ B(I, 1) in G and U = exp−1(V ) such that log |V is the inverse map of exp |U . Hence,
exp : U → V is a bi-analytic homeomorphism. Hence, a C∞-diffeomorphism.

6.15 Corollary. A Matrix Lie Group is an analytic manifold.

Proof. Let U ,V be as in the remark above. If g ∈ G then

gV = {gh : h ∈ V }

is an open neighbourhood of g. I need x 7→ gx is continuous on G with inverse x 7→ g−1x which is continuous so x 7→ gx is
a homeomorphism. Thus, let

ϕg : gV → g, ϕg(x) = log(g−1x)

So ϕg(gV ) = exp(U) = V .

Now if gV ∩ hV 6= ∅ then ϕg ◦ ϕ−1
h : ϕh(gV ∩ hV )→ g is given by

ϕg ◦ ϕ−1
h (X) = log(g−1h exp(X))

The connecting map is obviously analytic. Hence, {(gV, ϕg)}g∈G is an analytic coordinate system.

6.16 Corollary. The connected component of the identity (denoted G0) of the matrix Lie group G is an open, normal
subgroup generated by exp(g).

Proof. We may assume that U (nbd of 0 in g above) is convex (star-like about 0) and symmetric, i.e. U = −U . Then,
V = exp(U) satisfies

V −1 = {g−1 : g ∈ V } = V

and is an open set containing I . Let

H =

∞⋃
k=1

V k

Then, H is open (V 2 =
⋃
g∈V gV inductively by V k open) and is a subgroup of G. Also

H = G \
⋃

g∈G\H

gH

is closed in G. Now, if h ∈ H , so h ∈ V k for some k. Write

h = g1 . . . gk, gi ∈ V
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and gi = exp(Xi) for someXi ∈ Uj . i.e. h = expX1 . . . expXu. The path γ(t) = exp(tX) . . . exp(tXk) connects I = γ(0)
to h = γ(1). Thus, H is open, closed and connected, so H = G0.

Let us check normality, if h ∈ G0, g ∈ G, let γ : [0, 1]→ G0 be so γ(0) = I, γ(1) = h, then

gγ(·)g−1 : [0, 1]→ G

is a path with gγ(0)g−1 = I and gγ(1)g−1 = ghg−1. So ghg−1 ∈ G0.

6.17 Remark. exp(g) ⊆ G0. In fact, Lie(G0) = Lie(G).

A few remarks

A Matrix Lie group is a closed subgroup G ≤ GLn(F). We defined g = Lie(G) = {X ∈ gln(F) : exp(tX) ∈ G for all t ∈
R}. In this case, 〈exp(g)〉 = G0. Here, 〈· · · 〉 denotes “closed subgroup generated by”.

However, look at A2Q1 (essentially shows us how to make a sort of “skew line” in the 2-torus). The remark gives a 1-
dimensional space in M4(R) (a fortiori a Lie algebra) for which 〈expRX〉 gives a “two dimensional” Lie group.

If I have a closed Lie group, the Lie algebra is a real linear space, so it has a dimension. We call that the dimension of the
Lie group. Just because we have a Lie algebra doesn’t mean we really know what our Lie group is. Let’s just talk a bit more
generally about Lie algebras.

6.3 Homomorphisms of Lie algebras

We explore the functorial properties of G 7→ Lie(G). Let V be an F-vector space. We will specify finite-dimensionality when
we need it.

6.18 Definition. Let gl(V ) = L(V ) consist of F-linear operators on V , with Lie bracket given by

[X,Y ] = XY − Y X.

An F-Lie subalgebra is an F-subspace which is closed under [·, ·].

We note the following properties of [·, ·] : g× g→ g:

1. (antisymmetric/anti-commutativity) [X,Y ] = −[Y,X].

2. (bilinearity) X 7→ [X,Y ] is linear (hence so too is Y 7→ [X,Y ])

3. (Jacobi identity) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

6.19 Definition. If g, h are Lie algebras1, then a linear map ρ : g→ h is called a Lie homomorphism if

[ρ(X), ρ(Y )] = ρ([X,Y ]), ∀X,Y ∈ g.

In the case when h = gl(V ), we often call ρ a (Lie algebra) representation of g.

6.20 Theorem (ADO’S THEOREM). If g is a finite dimensional abstract Lie algebra, i.e. a finite dimensional F-vector space
satisfying anti-commutativity and Jacobi’s identity, then there is an injective representation

ρ : g→ gl(V )

for some finite dimensional V .

6.4 Derivations, Ad, and ad

6.21 Definition. If g is a Lie algebra, a derivation is a linear map D : g→ g satisfying the Leibniz rule, that is,

D([X,Y ]) = [DX,Y ] + [X,DY ].

The set of all derivations g→ g is denoted Der(g). We define the adjoint map ad : g→ L(g) by

adX = [X,−], i.e. adX(Y ) = [X,Y ].

1We do not specify the underlying field – the default assumption is that it’s R; sometimes we might specify C.

22



6.22 Proposition. We have:

(i) Der(g) ⊆ L(g) is a Lie algebra.

(ii) ad(g) ⊆ Der(g) and ad : g→ Der(g) is a representation.

Proof. We have:

(i) It is clear that Der(g) is a linear subspace. Let us check the Lie bracket: if D1, D2 ∈ Der(g) and X,Y ∈ g,

[D1, D2]([X,Y ]) = D1D2([X,Y ])−D2D1([X,Y ])

= D1([D2X,Y ] + [X,D2Y ])−D2([D1X,Y ] + [X,D1Y ])

= [D1D2X,Y ] +((((
(([D2X,D1Y ] +((((

(([D1X,D2Y ] + [X,D1D2Y ]

− ([D2D1X,Y ] +((((
(([D1X,D2Y ] +((((

(([D2X,D1Y ] + [X,D2D1Y ])

= [[D1, D2]X,Y ] + [X, [D1, D2]Y ].

Hence [D1, D2] ∈ Der(g).

(ii) ad is clearly linear. Also, for X,Y, Z ∈ g, we see that

adX([Y,Z]) = [adX(Y ), Z] + [Y, adX(Z)]

using the Jacobi identity with anti-commutativity. Thus ad(g) ⊆ Der(g). Finally, to check that ad is a Lie homomor-
phism, we have for X,Y, Z ∈ g,

ad[X,Y ](Z) = [[X,Y ], Z] = −[[Y,Z], X]− [[Z,X], Y ] by Jacobi identity
= [X, [Y,Z]]− [Y, [X,Z]] by anti-commutativity
= (adX ◦ adY )(Z)− (adY ◦ adX)(Z)

= [adX, adY ](Z).

Hence ad[X,Y ] = [adX, adY ].

6.23 Definition. For a Lie algebra g, let Aut(g) denote the group of Lie automorphisms of g, i.e. linear bijective Lie homo-
morphisms.

To see these are the same thing, note that if α[X,Y ] = [α(X), α(Y )] then α−1 ∈ GL(g). Also,

α−1[X,Y ] = α−1[α ◦ α−1(X), α ◦ α−1(Y )] = [α−1(X), α−1(Y )].

6.24 Proposition. Let g be a finite dimensional Lie algebra. Then Aut(g) is a closed subgroup of GL(g) and

Lie(Aut(g)) = Der(g).

Proof. We note g ≤ gln(F) = Mn(F), the norm ‖ · ‖2 on gln(F) gives a norm | · | on g. Hence “closed” makes sense. If
αk

k→∞−−−−→ α from within Aut(g), then for X,Y ∈ g

α[X,Y ] = lim
k→∞

αk[X,Y ] = lim
k→∞

[αkX,αkY ] = [αX,αY ].

This shows that Aut(g) are closed in GL(V ).

Now, if D ∈ Lie(Aut(g)), then exp(tD) ∈ Aut(g) for each t ∈ R. Hence,

D[X,Y ] =
d

dt

∣∣∣∣
t=0

exp(tD)[X,Y ] =
d

dt

∣∣∣∣
t=0

[exp(tD)X, exp(tD)Y ] = [DX,Y ] + [X,DY ].

Thus D ∈ Der(g). Conversely, if D ∈ Der(g), let for fixed X,Y ∈ g

F1(t) = exp(tD)[X,Y ], F2(t) = [exp(tD)X, exp(tD)Y ].

Observe, F1(0) = [X,Y ] = F2(0) and
F ′1(t) = D exp(tD)[X,Y ]

while, by the product rule,

F ′2(t) = [D exp(tD)X, exp(tD)Y ] + [exp(tD)X,D exp(tD)Y ] = D[exp(tD)X, exp(tD)Y ].

Hence F ′k(t) = DFk(t), for k = 1, 2 with F1(0) = F2(0). Thus, for these analytic functions F1 = F2 which shows that
exp(tD) ∈ Aut(g) for all (small) t in R.
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6.25 Remark. If G ≤ GLn(F) is a matrix Lie group, g ∈ G and X ∈ g = Lie(G), then gXg−1 ∈ g. Indeed, we have for
X ∈ gln(F),

X ∈ g ⇐⇒ exp(tX) ∈ G for all t ∈ R
⇐⇒ exp(tgXg−1) = g exp(tX)g−1 ∈ G for all t ∈ R
⇐⇒ gXg−1 ∈ g.

This motivates the following.

6.26 Definition. We define the adjoint map Ad : G→ Aut(g) by

Ad(g)X = gXg−1.

Note that
Ad(g)[X,Y ] = g[X,Y ]g−1 = g(XY − Y X)g−1 = [gXg−1, gY g−1] = [Ad(g)X,Ad(g)Y ].

Also, Ad(gh) = Ad(g) ◦Ad(h). So Ad is a proper group representation.

6.5 The differential dϕ

6.27 Theorem. Let G,H be matrix Lie groups and ϕ : G → H be a continuous homomorphism. Then there is a R-Lie
algebra homomorphism dϕ : g = Lie(G)→ h = Lie(H), called the differential of ϕ, such that

ϕ(expX) = exp(dϕ(X)).

Proof. Fix, for the moment, X ∈ g. Define a one-parameter subgroup ϕX : R→ H ≤ GLn(F)

ϕX(t) = ϕ(exp(tX)).

Let

dϕ(X) = ϕ′X(0) =
d

dt

∣∣∣∣
t=0

ϕ(exp(tX))

and we have, by the One-Parameter Subgroup Theorem, that

ϕ(exp(tX)) = exp(tdϕ(X))

for t ∈ R. By Chain Rule, dϕ(sX) = sdϕ(X) for s ∈ R. If X,Y ∈ g we have for t ∈ R that

exp(tdϕ(X + Y )) = ϕ(exp(t(X + Y ))) = lim
k→∞

ϕ

((
exp

t

k
X exp

t

k
Y

)k)
where the last formula comes from the proof that g is a vector space.

= lim
k→∞

(
ϕ(exp

t

k
X)ϕ(exp

t

k
Y )

)k
= lim
k→∞

(
exp

t

k
dϕ(X) exp

t

k
dϕ(Y )

)k
(same trick as above) so

= exp t(dϕ(X) + dϕ(Y )).

Hence dϕ(X + Y ) = dϕ(X) + dϕ(Y ). Finally, let’s see that dϕ is a Lie homomorphism. First, for g ∈ G, Y ∈ g, t ∈ R,

exp(tdϕ(Ad(g)Y )) = ϕ(exp(tAd(g)Y )) = ϕ(g exp(tY )g−1) = ϕ(g) exp(tdϕ(Y ))ϕ(g)−1

Then, take d
dt

∣∣∣∣
t=0

, above, to get

dϕ(Ad(g)Y ) = ϕ(g)dϕ(Y )ϕ(g)−1 = Ad(ϕ(g))dϕ(Y ).

Now put g = exp sX , s ∈ R to get

dϕ(exp sX · Y · exp(−sY )) = ϕ(exp sX)dϕ(Y )ϕ(exp(−sX)) = exp(sdϕ(X))dϕ(Y )ϕ(−sdϕ(X))

We then have

dϕ([X,Y ]) = dϕ(XY − Y X) = dϕ

(
d

ds

∣∣∣∣
s=0

exp sX · Y · exp(−sX)

)
=

d

ds

∣∣∣∣
s=0

dϕ(exp sX · Y · exp(−sX))

=
d

ds

∣∣∣∣
s=0

exp(sdϕ(X))dϕ(Y ) exp(−sdϕ(X)) = dϕ(X)dϕ(Y )− dϕ(Y )dϕ(X) = [dϕ(X), dϕ(Y )].
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6.28 Corollary. d(Ad) = ad.

Proof. Implicit, above.

6.29 Remark. In particular, if π : G→ GLn(F) is a continuous homomorphism (“continuous representation”) then there is a
Lie algebra representation dπ : g→ gl(V ).

6.6 Invariant subspaces and irreducibility

6.30 Definition. If π : G→ GL(V ) is a (continuous) representation, we call a subspace W ≤ V π-invariant if

π(G)W ⊆W,

i.e. π(g)w ∈ W for g ∈ G, w ∈ W . We say that W is dπ-invariant if dπ(g)W ⊆ W . If π (resp. dπ) admits no invariant
subspaces (other than {0}, V ) we call π (resp. dπ) irreducible.

6.31 Proposition. If G is a connected matrix Lie group with g = Lie(G) and π : G → GL(V ) is a representation with V
finite-dimensional, then for W ≤ V we have

W is π-invariant ⇐⇒ W is dπ-invariant.

In particular, π is irreducible if and only if dπ is irreducible.

Proof. Recall V ∼= Fn, and the topology is given by | · |. Any subspace is closed.

(→) For X ∈ g, w ∈W ,

dπ(X)w = lim
t→0

∈W︷ ︸︸ ︷
1

t
(π(exp(tX))︸ ︷︷ ︸

∈G

− I︸︷︷︸
∈G

)w ∈W.

(←) If X ∈ g, w ∈W then

dπ(X)kw =

by induction ∈W︷ ︸︸ ︷
dπ(X)k−1 dπ(X)w︸ ︷︷ ︸

∈W

and hence

π(expX)w = exp dπ(X)w =

converging limit
of linear combinations︷ ︸︸ ︷
∞∑
k=0

1

k!
dπ(X)kw︸ ︷︷ ︸
∈W

∈W.

6.32 Definition. If g is a Lie algebra, an ideal of g is a subspace i such that for any X ∈ g, and Y ∈ i, we have [X,Y ] ∈ i.

In other words, a subspace i ≤ g is a Lie ideal exactly when i is ad-invariant, i.e. ad(g)i ⊆ i.

6.33 Proposition. If G is a connected matrix Lie group, and H ≤ G is closed, then

H0 CG (normal) ⇐⇒ h = Lie(H) C g = Lie(G) (ideal).

6.34 Example. SL2(Z) ≤ SL2(R) is closed (exercise) and SL2(Z)0 = {I}. Also,

Lie(SL2(Z)) = {0}C sl2(R) but SL2(Z) 6C SL2(R).

Proof. If g ∈ G, Y ∈ h then

exp(tAd(g)Y ) = g exp(tY )︸ ︷︷ ︸
∈H0

g−1 ∈ H (in particular H0) ⇐⇒ Ad(g)Y ∈ h.

Then, if H0 CG then h is Ad-invariant. On the other hand if h is Ad-invariant then as above g exp(Y )g−1 ∈ H0, for Y ∈ h
which implies

g exp(Y1) · · · exp(Yk)g−1 ∈ H0,

for any Y1, . . . , Yk ∈ h, k ∈ N. We saw earlier, that 〈exp h〉 = H0, so ghg−1 ∈ H0 for h ∈ H0, i.e. H0 CG. We recall that
d(Ad) = ad and hence the present result is immediate from the last proposition.

6.35 Remark. If G is a matrix Lie group with centre Z then Z = ker Ad. Proof is similar to that above.
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6.7 Covering groups

6.36 Definition. We have:

(i) A matrix Lie group Γ ≤ GLn(F) is discrete if there is a nbhd V of I in GLn(F) such that V ∩ Γ = {I}.

(ii) We say that (G,ϕ) is a covering group of a group H if

• ϕ : G→ H is a surjective homomorphism.

• kerϕ is discrete.

6.37 Example. Consider ϕ : (R,+)→ U(1) = {z ∈ C : |z| = 1} given by ϕ(t) = eit.

Note kerϕ = 2πZ.

R is a matrix Lie group,

R ∼= T 0
2 (R) =

{[
1 t
0 1

]
: t ∈ R

}
, R ∼= GL1(R)0 by t 7→ et.

6.38 Theorem. Suppose G,H are matrix Lie groups with respective Lie algebras g, h and ϕ : G → H is a continuous
homomorphism with differential dϕ : g→ h. Then

(i) Lie(kerϕ) = ker dϕ. In particular, dϕ is injective if and only if kerϕ is discrete.

(ii) If dϕ is surjective, then ϕ(G) ⊇ H0.

(iii) If G,H are connected, then dϕ is bijective iff (G,ϕ) is a covering group.

Proof. We have:

(i) Let X ∈ g. X ∈ Lie(kerϕ) iff I = ϕ(exp(tX)) = exp 1
t dϕ(X) for all t ∈ R, iff dϕ(X) = 0.

We have ker dϕ = {0} iff (from above) (kerϕ)0 = {I}. We recall that (kerϕ)0 is open in kerϕ. Hence there is open
V , neighbourhood of I in G such that V ∩ kerϕ = {I} i.e. kerϕ is discrete.

(ii) Let U be a nbhd of 0 in h such that V = expU is open and exp |U : U → V is a homeomorphism. Let U1 ⊆ dϕ−1(U)
be a nbhd of 0 in g such that V1 = expU1 is open and log |V1

: V1 → U1 is defined (hence the inverse of exp, and a
homeomorphism).
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We observe that
ϕ|V1

= exp ◦ dϕ︸︷︷︸
surjective linear map

is C1 hence open (I.F.T.)

◦ log

is an open map, so ϕ(V1) is open. Hence

ϕ(G) ⊇
∞⋃
k=1

(ϕ(V1) ∩ ϕ(V1)−1)k

an open subgroup of H , so ϕ(G) ⊇ H0.

(iii) Since we assume dϕ is bijective, it is surjective so by (ii) ϕ(G) ⊇ H0 = H . Also, dϕ is injective so by (i) kerϕ is
discrete.

6.39 Example. We have the following examples:

(i) R ∼= T 0
2 (R),

ϕ

([
1 t
0 1

])
= eit ∈ U(1)

t02(R) =

{[
0 t
0 0

]
: t ∈ R

}
U(1) = {z ∈ C : z∗ = z = −z} = iR.

Calculate

dϕ

[
0 t
0 0

]
;

it is bijective. We saw that ϕ is a covering map.

(ii) Let us see that SU(2)/{−I, I} = SO(3). First, recall the inner product on gl2(C) ⊇ su(2),

((X,Y )) = Tr(Y ∗X).

This is the usual R-inner product on su(2). We observe for g ∈ SU(2) that

((Ad(g)X,Ad(g)Y )) = Tr((gY g∗)∗gXg∗)

= Tr(gY ∗g∗gXg∗)

= Tr(Y ∗X) = Tr(Y ∗X).
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(not sure why Tr(Y ∗X) was written twice – typo?) Hence Ad : SU(2)→ SO(d) where d = dimR su(2). Now

su(2) = {X ∈ gl2(C) : TrX = 0 and X∗ = −X}

=

{[
α β
γ δ

]
∈ gl2(C) : α+ δ = 0, α = −α (δ = −δ), β = −γ (γ = −β)

}
=

{[
it1 t2 + it3

−t2 + it3 −it1

]
: t1, t2, t3 ∈ R

}
= spanR

{[
i 0
0 −i

]
= X1,

[
0 1
−1 0

]
= X2,

[
0 i
i 0

]
= X3

}
(these are called Pauli matrices). Thus dimR su(2) = 3. Compute:

X1X2 = X3 = −X2X1

X2X3 = X1 = −X3X2 (††)
X3X1 = X2 = −X1X3

and hence
[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

Recall, adX(Y ) = [X,Y ]. If B = {X1, X2, X3} then for X = t1X1 + t2X2 + t3X3 (t1, t2, t3 ∈ R),

[adX]B =

 0 −2t3 2t2
2t3 0 −2t1
−2t2 2t1 0

 ∈ so(3)

hence ker(ad) = {0}.

Since d(Ad) = ad we then see that Ad : SU(2)→ SO(3) is a covering map, by the theorem above. We note that

ker Ad =︸︷︷︸
remark earlier

ZSU(2) =︸︷︷︸
check

ZU(2) =︸︷︷︸
(∗)

ZGL2(C) ∩U(2) =︸︷︷︸
check

{−I, I}.

(*) will be discussed next class.

Office hours W 3 – 5pm, or by appointment.

Recall that we had Ad : SU(2)→ GL(su(2)), with ((X,Y )) = Tr(Y ∗X).

Ad(SU(2)︸ ︷︷ ︸
connected

) ⊆ O(3), 3 = dimR su(2).

Thus, Ad(SU(2)) ⊆ SO(3). Basis for su(2) is

B =

{
X1 =

[
i 0
0 −i

]
, X2 =

[
0 1
−1 0

]
, X3 =

[
0 i
i 0

]}
(Pauli matrices).

[adX]B =

 0 t1 t2
−t1 0 t3
−t2 −t3 0


︸ ︷︷ ︸

∈so(3)

∀X ∈ su(2)

= {X ∈ M3(R) : XT = −X}

ad : su(2)→ so(3) is surjective, and since SU(2) is connected, the theorem implies Ad : SU(2)→ SO(3) is surjective.
ad : su(2)→ so(3) injective implies ker Ad discrete (hence finite).

In fact,
ker Ad =︸︷︷︸

remark earlier

ZSU(2) =︸︷︷︸
check

ZU(2) =︸︷︷︸
(†)

ZGL2(C) ∩U(2) =︸︷︷︸
check

{−I, I}.

(†) In fact,
ZU(n) = ZGLn(C) ∩U(n)
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Observe “⊇” is trivial.

Recall polar decomposition: if g ∈ GLn(C) then g∗g ∈ Pn(C). This implies there exists v ∈ U(n) such that

g∗g = v

λ1

. . .
λn

 v∗, λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

There is u ∈ U(n)

g = uv


√
λ1

. . . √
λn

 v∗
[DIAGRAM OF UNIT CIRCLE WITH µ AND VERTICAL LINE].

µ =
1

2
[(µ+ i

√
1− µ2)︸ ︷︷ ︸

∈S1

+ (µ− i
√

1− µ2)︸ ︷︷ ︸
∈S1

]

g =
√
λ1uv


√
λ1/λ1

... √
λn/λ1

 v∗

=

√
λ1

2
uv

( unitary︷ ︸︸ ︷
√
λ1/λ1 + i

√
1− λ1/λ1

. . . √
λn/λ1 + i

√
1− λn/λ1

+


√
λ1/λ1 − i

√
1− λ1/λ1

. . . √
λn/λ1 − i

√
1− λn/λ1


︸ ︷︷ ︸

unitary

)
v∗

Hence if w ∈ ZU(n), then wg = gw, for g ∈ GLn(C). Thus ZU(n) ⊆ ZGLn(C) ∩U(n).

(iii) SU(2)× SU(2)/{(I, I), (−I,−I)} ∼= SO(4). Let

H =

{(
α β

−β α

)
: α, β ∈ C

}
.

Note that H is a R-linear subspace of M2(C) which has basis

I,X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
Recall

X1X2 = X3 = −X2X1

X2X3 = X1 = −X3X2

X3X1 = X2 = −X1X3

Hence H is the R-algebra of quaternions. Note

ZH =

{(
x 0
0 x

)
: x ∈ R

}
= RI.

Now, let
ϕ : SU(2)× SU(2)→ GL(H)

ϕ(u, v)X = uXv∗.
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Then ϕ is a homomorphism. We observe for u, v in SU(2) and X,Y ∈ H

((ϕ(u, v)X,ϕ(u, v)Y )) = Tr((uY v∗)∗uXv∗) = Tr(vY ∗u∗uXv∗) = Tr(Y ∗X) = ((X,Y ))

and hence ϕ(SU(2)×SU(2)) ⊆ O(4), where 4 = dimR H. Since SU(2) is connected, we see that ϕ(SU(2)×SU(2)) ⊆
SO(4). We want to show dϕ : su(2)× su(2)× so(4) is bijective.

Now, for U, V ∈ su(2), X ∈ H

dϕ(U, V )X =
d

dt

∣∣∣∣
t=0

ϕ(exp tU, exp tV )X =
d

dt

∣∣∣∣
t=0

exp tU ·X · exp(−tV ) = UX −XV

Hence, ker dϕ = {(0, 0)} (check, using knowledge of ZH, su(2)).

dimR su(2)⊕ su(2) = dimR su(2) + dimR su(2) = 6

while so(4) = spanR{E12 − E21, E13 − E31, . . . , E34 − E43} so dimR so(4) =
(

4
2

)
= 6 and thus dϕ, being injective,

is surjective. Hence
ϕ(SU(2)× SU(2)) = SO(4)

by the Theorem from last class. Finally, using again ZH = RI show that

kerϕ = {(I, I), (−I,−I)}.

7 Classification of Lie algebras

7.1 Nilpotent and solvable Lie algebras

Let g be a (matrix) Lie algebra, and n,m ≤ g be subspaces. Define

[n,m] = span{[X,Y ] : X ∈ n, Y ∈ m}.

7.1 Proposition. If i, jC g are Lie ideals then [i, j] C g.

Proof. If X ∈ i, Y ∈ j, Z ∈ g, then

[[X,Y ], Z] = −[[Y, Z]︸ ︷︷ ︸
∈j

, X︸︷︷︸
∈i

]− [[Z,X]︸ ︷︷ ︸
∈i

, Y︸︷︷︸
∈j

] ∈ [i, j].

7.2 Definition. We define D(g) = [g, g] and call it the derived ideal of g.

We define the descending central series

C1(g) = g,

C2(g) = [g, g],

...

Ck(g) = [Ck−1(g), g].

We also define the derived series

D1(g) = D(g)

...

Dk(g) = [Dk−1(g),Dk−1(g)]

We observe that Dk(g) ⊆ [Dk−1(g), g] and hence inductively, is contained in Ck(g) = [Ck−1(g), g].

We say g is nilpotent if Ck(g) = {0} for some k. We say g is solvable if Dk(g) = {0} for some k.

7.3 Remark. Nilpotent implies solvable.

7.4 Example. We have:
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(i) g is Abelian if [X,Y ] = 0 for all X,Y ∈ g. Clearly, an Abelian Lie algebra is nilpotent.

(ii) t0n(F) = spanF{Eij : i < j}, the strictly upper-triangular matrices.

Observe

[Eij , Ek`] = EijEk` − Ek`Eij =


Ei` if j = k, i 6= `

−Ekj if i = `, j 6= k

Ei` − Ekj if i = `, j = k

0 else.

(†)

Note that the third case will never occur if i < j, k < `. Hence one can compute

Ck(t0n(F)) = spanF{Eij : i ≤ j + k} if j = 1, . . . , n− 1

and Cn(t0n(F)) = {0}. In particular, t0n(F) is nilpotent of (nilpotency) degree n.

(ii) The “ax+ b”-group

H =

{(
a b
0 1

)
: a, b ∈ R, a > 0

}
Check that

h = Lie(H) =

{[
x1 x2

0 0

]
: x1, x2 ∈ R

}
.

Let X = E11, Y = E12. We observe

[X,Y ] = E11E12 − E12E11 = E12 = Y

Hence D(h) = RY , and D2(h) = [RY,RY ] = {0} so h is solvable. On the other hand, Ck(h) = RY so h is not
nilpotent.

(iii) tn(F) = spanF{Eij : i ≤ j} = dn(F) + t0n(F), the upper-triangular matrices. Here dn(F) = spanF{Eii : i =
1, . . . , n} consists of the diagonal matrices. We can use (†) to show that

[dn(F), t0n(F)] = t0n(F).

We conclude D(tn(F)) = t0n(F) = C2(tn(F)). However Ck(tn(F)) = t0n(F) for all k ≥ 2. Also, D2(tn(F)) =
D(t0n(F)) ⊆ C1(t0n(F)). We find inductively that Dk(tn(F)) ⊆ Ck−1(t0n(F)). Hence Dn−1(tn(F)) = {0}.

(iv) sl2(F) =

{(
x y
z −x

)
: x, y, z ∈ F

}
= spanF

{
X =

[
1 0
0 −1

]
, Y =

[
0 1
0 0

]
, Z =

[
0 0
1 0

]}
. Compute:

[X,Y ] = (E11 − E22)E12 − E12(E11 − E22) = E12 + E12 = 2Y

Similarly,
[Y,Z] = X, [Z,X] = 2Z.

We observe D(sl2(F)) = sl2(F) and hence Dk(sl2(F)) = sl2(F) for all k. Hence this is not solvable.

For g ∈ SL2(R) whose eigenvalues are distinct complex conjugates, say λ1, λ2 = λ1. We view g ∈ M2(C), and let
v ∈ C2 be an eigenvector for λ. Consider the vector v and check that gv = λ2v. Write λ1 = c+ is.

[
v v

]
g
[
v v

]−1
=

[
λ1 0
0 λ2

]
Convince yourself that [

Re v Im v
]
g
[
Re v Im v

]−1
= nice.

7.5 Definition. Let V be a vector space, and W ≤ V be a subspace. Then

V/W = {v +W : v ∈ V }

equipped with the operations

(v1 +W ) + (v2 +W ) = v1 + v2 +W, α(v1 +W ) = αv1 +W

is called the quotient space.
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7.6 Remark. If g is a Lie algebra, π : g→ gl(V ) is a Lie representation, and W ≤ V is a π-invariant subspace, then

ρ : g→ gl(V/W ) given by ρ(X)(v +W ) = π(X)v +W

is a well-defined Lie representation of g.

7.7 Lemma. Let V be finite dimensional. If X ∈ L(V ) is nilpotent, i.e. Xn = 0 (one can show that2 n ≤ dimV ), then
adX ∈ L(L(V )), given by ad(X)Y = XY − Y X , is also nilpotent.

Proof. Define LX , RX ∈ L(L(V )) by
LXY = XY, RXY = Y X

so that [LX , RX ] = 0 (associativity) and adX = LX −RX . Then

(adX)k =

k∑
j=0

(
k

j

)
(−1)j LX

k−j︸ ︷︷ ︸
L
Xk−j

RX
j︸︷︷︸

RXj

.

Thus (adX)2n+1 = 0.

We now move towards showing that a Lie algebra is nilpotent if and only if its image under the adjoint map is a Lie algebra
of nilpotent operators.

7.8 Theorem. Let g ≤ gl(V ) be a Lie algebra, consisting of nilpotent operators on a finite-dimensional vector space. Then
there is v0 ∈ V \ {0} such that Xv0 = 0 for all X ∈ g.

Proof. We will use induction on d := dim g. If d = 1 then g = FX0 with Xn
0 = 0 (n ≤ dimV ) and hence there is an

eigenvector v0 ∈ V \ {0} corresponding to eigenvalue 0.

Let us suppose that the desired result holds for all representations, consisting of nilpotent operators, of subalgebras h of g with
dim h < dim g = d. First, we show that if h ≤ g is a proper Lie subalgebra of maximal dimension, then dim h = d − 1 and
hC g. Indeed, define α : h→ gl(g/h) by

α(X)(Y + h) = [X,Y ] + h = adX(Y ) + h, ∀X ∈ h, Y ∈ g.

so α is a Lie representation of h. The inductive hypothesis provides X0 ∈ g \ h such that for all X ∈ h, we have

α(X)(X0 + h) = [X,X0] + h = 0 + h so that [X,X0] ∈ h.

Thus FX0 + h is itself a Lie subalgebra, of g, which by assumptions on h, tells us that FX0 + h = g. Moreover

[g, h] = F[X0, h] + [h, h] ⊆ h

so h C g. Now, the inductive hypothesis tells us that W =
⋂
X∈h kerX 6= {0}. We wish to show that W is g-invariant. For

X ∈ h, Y ∈ g and w ∈W we have

XY w = YXw︸︷︷︸
=0

−
=0︷ ︸︸ ︷

[Y,X]︸ ︷︷ ︸
∈h

w = 0

and thus Y w ∈ W , in particular X0w ∈ W . X0|W is nilpotent by assumption on g, and hence there is v0 ∈ W \ {0} such
that X0v0 = 0. Observe that gv0 = 0 too since g = FX0 + h and v0 ∈W thus hv0 = 0.

7.9 Corollary. If g is a Lie algebra and ρ : g → gl(V ) is a Lie representation for which ρ(g) consists of nilpotent operators
then there is a basis B of V such that

[ρ(X)]B ∈ t0n(F)

for each X ∈ g.

Proof. Let e1 ∈ V \ {0} be such that ρ(X)e1 = 0 for all X ∈ g. Let V = V/Fe1 and again, we have e2 ∈ V \ Fe1 such that

ρ(X)(e2 + Fe1) = 0 + Fe1.

Continue inductively.

7.10 Theorem (ENGEL’S THEOREM). A matrix Lie algebra g is nilpotent if and only if ad g ⊆ L(g) consists of nilpotent
operators.

2This comes from Jordan form.
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Proof. (→) Observe that for X ∈ g,
(adX)`(Ck(g)) ⊆ Ck+`(g).

Since Cm(g) = 0 for some m, we see (adX)m = 0 for all X ∈ g.

(←) The corollary above implies that ad g is isomorphic to a Lie subalgebra of t0n(F). Hence

Cn(ad g) ⊆ Cn(t0n(F)) = {0}.

Thus for X1, . . . , Xn ∈ g, we have [· · · [[adX1, adX2], adX3] · · · , adXn] = 0, so for X ∈ g,

[[· · · [[X1, X2], X3] · · · , Xn], X] = ad[· · · [[X1, X2], X3] · · · , Xn](X)

= [· · · [[adX1, adX2], adX3] · · · , adXn](X)

= 0

and thus Cn+1(g) = {0}.
7.11 Proposition. Let g be a Lie algebra, h ≤ g a Lie subalgebra and iC g a Lie ideal.

(a) If g is solvable, then so too are h and g/i (on the latter, define [X + i, Y + i] = [X,Y ] + i).

(b) If both i and g/i are solvable, then so too is g.

Proof. We have:

(a) We have Dk(h) ≤ Dk(g) and Dk(g/i) ⊆ Dk(g) + i.

(b) If D`(g/i) = {0 + i} then D`(g) ⊆ i. Hence if Dk(i) = {0}, it follows that D`+k(g) = {0}.
7.12 Theorem (LIE’S THEOREM). Let g ≤ gln(C) be a solvable C-Lie algebra. Then there are v0 ∈ Cn \{0} and a C-linear
form λ : g→ C such that Xv0 = λ(X)v0 for all X ∈ g.

Proof. We will use induction on d = dimC g. If d = 1, then g = CX0 andX0 admits an eigenvector v0 6= 0 and an eigenvalue
λ0 ∈ C. We have λ(βX0) = βλ0 then we are done.

Now suppose the result holds for all C-Lie subalgebras h ≤ g with dimC h < d. Since D(g) ( g there is a C-linear subspace
h ≤ g with D(g) ≤ h < g and dimC h = d− 1.

Observe
[g, h] ⊆ [g, g] = D(g) ≤ h

so hC g i.e. h is a Lie ideal. In particular, h is a solvable Lie subalgebra of g of lesser dimension and the inductive hypothesis
provides w0 ∈ Cn \ {0}, and a C-linear form λ : h→ C such that

Y w0 = λ(Y )w0 for Y ∈ h.

Fix X0 ∈ g \ h and let k be the largest integer for which

w0, X0w0, . . . , X0
kw0

is linearly independent. Set W−1 = {0}, Wj = spanC{w0, . . . , X0
jw0} for j = 0, . . . , k. Observe X0Wj−1 ⊆ Wj for

j = 0, . . . , k and X0Wk ⊆Wk.

We wish to establish that for Y ∈ h, Y |Wk
= λ(Y )IWk

. Then we will be done. Indeed, let v0 ∈ Wk \ {0} be an eigenvector
for X0|Wk

with eigenvalue λ0. Then
λ : CX0 + h︸ ︷︷ ︸

g

→ C

given by λ(αX0 + Y ) = αλ0 + λ(Y ) does the job.

Let us show, first, that for Y ∈ h,

YWj−1 ⊆Wj−1, Y wj +Wj−1 = λ(Y )wj +Wj−1 (*)

for j = 0, . . . , k. The case j = 0 is given by choice of w0. Then, assuming (*) holds for i = 0, . . . , j − 1,

Y wj +Wj−1 = Y X0wj−1 +Wj−1 = X0 Y wj−1︸ ︷︷ ︸
∈λ(Y )wj−1+Wj−2

−
∈λ([X0,Y ])wj−1+Wj−2⊆Wj−1︷ ︸︸ ︷

[X0, Y ]wj−1 +Wj−1

= X0(λ(Y )wj−1) +Wj−1 = λ(Y )wj +Wj−1
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This proves the second equation of (*) and further shows that YWj−1 ⊆ Wj−1. Thus (*) is established. Further we see that
YWk ⊆Wk.

Now let us see that [X0, h] ⊆ kerλ. On one hand we have for Y ∈ h

Tr([X0, Y ]|Wk
) = Tr([X0|Wk

, Y |Wk
]) = 0

whereas [X0, Y ] ∈ h since hC g and (*) tells us that w.r.t. β = {w0, . . . , wk} we have

[X0, Y ]|Wk
=

λ([X0, Y ]) ∗
. . .

0 λ([X0, Y ])


so Tr([X0, Y ]|Wk

) = (k + 1)λ([X0, Y ]). Thus

0 = Tr([X0, Y ]|Wk
) = (k + 1)λ([X0, Y ])

shows that λ([X0, Y ]) = 0.

We have Y w0 = λ(Y )w0 by choice of w0, and we shall assume that Y wj−1 = λ(Y )wj−1. We see

Y wj = Y X0wj−1 = Y X0wj−1 = X0Y wj−1−[X0, Y ]wj−1 = X0λ(Y )wj−1−λ([X0, Y ])︸ ︷︷ ︸
=0

wj−1 = λ(Y )X0wj−1 = λ(Y )wj .

Thus Y |Wk
= λ(Y )IWk

.

7.13 Remark. If X,Y have W ≤ Cn as an invariant subspace, then

X|WY |W = XY |W

hence [X,Y ]|W = [X|W , Y |W ].

7.14 Corollary. If g is a solvable C-Lie algebra and ρ : g→ gl(V ) is a C-linear representation where V is a finite-dimensional
vector space, then there is a basis β for V with respect to which

[ρ(X)]β =

λ1(X) ∗
. . .

0 λn(X)

 , λ1, . . . , λn : g→ C are C-linear forms, ∀X ∈ g.

In particular, if g ≤ gln(C) is a solvable C-Lie algebra, then there is g ∈ GLn(C) such that

ggg−1 ≤ tn(C).

Proof. First observe that
ρ(g) ≤ gl(V ) ∼= gln(C)

is a C-Lie algebra. Then by Lie’s Theorem, there are e1 ∈ V \ {0} and a C-linear form µ1 : ρ(g)→ C such that

ρ(X)e1 = µ1(ρ(X))e1 = λ1(X)e1 for X ∈ g.

where λ1 = µ1 ◦ ρ. Hence Ce1 is a ρ-invariant subspace. Now consider

ρ1 : g→ V/Ce1

and, as above, find e2 ∈ V \ Ce1 so ρ1(X)(e2 + Ce1) = µ2(ρ1(X))(e2 + Ce1) for X ∈ g where µ2 : ρ(g)→ C is C-linear.
Continue inductively. Let β = {e1, . . . , en}.
7.15 Corollary. If g ≤ gln(C) is a C-Lie algebra, then g is solvable if and only if [g, g] is nilpotent.

Proof. (←) Obvious.

(→) As above, there is g ∈ GLn(C) such that ggg−1 ∈ tn(C). Hence

g[g, g]g−1 = [ggg−1, ggg−1] ≤ t0n(C).

Since t0n(C) is nilpotent, [g, g] is too.

34



Is the corresponding statement for general groups true? According to A3Q2, being C-linear can be relaxed.

7.16 Theorem (CARTAN’S CRITERION). Suppose g ≤ gln(F) is a Lie algebra such that Tr(XY ) = 0 for X,Y ∈ g. Then
g is solvable.

Proof. We may suppose that F = C. Otherwise g ≤ gln(R) ≤ gln(C). We will show that [g, g] consists of nilpotent matrices
(lemma last class). Hence, by Engel’s theorem [g, g] is nilpotent. By the corollary above, we see that g is solvable. Thus, let
us fix X ∈ [g, g]. By change of basis we may write

X = XD +XN =

λ1 0
. . .

0 λn

+XN

Note that by Diagonal-Nilpotent decomposition (“Almost Jordan Form” handout) there are polynomials pD(t), pN (t) such
that

XD = pD(X), XN = pN (X).

We consider ad = adgln(C). We observe that

adXD(Eij) = (λi − λj)Eij

(adXD is diagonalizable) and by lemma from last class, adXN is a nilpotent operator and [adXD, adXN ] = 0. Hence
adX = adXD + adXN so

(adXD) = (adX)D.

Thus there is a polynomial PD (not necessarily same as pD) such that

adXD = PD(adX).

Now let Q(t), q(t) be polynomials such that q(λi) = λi, Q(λi − λj) = λi − λj for i, j = 1, . . . , n.

Observe that q(λi)− q(λj) = Q(λi − λj) and hence

ad q(XD) = Q(adXD) = Q ◦ PD(adX)

and we see that
ad q(XD)(g) = Q ◦ PD(adX)(g) ⊆ g.

Thus, if we write X =
∑m
i=1[Yi, Zi] where Yi, Zi ∈ g then we have

Tr(q(XD)X) =

m∑
i=1

Tr(q(XD)(YiZi − ZiYi)) =

m∑
i=1

Tr(q(XD)YiZi − Yiq(XD)Zi) =

m∑
i=1

Tr([q(XD), Yi]Zi)

=

m∑
i=1

Tr(ad q(XD)(Yi)︸ ︷︷ ︸
∈g

Zi︸︷︷︸
g

) = 0

by assumption. Meanwhile, since
[q(XD), XN ] = 0 (as [XD, XN ] = 0)

we have that q(XD)XN is nilpotent. Hence

Tr(q(XD)X) = Tr(q(XD)XD) + Tr(q(XD)XN )︸ ︷︷ ︸
=0

= Tr


λ1 0

. . .
0 λn


λ1 0

...
0 λn


 =

n∑
j=1

|λj |2

Hence, we have

0 = Tr(q(XD)X) =

m∑
j=1

|λj |2

so each λj = 0 and thus X = XN is nilpotent.

Recall by an earlier proposition that if g is a Lie algebra and i C g then g solvable implies g/i solvable. Furthermore, if g/i
and i are solvable then g is solvable.

7.17 Proposition. If g is a Lie algebra and i, jC g are solvable ideals, then i + j is also a solvable ideal.

35



Proof. If iC g, h ≤ g is a Lie subalgebra then i + h is a Lie subalgebra. Moreover if h is an ideal, i + hC g.

Now, we have that
(i + j)/i ∼= j/(i ∩ j). (check!)

Thus, if j is solvable, so too are i ∩ j and j/(i ∩ j) and thus (i + j)/i is solvable. If, further i is solvable, then so too is i + j.

7.18 Definition. We thus define, for a finite-dimensional Lie algebra g the radical

rad(g) =
∑
iCg

i solvable

i := {X1 + . . .+Xm : Xi ∈ ii and ii C g is solvable and m ∈ N}.

We remark that by induction, any finite list of solvable ideals i1, . . . , im C g gives rise to a solvable ideal i1 + . . . + im.
Moreover, since g is finite dimensional we may realise

rad(g) = i1 + . . .+ im.

Details are left as an exercise.

7.2 Semisimple Lie algebras and the Killing form

7.19 Definition. A Lie algebra is called

• simple if it is non-abelian and admits no proper ideals.

• semisimple if it admits no non-zero abelian ideals.

7.20 Definition (NOTATION). Let g be a Lie algebra and ρ : g→ gl(V ) be a finite-dimensional representation. We define

Bρ : g× g→ g

by Bρ(X,Y ) = Tr(ρ(X)ρ(Y )).

Observe, if X,Y, Z ∈ g, then

Bρ([X,Y ], Z) = Tr((ρ(X)ρ(Y )− ρ(Y )ρ(X))ρ(Z)) = Tr(ρ(X)ρ(Y )ρ(Z)− ρ(X)ρ(Z)ρ(Y )) = Bρ(X, [Y,Z]).

We call Bρ g-invariant:
−Bρ(adY (X), Z) = Bρ(X, adY (Z))

Consider the representation ad : g→ L(g) (for a finite-dimensional Lie algebra) and define the Killing form by

B = Bg : g× g→ F

B(X,Y ) = Tr(adX ◦ adY )

7.21 Proposition. If g is a matrix Lie algebra and iC g is an ideal, then for X ∈ i, Y ∈ g we have

Bg(X,Y ) = Tr(adiX ◦ adi Y ).

Here, adi Y = (adY )|i. Hence
Bi = Bg

∣∣∣
i×i
.

Proof. Let β0 = {X1, . . . , Xk} be a basis for i which extends to a basis β = {X1, . . . , Xk, . . . , Xm} for g. We observe that

[adgX]β =

[
[adiX]β0

∗
0 0

]
and

[adg Y ]β =

[
[adi Y ]β0

∗
0 ∗

]
.

Thus
B(X,Y ) = Tr(adgX ◦ adg Y ) = Tr(adi ◦ adi Y ).
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7.22 Example. The Killing form on gln(F), hence sln(F) C gln(F), has formula

B(X,Y ) = 2nTr(XY )− Tr(X) Tr(Y ).

To compute this we only need to compute on pairs of basis elements {Eij}ni,j=1.

Recall
[Eij , Ek`] = δjkEi` − δ`iEkj

We thus compute

adEpq ◦ adEk`(Eij) = adEpq(δ`iEkj − δjkEi`) = δ`iδqkEpj − δ`iδjpEkq − δjkδqiEp` + δjkδ`pEiq (†)

Recall that {Eij}ni,j=1 that it is an orthonormal basis for the inner product (X,Y ) = Tr(Y ∗X) where

(Ers, Eij) = δriδsj . (††)

Hence

B(Epq, Ek`) = Tr(adEpq ◦ adEk`) =

n∑
i,j=1

(adEpq ◦ adEk`(Eij), Eij)

=

n∑
i,j=1

[δ`iδqkδpi

=1︷︸︸︷
δjj −δ`iδjpδkiδqj − δjkδqiδpiδ`j + δjkδ`p δii︸︷︷︸

=1

δqj ]

= n

n∑
r=1

[δ`rδqkδpr − δrkδ`pδqr]−
n∑

i,j=1

[δ`iδjpδkiδqj + δjkδqiδpiδ`j ]

= n[δ`pδqk + δkqδ`p]− [δ`kδpq + δk`δpq]

= 2nTr(EpqEk`)− 2 Tr(E`kEpq)

Observe
B(I, Y ) = 0.

Note ad I = 0 so this is true.

7.23 Remark. We have:

(i) simple =⇒ semisimple

(ii) We observe that Z(g) = {Z ∈ g : [X,Z] = 0 ∀X ∈ g} = ker ad. Since Z(g) C g and is abelian, hence if g is
semisimple then ker ad = {0} i.e. ad : g→ Der(g) ≤ L(g) is injective.

(iii) If g1, g2 are semisimple then

g1 ⊕ g2 =

{[
X 0
0 Y

]
: X ∈ g1, Y ∈ g2

}
is also semisimple.

Indeed, if aC g1 ⊕ g2 is an abelian ideal, then a ∩ gj is an abelian ideal in gj (j = 1, 2) and hence {0}.
7.24 Theorem. Let g be a matrix Lie algebra. Then TFAE:

(i) g is semisimple.

(ii) rad(g) = {0}.

(iii) the Killing form B is non-degenerate.

Proof. (i)→ (ii): If rC g is a solvable ideal, and k ∈ N is such that Dk(r) = {0} while a = Dk−1(r) 6= {0}, then a is abelian
and an ideal in g. Hence, as no such a exist, we must conclude r = {0}.

(ii)→ (iii): Let
k = {X ∈ g : B(X,Y ) = 0 for all Y ∈ g}

Then if X ∈ k, Y , Z ∈ g then
B([X,Y ], Z) = B(X, [Y,Z]) = 0

hence [X,Y ] ∈ k and thus kC g.
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By the last proposition
Bk = Bg

∣∣∣
k×k

= 0

by definition of k. Thus by Cartan’s criterion, ad k ≤ gl(k) is a solvable Lie algebra. However

Z(k) = ker adk Ck

is solvable, i.e. Z(k), k ∼= k/Z(k) are both solvable. Hence k is solvable. But k ⊆ rad(g) = {0} which gives non-degeneracy.

(iii)→ (i): If aCg is an abelian ideal, then ada a = {0} ≤ L(a). Hence, using the last proposition, we have for X ∈ a, Y ∈ g

B(X,Y ) = Tr(adaX︸ ︷︷ ︸
=0

◦ ada Y ) = 0

Hence, by non-degeneracy, a = {0}.
7.25 Theorem. If g is a semisimple matrix Lie algebra, then there are simple ideals

g1, . . . , gm C g

(i.e. each gj is simple as a Lie algebra in its own right), such that

g = g1 ⊕ . . .⊕ gm.

Proof. Let iC g be an ideal. We let iB = {X ∈ g : B(X,Y ) = 0 for Y ∈ i}. Then iB is an ideal (look at proof for k, above).
Thus i ∩ iB is also an ideal for which

Bi∩iB = Bg

∣∣∣
i∩iB×i∩iB

= 0

and thus i ∩ iB = {0} as g is semisimple. Now let h = i + iB ≤ g. Since

i ⊆ h, hB ⊆ iB

and hence
hB ⊆ hB ∩ iB ⊆︸︷︷︸

iB⊆h

hB ∩ h

but this latter space is {0}, by non-degeneracy of B. Hence i⊕ iB = g.

Now, let g1 be an ideal of g of minimal dimension. Then let g2 be such an ideal of g1B ; g3 be a minimal ideal of (g1 ⊕ g2)B ,
etc. Since dim g < ∞ we get a family g1, . . . , gm of B-orthogonal minimal ideals. Observe [gi, gj ] ⊆ gi ∩ gj = {0} for
i 6= j. If iC gi for any i = 1, . . . ,m then [i, gj ] = {0} for j 6= i and hence iC g. Thus i = gi by minimality.

7.26 Corollary. If g is a semisimple matrix Lie algebra, then [g, g] = g.

Proof. As above, g = g1 ⊕ . . .⊕ gm and [g, g] =
⊕m

i=1[gi, gi] =
⊕m

i=1 gi as each gi is simple.

Office hours: Tomorrow, Monday (after RW) 1:30 – 3:30.

8 Haar integral on matrix Lie groups

Let G ≤ GLn(F) be a matrix Lie group and g = Lie(G).

8.1 Definition. For g ∈ G, define the tangent space at g by

Tg(G) = {γ′(0) : γ : (−ε, ε)→ G is a differentiable path with γ(0) = g}.

The next proposition shows that the tangent space at an arbitrary point more or less looks the same as the one at the identity
(which is the Lie algebra).

8.2 Proposition. For g ∈ G, Tg(G) = g · g = g · g.
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Proof. First, recall that Ad g ∈ Aut g, so g = Ad(g)g = ggg−1 and thus g · g = g · g. Now, if X ∈ g, then

γ(t) = g exp(tX)

defines a path in G with γ(0) = g and γ′(0) = gX . Hence g · g ⊆ Tg(G). Conversely, if X ∈ Tg(G), let γ : (−ε, ε)→ G be
any differentiable path with γ(0) = g and γ′(0) = X . Then, for small |t|,

X(t) = log(g−1γ(t))

defines a curve in g. Thus γ(t) = g · expX(t) and γ′(0) = gX ′(0) where X ′(0) ∈ g since g is a subspace.

Now we develop some machinery to develop the integral.

8.3 Definition. Let 0 ∈ U ⊂ g and I ∈ V ⊂ G be neighbourhoods such that exp : U → V is a diffeomorphism. Let

C∞(G) = {f : G→ R | f(g · exp(•)) ∈ C∞(U) for all g ∈ G}.

A vector field on G is a function ξ : G→Mn(F) such that

ξ(g) ∈ Tg(G) = gg, for g ∈ G.

We say that ξ is C∞ (or smooth) if each coordinate function ξij is smooth, that is

ξ =

n∑
i,j=1

ξij(•)Eij , or ξ =

n∑
i,j=1

(Re ξij(•) + i Im ξij(•))Eij if F = C.

Let Ξ(G) denote the set of all C∞ vector fields on G.

We observe that Ξ(G) is a C∞(G)-module i.e.

(f · ξ)(g) = f(g)ξ(g), (ξ + η)(g) = ξ(g) + η(g), f ∈ C∞(G), g ∈ G.

(We could also ask for C1, Ck or Cω (analytic) structure on Ξ(G) instead of smooth structure).

8.4 Example. Fix X ∈ g = TI(G). Let ξX ∈ Ξ(G) be given by ξX(g) = gX .

We now let d = dimR g = dimR Tg(G) for any g ∈ G.

8.5 Definition. Let

Altd(G) = {ω : Ξ(G)d → C∞(G) | ω an alternating d-C∞-multi-module map}

i.e. for each (ξ1, . . . , ξd) ∈ Ξ(G)d:

• ω(ξ1, . . . , ξd)(g) = ωg(ξ1(g), . . . , ξd(g)).

• alternating: ω(ξ1, . . . , ξi, . . . , ξj , . . . , ξd) = −ω(ξ1, . . . , ξj , . . . , ξi, . . . , ξd), for i 6= j.

Observe if σ ∈ Sd (Sd is the symmetric group) then ω(ξσ(1), . . . , ξσ(d)) = sgnσ · ω(ξ1, . . . , ξd).

• d-C∞-multimodule:

ω(ξ1, . . . , f · ξi, . . . , ξd) = f · ω(ξ1, . . . , ξi, . . . , ξd)

ω(ξ1, . . . , ξi, . . . , ξd) + ω(ξ1, . . . , ηi, . . . , ξd) = ω(ξ1, . . . , ξi + ηi, . . . , ξd)

• smoothness: the functions g 7→ ωg(ξ1(g), . . . , ξd(g)) are C∞ for (ξ1, . . . , ξd) ∈ Ξ(G).

8.6 Remark (PHILOSOPHY). On the vector space Tg(G) = g · g, |det(•)| is the basic “volume form”. All positive scalar
multiples of this are reasonable notions of volume. We can abstractly call this ωg , i.e.

ωg : (g · g)d → R

is such a notion of volume. Hence Altd(G) is a smooth way of “gluing together” these notions of volume on all of the spaces

Tg(G) = g · g, g ∈ G.
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We observe that if T ∈ L(g · g) then for X1, . . . , Xd ∈ g · g we have that

ωg(TX1, . . . , TXd) = detT · ωg(X1, . . . , Xd).

Hence if ∆ ∈ EndC∞(G)(Ξ(G)d) we have for (ξ1, . . . , ξd) ∈ Ξ(G)d

ω(∆ξ1, . . . ,∆ξd) = det ∆ · ω(ξ1, . . . , ξd).

We are now in position to define integration with respect to |ω|.

Step 1: Let {ϕα, Vα}α∈A be a C∞-coordinate system (atlas) on G, compatible with {log(g−1•), gV }g∈G. Suppose f ∈
Cc(G) (continuous, compactly supported, C-valued functions on G) and that supp(f) ⊂ Vα for some α. Let x = ϕα(g)
(ϕα : Vα → ϕα(Vα) ⊂ Rd)∫

G

f |ω| =
∫
ϕα(Vα)

f ◦ ϕ−1
α (x)|ω(Dα)(ϕ−1

α (x))| dx

=

∫
ϕα(Vα)

f ◦ ϕ−1
α (x)

∣∣∣∣ωϕ−1
α (x)

(
∂

∂x1
ϕ−1
α (x), . . . ,

∂

∂xd
ϕ−1
α (x)

)∣∣∣∣ dx1 · · · dxd

Note that
∂

∂xk
ϕ−1
α (x1, . . . , xd) =

d

dt

∣∣∣
t=0

ϕ−1
α (x1, . . . , xk + t, . . . , xd)︸ ︷︷ ︸

path inG

∈ Tϕ−1
α (x)(G).

Let us see that this integral is independent of choice of coordinate chart. Let {ψβ , V ′β}β∈B be another C∞-coordinate system
(equivalent to our original one, of course) and suppose f ∈ Cc(G) has supp(f) ⊂ Vα ∩ V ′β . We let x = ϕα(g), y = ψβ(g),
g ∈ Vα ∩ V ′β . ∫

G

f |ω| =
∫
ϕα(Vα)

f(ϕ−1
α (x))

∣∣∣∣ωϕ−1
α (x)

(
∂

∂x1
ϕ−1
α (x), . . . ,

∂

∂xd
ϕ−1
α (x)

)∣∣∣∣ dx
=

∫
ϕα(Vα)

f(ψ−1
β ◦ ψβ ◦ ϕ

−1
α (x)︸ ︷︷ ︸
y

)
∣∣ω(Dα)(ϕ−1

α (x))
∣∣ dx

=

∫
ψβ(V ′β)

f ◦ ψ−1
β (y)

1

|detD(ψβ ◦ ϕ−1
α )(x)|︸ ︷︷ ︸

| detD(ϕα◦ψ−1
β )(y)|

|ω(Dα)(ϕ−1
α (x))| dy

=

∫
ψβ(V ′β)

f ◦ ψ−1
β (y)|ωϕ−1

α (x)(D(ϕα ◦ ψ−1
β (y))Dαϕ

−1
α (x)︸ ︷︷ ︸

Dβψ
−1
β (y)

)| dy

=

∫
ψβ(V ′β)

f ◦ ψ−1
β (y)|ω(Dβ)(ψ−1

β (y))| dy

Step 2: Again suppose {ϕα, Vα} is a C∞-coordinate system for G, f ∈ Cc(G).

8.7 Definition. Let K ⊂ G be a compact set. A partition of unity for K relative to {Vα}α∈A is a family {f1, . . . , fm} ⊆
Cc(G) such that

• Each supp(fi) ⊆ Vαi .

• (f1 + . . .+ fm)(g) = 1 for g ∈ K.

8.8 Exercise. Partitions of unity always exist.

8.9 Definition. With f ∈ Cc(G), let {f1, . . . , fm} be a partition of unity for supp(f) relative to {Vα}α∈A. Define∫
G

f |ω| =
m∑
i=1

∫
G

ffi|ω| =
m∑
i=1

∫
ϕαi (Vαi )

(ffi)(ϕ
−1
αi (x)) |ω(Dαi)(ϕ

−1
αi (x))| dx.

8.10 Fact. This definition is independent of partition of unity.

If {f1, . . . , fm}, {h1, . . . , hp} are two partitions of unity, for supp(f), relative to {Vα}α∈A, then∫
G

f |ω| =
m∑
i=1

∫
G

ffi |ω| =
m∑
i=1

∫
G

p∑
j=1

ffihj |ω| =
m∑
i=1

p∑
j=1

∫
G

ffihj |ω|
∗
=

p∑
j=1

∫
G

m∑
i=1

ffihj |ω| =
p∑
j=1

∫
G

fhj |ω|

at (*) we are implicitly using coordinate independence.
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Notes for the lecture 2013-02-28, which begins here, are available on Dr. Spronk’s website.

8.11 Theorem (HAAR INTEGRAL). There exists a unique (up to scalar) η ∈ Altd(G) such that η is left-invariant, that is,∫
G

f(g •)|η| =
∫
G

f |η|, for all f ∈ Cc(G).

Proof. Fix a basis {X1, . . . , Xd} for g = TI(G). Then {gX1, . . . , gXd} is a basis for Tg(G) = gg for each g ∈ G. For each
g ∈ G, let ηg : (gg)d → R be the unique d-multilinear alternating form such that

ηg(gX1, . . . , gXd) = 1.

[Recall any d-multilinear alternating form on Rd, is a multiple of (x1, . . . , xd) 7→ det[x1 · · ·xd]]. Hence

1 = ηg(gX1, . . . , gXd) = ηI(X1, . . . , Xd). (LI)

Let η : Ξ(G)d → C∞(G) be given by

η(ξ1, . . . , ξd)(g) = ηg(ξ1(g), . . . , ξd(g)).

Let us see, indeed, that Im η ∈ C∞(G). If (ξ1, . . . , ξd) ∈ Ξ(G)d, for each i let ξi(g) =
∑d
j=1 ξij(g)gXj and we have that

ξij ∈ C∞(G). Indeed, g 7→ g−1ξi(g) =
∑d
j=1 ξij(g)Xj is a C∞ function from G to g. Pick a dual basis α1, . . . , αd : g→ R,

i.e. αi(Xj) = δij , and ξij = αj ◦ [•−1ξi(•)]. Thus

η(ξ1, . . . , ξd)(g) = ηg(ξ1(g), . . . , ξd(g))

= ηg(. . . ,

d∑
j=1

ξij(g)gXj , . . .)

= p(ξ11(g), ξ12(g), . . . , . . . , ξdd(g)) · ηg(gX1, . . . , gXd)

so η ∈ Altd(G), as claimed. Thus (LI) provides for g, h ∈ G, (ξ1, . . . , ξd) ∈ Ξ(G)d

ηgh(ξ1(gh), . . . , ξd(gh)) = ηI(h
−1g−1ξ1(gh), . . . , h−1g−1ξd(gh)) = ηh(g−1ξ1(gh), . . . , g−1ξd(gh)). (LI*)

Now if f ∈ Cc(G) we may, and shall, suppose that supp(f) ⊂ V for a single coordinate patch (ϕ, V ) (i.e. multiply f by a
partition of unity for supp(f), otherwise).

Fix g ∈ G. Note that h ∈ supp f(g•) iff gh ∈ supp f , iff h ∈ g−1 supp f . Let ψ : ϕ(g−1•) : gV → Rd. Observe
ψ−1 = g · ϕ−1. Then∫

G

f(g•)|η| =
∫
ϕ(V )

f(gϕ−1(x))

∣∣∣∣ηϕ−1(x)

(
∂

∂x1
ϕ−1(x), . . . ,

∂

∂xd
ϕ−1(x)

)∣∣∣∣ dx
=

∫
ϕ(V )

f(gϕ−1(x))

∣∣∣∣ηϕ−1(x)

(
g−1 ∂

∂x1
gϕ−1(x), . . . , g−1 ∂

∂xd
gϕ−1(x)

)∣∣∣∣ dx
=

∫
ϕ(V )=ψ(gV )

f(gϕ−1(x)︸ ︷︷ ︸
ψ−1(x)

)

∣∣∣∣∣∣∣η gϕ−1(x)︸ ︷︷ ︸
ψ−1(x)

 ∂

∂x1
gϕ−1(x)︸ ︷︷ ︸
ψ−1(x)

, . . . ,
∂

∂xd
gϕ−1(x)


∣∣∣∣∣∣∣ dx by (LI*)

=

∫
ψ(gV )

f ◦ ψ−1(x)

∣∣∣∣ηψ−1(x)

(
∂

∂x1
ψ−1(x), . . . ,

∂

∂xd
ψ−1(x)

)∣∣∣∣ dx
=

∫
G

f |η|.

We remark that (LI*) forces condition (LI), which thus is based on choice of ηI , which is unique up to scalar. In fact, any
ω ∈ Altd(G) which admits

∫
G
f(g•)|ω| =

∫
G
f |ω| is forced to satisfy (LI*).

The uniqueness of the Haar measure is rarely used – existence is what we really care about. This is why we leave the proof at
this, although we have not satisfactorily proved uniqueness.

8.12 Proposition. Let η ∈ Altd(G) be the left invariant form from above. Then for f ∈ Cc(G), g ∈ G

1

|det Ad g|

∫
G

f(•g)|η| =
∫
f |η|.
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8.13 Remark. The function
g 7→ ∆(g) =

1

|det Ad g|

is a continuous homomorphism from G into the multiplicative group R>0. This is called the modular function of G.

Proof. Again, suppose f is such that supp f(•g) ⊂ V for a coordinate patch (ϕ, V ). Then∫
G

f(•g)|η| =
∫
ϕ(V )

f(ϕ−1(x)g)

∣∣∣∣ηϕ−1(x)

(
∂

∂x1
ϕ−1(x), . . . ,

∂

∂xd
ϕ−1(x)

)∣∣∣∣ dx
=

∫
ϕ(V )

f(ϕ−1(x)g)

∣∣∣∣ηI (ϕ−1(x)−1

[
∂

∂x1
ϕ−1(x)g

]
g−1, . . . , ϕ−1(x)−1

[
∂

∂xd
ϕ−1(x)g

]
g−1

)∣∣∣∣ dx by (LI*)

=

∫
ϕ(V )

f(ϕ−1(x)g)

∣∣∣∣∣∣∣∣∣∣
ηg

. . . , gϕ−1(x)−1

[
∂

∂xi
ϕ−1(x)g

]
g−1︸ ︷︷ ︸

Ad g[ϕ−1(x)−1[ ∂
∂xi

ϕ−1(x)g]]

, . . .


∣∣∣∣∣∣∣∣∣∣
dx

=

∫
ϕ(V )

f(ϕ−1(x)g︸ ︷︷ ︸
ψ−1(x)

)|det Ad g|η ϕ−1(x)︸ ︷︷ ︸
ψ−1(x)

(. . . ,
∂

∂xi
ϕ−1(x)g︸ ︷︷ ︸
ψ−1(x)

, . . .)| dx

= |det Ad g|
∫
ψ(gV )

f ◦ ψ−1(x)|η(D)(ψ−1(g))| dx

= |det Ad g|
∫
G

f |η|.

8.14 Proposition. In any of the following situations a matrix Lie group G is unimodular, i.e. ∆ ≡ 1:

(a) G is abelian.

(b) G is compact.

(c) Lie(G) is semisimple.

(d) Lie(G) is reductive and G is connected.

(e) Lie(G) is nilpotent and G is connected.

Proof. We have:

(a) Left and right translations are the same

(b) ∆ : G→ (R>0, ·) is a continuous homomorphism. Thus ∆(G) ⊂ R>0 is a compact subgroup. Note, if a ∈ R>0 \ {1}
then {an}n∈Z is unbounded, hence not compact. Thus ∆(G) ⊆ {1}.

(c) We first observe that ad(Ad g(X)) = Ad g ◦ adX ◦ Ad g−1, indeed, just test against Y ∈ g. Thus the Killing form
satisfies

B(Ad gX,Ad gY ) = Tr(��
�Ad g ◦ adX ◦����Ad g−1 ◦���Ad g ◦ adY ◦����Ad g−1) = B(X,Y ). (*)

Fix a basis for g = Lie(G) and let [B] denote the matrix of B w.r.t. this basis, so

B(X,Y ) = [Y ]T [B][X].

But then, by (*) we have
[Ad g]T [B][Ad g] = [B]

so (det Ad g)2 det[B] = det[B] and since det[B] 6= 0 by semisimplicity, |det Ad g| = 1.

(d) By A3, g = Z(g) ⊕ D(g). Each Z(g) and D(g) are ad g-invariant (i.e. ideals). Since G is connected, they are AdG-
invariant as well. Moreover, since each Z ∈ Z(G) commutes with each X ∈ g so letting g = expX1 · · · expXm, we
can calculate Ad g(Z) = Z. Thus each g in G admits w.r.t. a basis for g, composed of a union of bases for D(g) and
for Z(g)

[Ad g] =

[
[Ad g|D(g)] 0

0 IZ(g)

]
and hence

|det Ad g| = |det(Ad g|D(g))|
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and by Aut(g)-invariance of BD(g) we see from proof of (c) above that

|det(Ad g|D(g))| = 1

(e) Recall d(Ad) = ad so Ad(expX) = exp(adX). If g = expX1 · · · expXm we have

det Ad g =

m∏
j=1

det Ad(expXj) =

m∏
j=1

det(exp(adXj)) =

m∏
j=1

eTr(adXj)

By Engel’s Theorem, ad g is a Lie algebra comprised of nilpotent operators. Hence each eTr(adXj) = e0 = 1.

Recall: If {X1, . . . , Xd} is a basis for g, then η ∈ Altd(G) defined by

ηg(gX1, . . . , gXd) = ηI(X1, . . . , Xd) = 1

gives a left invariant integral supp f ⊂ V , (ϕ, V )∫
G

f |η| =
∫
ϕ(V )

f ◦ ϕ−1(x)

∣∣∣∣ηϕ−1(x)

(
. . . ,

∂

∂xi
ϕ−1(x), . . .

)∣∣∣∣ dx.
8.15 Example (GLOBAL COORDINATE SYSTEMS). We have:

(i) “ax+ b” group

G =

{[
a b
0 1

]
: a > 0, b ∈ R

}
Global coordinate system

(ϕ,R>0 × R︸ ︷︷ ︸
open subset of R2

), ϕ

([
a b
0 1

])
= (a, b)

Also g = Lie(G) =

{[
x y
0 0

]
: x, y ∈ R

}
let X = E11, Y = E12. Let g =

[
a b
0 1

]
.

g ·X =

[
a 0
0 0

]
= aX, g · Y = aY

We have
∂

∂a
ϕ−1(a, b) =

∂

∂a

[
a b
0 1

]
=

[
1 0
0 0

]
= X

and ∂
∂bϕ

−1(a, b) = Y .

We then have for the left invariant form (ηI(X,Y ) = 1)

η[ a b0 1 ](X,Y )
bilinearity

=
1

a2
η[ a b0 1 ](aX, aY ) =

1

a2
η[ a b0 1 ]

([
a b
0 1

]
X,

[
a b
0 1

]
Y

)
L.I.
=

1

a2
ηI(X,Y ) =

1

a2
.

Hence if Cc(G), we have∫
G

f |η| =
∫∫

R>0×R
f ◦ ϕ−1(a, b)

∣∣∣∣ηϕ−1(a,b)

(
∂

∂a
ϕ−1(a, b),

∂

∂b
ϕ−1(a, b)

)∣∣∣∣ db da
=

∫
R>0

∫
R
f

([
a b
0 1

]) ∣∣∣η[ a b0 1 ](X,Y )
∣∣∣ db da

=

∫
R>0

∫
R
f

([
a b
0 1

])
1

a2
db da.

Let us compute the modular function.

∆

([
a b
0 1

])
=

1

|det Ad [ a b0 1 ]|
.

We have

Ad

[
a b
0 1

]
X =

[
a b
0 1

] [
1 0
0 0

] [
1/a −b/a
0 1

]
=

[
a 0
0 0

] [
1/a −b/a
0 0

]
=

[
1 −b
0 0

]
= X − bY
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and

Ad

[
a b
0 1

]
Y =

[
a b
0 1

] [
0 1
0 0

] [
1/a −b/a
0 1

]
= aY

and thus [
Ad

[
a b
0 1

] ]
(X,Y )

=

[
1 0
−b a

]
Thus

det Ad

[
a b
0 1

]
= a =⇒ ∆

([
a b
0 1

])
=

1

a
.

(i’) G =

{[
2n b
0 1

]
: n ∈ Z, b ∈ R

}
. Note that G ≤ GL2(R) is closed but G is not closed in M2(R). Also

G0 =

{[
1 b
0 1

]
: b ∈ R

}

so g = Lie(G) = Lie(G0) = RY , where Y is as above. Let Vn =

{[
2n b
0 1

]
: b ∈ R

}
, n ∈ Z and we have coordinate

systems

{ϕn, Vn}n∈Z, ϕn

([
2n b
0 1

])
= b ∈ R.

As above [
2n b
0 1

]
Y = 2nY ηI(Y ) = 1.

so

η[ 2n b
0 1

](Y ) =
1

2n
η[ 2n b

0 1

](2nY ) =
1

2n
η[ 2n b

0 1

]([2n b
0 1

]
Y

)
=

1

2n
.

Thus if f ∈ Cc(G) satisfies supp(f) ⊂ V0 = G0, then∫
G

f |η| =
∫
R
f

([
2n b
0 1

])
1

2n
db

In general, ∫
G

f |η| =
∑
n∈Z

∫
R
f

([
2n b
0 1

])
1

2n
db

Finally, as before

Ad

[
2n b
0 1

]
= 2nY

so det Ad

[
2n b
0 1

]
= 2n so ∆

([
2n b
0 1

])
= 1

2n . This despite that g = RY is abelian hence nilpotent and reductive.

(ii) G = GLn(R) ⊂Mn(R) is open. Global coordinates (id, G) [Rn2 ∼= Mn(R)]. We compute

∂

∂gij
g = Eij

Fix ηI : gln(R)n
2 → R, so ηI(. . . , Eij , . . .) and extend this to “the” left invariant form η ∈ Altn

2

(G)

ηg(. . . , Eij , . . .) =
1

detLg
ηg(. . . , gEij︸︷︷︸

LgEij

, . . .) =
1

detLg
ηI(. . . , Eij , . . .)︸ ︷︷ ︸

1

=
1

detLg

To compute detLg let us write gln(R) = C1⊕ . . .⊕Cn as columns. We see that LgCi ⊆ Ci, it is essentially the action
of g on Rn. Hence w.r.t. β = {. . . , Eij , . . .} where columns are grouped together, we have

[Lg]β =


g 0

g
. . .

0 g

 ∈Mn2(R)
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Hence
detLg = (det g)n.

Hence, for f ∈ C(G), ∫
GLn(R)

f |η| =
∫

GLn(R)

f([gij ])
1

|det g|n
n∏

i,j=1

dgij .

(ii’) G = GLn(C). Global coordinates (ϕ,GLn(C))

ϕ(g) = [xij , yij ]
n
i,j=1

where xij = Re gij and yij = Im gij . We observe

∂

∂xij
g = Eij ,

∂

∂yij
g = iEij

As above, fix ηI(. . . , Ek`, . . . , iEk`, . . .)

ηg(. . . , Ek`, . . . , iEk`, . . .) =
1

detLg

where we consider this Lg as an R-linear map on gln(C) ∼= R(2n)2

. If we decompose gln(C) into n complex columns,
like before

gln(C) = C1 ⊕ . . .⊕ Cn
then, for basis βk = {E1k, iE1k, E2k, iE2k, . . .} we get

[
Lg|Ck

]
βk

=

 x11 y11 x12 y12 . . .
−y11 x11 −y12 x12 . . .

...
...

...
...

 .
Now let h ∈ GLn(C) be such that

h[xk` + iyk`]h
−1 =

λ1 ∗
. . .

0 λn

 .
Then if

h̃ =


. . .

Rehij Imhij
− Imhij Rehij

. . .

 ∈M2n(R)

so

h̃

[
Lg|Ck

]
βk

h̃−1 =



Reλ1 Imλ1 ∗ ∗
− Imλ1 Reλ1 ∗ ∗

Reλ2 Imλ2

− Imλ2 Reλ2

0 0
. . . . . .

0 0
. . . . . .


and hence det[Lg|Ck ]βk =

∏n
j=1((Reλj)

2 + (Imλj)
2) =

∏n
j=1 |λi|2 = |det g|2. Thus as before

detLg = |det g|2n

Hence for f ∈ Cc(G) ∫
GLn(C)

f |η| =
∫

GLn(C)

f([xk` + iyk`])
1

|det g|2n
n∏

k,`=1

dxk`dyk`.
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f 7→
∫
G

f |η|

Cc(G)→ C∫
G

f |η| ≥ 0 if f ≥ 0 pointwise

Riesz Representation Theorem implies the existence of a regular Borel measure mG on G such that∫
G

f |η| =
∫
G

f dmG.

Closing comments

(i), (ii) We note that GLn(C) and GL+
n (R) = GLn(R)0 are both unimodular. Indeed both are connected and gln(F) (F = C,

R) is reductive. We note that GL2(R) is also unimodular. Recall ∆(g) = 1
| det Ad g| . In this case,

Ad g = Lg ◦Rg−1 on gln(R)

and thus det(Ad g) = (detLg)(detRg−1) = (det g)n(det g−1)︸ ︷︷ ︸
check

n
= 1.

9 Representation theory

9.1 Basic notions

Let G be a matrix Lie group. Let V be an F-vector space.

9.1 Definition. A representation (or rep) of G on V is a “continuous” homomorphism π : G→ GL(V). Recall F = R or C.
If dimV <∞, then V has a unique notion of topology as an F-vector space. However if dimV 6<∞, then we need to assign
a notion of topology to V . This need not be unique. In this case, we demand that

g 7→ π(g)v : G→ V

is continuous for each v in V .

9.2 Example (FINITE DIMENSIONAL SETTING). If dimV = d <∞, let {v1, . . . , vd} be a basis for V and let {α1, . . . , αd} ⊂
V ′ be the so-called dual basis, i.e. each αi : V → F is linear with αi(vj) = δij (Kronecker delta). We know that linear forms
are continuous. Thus

g 7→
[
αi(π(g)vj)

]
∈ GLd(F)

where αi(π(•)vj) are continuous F-valued functions; thus π is continuous from G to GLd(F) ∼= GL(V).

9.3 Definition. If V admits an inner product (•, •) we say a rep π : G→ GL(V) is unitary if π(g) ∈ U(V) for all g ∈ G.We
often write

U(V) = {U ∈ L(V) : (Uv,Uw) = (v, w) for v, w ∈ V}.

9.4 Example (LEFT REGULAR REPRESENTATION). We have:

(i) Motivation: For G a finite group, C[G] = span{G} is a C-vector space, with dimC[G] = |G|. Define a map λ : G→
GL(C[G]) by

λ(g)
∑
h∈G

a(h)︸︷︷︸
∈C

h =
∑
h∈G

a(h)gh =
∑
h∈G

a(g−1h)h.

(ii) Let λ : G→ GL(Cc(G)) be given by
λ(g)f(h) = f(g−1h).

[Check λ(gg′) = λ(g)λ(g′)]. Norm on Cc(G) is ‖f‖∞ = maxg∈G |f(g)|. We want to show that for any f in Cc(G) that
g 7→ λ(g)f : G → Cc(G) is continuous, i.e. limg→g0

‖λ(g)f − λ(g0)f‖∞ = 0. Observe that ‖λ(g)f − λ(g0)f‖∞ =
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‖λ(g0)(λ(g−1
0 g)f − f)‖∞ = ‖λ(g−1

0 g)f − f‖∞ and g−1
0 g → I if and only if g → g0. Hence we are required only to

check that
lim
g→I
‖λ(g)f − f‖∞ = 0.

To achieve this, we use the following lemma.

9.5 Lemma. Given a compact set K ⊂ G, and 0 < δ < 1, there is an open set V ⊂ G such that ‖g−1h − h‖ < δ for
g ∈ V , h ∈ K. Moreover we may assume that V is compact.

Proof. We first note, for fixed h in K that g 7→ g−1h : G→ G is continuous. Hence let

Vh =

{
g ∈ G : ‖g−1h− h‖ < δ

3
, ‖g‖, ‖g−1‖ < 1 + δ

}
.

Then K ⊂
⋃
h∈K V −1

h︸︷︷︸
open set

·h, so K ⊂
⋃m
i=1 V

−1
hi
· hi for some h1, . . . , hm in K. Thus if h ∈ K then h ∈ V −1

hi
· hi for

some i, so h = g−1hi for some g ∈ Vhi , so ‖h− hi‖ < δ
3 . Let

V =

m⋂
i=1

Vi.

If g ∈ V and h ∈ K then, let hi be as above and we have

‖g−1h− h‖ ≤ ‖g−1h− g−1hi‖+ ‖g−1hi − hi‖︸ ︷︷ ︸
<δ/3

+ ‖hi − h‖︸ ︷︷ ︸
<δ/3

< ‖g−1‖︸ ︷︷ ︸
<1+δ

‖h− hi‖︸ ︷︷ ︸
<δ/3

+
2δ

3
<

4δ

3

(whoops!). Note that
V ⊆ {g ∈ G : ‖g‖, ‖g−1‖ ≤ 1 + δ} = Q1+δ

which, by an earlier proposition, we saw is compact.

Now let f ∈ Cc(G) and let K = supp(f). We let

Q = {g ∈ G : ‖g‖, ‖g−1‖ ≤ 2}.

Then (g, h) 7→ g−1h : Q × K → G is continuous so Q−1K is compact. Moreover, if g ∈ Q then supp(f),
supp(λ(g)f) ⊆ Q−1K so we may consider f , λ(g)f to both be elements of C(Q−1K). Hence, f is uniformly
continuous. Thus given ε > 0, there is δ > 0 such that if ‖g−1h − h‖ < δ we have |f(g−1h) − f(h)| < ε for g ∈ Q,
h ∈ K (uniform continuity from real analysis) i.e. ‖λ(g)f − f‖∞ < ε, for g sufficiently close to I .

(iii) Now, let us consider the inner product on Cc(G)

(ψ,ϕ) =

∫
G

ψϕ |η|.

By left invariance of η, we have

(λ(g)ψ, λ(g)ϕ) =

∫
G

ψ(g−1 •)ϕ(g−1 •) |η| =
∫
G

ψϕ |η| = (ψ,ϕ).

Thus λ : G→ GL(Cc(G), (•, •)) is unitary. Let for ϕ ∈ Cc(G),

‖ϕ‖2 = (ϕ,ϕ)1/2 =

(∫
G

|ϕ|2 |η|
)1/2

.

Given ϕ ∈ Cc(G) we let K = supp(ϕ) and let ε,Q be as in (ii), above. We let ψ ∈ Cc(G), ψ ≥ 0 be so ψ ≡ 1 on
Q−1K.

‖λ(g)ϕ− ϕ‖2 =

(∫
G

|λ(g)ϕ− ϕ|2 |η|
)1/2

≤
(∫

G

‖λ(g)ϕ− ϕ‖2∞ψ |η|
)1/2

= ‖λ(g)ϕ− ϕ‖∞
(∫

G

ψ |η|
)1/2

︸ ︷︷ ︸
= some finite C

< εC.
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9.6 Definition. We say that a rep π : G → GL(V) is finite-dimensional (or f.d.) if dimV < ∞. We say that a finite-
dimensional rep π is reducible if there is a proper W ≤ V such that π(G)W ⊆ W , i.e. W is π-invariant. If no such W
exists, we say π is irreducible (or is an irrep, for “irreducible representation”).

9.7 Lemma (SCHUR’S LEMMA). Let π, σ : G→ GL(V) be f.d. C-irreps of a (matrix Lie) group G. Then

(i) If A ∈ L(V,W) is such that Aπ(g) = σ(g)A (i.e. A is an intertwiner3) then either A is invertible or A = 0.

(ii) If A ∈ L(V) and Aπ(g) = π(g)A then A = λI for some λ ∈ C.

Proof. We have:

(i) We observe that if v ∈ kerA, then Aπ(g)v = σ(g)Av = 0 so π(G) kerA ⊆ kerA. If w ∈ ImA so w = Av for some
v ∈ V then for g ∈ G,

σ(g)w = σ(g)Av = Aπ(g)v ∈ ImA.

So σ(G) ImA ⊆ ImA. Hence either kerA = {0} and thus ImA =W; or kerA = V and thus ImA = {0}.

(ii) We have that A has an eigenvalue λ, so A− λI is not invertible. However (A− λI)π(g) = π(g)(A− λI) and thus by
(i), A− λI = 0.

9.8 Corollary. Every f.d. C-irrep π of an abelian group G is 1-dimensional.

Proof. We see that for any g0 ∈ G, π(g0)π(g) = π(g0g) = π(gg0) = π(g)π(g0) for each g ∈ G. Hence π(g0) = χ(g0)I ,
where χ(g0) ∈ C. Check g 7→ χ(g) is multiplicative.

9.9 Example. We have:

(i) Let π : R→ GL2(R) be given by

π(t) =

[
cos t sin t
− sin t cos t

]
.

Observe that A =

[
a b
−b a

]
commutes with π(t) for each t ∈ R. Also π is irreducible. Hence having a C-irrep is

necessary in (ii) of Schur’s Lemma.

(ii) If χ : R → GL(C) = C \ {0} is a rep, then by the one-parameter subgroup theorem, we see that there is z ∈ C such
that χ(t) = etz . Write x = Re z, y = Im z and we have χ(t) = etxeity . We note that χ is bounded if and only if χ is
unitary, if and only if Re z = x = 0. Hence, the f.d. unitary reps of R are given by

R̂ = {t 7→ eity : y ∈ R}.

(iii) Let T = R/Z. We note that the map R→ U(1) given by t 7→ e2πit induces an isomorphism T ∼= U(1) since the kernel
of the quotient map R → T is ker(t 7→ e2πit) = Z. If χ : T → GL(C), then since T is compact, χ(T) ⊂ GL(C)
is bounded. Now let χ̃ : R → GL(C) be given by χ̃(t) = χ(t + Z), and we see that χ̃(R) = χ(T) is bounded,
so there is y ∈ R such that χ̃(t) = eity . Since χ̃(Z) = {1} we see that 1 = χ̃(n) = einy for each n in Z, so
ny ∈ 2πZ. Thus y ∈ 2πZ. Thus χ(t) = ei2πnt. We may rewrite this by saying: the only continuous homomorphisms
χ : U(1)→ GL(C) are of the form χ(z) = zn for some n ∈ Z, i.e. Û(1) = {z 7→ zn : n ∈ Z}.

Talks: possible topics on website. Optional. Grading is 50/50 (without talk) or 40/15/45 (with talk). Talks are first-come-
first-serve so choose quickly. If you can devise your own topic, talk to me first. Final exam schedule 15th.

After treating the abstract theory, we will concentrate on unitary groups.

If G is a compact matrix group, then 1 ∈ C(G) = Cc(G). Hence, for the left-invariant measure we have
∫
G

1 |η| < ∞.
We will always normalise η so that

∫
G

1 |η| = 1 (if we were turning this into a measure, we would say that this would be a
probability measure).

We now give a treatment of Maschke’s theorem which is somewhat special to compact Lie groups. There are more general
statements, however.

9.10 Theorem (MASCHKE’S THEOREM). Let G be a compact matrix group, and π : G→ GL(V) be a f.d. rep.

3If we view a group G as a category with one object in which every morphism is invertible, then a representation π is simply a functor from G to the
category of vector spaces. Such a map A is an intertwiner for σ and π if and only if it is the component of a natural transformation between σ and π. For
another perspective, since we can view representations merely as modules over the group ring, then Schur’s Lemma for representations is a special case of
the fact that any homomorphism between simple R-modules is either invertible or zero. This discussion has concerned only representations of groups – how
does all this extend to (continuous) representations of topological groups?
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(i) There is an inner product (•, •) on V such that π is unitary.

(ii) IfW ≤ V is a π-invariant subspace, thenW has a π-invariant complementary subspace. Moreover, if V is a C-vector
space, π is completely reducible:

V =

n⊕
i=1

Wi

where eachWi is π-invariant and irreducible for π (i.e. the only π-invariant subspaces ofWi are {0} andWi).

9.11 Example. If G = R (note R is not compact), put σ(t) =

[
1 t
0 1

]
. Then both (i) and (ii) fail.

Proof. We have:

(i) Pick an inner product for V , i.e. if {v1, . . . , vd} is a basis for V , let(
d∑
i=1

αivi,

d∑
i=1

βivi

)
0

=

d∑
i=1

αiβi.

Now, define for v, w ∈ V
(v, w) =

∫
G

(π(•)v, π(•)w)0 |η|

First observe that v 7→ (v, w) is linear, (v, w) = (w, v); this is an easy inspection. Also, since (•, •)0 is an inner product
and since π is continuous and G is compact, we have that for v 6= 0

m = min
g∈G

(π(g)v, π(g)v)0 = min
g∈G
‖π(g)v︸ ︷︷ ︸
6=0

‖20 > 0

We observe that
(v, v) =

∫
G

(π(•)v, π(•)v)0 |η| ≥
∫
G

m |η| = m > 0.

Now, if v, w ∈ V we have for g ∈ G that

(π(g)v, π(g)w) =

∫
G

(π(•)π(g)v, π(•)π(g)w)0 |η| =
∫
G

(π(•g)v, π(•g)w)0 |η|

∗
=

∫
G

(π(•)v, π(•)w)0 |η| = (v, w)

where at (*) we note that G is compact hence unimodular.

(ii) Let (•, •) be as above. IfW ≤ V is π-invariant we haveW⊥ is also π-invariant. Indeed, if w ∈ W , v ∈ W⊥ and g ∈ G
we have

(π(g)v, w) = (π(g−1g)v, π(g−1)w) = ( v︸︷︷︸
∈W⊥

,

∈W by π-invariance︷ ︸︸ ︷
π(g−1)w) = 0

Hence π(g)v ⊥ w for g ∈ G, v ∈ W⊥, w ∈ W so π(G)W⊥ ⊆ W⊥. If V is a C-vector space we letW1 ≤ V be a
π-invariant subspace of minimal dimension. If V2 = W⊥1 is {0} or is π-invariant, we are done. Otherwise, there is a
π-invariant subspace of minimal dimensionW2 ≤ V2. Continue. This process ends as dimV <∞.

We now introduce what is the “correct” notion of isomorphism for representations.

9.12 Definition. If σ : G → GL(V), π : G → GL(W) are two reps, we say that σ and π are similar, written as σ ∼ π, if
there is invertible S ∈ L(V,W) such that π(g)S = Sσ(g), for g in G.

Recall from Schur’s Lemma that if dimV , dimW < ∞ and σ, π are irreducible then any intertwiner A ∈ L(V,W) is either
invertible or 0.

9.2 Schur’s orthogonality relations

9.13 Theorem (SCHUR’S ORTHOGONALITY RELATIONS). Let G be a compact matrix group and π : G → U(V) and
σ : G→ U(W) be f.d. unitary irreps.
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(i) If π 6∼ σ then for v, w in V , x, y inW , ∫
G

(π(•)v, w)(σ(•)x, y) |η| = 0

i.e. (π(•)v, w) ⊥ (σ(•)x, y) in C(G) with its usual inner product.

(ii) If v, w, x, y ∈ V then ∫
G

(π(•)v, w)(π(•)x, y) |η| = 1

dimV
(v, x)(y, w).

Proof. Recall that for any sesquilinear form β : V×W → C (i.e. x 7→ β(x, y) is linear, y 7→ β(x, y) is conjugate linear), there
is A ∈ L(V,W) such that β(x, y) = (Ax, y). Indeed if {e1, . . . , edimV} is an orthonormal basis for V , {f1, . . . , fdimW} is
an orthonormal basis forW then we get a matrix with respect to these bases [A] = [(Aej , fi)].

(i) Let Av,x ∈ L(V,W) be given by

(Av,xy, w) =

∫
G

(π(•)v, w)(σ(•)x, y) |η|

We have for g ∈ G that

(Av,xσ(g)y, w) =

∫
G

(π(•)v, w)(σ(•)x, σ(g)y) |η| 1
=

∫
G

(π(•)v, w)(σ(g−1•)x, y) |η|

2
=

∫
G

(π(g•)v, w)(σ(•)x, y) |η| 1
=

∫
G

(π(•)v, π(g−1)w)(σ(•)x, y) |η|

= (Av,xy, π(g−1)w)
1
= (π(g)Av,xy, w).

At 1 we use unitarity; at 2 we use left invariance. Hence π(g)Av,x = Av,xσ(g) for all g ∈ G. By Schur’s Lemma,
Av,x = 0.

(ii) Define Av,x ∈ L(V) by

(Av,xy, w) =

∫
G

(π(•)v, w)(π(•)x, y) |η|.

Exactly as above, we see that π(g)Av,x = Av,xπ(g) for g ∈ G. Hence, by Schur’s Lemma, Av,x = λ(v, x)I for
λ(v, x) ∈ C. We then observe that (v, x) 7→ Av,x = λ(v, x)I is linear in v, and conjugate linear in x. Hence
λ : V × V → C is sesquilinear, so λ(v, x) = (Bv, x) for some B ∈ L(V). Let us observe∫

G

(π(•)v, w)(π(•)x, y) |η| = (Av,xy, w) = ((Bv, x)y, w) = (Bv, x)(y, w).

Thus if g ∈ G

(Bπ(g)v, π(g)x)(y, w) =

∫
G

(π(•g)v, w)(π(•g)x, y) |η|

uni
=

∫
G

(π(•)v, w)(π(•)x, y) |η| = (Bv, x)(y, w).

Thus we see that
(π(g−1)Bπ(g)v, x) = (Bπ(g)v, π(g)x) = (Bv, x),

hence π(g−1)Bπ(g) = B and hence Bπ(g) = π(g)B. Again, by Schur’s Lemma we obtain B = µI , µ ∈ C. Let us
compute µ. We first observe, for x ∈ V that Ax,x = λ(x, x)I = (Bx, x)I = (µIx, x)I = µ · (x, x)I = µ|x|2I . Thus,
if {e1, . . . , ed} (d = dimV) is an orthonormal basis for V (w.r.t. (•, •)) then

dµ|x|2 = Tr(Ax,x) =

d∑
i=1

(Ax,xei, ei) =

d∑
i=1

∫
G

(π(•)x, ei)(π(•)x, ei) |η|

=

∫
G

d∑
i=1

|(π(•)x, ei)|2 |η| =
∫
G

|π(•)x|2︸ ︷︷ ︸
|x|2

|η|

((•, •) is π-invariant and hence so is its norm). This is just |x|2 by normalisation of η. Thus if x 6= 0, we see that

µ =
1

d
=

1

dimV
.
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9.3 Matrix coefficient functions and the Peter-Weyl theorem

9.14 Definition. Let G be a compact matrix group. Let

Ĝ = {irreducible representations π : G→ U(d) for some d ∈ N}/≈.

Here, π ≈ σ if there is a unitary u such that uπ(•)u∗ = σ; in this case π and σ are usually called unitarily equivalent. By
standard abuse of notation, we will write π for the ≈-equivalence class of π.

9.15 Definition. If π ∈ Ĝ, let dπ be the d ∈ N such that π : G→ U(d). Fix an orthonormal basis {e1, . . . , edπ} for Cdπ . We
define the i, j matrix coefficient function πij : G→ C by

πij = 〈π(•)ej , ei〉,

so that π(g) = [πij(g)] w.r.t. {e1, . . . , edπ}. LetMπ = span{πij : i, j = 1, . . . , dπ} ⊂ C(G). Finally, let

M(G) = span{Mπ : π ∈ Ĝ}.

9.16 Remark. If π ≈ π′ as irreps, thenMπ =Mπ′ . In fact, even if π ∼ π′ (similar) thenMπ =Mπ′ .

9.17 Remark. We recall the Schur orthogonality relations which tell us that C(G) ⊆M(G), under inner product

(ϕ,ψ) =

∫
G

ϕψ |η|
(∫

G

1 |η| = 1

)
satisfies

1. Mπ ⊥Mσ if π 6≈ σ.

2. {
√
dππij : i, j = 1, . . . , dπ} is an orthonormal basis forMπ .

9.18 Definition. If π : G→ U(dπ) is a unitary rep (not necessarily irreducible) we fix an orthonormal basis {e1, . . . , edπ} for
Cdπ and define the conjugate representation π : G→ U(dπ) by

π(g) = [πij(g)].

9.19 Remark. Warning: this is basis dependent. Observe that, if π ≈ π′ then π = uπ′(•)u∗ (u∗ = u∗) so π ≈ π′. Thus
Mπ =Mπ′ . Also, π irreducible implies π irreducible. Finally, check that

Mπ =Mπ = {f : f ∈Mπ}.

9.20 Example. We have:

(i) Consider U(1) = {z ∈ C : |z| = 1}. We saw, after Schur’s lemma, that

Û(1) = {z 7→ zn : n ∈ Z}.

Let χn(z) = zn.Mχn = Cχn1
M(U(1)) = span{χn : n ∈ Z} = {z 7→

∑N
i=−N αiz

i : N ∈ N, αi ∈ C}. Observe

χn(z) = zn = zn = z−n = χ−n(z)

i.e. χn = χ−n.

(ii) Consider SU(2) and the standard/identity representation ι : SU(2)→ U(2). Check that ι ∈ ŜU(2). Recall (from A1)

SU(2) =

{[
α β

−β α

]
: α, β ∈ C, |α|2 + |β|2 = 1

}
and notice

ι

([
α β

−β α

])
=

[
α β
−β α

]
=

[
0 −1
1 0

] [
α β

−β α

] [
0 1
−1 0

]
= ι

([
α β

−β α

])
so ι = ι.

9.21 Proposition. If π ∈ Ĝ, then Mπ ⊂ C(G) is λ-invariant (λ is the left regular representation) and, moreover, for each
k = 1, . . . , dπ the subspace

M(k)
π = span{πik : i = 1, . . . , dπ}

satisfies that λ(•)|M(k)
π
≈ π.
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Proof. First, if g, h ∈ G,

λ(g)πik(h) = πik(g−1h) = π(g−1h)ik =

dπ∑
j=1

πij(g
−1)πjk(h) =

dπ∑
j=1

πji(g)πjk(h)

([πij(g−1)] = [πij(g)]∗ = [πji(g)]) so

λ(g)πik =

dπ∑
j=1

πji(g)πjk ∈M(k)
π

Thus eachM(k)
π is λ-invariant soMπ = span{M(k)

π : k = 1, . . . , dπ} is λ-invariant. Define A : Cdπ →M(k)
π by

A

 x1

...
xdπ

 =

dπ∑
j=1

xjπjk

so A is a unitary (check!). Then

λ(g)A

 x1

...
xdπ

 = λ(g)

dπ∑
j=1

xjπjk =

dπ∑
j=1

xj

dπ∑
i=1

πij(g)πjk

=

dπ∑
i=1

 dπ∑
j=1

πij(g)xj

πjk = A


...∑dπ

j=1 πij(g)xi
...

 = Aπ(g)

 x1

...
xdπ

 .
9.22 Definition. Recall the tensor product

Cd1 ⊗ Cd2 = span{v ⊗ w : v ∈ Cd1 , w ∈ Cd2}.

Fix inner products (•, •)1 on Cd1 , (•, •)2 on Cd2 and define n∑
i=1

vi ⊗ xi,
m∑
j=1

wj ⊗ yj

 :=

n∑
i=1

m∑
j=1

(vi, wj)1(xi, yj)2.

This defines an inner product on Cd1 ⊗ Cd2 .

9.23 Remark (BASIS FOR TENSOR PRODUCT). Observe that if {e1, . . . , ed1
} is an (•, •)1-orthonormal basis for Cd1 and

{f1, . . . , fd2} is an (•, •)2-orthonormal basis for Cd2 then

{ei ⊗ fj : i = 1, . . . , d1, j = 1, . . . , d2}

is an (•, •)-orthonormal basis for Cd1 ⊗ Cd2 .

9.24 Definition (TENSOR PRODUCT OF REPRESENTATIONS). If u ∈ U(d1) and v ∈ U(d2) then it’s easy to convince
yourself that u⊗ v ∈ U(Cd1 ⊗ Cd2). If π, σ ∈ Ĝ we define π ⊗ σ : G→ U(Cdπ ⊗ Cdσ ) by

(π ⊗ σ)(g) = π(g)⊗ σ(g) that is [πij(g)]⊗ [σk`(g)] ≈
[
[πij(g)σk`(g)]ij

]
k`
.

Observe that if π = uπ′(•)u∗ and σ = vσ′(•)v∗ with u, v unitary, then

π ⊗ σ = (u⊗ v)(π′ ⊗ σ′)(•) (u∗ ⊗ v∗)︸ ︷︷ ︸
(u⊗v)∗

.

Hence if π ≈ π′, σ ≈ σ′ then π ⊗ σ ≈ π′ ⊗ σ′ so this operation is well-defined on ≈-classes. By Maschke’s theorem,

π ⊗ σ = τ1 ⊕ . . .⊕ τm

on Cdπ ⊗ Cdσ = V1 ⊕ . . .⊕ Vm, i.e.

(π ⊗ σ)(g) ≈

τ1(g) 0
. . .

0 τm(g)
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Let Pj ∈ L(Cdπ ⊗ Cdσ ) be the orthogonal projection onto Vj , j = 1, . . . ,m. Then if v, w ∈ Cdπ , x, y ∈ Cdσ

(π(g)v, w)(σ(g)x, y) = (π(g)⊗ σ(g) v ⊗ x,w ⊗ y) =

n∑
j=1

(Pjπ(g)⊗ σ(g)v ⊗ x,w ⊗ y)

=

m∑
j=1

(π(g)⊗ σ(g)Pjv ⊗ x, Pjw ⊗ y)

and we see that

(π(•)v, w)(σ(•)x, y) =

m∑
j=1

(π ⊗ σ(•)Pjv ⊗ x, Pjw ⊗ y)︸ ︷︷ ︸
∈Mτj

soMπ · Mσ ⊂
∑m
j=1Mτj . We conclude thatM(G) is an algebra of functions on G.

9.25 Theorem (PETER-WEYL THEOREM I). IfG is a compact matrix group thenM(G) is uniformly dense in C(G), hence
‖ · ‖2-dense.

Proof. The family of functionsM(G) is

• an algebra (tensor products)

• conjugate closed (conjugate representation)

We have, by Maschke’s theorem, that G ⊂̃U(n), and moreover, the standard representation ι : G → U(n) decomposes into
irreducible subrepresentations ι = σ1 ⊕ . . .⊕ σm. The space

Mι =

m∑
j=1

Mσj ⊆M(G)

separates points. Thus, by Stone-Weierstrass theorem,M(G)
‖·‖∞

= C(G). Observe that for ϕ ∈ C(G),

‖ϕ‖2 =

∫
G

|ϕ|2︸︷︷︸
≤‖ϕ‖2∞

|η|


1/2

≤ ‖ϕ‖∞
(∫

G

12 |η|
)1/2

= ‖ϕ‖∞

by normalisation of η. Thus for ϕ ∈ C(G), if (ψn)∞n=1 ⊂M(G) satisfies limn→∞ ‖ϕ− ψn‖∞ = 0, then

lim
n→∞

‖ϕ− ψn‖2 = 0.

Unofficial exam date: April 15, 12:30 – 3pm. Details soon posted on website. Exam problems forthcoming.

9.26 Theorem (PETER-WEYL THEOREM II). If f ∈ C(G), let for π ∈ Ĝ

f̂(π) =

∫
G

f π(•)∗ |η|

(matrix-valued integral). Then

f =
∑
π∈Ĝ

dπ Tr(f̂(π)π(•)) (convergence in ‖ · ‖2)

‖f‖22 =
∑
π∈Ĝ

dπ‖f̂(π)‖2︸ ︷︷ ︸
=Tr(f̂(π)f̂(π)∗)

2
.

In particular,
{
√
dππij : π ∈ Ĝ, i, j = 1, . . . , dπ}

is an orthonormal basis for C(G).
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9.27 Example. G = T = U(1), the Fourier coefficient

f̂(n) =
1

2π

∫ π

−π
f(θ)einθ dθ

note that the “n” in the argument of f̂ is just a stand-in for the character χn.

Proof of theorem. Recall, from the Schur orthogonality relations,

{
√
dππij : π ∈ Ĝ, i, j = 1, . . . , dπ}

is an orthonormal basis forM(G). Hence for ψ ∈M(G) we have

ψ =
∑
π∈Ĝ

dπ∑
i,j=1

(ψ,
√
dππij)

√
dππij noting that the first sum is finite

=
∑
π∈Ĝ

dπ

dπ∑
i,j=1

(∫
G

ψπij |η|
)
πij π is unitary so [πij(•)]∗ = [πji(•)]

=
∑
π∈Ĝ

dπ Tr

([∫
G

ψπij |η|
]

[πij(•)]
)

=
∑
π∈Ĝ

dπ Tr(ψ̂(π)π(•)).

We recall from before that M(G) is ‖ · ‖2-dense in C(G). Hence {
√
dππij : π ∈ Ĝ, i, j = 1, . . . , dπ}, being a maximal

orthonormal set forM(G), is a maximal orthonormal set for C(G). Hence for f ∈ C(G),∥∥∥∥∥f −∑
π∈F

dπ Tr(f̂(π)π(•))

∥∥∥∥∥
2

= dist‖·‖2(f, spanC{πij : π ∈ F, i, j = 1, . . . , dπ}) for F ⊂ Ĝ finite.

As F ↑ Ĝ, the above goes to 0. Likewise, we see that

‖f‖22 = lim
F↑Ĝ
F finite

∑
π∈F

dπ∑
i,j=1

|(f,
√
dππij)|2︸ ︷︷ ︸

dπ‖f̂(π)‖22 by computation

=
∑
π∈Ĝ

dπ‖f̂(π)‖22.

9.28 Corollary. If G is a compact matrix group then every unitary irrep π : G→ U(V) is on a f.d. Euclidean space V .

9.29 Remark. For an infinite dimensional rep π, we say π is irreducible if there are no proper, nontrivial closed subspaces
W ≤ V which are π(G)-invariant.

Proof. If π is an infinite dimensional irrep, then a variant of Schur’s Lemma shows the only bounded operators A ∈
L(V) which commute with π are λI (λ ∈ C). The proof of Schur’s orthogonality relations can be modified to show that
(π(•)v, w) ⊥M(G). However, then for each σ ∈ Ĝ, f̂(σ) = 0. As above, f = 0.

9.30 Definition. LetG be a compact matrix group. A class function f ∈ C(G) is a function which satisfies f(ghg−1) = f(h)
for g, h ∈ G, i.e. it is constant on conjugacy classes.

If π : G→ U(dπ) is a unitary rep, then its character is defined by

χπ(g) = Tr(π(g))

9.31 Remark. If π ≈ π′ i.e. π = uπ′(•)u∗ for a unitary u (in fact, the same remark even holds if π ∼ π′), then χπ = χπ′ .
Hence the character depends only on the unitary equivalence (or even similarity) class of π. Now if g, h ∈ G,

χπ(ghg−1) = Tr(π(g)π(h)π(g)−1) = Tr(π(h)) = χπ(h).

Hence characters are class functions.

9.32 Corollary (PETER-WEYL THEOREM FOR CLASS FUNCTIONS). We have:
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(i) If π, σ ∈ Ĝ then

(χπ, χσ) =

∫
G

χπχσ |η| = δπ,σ (Kronecker)

(ii) If f ∈ C(G) is a class function, then

f =
∑
π∈Ĝ

(f, χπ)χπ (‖ · ‖2-convergence)

and
‖f‖22 =

∑
π∈Ĝ

|(f, χπ)|2

In particular, {χπ : π ∈ Ĝ} is a maximal orthonormal set of class functions.

Proof. We have:

(i) Note that

(χπ, χπ) =

∫
G

χπχπ |η| =
∫
G

dπ∑
i=1

πii

dπ∑
j=1

πjj |η| =
dπ∑
i,j=1

∫
G

πiiπjj |η|︸ ︷︷ ︸
1
dπ
δi,j by Schur orthogonality

=

dπ∑
i=1

1

dπ
= 1.

Likewise, that (χπ, χσ) = 0 for π 6≈ σ, is trivial.

(ii) Let us examine

f̂(π) =

∫
G

f π(•)∗ |η|

for a class function f . For g in G let us check

π(g)f̂(π)π(g−1) =

∫
G

fπ(g)π(•)∗π(g−1) |η|

=

∫
G

f π(g−1 • g)∗ |η|

=

∫
G

f(g • g−1)π(•)∗ |η| by left-invariance and unimodularity

=

∫
G

f π(•)∗ |η| = f̂(π)

Hence, by Schur’s Lemma, f̂(π) = λπI . Moreover,

λπdπ = Tr(f̂(π)) =

∫
G

f Tr(π(•)∗)︸ ︷︷ ︸
Tr(π(•))

|η| =
∫
G

f χπ |η| = (f, χπ) =⇒ f̂(π) =
(f, χπ)

dπ
I.

Simply use the formulas from Peter-Weyl II to get the series of the Corollary.

A lemma for later use. We are only really interested in this in a concrete situation.

9.33 Lemma. Let G be a compact matrix group and (M,d) a compact metric space on which

• there is a continuous action of G
(g, x) 7→ g · x : G×M →M

(continuous map from G×M to M ).

• d is G-invariant:
d(gx, gy) = d(x, y)

(equivalently d(x, gy) = d(g−1x, y)).

Then:
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(i) OrbG(M) = {Gx : x ∈M}. The function ρ : OrbG(M)×OrbG(M)→ R≥0

ρ(Gx,Gy) = min
g∈G

d(x, g · y)

is a metric.

(ii) We have
{f ∈ C(M) : f(x) = f(gx) for all x ∈M, g ∈ G} = C(OrbG(M)) ◦ q

where q : M → OrbG(M), q(x) = Gx.

Proof. We have:

(i) Observe that g 7→ g · y is continuous, and G is compact, thus we can use “min” in the definition of ρ, rather than “inf”.
Then

• ρ(Gx,Gy) = 0 if and only if d(x, gy) = 0 for some g ∈ G, iff x = gy, iff Gx = Gy.

• ρ(Gx,Gy) = ming∈G d(x, gy) = ming∈G d(g−1x, y) = ming∈G d(y, gx) = ρ(Gy,Gx).

• ρ(Gx,Gy) = ming∈G d(x, gy) ≤ ming∈G(d(x, g′z) + d(g′z, gy)) for z ∈M, g′ ∈ G,

= d(x, g′z) + min
g∈G

d(z, g′
−1
gy) = d(x, g′z) + min

g∈G
d(z, gy)

hence
ρ(Gx,Gy) ≤ min

g′∈G
d(x, y′z) + min

g∈G
d(z, gy) = ρ(Gx,Gz) + ρ(Gz,Gy).

(ii) We observe that
ρ(q(x), q(y)) ≤ d(x, y)

so q : M → OrbG(M) is continuous (indeed Lipschitz). Hence if f̃ ∈ C(OrbG(M)), then f̃ ◦ q ∈ C(M). Clearly
f = f̃ ◦ q satisfies

f(x) = f(gx)

for g ∈ G, x ∈ M . Let f ∈ C(M) such that f(x) = f(gx) for g ∈ G, x ∈ M . Then, since M is compact, f
is uniformly continuous. Hence, given ε > 0, there is δ > 0 s.t. d(x, y) < δ implies |f(x) − f(y)| < ε. Define
f̃(Gx) = f(x). This is well-defined. If ε, δ are as above and ρ(Gx,Gy) < δ, then there is g ∈ G s.t.

|f̃(Gx)− f̃(Gy)| = |f(x)− f(gy)| < ε.

Clearly f̃ ◦ q = f .

9.34 Corollary. Consider the action of a compact matrix group G on itself by g · h = ghg−1. Write

Conj(G) = OrbG(G).

Then span{χ̃π : π ∈ Ĝ} is ‖ · ‖2-dense in C(Conj(G)).

9.35 Remark. On C(Conj(G)) we let

(f̃ , g̃) =

∫
G

f̃ ◦ q g̃ ◦ q |η|

Proof. We recall that by Maschke’s theorem, G ⊂̃U(d). The metric

d(x, y) = ‖x− y‖ = ‖g(x− y)‖ = d(gx, gy), g ∈ G.

Here we are in the context of the lemma above. Now, notice that C(Conj(G))◦q is simply the space of class functions. Appeal
to the last version of the Peter-Weyl theorem.
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9.4 Weyl integral formula for U(n)

If we wish to understand all irreducible characters (i.e. characters arising from irreps), it will be nice to know how to integrate.
Recall

U(n) = {g ∈ GLn(C) : g∗g = I}.

9.36 Definition. Let U = U(1) (∼= T = R/Z) and

T =


z1 0

. . .
0 zn

 : z1, . . . , zn ∈ U

 ∼= Un.

9.37 Fact. T is a normal maximal abelian subgroup of U(n) i.e. if H 6≥ T and H ≤ U(n), then H is non-abelian.

By unitary diagonalisation, each g ∈ U(n) is conjugate to an element of T.

9.38 Exercise. Conj(U(n)) = OrbSn(T) where each σ ∈ Sn acts by permuting the diagonal:

σ ·

z1

. . .
zn

 =

zσ(1)

. . .
zσ(n)


Hence if f ∈ C(U(n)) is a class function, then f is determined by f |T. Recall

u(n) = {X ∈ gln(C) : X∗ = −X}.

We form a basis
β = {Xk` = Ek` − E`k, Yk` = i(Ek` + E`k)}1≤k<`≤n ∪ {Hk = iEkk}nk=1

Observe, dimR u(n) = |β| = 2n(n−1)
2 + n = n2. Also observe

t = spanR{H1, . . . ,Hn} = Lie(T).

We let m = spanR{Xk`, Yk`}1≤k<`≤n. Let us show that m is Ad T-invariant. Indeed if z ∈ T,

Ad z(Xk`) = zkz`Ek` − z`zkE`k = Re(zkz`)(Ek` − E`k) + i Im(zkz`)(Ek` + E`k)

= Re(zkz`)Xk` + Im(zkz`)Yk`.

Similarly
Ad z(Yk`) = − Im(zkz`)Xk` + Re(zkz`)Yk`.

9.39 Definition. Given z = diag(z1, . . . , zn) ∈ T we define the Vandermonde by

V (z) = det


1 z1 z2

1 · · · zn−1
1

1 z2 · · · · · · zn−1
2

...
...

1 zn · · · · · · zn−1
n

 =
∑
σ∈Sn

sgnσ · z0
σ(1)z

1
σ(2) · · · z

n−1
σ(n) =

∏
1≤k<`≤n

(z` − zk).

9.40 Theorem (WEYL INTEGRAL FORMULA). For f ∈ C(U(n)),∫
U(n)

f |η| = 1

n!

∫
T

[∫
U(n)

f(gzg−1) dg

]
|V (z)|2 dz.

9.41 Remark (NOTATION). Let η ∈ Altn
2

(U(n)) and Θ ∈ Altn(T) be such that they give invariant integrals of “mass” 1.
Write ∫

U(n)

f |η| =
∫

U(n)

f(g) dg and
∫

T

f |Θ| =
∫

T

f(z) dz.

In particular, if f is a class function, then ∫
U(n)

f |η| = 1

n!

∫
T

f |T |V (•)|2 |Θ|.
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“Most” of a proof. Step #1: Let us analyse the map γ : U(n) × T → U(n) given by γ(g, z) = gzg−1. We compute the
derivative (differential) of γ at (g, z):

Dγ(g, z) : gu(n)× zt→ gzg−1u(n)

is given by

Dγ(g, z)(gX, zH) =
d

dt

∣∣∣∣
t=0

g exp(tX)z exp(tH) exp(−tX)g−1

= gXzg−1︸ ︷︷ ︸
∈gu(n)zg−1=gzg−1u(n)

+gzHg−1 − gzXg−1

= gz[z−1Xz −X +H]g−1 = gzg−1 Ad g[(Ad z−1 − id)X +H︸ ︷︷ ︸
Φz(X,H)

].

We remark that Φz|t×{0} = 0 so Dγ(g, z)|gt×{0} = 0. With respect to basis

(X12, Y12, . . . , Xn−1,n, Yn−1,n, H1, . . . ,Hn)

of m× t or u(n) we have

[Φz] =



Re(z1z2)− 1 Im(z1z2)
− Im(z1z2) Re(z1z2)− 1

. . .
Re(zn−1zn)− 1 Im(zn−1zn)
− Im(zn−1zn) Re(zn−1zn)− 1

1
. . .

1


Hence

det Φz =
∏

1≤i<j≤n

[(Re(zizj)− 1)2 + Im(zizj)
2] =

∏
1≤i<j≤n

|zizj − 1|2 = |V (z)|2

Observe that V (z) = 0 if zi = zj for some i 6= j. If all entries zi are distinct, we call z a regular point of T. Let

Treg = {z ∈ T : z is regular}.

Let U(n)reg = γ(U(n) × Treg). We observe U(n) \ U(n)reg is a proper analytic variety of U(n) (i.e. finite union of proper
submanifolds). Hence U(n) \U(n)reg has Jordan content zero.

Step #2: We define γ∗η ∈ Altn
2

(U(n)× T) by setting for (X1, Z1), . . ., (Xn2 , Zn2) in u(n)× t at (g, z) ∈ U(n)× T

γ∗η(g,z)(. . . , (gXk, zZk), . . .) = ηgzg−1(. . . , Dγ(g, z)(gXk, zZk), . . .)

= ηgzg−1(. . . , gzg−1 Ad g ◦ Φz(Xk, Zk), . . .)

= ηI(. . . ,Ad g ◦ Φz(Xk, Zk), . . .)

= det Ad g︸ ︷︷ ︸
=1 since U(n) is connected

and det ◦Ad:U(n)→(R\{0},·)
is a continuous homomorphism

·det Φz · ηI(. . . , Xk + Zk, . . .)

= |V (z)|2ηI(. . . , Xk + Zk, . . .)

Further, if
X1, . . . , Xn(n−1) ∈ m, Z1, . . . , Zn ∈ t,

then for (g, z) ∈ U(n)× T

γ∗η(g,z)((gX1, 0), . . . , (gXn(n−1), 0), (0, zZ1), . . . , (0, zZn)) = |V (z)|2ηI(X1, . . . , Xn(n−1), Z1, . . . , Zn)

= |V (z)|2ηI(
[
X1 . . . Xn(n−1) 0

0 Z1 · · · Zn

]
) = |V (z)|2ωI(X1, . . . , Xn(n−1))Θ

′
I(Z1, . . . , Zn)
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where ωI is an n(n− 1)-linear alternating form on m, likewise for Θ′I . We have that if we let

ωg(gX1, . . . , gXn(n−1)) = ωI(X1, . . . , Xn(n−1))

then

ωg(gX1, . . . , gXn(n−1))Θ
′
I(Z1, . . . , Zn) = ωI(X1, . . . , Xn(n−1))Θ

′
I(Z1, . . . , Zn)

= ηI(X1, . . . , Xn(n−1), Z1, . . . , Zn)

= ηz(zX1, . . . , zXn(n−1), zZ1, . . . , zZn), z ∈ T

= ωz(zX1, . . . , zXn(n−1))Θ
′
z(zZ1, . . . , zZn)

= ωI(X1, . . . , Xn(n−1))Θ
′
z(zZ1, . . . , zZn)

and hence the accordingly defined Θ′ ∈ Altn(T) is left-invariant.

Now, consider f ∈ C(U(n)) such that supp(f) ⊂ U(n)reg (done to make the next sentence legitimate; we want Dγ(g, z)|gm×zt
to be non-singular.)

Also, the Implicit Function Theorem tells us that given (g, z) ∈ U(n) × T, there are neighbourhoods of 0: U1 ⊂ m, U2 ⊂ t
such that

Γ : U1 × U2 → U(n), Γ(X,H) = γ(g expX, z expH),

Γ(U1 × U2) is open in U(n), and Γ : U1 × U2 → Γ(U1 × U2) is diffeomorphism.

We have ∫
U(n)

f |η| =
∫
γ(U(n)×T)

f |η| ∗= 1

cγ

∫
U(n)×T

f ◦ γ |γ∗η|

=
1

cγ

∫
U1×U2

f(Γ1(X)Γ2(H)Γ1(X)−1) |V (Γ2(H))|2

· |ωΓ1(X)(DΓ1(X))||Θ′Γ2(X)(DΓ2(H))| dX dH

=
1

cγ

∫
U2

[∫
U1

f(Γ1(X)Γ2(H)Γ1(X)−1) |ωΓ1(X)(DΓ1(X))| dX︸ ︷︷ ︸∫
U(n)

f(gzg−1) dg z=Γ2(H)

]
|V (Γ2(H))|2

· |Θ′Γ2(H)︸ ︷︷ ︸
left invariant=ΘΓ2(H)(DΓ2(H))

(DΓ2(H))| dH

=
1

cγ

∫
T

[∫
U(n)

f(gzg−1) dg

]
|V (z)|2 dz

where (*) is the change of variables formula.

Γ1(X) = g expX , Γ2(H) = z expH .

Assignment #5 on website.

For “decent” f ∈ C(U(n)) there nbhds U1 of 0 in m, U2 of 0 in T such that∫
U(n)

f |η| = 1

cγ

∫
U(n)×T

f ◦ γ |γ∗η|, actual change of variables formula

=
1

cγ

∫
U1×U2

f(Γ1(X)Γ2(H)Γ1(X)−1)|V (Γ2(H))|2 dX dH

=
1

cγ

∫
U2

[∫
U1

f(Γ1(X)Γ2(H)Γ1(X)−1) · ωΓ1(X)(DΓ1(X)) dX

]
︸ ︷︷ ︸

(††)

· |V (Γ2(H))|2|ΘΓ2(H)(DΓ2(H))| dH

=
1

cγ

∫
T

∫
G

f(gzg−1) dg |V (z)|2 dz
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(††) X 7→ g exp(X) · T : m → Orbright
T (G) ∼= G/T (note G = U(n)), for choices of g gives inverse coordinates on G/T,

making G/T a manifold. Then ω“∈” Altn(n−1)(G/T) is a left invariant form on G/T. This means if f ∈ C(U(n)) s.t.
f(gz) = f(g), i.e. f = f̃ ◦ q, f̃ ∈ C(G/T). ∫

G/T

f̃(g•)|ω| =
∫
G/T

f̃ |ω|

∫
G

f(g•) |η| =
∫
G

f |η|

We have ∫
G/T

f̃ |ω| =
∫
G

f |η|

i.e. by restricting f 7→
∫
G
f |η| to C(G/T) ◦ q, we get f 7→

∫
G/T

f̃ |ω|.

Now, having that ∫
U(n)

f(g) dg =
1

cγ

∫
T

∫
U(n)

f(gzg−1) dg |V (z)|2 dz

for f supported on U(n), e.g. “standard approximation” allows us to achieve this for general f ∈ C(U(n)) [U(n)reg =⊔n!
k=1 Ck, each Ck open and ∂Ck has Jordan content zero. Then

f =

n!∑
k=1

f1Ck where 1Ck =

{
1 on Ck
0 off Ck

and we apply the formula above to each f1Ck .]

STEP #3: Calculate cγ

We have

1 =

∫
U(n)

1 |η|

=
1

cγ

∫
T

∫
U(n)

1 dg |V (z)|2 dz

=
1

cγ

∫
T

|V (z)|2 dz

=
1

cγ

∫
T

(∑
σ∈Sn

sgn(σ)z0
σ(1)z

1
σ(2) · · · z

n−1
σ(n)

)(∑
τ∈Sn

sgn(τ)z0
τ(1)z

1
τ(2) · · · z

n−1
τ(n)

)
dz

=
1

cγ

∑
σ∈Sn

∑
τ∈Sn

∫
T

sgnσ sgn τ z0
σ(1) · · · z

n−1
σ(n)z

0
τ(1) · · · z

n−1
τ(n)︸ ︷︷ ︸

1 if σ=τ , 0 otherwise

dz

=
1

cγ
|Sn| =

1

cγ
n!

hence cγ = n!.

9.5 Representation (Character) Theory of U(n)

Recall that

T =

z =

z1

. . .
zn

 : z1, . . . , zn ∈ U

 ∼= Un.

9.42 Proposition. T̂ = {γµ : µ ∈ Zn} where γµ(z) = zµ := zµ1

1 zµ2

2 · · · zµnn .
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Proof. T is abelian so by Schur’s lemma, each irrep is 1-dimensional. For j = 1, . . . , n let

γ(j) = γ|T(j)

where

T(j) =




1

. . .
zj

. . .
1

 : zj ∈ U


∼= U.

From before we have that γ(j)(zj) = z
µj
j for some µj ∈ Z. Now if γ ∈ T̂ we have

γ(z) = γ(1)(z1) · · · γ(n)(zn) = zµ1

1 · · · zµnn = zµ = γµ(z).

9.43 Corollary (OF THE PETER-WEYL THEOREM). We have:

(i) M(T) = span{γµ : µ ∈ Zn} ∼= C[z1, . . . , zn, z1, . . . , zn] ∼= C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ] (Laurent polynomials).

(ii) {γµ : µ ∈ Zn} form an orthonormal basis forM(T) (hence for C(T)) w.r.t. (ϕ,ψ) =
∫

T
ϕψ |Θ|.

Recall that Conj(U(n)) = OrbSn(T) where

σ · z =

zσ(1)

. . .
zσ(n)

 .
Indeed, each element g ∈ U(n) is conjugate to an element z ∈ T (unitary diagonalisability). If z, z′ ∈ T are conjugate in
U(n), i.e. gzg−1 = z′ for some g in U(n), then the values (eigenvalues) of z are the same as those of z′, i.e. σ · z = z′ for
some σ ∈ Sn. Conversely, if σ · z = z′ for some σ ∈ Sn, define the permutation matrix

pσ = [δi,σ(j)].

Then σ · z = pσzp
−1
σ , hence z is conjugate to z′. Thus

C(Conj(U(n))) ∼= C(OrbSn(T)) ∼= {f ∈ C(T) : f(σ · z) = f(z) for σ ∈ Sn, z ∈ T}

We introduce two spaces
MS(T) = {ϕ ∈M(T) : ϕ(σ · z) = ϕ(z) for σ ∈ Sn, z ∈ T}

MA(T) = {ϕ ∈M(T) : ϕ(σ · z) = sgnσ · ϕ(z) for σ ∈ Sn, z ∈ T}

We remark thatMS(T) is a subalgebra ofM(T). AlsoMS(T)MA(T) =MA(T) andMA(T)MA(T) ⊆MS(T).

9.44 Example (SYMMETRIC POLYNOMIALS). For µ ∈ Zn, put

Sµ =
∑
σ∈Sn

γµ·σ, where µ · σ = (µσ−1(1), . . . , µσ−1(n)).

Notice that γµ·σ(z) = γµ(σ · z) and hence Sµ ∈MS(T).

Notice that if ν = µ · τ , with ν, µ ∈ Zn, τ ∈ Sn, then Sµ = Sν . In particular, let

Zn+ = {µ = (µ1, . . . , µn) ∈ Zn : µ1 ≥ . . . ≥ µn}

(dominant weights). Thus for µ ∈ Zn, Sµ = Sν for some ν ∈ Zn+.

9.45 Example (ANTISYMMETRIC POLYNOMIALS). Let

Zn++ = {α = (α1, . . . , αn) ∈ Zn : α1 > α2 > . . . > αn}

(strictly dominant weights). For α ∈ Zn++ let

Aα =
∑
σ∈Sn

sgn(σ)γα·σ

Check that Aα ∈MA(T).
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9.46 Proposition. We have:

(i) {Aα : α ∈ Zn++} is a basis forMA(T).

(ii) With respect to inner product 1
n! (•, •) [(•, •) usual inner product onM(T)] {Aα : α ∈ Zn++} is an orthonormal basis

forMA(T).

Proof. We have:

(i) Suppose f ∈ MA(T) and write f =
∑
µ∈Zn cµγµ where cµ ∈ C, all but finitely many cµ are 0. If ν ∈ Zn satisfies

νi = νj for some i 6= j then the transposition τ = (ij) (cycle notation) satisfies ν · τ = ν.

Then for z ∈ T we have

−
∑
µ∈Zn

cµz
µ = −f(z) = sgn(τ)f(z)

= f(τ · z)

=
∑
µ∈Zn

cµ(τ · z)µ

=
∑
µ∈Zn

cµz
µ·τ =

∑
µ∈Zn

cµ·τ−1zµ

Thus
−cν = (−f, γν) = cν·τ−1 = cν =⇒ cν = 0.

Thus, cµ 6= 0 only if µ is regular i.e. µi 6= µj for i 6= j. Hence we may rewrite

f =
∑

α∈Zn++

∑
σ∈Sn

cα·σ︸︷︷︸
∗

γα·σ

(*: all regular weights appear this way). Now for any τ ∈ Sn we have

sgn(τf) = f · τ

=
∑

α∈Zn++

∑
σ∈Sn

cα·σγα·(στ)

=
∑

α∈Zn++

∑
σ∈Sn

cα·(στ−1)γα·σ

Now we have
−cα = (f, γα) = sgn(τ) (sgn(τ)f, γα) = sgn(τ)cα·τ−1

and hence cα·τ = sgn(τ)cα. ThusMA(T) ⊂ span{Aα : α ∈ Zn++}.

(ii) It is obvious from (•, •)-orthonormality of {γµ : µ ∈ Zn}, that (Aα, Aα′) = n!δα,α′ . In particular, {Aα : α ∈ Zn++} is
linearly independent, and an 1

n! (•, •)-orthonormal basis.

Recall thatM(T) ∼= C[z1, . . . , zn, z1, . . . , zn] ∼= C[x1, . . . , xn,
1
x1
, . . . , 1

xn
].

Let R be a principal ideal domain, so R is a unique factorization domain. If R is a PID, then both R[x] and R[x]/〈a〉 are PIDs
(〈a〉 = aR). Hence if R is a PID, then R[x, 1

x ] ∼= R[x, t]/〈xt− 1〉 is a PID. By a simple induction, C[x1, . . . , xn,
1
x1
, . . . , 1

xn
]

is a PID, hence UFD.

Let

V (z) = det

z
n−1
1 . . . z1 1
...

zn−1
n . . . zn 1

 =
∑
σ∈Sn

sgn(σ)zn−1
σ(1) · · · z

1
σ(n−1)z

0
σ(n)

= Aδ(z), δ = (n− 1, n− 2, . . . , 1, 0) ∈ Zn++

=
∏

1≤k<`≤n

(zk − z`)
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Now, if α ∈ Zn++, then

Aα(z) =
∑
σ∈Sn

sgn(σ)zα1

σ(1) · · · z
αn
σ(n) = det

z
α1
1 . . . zαn1
...

...
zα1
n . . . zαnn


Note that the same is true of Aα(x) ∈ C[x1, . . . , xn,

1
x1
, . . . , 1

xn
]. We have xk − x` | Aα(x) for all k < `. Hence, this means

that
V (x) =

∏
1≤k<`≤n

(xk − x`) | Aα(x).

so the map z 7→ Aα(z)
V (z) defines an element ofM(T) ∼= C[z1, . . . , zn, z1, . . . , zn]. Now, let δ = (n − 1, . . . , 1, 0) ∈ Zn++.

λ 7→ λ+ δ : Zn+ → Zn++ is a bijection. We then define, for λ ∈ Zn+, the Schur function

sλ(z) =
Aλ+δ(z)

V (z)
.

By comments above, sλ(z) ∈M(T); in fact, sλ(z) ∈MS(T).

9.47 Corollary (TO LAST PROPOSITION). The family {sλ : λ ∈ Zn+} is an orthonormal basis forMS(T) with respect to
the inner product (•, •)V , given by

(φ, ψ)V =
1

n!

∫
T

φψ|V |2|Θ| (“weighted inner product”).

Proof. If φ, ψ ∈MS(T), then

(φ, ψ)V =
1

n!

∫
T

φV ψV |Θ|.

We have that sλV = Aλ+δ , and {Aα : α ∈ Zn++} = {Aλ+δ : λ ∈ Zn+} is an orthonormal basis forMA(T) with respect to
1
n! (•, •). Hence {sλ : λ ∈ Zn+} is orthonormal with respect to (•, •)V .

If S ∈MS(T), then SV ∈MA(T) so

SV =
∑

α∈Zn++

cαAα, cα ∈ C, finitely many nonzero.

Thus
S =

∑
α∈Zn++

cα
Aα
V

=
∑
λ∈Zn+

cλ
Aλ+δ

V
=
∑
λ∈Zn+

cλsλ

so it is a basis forMS(T).

9.48 Theorem (PARAMETERIZATION OF Û(n)). {χπ|T : π ∈ Û(n)} = {sλ : λ ∈ Zn+}.

9.49 Remark. Hence, we parameterize Û(n) by Zn+; we write π = πλ, and χπλ = χλ. So χλ|T = sλ.

Proof. We first show “⊆”. If π ∈ Û(n), then

π|T ≈

γµ1 0
. . .

0 γµn


by Maschke’s theorem applied to T. Hence χπ|T = mγµ1 ,πγµ1 + . . .+mγ

µk
,πγµk , up to relabelling of µj . Thus

χπ|T︸ ︷︷ ︸
∈MS(T)

· V︸︷︷︸
∈MA(T)

∈ spanZ{γµ : µ ∈ Zn} ∩MA(T).

Moreover, χπ|T · V =
∑
α∈Zn++

mαAα, mα ∈ Z≥0. [Inspect multiplication by χπ|T of V (z) = zn−1
1 · · · z1

n−1z
0
n +∑

σ∈Sn\{id} sgn(σ) · · · ]. For each λ ∈ Zn+, we have

(χπ|T , sλ)V =
1

n!

∫
T

χπ|T · V Aλ+δ |Θ| = mλ+δ as we have orthonormal basis, etc.
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so
(χπ|T , χπ|T) =

∑
λ∈Zn+

m2
λ+δ.

Now, by Schur’s orthogonality relations (and Peter-Weyl for class functions),

1 =

∫
U(n)

|χπ|2 |η|
WIF
=

1

n!

∫
T

| χπ|T |
2|V |2 |η| = (χπ|T , χπ|T)V .

Thus we conclude that
1 =

∑
λ∈Zn+

mλ+δ︸ ︷︷ ︸
∈Z≥0

2

thus exactly one mλ+δ = 1, all the rest are 0. Thus χπ|T = sλ for some λ, as needed.

It remains to show “⊇”. By the Peter-Weyl Theorem, and the identification C(Conj(U(n))) ∼= C(OrbSn(T)) (proposition
from a while ago), we see that

{χπ|T : π ∈ Û(n)}

is necessarily an orthonormal basis forMS(T) ⊆̃ C(Conj(U(n))), with respect to the usual inner product on C(U(n)). Hence,
by Weyl’s Integral Formula, {χπ|T : π ∈ Û(n)} is an orthonormal basis forMS(T) with respect to (•, •)V . Hence indeed,
{χπ|T : π ∈ Û(n)}, in its capacity as a subset of {sλ : λ ∈ Zn+} must be all of it.

9.50 Corollary (WEYL’S DIMENSION FORMULA). If λ ∈ Zn+,

dλ := dπλ =

∏
1≤k<`≤n(λk − λ` + `− k)∏

1≤k<`≤n(`− k)

Proof. We want to compute

dλ = χλ(I) = sλ


1

. . .
1


 =

Aλ+δ


1

. . .
1




V


1

. . .
1




The point I ∈ T is not regular. Let us approximate by regular points:

z(t) =


ei(n−1)t 0

. . .
eit

0 1

 .
Let us compute

Aλ+δ(z(t)) = det


(ei(n−1)t)λ1+n−1 . . . (ei(n−1)t)λn−1+1 (ei(n−1)t)λ1

...
...

...
(eit)λ1+n−1 . . . (eit)λn−1+1 (eit)λ1

1 . . . 1 1



= det


(eit(λ1+n−1))n−1 . . . (eit(λ1+n−1))1 1

...
...

...
(eit(λn−1+1))n−1 . . . (eit(λn−1+1))1 1

(eitλn)n−1 . . . (eitλn)1 1

 by transposing

=
∏

1≤k<`≤n

(eit(λk+n−k) − eit(λ`+n−`)) Vandermonde det.

=
∏

1≤k<`≤n

i[t(λk − λ` + `− k) + t2 p1,k,`︸ ︷︷ ︸
cts. function in t

(t)]
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Similarly
V (z(t)) =

∏
1≤k<`≤n

it[`− k]

Now

sλ(I) = lim
t→0

Aλ+δ(z(t))

V (z(t))

which is the desired formula.

9.51 Example. Consider
κ = (k, . . . , k) ∈ Zn+, k ∈ Z.

Aκ+δ(z) = det

z
k+n−1
1 . . . zk1

...
...

zk+n−1
n . . . zkn

 = zk1 det

 zn−1
1 . . . z1 1

zk+n−1
2 . . . zk+1

2 zk2
...

...
...


= . . . = zk1z

k
2 · · · zkn det

z
n−1
1 . . . z1 1
...

...
...

zn−1
n . . . zn 1

 = (z1 · · · zn)kV (z).

Thus

s(k,...,k)(z) = (z1 · · · zn)k =

det

z1

. . .
zn



k

Note detk : U(n)→ U(1) is indeed an irrep. Note k = 0 produces the trivial representation.

Question: What is π(1,0,...,0)?

9.52 Remark. According to Weyl’s dimension formula,

d(1,0,...,0) = n.

F.E. Questions now online! Office hours Th 4:30 – 6, F 2 – 3.

9.53 Exercise. Let ι : U(n)→ U(n) be the standard representation. Prove that

χι|T · V = A(1,0,...,0)+δ︸ ︷︷ ︸
(n,n−2,n−3,...,1,0)

(Look at proof that {Aα : α ∈ Zn++} is a basis forMA(T).) Conclude that ι is irreducible and ι = π(1,0,...,0).

9.6 More on structure of elements of Û(n)

Recall Lie(U(n)) = u(n) = {X ∈ gln(C) : X∗ = −X}; we might call these skew-Hermitians. We also saw that
Lie(SU(n)) = su(n) = {X ∈ u(n) : TrX = 0}. Recall that these are real Lie algebras. They are not complex vector
spaces, despite the fact that they are ostensibly presented as elements amongst complex matrices.

9.54 Proposition. u(n) ∩ iu(n) = {0} and u(n) + iu(n) = gln(C). We write

u(n)C = gln(C).

If you’re a formalist, you can take the real tensor product with C and prove this is a Lie algebra, and so on.

9.55 Remark. Similarly, su(n)C = sln(C). [Same proof as above, check trace 0 condition.]

Proof. If X ∈ u(n), then
(iX)∗ = −i(−X) = iX

If X ∈ u(n) ∩ iu(n), then
−X = X∗ = X =⇒ X = 0.
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Now, if X ∈ gln(C), then

X =
1

2
(X +X∗)︸ ︷︷ ︸
self-adjoint

+
1

2
(X −X∗)︸ ︷︷ ︸
∈u(n)

9.56 Corollary. su(n) is simple.

On the assignment #3, we computed the Killing form on so(n) and it was nightmarish. This is worse. However, you can win
the simplicity without knowing the Killing form.

Proof. If jC su(n) is an ideal then j + ij (which by comments before is a proper direct sum) is an ideal of sln(C). Indeed, as
in A3Q2b, one simply checks that j+ ij is a C-linear space, and if X = X1 + iX2 ∈ sln(C), X1, X2 ∈ su(n), and Y1, Y2 ∈ j,
then

[X,Y1 + iY2] = [X1 + iX2, Y1 + iY2]

= [X1, Y1]− [X2, Y2] + i([X2, Y1] + [X1, Y2]) ∈ j + ij

since j C su(n). However, also in A3, we saw that sln(C) is simple, so j + ij = {0} or sln(C). Accordingly, j = {0} or
su(n).

Recall that U(n) is connected (as is SU(n)). Thus a representation π : U(n) → U(V) (V has an inner product, and is finite-
dimensional) is irreducible if and only if dπ : u(n) → u(V) is irreducible. Recall: u(V) = {X ∈ L(V) : X∗ = −X} where
(X∗v, w) = (v,Xw).

9.57 Proposition. Let (V, (•, •)) be a finite dimensional C-inner product space. A Lie representation ρ : u(n) → gln(V) is
unitary, i.e. ρ(u(n)) ⊂ u(V), if and only if its complexification ρC : gln(C)→ gln(V), given by

ρC(X + iY ) = ρ(X) + iρ(Y ), for X,Y ∈ u(n),

satisfies ρC(Z)∗ = ρC(Z∗).

9.58 Remark. ρC is C-linear, as is easily verified.

Proof. (→) Just as in A3, verify that ρC([Z1, Z2]) = [ρC(Z1), ρC(Z2)] for Z1, Z2 ∈ gln(C). If ρ(u(n)) ⊂ u(V), i.e. for
X ∈ u(n)

ρ(X)∗ = −ρ(X) = ρ(X∗)

then if Z = X + iY , X,Y ∈ u(n), Z∗ = −X + iY . It follows that ρC(Z∗) = ρC(Z)∗.

(←) We observe that ρ = ρC|u(n). Hence

ρ(X)∗ = ρ(X∗) = ρ(−X) = −ρ(X)

so ρ(u(n)) ⊆ u(V).

We now want to understand representations of U(n). If we allow this kind of complexified structure, it frankly makes the linear
algebra a little bit easier. When you’re doing algebraic computations in something like U(n), you have to deal with vectors
that are in U(n), so for your off diagonal elements (everything you see above the diagonal), you need a partner below it. This
can get extremely cumbersome and frankly annoying in terms of computations. One of the nice things about complexifying is
that we’re now in the general linear group and we can just talk about the basis elements Eij . If we’re a little bit careful about
it, we can use how they operate to understand more about our representations.

We now introduce quite a long list of notation.

• T =


z1 0

. . .
zn

 : z1, . . . , zn ∈ U

 ≤ U(n).

• t = Lie(T) =


it1 0

. . .
0 itn

 : t1, . . . , tn ∈ R

.

• Let h = t + it =


h1

. . .
hn

 : h1, . . . , hn ∈ C

.
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• We have that gln(C) = u(n)C.

• Let n = t0n(C) =


0 x12 . . . x1n

. . . . . . xn−1,n

0 0

 : xij ∈ C

 (strictly upper triangulars). So n ≤ gln(C).

Let π : U(n) → U(V) (V a finite-dimensional inner product space) be a representation. By Maschke’s theorem (and Schur’s
lemma),

π|T ≈

γµ1

. . .
γµdπ

 : µ1, . . . , µdπ ∈ Zn.

Let P (π) = {µ ∈ Zn : γµ ≤ π|T} (here ≤ denotes subrepresentation) where

γµ(z) = zµ = zµ1

1 · · · zµnn .

We call P (π) the set of weights of π.

Compute that if H ∈ t

exp tH =

e
it1

. . .
eitn

 , H =

it1 . . .
itn


so for µ ∈ Zn we get

dγµ(H) =
d

dt

∣∣∣∣
t=0

γµ(exp tH) =
d

dt

∣∣∣∣
t=0

(eitt1)µ1 · · · (eittn)µn =
d

dt

∣∣∣∣
t=0

eit(µ1t1+...+µntn) = µ1it1 + . . .+ µnitn

Hence for

H =

h1

. . .
hn

 ∈ h = tC

we have (dγµ)C(H) = µ1h1 + . . . + µnhn. Thus, we may consider µ ∈ Zn to be a C-linear form on h, and write µ(H) =
(dγµ)C(H).

For π as above, and µ ∈ P (π), we let

Vµ = {v ∈ V : π(z)v = γµ(z)v for z ∈ T} = {v ∈ V : dπC(H)v = µ(H)v for H ∈ h}.

We call v0 in V \ {0} a highest weight vector for π if

• v0 ∈ Vλ for λ ∈ P (π), and

• dπC(n)v0 = {0}.
9.59 Theorem (BOREL-WEIL; HIGHEST WEIGHT VECTOR THEOREM). We have:

(i) Any finite-dimensional unitary representation π : U(n) → U(V) always admits a highest weight vector v0. Moreover,
the weight λ associated to v0 is dominant.

(ii) π is irreducible if and only if dimVλ = 1 for the weight λ associated to a highest weight vector, and only one weight is
associated to a highest weight vector. In this case, we have π = πλ, i.e. χπ|T = Sλ (the Schur function associated to
λ).

Proof. Let

h++ =

H =

h1

. . .
hn

 ∈ it : h1 > . . . > hn

 .

Fix

H0 =

h
0
1

. . .
h0
n

 ∈ h++.
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Pick λ ∈ P (π) so that λ(H0) = max{µ(H0) : µ ∈ P (π)}. Observe that if

H =

h1

. . .
hn

 ∈ h

then [H,Eij ] = (hi− hj)Eij for 1 ≤ i < j ≤ n. (Henceforth dπ and dπC will be routinely conflated). Thus if v0 ∈ Vλ \ {0}

dπ(H)dπ(Eij)v0 = dπ(Eij)dπ(H)v0 + dπ(

(hi−hj)Eij︷ ︸︸ ︷
[H,Eij ])v0

= (λ(H) + (hi − hj))dπ(Eij)v0

The weight µ = λ+ ei − ej satisfies
µ(H0) = λ(H0) + h0

i − h0
j > λ(H0)

so that µ /∈ P (π) by choice of λ. Thus, Vµ = {0} and dπ(Eij)v0 ∈ Vµ so dπ(Eij)v0 = 0. Thus dπ(n)v0 = {0}.

Moreover, we saw earlier that if λ ∈ P (π), σ ∈ Sn then λ · σ ∈ P (π) too (λ · σ = (λσ−1(1), . . . , λσ−1(n))). Hence there is
σ ∈ Sn so λ · σ is dominant and in P (π). We observe that with H0 ∈ h++

λ · σ(H0) > λ(H0)

if λ 6= λ · σ; so λ = λ · σ is dominant.

(ii) Now suppose v0 and λ as above. Suppose further that v in V is such that

dπ(n)v = {0} and (v0, v) = 0

Now for H ∈ h we have

(v0, dπ(H)v)
†
= (dπ(H∗)v0, v)

= λ(H∗)(v0, v) = 0

(†: dπ(H)∗ = dπ(H∗) by proposition). Also, if N ∈ n, then

(v0, dπ(N∗)v) = (dπ(N)v0︸ ︷︷ ︸
=0

, v) = 0.

If X ∈ gln(C) = u(n)C, we can write X = N∗ + H + N ′ where H ∈ h, and N,N ′ ∈ n (lower triangular, diagonal, upper
triangular decomposition). We have

(v0, dπ(X)v) = (v0, [dπ(N∗) + dπ(H) + dπ(N ′)]v︸ ︷︷ ︸
dπ(N ′)v=0

) = 0

We will begin here on Thursday.

Now suppose v0 ⊥ dπ(gln(C))kv for some k ≥ 1. Then for X1, . . . , Xk ∈ gln(C), Y = N∗ + H + N ′, for N,N ′ ∈ n,
H ∈ h, we have

(v0, dπ(Y )dπ(X1) · · · dπ(Xk)v) = ([dπ(N) + dπ(H∗)]v0, dπ(X1) · · · dπ(Xk)v)

+ (v0, dπ(N ′)dπ(X1) · · · dπ(Xk)v)

9.60 Theorem (HIGHEST WEIGHT VECTOR THEOREM). We have

(i) If π : U(n)→ U(V) is a f.d. unitary rep, it admits a highest weight vector. Moreover the associated weight is dominant.

(ii) π is irreducible if and only if there is a unique highest weight (only one weight associated with a highest weight vector)
and dimension of the weight space, dimVλ = 1. In this case π = πλ.
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Proof. (ii) thus far: Suppose v0, λ are highest weight vector and associated weight. Let v ∈ V be a vector s.t.

(v0, v) = 0, dπ(n)v = {0}

We showed that
v0 ⊥ dπ(gln(C))v.

(NEW STUFF:) Let us suppose for all 1 ≤ j ≤ k we have v0 ⊥ dπ(gln(C))jv. We wish to show v0 ⊥ dπ(gln(C))kv. Let
X1, . . . , Xk, Y ∈ gln(C). Write Y = N∗ +H +N ′, N,N ′ ∈ n, H ∈ h. We compute

(v0,

dπ(N)∗+dπ(H)+dπ(N)︷ ︸︸ ︷
dπ(Y ) dπ(Xk) · · · dπ(X1)v) = ([dπ(N) + dπ(H∗)]v0, dπ(Xk) · · · dπ(X1)v)

+ (v0, dπ(N ′)dπ(Xk) · · · dπ(X1)v)

= λ(H∗)(v0, dπ(Xk) · · · dπ(X1)v)

+ (v0, [dπ(Xk)dπ(N ′) + dπ([N ′, Xk])]dπ(Xk−1) · · · dπ(X)v)

= (v0, dπ(Xk)[dπ(Xk−1)dπ(N ′) + dπ([N ′, Xk−1])]dπ(Xk−2) · · · dπ(X1)v)

= (v0, dπ(Xk)dπ(Xk−1)dπ(N ′)dπ(Xk−2) · · · dπ(X1)v)

...
= (v0, dπ(Xk) · · · dπ(X1) dπ(N ′)v︸ ︷︷ ︸

=0

) = 0

Thus, we see that
v0 ⊥ spanC{dπ(gln(C))kv}︸ ︷︷ ︸

:=W

Moreover, W is dπ-invariant, i.e. dπC-invariant, hence is dπ = dπ|u(n)-invariant. Since U(n) is connected, W is thus
π-invariant.

Thus, if π is irreducible, then Cv0 contains every vector annihilated by dπ(n). Thus the highest weight λ (associated to v0) is
unique, and furthermore dimVλ = 1.

Conversely if π is reducible, then we may write π = π1 ⊕ π2 for π-invariant subspaces π1, π2 (Maschke’s theorem), each of
π1 acting on V1, and π2, acting on V2, admit highest weight vectors by (i) above.

Finally,
χπ|T =

∑
µ∈P (π)

mµγµ = γλ +
∑

µ∈P (π)\{λ}

mµγµ.

We must have mλ = 1, since dimVλ = 1. Now, where V is the Vandermonde:

V =
∑
σ∈Sn

sgn(σ)γσ·µ

we consider
χπ|T · V =

∑
α∈Zn++

mαAα = Aλ+δ +
∑
µ∈Zn+

mµ+δAµ+δ

since coefficient of λ in χπ|T = 1. Now, divide by V

χπ|T = sλ +
∑

µ∈Zn++\{λ}

mµ+δsµ

But π being irreducible means that χπ|T is a single Schur function, thus

mµ+δ = 0 for µ 6= λ.

We close the formal part of this course by illustrating what’s powerful about the Borel-Weil theorem. We got a complete
description of all the representations: one-to-one correspondence between representations and dominant weights. We had the
Weyl dimension formula. With a bit of computational muscle, this Borel-Weil theorem actually does help us a lot: it helps us
understand the geometry a little bit better.

9.61 Example. We have:
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(i) Let ι : U(n)→ U(n) be the standard representation

SU(n) acts transtiively on the unit sphere in Cn. U(n), being a larger group thus acts transitively as well. So we actually
know that this is irreducible. Let’s just say that I forgot.

So dι = id : u(n)→ u(n). So dιC = id : gln(C)→ gln(C). Compute that

⋂
1≤i<j≤n

kerEij =


1
0
...
0


Also

H


1
0
...
0

 =

h1 0
. . .

hn




1
0
...
0

 = h1


1
0
...
0

 e1(h)


1
0
...
0


e1 = (1, 0, . . . , 0) ∈ Zn+. Thus ι = π(1,0,...,0).

(ii) Recall that
(X,Y ) = Tr(XY ∗)

is an inner product on any space of complex matrices, in particular on gln(C) = u(n)C. Consider Ad : U(n) →
U(gln(C)).

Ad g(X) = gXg−1.

Recall that d(Ad) = ad, and this complexifies to ad (we only differentiate these in terms of domain), i.e. adX(Y ) =
[X,Y ] for X,Y ∈ gln(C). We have for Y = [yij ],

adEij(Y ) =

n∑
k=1

(yjkEik − ykiEkj)

Thus for 1 ≤ i < j ≤ n

adEij(Y ) = 0 ⇐⇒


yjj = yii

yjk = 0 for j = 2, . . . , n

yki = 0 for i = 1, . . . , n− 1.

Thus, ⋂
1≤i<j≤n

ker adEij = spanC{I, E1n}.

Observe that CI is an Ad-invariant subspace, with orthogonal complement sln(C). Notice that if

H =

h1

. . .
hn

 ∈ h

then adH(E1n) = (h1 − hn)E1n = (e1 − en)(H)E1n. Summary:

gln(C) = CI ⊕ sln(C)

Ad(•)|CI = 1 (trivial representation), and Ad(•)|sln(C) = π(1,0,...,0,−1) by Borel-Weil.

What’s nice about the technology of the complexification. One thing we shied away from doing was talking too much about
rep theory of non-compact group. It sucks. It’s really complicated, you have to do infinite-dimensional analysis. Compact
groups are vastly superior. Although this was complicated it was doable. One can eventually sit down and figure any of these
out, although it takes quite a bit of effort. There is a coarse classification of simple Lie groups: unitary groups, two classes of
orthogonal groups for geometric reasons, symplectic groups, and then there’s the small handful of exceptional groups. Their
analysis is really tedious. Physicists really like E8. If you have a classification and you have exceptional elements, there’s
probably a physical underlying reason. That being said, if I can understand the rep theory of a class of compact groups (and
we made a pretty good go at unitary groups) then in fact, one can in fact in some sense have a complex version of this theory.
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10 Directions from here

This is by no means an exhaustive list, but let’s just give an overview.

Consider representations
π : GLn(C)→ GLd(C)

(d is the dim of the space on which we’re representing). We’re going to have to impose one further condition, and I hope to
convince you that this is a nice condition: dπ : gln(C)→ gld(C) is C-linear.

We’re treating Lie groups as real Lie groups; the differential is a real linear map, it’s not a complex linear map. We’re going
to impose an extra constraint because it’s helpful for me. So in fact, we might call these holomorphic representations (or
algebraic representations). If your philosophy is more based in algebraic geometry, you prefer this.

We have
π irreducible ⇐⇒ dπ irreducible

(note we are in a connected setting). The complex linearity shows that we also get

⇐⇒ dπ|u(n) irreducible

(the complex linear span of the skew-Hermitian matrices made the whole Lie algebra).

We observe that by Maschke,
π|U(n) ∼ unitary

so we may as well pick a basis for Cd so π|U(n) is unitary.

Fact: any unitary representation σ : U(n) → U(d) extends to a representation σC : GLn(C) → GLd(C) with dσC C-linear.
The fundamental claim is that this is a one-to-one correspondence, that we actually now have control over certain classes of
representations of a non-compact group. I want to convince you that this is a good thing. Here is the basic idea:

ι : U(n)→ U(n), standard representation

pick ιC = id : GLn(C)→ GLn(C).
ι : U(n)→ U(n)

ι[gij ] = [gij ]

which does involve a choice of basis (this is essentially independent of representative of equivalence class). If we try to extend
this in a naive manner to complex matrices, it doesn’t really look so good. Complex conjugation is not C-differentiable! Let’s
just analyze this a bit. If I want to complexify, maybe I better use my differential theory a little bit. Let X ∈ u(n), and
consider

dι(X) =
d

dt

∣∣∣∣
t=0

exp(tX)︸ ︷︷ ︸
pointwise complex conjugation

=
d

dt

∣∣∣∣
t=0

exp(tX)

and we know that X∗ = −X , so again accepting the vulgarism that we’re living with a concrete basis, we realize this means
X = −XT . So

d

dt

∣∣∣∣
t=0

exp(tX) =
d

dt

∣∣∣∣
t=0

exp(−tXT ) = −XT .

Hence dιC(Z) = −ZT . One can show that
ιC(g) = g−T

is the appropriate holomorphic extension.

Recall:
M(U(n)) = alg(Mι,Mι, 1) (“algebra generated by”)

(proof of Peter-Weyl). This is an algebra of functions, it’s conjugate closed and it’s point-separating. So it’s dense in all of the
continuous functions. Thus, subrepresentations of all representations

ι⊗k ⊗ ι⊗`

have all irreps as subrepresentations. Use this to complexify any σ in Û(n).
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Conclusions: If π, σ are finite-dimensional reps of GLn(C) with C-linear dπ, dσ, then

π ⊗ σ ≈
⊕
τ family

τ⊕mτ,π⊗σ

Idea: really Maschke is applied to U(n).

Similar facts hold
SU(n)↔ SLn(C).

One might look at special orthogonal groups; it turns out that you actually can complexify them:

SO(n)↔ SOC(n)︸ ︷︷ ︸
non-compact

= {g ∈ GLn(C) : gT g = I}

There are even complex versions of things like symplectic groups, and everything. That whole list of groups is called the
classical matrix groups.

Some closing announcements: final exam is on Monday, the week after next. 12:30.

There will be 3 45-minute talks (Thursday morning). Everyone is strongly encouraged to come.

Office hours: Friday afternoon, 2 – 3:30, and Thursday afternoon from 2 – 4. Office hours until about 5pm today.

In terms of the final exam question list, the questions have not been carefully proofread.
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