STRUCTURES FOR
DISCRETE-TIME SYSTEMS

As an illustration of the computation associated with a difference equation, con-
sider the system described by the system function :

The impulse response of this system is

h[n] = boa"uln] + b1a"u[n — 1], (6.2)

¥l = ayln — 1] = box[n] + brxln — 1.4 (6.3)

Since the system has an infinite-duration impulse response, it is not possible to
implement the system by discrete convolution. However, rewriting Eq. (6.3) in the form

yn] = ay[n — 1] + box[n] + byx[n =] (6.4)

provides the basis for an algorithm for recursive computation of the output at any time
nin terms of the previous output y[n — 1], the current input sample x[n], and the previ-
ous input sample x[n — 1].

However, the algorithm suggested by Eq. (6.4) andits generalization for higher order
difference equations is not the only computational algorithm for implementing a partic-
ular system, and often it is not the most preferable. As we will see, an unlimited variety

of computational structures result in thé same relation between the input sequence x[n]

and the output sequence y[n].

BLOCK DIAGRAM/REPRESENTATION OF LINEAR
CONSTANT-COEFFICIENT DIFFERENCE EQUATJONS

Therefore, the basic elements re-
-invariant discrete-time system are

5

Y Tl
@

quired for the implementation of a linear time

- x[n] ‘(b) ax(n]
. z—l P
x[n] x[n-1j

= 1_az_1 ) |ZI > lal' (6.1)

4
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As an example of the representation of a difference equation in terms of the elements
.in Figure consider the second-order difference equation

yin] = a1yln — 1] + azy[n — 2] + box|n]. (6.5)
The corresponding system function is
bo
H(z) = 1—a1z-1 —ayz-2" 6:6)
bo L\ v N
-+ P
x[n] ! yinl
=
a
+ | y[n-1]
Z—l
a
< L y[n-2]

. T Thus, Figure  conveniently depicts
the complexity of the associated computational algorithm, the steps of the algorithm,
and the amount of hardware required to realize the system.

Example  can be generalized to higher order difference equations of the form

N M
Y= ayin — k] = > bex[n — k), ' (6.7)
k=1 k=0

with the corresponding system function

M
Z brz*
H(?)= -—~——"=°N

1— Zakz"‘

68)

y[;t]

[n-1]
y[n-2]
x[n-M]) L—b>M—

y[r-N]

y y B
Yrl=) ayln -+ bexln - &]. (6.9)
k=1 k=0 o



More precisely, it represents the pair of difference equations

M
v[n] = " bix[n — k), (6.10a)
. k=0
o
yln] = Z ary[n — k] + v[n). _ (6.10b)
k=1

A block diagram can be rearranged or modified in a variety of ways without.chang- .
ing the overall system function. Each appropriate rearrangement represents a different '

computational algorithm for implementing the same system.

N\ Wi
.x["] *K-{-{/ > J

GD‘J—J wln-1}

b
-

.
e
<
o

Zz z‘l
aﬁ, wln - N} I;N
In terms of the system function H(z) ,Figure  can be viewed as an

implementation of H(z) throughthedecomposition

NG M
H(z) = Hy(2)Hi(z) = ~——Nl—- | (Z bkz"") (6.11)
1- Zakz"k k=0
k=1

or, equivalently, through the pair of equations

; |

V(z) = Hi(2)X(2) = (Z bkz"‘) X(2), (6.12a)
k=0

Y@= BEVE)= | —— | v, (6.12b)

1~ Zakz_k
k=1
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or, equivalently, through the equations

W) = Hi()X(@) = | —— | x(2), (6.14a)
1-— Z akz‘k
k=1
. M
Y(2) = Hi(2)W(2) = (Z bkz"") W(z). (6.14b)
k=0
- o
wn] = Z awln — k] + x[n], - (6.15a)
k=
_ M
Y[ =) bw[n— k). © (6115b)

k=0
Theoretically, the order of implementation does not affect the overall
system function. However, as we will see, when a difference ¢quation is implemented
with finite-precision arithmetic, there can be a significant difference between two Sys-
tems that are theoretically equivalent. Another important peint concerns the number
of delay elements in the two systems. Specifically, the minimum number of delays

required is, in general, max(N, M). An implementation with the minimum number of

delay elements is.commonly referred to as a canonic form implementation. The non-

canonic block diagram in Figure 6.3 is referred to as the direct form I implementation
of the general Nth-order system because it is a direct realization of the difference equa-

tion satisfied by the input x[n] and the output y[x], which in turn can be written directly
from the system function by inspection. Figure 6.5 is often referred to as the direct
form II or canonic direct form implementation.

s
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4
)
J
o
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Consider the LTI system with system function

x[n]

Figure

H(z) =

142770

1-15z71409z-2" (6.16)

Direct form | implementation

Ll

yln]

1.5 2

-09

Figure Direct form Ii implementation
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BASIC STRUCTURES FOR IIR SYSTEMS

rl =3 ayln— K= 3" bexln - i, (626)
k=1 k=0 )
with the corresponding rational system function
M
bt
' k=0
1-—- Z akz_" ' »
oo d .
x{n]
z-l
b .
x[n-1]o— ! !
zly
b
x[n—2]<’: 2 I I : l)’[n—Z]
o } | i
| t I |
T |
x[n-N+1] ol i _ yln-N+1]
Z—l Z—I
. b | a
x[n-N] - - < yln-N]
' _Signal flew graph of direct form I'structure for an Mth-order system.
. win] by
O—p—0 O O
x[n] - yin]
al b] .
z-l
az' . b2
| 0 a |
I | I
[ ! !
I | N
1 aN:__ 1 L bh:,_ f ]
. o l Signal flow graph of

direct form Il structure for an
Nth-order system.

VCotrls'ider the system function

: 1+2z‘i +2772 (628)
H(z) = 1—-0.75z"1 40.125z-2" L ’
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. Cascade Form
T T L
[0 - )T - g ) - gz27h) |
H(z)= A ";j ’jjz‘ ' : (6.29)
[[Q - eeH ] - dez 1 - a2
k=1 k=1

where M = M; +2M, and N = Ni +2N,.

represent real zeros at f; and real poles at ¢
complex conjugate pairs of zeros at 8k and g and complex coffjugate pairs of poles at
deand d. A modular structure fhat is advantageous
- for many types of implementations is obtained by combining pairs of real factors and
complex conjugate pairs into second-order factors so that Eq. (6.29) can be expressed as
H(z) = ﬁ bok + bixz™! + bypzs?

1—apz™t —ayz-2"’

In this expression, the first-order factors
» and the second-order factors represent

(6.30)
k=]

where N; = |(N + 1)/2] is the largest integer contained in (N + 1)/2. In writing
H(z) in this form, we have assumed that{M =N and that the real poles and
zeros have been combined in pairs. If there are an odd number of real ZETOoS, one
of the coefficients by will be zero. Likewise, if there are an odd number of real
poles, one of the coefficients ay;, will be zéro.

wilsl  ylnl . 0wyl il sl

wsln]

Alternatively, to illustrate the cascade structure, we can use -
first-order systems by expressing H(z) as a product of first-order factors, as in

Hp) = — L +2270+27 (474
0750 T 1012522 © (1= 05211 — 03571 )

Since all of the poles and zeros are real, a cascade structure with first-order sections has

real coefficients. If the poles and/or zeros were complex, only a second-order section
would have real coefficients.

(6.32)



x[n]

x[n]
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Parallel Form

As an alternative to factoring the numerator and denominator polynomials of H(z),
We can express a rational system function as given by

Np N[ Nz : y -1
_ Ax Bi(L=e,z7Y)
. _ 1 el , 6.34
H(2) = kE=O Gz + ki] T + kgzl (= dez Ol —drz=T) (6.34)

where N = Ny +2N,. If M > N, then N, = M- N otherwise, the first sammation
in Eq. (6.34) is not included. If the coefficients 2, and Dk are real in Eq. (6.27), then
the quantities Ay, By, C, ck, and e, are all real.

the 11es Ak B Chs €, and e o Alternatively, we may group
the real poles in pairs, so that H(z) can be expressed as '

NP Ns . ....1‘
' - + ez
H —_ C k €ok 1k
) ; 2 4 g s e S (6.35)

where, as in the cascade for

m, N5 = [(N + 1)/2] is the largést integer contained in
(N+1)/2,andif N, = M—

Nismegative, the first sum is not present.

If we use
second-order sections,

{42022 -7 48271
= = . (637
HO = =S5 ro1me = 8+ ooy 0oizszz (637

~ Sinceall the poles are real, we can obtain an alternative parallel form realization
by expanding H(7) as '

18 25
A, Ho=8+— 05771~ 1-025¢-1 (6.38)
O———0
vl
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BASIC NETWORK STRUCTURES FOR FIF SYSTEMS

Direct Form

For causal FIR systems, the system function has only zeros (except for poles at z = 0),
- and since the coefficients ay, are all zero, the difference equation of Eq. (6.9) reduces to

M
y[n] = Z brxln— k] - (6.46)
. =0
This can be recognized as the discrete convolution of x[n] with the impulse response
tor_ [ Baen=0,1,.... M,
hln] = {0 otherwise. (6.47)
Bt 'y e
x[n]
h[0] h[1] h[2] R[M-1] Yh{M]
[ S S S

yln}
: R s Because of the chain of
delay elements acrossthe top of the diagram, this structure is also referred to asatapped
delay line structure or a transversal [filter structure.

THE EFFECTS OF COEFFICIENT QUANTIZATION
When the ﬁé»rmgﬁiéiér‘s“(‘if;ré’ti'{)nél éﬁ{émﬁhctiohrc; correspoidmg diffeféncé equatlon
are quantized, the poles and zeros of the system function move to new positions in the
z-plane. Equivalently, the frequency response is perturbed from its original value. If the
system implementation structure is highly sensitive to perturbations of the coefficients,

the resulting system may no longer meet the original design specifications, or an IIR Sys-
tem might even become unstable.
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For example, the system function representation corresponding to both direct forms is
the ratio of polynomials

M
S e
H(z) = 2= .- | (6.62)

N
1- Zakz'k
k=1 -

The sets of coefficients {a;} and {bi} are the ideal infinite-precision coefficients in both
direct-form implementation structures. If we quantize these coefficients, we obtain the
system function

M A
bz *
H(z)= = : | (6.63)
1~ Z ﬁkz_k
k=1

where 4, = ay + Aay and by, = by + Aby are the quantized coefficients that differ from
the original coefficients by the quantization errors Aay and Aby.

Poles of Quantized Second-Order Sections

Even for the second-order systems that are used to implement the cascade and
parallel forms, there remains some flexibility to improve the robustness to coefficient
quantization. Consider a complex-conjugate pole pair implemented using the direct
form, as in Figure . With infinite-precision coefficients, this network has poles at
z=re/® and z = re~/%. However, if the cosfficients 2r cos® and —r? are quantized,
only a finite number of different pole locations is possible. The poles must lie on a grid
in the z-plane defined by the intersection of concentric circles (corresponding to the

‘quantization of r2) and vertical lines (corresponding to the quantization of 2r cos 8).
o— o > o

"o
x[n} . yinl
z
2r cos 0 a
b4
—r2
Im z-plane B Yo
Z-plane
1.00pF~~ ' o Realizable pole positions

0.50
\
\
\
0.25 \
\
\
{
{
0 0.25 0.50 0.75 100 Qe
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Notice that for the direct form, the grid is rather sparse around the real axis. Thus, poles
located around 9 = 0 or 6 = 7 may be shifted more than those around § = m/2. Of
course, it is always possible that the infinite-precision pole location is very close to one
of the allowed quantized poles. In this case, quantization causes no problem whatsoever,
but in general, quantization can be expected to degrade performance.

Effects of Coefficient Quantization in FIR Systems =~~~

For FIR systems, we must be concerned only with the locations of the zeros/of the
system function, since, for causal FIR systems, all the poles are at 7z = 0. Although we
have just seen that the direct-form structure should be avoided for high-order IIR sys-
tems, it turns out that the direct-form structure is commonly used for FIR systems. To

understand why this is so, we express the system function for a direct-form FIR system
in the form ‘

M
H(z) = Zh[n]z'". (6.64)
n=0

. ,
H@z) = Zfz[n]z"" = H(z) + AH(2),

e _ n=0 o
" where
M
AH(z) =) " Ahn]z™.
n=0
> H(z)
| ——
x[n] . y[n]
> AH(z)

3 § ~ Thereason that the direct form
FIR system is widely used is that, for most linear phase FIR filters, the zeros are more
- or less uniformly spread in the z-plane.

Maintaining Linear Phase

So far, we have not made any assumptions about the phase response of the FIR sys-
tem. However, the possibility of generalized linear phase is one of the major advan-
tages of an FIR system. Recall that a linear-phase FIR system has either a symmetric
(h[M — n} ‘= [n]) or an antisymmetric (h[M — n} = —h[n}) impulse response. These

linear-phase conditions are easily preserved for the direct-form quantized system.
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