FOURIER ANALYSIS OF SIGNALS
USING THE DISCRETE
FOURIER TRANSFORM
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The conversion of x.(t) to the sequence of samples x[n] is represented in the
frequency domain by periodic replication and frequency normalization, 1e.,

X(efw)— = Z X ( + ]g;ﬁ) (10.1)

Asindicated, the sequence x[n] is typically multiplied by a finite-duration win"d'ow
w[n], since the input to the DFT must be of finite duration,This produces the finite-
| length sequence v[n] = w[n]x[n]. The effect in the frequency domain is a periodic

convolution, i.e.,
o |
V(ef‘”)=§-1— / X (el YW (/) do. (102)
T Jx

If w[n] is constant over the
range of n for which it is nonzero, it is referred to as a rectangular window. However, as
we will see, there are good reasons to taper the window at its edges. ‘

At this point, it is sufficient to observe that
- convolution of W(e/*) with X (e/2) will tend to smooth sharp peaks and discontinuities

in X (/). The DFT of the win-
dowed sequence v[n] = w(njx[n} is )

N-1
VK =D wln]e/@m/Nkn - g =0,1,...,N=1, (10.3)

n=0

where we assume that the window length L is less than or equal to the DFT length N.
- V[k], the DFT ofthe finite-length sequence v[n], corresponds to equally spaced samples
of the Fourier transform of v[n}; i.e.,

VIk] = V(e/®)] (10.4)

w=2nk/N"

Since the spacing between
DFT frequencies is 27/ N, and the relationship between the normalized discrete-time
frequency variable and the continuous-time frequency variable is w = Q7, the DFT
frequencies correspond to the contmuous time frequencies

2k
Q= NT (10.5)
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DFT ANALYSIS OF SINUSOIDAL SIGNALS

The discrete-time Fourier transform of a sinusoidal signal Acos(won +¢) is a pair of im-
pulses at +wo and —wyp (repeating periodically with period 2x). In analyzing sinusoidal
signals using the DFT, windowing and spectral sampling have an important effect.

Let us consider a continuous-time signal consisting of the sum of two sinusoidal com-
ponents; i.e.,
sc(t) = Agcos(Q2t + o) + A} cos(¢ + 61), —00 < t < 00. £(10.6)

Assuming ideal sampling with no aliasing and no quantization error, we obtain the

discrete-time signal
x[n] = Ao cos(won + 6p) + A cos(win + 61), —o00 < n'<co,  (10.7)

where wy = Q4T and w; = , T. The windowed sequence v[n]

L
B

v[n] = Aow[n]cos(won + 85) + A w[n] cos(win + ;). (10.8)
A L . ¢
v[n] = —Z—Ow[n]e”"’e”"f’" + izqw[n]e—'looe—]a}on ]
+ TIW[n]ejg‘ejw’" + —z—lw[n]e‘ﬂ"e‘f‘vm,
V(efw) — A_dejQOW(ef(w‘wO)) + _%_O_e—f(?o W(ej(w+w0))
? (10.10)
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Reduced resolution and leakage are the two primary effects on the spectrum as a
result of applying a window to the signal. The resolution is influenced primarily by the
width of the main lobe of W(e/“), while the degree of leakage depends on the relative
amplitude of the main lobe and the side lobes of W(e/®).

The rectangular window, which has Fourier transform
L1 . '
~ . - L/2)
W.(e/®y = e~ — »—jw(l.—1)/2 sn:l(w )
(e") HZ:% € sin(w/2)
has the narrowest main lobe for a given length, but it has the largest side lobes of all
-the commonly used windows. As defined in Chapter 7. the Kaiser window is

h[p(1 = [(n - @)/a]?)'"?]
wi(n] = 1y(B) ’
, otherwise,

(10.11)

O=n=L-1, (10.12)

where o = (L — 1)/2 and Jy(:) is the zeroth-order modified Bessel function of the first
kind. We have already seen in the context of
the filter design problem that this window has two parameters/8 and L. which can be
used to trade between main-lobe width and relative side-lobe amplitude. (Recall that
the Kaiser window reduces to the rectangular window whén gi= 0.) The main-lobe
width Ay, is defined as the symmetric distance between the central zero-crossings. The
relative side-lobe level Ag is defined as the ratio in dB of the amplitude of the main lobe
to the amplitude of the largest side lobe.

The trade-off between main-lobe width, relative side-lobe
amplitude, and window length is displayed by the approximate relationship

| o 2r(Ag #12)
T 155A0

which was also given by Kaiser and Schafer (1980).

+1, (10.14)

Let us consider the same parameters Jde,Ag =1,
Ay = 075wy = 2n/14, ) = 4mw/15, and 0, = 6, = 0 in Eg. (10.8). w[n] is a
rectangular window of length 64. Then

ofn] = €os (%n) +0.75¢cos <%n> . O0< nys 63, (10.15)
0. ‘otherwise.
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As is the usual convention in displaying the DFT of a
time sequence, we display the DFT values in the range fromk = 0tok = N — 1,
- corresponding to displaying samples of the discrete-time Fourier transform in the
. frequency range 0 to 2x. Because of the inherent periodicity of the discrete-time
Fourier transform, the first half of this range corresponds to the positive continuous-
time frequencies, i.e., Q between zero and 7 /T, and the second half of the range to the
negative frequencies, i.e., 2 between —r/ Tand zero.
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ofn] = cos (En) + 0.75 cos (?n> 0 <n <63, (10.16)
0, otherwise,

Again, a rectangular window is used with N = [, = 64. This
is very similar to the previous example, except thatin this case, the frequencies of the
cosines coincide exactly with two of the DFT {requencies. Specifically, the frequency
w) =21 /8 = 27 8/64 corresponds exactly to thc DET sample k = 8 and the frequency
wo =27 /16 =274/64 to the DFT samplek = 4.
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. DFT Analysis of Sinusoi .
Using a Kaiser Window y usoidal Signals

Let us return to the frequency, ampli
. , amplitude, and phase parameters of E
now with a Kaiser window applied, so that P i rample 103 but

v[n] = wi[n] cos <21§—n) + 0.75wg[n] cos (%n) . (16.17)

where wy({n] is the Kaiser window as gi i ' 1
. given by Eq. (10.12). We will select th
w;ndow parameter B to be equal to 5.48. ) -
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For a completegepresentation of a sequence of length L, the L-point DFT is suf-
ficient, since the originaksequence can be recovered exactly from it. However, as we
saw in the preceding examples, simple examination of the L-point DFT can result in
misleading intérpretations. For this reason, it is common to apply zero-padding so that
the spectrum is sufficiently oversampled and important features are therefore read-
ily apparent. With a high degree of time-domain zero-padding or frequency-domain
oversampling, simple interpolation (e.g., linear interpolation) between the DFT val-
ues provides a reasonably accurate picture of the Fourier spectrum, which can then be
used, for example, to estimate the locations and amplitudes of spectral peaks.
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THE TIME-DEPENDENT FOURIER TRANSFORM

The time-dependent Fourier transform of a signal x[n] is defined as

X[n.r)y= i x[n + mlw[m)e=*" (10.18)

M=—=

where w(n] is a window sequence. In the time-dependent Fourier representation? the
one-dimensional sequence x[n], a function of a single discrete variable, is convertédinto
a two-dimensional function of the time variable n. which is discrete, and the fréquency
variablé A, which is continuous.? Note that the time-dependent Fourier transform is
periodic in A with period 27, and therefore, we need consider only values of A for
0 <A <27 or any other interval of length 27.

x[n] = cos(won?). wo =27 x 7.5 % 1079, (10.19)
corresponding to a linear frequency modulation (i.e., the “instantafieous frequency” is

2on). Typically. w[n] in Eq. (10.18) has finite

length around m = (, so that X [n. ) displays the frequency characteristics of the signal
around time 1. '
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The magnitude of the time-dependent Fourier transform of x[n] =
cos(wpn?) using a Hamming window of length 400.



Since X[n, A) is the discrete-time Fourier transform of x[n + m)w[m), the time-
dependent Fourier transform is invertible if the window has at least one nonzero sample.

2

x[n+ mlw[m] = E.L X[n, A)e*mdx, —00 < M < 00, (10.20)
T Jo
from which it follows that
1 2
= , AdA 10.21
Ml =5 [ Xln) (1021
ifw[0] £ 0. X[n, A) can be written as
o0 . '
X[na)= D" x[m]w[~(n — m'))er™or—m), (10.22)
m'=—-00

Equation (10.22) can be interpreted as the convolution

X[n. 2) = x[n] * hy[n], : (10.23a)

where ' _
hin] = w[—nle*". (10.23b)
Hy(e7) = W(e/*-o), (10.24)

In general, a window that is nonzero for positive time will be called a noncausal
window, since the computation of X [7, 2) using Eq. (10.18) requires samples that follow
sample nin the sequence. Equivalently, in the linearfiltering interpretation, the impulse
response 4, [n] = w[—n]e/*" is noncausal.
- Another possibility
is to shift the window as n changes, keeping the time origin for Fourier analysis fixed

This Jeads to-a definition for the time-dependent
Fouricr transform of the form

)?[n. A) = Z x[mlw[m — nle™/*" = e“""”XA[n. A) (10.25)

Ni===C

The Effect of the Window

The primary purpose of théwindow in the time-dependent Fourier transform is to limit
the extent of the sequeneento be transformed so that the spectral characteristics are
reasonably stationary,overithe duration of the window. The more rapidly the signal
characteristics change, theshorter the window should be.

If we considex the time-dependent Fourier transform for fixed n, then it follows
from the properties of Fourier transforms that

27
X|n, x):% /0 e’ X (e YW(e! " dp: (10.28)

i.e., the Fourier transform of the shifted signal is convolved with the Fourier transform

of the window. In Section 10.2 we saw that the ability to resolve two
narrowband'signal components depends on the width of the main lobe of the Fourier
transform of the window, while the degree of leakage of one component into the vicinity
of the other depends on the relative side-lobe amplitude. The case of no window at al]
corresponds to w[n] = 1 for all . In this case W(e/*) = 28(w) for — < w < m,which
gives precise frequency resolution, but no time resolution. '
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The preceding discussion suggests that if we are using the time-dependent Fourier
transform to obtain a time-dependent estimate of the frequency spectrum of a signal,
it is desirable to taper the window to lower the side lobes and to use as long a window
as feasible to improve the frequency resolution.

Sampling in Time and Frequency

wlm] =0  outside the interval 0 < m < L — 1. (10.29)

If we sample X[n, 1) at N equally spaced frequencies Ay = 2nk/N,with N > L then
we can still recover the original sequence from the sampled time-dependent Fourier
transform. Specifically, if we define X[n, k] to be
L-] '
X[n k] = X[n.27k/N) =" x[n + mlw[m]e /mNkm ) < k < Njsge (10.30)
m=(0 ’

then X[n, k] is the DFT of the windowed sequence x[n + m)w[m]. Using the inverse
DFT, we obtain

1 N-1 ' ' »
x[n +mlwlm] = iy > X[n. kle/@m/Nkm g < g 211, (10.31)
k=0

Since we assume that the window w[m] # 0for0 <m < L~ 1 the sequence values can
be recovered in the interval from n through (n + L — 1) using the equation

N—1
D Xln k]el@rIMkm < m < L1, (10.32)
k=0

where it is assumed that w[m] # 0 for0 < m <= 1.

1
Nw[m]

x[n+m] =

Eq. (10.30) can be
rewritten as

X[n, k] = x[n] * a[nl. O <k<N—1, (10.33a)
where ' . -
B[] £ W[—n]e @r/Mkn ‘ (10.33b)
> hy 1] p—————
X{n.N-1]
xln] > Al —TITI
H,
Filter bank
—> My} —————  representation of the time-dependent
Xm0l Fourier transform,
H(e!®) = W(e/I@mk/N)~u]y, (10.34)

Ourdiscussion suggests that x[n] for —co < n < 0o can be reconstructed if X [n. 1)

or X{n, kj}is sampled in the time dimension as well. Specifically, using Eq. (10.32), we

- can reconstruct the signal in the interval ny < ri < ny + L — 1 from X[no. k], and we

can reconstruct the signal in the interval ng + L < n < no+2L -1 from X[ng + L, k],

etc. Thus, x[n] can be reconstructed exactly from the time-dependent Fourier transform
sampled in both the frequency and the time dimension.
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we define this sampled time-dependent
Fourier transform as :

1.—1
X[rR k] = X[rR.2xk/N) =" x[r R-+ m]w[m]e~ in/ Nk (10.35)
m=0

where r and k are integers such that Qoo <r <ooand ) < k < N — 1. To further
simplify our notation, we define

X[kl = X[rR.-K|= X[rR A).  —oco<r<oo, O<k<N-—1. (10.36)

where A = 2rk/N. This notation denotes explicitly that the sampled time-deperident

Fourier transform is simply a sequence of N-point DFTs of the windowed signal seg-
ments

X, [m] = x[rR + m]w[m]. —co<r<oo. O<m<lL—1. (10.37)

with the window position moving in jumps of R samples in time.

koo N=10and R=3
2m X,[k] =X[R. k] X,[k] = X[2R. K] X,[k] = X[3R. k]
N_ l [ ] L J ®
® [ ®
2—7T ® L J *®
N 'y ‘. 'y
_L 'Y ® L ]
[ ® ®
T ® ® ®
e L ] *
[ ] ) L ] ®
° 9% % 2R 3R "
0 1 2 3 r

Equation (10.35) involves the following integer parameters: the window length
L; the number of samples in the frequency dimension, or the DFT length N; and the
sampling interval in the time dimension, ReHowever, not all choices of these parameters
will permit exact reconstruction of.the signal. The choice L < N guarantees that we can
reconstruct the windowed segmeénts'x, [] from the block transforms X, k. If R < L,
the segments overlap, but if B > L, some of the samples of the signal are not used
and therefore cannot be recensiructed from X, [k]. Thus, in general, the three sampling
_parameters should satisfy the relation N > L > R.

BLOCK CONVOLUTION USING
" THE TIME-DEPENDENT FOURIER TRANSFORM

Assume that x[n] = Oforn < 0, and suppose that we compute the time-dependent
Fourier transferm for R = L and a rectangular window. In othe.r words, the sampled
time-dependent Fourier transform X, [k] consists of a set of N-point DFTs of segments
of the input sequence

x.[m] = x[rL+ m]. O<m<L-1. (10.38)

Since each sample of the signal x[n] is included and the blocks do not overlap. it follows
that

x[n] = i x[n—rL]. (10.39) .

r={)
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Now suppose that we define a new time-dependent Fourier transform
Y (k] = H[K]X,[k].  O0<k=<N-1. (10.40)

where H[k] is the N-point DFT of a finite-length unit sample sequence A[n] such th?t
h[n} = Ofor n < Oand forn > P—1.If we compute the inverse DFT of ¥,[k], we obtain

N-1 N-1
bl = ~ 3" VMO N = S [hl(m - )a). (1041)
N k=0 =0

Thatis, y.[m]is the N-point circular convolution of A[m] and x, [m]. Sincfe hm] has.length
P samples and x,[m] has length L samples, it follows from the discussion of Section E_§.7
thatif N > L+ P —1, then y,[m] will be identical to the linear convqlution ofl?[m] with
x,[m] in the interval 0 < m < L+ P — 2, and it will be zero otherwise. Thus, it follows

that if we construct an output signal

y[nl = ‘Zyr [n—rL]. ' (10.42)_

r=0
then y[n] is the output of a linear time-invariant system with impulse response h[n}].
The procedure just described corresponds exactly to the overlap4add method of block
convolution.

FOURIER ANALYSIS OF STATIONARY. RANDOM
SIGNALS: THE PERIODOGRAM

Let us consider the problem of estimating thespower density spectrum P () of a
continuous-time signal s.(¢).

The antialiasing lowpass filter creates a new stationary random signal whose
power spectrum is bandlimited, so that the &i gnalean be sampled without aliasing. Then
x[n] is a stationary discrete-time random signal whose power density spectrum Py (w)
is proportional to Py(2) over the bandwidth of the antialiasing filter: i.e.. '

1
P.\’.\'(w) = ?Pss (‘;‘3) s lwf < 7, (1050)

where we have assumed that the cutoff frequency of the antialiasing filter is 7/ T
and that 7 is the sampling pefiod. '

Consequently, a reasonable estimate of Pyx(w) will provide
a reasonable estimate of By (Q2). The window w(n] in Figure 10.1 selects a finite-length
segment (L samples) of x[n], which we denote v[n], the Fourier transform of which is

L-1
V(') =Y wln]x[n]e~/on, (10.51)

n=0

Consideras.an estimate of the power spectrum the quantity

I(w) = Zl—[le(e"‘”)lz, \ (10.52)

where the constant U anticipates a need for normalization to remove bias in the spectral
estimate. When the window w[n]is the rectangular window sequence, this estimator for
the power spectrum is called the periodogram. If the window is not rectangular, 7 (w)
is called the modified periodogram. Clearly, the periodogram has some of the basic

properties of the power spectrum. It is nonnegative, and for real signals, it is a real and
even function of frequency. '



Specifically, samples of the periodogram are given

1 L]
U= _ 2 .
(k) = —LI—UIV[k]lz, ngnn (10.55)

by

where V[k] is the N-point DFT of wln]x[n]. If we want to choose N to be greater
than the window length appropriate zero-padding would be applied to the sequence
wln]x[n].

If a random signal has a nonzero mean, its power spectrum has an impulse at
zero frequency. If the mean is relatively large, this component will dominate the spec-
trum estimate, causing low-amplitude, low-frequency components to be obsciited by
leakage. Therefore, in practice the mean is often estimated using Eq. (10.48); and the
resulting estimate is subtracted from the random signal before computing/the power

spectrum estimate. . - -
P ima However, it has been shown (see Jenk-

ins and Watts, 1968) that over a wide range of conditions, as the window length increases,
‘ var[I(w)] ~ P2.(«w). (10.65)

That is, the variance of the periodogram estimate is approximately the same size as the
square of the power spectrum that we are estimating. Therefore,since the variance does
not asymptotically approach zero with increasing window lefigth, the periodogram is
not a consistent estimate.

Periodbgram Averaging

The averaging of periodograms in spectrum estimation was first studied extensively by
Bartlett (1953); later, after fast algorithms for computing the DFT were developed,
Welch (1970) combined these computational algorithms with the use of a data window
w(n] to develop the method of averaging modified periodograms. In periodogram aver-
aging, a data sequence x[n],0 < n < Q- 1,is divided into segments of length- L samples,
with a window of length L applied to each’ iie., we form the segments

X, (n)=x[rR+nlwln],  O<n<L-1. -(10.57) ‘

: The
periodogram of the rth segment is

@) 4 X eyr  (1068)

where X, (/) s the discreté-time Fourier transform of x,{n}. Each I,(w) has the prop-
erties of a periodogram, s, described previously. Periodogram averaging consists of
averaging together the K periodogram estimates /,(w): i.e., we form the time-averaged
periodogram defined.as

K~1
Iw) = 2 3 b (10.69)
r=0

To examine the variance, we use the fact that, in general, the variance of the aver-
age of K independent identically distributed random variables is 1/ K times the variance

of eachindividual random variable. (See Papoulis, 1991.) Therefore,

1

var[l(w)] =~ % P? (w). (10.76)

Consequently, the variance of J (w) is inversely proportional to the number of peri-
odograms averaged, and as K increases, the variance approaches zero.
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