
Lecture 12

Wave equation: vibrating string (cont’d)

Sections 4.2-4.4 of text by Haberman

In the previous lecture, we arrived at the general one-dimensional PDE for the vibrating string:

ρ0(x)
∂2u

∂t2
=

∂

∂x

(

T
∂u

∂x

)

+ ρ0(x)Q(x, t). (1)

We’ll now make some additional simplifications in order to come up with a simpler PDE. First, we’ll

assume homogeneity of the string, i.e., ρ0(x) = ρ0 constant.

Secondly, we’ll assume that T (x, t) = T0 constant, i.e., constant tension throughout the string.

This is due to homogeneity plus the additional assumption that the string is perfectly elastic and

tightly stretched so that variations in T are negligible. (It is the variations in the direction of the

tension vector that are responsible for motion.)

With these assumptions, the above PDE becomes

∂2u

∂t2
=

T0

ρ0

∂2u

∂x2
+ Q(x, t). (2)

We now assume that there are no external forces except gravity acting on the string. And if the string

is so tightly stretched that its equilibrium position is horizontal, then the gravity term can be ignored

– there are no net forces on the string when it is in its horizontal equilibrium position. Thus we set

Q = 0 and the above equation becomes

∂2u

∂t2
= c2 ∂2u

∂x2
, c =

√

T0

ρ0
. (3)

This is known as the one-dimensional wave equation.

Let’s examine the dimensionality of c: Since T0 is tension, i.e., force (mass × acceleration), and ρ

is mass per unit length, we have
[

T0

ρ0

]

=
ML

T 2
· L

M
=

L2

T 2
. (4)

This implies that c has the dimensions of velocity. We’ll see below that this velocity is important in

the solutions of the wave equation.

We now provide some solutions to the wave equation (3). First, however, we’ll need to specify

a sufficient number of conditions in order to be able to extract a unique solution. As with the heat

equation, the second-order derivative in x will require two conditions, normally boundary conditions
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at the ends of the string. There are some very interesting physical possibilities here, and we refer the

reader to Section 4.3, “Boundary Conditions”, of the textbook for a discussion. In what follows, we

shall examine the simplest, and perhaps most common condition, that of a string of length L and fixed

ends (discussed in some detail in Section 4.4 of text). This would be the situation of a guitar or violin

string – ignoring the fret. These boundary conditions will then take the form

u(0, t) = 0, u(L, t) = 0. (5)

As for the time variable t, we now have a second-order derivative in t, implying that we shall need

two initial conditions on u(x, t). We shall assume that the initial position and initial velocity of each

segment of the string is prescribed, i.e.,

u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ L. (6)

Recall that the second-derivative in t came from the acceleration term in Newton’s equation. In

particle mechanics problems, a knowledge of the initial position and velocity (or momentum) of a

particle is sufficient to determine a unique trajectory of the particle as dictated by Newton’s second

law.

The wave equation and boundary conditions are linear and homogeneous, which means that we

can try to use the method of separation of variables. As for the heat equation, we’ll look for solutions

of the form

u(x, t) = φ(x)G(t). (7)

(For some reason, the textbook switches to using h(t) for the time-dependent part.) Substitution into

Eq. (3) yields

φ(x)
d2G

dt2
= c2G(t)

d2φ(x)

dx2
, (8)

or simply

φ(x)G′′(t) = c2φ′′(x)G(t). (9)

We “separate the variables”, putting the c2 term with the t-dependent part:

G′′

c2G
=

φ′′

φ
= µ = −λ. (10)

We’ve also introduced the separation constants µ and −λ since the LHS of the equation is solely t-

dependent while the other side is solely x-dependent. For convenience, we’ll use −λ for the separation
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constant since the spatial equation for φ will be identical to that of the heat equation, and we already

know that those eigenvalues were positive. The resulting separated equations for φ and G are

φ′′ + λφ = 0, φ(0) = φ(L) = 0.

G′′ + λc2G = 0. (11)

We know that solutions to the boundary value problem for φ(x) exist only for λ > 0. In this case,

we have an infinite set of discrete eigenvalues λn,

λn =
(nπ

L

)2
, n = 1, 2, · · · , (12)

with associated eigenfunctions,

φn(x) = sin
(nπx

L

)

. (13)

From these values of λn, we find the solutions to the corrresponding equations for G(t),

G′′ + λnc2G = 0, (14)

to be

Gn(t) = C1 cos(
√

λnc)t + C2 sin(
√

λnc)t,

= C1 cos
(nπ

L
ct

)

+ C2 sin
(nπ

L
ct

)

. (15)

As a result, the product solutions u(x, t) yielded by the separation variables technique, cf. Eq. (7),

are given by

un(x, t) = φn(x)Gn(t) = sin
(nπx

L

)

[

an cos

(

nπct

L

)

+ bn sin

(

nπct

L

)]

. (16)

Any finite linear combination of the un(x, t) is also a solution to the wave equation with fixed-end

boundary conditions. We’ll examine these solutions in more detail later.

In order to accomodate the initial two conditions, we shall generally have to resort to infinite

series in the un, i.e.,

u(x, t) =
∞
∑

n=1

un(x, t)

=

∞
∑

n=1

[

an sin
(nπx

L

)

cos

(

nπct

L

)

+ bn sin
(nπx

L

)

sin

(

nπct

L

)]

. (17)
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From the first initial condition u(x, 0) = f(x), we have

f(x) =

∞
∑

n=1

an sin
(nπx

L

)

, (18)

which is the Fourier expansion of f(x), as encountered with the heat equation. From the second initial

condition
∂u

∂t
(x, 0) = g(x), we have

g(x) =

∞
∑

n=1

bn
nπc

L
sin

(nπx

L

)

, (19)

which may also be viewed as a Fourier expansion of g(x) with coefficients bn
nπc

L
.

From Eq. (18), we have, as for the heat equation,

an =
2

L

∫ L

0
f(x) sin

(nπx

L

)

dx. (20)

From Eq. (19), we have

bn
nπc

L
=

2

L

∫ L

0
g(x) sin

(nπx

L

)

dx, (21)

or

bn =
2

nπc

∫ L

0
g(x) sin

(nπx

L

)

dx. (22)

So, in principle, we have now solved the 1D wave equation with fixed ends and two initial conditions.

Let us now return to the individual product solutions

un(x, t) = φn(x)Gn(t) = sin
(nπx

L

)

[

an cos

(

nπct

L

)

+ bn sin

(

nπct

L

)]

. (23)

Each of these solutions is called a normal mode of vibration. The spatial portion, sin(nπx/L) defines

the profile of the normal mode – a wave with nodes at the endpoints. The time-dependent portion is

oscillatory – the frequency of this oscillation (number of oscillations in 2π units of time) is

ωn =
nπc

L
=

nπ

L

√

T0

ρ0
, n = 1, 2, · · · . (24)

This oscillatory time-dependence modulates the profile of the wave, as sketched below.

The frequencies ωn are the natural frequencies of the vibrating string. In practial applications,

frequencies are expressed in cycles per second – in these units, the natural frequencies are

νn =
ωn

2π
=

nc

2L
=

n

2L

√

T0

ρ0
, n = 1, 2, · · · cycles/second (cps) or “Hertz” (Hz). (25)
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The lowest frequency ω1 = πc/L is called the first harmonic or fundamental. All others are

multiples of ω1. Note that ω1 may be increased/decreased by increasing/decreasing the tension T0.

Each normal mode may also be written in the form (exercise)

un(x, t) = sin
(nπx

L

)

An sin

(

nπct

L
+ φn

)

, (26)

where the amplitude and phase of the time-oscillation are given by, respectively,

An =
√

a2
n + b2

n, tan φn =
an

bn
. (27)

The time-oscillation of a normal mode may be viewed as a standing wave – the wave is standing,

or stationary, because its nodes, including the ones at the endpoints are fixed in time. However, each

standing wave may be expressed as a sum of two travelling waves. This is possible from the addition

law for sin and cos:

sin
(nπx

L

)

sin

(

nπct

L

)

=
1

2
cos

nπ

L
(x − ct) − 1

2
cos

nπ

L
(x + ct), (28)

and

sin
(nπx

L

)

cos

(

nπct

L

)

=
1

2
sin

nπ

L
(x − ct) +

1

2
sin

nπ

L
(x + ct). (29)

The terms with (x − ct) represent waves that are travelling to the right with velocity c – to see this,

examine the position of x(t) for which the argument x − ct is zero:

x(t) = ct, (30)

so that x(t) is increasing linearly in time.

Likewise, the terms with (x + ct) represent waves that are travelling to the left with velocity c.

In fact, it is rather easy to show (via Chain Rule – exercise) that

u(x, t) = f(x − ct) + g(x + ct) (31)

is a solution to the 1D wave equation for any functions f(x) and g(x).
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Lecture 13

The energy of a vibrating string

We now derive a result for the total energy of a vibrating string, in terms of the solution u(x, t) of

the 1D wave equation. Obviously, the string has kinetic energy – the velocity of each segment is

v(x, t) =
∂u

∂t
(x, t) so that the kinetic energy of each segment is

1

2
ρ0(x)∆x

(

∂u

∂t
(x, t)

)2

. Integrating

over all segments comprising the string yields the total kinetic energy

K =
1

2
ρ0

∫ L

0

(

∂u

∂t
(x, t)

)2

dx, (32)

where we have once again assumed that the density ρ0 is constant.

But that is not all – the string must have potential energy. After all, as the vibrating string moves

toward its profile position, where maximum amplitude is achieved at each point x, it will slow down

and “turn around”, moving in the opposite direction. This slowing down and reversing is done by

exchanging kinetic energy for potential energy, just as in the case of an oscillatory mass-spring system,

or a pendulum. The problem is to compute the potential energy. One could try to integrate the force

that would have to be exerted on a segment against its outermost tensions in order to move it from

its equilibrium position u = 0 to a position u > 0. But this is rather complicated. We’ll try another

method that uses the result for the kinetic energy, as well as the fact that the string position u(x, t)

satisfies the wave equation.

First, let us differentiate the total kinetic energy w.r.t. time t:

dK

dt
=

1

2
ρ0

d

dt

∫ L

0
v2 dx

= ρ0

∫ L

0
v
∂v

∂t
dx

= ρ0

∫ L

0

∂u

∂t

∂2u

∂t2
dx

= ρ0c
2

∫ L

0

∂u

∂t

∂2u

∂x2
dx, (33)

where the final step comes from the fact that u is a solution to the wave equation. We now integrate

by parts, letting

f =
∂u

∂t
, g′ =

∂2u

∂x2
. (34)

This gives
dK

dt
= T

[

∂u

∂t

∂u

∂x

]L

0

− T

∫ L

0

∂2u

∂x∂t

∂u

∂x
dx. (35)
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We have used the fact that T = ρ0c
2. The integrand on the right can be expressed as a time derivative:

∂2u

∂x∂t

∂u

∂x
=

[

∂

∂t

(

∂u

∂x

)]

∂u

∂x
=

d

dt

1

2

(

∂u

∂x

)2

. (36)

(Verify this.) Using this result, Eq. (35) can be rewritten as

d

dt

[

K +
1

2
T

∫ L

0

(

∂u

∂x

)2

dx

]

= T

[

∂u

∂t

∂u

∂x

]L

0

. (37)

For the clamped string problem, the term ∂u/∂t vanishes at the endpoints, so that the above time

derivative is zero. Therefore, the term in brackets is constant in time. It represents the total energy

of the vibrating string – the second integral is (up to a constant) the potential energy. As in particle

mechanics, the total mechanical energy E(t) is determined by the initial conditions. Here,

E(t) =
1

2

∫ L

0

[

ρ0

(

∂u

∂t

)2

+ T

(

∂u

∂x

)2
]

dx

=
1

2
ρ0

∫ L

0
[g(x)2 + c2f ′(x)2] dx

= E(0). (38)

If you knew that the energy E(t) was given by the above expression, then you could differentiate w.r.t.

time and use the wave equation to show that E′(t) = 0.

A note on the above derivation: The above derivation may seem somewhat mysterious. How did

we know to compute the time derivative of the kinetic energy K(t)? The answer lies in proof that total

mechanical energy is conserved when a particle is moving in Rn according to Newton’s Law F = ma

when the force F is conservative. Let’s review that proof briefly.

Firstly, the total mechanical energy of the particle along the trajectory is

E(t) =
1

2
mv2(t) + V (x(t))

=
1

2
mv(t) · v(t) + V (x(t)). (39)

Now differentiate w.r.t t:

E′(t) =
1

2
m(v′ · v + v · v′) + ~∇V (x) · x′

= ma · v + ~∇V (x) · v

= v · (ma − F)

= 0. (40)
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In the second-to-last line, we have used the fact that F is conservative, i.e., there exists a potential

energy function V such that F = −~∇V .

Now let’s try to prove this result in a slightly different way. Let’s simply compute the time

derivative of the kinetic energy of the particle:

dK(t)

dt
=

d

dt

(

1

2
mv · v

)

= ma · v

= F · v

= −~∇V (x) · x′(t)

= − d

dt
V (x(t)). (41)

This implies that
d

dt
[K(t) + V (t)] = 0, (42)

from which we conclude that the total mechanical energy E(t) = K(t) + V (t) is constant over the

trajectory.

This derivation is quite similar in form to that for the vibrating string. In the case of the vibrating

string, the wave equation represents Newton’s Law and, up to a constant, the right hand side,
∂2u

∂x2

represents the force.
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Solution of Laplace’s equation using separation of variables

Section 2.5 of text by Haberman

Recall that Laplace’s equation for a function u : Rn → R is given by

∇2u = 0. (43)

The solution of this equation, with appropriate boundary conditions, is important in the determina-

tion of steady-state or equilibrium temperature distributions for the heat equation. In Rn, the heat

equation with sources will assume the general form

∂u

∂t
= k∇2u + Q. (44)

We also assume the existence of boundary conditions appropriate to the problem of concern. If there

exists a steady-state temperature distribution u(x, t) = ueq(x), then it will satisfy the PDE (or ODE

in R)

∇2u = −Q

k
. (45)

This is known as Poisson’s equation. In the case that there are no sources, i.e., Q(x) = 0, Poisson’s

equation becomes Laplace’s equation.

The above discussion also applies to electrostatics. Recall that the electrostatic potential function

V (r) associated with a charge distribution ρ(r) satisfies Poisson’s equation:

∇2V = − ρ

ǫ0
. (46)

In the case that there is no charge, then V satisfies Laplace’s equation. For this reason, all the heat

problems that we examine in this section can also be viewed as electrostatic potential problems.

We have already considered Laplace’s equation in one-dimension, i.e.,

d2u

dx2
= 0, (47)

along with various boundary conditions (e.g., fixed endpoint temperatures, zero flux, mixed condi-

tions), for the determination of steady-state temperature distributions on a rod. The determination

of these distributions was relatively straightforward. It is more complicated in higher dimensions. In

what follows, we consider some rather simple, yet illustrative cases in R2.
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Laplace’s equation over a rectangular region

Here, u = u(x, y) and we consider the problem

∂2u

∂x2
+

∂2u

∂y2
= 0, (48)

over the rectangular region 0 ≤ x ≤ L, 0 ≤ y ≤ L. As for boundary conditions, we consider the case

of fixed boundary temperature distributions, i.e.,

u(x, 0) = f1(x),

u(L, y) = g2(y),

u(x,H) = f2(x),

u(0, y) = g1(y). (49)

These four conditions are nonhomogeneous – as a result, the technique of superposition of solu-

tions/separation of variables will not work. However, there is a “trick” that will allow us to use S of

V: We’ll divide the solution u(x, y) into four components, i.e.,

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y). (50)

Each of the components ui will satisfy one non-zero BC and three zero BCs. For example, we’ll let

u1(x, y) be the solution to Eq. (48) that satisfies the following BCs:

BC1: u1(x, 0) = f1(x),

BC2: u1(L, y) = 0,

BC3: u1(x,H) = 0,

BC4: u1(0, y) = 0. (51)

We now apply separation of variables to each ui function. For u1(x, y), let

u1(x, y) = h(x)φ(y). (52)

We’re adopting the notation used in the book, in an effort to reduce confusion. (By the way, the

textbook provides the solution for u4(x, y).)

The three homogeneous BCs from above will yield the following conditions on h and φ:

BC2: h(L)φ(y) = 0 ⇒ h(L) = 0,

BC3: h(x)φ(H) = 0 ⇒ φ(H) = 0,

BC4: h(0)φ(y) = 0 ⇒ h(0) = 0. (53)
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We see that there are two BCs for h(x) and only one for φ(y).

Substitution of (52) into (48) yields

h′′(x)φ(y) + h(x)φ′′(y) = 0, (54)

which can be separated to
h′′(x)

h(x)
= −φ′′(y)

φ(y)
= µ. (55)

We do not yet know whether µ should be positive or negative, so we just leave it for now. The

separation yields the following problems for h and φ:

h′′ − µh = 0, h(0) = 0, h(L) = 0, (56)

and

φ′′ + µφ = 0, φ(H) = 0. (57)

We’ve seen the BVP for h(x) before: nontrivial solutions exist only for µ < 0, so we let µ = −λ,

λ > 0 to give

h′′ + λh = 0, h(0) = 0, h(L) = 0, (58)

with eigenvalues

λ = λn =
(nπ

L

)2
, n = 1, 2, · · · , (59)

and associated eigenfunctions

hn(x) = sin
(nπ

L

)

. (60)
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Lecture 14

Laplace’s equation over a rectangular region (cont’d)

We now consider the φ equation, recalling that µ = −λ, so that µn = −λn. The associated φn

functions will satisfy the DE

φ′′

n(y) −
(nπ

L

)2
φn(y) = 0, φ(H) = 0. (61)

This is not a boundary value problem but an initial value problem, with only one condition. The

general solution could be written as

φn(y) = C1e
nπy/L + C2e

−nπy/L (62)

but it will be more convenient to use hyperbolic functions, i.e.,

φn(y) = D1 cosh(nπy/L) + D2 sinh(−nπy/L). (63)

In order to impose the boundary condition at y = H, it is even more convenient to use shifted

hyperbolic functions, which also satisfy the DE:

φn(y) = A1 cosh
nπ

L
(y − H) + A2 sinh

nπ

L
(y − H). (64)

The condition φn(H) = 0 implies that A1 = 0 (Exercise) so that the φn(x) functions associated with

the hn(x) functions are

φn(y) = A2 sinh
nπ

L
(y − H). (65)

As a result, the product solutions yielded by separation of variables are (up to a constant)

u1,n(x, y) = hn(x)φn(y)

= sin
(nπx

L

)

sinh
nπ

L
(y − H). (66)

Note that these functions are oscillatory in the x-direction but nonoscillatory in the y-direction. Each

of the u1,n(x, y) functions satisfies the three zero BCs (2-4) but will not, generally, satisfy the nonzero

BC u1(x, 0) = f1(x). As we have done before, we look for an appropriate superposition of these

solutions, i.e.,

u1(x, y) =

∞
∑

n=1

anu1,n(x, y)

=

∞
∑

n=1

an sin
(nπx

L

)

sinh
nπ

L
(y − H). (67)
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It follows that

u1(x, 0) =

∞
∑

n=1

an sinh
nπ

L
(−H) sin

(nπx

L

)

= f(x). (68)

This is just a Fourier expansion of f(x) in the complete basis φn(x), where the coefficients are

an sinh(−nπH/L). If we multiply the middle and right sides of the equation by sin(kπx/L) and

integrate over [0, L], we obtain, by virtue of the orthogonality of the φn(x),

ak

(

L

2

)

sinh
kπ

L
(−H) =

∫ L

0
f(x) sin

(

kπx

L

)

dx, k = 1, 2, · · · . (69)

We then rearrange to solve for the ak:

ak =
2

L sinh kπ
L (−H)

∫ L

0
f(x) sin

(

kπx

L

)

dx, k = 1, 2, · · · . (70)

Now we repeat the procedure for u2(x, y), u3(x, y) and u4(x, y)! We can then construct the solution

u(x, y) from Eq. (50).
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Example: Here we determine the steady-state temperature distribution on [0, L] × [0,H] which

satisfies the boundary conditions,

u(x, 0) = f1(x) = 100, u(L, y) = 0, u(x,H) = 0, u(0, y) = 0. (71)

(This boundary value problem corresponds to the function u1(x, y) discussed in class.) The Fourier

expansion coefficients for the constant function f1(x) = 100 were computed earlier in the course. But

now they have to be modified by the sinh term in Eq. (70):

ak =







400
kπ sinh(−kπL/H) , k even,

0, k odd.
(72)

In the figure below, L = H = 1 and M = 100 terms were used in the expansion of u(x, y), i.e.,

u(x, y) ≈
100
∑

n=1

an sin
(nπx

L

)

sinh
(nπ

L
(y − H)

)

. (73)

Steady-state heat distribution u(x, y): L = H = 1. The shading at a point (x, y) is proportional to its

temperature 0 ≤ u(x, y) ≤ 100. The darker the shade, the higher the temperature.

As L → ∞, the effects of the vertical boundaries at x = 0 and x = L will become negligible, and

the distribution should approach the one-dimensional case

ueq(y) =
100

H
y. (74)

Below is shown the distribution for L = 10, H = 1.
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Steady-state heat distribution u(x, y): L = 10, H = 1.

Laplace’s equation over a circular region

For physical problems with circular symmetry, e.g. a circular disk, it is convenient to work in planar

polar coordinates (r, θ) so that u = u(r, θ). In polar coordinates, Laplace’s equation becomes

∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2
= 0. (75)

There are several conventions for the domain of definition of the angular coordinate θ. Here, we shall

use −π ≤ θ ≤ π.

Circular disk, radius a

We shall solve Laplace’s equation ∇2u = 0 over the region 0 ≤ r ≤ a, −π ≤ θ ≤ π. There is only

one boundary for this region, the outer perimeter r = a. Over this boundary, we shall impose the

boundary condition

BC1: u(a, θ) = f(θ). (76)

Of particular interest will be the case f(θ) = T , constant.

The polar coordinates of any point (x, y) 6= (0, 0) are unique. This is not the case at (0, 0), for

which r = 0 but θ is not unique. This is simply an illustration of the fact that polar coordinates are

singular at r = 0. This is also reflected in the Laplacian in Eq. (75) – the point r = 0 is a singular

point of the differential equation in r that will result from separation of variables.

Because of this singularity at r = 0, we’ll also need a condition on solutions there: With an eye

to physical applications, we impose the condition of boundedness,

C2: |u(0, θ)| < ∞. (77)

We shall also need periodicity conditions on u that imply continuity and continuous differentia-

bility across the ray θ = π = −π:

C3: u(r,−π) = u(r, π) (78)
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C4:
∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π) (79)

(80)

As a result, there are four conditions on the solution u(r, θ). Only the outer boundary condition

in Eq. (76) is nonhomogeneous. (Exercise.) As a result, we shall try to use the separation of variables

technique to construct solutions to (75) with the above boundary conditions.

Following the notation in the book, we write

u(r, θ) = G(r)φ(θ). (81)

The conditions C2 − C4 translate to the following:

C2’: |G(0)φ(θ)| < ∞ ⇒ |G(0)| < ∞, (82)

C3’: G(r)φ(−π) = G(r)φ(π) ⇒ φ(−π) = φ(π), (83)

C4’: G(r)φ′(−π) = G(r)φ′(π) ⇒ φ′(−π) = φ′(π). (84)

Substitution of (81) into (75) yields

1

r

d

dr

(

r
dG(r)

dr

)

φ(θ) +
1

r2
G(r)

d2φ

dθ2
= 0. (85)

We can separate variables by moving the second term on the LHS to the RHS, multiplying by r2 and

dividing by G(r):
1

G
r

d

dr

(

r
dG(r)

dr

)

φ(θ) = − 1

φ

d2φ

dθ2
= µ, (86)

where, once again, µ is the separation constant. We’ll determine the restrictions on µ shortly.

First, we examine the resulting φ-equation,

φ′′ + µφ = 0, φ(π) = φ(−π), φ′(π) = φ′(−π). (87)

The general solution to this DE is

φ(θ) = C1 cos(
√

µθ) + C2 sin(
√

µθ). (88)

The first condition (C3’) implies that

C1 cos(
√

µπ) + C2 sin(
√

µπ) = C1 cos(
√

µ(−π)) + C2 sin(
√

µ(−π)). (89)

Since cos is an even function, we have that

C2 sin(
√

µπ) = 0. (90)
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The second condition (C4’) implies that

−C1 sin(
√

µπ) + C2 cos(
√

µπ) = −C1 sin(
√

µ(−π)) + C2 cos(
√

µ(−π)). (91)

Once again, since cos is an even function, we have that

C1 sin(
√

µπ) = 0. (92)

Therefore, conditions (90) and (92) must be satisfied simultaneously. Since C1 and C2 cannot be both

zero (otherwise the solution is the trivial zero solution), it follows that

√
µπ = nπ, n = 0,±1,±2, · · · . (93)

This, in turn, implies that the separation constant may assume the discrete values

µ = µn = n2, n = 0, 1, 2, · · · . (94)

(The negative values of n yield the same values of µ.)

We may separate the sin and cos solutions into the sets:

sin(nθ), n = 1, 2, · · · , (95)

and

cos(nθ), n = 0, 1, 2, · · · . (96)

(Note that n = 0 is excluded from the sin case since it yields the trivial zero solution). Another way

to express this set is as follows:

1, cos(nθ), sin(nθ), n = 1, 2, · · · . (97)

Note that these functions form an orthogonal set on [−π, π].
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