THE DISCRETE FOURIER
TRANSFORM

REPRESENTATION OF PERIODIC SEQUENCES:
- THE DISCRETE FOURIER SERIES

Consider a sequence X[n] that is periodic! with period N, so that ¥[n] = ¥[n +#N}for
any integer valuesof nand r.

#n] = ~ Z X[k]e/@n/Nkn,

ex[n] in Eq (8.1) are identical for values of k separated by N ie.,
eo[n] = en[n), e[n] = en+1[n], and, in general,

ek+({N[n] — e}(Zn/N)(k+€N)n . ej(2n/N)ere]27r(rx _ e/(Zn/N)kn — Ek[n], , (83)

where ¢ is an integer. Consequently, the set of N periodic complex exponentials eo[n].

e[n], ..., en_1[n] defines all the distinct periodic complex exponentials with frequencies
thatare mteger multiples of (27t/N)

= j@xz/N)kn
¥[n] = N E 0 .[k]e ]

Thus, the Fourier series‘éoéfﬁcients X[k] in Eq. (8.4) are obtained from x[n] by the
relation Nel '

X[k] =" *[u]emier/Nin, ' (8.9)
n=(} _
Note that the sequence X[k] is periodic with period N:ie., X[0] = X[N], X 1] =
X[N+ 1].
For convenience in notation, the

se equations are often written in terms of
the complex quantlty '

Wy = e—i@r/N)

(8.10)
With this notation, the DES analysis-synthesis pair is expressed as follows:
) i N-1
Analysisequation: X[kl = ¥ x[n]W. (8.11)
: n=0
N-1
Syathesis equation: ¥[n] Z [k]W . (8.12)

l\=

In both(of these equations, X{k] and %[n]
find it.convenient to use the notation

#n] 253 Xy | (8.13)

The Discrete Fourier Serles of a Penodlc
Rectangular Pulse Train

are periodic sequences. We will sometimes

For this example, %[n] is the sequence shown in Figure 8.1, whose period is N = 10,
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X[kl = Z whi = Ze—j(ln/l())kn_ ®.17)
n=(} n=(
This finite sum has the closed form
Sk .
/?[k] - 1 - Wll:.) — e_/'(4nk/|(,) 511](77"(/2) '
AT sin(rk/10)

(8.18)

The magnitude and phase of the periodic sequence X[k] are

Rk $X[K]
fs .v |
10

]h RN | R A
90=T'=1Ts-T= 20 . & 1 ‘ I : '1 ‘
. ' x denotes indeterminate &

. (magnitude = 0)

PROPERTIES. OF THE DISCRETE FOURIER SERIES
Linearity

Consider two periodic seqﬁences *[n] and %,[n], both with period N, such that -

DFS- &

%i[n] < X,[k] (8.19a)
and
g %[n] 222 B[k (8.19b)
Then _ : - .
a%i[n] + bX[n)eS @.X\[K] + bX,[K]. (8.20)

Shiﬂ of a Séquence
If a periodic sequence #[n] has Fourier coefficients X[k], then X[n - m] is a shifted
version of ¥[n], and : :

x[n 2m] &3 wkm 1k, (8.21)

Wy sln] &5 Xk — o).

Duality

Becauge of the_strong similarity between the Fourier analysis and synthesis equations
In continuous time, there is a duality between the time domain and frequency domain.

If
#[n] 225 X[k, (8.25a)
then _
| X[n) Z3 Nz[-k]. ) (8.25b)

Periodic Convolution
In summary, ,

N-1
> xlmlnln - m) 23 [k X[K).
m=0



Periodic Convolution )N
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The duality theorem (Section 8.2.3) suggests that if
- B[] =3[R [n), (8.33)
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where ¥;[n] and %;[n] are periodic sequences, each with period N, has the discrete
Fourier series coefficients given by '

N-1 '
X3[k]'= -11\_, > Xi[e) X[k — 2], (8.34)
=0

SAMPLING THE FOURIER TRANSFORM

In this section, we discuss with more generality the relationship between an aperiodic
sequence with Fourier transform X(e/®) and the periodic sequence for which the DFS
coefficient$ correspond to samples of X (e/*) equally spaced in frequency.
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Consider an aperiodic sequence x[n] with Fourier transform X (e/®), and assume
that a sequence X[k] is obtained by sampling X (e/”) at frequencies wy = 2mk/N;i.e.,
X[K] = X () omian/npp = X(eI@/N ). (8.49)

Since the Fourier transform is periodic in w with period 27, the resulting sequence is
periodic in k with period N.

Note that thf: sequence of samples X [k], being periodic with period N, could be
the sequence of discrete Fourier series coefficients of a sequence X[n]. To obtain that
Sequence, we can simply substitute X[k] obtained by sampling into Eq. (8.12):

=z

= ©

o
(=]

X[Kwgkn, (8.51)

S}lbstituting Eq. (8.52) into Eq (849) and then substituting the resulting expression for
X[k] into Eq. (8.51) gives

N-1 oo
¥[n] = % Z [ Z x[m]e"j(z”/N)"'"J Wk, (8.53)

k=0 Lm=—oc

which, after we interchange the order of summation, beéomes

00 N—-1 00 |
gnl= Y x[m] HZW,;"‘"""’} = > x[mlpln — m). (854)

m=—00 '. =0 m==00

. 1= —k(n—m; - N M . ”

p[n—m]zﬁg_WN =r§o6[n~m—rN] , (8.55)
and therefore,

%[n] = x[n] % Z 8fn—rN]= Z x[n—rNj, - (8.56)

_ If x[n] has finite Iength and we
take a sufficient number of €quallyspaced samples of its Fourier transform (specifically,
a number greater than of equal to the length of x[n]), then the Fourier transform is
recoverable from these/samples, and, equivalently, x[n] is recoverable from the corre-
sponding periodic sequence ¥[n] through the relation

_f#n, 0<n<N-1,
xlnl = {0, otherwise. (8.57)

FOURIER REPRESENTATION OF FINITE-DURATION
SEQUENCES: THE DISCRETE FOURIER TRANSFORM

We begin by considering a finite-length sequence x[r] of length N samples such
that x[r] = 0 outside the range 0 < n < N — 1. In many instances, we will want to
assume that a sequence has length N even if its length is M < N. In such cases, we
simply recognize that the last (N — M) samples are zero. To each finite-length sequence
of length N, we can always associate a periodic sequence

00

#[n)= > x[n—-rN]. A (8.58a)



Vs

[n], 0<n<N-1, 5
x[n] = {0_ otherwise. - (8.58b)

Recall from Section 8.4 that the DFS coefficients of ¥[n] are samples (spaced in
frequency by 27/ N) of the Fourier transform of x[n). Since x[n] is assumed to have
finite length MV, there is no overlap between the terms x[n —r N]for different values of

r. Thus, ¥[n] = X[((n))N] _

.  Thus, the DFT, X[k], is related to the DFS
coefficients, X[k], by 'v i

, X[k, O0<k<N-1,
X[k]:{

(8.61):
0, otherwise, _
and
. X[k] = X[(k modulo N)] = X[ (8.62)
N-1 o
x[n]WE", 0<k<N-1,
0, otherwise,
T,
S 2 XIKWR*", 0<n<N-1,
x[n]=4 N g KWy ’ (8.66)
0, otherwise.
. . . - - : N,_l _;..;.., S—
Analysis equation: )X [£] = Zx[n]W,fj". (8.67)
n=0
. : 1 V-l _ ‘
Synthesis equation: x[n] = 5 > X[Kwgtn, " (8.68)
k=0

That is, the fact that X{[k] = Ofor k outside the interval0 <k < N

— I and that x[n] =0
for n outside the interval 0.< n <N

— lisimplied, but not always stated explicitly.

In defining the DFT representation, we are simply
recognizing that weare interested in values of x[n] only in the interval 0 Sn<N-1

because x[n] is really zero outside that interval, and we are interested in values of X [k]
only in the interval 0 < k < N—1 because these are the only values needed in Eq. (8.68).

The DFT of a Rectangular Pulse

4
X1k = Ze—j(an/S)n _

n=0

{5. k=0, %5, +10....,

0, otherwise;
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If, instead, we consxder x[n]to be of length N =

= 10, then the underlying periodic
sequence is that shown in '
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PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

Finite-Length Sequence (Length N)

N-point DFT (Length N)

1. x[n] X [k]
2. x[n] xz[n] X1[k), X3[k]
3. ax[n]+ bxyfn] a X[k} -+ bX2[k]
4 X[n] Nx[((—k)n] -
5. x[((n - m)n) WA X (k]
6. Wyx[n] X[k~ 0)n]
N=1
T xnlml((n - m)w) X1[K) Xak]
m=0
-1
8. xlnlxaln] 3 3 XiOXal(Gk— )]
=0
9. x[n] X H(=R)A)
10. x*{(-m))n] - X* (k] 4
11 Relx[n]) Xeplk] = LIX[(()IN] + X*[((~))w])
12, jImix[n]) XoplK] = UXU(B)N] — X*{((~K))w]}
13. xepln] = S {x{n] + x*[((-m))w]) Rel X [k)} |
14, Xop[n] = %{x[n] = x*[((=n))N]) - JIm{X[k)}

Properties 15-17 apply only when x[n] is real.

15,

16
17.

-Xep[n] =
" Xopfn] =

Symmetry properties

2 Wxln] + x[((=m)w))
3 (xln] = x[((=m) )}

X[K] = X*[((=k))N)
Re(X[k]} = Re{ X[((—K)n])
Im(X[K]} = —Tm{ X[((—k)N])
I X[ = | X[((—k))w]|
UX[K) = ~<UX[((—k)N]}

ReX[k])
JTmiX R
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Circular Conyvolution with a Delayed Impulse
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_ Circular Convolution of Two
Rectangular Puises

As another example of circular convolution, let

§2

1, O<n<L~-1,

xilnl = xpfn] = {0’ otherwise, (8.122)

If we let N denote the DFT length, then, for N = L, the

N-point DFTs are
: N—1
: N, k=0
— — kn . ’ ’
Xilk] = X[k = z_; Wy = {0. otherwise. (8.123)
If we explicitly multiply X1[k] and X»[k], we obtain
N k=0, .
X3[k] = X1[k]) X,[k] = { 0. otherwise, (8.124)
from which it follows that - | |
x3[n]=N, O<n<N-1. (8.125)

It is, of course, possible to consider x;[n] and x[n] as 2L -point sequences
by augmenting them with L zeros,

Note that for N = 2L,

X[k = X[k L= Wi

W

s0 the DFT of the triangular-shaped sequence x3[n] in Figure 8.16(e) is

T wik\?
X3[k1=(1 WN,()

W

with N =2L.

(-l 0=n=N-1

SO



LINEAR CONVOLUTION USING THE DISCRETE
FOURIER TRANSFORM

(@) Compute the N-point discrete Fourier transforms X[k] and X,[K] of the two
sequences x;[n] and x;[n], respectively.

(b) Compute the product X;[k] = Xi[k) Xa[k] forO <k < N—1.

(¢) Compute the sequence x3[n] = x1[n] @ x2[n] as the inverse DFT of X 3[k].

In most applications, we are interested in implementing a linear convolution of two
sequences; i.e., we wish to implement a linear time-invariant system.

To obtain a linear convolution, we must ensure that circular onyoldtion
has the effect of linear convolution. '

Consider a sequence x;[n] whose length is L points and a sequence , [n} whose length

is P points, and suppose that we wish to combine these two sequences by linear convo-

lution to obtain a third sequence

- _
x3[n] = Z xi[m]xa[n — m]. (8.129)
o o M=—oc B ) —
Therefore, (L+ P — 1) is the maximum length of the sequence x+fn] resulting from the
- linear convolution of a sequence of length L with a sequence of length P.

- As we showed , if xy[n] has
length L and x,[n] has length P, then x3[n] has maxinam length (L+ P—1). Therefore,
the circular convolution corresponding to Xi[k] X,[k] i identical to the linear con-
volution corresponding to X1(e/?) X2(e/?) if N, the length of the DFTs, satisfies
N>L+P-1.

1 KR \ x1[n] = xy[n],

O



As Example points out, time aliasing in the circular convolution of two finite- g /_{
length sequences can be avoided if N > L + P —1. Also, it is clear that if N = [, = P,
all of the sequence values of the circular convolution may be different from those
of the linear convolution. However, if P < L, some of the sequence values in an
L-point circular convolution will be equal to the corresponding sequence values of the
linear convolution. The time-aliasing interpretation is useful for showing this.
Implementing Linear Time-Invariant Systems
Using the DFT

multiplying the DFTs of x[#] and A[n]. Since we want the product to represent the DET
of the linear convolution of x[#] and h[n], which has length (L+ P— 1), the DFTs thatwe
compute must also be of at least that length, i.e., both x[n] and h[n] must bé augmented
with sequence values of zero amplitude. This processis oftenreferred to as zerg-padding.

x3[n]

gII” IT | ,,Jy[” S -

IR A II& . ,,

L+P-1

x3p[n] = x,[n] ®) x,[n], p -_
[ l’ | NeL X35l = 51 [n) ® 3l
. N=L +P-1 .
0 ' L ' ' n | o
P-1 0 N

0

This procedure permits thé eomputation of the linear convolution of two finite-
length sequences using the diséretc Fourier transform; i.e., the output of an FIR system
whose input also has finite lefigth can be computed with the DFT. -

block convolution.

900990 000-0-000005000 0




Henceforth, we will assume that x[n] = 0 for n < 0 and that
the length of x[n] is much greater than P. The sequence x[n] can be represented as a
sum of shifted finite-length segments of length L; i.e.,

where

" that

where

fos)
x[n) = xn-ri], (8.140)
=0 .
_{xln+rL], 0sn<L-1,
xrln] = {0, , otherwise. - (8.141)
" Because convolution isa linear time-invariant operation, it follows from Eq.(8.140)
. .
yln] = x[n]xh[n] =Y y[n—rL], (8.142)
-0
yr[n] = x[n] * A[n]. (8.143)
b o ' i
0 i 1 """" " -

rﬂﬂHﬂ} _____ DO

1 — ;

5050000

Since the sequences x, [n] have only L nonzero points and h[n] is of length P, each

“of thetterms y,[n] = x,[n] * h[n] has length (L + P — 1). Thus, the linear convolution
x,[n}#%4[n] can be obtained by the procedure described earlier using N-point DFTs,
where N > L4 P — 1. Since the beginning of each input section is separated from its
neighbors by L points and each filtered section has length (L + P — 1), the nonzero
points in the filtered sections will overlap by (P — 1) points, and these overlap samples
must be added in carrying out the sum required
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