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Introduction

Historically, the hope of Sophus Lie was to understand “symmetries” of partial differential equations (this has never really
been properly realized in traditional mathematics). In model theory, they try to set up models whereby there is a kind of
“Galois theory”. Whenever one sees the word “symmetry”, one should really think “groups”. In this setting, they are infinite
groups. If one tries to do this in too abstract a manner, all hope is lost. So we need some more structure. These groups will
be equipped with some topology — indeed, there is kind of a manifold structure. For the purpose of this course, we’ll always
be dealing with groups of matrices (classical Lie groups), for concreteness. When one looks at the manifold structure, one
realizes that one often understands manifolds in terms of tangent spaces. In our language, this tangent space will be fairly
concrete: it will be a Lie algebra (always of matrices). This gives a correspondence

groups of matrices — Lie algebras of matrices.

The nice thing about Lie algebras is that their study essentially reduces to linear algebra. The linear algebra is probably the
toughest aspect of this course. The correspondence above does have some small degree of analysis. What we want to talk
about is a notion of distance on matrices.

1 Matrix norms

1.1 Definition. Let’s fix a field F = R or C. We consider [F” to consist of columns, i.e.

Ty
F" = S| =xiwy,.., 2, €F

Tn

with inner product given by (z,y) := Y ., 2;7; (where @ is the complex conjugate). We then define the norm by

The distance is defined by |2 — y|. Let M,,(IF) denote the space of n x n matrices over F. Then if
a = [a;;] € M, (F), x e

then we define n
D1 0155
ar = .
n . .
Zj:l AnjTj

Note that 2 — ax is continuous. Moreover, B(F") = {« : || < 1} is compact. The norm on M, (FF) is defined by

lall = sup |az].
|z|<1
z€lF?
1.2 Proposition. We have:
(@) | - |l is a norm on M,, (F), i.e.
e (non-degeneracy) ||a|| = 0iff a = 0.
e (scalar homogeneity) ||aall = |a|||a]|, @ € F.

e (subadditivity) [ja + b|| < ||la|| + [|b]|.
(ii) || - || is submultiplicative, i.e. ||ab|| < ||a||||?]|-

Proof. We have:



(1) (non-degeneracy) Let

(where the 1 occurs in the jth position). Then ae; = Z?Zl a;je;, 1.e.

n 1/2
|ae;| = (Z|aw‘2> :

i=1
Thus |la|| > max;=1 . |ae;| so ||la|| = 0 iff each a;; = 0.
(scalar homogeneity) Borrow the fact from (F™, | - |).
(subadditivity) [la + b|| = sup, <1 [ax + bx| < sup|, <q (Jaz| + [bz]) < supp,) <1 (laz| + [by]) = lla] + [[b]|.
(ii) First, if 0 # x € F™, then

1
a—x| <lal.
|z|
=1
Multiply by |z| to see |az| < ||a|||x|. Thus
llabll = sup |abz| < sup [|af|[bx] = ||al|[|b]]- O
lz]<1 lz|<1

1.3 Remark (HILBERT-SCHMIDT NORM). Define for a,b € M, (F)

((a,0)) = Tr(ab*) = > aisbi;
ij=1
where b* = [b;;]. Identifying M, (F) 2 F™", this is the usual inner product on F"". Define ||al|z = ((a,a))'/2.
1.4 Proposition. We have for a € M, (F)
< [lall < flall2-

1
—=llall2
vn
Note that these estimates are sharp. Rank-one matrices realize the upper bound, and scalar multiples of the identity realize the
lower bound.

Proof. If |x| < 1inF™, say x = z1e1 + ... + x,€,, we have

n n n n 1/2 n 1/2
> wjae;| <Y lajllae] =Y |ay <Z |az‘j|2> < (Z $j|2) (
j=1 j=1 j=1 i=1 cs j=1

Hence ||a|| < ||al|2. For b € M,,(F), let

|azx| =

n n 1/2
ZW?) < llafl

11¢=1

J

n 1/2
b= . ot = Ibla= (Dw) .
0 bnj 0 i=1
Then
n 1/2 n 1/2 n 1/2
lablz = (Z |<ab><j>||§) < (Z<||a||b<j>||2>2> < lla] <Z ||b<j>||§> = lallp]z
i— ] ——— -
=1 J=1 identifying column J=1
w/ column vector
Thus ||all2 = [lall]2 < |lal[[|I]lz = [|a|ly/n. O

1.5 Remark. The topology on M,, () arising from the usual norm is therefore the same as the topology on M,, (F) = F*
from the 2-norm.



In fancy language, equivalence of norms gives us equivalence of uniform structures — so one ends up with the same Cauchy
sequences.

1.6 Corollary. (M,,(F), || - ||) is complete.

Proof. 1f (a®))2° | C M,,(F) is Cauchy in the norm | - |, then it is Cauchy in || - ||2. Since (F"", || - ||2) is complete, we find
that limy o a™ exists in || - || and hence in | - ||. O

2 The general linear group GL, ()

2.1 Definition. The n x n general linear group (over F) is defined by
GL,(F) = {g € M,(F) : g~ " exists} = {g € M,,(F) : det g # 0}.

2.2 Proposition. GL,,(F) is open in M,,(F), and g — g~! is continuous.

Proof #1. The map det : M,,(F) — F is continuous since it is a polynomial in the “variables” a;; of & € M,,(F). Hence

GL,(F) = det™*(F \ {0}) is open. Moreover, if § denotes the adjugate matrix then Cramer’s rule tells us that

1 L
det g

9

9
and hence (g~ ');; is a rational function in the “variables” g;; of g with non-vanishing denominators, hence it is continuous.
O

Proof #2. First assume that a € M, (F) for which ||a|| < 1. Then

m

k

Sm = § a
k=0

(convention: a® = T) defines a Cauchy sequence in M, (F) i.e. if £ < m,

m
k
1Sm = Sell < > Jlall *,

“ ~—~
k=e+1 2

soletg =372, a” :=limy, 0 Sp,. Check that then

(I —a)g= lim (I —a)S,, = lim (I —a)(I+a+a*+...+a™)= lim I —a™" =1.

m—roo m—r 00 m—r oo

since 0 < lim,, o [la™ Y| < limy, o0 [|al|™*! = 0. Similarly g(I — a) = I, so that ¢ = (I — a)~!. Now suppose
9 € GL,(F) and a € M,,(F) are such that ||g — al| < 2. Then

a=g(I—-g "(g—a))
—_—

I-I<llg™ lllg—all<1

so a is invertible, since g and (I — g~ (g — a)) are. Moreover,

o0
at=T-gg—a) g =D (g7 (g—a)fg " ()
k=0
Notice that since the k = 0 term corresponds exactly to g~!, we obtain
-1 _ -1 1 k —1 1 k1 lg~ " 11*llg — all
la™ =g =D (g (g—a)fg | <. <D g lllg —al) g™ = T— g M)
2 2 — gy —al
and the latter is continuous in a and tends to zero as a — g. O

2.3 Remark. (*) shows that a~! is analytic in the “variables” a;; of a. Recall that g is fixed, i.e. in B(g, ﬁ) ={a €

M, (F) : [la —g]| < ”q—ll”} each (a™!);; is expressible as a power series in “variables” a;;.



2.4 Remark. The map ((a,b) — ab) : M,,(F) x M,,(F) — M, (F) is continuous. Here, we identify M,,(F) x M, (F) as a
subset of My, (F) by sending

(a,b) = {g ‘b)} .

Indeed, if aj, 2= g and by, 2= b then

k—o0

laxby — abll < [laxby — abk|| + [laby — abl| < [lax — all [|b]| +all[|bx. — bl —— 0.
~—~—
ma
Hence GL,,(F) is a topological group, i.c.
1. (a,b) — ab is continuous, and
2. a — a~ ! is continuous.

That is, we have a group on which both basic operations tend to play very nice with the topology. In fact, GL,,(FF) is even
better than a topological group. We will see later that this is a manifold, and these are differentiable operations.

One of the points of putting a topology on this infinite group is as follows. If we tried to understand it just as a group (with
no other structure), note that for one thing it’s uncountable. There’s not really a nice theory of uncountable objects with no
topology. Even in fairly constrained subsets, bad things can happen (one can still get really weird free groups and so on). We
want a lot more control, and the topology is what allows us the control.

If you study any infinite group theory, they really distinguish a class of finitely generated groups (the latter can be much better
understood than arbitrary infinite groups). We have what’s called o-compactness.

2.5 Proposition. Let for C' > 0
Qc = {9 € GL,(F) : [lgll < C, [lg™ "] < C}.

Then Q¢ is compact.

Proof. Let (gi)5>, C Qc be a sequence. We will show it has a subsequence which converges to a point inside of Q¢. Since
llgr|| < C, a Cauchy subsequence (g, )72, exists. We observe for ¢, ¢ that

C?|lgr, — g, |
— —1 ¢ o/
||9k,51 - gkz,H < 1—C - .
- Hgke _gkg/H
Indeed, we simply use our estimate (f) from before and the fact that ¢ +— %_t is increasing. Hence (gk_e 1)?’;1 is Cauchy. If

g = limy_, g, we have by the remark above that
—1 . —1 .
=1 = lim I =1.
997" = fim guor,’ = Jim,
Hence g € GL,(F) and g € Qc¢. O

2.6 Remark. Note that GL,,(F) = U Q. and so GL, (FF) is o-compact.
~~

k=1 compact

The whole goal of this course is to gain a better understanding of groups of matrices, and thus far we’ve only introduced one:
the full general linear group.

3 Some closed subgroups of GL,,(F)

(i) The special linear group SL,,(F) = {g € GL,,(F) : det g = 1}.
Recall that det : GL,,(F) — F* = F \ {0} is a group homomorphism, and
——

mult’ve group

SL, (F) = kerdet = det™* {1} .
-

closed
inF*®



(ii)

(iii)

Define the triangular group by 7', (F) = {g € GL,(F) : g;; = 0if j < ¢} i.e. upper triangular invertible matrices,
T ={g€Th(F):9;=1,i=1,...,n}.
(notation: invertible matrices: small letters; not necessarily invertible matrices: capital letters).

If g € T2(IF), let N be such that g = I + N, i.e. N is the result of zeroing the diagonal of g. Observe that N = 0 (i.e. N
is nilpotent). Hence
gl =T-N4+N* 4. . + (=) IN" cT2(F).

strictly upper triangular

Now if g € T,,(F), write g = d+ N, where d = diag(g11, - - -, gnn ), and N is obtained as before (by zeroing g’s diagonal).
Note det g = det d, so d € GL,,(F). Thus

g=dI+d'N) = gl=I+d'N)'d

Let 5 : F™ x F™ — FF be a bilinear form. Recall we have

Blz,y) =y ba
for some matrix b, in fact we know exactly what b looks like: b = [3(e;, e;)] € M,,(F). We will call 8
¢ non-degenerate if for each 0 # x € F" there is y € F" such that 3(x, y) # 0. Note that this happens iff b= exists.
e symmetric if 3(z,y) = 8(y, z) for all x,y € F". This happens iff b = bT.
o skew-symmetric if 3(y,z) = —3(z,y) for all 2,y € F". This happens iff —b = b7

If 3 is non-degenerate, we let

O(8) = {g € My (F) : B9z, gy) = B(z,y) forz,y € F"}.
Notice that if g, ¢’ € O(5) then g¢g’ € O(f). Also,
9€0(8) & (9y)"blgz) =y b, Y,y = g"bg = b.
—_——
yTgTbgx
Hence b=1gTh = g=1. Thus O(3) is a subgroup of GL,, (F).
3.1 Example. We have:
@) Bn(z,y) =X, xiy;, b=I.If F = R, we define the orthogonal group
O(n) = O(Bn) = {g € GLu(R) : (92, gy) = (x,y) forz,y € R"} = {g € GLy(R) : |ga| = |2| forz € R"}.
Note: Use polarisation
1
(@) = Zllz+o” = | = yf?).
If F = C, then
Oc(n) = O(8) ={g € GLa(C) : g~ =g"}.
®) pg=l.p+qg=mn, ) \
By qg(,y) = Z TiYi — Z Tp+iYp+i-
i=1 i=1

Note: b = I, ; = diag(1,...,1,—1,...,—1). If F = R, we define the pseudo-orthogonal group
—— ————

p q
O(pa Q) = {g S GLn(R) : gTIp,qg = Ip,q}

Similarly define O¢(p, q).

3.2 Proposition (SYLVESTER’S LAW OF INERTIA). If F = R, and 3 is symmetric and non-degenerate there exists
go € GL,,(R) such that

900(B)gy " = {



©

Proof. Since bT = b, there is an orthogonal matrix w such that

A1
ubu” = diag(Ay, ..., A\p) = s A A >0, Aprr, s Aty < 0

here ¢ could be 0. Then set

Tn -

go=u" 1/\/5
1/\/ —Ap+1

L | 1/\/ _)‘erq_

and check that this works.

Suppose g € O(B) i.e. gTbg = b. Claim that gogg, ! preserves the matrix I, 4. Indeed,

(90996 ) Ip.g(90995 ") = O

0 I,
Jm - |:_Im 0 :| .

We define the symplectic group by Sp(m) = {g € M,,(R) : g7 J,,g = Jin }, so Sp(m) = O(B3) where

Letn = 2m and

m

m
B(xv y) = - Z TiYi+m + Z Ti+mUYi-
i=1 =1

3.3 Fact. Up to similarity, these are the only real matrix groups arising from skew-symmetric forms; and in this case,
n = 2m. Indeed, if b = —b then in M,, (C)
(ib)* =ib

so b is Hermitian, hence unitarily diagonalisable with real eigenvalues, hence b = —i(ib) has purely imaginary
eigenvalues. Thus b is orthogonally equivalent to a matrix of the form

0 X\
-1 0
0 A
X2 0

Proceed as before.
Note: there is a complex form Spg(m).

3.4 Remark. One can show that Sp(m) is compact, while Spg(m) is not.

(iv) LetF = C. 8 : C" x C™ — C is sesquilinear if for fixed y, 2 — B(x,y) is linear, and x — S(y, x) is conjugate linear
(i.e. additive, and 5(y, ax) = @f(y, z)).

We call g

non-degenerate if for 0 # = € C" there is y € C" such that 5(x,y) # 0.
Hermitian if 5(z,y) = B(y, x).
skew-Hermitian if 5(z,y) = —((y, z).



We always have

*

n
B(x,y) = y* bz, where o= o Tl and b= [B(ej,e)].
Yn

We define the unitary (respectively, pseudo-unitary) group by

U(n) ={g € Mn(C) : (g2, 9y) = (z,9), 2,y € C"} ={g € My(C) : g*g = I}.
U(p,q) = {9 € Mn(C) : g™ Ip,q9 = Ip 4}
As an exercise, show U(p, q) is conjugate to U(n). So in fact there is a unique group coming from a non-degenerate
Hermitian form.
(v) We define the special orthogonal (respectively, special unitary) group by
SO(n) = O(n) N SL,(R)
SU(n) = U(n) N SL,(C).

The following exercise is not very deep.

3.5 Exercise. O(n), U(n) are compact. Boundedness is easy; look at the descriptions in terms of how they interact with
the norms. All you have to check is they’re closed, which is not a hard exercise at all.

O(n) is defined by polynomial relations (it is Zariski-closed). U(n) is not quite an algebraic group (due to complex
conjugation), so must be checked manually. If you take O(n) and naively plunk it into n X n matrices over C, and if you
know what the Zariski topology is, I invite you to compute (in complex polynomials) the Zariski closure.

3.6 Remark (NOTATION). We define the set of positive-definite matrices by
Pn(F) ={a € M, (F) : (az,z) > 0forall 0 # z € F"}.

Note if a € P, (F), we find that kerpr a = {0}, so P,,(F) C GL,,(F).

(i) Pn(R) is open in GL, (R). Indeed, if & € P, (R), z — (az, ) is continuous (indeed this is true for all a € GL, (R)),
sO
W= m{rll(ax,m) >0

jz|=
(infimum is attained on compact unit sphere). Now if B € M,,(FF) is any element with || B|| < p, then for |x| = 1,
1<) Bl

—
((a — B)z,z) = (ax,z) — (Bz,z) > p—||B|| >0

s0 B (a, 1) C Pr(R) so P, (R) is open.

(ii) Pn(C) € Herm,(C) = {A € M, (C) : A* = A}, and is open in that set. [Herm,,(C) is a R-subspace of M,,(C)]. It
suffices to show that P, (C) C Herm, (C). Let a € P,,(C), write

1 1
Reazi(a—i—a*), Imazi(a—a*)

so that (Rea)* = Rea, (Ima)* = —Ima and @ = Rea + ¢ Im a. Then for z,y € C”

3
1
(az,y) = (Rea z,y) +i(lma z,y) = (Rea z,y) +1i7 > iF((ma) (@ +i*y), « +i*y)
k=0

and for any z € C"

0< (az,2z) =(Rea z,z)+i(Ima z,2) = (Imaz,z)=0
———
€R, check [SIN

so (az,y) = (Rea x,y), so a = Rea is Hermitian.



Appendices to lectures:
e Diagonalisation for real symmetric matrices
e (Almost) Jordan Form: we’re just going to prove that a matrix can be block diagonalised as scalar plus nilpotent
e Multivariable analytic functions

The first two will probably be posted tonight; the third will be posted soon.

Last time, we defined P, (R).
3.7 Example. Note that a € P,,(R) does not imply a’ = a. Consider

o EHE

3.1 Polar decomposition

3.8 Theorem (POLAR DECOMPOSITION). Any g € GL,,(R) admits a unique decomposition g = up, where v € O(n) and
p € Pr(R) N Sym,, (R). Moreover, the map

(u,p) = up : O(n) x Pp(R) N Sym,,(R) = GL,(R)
is a homeomorphism.

Proof. First, leta = g7 g soa” = aand (az,z) = (gz,gz) > 0 for 0 # 2 € R™. So a € P,(R) N Sym,, (R). By orthogonal
diagonalisation there is v € O(n)

A1 0
a="v ol A, A >0

0 An

Let
VAL 0
p=v . vT.
0 Van

Also, let

u = gp_1 SO g = up.
Easily, p € Sym,,(R) N P, (R). Compute

wWTu=pTgTgpt=p! a pl=1I

Hence u € O(n). Now suppose that
g = uip1, uy € O(n), p1 € Pp(R) N Sym,, (R).
Then p; = ul g so
pi=pip =g wiuig=a.

Hence p1a = p1p? = pip1 = ap; (thatis, a and p; commute). Let f be a polynomial such that

FO) =V i=1,...,n.
Then f(a) = p. Hence
pp1 = f(a)pr = p1f(a) = p1p.
Hence, by simultaneous diagonalisation,
pp1 € Pp(R) N Sym,, (R).
Now we have up = uip; so
uju=pp~!



is simultaneously orthogonal and positive definite and symmetric, hence this matrix is I. Now consider the map
(u,p) = up : O(n) X Pp(R) N Sym,,(R) = GL,(R).

This is surjective, from the first paragraph, and injective by uniqueness. It is also continuous. Let us see that the inverse is

continuous (there is a nice topological way to do this, but we will do it manually “for fun”). Let g LN g in GL,, (R).
Decompose gr = uypy, as above. Since O(n) is compact, (uy)72 ; admits a converging subsequence (uy, )72, with ug =
limg_, 00 ug, € O(n). Then

I | £— 00 -1 .
pkz - uk( gkg 7 ’LLO g - p

and, since P2(R) = {A € M,(R) : (Az,z) > 0,z € R"} satisfies that PJ(R) N Sym,, (R) is closed. We have that
p € Pr(R) N Sym,, (R). Hence ugp is the unique decomposition of g. We hence observe that u is the unique cluster point of
(ur)32 ., hence limit point. O

3.9 Corollary. The map
(u,p) = up : SO(n) x P}(R) N Sym,,(R) — SL,,(R)

is a homeomorphism, where
731

n

(R) =SL, (R) NPr (R)
Proof. We only need to note that if g € SL,,(R) and g = up, then u € SO(n) and p € P} (R). We note

(detu)? = det(ulu) =1

so detu = £1. Also det p > 0, hence det u = 1. 0
3.10 Remark. A similar proof shows that

(u,p) = up : U(n) x Pp(C) = GL,(C)
or similarly
(u,p) + up : SU(n) x P}(C) — SL,(C)

are homeomorphisms. The only change required in proofs is to use ¢* in place of g”.

3.2 Connectedness

3.11 Definition. A set S C R™ (for us, usually m = n? and we are identifying it with matrices) is disconnected if there are
open U,V C R™ such that

e SCUUV.

e (SNU)N(SNV) =w.

e SNU#@and SNV # 2.
The pair {U, V'} is called a disconnection. We say that S is connected if no disconnection exists.
3.12 Example. [0, 1] C R is connected.

3.13 Definition. S C R™ is path connected if for each pair z;, y € S there is a continuous ~ : [0, 1] — S such that y(0) = x,
(1) = .
3.14 Fact. Path-connected implies connected.

Proof sketch. If v : [0,1] — S were a path with endpoints in a disconnection {U, V'} of S then {1 (U),y~*(V)} extends
to a disconnection of [0, 1]. O

3.15 Fact. S C R™ connected and f : R™* — R™2 continuous implies f(S) connected.

Proof sketch. Similar. O
3.16 Fact. S; C R™t, S, C R™2, Then S; x So C R™1+™2 g path-connected if and only if each S and S5 is path-connected.
Proof sketch. (y1,72) C S1 % Sz is a path if and only if ; isa pathin S;, j = 1,2. O

3.17 Remark. GL,,(R), O(n) are disconnected. Consider the disconnection

{det " (R>?), det ™" (R<Y)}.

10



3.18 Proposition. We have:

(i) SO(n) acts transitively (i.e. if we pick any two elements of the set, we can get from one to the other via some element
of the group) on
St ={z eR":|z| =1}

(if) SO(n) is connected.
Proof. We will use induction.

(i) If n = 2, then just as in A1, one can show that

o cost sint
SO(Q){[_Z 7:|2077€R702+’}/21}{|:_Sint COSt]:tGR}.

cost sint| [1| |cost 1 | |cost|
{— sint cost} {O} B {sint] ’ where §° = {L}int} e R}'

If n > 3, first observe that

Observe that

u 0

ooyt

] :S0(n —1) = SO(n)
is a continuous homomorphism, whose image is exactly
{v € S0(n) : ve, = en}.

Given z € S" ! write

cos(t)x)
z = : ) where ' € S" 72,
cos(t)x!,_4
sint
Let
I s 0
hy = 0 cost sint

—sint cost

By inductive hypothesis there exists u € SO(n — 1), ue,,—1 = «’. Thus

0 cos(t)x]
[u 0] he o [u 0] Sl : .
tEn—1 — = : = €.
01 0 1| O feos(t)ar,
cost .
. sint
sint
(i) If n = 2: the map
t— C.OSt st :R — SO(2)
—sint cost

shows that SO(2) is connected (since R is).

If n > 3: if v € SO(n), let x = ve,,. As above, we may find u € SO(n — 1) and ¢ € R such that

0
[g J hien,—1 = x.

Then
u 0
|:0 1:| ht hﬂ'/2€n =T = Ve,
€n—1
SO

u 0
UT |:O 1:| ht+§ €n = €n

11



and hence

for some v’ € SO(n — 1). Thus

and hence
(u,t,u’) — (%) : SO(n — 1) x R x SO(n — 1) — SO(n)

so SO(n) is connected. O
3.19 Corollary. SL,,(R) and GL;} (R) = {g € GL,(R) : det g > 0} are both connected.
Proof. 1f p € PL(R) N Sym,, (R) then there is v € O(n) such that

A1 0
_ T )\1, .,)\ >0
p=v EERTD ¥ VS W |
0 An
. 1 -
Let v : [0,1] — P, (R) N Sym,,(R) be given by
At 0
v(t)=wv o
0 AL

s0v(0) = I, (1) = p. Hence PL(R) N Sym,, (R) is connected. Then the homeomorphism
(u,p) = up : SO(n) x PL(R) N Sym,,(R) — SL,,(R)
shows that SL,, (R) is connected. Similarly,
(t,g) — €'g : R x SLy,(R) — GL; (R)
shows that GL;" (R) is connected. Indeed, if g € GL,! (R),

g = (detg)*/"
——

(det g) 179"
>0 N————

€SL, (R)

A few remarks

Next, we will cover the key to Lie theory: the exponential map. Before we do this, we’re going to want to fairly liberally
switch between R and C as convenience sees fit. We note that

M, (R) C M,(C).
On the other hand if z € C, z = x + iy, x,y € R then
zZ {_:; ﬂ : C — My(R)
is both additive and multiplicative. Hence there is an additive and multiplicative map
M,,(C) = My, (R).
For example there is a real analogue of Jordan Canonical Form, but it’s not quite as pretty as it is for complex matrices.
However, it’s not that hard to understand. The real Jordan blocks corresponding to complex eigenvalues essentially end up

looking like Jordan style blocks, but with these blocks along the diagonal. Using this identification of one with the other, you
can prove that.
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4 The exponential map

F=RorC.

4.1 Basic notions

4.1 Definition (EXPONENTIAL). If X € M,, (F), let

=1
epr=§ EX’“.
k=0 """

Note, if j < £ we have
¢

1
2 X =

k=j

4

Z,% X

k=

partial tail of

series defining e X

50 (Yp_o X *)g2, is Cauchy in M, (F), and hence converges.
4.2 Remark. We have the following properties:

(1) If XY =Y X then
exp(X +Y) =exp XexpV.

Indeed consider

G (X,Y)
_ _— xkyt ! xkyt
(Z )(Zg )‘sz Zﬂ Z ko XY+ Z Z klgl
k=0 =0 k=0 ¢=0 k+4= j=m+1 k+i=
w>0 o<ke<m
m 1 J ]
_ kyrj—k
7Zﬁz (k>X YTk £G o (X,Y)
j=0"" k=0
=(X+Y) as XY =YX
by binomial thm
We observe that
2m 1
5 —
[Gm (X, Y)]| < Z > WHXII vt = > U+ 0.
j=m+1k+L= j=m+1

k, Z>O

Conclusion: take m — oo above, and we get our result. As a consequence,
exp(~X) = (exp X) !

hence exp X € GL,(F).
(i) If g € GL,(F), X € M,,(F) then

=1 =1 _
glexpX)g™t =3 59X g7 =3 1 (9Xg™)" = exp(9Xg ™).
k=0 k=0

@iii) If N™ = 0, i.e. N is nilpotent then

1
exp(M + N) = exp(\) exp(N) = (I + N+ 'NQ +...+ Nt )

N, (N')»=0

2!
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Suppose F = C then we have JCF, there exists g € GL,,(C)

Ath-%Aﬁ 0
Aalg, + No .
X=g . g
0 AsIds +N5
with each NV ,‘: k = (. Hence
6>‘1(Id1 +N{) N 0
e (14, + Nj)
expX =g L g
0 e’\S(IdS + N))

Note that a(I; + N') admits only « as an eigenvalue, so det(a(I; + N')) = af. Hence

det eXpX — 6A1d16A2d2 . e}\gds — e)\1d1+~--+)\sds — eTI’X.

Since M,,(R) C M, (C), this is true for X € M,,(R) too.

@iv) expt 0 1 _ cost sint (compute it out)
U1 0] T |—sint cost P ’
Consequence: for M, (R), n > 2 or M,,(C) for any n > 1, then exp : M, (F) — GL,,(F) is not injective.

We now complete our discussion of the exponential map; no discussion is complete without the logarithm. Let us say a few
words about exponential series in a matrix argument.

4.2 Review of series

4.3 Lemma. (a,,)25_, C F is absolutely summable: Y °_, |a,,| < co. Then for any bijection o : N — N we have

o oo
E Ao (m) = E Q-
m=1 m=1

Proof. Let e > 0 and let n be such that

oo

3l < g

k=n-+1
Let N be such that {c(1),...,0(N)} D {1,...,n}. Then check that

N N N
D togy =Y k| < Y 2ax| < O
k=1 k=1 k=n+1

4.4 Remark. Since M, (FF) is complete, the same holds for series of matrices.

4.5 Lemma (COMPOSITION OF MACLAURIN SERIES). Suppose

f: (=R, R) — T admits Maclaurin series f(t) = Zaktk on (—R,R)
k=0

g : (—a,a) — F admits Maclaurin series g(t) = Z btk on (—a, a)
k=1

and for 0 < r < |al, Z |bx|r* < R. Then f o g : (—a,a) — F admits a Maclaurin series
k=1

o,k S by by, ifE>0
(fog)t) = Z <Z agbhg)tk, where by, ¢ = { mi+...4mp=k
k=0 (=0 1 if Kk =0.

Then for any X € M,,(F) with || X|| < a, we have that f(g(X)) and (f o g)(X) both exist and are equal.

14



Proof. First, observe that g(¢)° = 1 while (using the last lemma at *)

bi,e

L (ibg#)k :i( > bml---bmk>tk

=k “mi+...4+mp=~L

where for 0 < r < a, we have
s} [es} k
St = (S at) <R
=k =1

so the rearrangements are all legitimate. Our assumptions then show that f(g(t)) does converge for all [¢| < a. In particular,
we get a Maclaurin series for f o g, as advertised (in fact, this series is unique). Now, if || X || < d, the series

f(9(X)) = (fog)(X)

by similar manipulations as above. O

4.3 The logarithm

Recall, if |¢| < 1 we have

log(1+1t) = /t ds _ /ti(—l)ksk ds = f:/t(_l)ksk dk — i (_1)ktk+1 _ f: (=)t ik
o 1+s 0 k=0 k=0"0 k=0 k+1 k=1 k '
—_—

convergence is uniform
for 0<s<t

4.6 Definition (LOGARITHM). Now, if g € M,,(IF) with ||g — I|| < 1, then define

Y
log(g) = log(I + (9 — 1)) = > “—2—(g = D"
k=1

Note that the condition ||g — I|| < 1 guarantees invertibility by an earlier result.
4.7 Theorem. We have:

() If |lg — I]| < 1, then exp(logg) = g.

(ii) If || X < log2then ||exp X — I|| < 1 and log(exp X) = X.
Proof. We have:

(1) Use lemma (mostly).

(ii) We note

= 1 — 1
lexp X —I|| = Zk— ZEHX||I€:6HX”—1<1
=1 k=1 "
if || X|| < log2. Use lemma. O
4.8 Corollary. We have:
open || - ||-ball

of radius log 2
. /_M . .
(i) exp : B(0,1log2) — exp(B(0,log2)) is a homeomorphism.
(ii) There exist neighbourhoods U of 0, V of I such that exp : U — V is a C*°-diffeomorphism.
Proof. Note (i) — (i).

We note that (ii) is true because for each 4, j = 1,...,n the functions X +— (exp X);; and g — (log g);; are analytic about
0, I respectively (see appendix on website). O

Of course, everything stated about analytic functions is real-variable analytic. This concludes the basic theory of the exponen-
tial map. We want to prove that the exponential map shows itself in a certain nice way. This is one of the manners in which
we’ll be seeing this very frequently in Lie theory.
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5 One-parameter subgroups

5.1 Definition. A one-parameter subgroup of GL,,(FF) is a continuous group homomorphism v : (R, +) — GL,(F) (i.e.
we conflate v with v(R) C GL,,(F)).

5.2 Theorem. If v : R — GL,,(F) is a one-parameter subgroup, then
7(t) = exp(tA)
for some A in M, (F). We call A the infinitesimal generator of .
Proof. First, we will show that ~ is differentiable. Let 0 < § < 1. By continuity of +, let a > 0 be such that
[t <a = |v@) -1 <1-4§<1.

Let
1

fty=Q [l e7 Ve ds
0 if [t| > a.

e~/ =a®) i |t < q

Then by Al, fisC*>. Also f > 0 and ffooo ft) dt =1. Let

b —/ f(s ) ds = ’ f(s)y(—s) ds (Riemann integral).

—a

Then -
Ib—1) < / F(8) [7(=s) = I|| ds < 1.
- <1-§

Proposition 2.2 yields b € GL,,(IF). Also,

—b_/ f(s s) ds-y(t —b_/ f(s)v(t—s) S—b_l/oof(s—i—t)v(—s)ds.

— 00

Thus for h # 0 we have

H (“‘) s / F(s+ t)y(—s) ds Hb— [f(s+t+h}z—f(s+t)—f’(s—l—t)}y(—s)ds
Hb— [s—l—h})l—f(s) — f’(s)] ~(t —s) ds
a'Hh‘ s+h)— f(s
< [0 NI - aas
—a+|h|
We use two applications of the Mean Value Theorem to see
f(s+h)— f(s . .
% =G| =1 s+t =) [l <Al
< JEallf" (s +250)]
< R lso-
Hence the above expression (*) is dominated by
1 otk " 1 " h—0
1671l N W[l f " looM ds < |[b~7[[|A] - 2(a + [R]) - |/ loeM —— 0

where M = max{||y(t — s)|| : s € [t —a — |h|,t + a + |h[]}. Thus we conclude ~ is differentiable.
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Recap of differentiability: find f € C°> (C? will suffice) of “small enough” support, f_oooo f =1, f >0, such that

b= /jo f(s)v(—s) ds € GL,,(F).

Then
1O =) =67 [ pent-s)ds = [ g5+ 0n(-s) ds

Y=o [ O

Next, let A = ~/(0). Then for any ¢ € R we have

7(t+s):i

¥'(t) 7

_ 4
_dS s=0

Hence by the matrix product rule,

%h(t) exp(—tA)] = 7'(t) exp(—tA) +v(t)(—Aexp(—tA)) =0
~——
(A

and hence
v(t) exp(—tA) = y(0)exp(—0- A) = I = ~(t) = exp(tA). O

6 Matrix Lie groups/algebras

6.1 Basic notions

6.1 Definition. A matrix (or linear) Lie group is any closed subgroup G < GL,,(F). Given a matrix Lie group G, its Lie
algebra is
g = Lie(G) = {X € M,(F) : exp(tX) € G forall t € R}.

6.2 Remark. For X to be in Lie(G), it suffices that there is € > 0 so for ¢ € (—¢, €) we have exp(tX) € G. Indeed, for k € N
we have exp(ktX) = exp(tX)* € G.

6.3 Theorem. If G < GL,,(F) is a matrix Lie group and g = Lie(G), then for X, Y € g we have
(i) X +Y,sX € gforeachs € R (i.e. g is a R-vector space).
(i) [X,Y]=XY —YX € g. [X,Y]is called the Lie bracket.

Proof. We have:
(1) It’s obvious that sX € g. To see additivity, let us first show

t

(i*) for small |¢|, we have exp(tX) exp(tY) = exp(t(X +Y) + %[X, Y]+ t3Py(X,Y,t)) where P is continuous in

X,Y,t.

To see this, consider
12 2
F(t) = exp(tX) exp(tY) = <I+tX + 5X2 +13Q1(X, t)) (I +tY + §Y2 +13Q1 (Y, t)>

2
:I+t(X+Y)+%(X2+2XY+Y2)+1€3R1(X,Y,t). (%)
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For sufficiently small |¢| we have || F(¢) — I|| < 1so

log F(t) = (F(t) = I) = 5 (F(t) - n*+...
= [t(X+Y)+ g(x“' +2XY + YQ)] - %[tQ(XQ + XY +YX + Y]+ PP (X,Y, 1)

t2
=t(X+Y)+ E[X,Y] +t*P(X,Y,t)

Hence
t2
exp(tX) exp(tY) = F(t) = exp(log F(t)) = exp (t(X +Y)+ §[X7 Y]+ P (X, Y,t))
Now, if X,Y € g then for k£ € N we have

t t )\ t 21 t )"
<exp kX~ekaY> = exp (k(X+Y) + =l {Q[X,Y] + EPI (X,Y,k>})

eG

2
=exp(t(X +Y)+ E[bounded stuff])

Hence take k — oo, and we see that exp(t(X +Y)) € G for all small [¢|. Thus X +Y € g.
(i1)) We wish to see

(ii") exp(tX) exp(tY) exp(—tX) exp(—tY) = exp(t*[X, Y] + t* P, (X, Y, t)) where P is continuous in X,Y and .
From (*), let

G(t) = exp(tX) exp(tY) exp(—tX) exp(—tY) = F(t)F(—t)

2
= <I+t(X+Y) + %(XQ +2XY +Y?) +t3R1(X,Y,t)> -

t2
(I —HX+Y)+ E(XQ +2XY +Y?) - *R (XY, —t))
=T+ (X2 4+2XY + V%) -2 (X2 + XY + Y X +Y?) + 3 Ra(X, Y, t)
=T+ [X, Y]+ t3Ro(X, Y, 1).
Now, if |¢] is sufficiently small so ||G(t) — I|| < 1, then

log G(t) = (G(t) — ) — %(G(t) 1P 4 = (X, Y] + B Py(X, Y, 1),

As above, exponentiate. Now, from (ii’), if X, Y € gand k € N

2
+k2 t2 t4 +k
[exp £ X -exp £V - exp (5 X) exp (—3Y)]7 =exp (,CQ[X, Y]+ 7 P(X.Y, ,i))

4
= exp (j:t2 [(X,Y]+ %PQ(X, Y, ,g)>

Take k — oo, we get exp(+t2[X,Y]) € G. Hence [X,Y] € g. O
6.4 Definition. A matrix Lie algebra is a R-vector subspace g of M,,(IF) such that X, Y € g implies [X, Y] € g.

d
6.5 Remark. Recall —|  exp(tX) = X.
dt{,—g

6.6 Example. We have:
® g[n(F) = Lie(GLn(F)) = Mn(F)
(ii) sl,(F) := Lie(SL,(F)) = {X € gI,(F) : Tr X = 0}.

Proof. Recalling Remark 4.2(iii) which talks about the determinant of an exponential, we have

X esl,(F) < 1=detexptX =) = !X forallt e R <= TrX =0. O
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(i) t(F) := Lie(T2(F)) = {X € gl,,(F) : X;; = 0if j < i}.
(Recall that T?(FF) consists of upper-triangular matrices with 1s on the diagonal).

Proof. First, if X;; = 0 for j < i, then (X*);; = 0if j < i (this is just an induction argument). Hence exp(tX) €
TO(F), for all t € R, i.e. all elements of the RHS are in t° (F). Conversely, if X € t) (F) then for t € R,

1 ifi=j
€ tXZ:
*p(tX)ss {0 ifj <
Thus J
dt|,_,

(iv) tu(F) = Lie(T,(F)) = {X € gl,,(F) : Xiy = 0if j < i}.
(v) 0,(F) = o(n) := Lie(O(n)) = {X € gl,,(R) : X7 = —X} (“skew-symmetric”).
Proof. X € o(n) if and only if

exp(tX7T) = exp(tX)T = exp(tX) ™' = exp(—tX)

thus p p
Xt =— tXT) = — —tX)=-X.
G| ewxT) = G exp(-1X)
Conversely, if X7 = — X then
exp(tX)T = exp(tX7T) = exp(—tX) = exp(tX)™' = X € o(n). O

(vi) u(n) :=Lie(U(n)) = {X € g[,,(C) : X* = —X} (“skew-hermitian”).
WARNING: u(n) is a R-vector space, but not a C-vector space.
6.7 Proposition. If G, H are matrix Lie groups in GL,, (IF) with associated Lie algebras g, h then Lie(GN H) = gnNh.

Proof. X € Lie(G N H) if and only if for all t € R, exp(tX) € G and exp(tX) € H, which occurs if and only if
X egnh. O

(vii) su(n) := Lie(SU(n)) = u(n) Nsl,(C) ={X € ¢gl,(C) : X* = —X and Tr X = 0}.
(viii) so(n) := Lie(SO(n)) = o(n) N sl,(R) = o(n).
Observe, if XT = —X,ie. X € o(n) then Tr X = Tr(XT) = Tr(-X) = — Tr(X) so Tr X = 0.

6.2 Manifold structure of Lie groups

6.8 Definition. Let M be a topological space (metric). A C'-coordinate system is a set {(¢;, U;) }icr such that {U; };cr is an
open cover of M and

is continuous, injective and open for which
©; © (p;l : S@j(Ui N UJ) — (pi(Ui) C R™

is a C! map whenever U;, U ; are not disjoint [it follows from the inverse function theorem that m; = m; whenever U; NU; #
a].
6.9 Definition. Two C'-coordinate systems {(p;, U;) }ies and {(¢j, V;)} ;e are C*-equivalent if

©; ° w;l : Q/JJ(V} N Uz) — (pl(Uz) C R™

is a C* map whenever U;, V; are not disjoint.

6.10 Definition. A C'-manifold is a pair (M, {(¢;, U;) }icr) where M is a topological space and the other part is an equiva-
lence class of C!-coordinate systems on M. A similar definition holds for C k. C> (smooth), analytic manifolds.
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6.11 Theorem (COORDINATES AT IDENTITY). If G is a matrix Lie group and g = Lie(G) , then there is an open neigh-
bourhoud ¢/ of 0 in g and V' of I in G such that
exp: U -V

is a homeomorphism.
6.12 Remark. g is a R-Vector space, g C gl,,(F) = M,,(F) and gains its topological structure from || - ||.
6.13 Remark. Closed subsets of manifolds are not in general manifolds, take for example the topologist’s sine curve.

Proof of theorem. (I) Let m be a complement of g in M, (F). We will show that there is a neighbourhood U of 0 in m such
that
exp(U)NG = {I}

If not then there would be a sequence X, — 0 in m such that g = exp(Xy) € G \ {I}. Let Y be any cluster point of
(mX )52 ;. By dropping to a subsequence, we may assume

Y = lim
k— o0 ||XkH
Note that m is closed so Y € m. Fix t € R and let
t t
@Z{J, ag = 7o —lk
(| Xkl | Xl
SO
exp(tY) = hm exp(”X H Xk)
= lim exp(X%)* exp(a Xy)
k—o0
We note

llok X || = [k Xnll < [[ Xkl = 0O

which shows
exp(tY) = klim gﬁ’“ -Ied
—00

since G is closed.

(1) The map @ : m x g — GL,,(F) given by
P(X,Y) = exp(X) exp(Y)

is C! with derivative
D®(0,0) € L(m x g, M,,(F))

of full rank (£ the space of linear operators). First recall that D®(0, 0) is the (unique) linear operator such that

ﬁll exp(0+ X) exp(0 +Y) — exp(0) exp(0) — DL(0,0)(X, V)| — 0.

Note that X — exp(X),Y — exp(Y") are analytic (in coordinates) and products of analytic functions are analytic. Thus, ¢
is analytic hence C*.

Now to see that structure of D®(0, 0) consider
exp(0+ X)exp(04+Y) —exp(0) exp(0) — (X +Y) =exp(X)exp(Y)—-T - X -Y
1 1
= (I+X+§X2+...)(I+Y+§Y2+...)

1
:XY+YX+§X2+--~:G(X,Y)

We observe
o0

IGCX V)l Z (XN + Y I)* = XT3 — ) — ]|
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Also % achieves a maximum value M on the compact sphere of points where || X + Y| = 1. By homogeneity,
I XI Y
<M
X + Y|

for | X + Y| > 0. Thus,

IGX V)| _ eI —1 — X — Y]

< —0
X+ Y] 2 (X 1Y)

Hence D®(0,0)(X,Y) = X + Y so Im D®(0, 0) is of full dimension so D®(0, 0) is of full rank.

(IIT) By (IT) and the inverse function theorem, we obtain neighbourhoods U of 0 in m and I/ of 0 in g such that
O :U xU — exp(U)exp(Ud) C GL,(F)
is a C! - diffeomorphism. Moreover by (I), we may select U to satisfy
exp(U) NG = {I}.

Hence, let
V = (exp(U) exp(Ud)) N G = exp(U). O

6.14 Remark. We can choose V' C B(I,1) in G and U = exp~ (V) such that log |y is the inverse map of exp |;;. Hence,
exp : U — V is a bi-analytic homeomorphism. Hence, a C*°-diffeomorphism.

6.15 Corollary. A Matrix Lie Group is an analytic manifold.
Proof. LetU,V be as in the remark above. If g € G then

gV ={gh:heV}

is an open neighbourhood of g. I need  — gz is continuous on G with inverse z + g~ !

a homeomorphism. Thus, let

x which is continuous so z — gx is

g9V — g, pg(x) = log(g_lx)
So ¢y(gV) = exp(U) = V.

Now if gV N hV # @ then ¢, 0 ¢, ' : @1 (gV NhV) — gis given by

g0 @y H(X) = log(g™ hexp(X))
The connecting map is obviously analytic. Hence, {(gV, ¢4) } 4 is an analytic coordinate system. O

6.16 Corollary. The connected component of the identity (denoted G) of the matrix Lie group G is an open, normal
subgroup generated by exp(g).

Proof. We may assume that ¢/ (nbd of O in g above) is convex (star-like about 0) and symmetric, i.e. { = —U. Then,
V = exp(U) satisfies
Vi={gtigeVi=V

and is an open set containing /. Let
oo
H=|]JV*
k=1

Then, H is open (V2 = gev gV inductively by V¥ open) and is a subgroup of G. Also

H=G\ |J ¢H
geG\H

is closed in G. Now, if h € H, so h € V* for some k. Write

h=g1...0k, g eV
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and g; = exp(X;) for some X; € U;. i.e. h = exp X1 ...exp X,. The path y(t) = exp(tX)...exp(tX}) connects I = v(0)
to h = y(1). Thus, H is open, closed and connected, so H = Gj.

Let us check normality, if h € G, g € G, lety : [0,1] — G be so v(0) = I, (1) = h, then

gy()g~t:[0,1] =G
is a path with gy(0)g~! = I and gy(1)g~! = ghg~'. So ghg~* € Go. O
6.17 Remark. exp(g) C Gy. In fact, Lie(Gy) = Lie(G).

A few remarks
A Matrix Lie group is a closed subgroup G < GL,,(F). We defined g = Lie(G) = {X € g[,(F) : exp(tX) € Gforallt €
R}. In this case, (exp(g)) = Gy. Here, (- - - ) denotes “closed subgroup generated by”.

However, look at A2Q1 (essentially shows us how to make a sort of “skew line” in the 2-torus). The remark gives a 1-
dimensional space in My (R) (a fortiori a Lie algebra) for which (exp RX') gives a “two dimensional” Lie group.

If I have a closed Lie group, the Lie algebra is a real linear space, so it has a dimension. We call that the dimension of the
Lie group. Just because we have a Lie algebra doesn’t mean we really know what our Lie group is. Let’s just talk a bit more
generally about Lie algebras.

6.3 Homomorphisms of Lie algebras
We explore the functorial properties of G +— Lie(G). Let V' be an F-vector space. We will specify finite-dimensionality when
we need it.
6.18 Definition. Let gl(V') = £(V) consist of F-linear operators on V, with Lie bracket given by
[X,)Y]=XY -YX.
An F-Lie subalgebra is an F-subspace which is closed under [+, ].
We note the following properties of [-,-] : g X g — g:
1. (antisymmetric/anti-commutativity) [X,Y] = —[V, X].
2. (bilinearity) X — [X,Y] is linear (hence so toois Y — [X,Y])
3. (Jacobi identity) [ X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.
6.19 Definition. If g, h are Lie algebras', then a linear map p : g — b is called a Lie homomorphism if
[p(X), p(Y)] = p(IX,Y]), VX, Y eg
In the case when fj = gl(V'), we often call p a (Lie algebra) representation of g.

6.20 Theorem (ADO’S THEOREM). If g is a finite dimensional abstract Lie algebra, i.e. a finite dimensional F-vector space
satisfying anti-commutativity and Jacobi’s identity, then there is an injective representation

p:g—gl(V)

for some finite dimensional V.

6.4 Derivations, Ad, and ad

6.21 Definition. If g is a Lie algebra, a derivation is a linear map D : g — g satisfying the Leibniz rule, that is,
D([X,Y)) = [DX,Y] + [X, DY].
The set of all derivations g — g is denoted Der(g). We define the adjoint map ad : g — L(g) by
adX = [X, -], ie  adX(Y)=[X,Y].

"'We do not specify the underlying field — the default assumption is that it’s R; sometimes we might specify C.
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6.22 Proposition. We have:
(i) Der(g) C L(g) is a Lie algebra.
(ii) ad(g) C Der(g) and ad : g — Der(g) is a representation.
Proof. We have:
(i) Itis clear that Der(g) is a linear subspace. Let us check the Lie bracket: if Dy, Dy € Der(g) and X,Y € g,
[D1, DoJ([X,Y]) = D1Ds([X, Y]) — D2D1([X,Y])
= Di([D2X, Y]+ [X, DoY) — Do([D1 X, Y] + [X, D1Y])
= [D1D: X, Y] + [De XDV |+ [Dy X5 D3 T+ [X, D1 DoY ]

— ([D3D1 X, Y] + [DyX5P5Y T + [Da X BTYT + [X, Do D1 Y))
= [[DlaDQ]X, Y] + [X, [Dl,DQ]Y]

Hence [D1, D3] € Der(g).
(i) ad is clearly linear. Also, for X, Y., Z € g, we see that
ad X([Y,Z]) = [ad X(Y), Z] + [Y,ad X (Z)]

using the Jacobi identity with anti-commutativity. Thus ad(g) C Der(g). Finally, to check that ad is a Lie homomor-
phism, we have for X,Y, Z € g,

ad[X,Y](Z2) =[[X,Y],Z] = -]\, Z], X] - [[Z, X],Y] by Jacobi identity
=[X,[Y,Z]] - |V, X, Z]] by anti-commutativity
=(adXoadY)(Z) — (adY ocad X)(2)
=[ad X,ad Y](2).
Hence ad[X,Y] = [ad X, ad Y]. O

6.23 Definition. For a Lie algebra g, let Aut(g) denote the group of Lie automorphisms of g, i.e. linear bijective Lie homo-
morphisms.

To see these are the same thing, note that if a[X, Y] = [a(X), a(Y)] then o~ € GL(g). Also,
X, Y] =a Haoca Y (X),a0a  (Y)] = [ H(X),a (V)]
6.24 Proposition. Let g be a finite dimensional Lie algebra. Then Aut(g) is a closed subgroup of GL(g) and
Lie(Aut(g)) = Der(g).

Proof. We note g < gl,,(F) = M, (F), the norm || - || on gl,,(IF) gives a norm | - | on g. Hence “closed” makes sense. If
ay, £22% o from within Aut(g), then for X, Y € g

alX,Y] = lim ax[X,Y] = lim [ X, a Y] = [0 X, aY].
k— o0 k—oc0

This shows that Aut(g) are closed in GL(V).
Now, if D € Lie(Aut(g)), then exp(tD) € Aut(g) for each ¢t € R. Hence,

DIX,Y] = % B exp(tD)[X,Y] = % 7O[exp(tD)X, exp(tD)Y] = [DX,Y] + [X, DY].

Thus D € Der(g). Conversely, if D € Der(g), let for fixed X, Y € g
Fi(t) = exp(tD)[X,Y], Fy(t) = [exp(tD) X, exp(tD)Y].

Observe, F1(0) = [X,Y] = F5(0) and
F{(t) = Dexp(tD)[X,Y]

while, by the product rule,
Fi(t) = [Dexp(tD)X,exp(tD)Y] + [exp(tD)X, D exp(tD)Y] = Dlexp(tD) X, exp(tD)Y].

Hence F}(t) = DF}(t), for k = 1,2 with F;(0) = F»(0). Thus, for these analytic functions F; = F» which shows that
exp(tD) € Aut(g) for all (small) ¢ in R. O
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6.25 Remark. If G < GL,,(F) is a matrix Lie group, g € G and X € g = Lie(G), then gXg~! € g. Indeed, we have for
X € gl,(F),

Xeg < exp(tX) eqG forallt € R
— exp(tgXg ) =gexp(tX)g ' € G forallt € R
— gXg'eg
This motivates the following.
6.26 Definition. We define the adjoint map Ad : G — Aut(g) by
Ad(9)X = gXg '

Note that
Ad(g)[X, Y] =g[X,Y]g™ ' =g(XY =Y X)g~ " = [gXg~ ', gYg™ "] = [Ad(9) X, Ad(g)Y].

Also, Ad(gh) = Ad(g) o Ad(h). So Ad is a proper group representation.

6.5 The differential dy

6.27 Theorem. Let G, H be matrix Lie groups and ¢ : G — H be a continuous homomorphism. Then there is a R-Lie
algebra homomorphism dy : g = Lie(G) — h = Lie(H), called the differential of (, such that

p(exp X) = exp(dip(X)).
Proof. Fix, for the moment, X € g. Define a one-parameter subgroup px : R - H < GL,,(F)

ox(t) = plexp(tX)).
Let

dp(X) = g (0) = &

o p(exp(tX))

t=0

and we have, by the One-Parameter Subgroup Theorem, that

p(exp(tX)) = exp(tdp(X))
for t € R. By Chain Rule, dp(sX) = sdp(X) fors € R. If X, Y € g we have for ¢t € R that

exp(tdip(X +Y)) = p(exp(t(X +Y))) = lim ¢ ( ( exp %X P ;;y> k)

where the last formula comes from the proof that g is a vector space.

k k
. t t . t t
= lm (so(exp 7 X)elexp kY)) = lim (eXP 7 de(X)exp kdsO(Y)>

(same trick as above) so
= expt(dp(X) + dp(Y)).
Hence dp(X +Y) = dp(X) 4+ dp(Y). Finally, let’s see that dy is a Lie homomorphism. First, forg € G,Y € g,t € R,

exp(tdp(Ad(9)Y)) = (exp(t Ad(g)Y)) = @(gexp(tY)g ") = ©(g) exp(tde(Y))p(g) ™

, above, to get
t=0

d
Then, take o

de(Ad(9)Y) = ¢(g)de(Y)e(g)™" = Ad(e(g))de(Y).
Now put g = exp sX, s € Rto get
dp(expsX - Y -exp(—sY)) = p(exp sX)dp(Y )p(exp(—sX)) = exp(sdp(X))dp(Y)p(—sdp(X))

We then have

dp([X,Y]) =dp(XY —-YX) = dgo(js expsX Y - exp(—sX)) = % dp(exp sX - Y - exp(—sX))
s=0 s=0
= d% exp(sdip(X))dp(Y) exp(—sdip(X)) = dp(X)dp(Y) — dp(Y)dp(X) = [dp(X), dp(Y)]. 0
s=0
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6.28 Corollary. d(Ad) = ad.
Proof. Implicit, above. O

6.29 Remark. In particular, if 7 : G — GL,,(F) is a continuous homomorphism (“‘continuous representation”) then there is a
Lie algebra representation dm : g — gl(V).

6.6 Invariant subspaces and irreducibility

6.30 Definition. If 7 : G — GL(V) is a (continuous) representation, we call a subspace W < V r-invariant if
T(G)W C W,

ie. m(g)w € W forg € G, w € W. We say that W is dr-invariant if dm(g)W C W. If 7 (resp. dm) admits no invariant
subspaces (other than {0}, V) we call 7 (resp. dr) irreducible.

6.31 Proposition. If G is a connected matrix Lie group with g = Lie(G) and 7 : G — GL(V) is a representation with V'
finite-dimensional, then for W < V we have

W is m-invariant <= W is dr-invariant.

In particular, 7 is irreducible if and only if dr is irreducible.
Proof. Recall V' = F™, and the topology is given by | - |. Any subspace is closed.

(=)For X egweW,
ew

1
dm(X)w = lim —(7(exp(tX))— I )w e W.
t—0 t ——— \ea/
!

() IfX €g,we W then
by induction e W

dr(X)*w = dr(X)* L dn(X)w
N—_——

ew

and hence
converging limit
of linear combinations

=1
m(exp X)w = expdn(X)w = —dr(X)kw e W. O
k! e— —
k=0 ew
6.32 Definition. If g is a Lie algebra, an ideal of g is a subspace i such that for any X € g,and Y € i, we have [X,Y] € i.
In other words, a subspace i < g is a Lie ideal exactly when i is ad-invariant, i.e. ad(g)i C i.

6.33 Proposition. If G is a connected matrix Lie group, and H < G is closed, then
Hy <G (normal) <= h = Lie(H) < g = Lie(G) (ideal).
6.34 Example. SLy(Z) < SLy(R) is closed (exercise) and SLo(Z)o = {I}. Also,
Lie(SL2(Z)) = {0} < sl3(R) but SLo(Z) < SLa(R).
Proof. If g € G, Y € b then

exp(t Ad(g)Y) = gexp(tY) g~' € H (in particular Hy) <= Ad(g)Y € b.
——

€Hg

Then, if Hy < G then b is Ad-invariant. On the other hand if b is Ad-invariant then as above gexp(Y)g~' € Hy, for Y € b
which implies
gexp(Yy)---exp(Y)g ™t € Hy,

forany Y7,...,Y) € b, k € N. We saw earlier, that (exp h) = Hy, so ghg~' € Hy for h € Hy, i.e. Hy <I G. We recall that
d(Ad) = ad and hence the present result is immediate from the last proposition. O

6.35 Remark. If G is a matrix Lie group with centre Z then Z = ker Ad. Proof is similar to that above.
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6.7 Covering groups

6.36 Definition. We have:
(i) A matrix Lie group I' < GL,,(F) is discrete if there is a nbhd V of I in GL,,(FF) such that V N T = {I}.
(ii) We say that (G, ) is a covering group of a group H if
e ¢ : G — H is a surjective homomorphism.

e ker o is discrete.

6.37 Example. Consider ¢ : (R, +) — U(1) = {z € C : |z| = 1} given by p(t) = e'’.

—t T
{7 G

Note ker ¢ = 27Z.
R is a matrix Lie group,

RETS(R):{B ﬂ :te]R}, R = GL;(R)o by ¢ — €.

6.38 Theorem. Suppose G, H are matrix Lie groups with respective Lie algebras g, and ¢ : G — H is a continuous
homomorphism with differential dy : g — . Then
(i) Lie(ker ¢) = ker dep. In particular, de is injective if and only if ker ¢ is discrete.
(ii) If dp is surjective, then p(G) 2 Hy.
(iii) If G, H are connected, then dy is bijective iff (G, ¢) is a covering group.
Proof. We have:
(i) Let X € g. X € Lie(ker ) iff I = p(exp(tX)) = exp +dp(X) forall t € R, iff dp(X) = 0.

We have ker dp = {0} iff (from above) (ker ¢)o = {I}. We recall that (ker ¢)o is open in ker . Hence there is open
V', neighbourhood of I in G such that V Nker o = {I} i.e. ker ¢ is discrete.

(ii) Let U be anbhd of 0 in b such that V' = expf is open and exp |y : i — V is a homeomorphism. Let U; C do~(U)
be a nbhd of 0 in g such that V; = explf; is open and log |y, : Vi — U is defined (hence the inverse of exp, and a
homeomorphism).
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dy

FlansH

‘We observe that
¢lv, = expo dp olog
~—~

surjective linear map
is C! hence open (LET.)

is an open map, so ¢(V7) is open. Hence

0(@) 2 J () ne(va) ="
k=1

an open subgroup of H, so ¢(G) D Hy.

(iii) Since we assume d is bijective, it is surjective so by (ii) ¢(G) 2 Hy = H. Also, dy is injective so by (i) ker ¢ is
discrete. O

6.39 Example. We have the following examples:
) R=T(R),

O(R) = {8 é}:teR
H1)={z€C:z"=z=—-2} =R
Calculate
d 0 t|
(po 07

it is bijective. We saw that ¢ is a covering map.
(i) Let us see that SU(2)/{—1,1} = SO(3). First, recall the inner product on gl,(C) D su(2),
(X,Y)) = Te(Y* X).
This is the usual R-inner product on su(2). We observe for g € SU(2) that
((Ad(g)X, Ad(9)Y)) = Tr((9Y g")"9Xg")
= Tr(9Y"g"gXg")
Tr(Y*X) = Tr(Y*X).
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(not sure why Tr(Y ™ X') was written twice — typo?) Hence Ad : SU(2) — SO(d) where d = dimg s1(2). Now
su(2) ={X €glh(C): TrX =0and X* = —-X}

:{{j g] eg[Q((C):a+§:O,a:—a(6:—5),ﬁ=—’y(7:—5)}

B ity ty +its]

;0 0 1 0 1
el -t - -5}

(these are called Pauli matrices). Thus dimg su(2) = 3. Compute:

X1Xo = X3 =—-XoX,
XoX3=X1 =-X3Xp (1)
XaX; = Xy = — X, X
and hence
(X1, Xo] = 2X3, (X2, X3] = 2X;, (X5, X1] = 2X5.
Recall, ad X (V) = [X,Y]. If B = { X1, X2, X3} then for X = t1 X + t2 X5 + t3X3 (t1,t2,t3 € R),

0 —2tg  2to
[ad X}B = | 2t3 0 —2t1| € 50(3)
—2ty 2t 0

hence ker(ad) = {0}.
Since d(Ad) = ad we then see that Ad : SU(2) — SO(3) is a covering map, by the theorem above. We note that

kerAd =, ZSU(2) = ZU(2) = ZGLy(C)NUE2) = {-I,I}.

remark earlier check () check

(*) will be discussed next class.

Office hours W 3 — 5pm, or by appointment.

Recall that we had Ad : SU(2) — GL(su(2)), with ((X,Y)) = Tr(Y*X).

Ad(SU(2)) € 0(3), 3 = dimg su(2).
——

connected

Thus, Ad(SU(2)) C SO(3). Basis for su(2) is

O F S o R

0 t1 o
[ad X]B = |-t 0 ts3 VX e 5u(2)
—to —t3 0
—_———
€s0(3)

={XeM3[R): X" = -X}

(Pauli matrices).

ad : su(2) — s0(3) is surjective, and since SU(2) is connected, the theorem implies Ad : SU(2) — SO(3) is surjective.
ad : su(2) — so(3) injective implies ker Ad discrete (hence finite).

In fact,
ker Ad = ZSU(2) = ZU(2) = ZGL:(C)NnU(2) = {-I,I}.

remark earlier check (1) check

(1) In fact,
ZU(n) = ZGL,(C)NU(n)
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Observe “D” is trivial.

Recall polar decomposition: if g € GL,,(C) then g*g € P,,(C). This implies there exists v € U(n) such that

A1
g*g:v v, M > >.. >N, >0.
)\n
There is u € U(n)
s
g=uv v

vV

[DIAGRAM OF UNIT CIRCLE WITH i AND VERTICAL LINE].

b= gt i1 @)+ (= iV )

est est
VAL M
g= \/xuv v*
VA /M
unitary

VA1

= Tuv +

( VAL A+ iy = A/

VAn/A 4T = A/

VAL —iy1T =M/ M

VA A —iy/1 = A/ )

unitary

Hence if w € ZU(n), then wg = gw, for g € GL,,(C). Thus ZU(n) C ZGL,,(C) N U(n).
(iii) SU(2) x SU(2)/{(I,1),(—1I,—I)} = SO(4). Let

a={(5 o) e

Note that H is a R-linear subspace of Mz(C) which has basis
i 0 0 1 0 4

X1Xo = X3=-XpX;
XoX3 = X1 = —X3Xo
X3X) = Xo = — X1 X3

Recall

Hence H is the R-algebra of quaternions. Note

- {(5 9):eex)om

¢ : SU(2) x SU(2) — GL(H)
o(u,v) X = uXv*.

Now, let
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Then ¢ is a homomorphism. We observe for u, v in SU(2) and X, Y € H
((p(u, ) X, o(u,v)Y)) = Tr((uYv*)*uXv*) = Tr(vY v uXv*) = Tr(Y*X) = ((X,Y))

and hence ¢ (SU(2) xSU(2)) C O(4), where 4 = dimp H. Since SU(2) is connected, we see that p(SU(2) x SU(2)) C
SO(4). We want to show dy : su(2) x su(2) x so(4) is bijective.

Now, for U,V € su(2), X e H

dp(U, V)X = % p(exptU,exptV)X = % exptU - X -exp(—tV)=UX — XV
t=0 t=0

Hence, ker dp = {(0,0)} (check, using knowledge of ZH, su(2)).
dimg su(2) @ su(2) = dimg su(2) 4+ dimg su(2) = 6
while 50(4) = spang{E12 — Ea1, E13 — E31, ..., B34 — B3} so dimg s0(4) = (3) = 6 and thus dy, being injective,

is surjective. Hence

©(SU(2) x SU(2)) = SO(4)
by the Theorem from last class. Finally, using again ZH = RI show that

kero = {(I,I),(—1,-1)}.

7 Classification of Lie algebras

7.1 Nilpotent and solvable Lie algebras
Let g be a (matrix) Lie algebra, and n, m < g be subspaces. Define
[n,m] =span{[X,Y]: X €n Y € m}.

7.1 Proposition. If i,j < g are Lie ideals then [i,j] < g.
Proof. f X €1,Y €, Z € g, then

[X,Y], 2] = —[w»\)f,] - 12X, Y _Jeliil. 0

7.2 Definition. We define D(g) = [g, g] and call it the derived ideal of g.

We define the descending central series

‘We also define the derived series

D*(g) = [D"(9), D" (g)]
We observe that D*(g) C [D*~1(g), g] and hence inductively, is contained in C*(g) = [C*~1(g), g].
We say g is nilpotent if C*(g) = {0} for some k. We say g is solvable if D*(g) = {0} for some k.

7.3 Remark. Nilpotent implies solvable.
7.4 Example. We have:
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(i) gis Abelian if [X,Y] =0 forall X,Y € g. Clearly, an Abelian Lie algebra is nilpotent.

(ii) O(F) = spanp{E;; : i < j}, the strictly upper-triangular matrices.
n F J

Observe
) ifj=ki#/4
—FEy; ifi=40j#k
FE;i.Exy| = FE;iFEw — EgE;; = 7
[ 7 kf] gLkl k0L Eig _ Ekj ifi= f,‘] —k (T)
0 else.

Note that the third case will never occur if ¢ < j, k < ¢. Hence one can compute
CF(O(F)) =spang{E;; :i <j+k} ifj=1,...,n—1

and C" (1) (F)) = {0}. In particular, t? (F) is nilpotent of (nilpotency) degree n.

a b
PR

h =Lie(H) = { ﬁ)l %2} 11, T9 € R}.
Let X = F11,Y = E15. We observe

@i1) The “ax + b”-group

Check that

[X,Y]=En1E12 — EgE1n =Epp=Y
Hence D(h) = RY, and D?(h) = [RY,RY] = {0} so b is solvable. On the other hand, C*(h) = RY so b is not
nilpotent.
(iii) t,(F) = spang{E;; : i < j} = 0,(F) + tO(F), the upper-triangular matrices. Here 0,,(F) = spang{E;; : i =
1,...,n} consists of the diagonal matrices. We can use () to show that
[0n(F), ty (F)] = t,,(F).

We conclude D( (F)) = t9(F) = C%(t,(F)). However C*(t,(F) t9(F) for all k > 2. Also, D?(t,(F)) =
D(t(F)) C CL(tY(F)). We find inductively that D*(t,,(F)) C C*~ 1(tO(F)) Hence D"~ 1(t,(F)) = {0}.

@iv) sly(F) = {( R EE AR IF} = spang {X = [(1) _01] = [ ] [(1) 8] } Compute:

[X,Y] = (E11 — Ex)E12 — E12(E11 — Ea2) = B+ B9 =2Y

Similarly,
Y, 7] = X, [Z,X]=2Z.

We observe D(slz(F)) = slo(IF) and hence D* (sl5(IF)) = sly(F) for all k. Hence this is not solvable.

For g € SLy(R) whose eigenvalues are distinct complex conjugates, say A\;, Ao = A\;. We view g € M(C), and let
v € C? be an eigenvector for \. Consider the vector o and check that gv = \oT. Write \; = ¢ + is.

v 9)g[v v]*:ﬁ; AOJ

Convince yourself that
[Rev Imuv]g[Rev Imv]_1 = nice.

7.5 Definition. Let V' be a vector space, and W < V be a subspace. Then
VIW={v+W:veV}
equipped with the operations
(1 4+W)+ (vo+W)=v) +va+ W, a(vy + W) =avy + W

is called the quotient space.
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7.6 Remark. If g is a Lie algebra, 7 : g — gl(V) is a Lie representation, and W < V is a 7-invariant subspace, then
p:g—gl(V/W) given by p(X)v+W)=a(X)v+W

is a well-defined Lie representation of g.

7.7 Lemma. Let V' be finite dimensional. If X € £(V) is nilpotent, i.e. X™ = 0 (one can show that> n < dim V'), then
ad X € L(L(V)), givenby ad(X)Y = XY — Y X, is also nilpotent.

Proof. Define Lx,Rx € L(L(V)) by
LxY = XY, RxY =YX

so that [Lx, Rx| = 0 (associativity) and ad X = Lx — Rx. Then
kork , S
(ad X)* = Z ( ) (=1) Lx* T Rx7 .

— 7 ——
I= xk—i Rxj

Thus (ad X)?"*! = 0. O

We now move towards showing that a Lie algebra is nilpotent if and only if its image under the adjoint map is a Lie algebra
of nilpotent operators.

7.8 Theorem. Let g < gl(V) be a Lie algebra, consisting of nilpotent operators on a finite-dimensional vector space. Then
there is vg € V' \ {0} such that Xvy = 0 for all X € g.

Proof. We will use induction on d := dimg. If d = 1 then g = FX, with X7 = 0 (n < dim V) and hence there is an
eigenvector vy € V' \ {0} corresponding to eigenvalue 0.

Let us suppose that the desired result holds for all representations, consisting of nilpotent operators, of subalgebras h of g with
dim h < dim g = d. First, we show that if ) < g is a proper Lie subalgebra of maximal dimension, then dimh = d — 1 and
b <0 g. Indeed, define o : h — gl(g/h) by

a(X)(Y +h) =X, Y]+ h=ad X(YV) + b, VX eh Yeg.
so « is a Lie representation of h. The inductive hypothesis provides X, € g\ b such that for all X € b, we have
a(X)(Xo+h)=[X,Xo]+b=0+b so that [X, Xo] € b.
Thus F X + b is itself a Lie subalgebra, of g, which by assumptions on b, tells us that F Xy 4+ h = g. Moreover
l9.b] = F[Xo,b] +[h,b] € b

so h <t g. Now, the inductive hypothesis tells us that W = (1 b ker X = {0}. We wish to show that T is g-invariant. For
X eh Y egandw € W we have

=0
—
XYw=YXw—-[Y,X]w=0
=0 v
= €b

and thus Yw € W, in particular Xow € W. Xo|w is nilpotent by assumption on g, and hence there is vg € W \ {0} such
that Xqvg = 0. Observe that gvg = 0 too since g = FXy + h and vg € W thus hvg = 0. O

7.9 Corollary. If g is a Lie algebra and p : g — gl(V) is a Lie representation for which p(g) consists of nilpotent operators
then there is a basis B of V such that

[p(X)] 5 € £, (F)
for each X € g.
Proof. Lete; € V '\ {0} be such that p(X)e; = 0 forall X € g. Let V = V/Fe; and again, we have e; € V' \ Fe; such that

p(X)(ez +Fey) = 0 + Fey.

Continue inductively. O

7.10 Theorem (ENGEL’S THEOREM). A matrix Lie algebra g is nilpotent if and only if ad g C £(g) consists of nilpotent
operators.

2This comes from Jordan form.
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Proof. (—) Observe that for X € g,
(ad X)“(C*(g)) € C*(g).

Since C™(g) = 0 for some m, we see (ad X )™ =0 forall X € g.
(+-) The corollary above implies that ad g is isomorphic to a Lie subalgebra of t (F). Hence
C"(adg) C C"(t,(F)) = {0}.
Thus for X5,..., X, € g, we have |- - - [[ad X1,ad X3],ad X3]--- ,ad X,,] = 0,sofor X € g,
([ [ X1, Xo], Xa] -+, Xy ], X] = ad[- - [[X1, Xo], X5 -+, X J(X)
=[-[[ad X1,ad X5],ad X3] - -+ ,ad X,,](X)
=0
and thus C"1(g) = {0}. O
7.11 Proposition. Let g be a Lie algebra, i) < g a Lie subalgebra and i <1 g a Lie ideal.
(a) If g is solvable, then so too are h and g/i (on the latter, define [X +1,Y +1i] = [X, Y] + i).
(b) If both i and g/i are solvable, then so too is g.
Proof. We have:
(a) We have D*(h) < Dk(g) and D*(g/i) C D*(g) +i.
(b) If D*(g/i) = {0+ i} then D’(g) C i. Hence if D*(i) = {0}, it follows that D***(g) = {0}. O

7.12 Theorem (LIE’S THEOREM). Let g < gl,, (C) be a solvable C-Lie algebra. Then there are vy € C™\ {0} and a C-linear
form A : g — C such that Xvy = A(X)vg forall X € g.

Proof. We will use induction on d = dimg g. If d = 1, then g = CX and X, admits an eigenvector vy # 0 and an eigenvalue
Ao € C. We have A(8X() = SAo then we are done.

Now suppose the result holds for all C-Lie subalgebras ) < g with dim¢ h < d. Since D(g) C g there is a C-linear subspace
h <gwithD(g) < h <ganddimch=d— 1.

Observe
9,0l C[g,0] =D(g) < b

so h < gi.e. his aLieideal. In particular, f is a solvable Lie subalgebra of g of lesser dimension and the inductive hypothesis
provides wy € C™ \ {0}, and a C-linear form X : h — C such that

Ywg = MY )wy forY eb.
Fix Xo € g\ b and let k be the largest integer for which
wo, Xowo, - - - , Xo™wo

is linearly independent. Set W_; = {0}, W; = spanc{wy,... , Xolwo} for j = 0,...,k. Observe XoW;_1 C W; for
j=0,...,kand XqW; C Wy.

We wish to establish that for Y € b, Y|, = A(Y)I,. Then we will be done. Indeed, let vy € W, \ {0} be an eigenvector
for Xo|w, with eigenvalue Ag. Then
A:CXo+h—=C
———

g
given by AM(aXo +Y) = ao + A(Y) does the job.

Let us show, first, that for Y € b,
YWJ‘,1 - Wj,h ij + Wj,1 = A(Y)wj + Wj,1 *)
for j =0,...,k. The case j = 0 is given by choice of wy. Then, assuming (*) holds for: =0,...,5 — 1,
EM[Xo0,YDw;j —14+W; 2CEW; 1
ij + Wj_l e YXo’LUj_l + Wj_l =Xy ij—l - [XQ,Y]w]‘_l -|—Wj_1
N——
EAXY)w;—1+W—2
= Xo()\(Y)’LUj_l) + Wj_l = )\(Y)U}j + Wj_l
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This proves the second equation of (*) and further shows that YW;_; € W;_;. Thus (*) is established. Further we see that

Now let us see that [X(, h] C ker A\. On one hand we have for Y €

Tr([X()?YHWk) = Tr([XO|Wk7Y|Wk]) =0

whereas [ X, Y] € b since h <1 g and (*) tells us that w.r.t. 3 = {wy, ..., w} we have
AM[Xo,Y]) *
[XO7Y”Wk =

so Tr([Xo, Y]|lw,) = (k + 1)A([ X0, Y]). Thus
0 = Tr([Xo, Y]lw,) = (k + 1)A([X0,Y])
shows that A([X(,Y]) = 0.
We have Ywy = A(Y)wg by choice of wy, and we shall assume that Yw,;_; = A(Y )w;_1. We see
ij = YXOw]'_l = YXOU}j_l = XoYU}j_l—[Xo, Y]wj_l = Xo)\(Y)’LUj_l—)\([Xo, Y]) Wj—1 = )\(Y)Xowj_l = )\(Y)’LU]
=0
Thus Y|Wk = )\(Y)Iwk ]
7.13 Remark. If XY have W < C"™ as an invariant subspace, then

X|lwYlw = XY|w

hence [X,Y]|w = [X|w,Y|w].

7.14 Corollary. If g is a solvable C-Lie algebraand p : g — gl(V') is a C-linear representation where V is a finite-dimensional
vector space, then there is a basis 3 for V' with respect to which

)\1(X) *
[p(X)]g = ) AL, ..., Ap 1 @ = Care C-linear forms, VX €g.
0 An(X)

In particular, if g < gl,,(C) is a solvable C-Lie algebra, then there is g € GL,,(C) such that

999" < 4,(C).

Proof. First observe that
p(g) < gl(V) = g1,(C)
is a C-Lie algebra. Then by Lie’s Theorem, there are e; € V' \ {0} and a C-linear form p; : p(g) — C such that

p(X)81 = ul(p(X))el = /\1(X)61 for X € g.
where A\; = 1 o p. Hence Ce; is a p-invariant subspace. Now consider
p1:9— V/Ceq

and, as above, find e5 € V' \ Ce; so p1(X)(ez + Cer) = pua(p1(X))(ez + Cey) for X € g where p5 : p(g) — C is C-linear.
Continue inductively. Let 8 = {e1,...,e,}. O

7.15 Corollary. If g < gl,,(C) is a C-Lie algebra, then g is solvable if and only if [g, g] is nilpotent.
Proof. (<) Obvious.
(=) As above, there is g € GL,,(C) such that ggg~* € t,,(C). Hence

glo,glg™" = lgag~" 99~ '] < £(C).

Since 2 (C) is nilpotent, [g, g] is too. O
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Is the corresponding statement for general groups true? According to A3Q2, being C-linear can be relaxed.

7.16 Theorem (CARTAN’S CRITERION). Suppose g < gl,, (F) is a Lie algebra such that Tr(XY) = 0 for X, Y € g. Then
g is solvable.

Proof. We may suppose that F = C. Otherwise g < gl,,(R) < gl,,(C). We will show that [g, g] consists of nilpotent matrices
(lemma last class). Hence, by Engel’s theorem [g, g] is nilpotent. By the corollary above, we see that g is solvable. Thus, let
us fix X € [g, g]. By change of basis we may write

A1 0
0 An

Note that by Diagonal-Nilpotent decomposition (“Almost Jordan Form” handout) there are polynomials pp(t), pn(t) such
that

Xp =pp(X), XN =pn(X).
We consider ad = adg (c). We observe that
ad Xp(Eij) = (\i — Aj) Eyj

(ad Xp is diagonalizable) and by lemma from last class, ad X is a nilpotent operator and [ad Xp,ad Xx] = 0. Hence
ad X =ad Xp +ad Xy so
(adXD) = (adX)D.

Thus there is a polynomial Pp (not necessarily same as pp) such that
ad Xp = Pp(ad X).
Now let Q(t), q(t) be polynomials such that g(\;) = A;, Q(A; — Aj) = X; — \j fori,j =1,...,n.
Observe that ¢(\;) — g(A;) = Q(X; — A;) and hence
adq(Xp) = Q(ad Xp) = Q o Pp(ad X)

and we see that
adq(Xp)(g) = Qo Pp(ad X)(g) C g.

Thus, if we write X = Z;il [Y;, Z;] where Y, Z; € g then we have

Tr(¢(Xp)X) = > Tr(q(Xp)(YiZi — Z;Yi)) = Y Tr(q(Xp)YiZi — Yiq(Xp)Zi) = > Tr([g(Xp),Yi]Z;)
=1 =1 =1

i=1 €g g
by assumption. Meanwhile, since
[¢(Xp), Xn] = 0(as [Xp, Xn] = 0)
we have that ¢(X p) Xy is nilpotent. Hence
A1 0 A1 0 n
Tr(q(Xp)X) = Tr(q(Xp)Xp) + Tr(¢(Xp)Xn) = Tr : = Il
~—_———— _ "
=0 0 An 0 An J=1
Hence, we have
0="Tr(g(Xp)X) =) [N
j=1
so each \; = 0 and thus X = X is nilpotent. O

Recall by an earlier proposition that if g is a Lie algebra and i < g then g solvable implies g/i solvable. Furthermore, if g/i
and 1 are solvable then g is solvable.

7.17 Proposition. If g is a Lie algebra and i,j <I g are solvable ideals, then i + j is also a solvable ideal.
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Proof. Ifi <1 g, h < gis aLie subalgebra then i 4 § is a Lie subalgebra. Moreover if § is an ideal, i + § < g. O

Now, we have that
(i+j)/i=j/(inj).  (check!)

Thus, if j is solvable, so too are i Nj and j/(i N j) and thus (i +j)/i is solvable. If, further i is solvable, then so too is i + .

7.18 Definition. We thus define, for a finite-dimensional Lie algebra g the radical

rad(g) = Z i={X;+...4+ X, : X; €i; and i; < g is solvable and m € N}.

i<g
i solvable

We remark that by induction, any finite list of solvable ideals i1, ...,i,, <1 g gives rise to a solvable ideal i1 + ... + i,,.
Moreover, since g is finite dimensional we may realise

rad(g) =11 + ... + im.

Details are left as an exercise.

7.2 Semisimple Lie algebras and the Killing form

7.19 Definition. A Lie algebra is called

e simple if it is non-abelian and admits no proper ideals.

e semisimple if it admits no non-zero abelian ideals.
7.20 Definition (NOTATION). Let g be a Lie algebra and p : g — gl(V) be a finite-dimensional representation. We define

B,:gxg—g
by B,(X,Y) = Tr(p(X)p(Y)).
Observe, if X, Y, Z € g, then
By([X, Y], Z) = Tr((p(X)p(Y) — p(Y)p(X))p(2)) = Tr(p(X)p(Y)p(Z) — p(X)p(Z2)p(Y)) = B,(X, [Y, Z]).

We call B, g-invariant:
~B,(ad Y (X),Z) = B,(X,ad Y (Z))

Consider the representation ad : g — £(g) (for a finite-dimensional Lie algebra) and define the Killing form by
B=Bg:gxg—F
B(X,Y)=Tr(ad X cadY)
7.21 Proposition. If g is a matrix Lie algebra and i < g is an ideal, then for X € i, Y € g we have
By(X,Y) =Tr(ad; X cad; V).

Here, ad; Y = (ad Y)|;. Hence
B; = By

ixi

Proof. Let By = {X1,..., Xy} be abasis for i which extends to a basis 3 = {X1,..., Xk, ..., X, } for g. We observe that

ladg X]5 = [[adigqﬁo Z]
and ad, V], = {[adi Oy]ﬁo ﬂ .
Thus

B(X,Y)=Tr(adg X cady V) = Tr(adjoad; Y). O
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7.22 Example. The Killing form on gl,, (IF), hence s[,,(IF) < gl,,(F), has formula
B(X,Y) = 2n Tr(XY) — Tr(X) Tr(Y).

To compute this we only need to compute on pairs of basis elements { £;; }7';_;.

Recall
[Eij, Exe] = 0k Eie — 005 Bk

We thus compute
ad qu oad Ekg(Eij) =ad qu((;giEkj — 5jkEiZ) = 5gi(5qupj — 5gi§jpEkq — 5jk5qiEpg + 5jk52pEiq (T)

Recall that { E;;}7';_; that it is an orthonormal basis for the inner product (X, Y’) = Tr(Y™X) where

(Ersy Ezg) = 6ri55j~ (TT)
Hence
B(E,q, Exe) = Tr(ad Epy 0 ad Egy) = Z (ad Epq 0 ad Eye(E;j), Eij)
ij=1
n =1
P
= [00:0qk0pi 655 —6210p0ki0q; — Ojk0qi0pide; + OjkOep Sii qs]
i >
- RZ[(SZT(qu(SpT - 5Tk5€1>§qr] - Z [5€i6jp6k1'5qj + 5jk§qi5pi(sgj]
r=1 ij=1
= n[0¢pOqk + Okqep] — [6ekOpg + Sedpg]
=2n TI“(quEkg) — QT‘I‘(Engpq)
Observe

B(I,Y)=0.
Note ad I = 0 so this is true.
7.23 Remark. We have:
(i) simple = semisimple

(ii) We observe that Z(g) = {Z € g : [X,Z] = 0 VX € g} = kerad. Since Z(g) < g and is abelian, hence if g is
semisimple then ker ad = {0} i.e. ad : g — Der(g) < L(g) is injective.

(iii) If g1, go are semisimple then
91@922{[)5 3} :Xeg1,Y692}
is also semisimple.
Indeed, if a <1 g1 @ g2 is an abelian ideal, then a N g; is an abelian ideal in g; (j = 1, 2) and hence {0}.
7.24 Theorem. Let g be a matrix Lie algebra. Then TFAE:
(1) g is semisimple.
(i) rad(g) = {0}.
(iii) the Killing form B is non-degenerate.

Proof. (i) — (ii): If t < g is a solvable ideal, and k € N is such that D (r) = {0} while a = D*~1(x) # {0}, then a is abelian
and an ideal in g. Hence, as no such a exist, we must conclude v = {0}.

(i) — (iii1): Let
t={Xeg:B(X,Y)=0forallY € g}

Thenif X € £,Y, Z € g then
B([X,Y],Z) = B(X,[Y,Z]) =0

hence [X,Y] € ¢ and thus ¢ < g.
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By the last proposition

BE:BQEXEZO

by definition of £. Thus by Cartan’s criterion, ad € < gl(£) is a solvable Lie algebra. However

Z () = ker ady <t
is solvable, i.e. Z(t), ¢ = £/Z(¥) are both solvable. Hence £ is solvable. But £ C rad(g) = {0} which gives non-degeneracy.
(iii) — (i): If a < g is an abelian ideal, then ad, a = {0} < L(a). Hence, using the last proposition, we have for X € a,Y € g

B(X,Y) = Tr(ads X oad, Y) = 0
——r
=0
Hence, by non-degeneracy, a = {0}. O

7.25 Theorem. If g is a semisimple matrix Lie algebra, then there are simple ideals

917---79m<9

(i.e. each g; is simple as a Lie algebra in its own right), such that

9=019...0gm-

Proof. Leti<igbe anideal. Weleti® = {X € g: B(X,Y) =0for Y € i}. Then i? is an ideal (look at proof for £, above).
Thus i N i is also an ideal for which
BiﬁiB = Bg = 0

iNiB xiNiB

and thus i Ni® = {0} as g is semisimple. Now let h = i +iZ < g. Since

icp  pPcif
and hence
h” CpPni” C pPnp
~~—
iBCh

but this latter space is {0}, by non-degeneracy of B. Hence i © i® = g.

Now, let g; be an ideal of g of minimal dimension. Then let g, be such an ideal of g, Z; g3 be a minimal ideal of (g; @ g,)%,
etc. Since dimg < oo we get a family g1, .. ., g, of B-orthogonal minimal ideals. Observe [g;,g;] C g; N g; = {0} for
i#j.Ifi<g; foranyi=1,...,mthen[i,g;] = {0} for j # ¢ and hence i < g. Thus i = g; by minimality. O

7.26 Corollary. If g is a semisimple matrix Lie algebra, then [g, g] = g.
Proof. As above, g =g1 @ ... D g, and [g, 9] = D, [0:, 9:] = D~ gi as each g; is simple. O
Office hours: Tomorrow, Monday (after RW) 1:30 — 3:30.

8 Haar integral on matrix Lie groups

Let G < GL,,(F) be a matrix Lie group and g = Lie(G).
8.1 Definition. For g € G, define the tangent space at g by

T,(G) = {7'(0) : v : (—€,€) — G is a differentiable path with v(0) = g}.
The next proposition shows that the tangent space at an arbitrary point more or less looks the same as the one at the identity

(which is the Lie algebra).
8.2 Proposition. Forg € G, T,(G)=g-g=g"g.
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Proof. First, recall that Ad g € Autg, sog = Ad(g)g = ggg~ ' and thus g - g = g - g. Now, if X € g, then

7(t) = gexp(tX)

defines a path in G with y(0) = g and v/(0) = gX. Hence g - g C T,(G). Conversely, if X € T,(G), lety : (—e,e) — G be
any differentiable path with v(0) = g and 7/(0) = X. Then, for small |¢|,

X(t) = log(g~"(t))
defines a curve in g. Thus v(¢) = ¢ - exp X (¢) and 7/ (0) = gX’(0) where X'(0) € g since g is a subspace. O
Now we develop some machinery to develop the integral.

8.3 Definition. Let 0 € &/ C gand I € V' C G be neighbourhoods such that exp : &« — V is a diffeomorphism. Let
C®(G)={f:G—=R| f(g-exp(e)) € C®U) forall g € G}.
A vector field on G is a function { : G — M,,(IF) such that
£(9) € Ty(G) = gg,  forgeG.

We say that & is C*° (or smooth) if each coordinate function §;; is smooth, that is

=Y &j(®Ey;, or &= (Re&(e)+iIm¢;(e))E;;  ifF=C.
i,j=1 ij=1
Let =(G) denote the set of all C* vector fields on G.

We observe that Z(G) is a C*°(G)-module i.e.

(f-&(g) = f(9)¢(9)s (&+n)(g) = &(9) +nlg), fec>(G), ged.

(We could also ask for C!, C* or C* (analytic) structure on =(() instead of smooth structure).
8.4 Example. Fix X € g = T;(G). Let {x € Z(G) be given by {x(g) = gX.
We now let d = dimg g = dimg T, (G) for any g € G.
8.5 Definition. Let
AltY (@) = {w : E(G)? — €*°(G) | w an alternating d-C°°-multi-module map}
i.e. for each (&1,...,&4) € 2(G)%:

L4 w(é-lv DR 7€d)(g) = wg(§1(9)7 v 7§d(g))
o alternating: w(&1,...,&,..., &, ..., &a) = —w(&,. .., &, &, ..., Ea), fori # j.
Observe if o € Sy (Sq is the symmetric group) then w(&, (1), - - -, &x(a)) = sgno - w(&y, ..., ).

o d-C°°-multimodule:

Wy fo&iveos8a) = frwl(€e,o 6,05 €a)
w(§1a"'7€ia"'a§d)+w(§17'~'ani7"'7£d>:w(515'~'7§i+77i7"'7£d)

e smoothness: the functions g — wy(&1(9), ..., &a(g)) are C* for (&1,...,&q) € E(G).

8.6 Remark (PHILOSOPHY). On the vector space T,3(G) = g - g, |det(e)] is the basic “volume form”. All positive scalar
multiples of this are reasonable notions of volume. We can abstractly call this wy, i.e.

wy:(g-9)! =R
is such a notion of volume. Hence Altd(G) is a smooth way of “gluing together” these notions of volume on all of the spaces

Tg(G):997 gGG
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We observe that if T € L(g - g) then for X1,..., Xy € ¢g - g we have that
we(TXq,...,TXg) =detT - wy(Xq,...,Xa).
Hence if A € Endee () (2(G)%) we have for (&1,...,&q) € E(G)?
w(A&y, ..., AEy) =det A-w(&, ..., 84).
We are now in position to define integration with respect to |w|.

Step 1: Let {¢a, Va}aca be a C*®-coordinate system (atlas) on G, compatible with {log(g~'e), gV },ec. Suppose f €
C.(G) (continuous, compactly supported, C-valued functions on G) and that supp(f) C V, for some . Let x = ¢,(g)
(pa : Vo — @a(voz) - Rd)

/G flwl = / f oot (@)w(Da) (s (2))] do

0 0
_ -1 ) -1 -1
_/Lpa(va)fogoa (x) w<p; (z) (ax (poz ( )a"-v 8$d<pa (LI?))

3] d 1
axk% Yoy, zg) = — i fa (x1,. .,k +t,...,zq) €T _1(w)(G)

pathin G

dry---dxy

Note that

Let us see that this integral is independent of choice of coordinate chart. Let {1, VB’} gep be another C°°-coordinate system
(equivalent to our original one, of course) and suppose f € C.(G) has supp(f) C Vo N V5. Weletz = pa(9), y = ¥5(9),

g€ VoanVs
o —1
/G £ lwl = / IR

a4

- / F(5" 0 s 0 031 (2)) |w(Da) (9 (2))] de
o(Va) ~———

Y

— [ reviw L (D)o @) dy
¥s(V3)

0 0 _
w (: () <ax1¢o{1( )ﬂaaxd(pal(z)>‘ dx

[det D(15 0 ¢ ) (@)
[det D(paotrz ) (y)]
— [ o W)y (Dlga o 05 0) D @) dy
P (Vj)
Dyt ()

_ / I ozt W)lw(Dp) (w5 ()] dy
¥s(V})

Step 2: Again suppose {¢q, Vi } is a C*°-coordinate system for G, f € C.(G).

8.7 Definition. Let K C G be a compact set. A partition of unity for K relative to {V, },c4 is a family {f1,..., fm} C
C.(G) such that

e Each supp(f;) C V,,.
o (fi+...+ fm)(g) =1forge K.

8.8 Exercise. Partitions of unity always exist.

8.9 Definition. With f € C.(G),let {f1,..., fm } be a partition of unity for supp(f) relative to {V,, }oc 4. Define

/Gflwl /ffzle Z/ ffz (pal(2)) |w(Da,)(pat(x))] da.

8.10 Fact. This definition is independent of partition of unity.

If{fi,..., fm}, {h1,..., hp} are two partitions of unity, for supp(f), relative to {V,, }nc 4, then

m

e Z/ffz | = Z/fozh | = ZZ/ffzh ] 2 Z/folh ] = Z/fh ]

=1 j=1

at (*) we are implicitly using coordinate independence.
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Notes for the lecture 2013-02-28, which begins here, are available on Dr. Spronk’s website.

8.11 Theorem (HAAR INTEGRAL). There exists a unique (up to scalar) 7 € Altd(G) such that 7 is left-invariant, that is,

/ f(g ®)ln| = / flnl. forall f € C.(G).
G G

Proof. Fix abasis {X,...,Xq} for g = T7(G). Then {gX1,...,9Xq} is a basis for T,(G) = gg for each g € G. For each
g € G,letn, : (9g)% — R be the unique d-multilinear alternating form such that

ng(9X1,...,9Xq) = 1.
[Recall any d-multilinear alternating form on R, is a multiple of (1, ..., 74) + det[z; - - - 74]]. Hence
1=1ny(9X1,...,9Xa) =n1(X1,..., Xa). (LD
Let : 2(G)? — C>(Q) be given by
(&1, -5 8a)(9) = 19(81(9), - -, €alg))-

Let us see, indeed, that Imn € C*®(G). If (&1,...,&1) € Z(G)?, for each i let &;(g) = Z;l:l &i;(9)gX; and we have that
&j € C°°(G). Indeed, g — g~ '¢i(9) = Z?zl &:;(9)X; is aC* function from G to g. Pick a dual basis a1, ..., 04 : g = R,
i.e. Oél'(Xj) = 6ij, and gij = 0 [.71&(0)}. Thus

n(&1s---58a)(g) = ng(61(9),---,8a(g))
d
= 1y (.. ~,Z&j(g)ng, )
=p(&11(9),12(9)s - -+ 5 €aalg)) - ng(9 X1, - -, 9Xa)

son € Alt4(G), as claimed. Thus (LI) provides for g, h € G, (€1, ...,&q) € Z(G)?
ngn(&1(gh), ... &algh)) = nr(h~ g™ &1 (gh), ..., h = g™ Ealgh)) = mu(g~ &1 (gh), ..., g " Ealgh)).  (LI¥)

Now if f € C.(G) we may, and shall, suppose that supp(f) C V for a single coordinate patch (¢, V') (i.e. multiply f by a
partition of unity for supp(f), otherwise).

Fix ¢ € G. Note that b € supp f(ge) iff gh € supp f, iff h € g 'supp f. Let ¢ : p(g'e) : gV — RZ Observe
™t =g-¢~! Then

/G f(go)ln] = / T @)
- / )
e (V)

o _ 0 _
Np—1(x) (3:31%0 1(37)7""87%90 1(33))‘ du

.0 _ .0 _
Np=1(x) <9 1871W Y(2),....,9 137(19<p 1(%))‘ dz

_ 0 _ 0 _
=/ flge™ (@) |0 gp1(a) 5 9% 1(af)w-,afgw Y) || do by (LI¥)
e(V)=u(gV)  ——— | | Oz g
p=1(z) =1(z) p=1(x)

o _ 0 _
i) (ot @t o))

- / fov ()
P(gV)

Z/Gf\n|~

We remark that (LI*) forces condition (LI), which thus is based on choice of 7, which is unique up to scalar. In fact, any
w € Alt?(G) which admits Jo flg®)w| = [ flw] is forced to satisfy (LI*). O

The uniqueness of the Haar measure is rarely used — existence is what we really care about. This is why we leave the proof at
this, although we have not satisfactorily proved uniqueness.

8.12 Proposition. Let 7 € Alt*(G) be the left invariant form from above. Then for f € C.(G), g € G

1
mm/cf(‘g)hﬂ/ﬂm-
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8.13 Remark. The function 1

Alg) = ————
9 Al9) | det Ad g|

is a continuous homomorphism from G into the multiplicative group R>. This is called the modular function of G.

Proof. Again, suppose f is such that supp f(eg) C V for a coordinate patch (¢, V'). Then
0

| steanl = / @0 | ((fmw(x),...,mw(x))‘ dx
0

:/W) Fle™ M (@)g) |m (so‘l(x)‘l Lfm@‘l(w)g] g7 e () {ga‘l(x)g} g_1>’ dr by (LI¥)

~

8a:d

~—

o ) R e O P o Y P 1
%) i

Adglp=1(2) " zZ ¢~ H(2)gl]

_ o _
— [ g @gldetAdgl i g g @) de
(V) S=—— —— Li N————
P=H(x) Y=1(z) Y= H(z)

— | det Ad | /¢ o e @) () e

- \detAdgl/Gflnl- O

8.14 Proposition. In any of the following situations a matrix Lie group G is unimodular, i.e. A = 1:
(a) G is abelian.
(b) G is compact.
(c) Lie(G) is semisimple.
(d) Lie(G) is reductive and G is connected.
(e) Lie(G) is nilpotent and G is connected.
Proof. We have:
(a) Left and right translations are the same

() A: G — (R>?,.) is a continuous homomorphism. Thus A(G) C R>Y is a compact subgroup. Note, if a € R>0\ {1}
then {a" } ez is unbounded, hence not compact. Thus A(G) C {1}.

(c) We first observe that ad(Ad g(X)) = Adgoad X o Ad g1, indeed, just test against Y € g. Thus the Killing form

satisfies
B(AdgX,AdgY) = Tr(Adgoad X o Adg™ o AdgoadY o Adg™™) = B(X,Y). (*)
Fix a basis for g = Lie(G) and let [B] denote the matrix of B w.r.t. this basis, so
B(X,Y) = [Y]"[B][X].
But then, by (¥) we have
[Adg]"[B][Adg] = [B]
so (det Ad g)? det[B] = det[B] and since det[B] # 0 by semisimplicity, | det Ad g| = 1.
(d) By A3, g = Z(g) ® D(g). Each Z(g) and D(g) are ad g-invariant (i.e. ideals). Since G is connected, they are Ad G-
invariant as well. Moreover, since each Z € Z(G) commutes with each X € g so letting g = exp X7 - - - exp X, we

can calculate Ad g(Z) = Z. Thus each g in G admits w.r.t. a basis for g, composed of a union of bases for D(g) and
for Z(g)

Adglp)] O
Addl = | (g)
[Ad g] 0 o)

and hence
| det Ad g| = | det(Ad g|p(g))]
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and by Aut(g)-invariance of Bp(4) we see from proof of (c) above that

| det(Ad g[p(g))| =1
(e) Recall d(Ad) = ad so Ad(exp X) = exp(ad X). If g = exp X7 - - - exp X,,, we have

det Adg = H det Ad(exp X;) H det(exp(ad X;) H eTr(ad X;)
Jj=1 j=1

By Engel’s Theorem, ad g is a Lie algebra comprised of nilpotent operators. Hence each ¢™(2d Xi) = ¢0 = 1,
Recall: If { X1, ..., X4} is a basis for g, then ) € Alt?(G) defined by
Ng(9X1,.. ., 9Xa) =mi(Xy, ..., Xq) =1

gives a left invariant integral supp f C V, (¢, V)

/f|77| / oo™ (z)|n,- 1(T)< aiigo_l(x),..)’ dx.

8.15 Example (GLOBAL COORDINATE SYSTEMS). We have:

G:{[g 117] :a>0,beR}

e x®e ([0 1]) =@

open subset of R?

(i) “ax + b” group

Global coordinate system

Also g = Lie(G) = {[0 O} :x,yeR} let X = F11,Y = E1o. Letg = {8 ﬂ

0 4 0 fa b 1 0] _
9a¥ (@)= c'?a[ 1} [0 o]‘X

We then have for the left invariant form (n;(X,Y) = 1)

We have

and 2o~ (a,b) =

g )05 = Zanggoxa) = Zongey ([5 3] [§ 1] )2 e =

Hence if C.(G), we have

/Gfm' - //R>0fo 0@ (@) 710 (;asol(a,b), gl)%"l(a,b))‘ db da
N /]R>0 /]Rf <[8 ll)]> ‘77[8 lf](XaY)’ db da
:/R>0/Rf<[8 i’]) al—zdbda.

Let us compute the modular function.
Alle b\ 1
0 1) |det Ad [g %]

ol Jr-b 0 g1 1R A b oxw
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@)

(ii)

and
wh o B A -

a b 10
Ad [0 1H :[b a]
(XY)

a b a b 1
anaft ] =o = a(ft 9)=1

G= { [2 b} :n€Z,be R}. Note that G < GL2(R) is closed but G is not closed in M3 (R). Also

o {f Y]

and thus

Thus

so g = Lie(G) = Lie(Gy) = RY, where Y is as above. Let V,, = { {20 ﬂ tbe R}, n € 7 and we have coordinate
systems
{en, Vatnez ® 200 =beR
ny ¥nfnel, n 0 1 .
As above
m b B
0 Y =27 ) =1
SO

a0 ey | EAL] RV N
=g -y ([0 1Y) -F

Thus if f € C.(Q) satisfies supp(f) C Vo = Gy, then
2” b 1
L= Lo (5 1]) e
_ 2" bl 1
L= Lo([5 )z

neZ

In general,

Finally, as before
b

2" n
M2 ooy

so det Ad [20 ﬂ =2"s0 A < [20 ﬂ > = . This despite that g = RY  is abelian hence nilpotent and reductive.
G = GL,(R) C M,(R) is open. Global coordinates (id, G) [R™* = M,,(R)]. We compute

0 =
391‘3’

Fix 77 : gl,(R)™ — R, sons (..., E;j,...) and extend this to “the” left invariant form 7 € Alt™ (@)
1 1

Moo Bij ) = Lg”f’( 9Fi, ) det L, mlo By ) =9 L,
L_quj 1

To compute det L, let us write gl,, (R) = C1 @ ... ® C,, as columns. We see that L,C; C Cj, it is essentially the action
of gon R™. Hence w.r.t. 3 = {..., E;j, ...} where columns are grouped together, we have

g 0

[Lg]ﬁ = € Mp2(R)
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Hence
det Ly = (det g)".

Hence, for f € C(G),
1 n
= [ oD 11 dow
/GLH(]R) | GL, (R) 9] | det g|" w»l_zll !

(ii’) G = GL,(C). Global coordinates (¢, GL,(C))
@(9) = [xijyyij]?,jzl
where z;; = Re g;; and y;; = Im g;;. We observe

0

= Eyj, =il
dy;” ! yy? Y
AS&bOVC,ﬁX’I][(...,Ekg,...,iEkg,...>
(oo Bty ity ) =
Ng\- -y Likey - - - W LKp, .. .) =
I det Lg

where we consider this L, as an R-linear map on gl,, (C) = RC If we decompose gl,, (C) into n complex columns,
like before
g, O)=C1®...0C,

then, for basis Sy = { F1k, i F1k, Bog, i Fag, . . .} we get

i1 Y1 Ti2 Y12
L9|Ck 1 = |=Y11 Tun —Yi2 T12
5 . . .
Now let h € GL,,(C) be such that
)\1 *
hlzge + iype b~ =
0 An
Then if
7 Re hij Im hij
h= —Im hij Re hij € MQ“ (R)
SO _ _
ReX; Im)\
—Im )\1 Re )\1
_ " Re )\2 Im )\2
hng|Ck1 ht= —ImAz Rels
Je 0 0
0 0 |

and hence det[L,|c, ]s, = [T;—; ((ReX;)* + (Im A;)?) = [T}_; [Ai|* = | det g|*. Thus as before
det L, = | det g|*"

Hence for f € C.(G)

1 n
flnl = / fl@re + iyre]) ———= dzredyre.
/C;Ln(C) GL,(C) D | det g[2" H

k=1
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£ [ 1

G

C.(G) = C

/ fInl > 0if f > 0 pointwise
G

Riesz Representation Theorem implies the existence of a regular Borel measure m¢ on G such that

/Gf|n|=/Gfdmc.

Closing comments

@), (ii) We note that GL,,(C) and GL;\ (R) = GL,,(R)g are both unimodular. Indeed both are connected and g, (F) (F = C,

R) is reductive. We note that GL3(R) is also unimodular. Recall A(g) = m. In this case,

Adg=Lgo R, ongl, (R)

and thus det(Ad g) = (det L,)(det R,—1) = (det g)"(det g~*)" = 1.
N—_——

check

9 Representation theory

9.1 Basic notions

Let G be a matrix Lie group. Let V be an F-vector space.

9.1 Definition. A representation (or rep) of G on V is a “continuous” homomorphism 7 : G — GL(V). Recall F = R or C.
If dim V < oo, then V has a unique notion of topology as an [F-vector space. However if dim V' £ oo, then we need to assign
a notion of topology to V. This need not be unique. In this case, we demand that

g—=7m(gv:G—=YV

is continuous for each v in V.

9.2 Example (FINITE DIMENSIONAL SETTING). If dimV = d < oo, let {vy, ..., v4} be abasis for V and let {ay, ..., a4} C
V' be the so-called dual basis, i.e. each ov; : V — F is linear with «v;(v;) = J;; (Kronecker delta). We know that linear forms
are continuous. Thus

g+ [ai(m(g)v;)] € GL4(F)
where o;(m(®)v;) are continuous F-valued functions; thus 7 is continuous from G to GL4(F) = GL(V).

9.3 Definition. If ) admits an inner product (e, e) we say arep 7 : G — GL(V) is unitary if 7(g) € U(V) for all g € G.-We
often write
UW)={U e LV): (Uv,Uw) = (v,w) forv,w € V}.

9.4 Example (LEFT REGULAR REPRESENTATION). We have:
(i) Motivation: For G a finite group, C[G] = span{G} is a C-vector space, with dim C[G] = |G/|. Defineamap A : G —

GL(C[G)) by
MNo) Yo ali)h =3 a(h)gh = alg™'h)h.

~—~—~
heG 20 heG heG

(ii) Let A : G — GL(C.(Q)) be given by
Ng)f(h) = f(g~"h).

[Check A(gg') = A(g)A(¢g')]. Normon C.(G) is || f||oo = maxgeq |f(g)]- We want to show that for any f in C.(G) that
g — Ag)f : G — C.(G) is continuous, i.e. limg_, g, [|A(g) f — A(go) flloo = 0. Observe that ||[A(g)f — Ago) flleo =
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(iii)

H)\(go)(A(galg)f — oo = H)\(galg)f — flloo and gglg — [ if and only if ¢ — go. Hence we are required only to
check that

g—1
To achieve this, we use the following lemma.

9.5 Lemma. Given a compact set K C G, and 0 < § < 1, there is an open set V' C G such that [|g~'h — h|| < § for
g € V, h € K. Moreover we may assume that V' is compact.

Proof. We first note, for fixed h in K that g — g~'h : G — G is continuous. Hence let
-1 0 -1
Vi=q9€G:llg7 h=hll <3, llgll llg™ Il <1+d.

Then K C Upeg Vi ' -haso K C UL, V' - hy for some hy, ... hy, in K. Thus if h € K then h € V" - h; for

open set
some i, 50 h = g~ 1h; for some g € Vi, so ||h — h;|| < &. Let

If g € V and h € K then, let h; be as above and we have

_ _ _ _ _ 26 46
g~ h = hl < llg7 h— g7 hill + lg™ hi — hal| + |hi — Bl < lg7 | [ — hil| + 5 < —
<3§/3 <35/3 <1+0 <8/3

(whoops!). Note that -
VC{geG:|glllg ' <146} = Qs

which, by an earlier proposition, we saw is compact. O

Now let f € C.(G) and let K = supp(f). We let

Q={geG:|gllllg~"Il <2}

Then (g,h) — g~ 'h : @ x K — G is continuous so Q'K is compact. Moreover, if g € Q then supp(f),
supp(A(g)f) € Q'K so we may consider f, A\(g)f to both be elements of C(Q~'K). Hence, f is uniformly
continuous. Thus given € > 0, there is § > 0 such that if ||g=*h — h|| < & we have |f(g~th) — f(h)] < eforg € Q,
h € K (uniform continuity from real analysis) i.e. [[A(g)f — f|lco < €, for g sufficiently close to I.

Now, let us consider the inner product on C.(G)

(%, ) = /GW .

By left invariance of n, we have

(A9, A(g)p) = /G Blg &)plg T e) |l = /G B 0] = (%, 9)-

Thus A : G — GL(C.(G), (e, ®)) is unitary. Let for ¢ € C.(G),

1/2
lella = (oo = ([ 1P 1)
G
Given ¢ € C.(G) we let K = supp(p) and let €, @ be as in (ii), above. We let ) € C.(G), ¥ > 0besoy = 1 on
QK.
1/2 1/2
e~ el = ([ Moo= ol 1nl) < ( [ 7@~ plw )

1/2
— A9)¢ - ¢lloe (/ v |n) <.
G
—

= some finite C'
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9.6 Definition. We say that a rep 7 : G — GL(V) is finite-dimensional (or f.d.) if dim) < oco. We say that a finite-
dimensional rep 7 is reducible if there is a proper W < V such that 7(G)W C W, i.e. W is w-invariant. If no such W
exists, we say 7 is irreducible (or is an irrep, for “irreducible representation’).

9.7 Lemma (SCHUR’S LEMMA). Let 77,0 : G — GL(V) be f.d. C-irreps of a (matrix Lie) group G. Then
() If A € L(V,W)is such that Ar(g) = o(g)A (i.e. A is an intertwiner?) then either A is invertible or A = 0.
(ii) If A € L(V) and An(g) = 7(g)A then A = AI for some A € C.

Proof. We have:

(i) We observe that if v € ker A, then Anw(g)v = o(g)Av = 0so m(G)ker A C ker A. If w € Im A so w = Av for some
v € Vthen for g € G,
o(g)w = o(g)Av = An(g)v € Im A.

So 0(G)Im A C Im A. Hence either ker A = {0} and thus Im A = W; or ker A =V and thus Im A = {0}.

(ii) We have that A has an eigenvalue A, so A — A/ is not invertible. However (A — A\l )mw(g) = m(g)(A — AI) and thus by
1), A— X =0. O

9.8 Corollary. Every f.d. C-irrep 7 of an abelian group G is 1-dimensional.

Proof. We see that for any go € G, m(go)m(g) = 7(g90g9) = 7(g990) = 7(g)7(go) for each g € G. Hence 7(go) = x(90)I.
where x(go) € C. Check g — x(g) is multiplicative. O

9.9 Example. We have:
(i) Let 7 : R — GLy(R) be given by

—sint cost

m(t) = [

cost sin t}

Observe that A = [_Z 2} commutes with 7(¢) for each ¢ € R. Also 7 is irreducible. Hence having a C-irrep is

necessary in (ii) of Schur’s Lemma.
(i) If x : R — GL(C) = C\ {0} is a rep, then by the one-parameter subgroup theorem, we see that there is z € C such

that x(t) = e**. Write z = Re 2z, y = Im 2 and we have x(t) = e!®e'®¥. We note that  is bounded if and only if x is
unitary, if and only if Re 2 = 2 = 0. Hence, the f.d. unitary reps of R are given by

R={t—e":yecR}.

(iii) Let T = R/Z. We note that the map R — U(1) given by ¢ — €2™* induces an isomorphism T =2 U(1) since the kernel
of the quotient map R — T is ker(t + 2™) = Z. If xy : T — GL(C), then since T is compact, x(T) C GL(C)
is bounded. Now let ¥ : R — GL(C) be given by X(t) = x(t + Z), and we see that x¥(R) = x(T) is bounded,
so there is y € R such that Y(t) = €. Since Y(Z) = {1} we see that 1 = Y(n) = e™¥ for each n in Z, so
ny € 2wZ. Thus y € 2nZ. Thus x(t) = e*?™*. We may rewrite this by saying: the only continuous homomorphisms
X : U(1) — GL(C) are of the form x(z) = 2™ for some n € Z, i.e. [7(?) ={z—2":neZ}

Talks: possible topics on website. Optional. Grading is 50/50 (without talk) or 40/15/45 (with talk). Talks are first-come-
first-serve so choose quickly. If you can devise your own topic, talk to me first. Final exam schedule 15th.

After treating the abstract theory, we will concentrate on unitary groups.

If G is a compact matrix group, then 1 € C(G) = C.(G). Hence, for the left-invariant measure we have [, 1 |n| < oc.
We will always normalise 7 so that f o 1 In| = 1 (if we were turning this into a measure, we would say that this would be a
probability measure).

We now give a treatment of Maschke’s theorem which is somewhat special to compact Lie groups. There are more general
statements, however.

9.10 Theorem (MASCHKE’S THEOREM). Let G be a compact matrix group, and 7 : G — GL(V) be a f.d. rep.

31If we view a group G as a category with one object in which every morphism is invertible, then a representation 7 is simply a functor from G to the
category of vector spaces. Such a map A is an intertwiner for o and 7 if and only if it is the component of a natural transformation between o and 7. For
another perspective, since we can view representations merely as modules over the group ring, then Schur’s Lemma for representations is a special case of
the fact that any homomorphism between simple 2-modules is either invertible or zero. This discussion has concerned only representations of groups — how
does all this extend to (continuous) representations of topological groups?

48



®
(ii)

9.11 Example. If G = R (note R is not compact), put o (t) = {

There is an inner product (e, ®) on V such that 7 is unitary.

If W < V is a w-invariant subspace, then W has a w-invariant complementary subspace. Moreover, if V is a C-vector
space, 7 is completely reducible:
n
V=w
i=1

where each W is m-invariant and irreducible for 7 (i.e. the only 7-invariant subspaces of W; are {0} and W;).

1 ¢

0 1] . Then both (i) and (ii) fail.

Proof. We have:

®

(i)

Pick an inner product for V, i.e. if {v1,...,vq} is a basis for V, let

d d d
D i,y B | =Y b
=1 i=1 0 =1

Now, define for v, w € V

(v, w) = /G (m(o)v, m(e)w)o 1]

First observe that v — (v, w) is linear, (v, w) = (w, v); this is an easy inspection. Also, since (e, ®)q is an inner product
and since 7 is continuous and G is compact, we have that for v # 0

m = gréig(w(g)v, w(g)v)o = ggg [ w(g)vllg >0
#0

‘We observe that

(v, ) = /G (w(o)v, m(o)0)o 7] > /G m |yl =m > 0.

Now, if v, w € V we have for g € G that

(rlg)v.(gw) = [

G

(w(o)(g)v, w(@)(g)w)o 1] = /G (w(og)v, m(sg)w)o 1]
- / (n(o)o, m(@)w)o || = (v, w)
G

where at (*) we note that G is compact hence unimodular.

Let (o, ®) be as above. If WW < V is w-invariant we have W is also 7r-invariant. Indeed, if w € W, v € W+ and ged

we have
€W by m-invariance

(m(g)v,w) = (m(g~ g)v, (g™ )w) = (v_,m(g” Hw) =0
ewt
Hence 7(g)v L wforg € G,v € WH, w € W so n(G)W+ C W=, If V is a C-vector space we let W; < V be a
m-invariant subspace of minimal dimension. If Vo = Wj- is {0} or is 7-invariant, we are done. Otherwise, there is a

m-invariant subspace of minimal dimension W < V5. Continue. This process ends as dim V < oo. ]

We now introduce what is the “correct” notion of isomorphism for representations.

9.12 Definition. If 0 : G — GL(V), 7 : G — GL(W) are two reps, we say that o and 7 are similar, written as o ~ , if
there is invertible S € L(V, W) such that 7(g)S = So(g), for g in G.

Recall from Schur’s Lemma that if dim V, dim W < oo and o, 7 are irreducible then any intertwiner A € L(V, W) is either
invertible or 0.

9.2

Schur’s orthogonality relations

9.13 Theorem (SCHUR’S ORTHOGONALITY RELATIONS). Let G be a compact matrix group and 7 : G — U(V) and
o : G — U(W) be f.d. unitary irreps.
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(1) If w ¢ o then for v, w in V, z,y in W,
/G (n(o)v,w)(0(®)z,9) || = 0

ie. (m(e)v,w) L (o(e)x,y) in C(G) with its usual inner product.
(i) Ifv,w,z,y € V then
— 1
[ )] nl = oy ) )

Proof. Recall that for any sesquilinear form 5 : VxW — C (i.e. x — [(x,y) is linear, y — 5(z,y) is conjugate linear), there
is A € L(V,W) such that 8(z,y) = (Az,y). Indeed if {e1, ..., eqim} is an orthonormal basis for V, {f1,..., famw} is
an orthonormal basis for VW then we get a matrix with respect to these bases [A] = [(Ae;, f;)].

(i) Let A, € L(V, W) be given by
(Apays w) = /G (n(o)v, w)(0(®)z,9) [

We have for g € G that
(Apao(g)y,w) = /G (n(o)v, w) (0 (®)z, 0 (@) In] & /G (n(o)v, ) (@@ 1)z ) Il
2 Tge)v,w)lole)xr é 7T.’U7T71U)O'.ZU
—/G< (g9)0, )@ (®)z,9) [ /G<<>, (6~ )w) @)z ) I

= (Apay, (g~ Hw) = (7(9) Av oy, w).

At 1 we use unitarity; at 2 we use left invariance. Hence 7(g)A, , = A, ,0(g) for all ¢ € G. By Schur’s Lemma,
Ay =0.

(ii) Define A, , € L(V) by
(Ayoyw) = / (n(o)v, 0) @7 7) Il
G

Exactly as above, we see that m(g)A, , = A, .7(g) for g € G. Hence, by Schur’s Lemma, A, , = A(v,z)I for
Av,z) € C. We then observe that (v,z) — A, = A(v,z)I is linear in v, and conjugate linear in x. Hence
AV x V — Cis sesquilinear, so A(v, z) = (Bv, z) for some B € L(V). Let us observe

/G(ﬂ'(i)v,w)(ﬂ'(O)m,y) |77‘ = (Av,wva) = ((vax)y’w) = (Bv,x)(y,w).
Thusifg € G
(Br(g)v, m(9)z)(y, w) = /G(W(w)v,w)(ﬂ(-g)x,y) In|

i /G (n()0, 0) 7@, 9) Il = (Bo, 2)(y, w).
Thus we see that
(n(g~")Br(g)v,z) = (Br(g)v,7(g9)x) = (Bv, ),

hence 7(g~!)Bn(g) = B and hence Br(g) = 7(g)B. Again, by Schur’s Lemma we obtain B = ul, u € C. Let us
compute . We first observe, for z € V that A, , = A, z)] = (Bz,2)I = (plz,z)] = p- (z,2)I = p|z|?I. Thus,

if {e1,...,eq} (d = dim V) is an orthonormal basis for V (w.r.t. (e, e)) then
d d
dplz® = Tr(Ap ) =D (Asseire) = Z/G(W(ﬂ%@i)(?f(')x’ez') l
i=1 i=1
d
= [ Y lwto)zcof 1ol = [ [zl In
G i G ~——

|2
((e, ®) is 7-invariant and hence so is its norm). This is just |#|? by normalisation of 7). Thus if x # 0, we see that

_1_ 1
=47 dmy
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9.3 Matrix coefficient functions and the Peter-Weyl theorem

9.14 Definition. Let G be a compact matrix group. Let

G = {irreducible representations 7 : G — U(d) for some d € N} /.

*

Here, ™ ~ o if there is a unitary u such that um(e)u* = o; in this case 7 and o are usually called unitarily equivalent. By
standard abuse of notation, we will write 7 for the ~-equivalence class of .

9.15 Definition. If 7 € G, let d be the d € N such that 7 : G — U(d). Fix an orthonormal basis {e;, ..., eq.} for Cé. We
define the 4, j matrix coefficient function 7;; : G — C by

mij = (m(e)ej, ei),
so that w(g) = [m;;(g)] w.rt. {e1, ..., eq, }. Let M = span{m;; : 4,5 =1,...,d:} C C(G). Finally, let
M(G) = span{M, : = € G}.

9.16 Remark. If 7 = 7’ as irreps, then M, = M. In fact, even if m ~ 7’ (similar) then M, = M.
9.17 Remark. We recall the Schur orthogonality relations which tell us that C(G) C M(G), under inner product

oo = [l ([ 1m=1)

satisfies
1. My L My ifm #o.
2. {Vdxmij i,j =1,...,dr} is an orthonormal basis for M.

9.18 Definition. If 7 : G — U(d,;) is a unitary rep (not necessarily irreducible) we fix an orthonormal basis {e1, ..., eq_} for
Cd= and define the conjugate representation 7 : G — U(d,) by

(g) = [mi;(9)].
9.19 Remark. Warning: this is basis dependent. Observe that, if 7 ~ 7’ then 7 = un’(e)u* (u* = u*) so ® ~ m’. Thus
Mz = M—. Also, 7 irreducible implies 7 irreducible. Finally, check that
Mz =Mz ={f:fe Mg}
9.20 Example. We have:
(i) Consider U(1) = {z € C: |z| = 1}. We saw, after Schur’s lemma, that

—

U(l)={z—2":neZ}.

Let x(2) = 2" My, = Cxp, M(U(1)) =span{x, : n € Z} = {z — Zﬁv:fN a;z" : N € N,; € C}. Observe

Ru(z) =T =3" =z

—n

= X-n(2)

ie. X, = X—n-

(ii) Consider SU(2) and the standard/identity representation ¢ : SU(2) — U(2). Check that ¢ € SU(2). Recall (from Al)

sua ={[% 2 :apeciar i =1]

(15 ) -1 =0 Is Adl d=(15 d)

9.21 Proposition. If 7 € G, then M, C C (G) is A-invariant (X is the left regular representation) and, moreover, for each
k=1,...,d, the subspace

and notice

SO L =L.

j\/lgrk) =span{myp :i=1,...,d.}

satisfies that A(e)| ) ~ 7.
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Proof. First,if g,h € G,

dy dn
ANg)mie(h) = mir(g~ h) = w(g™ " h)ix = Zﬂij(gfl)ﬂjk(h) = Z@i(g)ﬂjk(h)
([mij (g7 D] = [mi; (9" = [ji(9)]) s0 )
Ng)miw =Y 7ji(g)mn € MP)

Thus each M&’“) is A-invariant so M, = span{Mgrk) :k=1,...,d,} is Minvariant. Define A : C9= — MSJ“ by

z1

dr
A = Z LTk
Td, Jj=1
so A is a unitary (check!). Then
T dx dx dr
A(g)A = )‘(Q)Zl‘jﬂ'jk = T ﬁzj(g)ﬂ-yk
24 =1 j=1 =1
de { dr : 1
_ dr — _
= g (g)'rj Tjk = A Zj:l 71-ij(g)xz = Aﬂ-(g) O
i=1 \j=1 g
9.22 Definition. Recall the tensor product
Ch @ C%" =span{v@w : v € CH we C=}.
Fix inner products (e, ®); on C%, (e, )3 on C% and define
n m n m
Z%‘@xivzwj'@yj 3222(%%)1(%»%)2
i=1 j=1 i=1j=1
This defines an inner product on C% © C%.
9.23 Remark (BASIS FOR TENSOR PRODUCT). Observe that if {ey,...,e4, } is an (e, ®);-orthonormal basis for C% and

{f1,-., fa,} is an (e, ®)s-orthonormal basis for C?* then
{ei®fj 1= 1,...,d17j:17...,d2}
is an (e, ®)-orthonormal basis for C% @ C9z.

9.24 Definition (TENSOR PRODUCT OF REPRESENTATIONS). If v € U(d;) and v € U(dz) then it’s easy to convince
yourself that u ® v € U(Ch @ C%). If m,0 € G we define 7 ® 0 : G — U(C% @ C4) by

(v a)lg) = mlg) ®oly)  thatis  [m;(9)] © lowslo))  [Imis@)ore(9)i]

Observe that if 7 = un’(e)u* and o = vo’(e)v* with u, v unitary, then
TR0o=(uxv)(r ®d)(e) (v @v*).
—_———
(u®v)*
Henceif 7 = 7/, 0 =~ ¢’ then ™ ® 0 ~ 7’ ® ¢’ so this operation is well-defined on ~-classes. By Maschke’s theorem,
TROC=T1D... DTm

onCér @Clo =V, & ... 3V, ie.
71(9) 0

(r®o)(g) ~

52



Let P; € L£(C% @ C% ) be the orthogonal projection onto V;, j = 1,...,m. Then if v,w € Cé, z,y € Cd~

(m(g)v,w)(o(g)z,y) = (7(g) ®o(g) vO z,wRY) =Y _(P(9) @ o(g)v ® z,w R y)

j=1
=> (n(g) @ o(9)Pjv @ z, Pw @ y)
j=1
and we see that -
(m(o)v,w)(o(e)z,y) = Y (T @ 0 (e)Pjo @z, Pjw D)
=1 eM,,

J

so Mz - M, C Z:"Zl M. We conclude that M(G) is an algebra of functions on G.

9.25 Theorem (PETER-WEYL THEOREM I). If G is a compact matrix group then M (G) is uniformly dense in C(G), hence
|| - ||2-dense.

Proof. The family of functions M(G) is
e an algebra (tensor products)
e conjugate closed (conjugate representation)

We have, by Maschke’s theorem, that G C U(n), and moreover, the standard representation ¢ : G — U(n) decomposes into
irreducible subrepresentations ¢ = 01 & ... @ 0,,. The space

separates points. Thus, by Stone-Weierstrass theorem, M(G)”.”m = C(G). Observe that for ¢ € C(G),

1/2

1/2
lela=| [ lo 1 <||so||m(/ t n|) ~ ol
G~~~ G

<llell2,

by normalisation of 7. Thus for ¢ € C(G), if (¢,,)22; C M(G) satisfies lim,,_, o || — ¥nllcoc = 0, then

lim |j¢ — 9nll2 = 0. O
n—oo

Unofficial exam date: April 15, 12:30 — 3pm. Details soon posted on website. Exam problems forthcoming.

9.26 Theorem (PETER-WEYL THEOREM II). If f € C(G), let for 7 € G

fo = [ 17" 1
G
(matrix-valued integral). Then

f= Z dr Tr(f(”)”(')) (convergence in || - ||2)

‘n'e@

1713 =3 dal Tz

——

€8 _ 1 (F(m) Flm)")

In particular,
{\/dﬂ—ﬂ'ij T e G,i,j = 1,...,dﬂ-}

is an orthonormal basis for C(G).
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9.27 Example. G = T = U(1), the Fourier coefficient

Fy=2 [ r@yem as

T o o

note that the “n” in the argument of fis just a stand-in for the character x,.

Proof of theorem. Recall, from the Schur orthogonality relations,

(Vdemij 7€ Gij=1,....d:}

is an orthonormal basis for M(G). Hence for v € M(G) we have

dr
Y= Z Z (¥, \/ij)\/ drmi noting that the first sum is finite

reG Hhi=1

X 5 ([ v ) is unitary 50 [ (o)) = [T5(0)]

4,j=1

-y (| v ] o)
= 3 dy TG (o))

weé
We recall from before that M(G) is || - [|2-dense in C(G). Hence {\/d,m;; : m € Gij=1,..., d,}, being a maximal
orthonormal set for M(G), is a maximal orthonormal set for C(G). Hence for f € C(G),

= disty. |, (f,spanc{m; : 7 € F,4,j =1,...,d}) for F C G finite.

Hf — " de Tr(f(m)m(e))

2

As F' T @, the above goes to 0. Likewise, we see that

dr
I1£13 = lim SN AN TP = dallF ()3 m

F finite TEF BI=1 e

d|| F(m) |2 by computation

9.28 Corollary. If G is a compact matrix group then every unitary irrep 7 : G — U(V) is on a f.d. Euclidean space V.

9.29 Remark. For an infinite dimensional rep 7, we say 7 is irreducible if there are no proper, nontrivial closed subspaces
W <V which are 7(G)-invariant.

Proof. If 7 is an infinite dimensional irrep, then a variant of Schur’s Lemma shows the only bounded operators A &€
L(V) which commute with 7 are AT (A € C). The proof of Schur’s orthogonality relations can be modified to show that
(m(®)v,w) L M(G). However, then for each o € G, f(0) = 0. As above, f = 0. O

9.30 Definition. Let G be a compact matrix group. A class function f € C(G) is a function which satisfies f(ghg=t) = f(h)
for g, h € G, i.e. it is constant on conjugacy classes.

If 7 : G — U(d,) is a unitary rep, then its character is defined by

Xx(9) = Tr(7(g))

9.31 Remark. If 7 = 7’ i.e. 7 = un’(e)u* for a unitary u (in fact, the same remark even holds if 7 ~ 7’), then x = X'
Hence the character depends only on the unitary equivalence (or even similarity) class of 7. Now if g, h € G,

Xx(ghg™!) = Tr(x(g)m(h)mw(g)~") = Tr(mw(h)) = xx(h).
Hence characters are class functions.

9.32 Corollary (PETER-WEYL THEOREM FOR CLASS FUNCTIONS). We have:
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(i) If 7,0 € G then
(Xmr Xo) = / X Xo || = 0x,o (Kronecker)
G

(ii) If f € C(Q) is a class function, then
[= Z(f, X)X (|l - [|]2-convergence)
el

and

15 =D 10 xn)l?

e
In particular, {x, : 7 € G } is a maximal orthonormal set of class functions.
Proof. We have:
(i) Note that

dr
o) = [ rer = [ S5 Somi= 3 frmnl =33 -
i=1

3,7=1
ﬁél 7 by Schur orthogonality

Likewise, that (X, x») = 0 for 7 % o, is trivial.

(ii) Let us examine

m = [ £y
for a class function f. For g in G let us check
w(@)fmnlg™) = [ frlgn(e)’ats™) I
G

- / falg e g) Il
G

= / f(geg Hm(e)* |n] by left-invariance and unimodularity
G

= [ £ 700y nl = Fem)
G

Hence, by Schur’s Lemma, f(w) = \.I. Moreover,

(fs XW)I.

At = T(f(m) = [ FTa(er) ol = [ 13 il = o) = Flm) = 1

Tr(m(e))

Simply use the formulas from Peter-Weyl II to get the series of the Corollary.
A lemma for later use. We are only really interested in this in a concrete situation.
9.33 Lemma. Let G be a compact matrix group and (M, d) a compact metric space on which

e there is a continuous action of G
(g,2)—mg-2:GxM—M

(continuous map from G x M to M).

e dis G-invariant:
d(gz, gy) = d(z,y)
(equivalently d(z, gy) = d(g~ 'z, y)).

Then:
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(i) Orbg(M) = {Gz : z € M}. The function p : Orbg(M) x Orbg(M) — R=0

— mind )
p(Gz,Gy) min (x,9-y)

is a metric.

(ii)) We have
{feC(M): f(z)= f(gx)forallz € M,g € G} = C(Orbg(M))oq

where g : M — Orbg(M), ¢(z) = Gu.
Proof. We have:

(i) Observe that g — g - y is continuous, and G is compact, thus we can use “min” in the definition of p, rather than “inf”.
Then

e p(Gz,Gy) = 0if and only if d(z, gy) = 0 for some g € G, iff z = gy, iff Gz = Gy.

1

¢ p(Gz,Gy) = mingeg d(z, gy) = mingeq d(g~'z,y) = mingeq d(y, gz) = p(Gy, Gx).

¢ p(Gz,Gy) = mingeg d(, gy) < mingeg(d(z,9'2) +d(g'z,gy)) for z € M, g' € G,
—d(z,q ind(z, ¢ 'gy) = d(z,q ind
(x.9'2) + min (z,9" "gy) =d(z,g9'z) + min (2,99)

hence

p(Gz,Gy) < mi

d(z,y’ ind = p(Gz,G Gz, Gy).
Iin, (z,y Z)+ggg (2,9y) = p(Gz,Gz) + p(Gz, Gy)

(ii) We observe that
p(q(z),q(y)) < d(z,y)

s0 ¢ : M — Orbg(M) is continuous (indeed Lipschitz). Hence if f € C(Orbg(M)), then f o g € C(M). Clearly
f = f o g satisfies
f(x) = f(gx)

forg € G,z € M. Let f € C(M) such that f(z) = f(gx) forg € G, x € M. Then, since M is compact, f
is uniformly continuous. Hence, given € > 0, there is § > 0 s.t. d(x,y) < ¢ implies |f(z) — f(y)| < e. Define

f(Gz) = f(x). This is well-defined. If ¢, ¢ are as above and p(Gz, Gy) < J, then there is g € G s.t.

|f(Gz) = f(Gy)l = [ f(z) = flgy)l <e

Clearly fogq = f. O
9.34 Corollary. Consider the action of a compact matrix group G on itself by g - h = ghg~!. Write

Conj(G) = Orbg(G).
Then span{¥» : 7 € G} is || - ||2-dense in C(Conj(G)).
9.35 Remark. On C(Conj(G)) we let
()= [ Feagoal
Proof. We recall that by Maschke’s theorem, G C U(d). The metric
d(z,y) = |z —yll = llg(z =)l = d(gz,9y9),  g€G.

Here we are in the context of the lemma above. Now, notice that C(Conj(G)) oq is simply the space of class functions. Appeal
to the last version of the Peter-Weyl theorem. O
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9.4 Weyl integral formula for U(n)

If we wish to understand all irreducible characters (i.e. characters arising from irreps), it will be nice to know how to integrate.
Recall
U(n) = {g € GL,(C) : g"g = I}

9.36 Definition. Let U = U(1) (2 T = R/Z) and

z1 0
T= P21, .,2n € U 2TU".

0 Zn

9.37 Fact. T is a nermal maximal abelian subgroup of U(n) i.e.if H 2 T and H < U(n), then H is non-abelian.
By unitary diagonalisation, each g € U(n) is conjugate to an element of T.

9.38 Exercise. Conj(U(n)) = Orbg, (T) where each o € S, acts by permuting the diagonal:

21 Zo(1)

Zn Zo(n)

Hence if f € C(U(n)) is a class function, then f is determined by f|.. Recall
u(n) ={X €gl,(C): X* = -X}.

We form a basis
B =A{Xke = Exe — Eok, Yoo = 1(Exe + Eog) b<tico<n U {Hk = i Egi e

Observe, dimg u(n) = |5 = 2% +n = n?. Also observe
t = spang{H1,...,H,} = Lie(T).
We let m = spang{Xke, Yie }1<k<e<n- Let us show that m is Ad T-invariant. Indeed if z € T,

Ad 2(Xye) = zkZiExe — 2025 Eoe = Re(2x7Z0) (Ere — Er) + i Im(247Z7) (Ege + Eer)
= Re(Zkﬁ)Xke + Im(zkﬁ)ykg.

Similarly
Ad Z(YM) = — Im(zkﬁ)Xke + Re(Zrze) Yie-

9.39 Definition. Given z = diag(zy, ..., 2,) € T we define the Vandermonde by

R R
1 29 e N Z;_l
V(z) = det : = Z sgno - 22(1)2;(2) e z;‘(nl) = H (20 — 2)-
. . oceSy, 1<k<t<n
1 Zn “e “ee Z;’;il

9.40 Theorem (WEYL INTEGRAL FORMULA). For f € C(U(n)),

1 -1
= — d
U(n)fInI n!/T l/U(n) flgzg™") dg

9.41 Remark (NOTATION). Let n € Al™ (U(n)) and © € Alt"(T) be such that they give invariant integrals of “mass” 1.

‘Write
Amfszmﬂm@ and tAH@=Aﬂ@M~

In particular, if f is a class function, then

[V (2)|? dz.

1
=g [ e v@r el

U(n
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“Most” of a proof. Step #1: Let us analyse the map v : U(n) x T — U(n) given by v(g,2) = gzg~!

derivative (differential) of v at (g, 2):

. We compute the

D~(g, z) : gu(n) x zt — gz9 'u(n)

is given by

d _
DY(g,2)(gX, 2H) = —| = gexp(tX)zexp(tH) exp(—tX)g "
t=0
1

= 9Xzg~ !
—_—

1

4+gzHg™ " — g2Xg~

egu(n)zg—t=gzg—'u(n)
=gz ' Xz — X+ H]g ' = gzg ' Adg[(Ad 2~ ! —id)X + H].

P, (X,H)

We remark that [, 1oy = 050 DY(g, 2)| ¢ oy = 0. With respect to basis

(X12,Yi2, oo, X1, Yoo 1m0 Hiy o Hy)
of m x tor u(n) we have
[Re(z122) =1 Im(z122) ]
—Im(z122) Re(z1z2) —1

Re(zZn—1zn) — 1
—Im(z,—12n)

Im(Z,—12n)
Re(zn—12n) — 1

Hence

det®, = [ [Re(ziz) - 1°+Im(zz)’ = [] [zz - 1P = V(2)P

1<i<j<n 1<i<j<n

Observe that V'(z) = 0if z; = z; for some 7 # j. If all entries z; are distinct, we call z a regular point of T. Let
Trg = {2z € T : zisregular}.

Let U(n)reg = 7(U(n) X Treg). We observe U(n) \ U(n)re is a proper analytic variety of U(n) (i.e. finite union of proper
submanifolds). Hence U(n) \ U(n), has Jordan content zero.

Step #2: We define v*n € Al (U(n) x T) by setting for (X1, Z1), ..., (Xn2, Z,2) inu(n) x tat(g,2) € Un) x T

fy*n(g’z)(. o (9 Xk, 228), .. ) = Ngag-1 (..., DY(g, 2) (9 Xk, 2Z), .. .)
= Ngzg-1(--- ,gzg Y Adgo b, ( Xk, Zk),-..)
=ni(...,Adgo ®.(Xy, Zy),...)
=det Adg-det &, ~77[(...,Xk—|—Zk,...)
——
=1 since U(n) is connected

and det o Ad:U(n)—(R\{0},-)
is a continuous homomorphism

— VP X+ D)

Further, if

X17...,Xn(n_1)€m, Zl,...7Zn€t,

then for (g,z) € U(n) x T
’Y*n(g,z)((thO)v sy (an(n—1)70)7 (Oa ZZl)v sy (Oa ZZW)) - ‘V(Z)|2771(X17 cee

X1 oo X 0
= VP g T T, D= IVE e,

aXn(n—1)7Zh . 7Zn)
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where wy is an n(n — 1)-linear alternating form on m, likewise for ©. We have that if we let
wg(gle s aan(n—l)) = wI(Xh s aXn(n—l))
then

we(9X1,. .., 9Xn(n-1))01(Z1,..., Zn)

I
S €

I(Xh .. n(n 1))@[(21,...,2)
I(Xla ) rL(n 1)7213"'7Zn)

=n.(2X1, .., 2 X 1), 221, . ., 220), zeT
=w,(2X1,... zXn(n )0 (221, ..., 22Zy)
ZOJ[(Xh . n(n 1))62(2’217...,2Zn)

and hence the accordingly defined ©" € Alt"(T) is left-invariant.

Now, consider f € C(U(n)) such that supp(f) C U(n)r, (done to make the next sentence legitimate; we want D(g, z)|

. gmxzt
to be non-singular.)

Also, the Implicit Function Theorem tells us that given (g, z) € U(n) x T, there are neighbourhoods of 0: U; C m, Uz C t
such that
L: Uy xUs — U(n), IN(X,H)=~(gexp X, zexp H),

I(Uy x Us) isopenin U(n),and I : Uy x Us — T'(Uy X Us) is diffeomorphism.
We have

« 1 "
fnl / flnIZf/ foy vl
U(n) ~+(U(n)xT) Cy JU(n)xT

. F(TL (X (H)T3 (X)) V(T (H)) 2
U1 xUs

- |wr, ) (DT1(X)||Or, (x) (DT2(H))| dX dH

- y l ) FEO1XOT2(H)T1(X) ™) fwr, (x) (D1 (X)| dX | V(D2 (H))[?

fU(n) flgzg=1) dg z=Is(H)
1O, (1) (DT2(H))| dH

H/—/
left invariant=Or-,, gy (DT2 (H))

_ 1 [ Flgzg™) dg| [V(2)? dz
T U(n)

Cy

where (*) is the change of variables formula.

I'(X)=gexpX,T2(H) = zexp H.

Assignment #5 on website.

For “decent” f € C(U(n)) there nbhds ¢/ of 0 in m, Uz of 0 in T such that

/ flinl=— / fov v, actual change of variables formula
U(n) U(n)xT

=— FUX)To(H)T1 (X)) ™DV (Do (H))* dX dH
Lll XU2

[ ST O ()T (X)) -y 0y (DT (X)) dX
Us U,

(1)
- [V(T2(H))[*|®r, () (DT2(H))| dH

//fgzg ) dg |V(2)|? dz
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X —gexp(X)-T:m— OrbrTight(G) = G/T (note G = U(n)), for choices of g gives inverse coordinates on G/T,
making G/T a manifold. Then w*“e” Alt"™ 1 (G/T) is a left invariant form on G/T. This means if f € C(U(n)) s.t.
flgz) = flg).ie. f = foq, f€C(G/T).

Flgo)lw] = /G i

G/T

LﬂmHM=LfW
Lmﬂw=éfw

i.e. by restricting f — [ f |n|to C(G/T) o q, we get f — fG/Tf|w\.

Now, having that

‘We have

ﬂmwzi/ flgzg™) dg [V (=) da
U(n) Cy J1 JU(n)

for f supported on U(n), e.g. “standard approximation” allows us to achieve this for general f € C(U(n)) [U(n)wy =
|_|Z':1 C'k, each Cj; open and 9C}; has Jordan content zero. Then

n!
1 onC,
= 1 where 1o, =
f ;‘f Cr C {0 ofka

and we apply the formula above to each f1¢, ]

STEP #3: Calculate c,

We have
IRy
U(n)
1
N 7/ / Ldg |V (2)[* dz
v JT JU(n)
1
-+ [ Wr
Cy Jr
_ 1 0 1 n—1 o ) o
e <Z B0 "'Zo(n>> (Z SE(T)27 (1) 27(2) " ) | 42
o TESH
1 _—
= — Z Z / Sgnosgnfzg(l) . "23652‘3(1) . 22(75 d
Cy .
o€S,, TES, P —
1 1
= 7‘Sn| = —n!
Cy 3
hence ¢, = nl. )

9.5 Representation (Character) Theory of U(n)
Recall that

T=<(z= P21y, 2n €U 2T
Zn

9.42 Proposition. T = {7 p € Z™} where v, (2) = 2 = 2" 242 -+ - 2hin,
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Proof. T is abelian so by Schur’s lemma, each irrep is 1-dimensional. For j = 1,...,n let
) = Vi

where

From before we have that v(/)(z,) = z;-” for some u; € Z. Now if y € T we have

¥(2) =7 (21) - 4 () = A4 -2 = 2 = (2). O
9.43 Corollary (OF THE PETER-WEYL THEOREM). We have:
(i) M(T) =span{y, : p € Z"} = Clz1, .-+, 20,21+ -, Zn] = Cl21,. .., 20, 27", ..., 2, ] (Laurent polynomials).
(i) {7y, : p € Z™} form an orthonormal basis for M(T) (hence for C(T)) w.r.t. (¢,¢) = [ ¢t O]
Recall that Conj(U(n)) = Orbg, (T) where

Fo(1)

Zo(n)

Indeed, each element g € U(n) is conjugate to an element z € T (unitary diagonalisability). If z, 2 € T are conjugate in
U(n), i.e. gzg~! = 2’ for some g in U(n), then the values (eigenvalues) of z are the same as those of 2/, i.e. o - z = 2’ for
some o € S,,. Conversely, if o - z = 2’ for some o € S,,, define the permutation matrix

Po = [5i,o(j)]'
Then o - 2 = p, zp, ', hence z is conjugate to z’. Thus
C(Conj(U(n))) =2 C(Orbg, (T)) = {f €C(T): f(c-2) = f(z)foro € S,z € T}

We introduce two spaces
Ms(T)={pe M(T):p(c-z) =p(z) foroc € S,z € T}

Mu(T)={p e M(T): ¢p(c-2) =sgno-p(z) foroc € S,z € T}
We remark that M g(T) is a subalgebra of M(T). Also Mg(T)M4(T) = M4(T) and M 4(T)M4(T) C Mg(T).
9.44 Example (SYMMETRIC POLYNOMIALS). For u € Z™, put

SM = Z Yo where 1+ 0 = (MU*1(1)7~--5U0*1(n))'
o€ESy

Notice that v,,.o(2) = y,(o - z) and hence S,, € Mg(T).
Notice thatif v = p - 7, with v, u € Z™, 7 € S, then S, = S,,. In particular, let
2 ={p= (1, pin) €Z" g > ... 2> pin}

(dominant weights). Thus for u € Z", 5, = S, for some v € Z} .
9.45 Example (ANTISYMMETRIC POLYNOMIALS). Let

7 ={a=(ai,...,an) €Z" 101 > a3 > ... > an}

(strictly dominant weights). For o € Z7} | let

A, = Z sgn(0)Va o

oceS,

Check that A, € M4(T).
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9.46 Proposition. We have:
() {As € Z }isabasis for M4 (T).

(ii) With respect to inner product = (e, ®) [(e, ®) usual inner product on M(T)] {A, : o € Z7} , } is an orthonormal basis
for M 4(T).

Proof. We have:

(i) Suppose f € Mu(T) and write f = 3 7. ¢uv, where ¢, € C, all but finitely many c,, are 0. If v € Z" satisfies
v; = v; for some ¢ # j then the transposition 7 = (i7) (cycle notation) satisfies v - 7 = v.

Then for z € T we have

— Z ezt = —f(z) = sgn(7) f(2)

WEL™
= f(r-2)
= Z cu(T - 2)!
HEZLN
= Z c, 2t = Z Cpr—1%2
HEZN HeL™

Thus
—C = (_f7 ’VV) =cCy -1 =¢, = ¢, =0.

Thus, ¢,, # 0 only if 1 is regular i.e. y; # p; for i # j. Hence we may rewrite

f: Z Z@Vwa

OLGZi+ 0cESn %

(*: all regular weights appear this way). Now for any 7 € S,, we have

sgn(tf) =f-7

= Z Z Ca-cVa- (o)

aEZiJr oeSy,

Z Z Ca-(or~ ) Vo

Q€LY | o€Sy

Now we have
—ca = (f,7a) = sgn(7) (sgn(7) f,7a) = sgn(7)cq.r—1
and hence c,.r = sgn(7)cy. Thus M 4(T) C span{A, : a € Z7}  }.

(i) Itis obvious from (e, ®)-orthonormality of {~y,, : x € Z"}, that (A, Aos) = n!q o . In particular, {A, : a € Z7 | } is
linearly independent, and an % (e, ®)-orthonormal basis. O

Recall that M(T) = Clz1,. .., 20, 21, -+, Zn) ZCle1, 00Ty 5,0 7o)

Let R be a principal ideal domain, so R is a unique factorization domain. If R is a PID, then both R[z] and R[z]/{a) are PIDs
({(a) = aR). Hence if R is a PID, then R[x, 1] = R[x,]/(zt — 1) is a PID. By a simple induction, Clz1, ..., Zn, 7, -, 3
is a PID, hence UFD.

7171.

Let
2701
V(z) = det = Z sgn(a)z?&% e z;(n_l)zg(n)
ol g, 1] o€

As(2), d=m—-1n-2,...,1,0) € Z |

II G20

1<k<t<n

62



Now, if o € Z  , then

P zZym
Aa(z) =Y sgN(0)25(1) " Zg(ny = det | - :
ocES, Zgl . Zzn
Note that the same is true of A, (z) € Clz1, ..., ZTn, %, ..., ==]. We have ), — z¢ | Aq(x) for all k < £. Hence, this means
that
Viz)= H (xx — xg) | Aa(x).
1<k<t<n
so the map z +— ‘L“/"((ZZ)) defines an element of M(T) = Clzy,...,2,,71,...,%5). Now,letd = (n —1,...,1,0) € Z% .
A= A+0: 2% — Z | is a bijection. We then define, for A € Z}, the Schur function
A
sx(z) = 7A+6(2)-

V(z)

By comments above, s)(z) € M(T); in fact, sy(z) € Mg(T).

9.47 Corollary (TO LAST PROPOSITION). The family {s) : A € Z’} } is an orthonormal basis for M s(T) with respect to
the inner product (e, )y, given by

1 _
(¢, 0)y = E/ |V 20| (“weighted inner product™).
Yt

Proof. If ¢, € Mg(T), then
(6,0)v / oVIV (O]

We have that sV = Ay, and {A, 1« € Z7 } = {Axys : A € Z} } is an orthonormal basis for M 4 (T) with respect to
1:(e,0). Hence {s, : A € Z7 } is orthonormal with respect to (e, ®)y .

If S € Mg(T), then SV € M4(T) so

SV = Z CaAa, co. € C, finitely many nonzero.

Q€L |
Thus
AA+6
E Ca E Cx E CASA
Q€ Aezn xezn
s0 it is a basis for M g(T). O

9.48 Theorem (PARAMETERIZATION OF ﬁ(n)). {Xnlp 7€ f]( Jb={sx: A€ Z}}.
9.49 Remark. Hence, we parameterize IAJ(n) by Z7; we write m = 7y, and X, = Xx. S0 Xalp = Sx.
Proof. We first show “C”. If m € ﬁ(n), then
Yut 0
| A .
0 Yur
by Maschke’s theorem applied to T. Hence xr|p = Moy wVut + e My Vyr, UP TO relabelling of 7. Thus
Xrlp - V. €spang{y, : p € Z"} N Myu(T).
~—~— —~
eMs(T) EMa(T)
n—1 1

Moreover, xx|p -V = Za621+ MaAa, Mo € ZZ°. [Inspect multiplication by Y|y of V(z) = 2P~ '--- 2L 120 +
2 oes,\{iay Sgn(o) - -+ 1. Foreach A € Z, we have

1 _
(Xrlp,sx)v = = / X=|p - VAxts |©] = mags as we have orthonormal basis, etc.
n:Jr
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SO

(Xl Xnlp) = Z m§\+6'
AELY

Now, by Schur’s orthogonality relations (and Peter-Weyl for class functions),

wir 1
= [ el ™ 2 [ ke PIVE bl = (el xabo)v
U(n) n.Jr

Thus we conclude that

1= Z m)\+52

ACLY egzo

thus exactly one m s = 1, all the rest are 0. Thus x| = s for some ), as needed.

It remains to show “2”. By the Peter-Weyl Theorem, and the identification C(Conj(U(n))) = C(Orbg, (T)) (proposition
from a while ago), we see that

{Xalp : 7 € U(n)}

is necessarily an orthonormal basis for M g(T) C C(Conj(U(n))), with respect to the usual inner product on C(U(n)). Hence,

~

by Weyl’s Integral Formula, { x| : m# € U(n)} is an orthonormal basis for M g(T) with respect to (e, ®)y,. Hence indeed,
{Xx|p : € U(n)}, in its capacity as a subset of {s : A € Z } must be all of it. O

9.50 Corollary (WEYL’S DIMENSION FORMULA). If A € Z",

B H1§k<€§n()‘k — Ao+l — k)

d)\ = dﬂ- =
’ [Tickcecnt —F)
Proof. We want to compute
1
A
1 A5 X
d)\:X)\(I):S)\ '.. = _1
1
V
L 1
The point I € T is not regular. Let us approximate by regular points:
ei(n—l)t 07
2(t) = ,
ezt
0 1]
Let us compute
'(ei(n—l)t)/\1+n—1 . (ei(n—l)t)kn,l-i-l (ei(n—l)t)/\l
A t)) = det : : -
Ao (2(1)) © (eit)MrHn—1 (eit)An-1+1 (eit)M
i 1 . 1 1
'(eit(k1+n—1))n—1 o (eit(Al-i-n—l))l 1
= det (eqit(/\n,l'+1))n—1 N (eit(/\n;ﬁl))l 1 by transposing
i (eitkn)n—l o (eitkn)l 1
= H (et Pntn=k) _ gitQetn—0)) Vandermonde det.
1<k<t<n
= I iltw=N+e-k)+ piae ()]
1<k<t<n

cts. function in ¢
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Similarly

Vi) = [ ile-#

1<k<t<n
How s (1)
I — Ao(2
sx(D) £50 V(=(t))
which is the desired formula. O

9.51 Example. Consider
k= (k,....k)eZY, k€ Z.

Zhn=l o ok e |
Apts(z) = det L= 2¥ det L
dtnl ok ' L

P 21 1

= ... =2 R det = (21 22)"V(2).
zﬁ_l Zn 1
Thus
k
21

S(IC,...,k) (2;) = (21 . Zn)k = | det

Zn
Note det” : U(n) — U(1) is indeed an irrep. Note k = 0 produces the trivial representation.
Question: Whatis 71 ,....0)?

9.52 Remark. According to Weyl’s dimension formula,

d(1,0,...70) =n.

F.E. Questions now online! Office hours Th 4:30 -6, F 2 — 3.

9.53 Exercise. Let ¢ : U(n) — U(n) be the standard representation. Prove that
Xlr V=" Aqo,.,00+s
—_———
(n,n—2,n-3,...,1,0)

(Look at proof that { A, : v € Z'} , } is a basis for M 4(T).) Conclude that ¢ is irreducible and ¢ = (1 9,... o).

9.6 More on structure of elements of U(n)

Recall Lie(U(n)) = u(n) = {X € ¢gl,(C) : X* = —X}; we might call these skew-Hermitians. We also saw that
Lie(SU(n)) = su(n) = {X € u(n) : Tr X = 0}. Recall that these are real Lie algebras. They are not complex vector
spaces, despite the fact that they are ostensibly presented as elements amongst complex matrices.

9.54 Proposition. u(n) N iu(n) = {0} and u(n) + iu(n) = gl,,(C). We write

u(n)c = gl,,(C).

If you’re a formalist, you can take the real tensor product with C and prove this is a Lie algebra, and so on.
9.55 Remark. Similarly, su(n)c = sl,(C). [Same proof as above, check trace 0 condition.]

Proof. If X € u(n), then
(i1X) = —i(-X) =14iX

If X € u(n) Niu(n), then
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Now, if X € gl,,(C), then
1 1
X = §(X+X*)+§(X—X*)

self-adjoint cu(n)

9.56 Corollary. su(n) is simple.

On the assignment #3, we computed the Killing form on so(n) and it was nightmarish. This is worse. However, you can win
the simplicity without knowing the Killing form.

Proof. If j < su(n) is an ideal then j 4 4j (which by comments before is a proper direct sum) is an ideal of sl,,(C). Indeed, as
in A3Q2b, one simply checks that j + ij is a C-linear space, and if X = X; +iX5 € sl,,(C), X1, X5 € su(n),and Y1,Ys €},
then
[X, Y7 +iYs) = [X1 +iXo, Y] +iY5]
= [X1, V1] = [X, Vo] +i([X2, V1] + [X1, Y2]) € + 4]
since j <1 su(n). However, also in A3, we saw that sl,, (C) is simple, so j + ij = {0} or s[,(C). Accordingly, j = {0} or
su(n). O

Recall that U(n) is connected (as is SU(n)). Thus a representation 7 : U(n) — U(V) (V has an inner product, and is finite-
dimensional) is irreducible if and only if dr : u(n) — u(V) is irreducible. Recall: u(V) = {X € L(V) : X* = —X} where
(X*v,w) = (v, Xw).

9.57 Proposition. Let (), (e, ®)) be a finite dimensional C-inner product space. A Lie representation p : u(n) — gl,(V) is
unitary, i.e. p(u(n)) C u(V), if and only if its complexification pc : gl,,(C) — gl,,(V), given by
pc(X +1iY) = p(X) +ip(Y), for X,Y € u(n),

satisfies pc(Z)* = pc(Z*).
9.58 Remark. pc is C-linear, as is easily verified.

Proof. (—) Just as in A3, verify that pc([Z1, Z2]) = [pc(Z1), pc(Z2)] for Zy1, Zy € gl,,(C). If p(u(n)) C u(V), i.e. for
X €u(n)

p(X)* = —p(X) = p(X")
thenif Z = X +iY, X,Y € u(n), Z* = —X +iY. It follows that pc(Z*) = pc(Z)*.

(+-) We observe that p = pcl,,,. Hence

p(X)" = p(X*) = p(—X) = —p(X)
so p(u(n)) Cu(V). O

We now want to understand representations of U(n). If we allow this kind of complexified structure, it frankly makes the linear
algebra a little bit easier. When you’re doing algebraic computations in something like U(n), you have to deal with vectors
that are in U(n), so for your off diagonal elements (everything you see above the diagonal), you need a partner below it. This
can get extremely cumbersome and frankly annoying in terms of computations. One of the nice things about complexifying is
that we’re now in the general linear group and we can just talk about the basis elements F;;. If we’re a little bit careful about
it, we can use how they operate to understand more about our representations.

We now introduce quite a long list of notation.

Z1 0

o T= 121,00, 2n € U p <U(n).

Zn

it 0
e t =Lie(T) = ittt €R

0 ity

hq

e leth=t+it= chi,...,hp, €C
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e We have that gl,(C) = u(n)c.
0 212 ... 1n
o Letn=1t2(C) = . an_1a| @i € C o (strictly upper triangulars). Son < gl,, (C).

0 0

Let 7w : U(n) — U(V) (V a finite-dimensional inner product space) be a representation. By Maschke’s theorem (and Schur’s
lemma),
Yul
|~ st ot ez
Ypdn

Let P(m) = {p € Z™ : v, < 7|1} (here < denotes subrepresentation) where
Yu(z) =2 =" 2

We call P(r) the set of weights of 7.
Compute that if H € t

i ity
exptH = , H =
itn

ity

so for 4 € Z™ we get

d . , d .
dVA(H) — ’YM(GXP tH) _ % (ezttl)m .. (ezttn)un - = ezt(u1t1+...+untn) = ity + ..+ ity

dt t=0 t=0

Hence for

H= - eb=tc

we have (dv,)c(H) = pihi + ... + pinhy,. Thus, we may consider o € Z"™ to be a C-linear form on b, and write u(H) =
(d'Yu)(C(H)'

For 7 as above, and u € P(7), we let
Vi={veV:n(zv=r,(z)vforz € T} ={v eV :drc(H)v = p(H)vfor H € h}.

We call v in V \ {0} a highest weight vector for 7 if
e vy € V) for A € P(r), and
e drc(n)vg = {0}.
9.59 Theorem (BOREL-WEIL; HIGHEST WEIGHT VECTOR THEOREM). We have:

(i) Any finite-dimensional unitary representation 7 : U(n) — U(V) always admits a highest weight vector vy. Moreover,
the weight A associated to vy is dominant.

(i1) m is irreducible if and only if dim V), = 1 for the weight A associated to a highest weight vector, and only one weight is
associated to a highest weight vector. In this case, we have m = my, i.e. Xx|p = S (the Schur function associated to
A).

Proof. Let
hy

byt = = ceit:hy >...>hy
Fix

Hy = S N
hO

n
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Pick A € P(r) so that A\(Hy) = max{u(Hp) : p € P(m)}. Observe that if

h1
H= €h
I
then [H, E;;] = (h; — h;)E;j for 1 < i < j < n. (Henceforth dr and drc will be routinely conflated). Thus if vy € Vy \ {0}

(hi—h;)Eij
d?T(H)dT((Ei]‘)UQ = dﬂ'(Eij)dﬂ'(H)UO + dﬂ-([Hv Eij])vo
= (A(H) + (hi — hy))dn(Ei;)vo

The weight u = A + e; — e; satisfies
u(Ho) = A(Ho) + Y — b > A(Ho)

so that o ¢ P(m) by choice of X. Thus, V,, = {0} and dr(E;;)vo € V,, so dm(E;;)ve = 0. Thus dm(n)vg = {0}.

Moreover, we saw earlier that if A € P(7), 0 € Sy, then A - 0 € P(m) too (A - 0 = (As-1(1),- -+, Ao—1(n))). Hence there is
o € 5, s0 A - o is dominant and in P(7). We observe that with Hy € b, 4

A-o(Ho) > A(Ho)
if A\# A-0;s0 A = X0 is dominant.
(i1) Now suppose vy and A as above. Suppose further that v in V is such that
dmr(n)v = {0} and (vg,v) =0

Now for H € ) we have

(vo, dr(H)v) L (dr(H*)vo,v)

= MH")(vg,v) =0

(t: dn(H)* = dn(H™) by proposition). Also, if N € n, then

(vo, dn(N*)v) = (dn(N)vg,v) = 0.

=0

If X € gl,(C) = u(n)c, we can write X = N* + H + N’ where H € h, and N, N’ € n (lower triangular, diagonal, upper
triangular decomposition). We have

(vo, dm(X)v) = (vo, [dr(N*) + dr(H) + dx(N')]v) = 0

———
dr(N’")v=0

We will begin here on Thursday.

Now suppose vy L dr(gl,,(C))*v for some k& > 1. Then for Xy,..., X € gl,,(C),Y = N* + H + N/, for NN’ € n,
H € b, we have

(vo, dm(Y)dn(X7) - - - dn(Xy)v) = ([dn(N) + dn(H")]vg, dm(X7) - - - dn( Xy )v)
+ (vo, dm(N")dm(X71) - - - dm(Xy)v) O

9.60 Theorem (HIGHEST WEIGHT VECTOR THEOREM). We have
(i) If 7 : U(n) — U(V) is af.d. unitary rep, it admits a highest weight vector. Moreover the associated weight is dominant.

(i)  isirreducible if and only if there is a unique highest weight (only one weight associated with a highest weight vector)
and dimension of the weight space, dim V) = 1. In this case 7 = ).
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Proof. (ii) thus far: Suppose vg, A are highest weight vector and associated weight. Let v € V be a vector s.t.
(vg,v) =0, dr(n)v = {0}
We showed that
v L dm(gl,(C))v.
(NEW STUFF:) Let us suppose for all 1 < j < k we have vy L dr(gl,,(C))’v. We wish to show vy L dr(gl,,(C))*v. Let
X1, Xk, Y egl, (C). WriteY = N*+ H+ N', NN’ € n, H € h. We compute
dr(N)*+dn(H)+dr(N)
—~
(v, dm(Y) dm(Xg) - - - dm(X1)v) = ([dn(N) + dn(H*)|vg, dm(Xy,) - - - dm(X1)v)
+ (vo, dm(N")dr(X},) - - - dm(X1)v)
= MNH")(vg, dr(Xg) -+ - dr(X7)v)
+ (vo, [dm(Xk)dm(N") + dr([N', Xi])]dr(Xg—1) - - - dm(X)v)
= (’U(), d’lT(Xk)[dﬂ'(kal)d’/T(Nl) + d’i’(’([]\/v/7 Xk»fl])]dﬂ-(Xk72) e dﬂ'(Xl)’U)
= (vo, dm(Xy)dn(Xp_1)dm(N")dr(Xj_2) - - - dn(X1)v)

= (vo, dm(Xg) - - dn(X1) dn(N")v) =0
=0

Thus, we see that
vy L Spanc{dw(g[n(C))kv}

=W

Moreover, W is dm-invariant, i.e. drwc-invariant, hence is dom = dw\u(n)-invariant. Since U(n) is connected, W is thus
m-invariant.

Thus, if 7 is irreducible, then Cvg contains every vector annihilated by d(n). Thus the highest weight A (associated to vp) is
unique, and furthermore dim V), = 1.

Conversely if 7 is reducible, then we may write m = m; @ 7o for m-invariant subspaces 7y, 7o (Maschke’s theorem), each of
71 acting on Vy, and g, acting on Vs, admit highest weight vectors by (i) above.

XW‘T = Z MyYu = YA + Z muYu-

HEP(m) HEP(m)\{A}

We must have m) = 1, since dim V5 = 1. Now, where V is the Vandermonde:

V=" sen(0)yo.s

ocES,

Finally,

we consider
Xrlp -V = Z Mo Ao = Axts + Z MytrsAuts

aEZi+ MEZi
since coefficient of A in x . |T = 1. Now, divide by V'
Xrlp = $x + Z Mu+55p
neZr \{A}

But 7 being irreducible means that x| is a single Schur function, thus

My4s =0 for pu # A O

We close the formal part of this course by illustrating what’s powerful about the Borel-Weil theorem. We got a complete
description of all the representations: one-to-one correspondence between representations and dominant weights. We had the
Weyl dimension formula. With a bit of computational muscle, this Borel-Weil theorem actually does help us a lot: it helps us
understand the geometry a little bit better.

9.61 Example. We have:
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(ii)

Let ¢ : U(n) — U(n) be the standard representation

SU(n) acts transtiively on the unit sphere in C". U(n), being a larger group thus acts transitively as well. So we actually
know that this is irreducible. Let’s just say that I forgot.

Sodi=1id : u(n) = u(n). Sodic =1id : gl,,(C) — gl,,(C). Compute that

1
ﬂ ker Eij = .
1<i<j<n :
0
Also
1 1 1 1
0 i 01 1o 0 0
H . = = hl . el(h)
0 o 0 0 0
€1 = (1,0, . ,O) € Z:L_ Thus ¢ = 7(1,0,...,0)-
Recall that

(X,Y) = Tr(XY™)

is an inner product on any space of complex matrices, in particular on gl,(C) = u(n)c. Consider Ad : U(n) —

U(gt, (C). P

Recall that d(Ad) = ad, and this complexifies to ad (we only differentiate these in terms of domain), i.e. ad X(Y") =
[X,Y] for X,Y € gl,(C). We have for Y = [y;;],

ad E;(Y) = Z(yjkEik — Yki L)

k=1
Thusforl1 <i:<j3<n

Yji = Yii

adEij(Y)=0 < Syjp =0 forj=2,....n

Yri = 0 fori=1,...,n— 1.

Thus,
ﬂ kerad E;; = spanc{I, E1,}.

1<i<j<n

Observe that CI is an Ad-invariant subspace, with orthogonal complement sl,, (C). Notice that if

hy
H=| - e
hn

then ad H(E1,) = (h1 — hp)E1n = (e1 — €,)(H)E1,. Summary:
gl,,(C) =CI @ 5l1,(C)

Ad(e)|; = 1 (trivial representation), and Ad(o)|5[n(c) = T(1,0,...,0,—1) by Borel-Weil.

What’s nice about the technology of the complexification. One thing we shied away from doing was talking too much about
rep theory of non-compact group. It sucks. It’s really complicated, you have to do infinite-dimensional analysis. Compact
groups are vastly superior. Although this was complicated it was doable. One can eventually sit down and figure any of these
out, although it takes quite a bit of effort. There is a coarse classification of simple Lie groups: unitary groups, two classes of
orthogonal groups for geometric reasons, symplectic groups, and then there’s the small handful of exceptional groups. Their
analysis is really tedious. Physicists really like E8. If you have a classification and you have exceptional elements, there’s
probably a physical underlying reason. That being said, if I can understand the rep theory of a class of compact groups (and
we made a pretty good go at unitary groups) then in fact, one can in fact in some sense have a complex version of this theory.
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10 Directions from here

This is by no means an exhaustive list, but let’s just give an overview.

Consider representations
7 : GL,(C) —» GL4(C)

(d is the dim of the space on which we’re representing). We’re going to have to impose one further condition, and I hope to
convince you that this is a nice condition: dr : gl,,(C) — gl;(C) is C-linear.

We’re treating Lie groups as real Lie groups; the differential is a real linear map, it’s not a complex linear map. We’re going
to impose an extra constraint because it’s helpful for me. So in fact, we might call these holomorphic representations (or
algebraic representations). If your philosophy is more based in algebraic geometry, you prefer this.

‘We have
7 irreducible <= dm irreducible

(note we are in a connected setting). The complex linearity shows that we also get
< dnl,, irreducible

(the complex linear span of the skew-Hermitian matrices made the whole Lie algebra).

We observe that by Maschke,
7|5y ~ unitary

so we may as well pick a basis for C? so 7r|U(n) is unitary.

Fact: any unitary representation o : U(n) — U(d) extends to a representation o¢ : GL,,(C) — GL4(C) with do¢ C-linear.
The fundamental claim is that this is a one-to-one correspondence, that we actually now have control over certain classes of
representations of a non-compact group. I want to convince you that this is a good thing. Here is the basic idea:

¢t : U(n) — U(n), standard representation

pick (¢ = id : GL,(C) — GL,(C).
7:U(n) —» U(n)
tlgi;] = (9351
which does involve a choice of basis (this is essentially independent of representative of equivalence class). If we try to extend
this in a naive manner to complex matrices, it doesn’t really look so good. Complex conjugation is not C-differentiable! Let’s

just analyze this a bit. If I want to complexify, maybe I better use my differential theory a little bit. Let X € u(n), and

consider
d

d
di(X) = — exp(tX) = — exp(tX)
dt|,_, —_—— dt|,_q
pointwise complex conjugation

and we know that X* = — X, so again accepting the vulgarism that we’re living with a concrete basis, we realize this means
X =-XT.So

d (tX) d (—txT) = —x7T

— ex = — exp(— =-X".

g P P dt|—g P
Hence dic(Z) = —ZT. One can show that

ic(g) =g~

is the appropriate holomorphic extension.

Recall:
M(U(n)) = alg(M,, Mz, 1) (“algebra generated by”)

(proof of Peter-Weyl). This is an algebra of functions, it’s conjugate closed and it’s point-separating. So it’s dense in all of the
continuous functions. Thus, subrepresentations of all representations

1Bk @ 7®¢

have all irreps as subrepresentations. Use this to complexify any o in ﬁ(n)
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Conclusions: If 7, o are finite-dimensional reps of GL,,(C) with C-linear dr, do, then

TR0~ @ M r@s

T family

Idea: really Maschke is applied to U(n).

Similar facts hold
SU(n) « SL,(C).

One might look at special orthogonal groups; it turns out that you actually can complexify them:

SO(n) +» SO¢(n) = {g € GL,(C): g"g =1}
——

non-compact

There are even complex versions of things like symplectic groups, and everything. That whole list of groups is called the
classical matrix groups.

Some closing announcements: final exam is on Monday, the week after next. 12:30.
There will be 3 45-minute talks (Thursday morning). Everyone is strongly encouraged to come.
Office hours: Friday afternoon, 2 — 3:30, and Thursday afternoon from 2 — 4. Office hours until about Spm today.

In terms of the final exam question list, the questions have not been carefully proofread.
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