Home Assignment Nel

Due on May 20, 2008

Exercise 1

In this problem we derive the Fourier transforms of the sign function and the
unit-step function.

Part A
Find the Fourier transform of the signal (for o > 0)
e7  t>0,
z(t) = 4 0, t=0,
—e® 1 <0.
Part B
The sign function sign(t) is defined by
1, t >0,
sign(t) =40, =0,
-1, t<O0.

Find the Fourier transform of the sign function.

Part C
The wunit-step function u(t) is defined by
1, t >0,
u(t) =<0.5, t=0,
0, t<0.
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Find the Fourier transform of the unit-step function. Hint: Express u(t) in
terms of sign(¢) and another signal.

Exercise 2

Part A

For a real signal z(t) we define
() = z(t) —|—2x(—t),
{L‘O(t) _ x<t) _2$(_t)

The signals z.(t) and z,(t) are called the even and the odd parts of xz(t),
respectively. Prove that

Xo (W) =R{X"(w)}, X (w) =3{X" (W)},

with R and & denoting the real and the imaginary parts of the Fourier
transform, respectively.

Part B
Let
x(t) = cos(wpt) (1)
and
y(t) = [1 + ax(t)] sin(w.t) (2)

where 0 < a < 1 and w,, < w.!. In this problem we assume, for simplicity,
that w. = Mw,,, where M is an integer much larger than 1.

e Show that y(t) is periodic with period 27 /wy,.
e Define?

(3)

!The operation of constructing y(t) from x(t) is called amplitude modulation (AM).
2The signal z(t) is called half-wave rectification of y(t).
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Since a < 1, we also have

0, sin(w.t) < 0.

2(t) = {y(t)v sin(wet) > 0,

Show that z(t) is periodic with period 27 /wy,.

e Suggest a way to extract the signal z(¢) from z(t).



Solutions to Assignment #1

Exercise 1:

a

0 o l[ i
XFlw) = _J‘ alo—jwit 4, +J p-larwing, o 1 _ 1 o 1 Jew y
—e o a-jw &+ jw o? + w?

{b) We have
signir) = lim x(r),
[ Ealt]

where x(t) is the signal in part a. Therefore, assuming that the order of the limit and integral operations

can be interchanged, we get
: j2w 2
i .
sign}iw) = - lim 5 = .
LF sign] a0 o2+ w? | Jw

(c) We have
u(t) = 0.3sign(t) ~ 0.51(¢t).

Therefore,

Exercise 2:
Part A

I‘f X&) 5 red thew X s €i“4 4 ™S conjuﬁa":@, so

e 21T

x(£)= L r’ XFwy e du = | j“ XF(w) & du
I o
46 the Fourla ﬁanS‘Jnm of  x(+t) i XF(w) . Thatfore
YEw) = o6 XFW) + 0.5%F(w) IRQ XFCW)B

d‘lﬂd )

Xe W) = 0.5XF(W) — 05X Fw)=J] I3 KF(W)B
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Home Assignment Ne2

Due on May 29, 2008

Exercise 1

Given a continuous-time signal z(t) with X¥(w) = 0 for |w| > w,, determine
the minimum sampling rate f, for a signal y(t) defined by:

a) z(t), b) z(2t), c¢) z(t)cos(6mwnt).

Exercise 2 (Natural Sampling)

Suppose the signal z(¢) is band-limited with X ¥ (w) = 0 for |w| > B. Instead
of sampling with a train of §’s we sample z(¢) with a train of very narrow-
supported pulses. The pulse is given by a function p(t), we sample at a rate
T, and the sampled signal then has the form

g(t) =a(t) Y Tp(t—kT)
k=—0o0
e Is it possible to recover the original signal z(¢) from the signal g(¢)?

e If not, why not. If it is possible, what conditions on the parameters T’
and B, and on the pulse p(t) make it possible.

Exercise 3
Reconstruction of continuous-time signals from their samples using the clas-

sical formula is impractical, since the sinc function cannot be implemented as
a causal filer. Hence, developing different reconstruction methods has been



a topic of intensive research. One of the possible methods is so-called zero-
order hold that interpolates the signal over [nT,nT + T by a constant value
equal to x(nT). Formally it can be represented by the following formula:

o)

vzon(t) =Y x(nT)hy(t — nT),

—00

where

() = 1, iftel0,T),
e 0, otherwise.

The figure below shows an output of a reconstructor (i.e., D/A converter)
which linearly interpolates between successive samples:

]
ya(t) i SN

T 9T 3T AT l t

Figure 1: Pertaining to Exercise 3.

Suppose the impulse response of this D/A converter is h,(t), i.e.

oo

ro(t) = Y a(nT)ha(t — nT)

n=—oo

e Plot the impulse response h,(t) and determine whether this reconstruc-
tion can be performed as a causal operation.

e Is there a filter, by using which the result of the above reconstruction
can be transformed to the original signal x(t) (assuming the latter is
band-limited and sampled well above its Nyquist rate)? If there is, find
the frequency response of this analog filter.
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Home Assignment Ne¢3

Due on June 9, 2008

Exercise 1
Consider the finite-length sequence
xz[n] = 20[n] + d[n — 1] + d[n — 3],
We perform the following operation on this sequence:
e We compute the five-point DFT X9[k].

e We compute a five-point inverse DFT of Y¢[k] = (X9[k])? to obtain a
sequence y[n].

a) Determine the sequence y[n| for n =0,1,2,3, 4.

b) If N-point DFTs are used in the two-step procedure, how should we
choose N so that y[n] ={x*z}n]for 0 <n<N-17

Exercise 2 (Inverse DFT)

A sequence x[n] withn =0,1,2,... N —1 is zero-padded to 2N points (i.e.,
N zeros are appended to z[n]). Let z,[n] be this 2N-point sequence and let
X2[k] be the 2N-point DFT of x,[n].

a) Determine the inverse N-point DFT of a N-point sequence consisting
of the even-index components of X2[k].

b) Determine the inverse N-point DFT of a N-point sequence consisting
of the odd-index components of X2[k].



Exercise 3 (Circular Convolution)

Let X; and X5 be two N x N circulant matrices corresponding to finite-
dimensional sequences z1[n| and xs[n] of length N, respectively. Find a
general expression for the (k,n)-th element of matrix Y that is equal to the
product of X; and X5, viz. Y = X; Xos.
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Home Assignment N4

Due on June 16, 2008

Exercise 1

Let wy = {;. Consider three values N = 16, N = 64, and N = 256. Let
xy[n] = cos(won) for n = 0,..., N — 1, and Xy[k| be its N-point DFT

coefficients.

a) Plot | Xx[k]| for the above three values of N. Use subplot() to com-
pare the results for different values of N.

b) Explain the behavior of | Xy[k]| as a function of N.

Exercise 2

In some applications in coding theory, it is necessary to compute a 63-point
circular convolution of two 63-points sequences x[n] and h[n|. Suppose that
the only computational devices available for us are multipliers, adders and
processors that compute N-point DFTs, and N restricted to be a power of
2.

a) Create two 63-length random sequences x[n| and h[n] using the MAT-
LAB function randn() and write a matlab program to compute an
M-point circular convolution of two sequences by computing their lin-
ear convolution in time domain. Verify your program by computing
the 63-point circular convolution of z[n] and h[n].

b) Write a MATLAB program that computes the 63-point circular convo-
lution of the above random sequences x[n] and h[n] using two 128-point
DFTs and one 128-point inverse DFT. Compare the results and com-
putation complexity (in terms of multiplications) of this method with



that in (a). (Assume that one complex multiplication requires four real
multiplications and both z[n] and h[n] are real.)

Exercise 3 (Zero Padding in frequency domain)

Assume we are given the DFT of a length-N sequence (where N is odd), and
define the zero-padded in frequency domain as

LXK, 0<k< ¥
Xkl = LXk—~M+N], M-22<k<M-1, (1)
0, otherwise.

for M = LN and L > 0. The new DFT has zero values at high frequencies
and conjugate symmetry is preserved if processed by X?[k].

a) Modify the definition of zero padding in the frequency domain (1) to
the case of even N.

b) Write a MATLAB program that implements interpolation of a finite
sequence x[n] by zero padding in the frequency domain. The program
should treat both even and odd lengths of z[n] and not be limited to
M which is an integer multiple of N.

Note:

e Remember to attach the MATLAB code and the generated plots to
your homework submission.

e To get info about MATLAB functions, type help function_name at
the MATLAB command prompt.



ECE 413 Solution to assignment 4

Solutions to assignment 4
Note: The following answers are not unique, we hereby provide referenced code.

Exercise 1

close all;

clear all;

omega = pi/l16;

j = [l6, 64, 256];
for i = 1l:1:1length(j)

N = 3(i);

x(i, 1:N) = ones(l, N) .* cos(omega .*(0:1:N-1));
y(i, 1:N) = fft(x(i, 1:N));

end

figure;

subplot (3, 1, 1),

plot(x(1l, 1:3(1)), 'o');
xlabel ("k+1"');
ylabel('x 1 6[n]"');
subplot (3, 1, 2)

plot(x(2, 1:3(2)), 'o');
xlabel ("k+1"');
ylabel ('x 6 4[n]');
subplot (3, 1, 3)

plot(x(3, 1:3(3)), 'o");
xlabel ("k+1"');

ylabel ('x 2 5 6[n]');

figure;

subplot (3, 1, 1);
plot(abs(y(1l, 1:3(1))), 'o');
xlabel ("k+1"');
ylabel (" [X 1 6[k][");
subplot (3, 1, 2)
plot(abs(y(2, 1:3(2))), 'o');
xlabel ("k+1"');
ylabel ("X 6 4[k]|");
subplot (3, 1, 3)
plot(abs(y(3, 1:3(3))), 'o");
xlabel ("k+1"');
ylabel (" [X 2 5 6[k][");
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ECE 413 Solution to assignment 4
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Figure 1: Figure for Problem 1
Exercise 2

(a)function z=circonv(x,Vy)
$synopsis: z=circonv(x,Vy)
$performs circular convolution by means of linear convolution

[

% input: x,y are two vectors; output: z the result of the circular
% convolution
N=length (x);
if (length (y)~=N)
error ('Vectors of unequal lengths in circonv');
else
z=conv (reshape (x,1,N), reshape(y,1,N));
z=z (1:N)+[z(N+1:2*N-1),0];
end
(b) function z=circonvé63(x,Vy)
% Implement 63-point cicular convolution using 128-point DET
N=length (x); M=length(y);
if (length (y)~=N)
error ('Vectors of unequal lengths in circonv63');
elseif (M~=63) && (N~=63)
error ('input vector length does not equal to 63'");
else

o

% zero padded to 128 points sequences

Page 2 of 3



ECE 413 Solution to assignment 4

Xa=[reshape (x,1,N),zeros (1,128-N)];
Ya=[reshape(y,1,M),zeros (1,128-M)];
Za=ifft (fft(Xa,128).*fft(Ya,128),128);
z=Za(l:63)+[Za(64:125),0];

end

Complexity: in terms of multiplications

63
Part (a) implement it using linear convolution:  # mult=2 x Z n> —63=3969

n=1

Part (b) implement it using 128-point DFTs: # mult=4x3x (128log, 128) =10752

Exercise 3

N
LX k] 0<k<—-1
(a) when N is even, X“[k]= 2

1

LX[k+N-M] M+l—%§k§M—l

(b)
function z=zero pad freqg(x,M)

[

% Implement zero padding in frequency domain

[

% x 1is input vector with length N
% M length of zero padded sequence in frequency domain
N=length (x);
L=M/N;
Xk=fft (x,N);
if (N-2*floor (N/2)==0)
% when N is even
Zk=[L*Xk (1:N/2),zeros (1,M-N),L*Xk (N/2+1:N) ];
else
% when N is odd
Zk=[L*Xk(l: (N+1)/2),zeros (1,M-N),L*Xk ((N+1)/2+1:N)];
end

z=ifft (Zk,M);

Page 3 of 3



Home Assignment N¢H

Due on June 30, 2008

Exercise 1

Consider the window

wln] = sin (N”f 1) .

Explore the properties of this window: main-lobe width and side-lobe level.
How is this window related to the Hann window?

Exercise 2

We are given 128 samples of the signal

. 6.3 . 56
x[n] = sin (QWES”> + 0.001 sin (27r§8n> :
a) Explain why a rectangular window is not adequate for detecting the

second component.

b) Of the Hann and Hamming windows, which one is better in this case
for detecting the second component? Explain you answer and illustrate
it on a computer.

Exercise 3

Consider the system of Figure 1 with input z(¢) = /?°! that is sampled with
period T*.

LT is chosen such that no aliasing occurs during the sampling process.
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Figure 1: System figure for Exercise 3.

Suppose that now N = 32, Figure 2 and Figure 3 show the magnitude of
the sequence X, [k] for k =0,1,...,31 for the following two different choices
of w(n]:

1, 0<n<3l,
wi[n] = .
0, otherwise.

In] 1, 0<n<T,
waln| =
? 0, otherwise.
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Figure 2: Pertaining to Exercise 3.
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Figure 3: Pertaining to Exercise 3.



a)

b)

Indicate which figure corresponds to which choice of w[n]. State your
reasoning clearly.

For the input signal and system parameters in part (A), we would like
to estimate the value of ¢g from Figure 2 when the sampling period is
T = 107%. Assuming that

1, 0<n<31,
wln] = :
0, otherwise.

and that the sampling period is sufficient to ensure that no aliasing
occurs during sampling, estimate the value of ¢g. Is your estimate
exact? If it is not, what is the maximum possible error of your frequency
estimate?

Suppose you were provided with exact values of the 32-point DFT
Xy[k] for the windows choices wy[n] and wy[n]. Briefly describe a pro-
cedure to obtain a precise estimate of ¢y.
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Solutions to assignment 4 §

Exercise 1
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Exercise 2
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Exercise 3

a)

The rectangular windows, w[n] and ws(n], differ only in their lengths, which are 32
and 8 respectivelv. Recall that the Fourier transform of a shorter window has a wider
mainlobe and higher sidelobes compared to that of a longer window. Since the DFT is a
sampled version of the DTFT, we try to use these features to distinguish the two plots.
We notice that the second plot, Figure -3, appears to have a wider mainlobe and
higher sidelobes. As a result, we conclude that Figure -2 corresponds to w;[n], and
Figure -3 corresponds to wy[n].

b)

A simple technique to estimate the value of wy is to find the value of k where [ X, [k]] is
largest. Call this index ks, The estimate is then:

. 2rko
W = T
N
The corresponding value of € is
-~ 2k
B 2 0
NT
This estimate is not exact, since the peak of the Fourier transform magnitude |X,.(e7*)]
could occur between two DFT samples. The maximum possible error A, in the
estimate is one half of the frequency resolution of the DFT.
; 1 27 T
Aﬂmm. =

INT ~ NT
From Figure PUF-2, % = 6, and with the system parameters N = 32 and T = 10—,
ﬁ{) + Ayax = 11781 £ 982 rad/s = 1875 £ 156 Hz
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<)

The following procedure provides a precise estimate of g, starting from the coarse esti-
mate in part {¢). Other procedures are also possible.

We seek an algebraic expression for the N-point DFT X, [k]. We first find the Fourier
sransform of x,,[n] = z[n|wln], where wn] is an M-point rectangular window and M is
not necessarily equal to N. Since x[n] is a pure complex exponential with frequency wy,
X.(e7%) is equal to the Fourier transform of an M-point rectangular window shifted in

frequency by wy:
iy  o—wo )M
Sl ( 2 s le—g (M =13

Xu._\{ﬁ!w) - —_—— 4 2
{w—w )
sin (T)

Note that X, (e/) has generalized linear phase. We find X, [F] by evaluating the above
- . . Ve I ; - F
expression at frequencies w = %’Eﬁ for k=01 N=1

P {';;%Lwo)a-r>
sin (—2- TE _p (M —1)
Xulk] = R

sin (L—é—%%_wo])

We know the wrapped phase of X [k], given by:

Yol AT —
X [K] = (wn - :;i) (Mfi) + mm

where the ma term accounts for possible sign changes in the amplitude of X, [k] as well

as phase wrapping, so that £X,,[k] stays in the range [—, 7).

From part (¢} we know roughly where wy should lie. Substituting & = ky into the phase
expression,

= - 2}7.{' ﬁ.[ = 1
£Xwlko] = wo — TD- (f) + mm
; e fM—-1
= f(woy — i) —— + mw

The magnitude of the error |wy — &g is bounded by /N, so the first term lies within
the range [—=, %] even for the case M = N. In addition, Ty lies within the main lobe of
Xw(e) hounded by wq — % and wg + %—? sa the amplitude at @ = &y is positive. We
can therefore set m = 0 in the phase equation.

Solving the phase equation for wy with m = 0,

. 24X [ko]
Wo = g+ ————

and Qg = 5. We can obtain two estimates of Qg for the two window choices wy[n]

(M = 32) and wy[n] (M = 8), using the values of Ty and ky from part (c) in both cases,

and check that they are consistent.
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Home Assignment N¢6

Due on July 9, 2008

Exercise 1
A causal LTT system has impulse response h[n], for which the z-transform is

14+ 271

HE) = oo =

a) What is the region of convergence of H(z)?

b) Is the system stable? Explain.

c¢) Find the z-transform X (z) of an input z[n| that will produce the output
—1

Jln) =~ (I>nu[n] _ %2%[—71 _q).

Exercise 2

If the input to an LTT system is xz[n] = u[n], the output is

yln] = (%)H uln +1].

a) Find H(z), the z-transform of the system input response.
b) Find the input response h[n].

c) Is the system causal? Is it stable?



Exercise 3
In Figure 1, H(z) is the system function of a causal LTI system.

a) Using z-transform of the signals show in the figure, obtain an expression
for W(z) in the form

W(2) = Hi(2)X(2) + Ha(2) E(2),
where both Hy(z) and Hs(z) are expressed in terms of H(z).

b) For special case H(z) = %, determine H;(z) and Hy(z).

e[n]

+
H(z) —
w(n|

Figure 1: Pertaining to Exercise 3.
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Solutions to assignment 6

Exercise 1

A causal LTT system has impulse response h[n], for which the z-transform is

14271

H(z) = .
2) (1—321(1 43271

a) What is the region of convergence of H(z)?
b) Is the system stable? Explain.

¢) Find the z-transform X (z) of an input z[n] that will produce the output

il =3 (F) wb- 321

Solution:
14271 _ 2 _ 1
Rz)= (1- =)+ (-3 O+ 1z-Y)
(a) hln] causal = ROC outside |z| = § = 2| > 1.
(b) ROC includes |z] = 1 = stable.
(c)

-1 i
Ye) = [FLmtToRT
L 1+ 2zt l 9
= Tinaoy <HS
1,.-1
x@ = Y@ 03T e

H(z)  (1-2:7Y)
fn] = -@rul-n- 1+ 3@ u-n]

Exercise 2

If the input to an LTT system is z[n] = u[n], the output is

oln] = (é) ufn+ 1]

a) Find H(z), the z-transform of the system input response.
b) Find the input response h[n].

¢) Is the system causal? Is it stable?

Solution:

Page 1 of 3
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Solutions to assignment 6

z[n] = uln] & X(2) = F-IT'T [z] > 1

n= n+l 1
”[ﬂ] = (%) l\"r'[‘“ + 1} =4 (%) ‘II[ﬂ+ 1] A4 Y(z} = 1—_%3 [zl > E

(a}
— =1 1
H(z}:—;’%:%(i-—%:?]- s> 3
\\\\\‘ \Q
1
\\ N \
(b)

4z 4 1
1-3iz20 1-}%27}

4 (%) " uln +1] -4 (%)" u{n]

sn+1] -2 (%)“uln]

H{z)

hin)

(c) The ROC of H(z) includes |z| =1 = stable.
(d) From part (b} we see that h[n] starts at n = —1 = not causal

Exercise 3

In Figure 1, H(z) is the system function of a causal LTT system.

a) Using z-transform of the signals show in the figure, obtain an expression

for W{z) in the form
Wiz)= Hi(2)X(z) + Ha(2)E(z),
where both Hy(z) and Ha(z) are expressed in terms of H(z).

21

b) For special case H(z) = ==, determine H,(z) and Ha(z).

e[n]

o

H(z) S

* wn]

Solution:
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(a) After writing the following equalities:

Viz)
W(z)

X(z) - W(z)
V{(z)H(z)+ E(z)

we solve for W{z):

Wiz) = —2E) x4

1
T+ B0) TTEEHE

(b)

-1

B e
T7HE - 1+ 45
“'-—vI—T=1—z-:

14 gy

H1 {:}

Hy(z)

(c) H(z) is not stable due to its pole at z = 1, but H(z) and H;(z) are.

Page 3 of 3



Home Assignment Ne8
Due on July 17, 2008

Exercise 1

Design a symmetric FIR filter with group delay N/2 according to the ideal
magnitude response

: <0 <3,
[H(0)] = 0, F<|0]<Z,
05, ¥ <0 <n

A. Compute hg[n].

B. If the filter is designed with the Hamming window and its order is
N = 40, what are the values of

6;0,17 93,17 93,27 9p,2a 5p,17 557 5p,2?

C. Suppose we want to have d,,; = d,2 = 0.01, and 6 = 0.005. Is it possible
to achieve this with a Hamming window filter of order N = 397

Exercise 2

Fig.1 shows the ideal magnitude and phase responses of a filter that is a
differentiator at low frequencies and high pass at high frequencies.

A. Compute the desired impulse response hgy[n]. Does the truncated im-
pulse response have linear phase? Explain why or why not.

B. Design an FIR filter of order N = 128 and having 6y = 0.57, using: (1)
a rectangular window; (2) a Hamming window; (3) a Kaiser window
with o = 6; (4) a Kaiser window with o« = 12. Compute and plot the
magnitude and phase responses of the four filters.



A

maghitude

lphase

Qo

v

Figure 1: Pertaining to Exercise 2.



Assignment #7 Solutions Page 1 of 2

Exercise 1

(A) From the general multiband filter formula we get

sin[(n —0.5N0(x /3)] sin[{n —0.5N)(27/3)] w£05N

h,[n] = -05 :
7(n—0.5N) 7(n—0.5N)
and
h,[0.5N]=0.5

(B) Using the Hamming window parameters, we get

T Ar T 4r

- T R TY
27r 4 0 27z 47r

273 T Y2 T T
5, =3,=00022, §,,=0001L.

(C) No, since a type Il filter cannot meet the pass-band specifications near 6 = r.

Exercise 2

(A) The desired frequency response is

0
: —, |601£6

1L |06,

Therefore, the desired impulse response is

h,[n] = —j ﬂ”d9+2 jeeﬂ"dmzlﬁj 40

- ;{Sinc[wj —cos(f,(n—0.5N ))}
z(n—0.5N) T

+5[”—0-5N]—ﬁ5inc[w}
a /s

The impulse response is neither symmetric nor antisymmetric, therefore the IRT
filter does not have linear phase. This is also evident from /7 (), since this

frequency response is neither purely real nor purely imaginary.
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(B) The following MATLAB code performs the required computations and plots the
results. The line computing the window w should be edited as needed. Note that
the phase is advanced by 9(n-0.5N) before plotting, to compensate for the filter’s
group delay.

w = window(129, "rect"); % change as needed to “hamm®"; “kais",6;

"kais®,12.

theta0 = 0.5*pi

n = -64:64;

h = (sinc((thetaO/pi)*n)-cos(thetal0*n)) ./ (pi*n) - ...
thetaO/pi)*sinc((thetaO/pi)*n);

h(65) = 1 - (thetaO/pi);

h = h.*w";

H = frgqresp(h,1,501);(in the textbook P235)

theta = (1/500)*(0:500);

plot(theta,abs(H)) ,grid,figure(l),pause

plot(theta, (180/pi)*angle(H.*exp(J*64*pi*theta))),grid,figure(l)



Home Assignment Ne8

Due on July 30, 2008

Exercise 1

A Chebyshev-1 filter of order N = 3 and wy = 1 is known to have a pole at
s = —1rad/s.

a) Find the other two poles of the filter and its parameter e.

b) The filter is transformed to the z domain using a bilinear transform
with 7' = 2. Compute the transfer function of the digital filter HZ(z).

Exercise 2

A first-order analog filter H”(s) has a zero at s = —2, a pole at s = —2/3,
and its DC gain is HX(0) = 1. Bilinear transformation of HZ(s) yields the
digital filter HZ?(z) = K/(1 — az™!). Find K, «, and the sampling interval
T.
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Solutions to Assignment #8

Exercise 1
© 10.20 A Chebyshev- filter of order N = 3 and wo = 1 is known to have a pole at
s = —1rad/s.
(a) Find the other two poles of the filter and its parameter &.

(b) The filter is transformed to the z domain using a bilinear transform with T = 2,
- Compute the transfer function of the digital filter H*(z).

Solution :
(a) We have from the given information
smh(%arcsi.nhl) =1,
which gives ¢ = 1/7. Also, .
cosh (%arcsinh%) =2
-~ Therefore, the other two poles are

Sp2 = —sin30° + j4/2cos 30° = 0.5(~1 = j/6).

(b)
HY(s} =GT 1){;'153 +1.75)
o =
Exercise 2

10.21 A first-order analog filter H'(s) has a zero at § = -2, a pole at § = -2/3,
and its DC gain is H*(0) = 1. Bilinear transformation of HX(s) yields the digital filter
H4(z) =K/(1 - az™"). Find K, o, and the sampling interval T.

Solution !
The analog filter is
o H) = 3Ss++22'_
Therefore, the digital filter is '
s

This gives, R
S T=1, K=05 «a=05.
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