'COMMODORE 4

PROGRAMMER’S
REFERENCE GUIDE

commodore

COMPUTERS

COMMODORE 64K
PROGRAMMER’S
REFERENCE GUIDE

Published by

Commodore Business Machines, Inc.

First Edition
Eleventh Printing — 1984

Copyright (©) 1982 by Commodore Business Machines, Inc.
All rights reserved.

This manvual is copyrighted and contains proprietary information. No part of this publica-
tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES, Inc.

TABLE OF CONTENTS

INTRODUCTION i ix
® What's Included? i x
® How to Use This Reference Guide xi
® Commodore 64 Applications Guide xii
® Commodore Information Network xvii

1. BASIC PROGRAMMING RULES 1
® Introductiont 2
® Screen Display Codes (BASIC Character Set)............. 2

The Operating System (OS) 2
® Programming Numbers and Variables 4
Integer, Floating-Point and String Constants 4
Integer, Floating-Point and String Variables 7
Integer, Floating-Point and String Arrays 8
® Expressions and Operatorsoviiiiiiiiinnnnnnn 9
Arithmetic Expressions i, 10
Arithmetic Operationst 10
Relational Operators iiiiiiiiiiinn.. 12
Logical Operatorsot 13
Hierarchy of Operations 15
String Operations iiiiiiiiiiiiiiinn, 16
String Expressions i i i, 17
® Programming Techniques, 18
Data Conversions.ouiuiiiniiuiinineennneenn. 18
Using the INPUT Statementoovu... 18
Using the GET Statemento oot 22
How to Crunch BASIC Programs 24

2. BASIC LANGUAGE VOCABULARY 29
® Introductiont e 30
® BASIC Keywords, Abbreviations, and Function Types 31
® Description of BASIC Keywords (Alphabetical) 35
® The Commodore 64 Keyboard and Features 93
® Screen Editor 94

PROGRAMMING GRAPHICS ON THE
COMMODORE 64ccciiiiiin.

® Graphics Overview i
Character Display Modes
Bit Map Modes
Sprites
® Graphics Locations e
Video Bank Selection L.
Screen Memory e
Color Memoryttt e
Character Memoryt iti i
® Standard Character Mode
Character Definitions
® Programmable Characters,
® Multi-Color Mode Graphies
Multi-Color Mode Bit
® Extended Background Color Mode
® Bit Mapped Graphies
Standard High-Resolution Bit Map Mode
How It Workso
® Multi-Color Bit Map Mode
® Smooth Scrolling L
@ Sprites
Defining a Sprite i i,
Sprite Pointers
Turning Sprites On
Turning Sprites Off i
Colors o oot e
Multi-Color Mode i
Setting a Sprite to Multi-Color Mode
Expanded Sprites
Sprite Positioning i il
Sprite Positioning Summary L.
Sprite Display Priorities,
Collision Detectsttt
® Other Graphics Features iii.oo..
Screen Blanking
Raster Register. i,
Interrupt Status Register
Suggested Screen and Character Color Combinations . ..

® Programming Sprites—Another Look 153

Making Sprites in BASIC—A Short Program 153
Crunching Your Sprite Programs 156
Positioning Sprites on the Screen 157
Sprite Priorities 161
Drawing a Sprite 162
Creating a Sprite . . . Step by Step 163
Moving Your Sprite on the Screen.................... 165
Vertical Scrolling 166
The Dancing Mouse—A Sprite Program Example 166
Easy Spritemaking Chart 176
Spritemaking Notes i, 177

4. PROGRAMMING SOUND AND MUSIC

ON YOUR COMMODORE 64 183
® Introduction 184
Volume Control i 186
Frequencies of Sound Waves 186
® Using Multiple Voices i, 187
Controlling Multiple Voices 191
® Changing Waveforms, 192
Understanding Waveforms 194
® The Envelope Generator............. 196
® Filteringottt e 199
® Advanced Techniques 202
® Synchronization and Ring Modulation 207
BASIC TO MACHINE LANGUAGE 209
® What is Machine Language? 210
What Does Machine Code Look Like? 211
Simple Memory Map of the Commodore 64 212
The Registers Inside the 6510 Microprocessor 213
® How Do You Write Machine Language Programs? 214
G4AMON . . e 215
® Hexadecimal Notation 215
Your First Machine Language Instruction 218
Writing Your First Program 220
® Addressing Modes i 221
Zero Page 221
The Stack 222

® Indexing . ..v ittt e e 223
Indirect Indexed il 223
Indexed Indirect i 224
Branches and Testingo, 226

® Subroutines e 228

® Useful Tips for the Beginner 229

® Approaching a Large Task.........o i, 230

® MCS6510 Microprocessor Instruction Set—

Alphabetic Sequence i, 232
Instruction Addressing Modes and
Related Execution Timescoovuiienn.... 254

® Memory Management on the Commodore 64 260

® The KERNALt i 268

® KERNAL Power-Up Activities........................... 269
How to Use the KERNAL........... vt 270
User Callable KERNAL Routines 272
Error Codesottt 306

® Using Machine Language From BASIC 307
Where to Put Machine Language Routines............. 309
How to Enter Machine Language 309

® Commodore 64 Memory Mapc.ooiiuiiuennenn. 310
Commodore 64 Input/Output Assignments 320

INPUT/OUTPUT GUIDEon... 335

® Introductiont e e 336

® Outputtothe TV i 336

® Output to Other Devices, 337
Outputto Printer 338
Output to Modemttt 339
Working With Cassette Tape 340
Data Storage on Floppy Diskettes 342

® The Game Portso iiiii it i 343
Paddles i 346
Light Pen 348

® RS-232 Interface Description 348
General Outlineo i, 348
Opening an RS-232 Channel 349
Getting Data From an RS-232 Channel 352
Sending Data to an RS-232 Channel 353
Closing an RS-232 Data Channel 354
Sample BASIC Programscviiiininnennennn. 356

vi

Receiver/Transmitter Buffer Base Location Pointers 357
Zero-Page Memory Locations and Usage

for RS-232 System Interface 358
Nonzero-Page Memory Locations and Usage
for RS-232 System Interface 358
® The User Portt i 359
Port Pin Description i, 359
® The Serial Busot e 362
Serial Bus Pinouts i i 363
® The Expansion Port i, 366
® 7-80 Microprocessor Cartridge, 368
Using Commodore CP/M® 369
Running Commodore CP/M® 369
APPENDICES 373
A. Abbreviations for BASIC Keywords 374
B. Screen Display Codes, 376
C. ASCland CHR$ Codescoiuiniiinennnnnn.. 379
D. Screen and Color Memory Mapscovvuvnn.. 382
E. Music Note Values, 384
F. Bibliography 388
G. VIC Chip Register Map ..., 391
H. Deriving Mathematical Functions 394
I. Pinouts for Input/Output Devices 395
J. Converting Standard BASIC Programs to
Commodore 64 BASIC i, 398
K. Error Messagesoiiuiiiiiiiiiiiinnnnnnn, 400
L. 6510 Microprocessor Chip Specifications 402
M. 6526 Complex Interface Adapter (CIA)
Chip Specifications il 419
N. 6566/6567 (VIC-Il) Chip Specifications 436
O. 6581 Sound Interface Device (SID) Chip Specifications ... 457
P. Glossaryt e e 482
INDEX ... e 483
COMMODORE 64 QUICK REFERENCE CARD 487
SCHEMATIC DIAGRAM OF THE COMMODORE 64 491

vii

INTRODUCTION

The COMMODORE 64/EXECUTIVE 64 PROGRAMMER’'S REFERENCE
GUIDE has been developed as a working tool and reference source for
those of you who want to maximize your use of the built-in capabilities
of your COMMODORE 64 and EXECUTIVE 64. This manual contains the
information you need for your programs, from the simplest example all
the way to the most complex. The PROGRAMMER’S REFERENCE GUIDE
is designed so that everyone from the beginning BASIC programmer to
the professional experienced in 6502 machine language can get infor-
mation to develop his or her own creative programs. At the same time
this book shows you how clever your 64 really is.

This REFERENCE GUIDE is not designed to teach the BASIC pro-
gramming language or the 6502 machine language. There is, however,
an extensive glossary of terms and a “semi-tutorial” approach to many
of the sections in the book. If you don’t already have a working knowl-
edge of BASIC and how to use it to program, we suggest that you study
the COMMODORE 64 USER’S GUIDE that came with your computer. The
USER’S GUIDE gives you an easy to read introduction to the BASIC pro-
gramming language. If you still have difficulty understanding how to use
BASIC then turn to the back of this book (or Appendix N in the USER’S
GUIDE) and check out the Bibliography.

The COMMODORE 64/EXECUTIVE 64 PROGRAMMER’'S REFERENCE
GUIDE is just that; a reference. Like most reference books, your ability to
apply the information creatively really depends on how much knowledge
you have about the subject. In other words if you are a novice pro-
grammer you will not be able to use all the facts and figures in this book
until you expand your current programming knowledge.

What you can do with this book is to find a considerable amount of

valuable programming reference information written in easy to read,

plain English with the programmer’s jargon explained. On the other

hand the programming professional will find all the information needed

to use the capabilities of the 64 effectively.

WHAT’S INCLUDED?

Our complete “BASIC dictionary” includes Commodore BASIC lan-
guage commands, statements and functions listed in alphabetical
order. We've created a “quick list” which contains all the words
and their abbreviations. This is followed by a section containing a
more detailed definition of each word along with sample BASIC
programs to illustrate how they work.

If you need an introduction to using machine language with BASIC
programs our layman’s overview will get you started.

A powerful feature of all Commodore computers is called the KER-
NAL. It helps insure that the programs you write today can also be
used on your Commodore computer of tomorrow.

The Input/Output Programming section gives you the opportunity to
use your computer to the limit. It describes how to hook-up and use
everything from lightpens and joysticks to disk drives, printers, and
telecommunication devices called modems.

You can explore the world of SPRITES, programmable characters,
and high resolution graphics for the most detailed and advanced
animated pictures in the microcomputer industry.

You can also enter the world of music synthesis and create your
own songs and sound effects with the best built-in synthesizer
available in any personal computer.

If you're an experienced programmer, the soft load language sec-
tion gives you information about the 64’s ability to run CP/M* and
high level languages. This is in addition to BASIC.

Think of your 64 PROGRAMMER'’S REFERENCE GUIDE as a useful tool
to help you and you will enjoy the hours of programming ahead of you.

*CP/M is a registered trademark of Digital Research, Inc.

INTRODUCTION

HOW TO USE THIS REFERENCE GUIDE

Throughout this manual certain conventional notations are used to de-
scribe the syntax (programming sentence structure) of BASIC commands
or statements and to show both the required and optional parts of each
BASIC keyword. The rules to use for interpreting statement syntax are as
follows:

1. BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spelled exactly as shown.
) indicate variable data

(ll "“

2. ltems shown within quotation marks
which you must put in. Both the quotation marks and the data
inside the quotes must appear where shown in each statement.

3. ltems inside the square brackets ([]) indicate an optional state-
ment parameter. A parameter is a limitation or additional qualifier
for your statements. If you use an optional parameter you must
supply the data for that optional parameter. In addition, ellipses
(...)show that an optional item can be repeated as many times
as a programming line allows.

4. If an item in the square brackets ([]) is UNDERLINED, that means
that you MUST use those certain characters in the optional pa-
rameters, and they also have to be spelled exactly as shown.

5. ltems inside angle brackets (<>) indicate variable data which you
provide. While the slash (/) indicates that you must make a choice
between two mutually exclusive options.

EXAMPLE OF SYNTAX FORMAT:

OPEN<file-num>,<device> [,<address>], [“<drive>: <file-
name>] [, <mode>]"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,”0:STOCK FOLIO,S,W*
20 OPEN 1,1,2,”CHECKBOOK"
30 OPEN 3,4

When you actually apply the syntax conventions in a practical situa-
tion, the sequence of parameters in your statements might not be
exactly the same as the sequence shown in syntax examples. The
examples are not meant to show every possible sequence. They are
intended to present all required and optional parameters.

INTRODUCTION xi

Programming examples in this book are shown with blanks separating
words and operators for the sake of readability. Normally though,
BASIC doesn’t require blanks between words unless leaving them out
would give you an ambiguous or incorrect syntax.

Shown below are some examples and descriptions of the symbols
used for various statement parameters in the following chapters. The list
is not meant to show every possibility, but to give you a better under-
standing as to how syntax examples are presented.

SYMBOL EXAMPLE DESCRIPTION

<file-num> 50 A logical file number
<device> 4 A hardware device number
<address> 15 A serial bus secondary
device address
number
<drive> 0 A physical disk drive number
<file-name> “TEST.DATA"” The name of a data or program file
<constant> "“ABCDEFG"” Literal data supplied by
the programmer
<variable> X145 Any BASIC data variable name or
constant
<string> AB$ Use of a string type variable required
<number> 12345 Use of a numeric type variable
required
<line-number> 1000 An actual program line number
<numeric> 1.5E4 An integer or floating-point variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought about buying a computer you probably asked
yourself, “Now that | can afford to buy a computer, what can | do with
it once | get one?”

The great thing about your COMMODORE 64 is that you can make it
do what YOU want it to do! You can make it calculate and keep track of
home and business budget needs. You can use it for word processing.
You can make it play arcade-style action games. You can make it sing.
You can even create your own animated cartoons, and more. The best
part of owning a COMMODORE 64 is that even if it did only one of the
things listed below it would be well worth the price you paid for it. But
the 64 is a complete computer and it does do EVERYTHING listed and
then some!

xii INTRODUCTION

By the way, in addition to everything here you can pick up a lot of
other creative and practical ideas by signing up with a local Commo-
dore Users’ Club, subscribing to the COMMODORE and POWER/PLAY
magazines, and joining the COMMODORE INFORMATION NETWORK on

CompuServe™ |
APPLICATION

ACTION PACKED
GAMES

ADVERTISING &

MERCHANDISING

ANIMATION

BABYSITTING

BASIC PROGRAMMING

BUSINESS
SPREADSHEET

COMMUNICATION

COMMENTS/REQUIREMENTS

You can get real Bally Midway arcade games
like Omega Race, Gorf and Wizard of Wor, as
well as “play and learn” games like Math
Teacher |, Home Babysitter and Commodore
Artist.

Hook your COMMODORE 64 to a TV, put it in
a store window with a flashing, animated,
and musical message and you've got a great
point of purchase store display.

Commodore’s Sprite Graphics allow you to
create real cartoons with 8 difterent levels so
that shapes can move in front of or behind
each other.

The COMMODORE 64 HOME BABYSITTER
cartridge can keep your youngest child occu-
pied for hours and teach alphabet/ keyboard
recognition at the same time. It also teaches
special learning concepts and relationships.

Your COMMODORE 64 USER’S GUIDE and the
TEACH YOURSELF PROGRAMMING series of
books and tapes offer an excellent starting
point.

The COMMODORE 64 offers the “Easy” series
of business aids including the most powerful
word processor and largest spreadsheet
available for any personal computer.

Enter the fascinating world of computer “net-
working.” If you hook a VICMODEM to your
COMMODORE 64 you can communicate with
other computer owners all around the world.

INTRODUCTION xiii

COMPOSING SONGS

CP/M*

DEXTERITY TRAINING

EDUCATION

FOREIGN LANGUAGE

GRAPHICS AND ART

Not only that, if you join the COMMODORE
INFORMATION NETWORK on CompuServe™
you can get the latest news and updates on
all Commodore products, financial informa-
tion, shop at home services, you can even
play games with the friends you make through
the information systems you join.

The COMMODORE 64 is equipped with the
most sophisticated built-in music synthesizer
available on any computer. It has three com-
pletely programmable voices, nine full music
octaves, and four controllable waveforms.
Look for Commodore Music Cartridges and
Commodore Music books to help you create or
reproduce all kinds of music and sound effects.

Commodore offers a CP/M* add-on and ac-
cess to software through an easy-to-load car-
tridge.

Hand/Eye coordination and manual dexterity
are aided by several Commodore games . . .
including “Jupiter Lander” and night driving
simulation.

While working with a computer is an educa-
tion in itself, The COMMODORE Educational
Resource Book contains general information
on the educational uses of computers. We
also have a variety of learning cartridges de-
signed to teach everything from music to math
and art to astronomy.

The COMMODORE 64 programmable char-
acter set lets you replace the standard char-
acter set with user defined foreign language
characters.

In addition to the Sprite Graphics mentioned
above, the COMMODORE 64 offers high-
resolution, multi-color graphics plotting, pro-

*CP/M is a Registered trademark of Digital Research, Inc.

xiv INTRODUCTION

INSTRUMENT
CONTROL

JOURNALS AND
CREATIVE WRITING

LIGHTPEN CONTROL

MACHINE CODE
PROGRAMMING

PAYROLL & FORMS
PRINTOUT

PRINTING

RECIPES

grammable characters, and combinations of
all the different graphics and character dis-
play modes.

Your COMMODORE 64 has a serial port,
RS-232 port and a user port for use with a
variety of special industrial applications. An
IEEE/488 cartridge is also available as an op-
tional extra.

The COMMODORE 64 will soon offer an ex-
ceptional wordprocessing system that matches
or exceeds the qualities and flexibilities of
most “high-priced” wordprocessors available.
Of course you can save the information on
either a 1541 Disk Drive or a Datassette™
recorder and have it printed out using a VIC-
PRINTER or PLOTTER.

Applications requiring the use of a lightpen
can be performed by any lightpen that will fit
the COMMODORE 64 game port connector.

Your COMMODORE 64 PROGRAMMER'S REF-
ERENCE GUIDE includes a machine language
section, as well as a BASIC to machine code
interface section. There’s even a bibliography
available for more in-depth study.

The COMMODORE 64 can be programmed to
handle a variety of entry-type business appli-
cations. Upper/lower case letters combined
with C64 “business form” graphics make it
easy for you to design forms which can then
be printed on your printer.

The COMMODORE 64 interfaces with a vari-
ety of dot matrix and letter quality printers as
well as plotters.

You can store your favorite recipes on your
COMMODORE 64 and its disk or cassette
storage unit, and end the need for messy rec-
ipe cards that often get lost when you need
them most.

INTRODUCTION xv

SIMULATIONS Computer simulations let you conduct danger-
ous or expensive experiments at minimum risk

and cost.

SPORTS DATA The Source™ and CompuServe™ both offer
sports information which you can get using

your COMMODORE 64 and a VICMODEM.

STOCK QUOTES With a VICMODEM and a subscription to any
of the appropriate network services, your
COMMODORE 64 becomes your own private
stock ticker.

These are just a few of the many applications for you and your
COMMODORE 64. As you can see, for work or play, at home, in school
or the office, your COMMODORE 64 gives you a practical solution for
just about any need.

Commodore wants you to know that our support for users only STARTS
with your purchase of a Commodore computer. That's why we’ve
created two publications with Commodore information from around the
world, and a “two-way” computer information network with valuable
input for users in the U.S. and Canada from coast to coast.

In addition, we wholeheartedly encourage and support the growth of
Commodore Users’ Clubs around the world. They are an excellent source
of information for every Commodore computer owner from the beginner
to the most advanced. The magazines and network, which are more
fully described below, have the most up-to-date information about how
to get involved with the Users’ Club in your area.

Finally, your local Commodore dealer is a useful source of Commo-
dore support and information.

POWER/PLAY
The Home Computer Magazine

When it comes to entertainment, learning at home and practical home
applications, POWER/PLAY is THE prime source of information for Com-
modore home users. Find out where your nearest user clubs are and
what they’re doing, learn about software, games, programming tech-
niques, telecommunications, and new products. POWER/PLAY is your
personal connection to other Commodore users, outside software and
hardware developers, and to Commodore itself. Published quarterly.
Only $10.00 for a year of home computing excitement.

xvi INTRODUCTION

COMMODORE
The Microcomputer Magazine

Widely read by educators, businessmen and students, as well as
home computerists, COMMODORE Magazine is our main vehicle for
sharing exclusive information on the more technical use of Commodore
systems. Regular departments cover business, science and education,
programming tips, “excerpts from a technical notebook,” and many
other features of interest to anyone who uses or is thinking about pur-
chasing Commodore equipment for business, scientific or educational
applications. COMMODORE is the ideal complement to POWER/ PLAY.
Published bi-monthly. Subscription price: $15.00 per year.

AND FOR EVEN MORE INFORMATION . . .
. . . DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your
subscription to POWER/PLAY and COMMODORE magazines, the COM-
MODORE INFORMATION NETWORK—our “paperless magazine” —is
available now over the telephone using your Commodore computer and
modem.

Join our computer club, get help with a computing problem, “talk” to
other Commodore friends, or get up-to-the-minute information on new
products, software and educational resources. Soon you will even be
able to save yourself the trouble of typing in the program listings you
find in POWER/PLAY or COMMODORE by downloading direct from the
Information Network (a new user service planned for early 1983). The
best part is that most of the answers are there before you even ask the
questions. (How's that for service?)

To call our electronic magazine you need only a modem and a sub-
scription to CompuServe™, one of the nation’s largest telecommunica-
tions networks. (To make it easy for you Commodore includes a FREE
year’s subscription to CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServe™ data bank and
connect your phone to the modem. When the CompuServe™ video text
appears on your screen type G CBM on your computer keyboard. When
the COMMODORE INFORMATION NETWORK'S table of contents, or
“menu,” appears on your screen choose from one of our sixteen de-
partments, make yourself comfortable, and enjoy the paperless maga-

zine other magazines are writing about.

INTRODUCTION xvii

For more information, visit your Commodore dealer.

COMMODORE INFORMATION NETWORK

Main Menu Description
Direct Access Codes
Special Commands

User Questions

Public Bulletin Board
Magazines and Newsletters
Products Announced
Commodore News Direct

Commodore Dealers
Educational Resources
User Groups
Descriptions

Questions and Answers
Software Tips
Technical Tips

Directory Descriptions

xviii INTRODUCTION

CHAPTER]

BASIC
PROGRAMMING
RULES

Introduction

Screen Display Codes (BASIC
Character Set)

Programming Numbers and
Variables

Expressions and Operators
Programming Techniques

INTRODUCTION

This chapter talks about how BASIC stores and manipulates data. The
topics include:

1)

2)

3)

A brief mention of the operating system components and functions
as well as the character set used in the Commodore 64.

The formation of constants and variables. What types of variables
there are. And how constants and variables are stored in memory.
The rules for arithmetic calculations, relationship tests, string han-
dling, and logical operations. Also included are the rules for form-
ing expressions, and the data conversions necessary when you're
using BASIC with mixed data types.

SCREEN DISPLAY CODES
(BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

2

The Operating System is contained in the Read Only Memory (ROM)
chips and is a combination of three separate, but interrelated, program
modoules.

1)
2)
3)

1)

2)

3)

The BASIC Interpreter
The KERNAL
The Screen Editor

The BASIC Interpreter is responsible for analyzing BASIC state-
ment syntax and for performing the required calculations and/or
data manipulation. The BASIC Interpreter has a vocabulary of 65
“keywords” which have special meanings. The upper and lower
case alphabet and the digits 0—9 are used to make both keywords
and variable names. Certain punctuation characters and special
symbols also have meanings for the Interpreter. Table 1-1 lists the
special characters and their uses.

The KERNAL handles most of the interrupt level processing in the
system (for details on interrupt level processing, see Chapter 5).
The KERNAL also does the actual input and output of data.

The Screen Editor controls the output to the video screen (television
set) and the editing of BASIC program text. In addition, the Screen
Editor intercepts keyboard input so that it can decide whether the

BASIC PROGRAMMING RULES

Table 1-1. CBM BASIC Character Set

CHARACTER NAME and DESCRIPTION

BLANK —separates keywords and variable names

; SEMI-COLON—used in variable lists to format output
= EQUAL SIGN—value assignment and relationship
testing

+ PLUS SIGN —arithmetic addition or string concatenation
(concatenation: linking togetherin a chain)
= MINUS SIGN—arithmetic subtraction, unary minus (— 1)
ASTERISK—arithmetic multiplication

*

/ SLASH—arithmetic division

1 UP ARROW—arithmetic exponentiation

(LEFT PARENTHESIS—expression evaluation and
functions

) RIGHT PARENTHESIS—expression evaluation and

functions
% PERCENT —declares variable name as an integer
NUMBER—comes before logical file number in input/

output statements

$ DOLLAR SIGN —declares variable name as a string

/ COMMA —used in variable lists to format output;
also separates command parameters

. PERIOD—decimal point in floating point constants

. QUOTATION MARK—encloses string constants

COLON —separates multiple BASIC statements in a line

QUESTION MARK —abbreviation for the keyword PRINT

LESS THAN—used in relationship tests

GREATER THAN —used in relationship tests

Pl—the numeric constant 3.141592654

NV A

characters put in should be acted upon immediately, or passed on
to the BAS!C Interpreter.

The Operating System gives you two modes of BASIC operation:

1) DIRECT Mode
2) PROGRAM Mode

1) When you're using the DIRECT mode, BASIC statements don’t have
line numbers in front of the statement. They are executed

whenever the key is pressed.
2) The PROGRAM mode is the one you use for running programs.

BASIC PROGRAMMING RULES 3

When using the PROGRAM mode, all of your BASIC statements
must have line numbers in front of them. You can have more than
one BASIC statement in a line of your program, but the number of
statements is limited by the fact that you can only put 80 char-
acters on a logical screen line. This means that if you are going to
go over the 80 character limit you have to put the entire BASIC
statement that doesn’t fit on a new line with a new line number.

NOTE: Always type NEW and hit before starting a new program.

The Commodore 64 has two complete character sets that you can use
either from the keyboard or in your programs.

In SET 1, the upper case alphabet and the numbers 0—9 are available
without pressing the key. If you hold down the key
while typing, the graphics characters on the RIGHT side of the front of
the keys are used. If you hold down the @ key while typing, the
graphics characters on the LEFT side of the front of the key are used.
Holding down the key while typing any character that doesn’t
have graphic symbols on the front of the key gives you the symbol on the
top most part of the key.

In SET 2, the lower case alphabet and the numbers 0—9 are available
without pressing the key. The upper case alphabet is available
when you hold down the key while typing. Again, the graphic
symbols on the LEFT side of the front of the keys are displayed by press-
ing the @ key, while the symbols on the top most part of any key
without graphics characters are selected when you hold down
the key while typing.

To switch from one character set to the other press the @ and
the keys together.

on the standard C64 produces LOAD IEAILLB RUN
which loads the next file off cassette and attempts to execute
it.

on the EXECUTIVE SX-64 or DX-64 performs a
LOAD ":*",8 RUN

If you try to access device 1 (normally Datassette) on the EXECUTIVE
64 series, an ?ILLEGAL DEVICE NUMBER ERROR is returned from
BASIC, while C-SET and .A=9 is returned to the calling routine.

4 BASIC PROGRAMMING RULES

PROGRAMMING NUMBERS AND VARIABLES
INTEGER, FLOATING-POINT AND STRING CONSTANTS

Constants are the data values that you put in your BASIC statements.
BASIC uses these values to represent data during statement execution.
CBM BASIC can recognize and manipulate three types of constants:

1) INTEGER NUMBERS
2) FLOATING-POINT NUMBERS
3) STRINGS

*lnteger constants are whole numbers (numbers without decimal
points). Integer constants must be between —32768 and +32767. In-
teger constants do not have decimal points or commas between digits.
If the plus (+) sign is left out, the constant is assumed to be a positive
number. Zeros coming before a constant are ignored and shouldn’t be
used since they waste memory and slow down your program. However,
they won’t cause an error. Integers are stored in memory as two-byte
binary numbers. Some examples of integer constants are:

—12
8765
—32768
+44

0
—32767

NOTE: Do NOT put commas inside any number. For example, always type 32,000 as
32000. If you put a comma in the middle of a number you will get the BASIC error
message ?SYNTAX ERROR.

Floating-point constants are positive or negative numbers and can
contain fractions. Fractional parts of a number may be shown using a
decima' point. Once again remember that commas are NOT used be-
tween numbers. If the plus sign (+) is left off the front of a number, the
Commodore 64 assumes that the number is positive. If you leave off the
decimal point the computer will assume that it follows the last digit of
the number. And as with integers, zeros that come before a constant
are ignored. Floating-point constants can be used in two ways:

1) SIMPLE NUMBER
2) SCIENTIFIC NOTATION

BASIC PROGRAMMING RULES 5

Floating-point constants will show you up to nine digits on your screen.
These digits can represent values between —999999999. and
+999999999. If you enter more than nine digits the number will be
rounded based on the tenth digit. If the tenth digit is greater than or
equal to 5 the number will be rounded upward. Less than 5 the number
will be rounded downward. This could be important to the final totals of
some numbers you may want to work with.

Floating-point numbers are stored (using five bytes of memory) and
are manipulated in calculations with ten places of accuracy. However,
the numbers are rounded to nine digits when results are printed. Some
examples of simple floating-point numbers are:

1.23
—.998877
+3.1459
7777777
—333.
.01

Numbers smaller than .01 or larger than 999999999. will be printed in
scientific notation. In scientific notation a floating-point constant is made
up of three parts:

1) THE MANTISSA
2) THE LETTER E
3) THE EXPONENT

The mantissa is a simple floating-point number. The letter E is used to
tell you that you’re seeing the number in exponential form. In other
words E represents *10 (eg., 3E3=3%*1073=3000). And the exponent is
what multiplication power of 10 the number is raised to.

Both the mantissa and the exponent are signed (+ or —) numbers.
The exponent’s range is from —39 to +38 and it indicates the number of
places that the actual decimal point in the mantissa would be moved to
the left (=) or right (+) if the value of the constant were represented as
a simple number.

There is a limit to the size of floating-point numbers that BASIC can
handle, even in scientific notation: the largest number is
+1.70141183E+38 and calculations which would result in a larger
number will display the BASIC error message ?OVERFLOW ERROR. The
smallest floating-point number is +2.93873588E—39 and calculations
which result in a smaller value give you zero as an answer and NO error
message. Some examples of floating-point numbers in scientific notation
(and their decimal values) are:

6 BASIC PROGRAMMING RULES

235.988E—3 (.235988)

2359E6 (2359000000.)
—7.09E—12 (—.00000000000709)
—3.14159E+5 (—314159.)

String constants are groups of alphanumeric information like letters,
numbers and symbols. When you enter a string from the keyboard, it
can have any length up to the space available in an 80-character line
(that is, any character spaces NOT taken up by the line number and
other required parts of the statement).

A string constant can contain blanks, letters, numbers, punctuation
and color or cursor control characters in any combination. You can even
put commas between numbers. The only character which cannot be in-
cluded in a string is the double quote mark (). This is because the
double quote mark is used to define the beginning and end of the string.
A string can also have a null value—which means that it can contain no
character data. You can leave the ending quote mark off of a string if
it's the last item on a line or if it's followed by a colon (:). Some exam-
ples of string constants are:

1111

"“HELLO"
"“$25,000.00"
“NUMBER OF EMPLOYEES”

(a null string)

NOTE: Use CHR$(34) to include quotes (“) in strings.

INTEGER, FLOATING-POINT AND STRING VARIABLES

Variables are names that represent data values used in your BASIC
statements. The value represented by a variable can be assigned by
setting it equal to a constant, or it can be the result of calculations in the
program. Variable data, like constants, can be integers, floating-point
numbers, or strings. If you refer to a variable name in a program before
a value has been assigned, the BASIC Interpreter will automatically
create the variable with a value of zero if it's an integer or floating-point
number. Or it will create a variable with a null value if you’re using
strings.

Variable names can be any length but only the first two characters
are considered significant in CBM BASIC. This means that all names
used for variables must NOT have the same first two characters. Vari-

BASIC PROGRAMMING RULES 7

able names may NOT be the same as BASIC keywords and they may
NOT contain keywords in the middle of variable names. Keywords in-
clude all BASIC commands, statements, function names and logical
operator names. If you accidentally use a keyword in the middle of a
variable name, the BASIC error message ?SYNTAX ERROR will show up
on your screen.

The characters used to form variable names are the alphabet and the
numbers 0—9. The first character of the name must be a letter. Data
type declaration characters (%) and ($) can be used as the last char-
acter of the name. The percent sign (%) declares the variable to be an
integer and the dollar sign ($) declares a string variable. If no type
declaration character is used the Interpreter will assume that the vari-
able is a floating-point. Some examples of variable names, value as-
signments and data types are:

A$="GROSS SALES"” (string variable)
MTH$="JAN"+A$ (string variable)

K% =5 (integer variable)
CNT% =CNT% +1 (integer variable)
FP=12.5 (oating-point variable)
SUM=FP*CNT% (foating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or list) of associated data items referred to by a
single variable name. In other words, an array is a sequence of related
variables. A table of numbers can be seen as an array, for example.
The individual numbers within the table become “elements” of the
array.

Arrays are a useful shorthand way of describing a large number of
related variables. Take a table of numbers for instance. Let’s say that
the table has 10 rows of numbers with 20 numbers in each row. That
makes a total of 200 numbers in the table. Without a single array name
to call on you would have to assign a unique name to each value in the
table. But because you can use arrays you only need one name for the
array and all the elements in the array are identified by their individual
locations within the array.

Array names can be integers, floating-points or string data types and
all elements in the array have the same data type as the array name.
Arrays can have a single dimension (as in a simple list) or they can have
multiple dimensions (imagine a grid marked in rows and columns or a

8 BASIC PROGRAMMING RULES

Rubik’s Cube®). Each element of an array is uniquely identified and re-
ferred to by a subscript (or index variable) following the array name,
enclosed within parentheses ().

The maximum number of dimensions an array can have in theory is
255 and the number of elements in each dimension is limited to 32767.
But for practical purposes array sizes are limited by the memory space
available to hold their data and/or the 80 character logical screen line.
If an array has only one dimension and its subscript value will never
exceed 10 (11 items: O thru 10) then the array will be created by the
Interpreter and filled with zeros (or nulls if string type) the first time any
element of the array is referred to, otherwise the BASIC DIM statement
must be used to define the shape and size of the array. The amount of
memory required to store an array can be determined as follows:

5 bytes for the array name

+ 2 bytes for each dimension of the array
+ 2 bytes per element for integers
OR + 5 bytes per element for floating-point
OR + 3 bytes per element for strings
AND + 1 byte per character in each string element

Subscripts can be integer constants, variables, or an arithmetic ex-
pression which gives an integer result. Separate subscripts, with com-
mas between them, are required for each dimension of an array. Sub-
scripts can have values from zero up to the number of elements in the
respective dimensions of the array. Values outside that range will cause
the BASIC error message ?BAD SUBSCRIPT. Some examples of array
names, value assignments and data types are:

A$(0)="GROSS SALES"” (string array)
MTH$(K%)="JAN" (string array)
G2%(X)=5 (integer array)
CNT%(G2%(X))=CNT%(1)—2 (integer array)
FP(12*K%)=24.8 (floating-point array)
SUM(CNT%(1))=FPTK% (floating-point array)
A(5)=0 (sets the 5th element in the 1 dimensional

array called “A” equal to 0)

B(5,6)=0 (sets the element in row position 5 and
column position 6 in the 2 dimensional array
called “B” equal to 0)

BASIC PROGRAMMING RULES 9

C(1,2,3)=0 (sets the element in row position 1, column
position 2, and depth position 3 in the
3 dimensional array called “C” equal to 0)

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An
expression can be a single constant, simple variable, or an array vari-
able of any type. It can also be a combination of constants and vari-
ables with arithmetic, relational or logical operators designed to
produce a single value. How operators work is explained below. Ex-
pressions can be separated into two classes:

1) ARITHMETIC
2) STRING

Expressions are normally thought of as having two or more data items
called operands. Each operand is separated by a single operator to
produce the desired result. This is usually done by assigning the value of
the expression to a variable name. All of the examples of constants and
variables that you've seen so far, were also examples of expressions.

An operator is a special symbol the BASIC Interpreter in your Com-
modore 64 recognizes as representing an operation to be performed on
the variables or constant data. One or more operators, combined with
one or more variables and/or constants form an expression. Arithmetic,
relational and logical operators are recognized by Commodore 64
BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer or floating-
point value. The arithmetic operators (+, —, *,/, 1) are used to perform
addition, subtraction, multiplication, division and exponentiation opera-
tions respectively.

ARITHMETIC OPERATIONS
An arithmetic operator defines an arithmetic operation which is per-
formed on the two operands on either side of the operator. Arithmetic

operations are performed using floating-point numbers. Integers are

10 BASIC PROGRAMMING RULES

converted to floating-point numbers before an arithmetic operation is
performed. The result is converted back to an integer if it is assigned to
an integer variable name.

ADDITION (+): The plus sign (+) specifies that the operand on the
right is added to the operand on the left.

EXAMPLES:
2+2
A+B+C
X% +1
BR+10E—2

SUBTRACTION (—): The minus sign (—) specifies that the operand on
the right is subtracted from the operand on the left.

EXAMPLES:
4—1
100—64
A—B
55—142

The minus can also be used as a unary minus. That means that it is
the minus sign in front of a negative number. This is equal to subtracting
the number from zero (0).

EXAMPLES:
a5
—QE4
—-B
4— (—2) same as 4-+2

MUILTIPLICATION (*): An asterisk (*) specifies that the operand on the
left is multiplied by the operand on the right.

EXAMPLES:
100*2
50*0
A*X1
R%*14

DIVISION (/): The slash (/) specifies that the operand on the left is
divided by the operand on the right.

BASIC PROGRAMMING RULES 1"

EXAMPLES:
10/2
6400/4
A/B
4E2/XR

EXPONENTIATION (1): The up arrow (1) specifies that the operand on
the left is raised to the power specified by the operand on the right (the
exponent). If the operand on the right is a 2, the number on the left is
squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number so long as the result of the operation gives
a valid floating-point number.

EXAMPLES:
212 Equivalent to: 2*2
313 Equivalent to: 3*3*3
474 Equivalent to: 4*4%4*4
AB1CD
31-2 Equivalent to: 3%V

RELATIONAL OPERATORS
The relational operators (<, =, >, <=, >=, <>) are primarily used

to compare the values of two operands, but they also produce an arith-
metic result. The relational operators and the logical operators (AND,
OR, and NOT), when used in comparisons, actually produce an arith-
metic true/false evaluation of an expression. If the relationship stated in
the expression is true the result is assigned an integer value of —1 and if
it's false a value of 0 is assigned. These are the relational operators:

< LESS THAN
= EQUAL TO
> GREATER THAN
<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO
EXAMPLES:

1=5—4 result true (—1)

14>66 result false (0)

15>=15 result true (—1)

12 BASIC PROGRAMMING RULES

Relational operators can be used to compare strings. For comparison
purposes, the letters of the alphabet have the order A<KB<C<D, etc.
Strings are compared by evaluating the relationship between corre-
sponding characters from left to right (see String Operations).

EXAMPLES:
YA < B result true (—1)
“X =YY result false (0)
BB$ <> CC$

Numeric data items can only be compared (or assigned) to other
numeric items. The same is true when comparing strings, otherwise the
BASIC error message ?TYPE MISMATCH will occur. Numeric operands
are compared by first converting the values of either or both operands
from integer to floating-point form, as necessary. Then the relationship
of the floating-point values is evaluated to give a true/false result.

At the end of all comparisons, you get an integer no matter what
data type the operand is (even if both are strings). Because of this, a
comparison of two operands can be used as an operand in performing
calculations. The result will be —1 or 0 and can be used as anything but
a divisor, since division by zero is illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the
meanings of the relational operators or to produce an arithmetic result.
Logical operators can produce results other than —1 and 0, though any
nonzero result is considered true when testing for a true/false condition.

The logical operators (sometimes called Boolean operators) can also
be used to perform logic operations on individual binary digits (bits) in
two operands. But when you're using the NOT operator, the operation is
performed only on the single operand to the right. The operands must
be in the integer range of values (—32768 to +32767) (floating-point
numbers are converted to integers) and logical operations give an in-
teger result.

Logical operations are performed bit-by-corresponding-bit on the two
operands. The logical AND produces a bit result of 1 only if both
operand bits are 1. The logical OR produces a bit result of 1 if either
operand bit is 1. The logical NOT is the opposite value of each bit as a
single operand. In other words, it's really saying, “If it's NOT 1 then it is
0. If it's NOT O then itis 1.”

BASIC PROGRAMMING RULES 13

The exclusive OR (XOR) doesn’t have a logical operator but it is per-
formed as part of the WAIT statement. Exclusive OR means that if the bits of
two operands are equal then the result is O otherwise the result is 1.

Logical operations are defined by groups of statements which, taken
together, constitute a Boolean ““truth table” as shown in Table 1-2.

Table 1-2. Boolean Truth Table

(The AND operation results in a 1 only if both bits are 1:

1 AND 1 =
0 AND 1
1 AND O
0 AND 0 =

Il

Il

1
0
0
0
The OR operation results in a 1 if either bit is 1:

10R1 =
‘ OOR 1 =
10RO
0ORO

Il

1
1
1
0

The NOT operation logically complements each bit:

NOT 1 =0
| NOT 0 =1

The exclusive OR (XOR) is part of the WAIT statement:

| 1 XOR 1
1 XOR 0
‘ 0 XOR 1

0 XOR 0 =

Il

Il

0
1
1
0

The logical operators AND, OR and NOT specify a Boolean arithmetic
operation to be performed on the two operand expressions on either
side of the operator. In the case of NOT, ONLY the operand on the
RIGHT is considered. Logical operations (or Boolean arithmetic) aren't
performed until all arithmetic and relational operations in an expression
have been completed.

14 BASIC PROGRAMMING RULES

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value
of 100 then the result is
true)

A=96 AND 32: PRINT A (A = 32)

IF A=100 OR B=100 THEN 20 (if A or B is 100 then the
result is true)

A=64 OR 32: PRINT A (A = 96)
IF NOT X<Y THEN 30 (if X> =Y the result is true)
X= NOT 96 (result is —97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to
a fixed hierarchy. In other words, certain operations are performed be-
fore other operations. The normal order of operations can be modified
by enclosing two or more operands within parentheses (), creating a
“subexpression.” The parts of an expression enclosed in parentheses will
be reduced to a single value before working on parts outside the par-
entheses.

When you use parentheses in expressions, they must be paired so that
you always have an equal number of left and right parentheses.
Otherwise, the BASIC error message ?SYNTAX ERROR will appear.

Expressions which have operands inside parentheses may themselves
be enclosed in parentheses, forming complex expressions of multiple
levels. This is called nesting. Parentheses can be nested in expressions
to a maximum depth of ten levels—ten matching sets of parentheses.
The inner-most expression has its operations performed first. Some
examples of expressions are:

A+B
C1(D+E)/2
(X—CHND+E)/2)*10)+1
GG$>HH$

BASIC PROGRAMMING RULES 15

The BASIC Interpreter will normally perform operations on expressions
by performing arithmetic operations first, then relational operations, and
logical operations last. Both arithmetic and logical operators have an
order of precedence (or hierarchy of operations) within themselves. On
the other hand, relational operators do not have an order of precedence
and will be performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of
precedence then operations happen from left to right. When performing
operations on expressions within parentheses, the normal order of pre-
cedence is maintained. The hierarchy of arithmetic and logical opera-

JJ$+"“MORE”
K% =1 AND M<>X

K% =2 OR (A=B AND M<X)

NOT (D=E)

tions is shown in Table 1-3 from first to last in order of precedence.

Table 1-3. Hierarchy of Operations Performed on Expressions

OPERATOR DESCRIPTION EXAMPLE
i Exponentiation BASE T EXP
- Negation (Unary Minus) —A
*/ Multiplication AB * CD
Division EF / GH
+ - Addition CNT + 2
Subtraction JK — PQ
> =< Relational Operations A <=8
NOT Logical NOT NOT K%
(Integer Two’s Complement)
AND Logical AND JK AND 128
OR Logical OR PQ OR 15

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>

16 BASIC PROGRAMMING RULES

’

’

<=, >=, <, >) that are used for comparing numbers. String compari-
sons are made by taking one character at a time (left-to-right) from
each string and evaluating each character code position from the PET/
CBM character set. If the character codes are the same, the characters
are equal. If the character codes differ, the character with the lower
code number is lower in the character set. The comparison stops when
the end of either string is reached. All other things being equal, the
shorter string is considered less than the longer string. Leading or trail-
ing blanks ARE significant.

Regardless of the data types, at the end of all comparisons you get
an integer result. This is true even if both operands are strings. Because
of this a comparison of two string operands can be used as an operand
in performing calculations. The result will be —1 or 0 (true or false) and
can be used as anything but a divisor since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied “<>0" follows them. This
means that if an expression is true then the next BASIC statements on
the same program line are executed. If the expression is false the rest of
the line is ignored and the next line in the program is executed.

Just as with numbers, you can also perform operations on string vari-
ables. The only string arithmetic operator recognized by CBM BASIC is
the plus sign (+) which is used to perform concatenation of strings.
When strings are concatenated, the string on the right of the plus sign is
appended to the string on the left, forming a third string as a result. The
result can be printed immediately, used in a comparison, or assigned to
a variable name. If a string data item is compared with (or set equal to)
a numeric item, or vice-versa, the BASIC error message ?TYPE MIS-
MATCH will occur. Some examples of string expressions and concatena-

tion are:

10 A$="FILE” : B$="NAME”
20 NAMS$ = A$ + B$ (gives the string: FILENAME)
30 RES$ = “NEW “ + A$ + B$ (gives the string: NEW FILENAME)

Note space here.

BASIC PROGRAMMING RULES 17

PROGRAMMING TECHNIQUES
DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric
data item from an integer to floating-point, or vice-versa, according to
the following rules:

® All arithmetic and relational operations are performed in floating-
point format. Integers are converted to floating-point form for
evaluation of the expression, and the result is converted back to
integer. Logical operations convert their operands to integers and
return an integer result.

® If a numeric variable name of one type is set equal to a numeric
data item of a different type, the number will be converted and
stored as the data type declared in the variable name.

® When a floating-point value is converted to an integer, the frac-
tional portion is truncated (eliminated) and the integer result is less
than or equal to the floating-point value. If the result is outside the
range of +32767 thru —32768, the BASIC error message ?ILLEGAL
QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let’s take that information and
put it together with the INPUT statement for some practical program-
ming applications.

In our first example, you can think of a variable as a “storage com-
partment”’ where the Commodore 64 stores the user’s response to your
prompt question. To write a program which asks the user to type in a
name, you might assign the variable N$ to the name typed in. Now
every time you PRINT N$ in your program, the Commodore 64 will
automatically PRINT the name that the user typed in.

Type the word NEW on your Commodore 64. Hit the key,
and try this example:

10 PRINT “YOUR NAME”:INPUT N$
20 PRINT “HELLO,” N$

18 BASIC PROGRAMMING RULES

In this example you used N to remind yourself that this variable stands
for “NAME.” The dollar sign ($) is used to tell the computer that you're
using a string variable. It is important to differentiate between the two
types of variables:

1) NUMERIC
2) STRING

You probably remember from the earlier sections that numeric vari-
ables are used to store number values such as 1, 100, 4000, etc. A
numeric variable can be a single letter (A), any two letters (AB), a letter
and a number (A1), or two letters and a number (AB1). You can save
memory space by using shorter variables. Another helpful hint is to use
letters and numbers for different categories in the same program (Al,
A2, A3). Also, if you want whole numbers for an answer instead of
numbers with decimal points, all you have to do is put a percent sign
(%) at the end of your variable name (AB%, A1%, etc.)

Now let’s look at a few examples that use different types of variables
and expressions with the INPUT statement.

10 PRINT “ENTER A NUMBER":INPUT A
20 PRINT A

10 PRINT “ENTER A WORD"”:INPUT A$
20 PRINT A$

10 PRINT “ENTER A NUMBER”:INPUT A
20 PRINT A “TIMES 5 EQUALS” A*5

NOTE: Example 3 shows that MESSAGES or PROMPTS are inside the quotation
marks (“) while the variables are outside. Notice, too, that in line 20 the variable A
was printed first, then the message “TIMES 5 EQUALS”, and then the calculation,
multiply variable A by 5 (A*5).

Calculations are important in most programs. You have a choice of
using “actual numbers” or variables when doing calculations, but if
you’re working with numbers supplied by a user you must use numeric
variables. Begin by asking the user to type in two numbers like this:

10 PRINT “TYPE 2 NUMBERS”:INPUT A:INPUT B

BASIC PROGRAMMING RULES 19

INCOME/EXPENSE BUDGET EXAMPLE

s pRINT 0wl CEIIEE
18 FRIMT"MOMTHLY IHCOME" : THFUT IH
26 FRIMNT
HEOPRINTYES
A FRIMT " E:
.|| FRIMT
@ OFR T E
FREIHT"
FRIMT
0 FPRINTPESFEHIE CATEGDRY 2" IMFPUT ERF
3 FRIMT"EAFEMSE AMOLMTY: IMFUT EX3

R "?:“—Eni'l

EOCHTEGORY 1" IWPUT ELF
FAROSHT THPUT EL
COCRTEGORY 2" IMPUT E2%
AROLMT ™ THFPLT E2

PR THT " MOHTHLY
3 PRINT"TOTAL ExF

£ IH
$E
£ TH-E

THCOME

PSS |

SES="EF#1EE"E OF YOUR TOTRAL

1TI:| CHEST CFRIMT
DR WYY THPUT vE IR =Y U THEMS

g u"]n B |~['

R 5 Joie ove

NOTE: IN can NOT = 0, and E1, E2, E3 can NOT all be 0 at the same time.

20 BASIC PROGRAMMING RULES

LINE-BY-LINE EXPLANATION OF
INCOME/EXPENSE BUDGET EXAMPLE

Line(s) Description
5 Clears the screen.

10 PRINT/INPUT statement.

20 Inserts blank line.

30 Expense Category 1 = EI1$.
40 Expense Amount = E1.

50 Inserts blank line.

60 Expense Category 2 = E2$.

70 Expense Amount 2 = E2.

80 Inserts blank line.

90 Expense Category 3 = E3$.
100 Expense Amount 3 = E3.
110 Clears the screen.

120 Add Expense Amounts = E.

130 Calculate Expense/lncome%.

140 Display Income.

150 Display Total Expenses.

160 Display Income — Expenses.

170 Inserts blank line.

180—200 | Lines 180—200 calculate % each expense
amount is of total expenses.

210 Inserts blank line.

220 Display E/l %.

230 Time delay loop.

Now multiply those two numbers together to create a new variable C as
shown in line 20 below:

20 C=A*B
To PRINT the result as a message type
30 PRINT A “TIMES” B “EQUALS” C

Enter these 3 lines and RUN the program. Notice that the messages are
inside the quotes while the variables are not.

BASIC PROGRAMMING RULES 21

Now let’s say that you wanted a dollar sign ($) in front of the number
represented by variable C. The $ must be PRINTed inside quotes and in
front of variable C. To add the $ to your program hit the
and keys. Now type in line 40 as follows:

40 PRINT “$” C

Now hit , type RUN and hit again.

The dollar sign goes in quotes because the variable C only represents
a number and can’t contain a $. If the number represented by C was
100 then the Commodore 64 screen would display $ 100. But, if you
tried to PRINT $C without using the quotes, you would get a ?2SYNTAX
ERROR message.

One last tip about $$$: You can create a variable that represents a
dollar sign which you can then substitute for the $ when you want to use
it with numeric variables. For example:

]0 Z$:Il$ll

Now whenever you need a dollar sign you can use the string variable
Z$. Try this:

10 Z$="$":INPUT A
20 PRINT Z$A

Line 10 defines the $ as a string variable called Z$, and then INPUTs a
ntumber called A. Line 20 PRINTs Z$ ($) next to A (number).

You'll probably find that it's easier to assign certain characters, like
dollar signs, to a string variable than to type “$” every time you want to
calculate dollars or other items which require ” ’ like %.

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from the
person operating the computer. When you’re dealing v/ith more complex
needs, like protection from typing errors, the GET statement gives you
more flexibility and your program more “intelligence.” This section shows
you how to use the GET statement to add some special screen editing
features to your programs.

22 BASIC PROGRAMMING RULES

The Commodore 64 has a keyboard buffer that holds up to 10 char-
acters. This means that if the computer is busy doing some operation
and it’s not reading the keyboard, you can stili type in up to 10 char-
acters, which will be used as soon as the Commodore 64 finishes what it
was doing. To demonstrate this, type in this program on your Commo-
dore 64:

NEW
10 TI$="000000"
20 IF TI$ < "“000015” THEN 20

Now type RUN, hit and while the program is RUNning type
in the word HELLO.

Notice that nothing happened for about 15 seconds when the pro-
gram started. Only then did the message HELLO appear on the screen.

Imagine standing in line for a movie. The first person in the line is the
first to get a ticket and leave the line. The last person in line is last for a
ticket. The GET statement acts like a ticket taker. First it looks to see if
there are any characters “in line.” In other words have any keys been
typed. If the answer is yes then that character gets placed in the ap-
propriate variable. If no key was pressed then an empty value is as-
signed to a variable.

At this point it's important to note that if you try to put more than 10
characters into the buffer at one time, all those over the 10th character
will be lost.

Since the GET statement will keep going even when no character is
typed, it is often necessary to put the GET statement into a loop so that it
will have to wait until someone hits a key or until a character is received
through your program.

Below is the recommended form for the GET statement. Type NEW to
erase your previous program.

10 GET A$: IF A$ = ““ THEN 10

Notice that there is NO SPACE between the quote marks (") on this line.
This indicates an empty value and sends the program back to the GET
statement in a continuous loop until someone hits a key on the computer.
Once a key is hit the program will continue with the line following line
10. Add this line to your program:

100 PRINT A$;: GOTO 10

BASIC PROGRAMMING RULES 23

Now RUN the program. Notice that no cursor B appears on the screen,
but any character you type will be printed in the screen. This 2-line
program can be turned into part of a screen editor program as shown
below.

There are many things you can do with a screen editor. You can have
a flashing cursor. You can keep certain keys like from
accidentally erasing the whole screen. You might even want to be able
to use your function keys to represent whole words or phrases. And
speaking of function keys, the following program lines give each func-
tion key a special purpose. Remember this is only the beginning of a
program that you can customize for your needs.

20 IF A$ = CHR$(133) THEN POKE 53280,8:GOTO 10

30 IF A$ = CHR$(134) THEN POKE 53281,4:GOTO 10

40 IF A$ = CHR$(135) THEN A$="DEAR SIR:”+CHR$(13)
50 IF A$ = CHR$(136) THEN A$="SINCERELY,”+CHR$(13)

The CHR$ numbers in parentheses come from the CHR$ code chart in
Appendix C. The chart lists a different number for each character. The
four function keys are set up to perform the tasks represented by the
instructions that follow the word THEN in each line. By changing the
CHR$ number inside each set of parentheses you can designate differ-
ent keys. Different instructions would be performed if you changed the
information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions—and power—into your BASIC pro-
grams by making each program as short as possible. This process of
shortening programs is called “crunching.”

Crunching programs lets you squeeze the maximum possible number
of instructions into your program. It also helps you reduce the size of
programs which might not otherwise run in a given size; and if you're
writing a program which requires the input of data such as inventory
items, numbers or text, a short program will leave more memory space
free to hold data.

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in Appendix A. This is helpful
when you program because you can actually crowd more information on
each line using abbreviations. The most frequently used abbreviation is

24 BASIC PROGRAMMING RULES

the question mark (?) which is the BASIC abbreviation for the PRINT
command. However, if you LIST a program that has abbreviations, the
Commodore 64 will automatically print odt the listing with the full-length
keywords. If any program line exceeds 80 characters (2 lines on the
screen) with the keywords unabbreviated, and you want to change it,
you will have to re-enter that line with the abbreviations before saving
the program. SAVEing a program incorporates the keywords without
inflating any lines because BASIC keywords are tokenized by the Com-
modore 64. Usually, abbreviations are added after a program is written
and it isn't going to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number each
line at intervals of 10 (i.e., 100, 110, 120). This allows extra lines of
instruction to be added (111, 112, etc.) as the program is developed.
One means of crunching the program after it is completed is to change
the line numbers to the lowest numbers possible (i.e., 1, 2, 3) because
longer line numbers take more memory than shorter numbers when ref-
erenced by GOTO and GOSUB statements. For instance, the number 100
uses 3 bytes of memory (one for each number) while the number 1 uses
only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in your
program by separating them by a colon. The only limitation is that all
the instructions on each line, including colons, should not exceed the
standard 80-character line length. Here is an example of two programs,
before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT “HELLO. . “; 10 PRINT “HELLO . . .“;:FORT=1TO
20 FOR T=1 TO 500:NEXT 500:NEXT:PRINT”HELLO,

30 PRINT “HELLO, AGAIN . . AGAIN . . ":GOTOI10

40 GOTO 10

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself—or showing other
programmers—what a particular section of a program is doing. How-
ever, when the program is completed and ready to use, you probably

BASIC PROGRAMMING RULES 25

won’t need those REM statements anymore and you can save quite a bit
of space by removing the REM statements. If you plan to revise or study
the program structure in the future, it's a good idea to keep a copy on
file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program it's
usually best to define those long words or numbers with a one or two
letter variable. Numbers can be defined as single letters. Words and
sentences can be defined as string variables using a letter and dollar
sign. Here’'s one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 POKE 54296,15 10 V=54296:F=54273

20 POKE 54276,33 20 POKEV,15:POKE54276,33

30 POKE 54273,10 30 POKEF,10:POKEF,40:POKEF,70
40 POKE 54273,40 40 POKEV,0

50 POKE 54273,70
60 POKE 54296,0

USING READ AND DATA STATEMENTS

Large amounts of data can be typed in as one piece of data at a
time, over and over again . . . or you can print the instructional part of
the program ONCE and print all the data to be handled in a long run-
ning list called the DATA statement. This is especially good for crowding
large lists of numbers into a program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long
amounts of data can be handled as a list, with the data handling por-
tion of the program drawing from that list, in sequence. Arrays differ in
that the list can be multi-dimensional

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
eliminate all the spaces. Although we often include spaces in sample
programs to provide clarity, you actually don’t need any spaces in your
program and will save space if you eliminate them.

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be
wise to GOSUB to the line from several places in your program, rather
than write the whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a character
on the screen, it is often more economical to use the TAB and SPC in-
structions to position words or characters on the screen.

BASIC PROGRAMMING RULES 27

CHAPTER 2

BASIC LANGUAGE
VOCABULARY

® Introduction

® BASIC Keywords, Abbreviations,
and Function Types

® Description of BASIC Keywords
(Alphabetical)

® The COMMODORE 64 Keyboard and
Features

® Screen Editor

29

INTRODUCTION

This chapter explains CBM BASIC Language keywords. First we give
you an easy to read list of keywords, their abbreviations and what each
letter looks like on the screen. Then we explain how the syntax and
operation of each keyword works in detail, and examples are shown to
give you an idea as to how to use them in your programs.

As a convenience, Commodore 64 BASIC allows you to abbreviate
most keywords. Abbreviations are entered by typing enough letters of
the keyword to distinguish it from all other keywords, with the last letter
or graphics entered holding down the key.

Abbreviations do NOT save any memory when they’re used in pro-
grams, because all keywords are reduced to single-character “tokens”
by the BASIC Interpreter. When a program containing abbreviations is
listed, all keywords appear in their fully spelled form. You can use ab-
breviations to put more statements onto a program line even if they
won’t fit onto the 80-character logical screen line. The Screen Editor
works on an 80-character line. This means that if you use abbreviations
on any line that goes over 80 characters, you will NOT be able to edit
that line when LISTed. Instead, what you'll have to do is (1) retype the
entire line including all abbreviations, or (2) break the single line of code
into two lines, each with its own line number, etc.

A complete list of keywords, abbreviations, and their appearance on
the screen is presented in Table 2-1. They are followed by an alpha-
betical description of all the statements, commands, and functions
available on your Commodore 64.

This chapter also explains the BASIC functions built into the BASIC
Language Interpreter. Built-in functions can be used in direct mode
statements or in any program, without having to define the function
further. This is NOT the case with user-defined functions. The results of
built-in BASIC functions can be used as immediate output or they can be
assigned to a variable name of an appropriate type. There are two
types of BASIC functions:

1) NUMERIC
2) STRING

Arguments of built-in functions are always enclosed in parentheses
(). The parentheses always come directly after the function keyword
and NO SPACES between the last letter of the keyword and the left
parenthesis (.

30 BASIC LANGUAGE VOCABULARY

The type of argument needed is generally decided by the data type in
the result. Functions which return a string value as their result are iden-
tified by having a dollar sign ($) as the last character of the keyword. In
some cases string functions contain one or more numeric argument.

Numeric functions will convert between integer and floating-point
format as needed. In the descriptions that follow, the data type of the
value returned is shown with each function name. The types of argu-
ments are also given with the statement format.

Table 2-1. COMMODORE 64 BASIC KEYWORDS

COMMAND | ABBREVIATION SCREEN FUNCTION TYPE
ABS A EIE e A (] NUMERIC
AND A N A
ASC A S A (v NUMERIC
ATN A CE T A] NUMERIC
CHR$ C H c [STRING
CLOSE CLEm o c [

CLR C L c Y
CMD C M c N
CONT C o c [
COS none COsS NUMERIC
DATA D A D [4)
DEF D E o (3
DIM D | o K]

BASIC LANGUAGE VOCABULARY 31

COMMAND ABBREVIATION ! SCREEN FUNCTION TYPE

END E N e /)

EXP E X E NUMERIC
FN none FN

FOR F 0 F [

FRE F R F NUMERIC
GET c €@ ¢ ¢ &

GET# none GET#

GOSUB | GO s GO (V]

GOTO G B © ¢ []

IF none IF

INPUT none INPUT

INPUT# | N A

INT none INT NUMERIC
LEFT$ e G F e STRING
LEN none LEN NUMERIC
LET L E L &

LIST L | L K]

LOAD L Ellag O L D

LOG none LOG NUMERIC

32 BASIC LANGUAGE VOCABULARY

COMMAND | ABBREVIATION SCREEN FUNCTION TYPE
MIDS$ W svirr I m K] STRING
NEW none NEW
NEXT N E N 3
NOT N o) N [

ON none ON

OPEN o P o]

OR none OR

PEEK P E P NUMERIC
POKE P o P[]

POS none POS NUMERIC
PRINT ? ?

PRINT# P R P

READ R E R

REM none REM

RESTORE | RE @R S RE (V]

RETURN RE GED 7 rRe ([]

RIGHT$ R B R K] STRING
RND R N R [NUMERIC
RUN R u R (A

BASIC LANGUAGE VOCABULARY

COMMAND | ABBREVIATION | SCREEN FUNCTION TYPE

SAVE s @ A s (4]

SGN s G s [J NUMERIC
SIN s | s R} NUMERIC
SPC(S P s (] SPECIAL
SQR S Q s @ NUMERIC
STATUS ST ST NUMERIC
STEP STEM ¢ st

STOP s T s [J

STR$ sTEE R st STRING
sYs s \ s [

TAB(T B3 A T (4] SPECIAL
TAN none TAN NUMERIC
THEN T H T [

TIME I T NUMERIC
TIMES$ TI$ TI$ STRING
TO none TO

USR u S u (v NUMERIC
VAL v B A v (4 NUMERIC
VERIFY v EIE ¢ v [

WAIT W A w (4]

34 BASIC LANGUAGE VOCABULARY

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function-Numeric
FORMAT: ABS(<expression>)

Action: Returns the absolute value of the number, which is its value
without any signs. The absolute value of a negative number is that
number multiplied by —1.

EXAMPLES of ABS Function:

10X = ABS (Y)
10 PRINT ABS (X * J)
10 IF X = ABS (X) THEN PRINT “POSITIVE”

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. It is also used
in operations to check the truth of both operands.

In Boolean algebra, the result of an AND operation is 1 only if both
numbers being ANDed are 1. The result is O if either or both is O (false).

EXAMPLES of 1-Bit AND Operation:

0] 1 0 1
AND O AND 0 AND 1 AND 1
0] 0 0 1

The Commodore 64 performs the AND operation on numbers in the
range from —32768 to +32767. Any fractional values are not used, and
numbers beyond the range will cause an ?ILLEGAL QUANTITY error

BASIC LANGUAGE VOCABULARY 35

message. When converted to binary format, the range allowed yields 16
bits for each number. Corresponding bits are ANDed together, forming
a 16-bit result in the same range.

EXAMPLES of 16-Bit AND Operation:

17
AND 194

0000000000010001
AND 0000000011000010

(BINARY) 0000000000000000

(DECIMAL) 0

32007
AND 28761

0111110100000111
AND 0111000001011001

(BINARY) 0111000000000001

(DECIMAL) 28673

—241
AND 15359

1111111100001111
AND 0011101111111111

(BINARY) 0011101100001111

(DECIMAL) 15119

36 BASIC LANGUAGE VOCABULARY

When evaluating a number for truth or falsehood, the computer as-
sumes the number is true as long as its value isn’t 0. When evaluating a
comparison, it assigns a value of —1 if the result is true, while false has
a value of 0. In binary format, —1 is all 1’s and 0 is all 0’s. Therefore,
when ANDing true/false evaluations, the result will be true if any bits in
the result are true.

EXAMPLES of Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THEN GOTO 10: REM ONLY TRUE IF BOTH X=7
AND W=3 ARE TRUE

60 IF A AND Q=7 THEN GOTO 10: REM TRUE IF A IS NON-ZERO
AND Q=7 IS TRUE

ASC

TYPE: Function-Numeric
FORMAT: ASC (<string>)

Action: ASC will return a number from 0 to 255 which corresponds to
the Commodore ASCII value of the first character in the string. The table
of Commodore ASCII values is shown in Appendix C.

EXAMPLES OF ASC Function:

10 PRINT ASC(“Z")
20 X = ASC(“ZEBRA")
30 J = ASC(J3$)

If there are no characters in the string, an ?ILLEGAL QUANTITY error
results. In the third example above, if J$="", the ASC function will not
work. The GET and GET# statement read a CHR$(0) as a null string. To
eliminate this problem, you should add a CHR$(0) to the end of the
string as shown below.

EXAMPLE of ASC Function Avoiding ILLEGAL QUANTITY ERROR:
30 J = ASC(J$ + CHR$(0))

BASIC LANGUAGE VOCABULARY 37

ATN

TYPE: Function-Numeric
FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the
number. The result is the angle (in radians) whose tangent is the number
given. The result is always in the range —7/2 to +m/2.

EXAMPLES of ATN Function:

10 PRINT ATN (0)
20 X = ATN (J) * 180 / 7 : REM CONVERT TO DEGREES

CHR$

TYPE: Function-String
FORMAT: CHR$ (<number>)

Action: This function converts a Commodore ASCII code to its char-
acter equivalent. See Appendix C for a list of characters and their

codes. The number must have a value between 0 and 255, or an ?IL-
LEGAL QUANTITY error message results.

EXAMPLES of CHR$ Function:

10 PRINT CHR$(65) : REM 65 = UPPER CASE A

20 A$ = CHR$(13) : REM 13 = RETURN KEY

50 A = ASC(A$) : A$ = CHR$(A): REM CONVERTS TO Cé64 ASCII
CODE AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: I/O Statement
FORMAT: CLOSE <file number>

Action: This statement shuts off any data file or channel to a device.
The file number is the same as when the file or device was OPENed (see
OPEN statement and the section on INPUT/OUTPUT programming).

When working with storage devices like cassette tape and disks, the
CLOSE operation stores any incomplete buffers to the device. When this
is not performed, the file will be incomplete on the tape and unreadable
on the disk. The CLOSE operation isn’t as necessary with other devices,
but it does free up memory for other files. See your external device
manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1
20 CLOSE X
30 CLOSE9 * (1 + 1))

CLR

TYPE: Statement
FORMAT: CLR

Action: This statement makes available RAM memory that had been
used but is no longer needed. Any BASIC program in memory is un-
touched, but all variables, arrays, GOSUB addresses, FOR. . . NEXT
loops, user-defined functions, and files are erased from memory, and
their space is made available to new variables, etc.

BASIC LANGUAGE VOCABULARY 39

In the case of files to the disk and cassette tape, they are not properly
CLOSEd by the CLR statement. The information about the files is lost to
the computer, including any incomplete buffers. The disk drive will still
think the file is OPEN. See the CLOSE statement for more information on
this.

EXAMPLE of CLR Statement:

10 X=25
20 CLR
30 PRINT X

RUN
0

READY

CMD

TYPE: I/O Statement
FORMAT: CMD <file number> [, string]

Action: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, tape, printer, or an
I/0 device like the modem. The file number must be specified in a prior
OPEN statement. The string, when specified, is sent to the file. This is
handy for titling printouts, etc.

When this command is in effect, any PRINT statements and LIST com-
mands will not display on the screen, but will send the text in the same
format to the file.

To re-direct the output back to the screen, the PRINT# command
should send a blank line to the CMD device before CLOSEing, so it will
stop expecting data (called “un-listening” the device).

40 BASIC LANGUAGE VOCABULARY

Any system error (like ?2SYNTAX ERROR) will cause output to return to
the screen. Devices aren’t un-listened by this, so you should send a
blank line after an error condition. (See your printer or disk manual for
more details.)

EXAMPLES of CMD Statement:

OPEN 4, 4: CMD 4, “TITLE” : LIST: REM LISTS PROGRAM ON PRINTER
PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, “TEST”: REM CREATE SEQ FILE

20 CMD 1: REM OUTPUT TO TAPE FILE, NOT SCREEN

30 FORL = 1TO 100

40 PRINT L: REM PUTS NUMBER IN TAPE BUFFER

50 NEXT

60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY FINISH

CONT

TYPE: Command
FORMAT: CONT

Action: This command re-starts the execution of a program which was
halted by a STOP or END statement or the key being
pressed. The program will re-start at the exact place from which it left
off.

While the program is stopped, the user can inspect or change any
variables or look at the program. When de-bugging or examining a
program, STOP statements can be placed at strategic locations to allow
examination of variables and to check the flow of the program.

The error message CAN’T CONTINUE will result from editing the
program (even just hitting with the cursor on an unchanged
line), or if the program halted due to an error, or if you caused an error
before typing CONT to re-start the program.

EXAMPLE of CONT Command:

10 PI=0:C=1
20 PI1=PI+4/C—4/(C+2)
30 PRINT PI

40 C=C+4:GOTO 20

BASIC LANGUAGE VOCABULARY 41

This program calculates the value of Pl. RUN this program, and after
a short while hit the key. You will see the display:

—
BREAK IN 20 | NOTE: Might be different number.

Type the command PRINT C to see how far the Commodore 64 has
gotten. Then use CONT to resume from where the Commodore 64 left
off.

COS

TYPE: Function
FORMAT: COS (<number>)

Action: This mathematical function calculates the cosine of the
number, where the number is an angle in radians.

EXAMPLES of COS Function:

10 PRINT COS (0)
20X = COS (Y * /180) : REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The
program uses the information by means of the READ statement, which
pulls successive constants from the DATA statements.

The DATA statements don’t have to be executed by the program, they
only have to be present. Therefore, they are usually placed at the end of
the program.

All data statements in a program are treated as a continuous list.
Data is READ from left to right, from the lowest numbered line to the
highest. If the READ statement encounters data that doesn’t fit the type
requested (if it needs a number and finds a string) an error message
occurs.

42 BASIC LANGUAGE VOCABULARY

Any characters can be included as data, but if certain ones are used
the data item must be enclosed by quote marks (“ ”). These include
punctuation like comma (,), colon (:), blank spaces, and shifted letters,
graphics, and cursor control characters.

EXAMPLES of DATA Statement:

10 DATA 1, 10, 5, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA “DEAR MARY, HOW ARE YOU, LOVE, BILL”
40 DATA —1.7E—9, 3.33

DEF FN

TYPE: Statement
FORMAT: DEF FN <name> (<variable>) = <expres-
sion>

Action: This sets up a user-defined function that can be used later in
the program. The function can consist of any mathematical formula.
Usec-defined functions save space in programs where a long formula is
used in several places. The formula need only be specified once, in the
definition statement, and then it is abbreviated as a function name. It
must be executed once, but any subsequent executions are ignored.

The function name is the letters FN followed by any variable name.
This can be 1 or 2 characters, the first being a letter and the second a
letter or digit.

EXAMPLES of DEF FN Statement:

IODEFFN A(X) = X + 7
20 DEF FN AA (X) = Y * Z
30 DEF FNA9 (Q) = INT(RND(1)* Q+ 1)

The function is called later in the program by using the function name
with a variable in parentheses. This function name is used like any other
variable, and its value is automatically calculated.

BASIC LANGUAGE VOCABULARY 43

EXAMPLES of FN Use:

40 PRINT FN A (9)
50 R = FNAA (9)
60 G = G + FN A9 (10)

In line 50 above, the number 9 inside the parentheses does not affect
the outcome of the function, because the function definition in line 20
doesn’t use the variable in the parentheses. The result is Y times Z,
regardless of the value of X. In the other two functions, the value in
parentheses does affect the result.

DIM

TYPE: Statement
FORMAT: DIM <variable> (<subscripts>) [,
<variable> (<subscripts>) . . . |

Action: This statement defines an array or matrix of variables. This
allows you to use the variable name with a subscript. The subscript
points to the element being used. The lowest element number in an
array is zero, and the highest is the number given in the DIM statement,
which has a maximum of 32767.

The DIM statement must be executed once and only once for each
array. A REDIM’D ARRAY error occurs if this line is re-executed. There-
fore, most programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an
array, limited only by the amount of RAM memory which is available to
hold the variables. The array may be made up of normal numeric vari-
ables, as shown above, or of strings or integer numbers. If the variables
are other than normal numeric, use the $ or % signs after the variable
name to indicate string or integer variables,

44 BASIC LANGUAGE VOCABULARY

If an array referenced in a program was never DIMensioned, it is
automatically dimensioned to 11 elements in each dimension used in the
first reference.

EXAMPLES of DIM Statement:

10 DIM A (100)

20DIM Z (5 7), Y(3, 4,5)

30 DIM Y7% (Q)

40 DIM PH$ (1000)

50 F (4) =9: REM AUTOMATICALLY PERFORMS DIM F (10)

EXAMPLE of FOOTBALL SCORE-KEEPING Using DIM:

10 DIM S(1,5), T$(1)

20 INPUT “TEAM NAMES”; T$(0), T$(1)
30 FOR Q=1TO 5: FORT=0TO 1

40 PRINT T$(T), “SCORE IN QUARTER” Q
50 INPUT S(T,Q): S(T,0)= $(T,0)+ S(T,Q)
60 NEXT T,Q

70 PRINT CHR$(147) “SCOREBOARD"

80 PRINT “QUARTER”

90 FOR Q=1TO §
100 PRINT TAB(Q*2 +9) Q;
110 NEXT: PRINT TAB(15) “TOTAL"
120 FOR T=0 TO 1: PRINT T$(T);
130 FOR Q=1 TO 5
140 PRINT TAB(Q*2 +9) S(T.Q);
150 NEXT: PRINT TAB(15) S(T,0)
160 NEXT

CALCULATING MEMORY USED BY DIM:

5 bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

1 byte for each character in each string element

BASIC LANGUAGE VOCABULARY 45

END

TYPE: Statement
FORMAT: END

Action: This finishes a program’s execution and displays the READY
message, returning control to the person operating the computer. There
may be any number of END statements within a program. While it is not
necessary to include any END statements at all, it is recommended that
a program does conclude with one, rather than just running out of lines.

The END statement is similar to the STOP statement. The only differ-
ence is that STOP causes the computer to display the message BREAK
IN LINE XX and END just displays READY. Both statements allow the
computer to resume execution by typing the CONT command.

EXAMPLES of END Statement:

10 PRINT “DO YOU REALLY WANT TO RUN THIS PROGRAM”
20 INPUT A$

30 IF A$ = “NO” THEN END

40 REM REST OF PROGRAM . . .

999 END

EXP

TYPE: Function-Numeric
FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e
(2.71828183) raised to the power of the number given. A value greater
than 88.0296919 causes an ?OVERFLOW error to occur.

EXAMPLES of EXP Function:

10 PRINT EXP (1)
20X =Y *EXP(Z* Q)

46 BASIC LANGUAGE VOCABULARY

FN

TYPE: Function-Numeric
FORMAT: FN <name> (<number>)

Action: This function references the previously DEFined formula spec-
ified by name. The number is substituted into its place (if any) and the
formula is calculated. The result will be a numeric value.

This function can be used in direct mode, as long as the statement
DEFining it has been executed.

If an FN is executed before the DEF statement which defines it, an
UNDEF'D FUNCTION error occurs.

EXAMPLES of FN (User-Defined) Function:

PRINT FN A (Q)
1100 J = FN J (7) + FN J (9)
9990 IF FN B7 (I+1)= 6 THEN END

FOR...TO...[STEP.. .]

TYPE: Statement
FORMAT: FOR <variable> = <start> TO <limit> [STEP
<increment> |

Action: This is a special BASIC statement that lets you easily use a
variable as a counter. You must specify certain parameters: the
floating-point variable name, its starting value, the limit of the count,
and how much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing
each number and ENDing when complete, and using no FOR state-
ments:

100L =1

110 PRINT L

120L =1L + 1

130 IF L <= 10 THEN 110
140 END

BASIC LANGUAGE VOCABULARY 47

Using the FOR statement, here is the same program:

100 FORL =1 TO 10
110 PRINT L

120 NEXT L

130 END

As you can see, the program is shorter and easier to understand using
the FOR statement.

When the FOR statement is executed, several operations take place.
The <start> value is placed in the <variable> being used in the
counter. In the example above, a 1 is placed in L.

When the NEXT statement is reached, the <increment> value is
added to the <variable>. If a STEP was not included, the <increment>
is set to +1. The first time the program above hits line 120, 1 is added
to L, so the new value of L is 2.

Now the value in the <variable> is compared to the <limit>. If the
<limit> has not been reached yet, the program GQOes TO the line after
the original FOR statement. In this case, the value of 2 in L is less than
the limit of 10, so it GOes TO line 110.

Eventually, the value of <limit> is exceeded by the <variable>. At
that time, the loop is concluded and the program continues with the line
following the NEXT statement. In our example, the value of L reaches
11, which exceeds the limit of 10, and the program goes on with line
130.

When the value of <increment> is positive, the <variable> must
exceed the <limit>, and when it is negative it must become less than
the <limit>.

NOTE: A loop always executes at least once.

EXAMPLES of FOR. . .TO. . .STEP. . .Statement:

100 FOR L = 100 TO O STEP —1
100 FOR L = PI TO 6*7 STEP .01
100 FORAA = 3 TO 3

48 BASIC LANGUAGE VOCABULARY

FRE

TYPE: Function
FORMAT: FRE (<variable>)

Action: This function tells you how much RAM is available for your
program and its variables. If a program tries to use more space than is
available, the OUT OF MEMORY error results.

The number in parentheses can have any value, and it is not used in
the calculation.

NOTE: If the result of FRE is negative, add 65536 to the FRE number to get the
number of bytes available in memory.

EXAMPLES of FRE Function:

PRINT FRE (0)
10X = (FRE (K) — 1000) /7
950 IF FRE (0) < 100 THEN PRINT “NOT ENOUGH ROOM”

NOTE: The following always tells you the current available RAM:

PRINT FRE(0) — (FRE(0) < 0)* 65536

GET

TYPE: Statement
FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user
is typing, the characters are stored in the Commodore 64’s keyboard
buffer. Up to 10 characters are stored here, and any keys struck after
the 10th are lost. Reading one of the characters with the GET statement
makes room for another character.

If the GET statement specifies numeric data, and the user types a key
other than a number, the message ?SYNTAX ERROR appears. To be
safe, read the keys as strings and convert them to numbers later.

BASIC LANGUAGE VOCABULARY 49

The GET statement can be used to avoid some of the limitations of the
INPUT statement. For more on this, see the section on Using the GET
Statement in the Programming Techniques section.

EXAMPLES of GET Statement:

10 GET A$: IF A$ = " THEN 10: REM LOOPS IN 10 UNTIL ANY KEY

HIT
20 GET A%, B$, C$, D$, E$: REM READS 5 KEYS
30 GET A, A$

GET#

TYPE: I/O Statement
FORMAT: GET# <file number>, <variable list>

Action: This statement reads characters one-at-a-time from the device
or file specified. It works the same as the GET statement, except that the
data comes from a different place than the keyboard. If no character is
") or to O for
numeric variables. Characters used to separate data in files, like the
comma (,) or key code (ASC code of 13), are received like

any other character.

received, the variable is set to an empty string (equal to

When used with device #3 (TV screen), this statement will read char-
acters one by one from the screen. Each use of GET# moves the cursor 1
position to the right. The character at the end of the logical line is
changed to a CHR$ (13), the key code.

EXAMPLES of GET# Statement:

5 GET# 1, A$
10 OPEN 1, 3: GET# 1, Z7$%
20 GET# 1, A, B, C$, D$

50 BASIC LANGUAGE VOCABULARY

GOSuUB

TYPE: Statement
FORMAT: GOSUB <line number>

Action: This is a specialized form of the GOTO statement, with one
important difference: GOSUB remembers where it came from. When the
RETURN statement (different from the key on the keyboard)
is reached in the program, the program jumps back to the statement
immediately following the original GOSUB statement.

The major use of a subroutine (GOSUB really means GO to a SUB-
routine) is when a small section of program is used by different sections
of the program. By using subroutines rather than repeating the same
lines over and over at different places in the program, you can save lots
of program space. In this way, GOSUB is similar to DEF FN. DEF FN lets
you save space when using a formula, while GOSUB saves space when
using a several-line routine. Here is an inefficient program that doesn’t
use GOSUB:

100 PRINT “THIS PROGRAM PRINTS”
110 FOR L = 1 TO 500 : NEXT

120 PRINT “SLOWLY ON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT

140 PRINT “USING A SIMPLE LOOP”
150 FOR L = 1 TO 500 : NEXT

160 PRINT “AS A TIME DELAY.”

170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT “THIS PROGRAM PRINTS”
110 GOSUB 200

120 PRINT “SLOWLY ON THE SCREEN"
130 GOSUB 200

140 PRINT “USING A SIMPLE LOOP”
150 GOSUB 200

160 PRINT “AS A TIME DELAY.”

170 GOSUB 200

180 END

200 FORL = 1 TO 500 : NEXT

210 RETURN

BASIC LANGUAGE VOCABULARY 51

Each time the program executes a GOSUB, the line number and posi-
tion in the program line are saved in a special area called the “stack,”
which takes up 256 bytes of your memory. This limits the amount of data
that can be stored in the stack. Therefore, the number of subroutine
return addresses that can be stored is limited, and care should be taken
to make sure every GOSUB hits the corresponding RETURN, or else you’ll
run out of memory even though you have plenty of bytes free.

GOTO

TYPE: Statement
FORMAT: GOTO <line number>
or GO TO <line number>

Action: This statement allows the BASIC program to execute lines out
of numerical order. The word GOTO followed by a number will make
the program jump to the line with that number. GOTO NOT followed by
a number equals GOTO 0. It must have the line number aofter the word
GOTO.

It is possible to create loops with GOTO that will never end. The
simplest example of this is a line that GOes TO itself, like 10 GOTO 10.

These loops can be stopped using the key on the key-
board.

EXAMPLES of GOTO Statement:

GOTO 100
10 GO TO 50
20 GOTO 999

IF...THEN . ..

TYPE: Statement

FORMAT: |F <expression> THEN <line number>
IF <expression> GOTO <line number>
IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its “intelli-
gence,” the ability to evaluate conditions and take different actions de-
pending on the outcome.

52 BASIC LANGUAGE VOCABULARY

The word IF is followed by an expression, which can include varia-
bles, strings, numbers, comparisons, and logical operators. The word
THEN appears on the same line and is followed by either a line number
or one or more BASIC statements. When the expression is false, every-
thing after the word THEN on that line is ignored, and execution con-
tinues with the next line number in the program. A true result makes the
program either branch to the line number after the word THEN or exe-
cute whatever other BASIC statements are found on that line.

EXAMPLE of IF. . .GOTO. . .Statement:

100 INPUT “TYPE A NUMBER”; N

110 IF N <= 0 GOTO 200

120 PRINT “SQUARE ROOT=" SQR(N)
130 GOTO 100

200 PRINT “NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number. The IF
statement here is used to validate the result of the INPUT. When the
result of N <= 0 is true, the program skips to line 200, and when the
result is false the next line to be executed is 120. Note that THEN GOTO
is not needed with IF. . .THEN, as in line 110 where GOTO 200 actually
means THEN GOTO 200.

EXAMPLE OF IF. . . THEN. . . Statement:

100 FOR L = 1 TO 100

110 IF RND(1) < .5 THEN X = X+ 1 : GOTO 130
120Y = Y+ 1

130 NEXT L

140 PRINT “HEADS= " X

150 PRINT “TAILS= " Y

The IF in line 110 tests a random number to see if it is less than .5.
When the result is true, the whole series of statements following the
word THEN are executed: first X is incremented by 1, then the program
skips to line 130. When the result is false, the program drops to the next
statement, line 120.

BASIC LANGUAGE VOCABULARY 53

INPUT

TYPE: Statement
FORMAT: INPUT [“<prompt>" ;] <variable list>

Action: This is a statement that lets the person RUNning the program
“feed” information into the computer. When executed, this statement
PRINTs a question mark (?) on the screen, and positions the cursor 1
space to the right of the question mark. Now the computer waits, cursor
blinking, for the operator to type in the answer and press the
key.

The word INPUT may be followed by any text contained in quote

"o

marks (). This text is PRINTed on the screen, followed by the ques-
tion mark.

After the text comes a semicolon (;) and the name of one or more
variables separated by commas. This variable is where the computer
stores the information that the operator types. The variable can be any
legal variable name, and you can have several different variable

names, each for a different input.

EXAMPLES of INPUT Statement:

100 INPUT A
110 INPUT B, C, D
120 INPUT “PROMPT"; E

When this program RUNs,the question mark appears to prompt the
operator that the Commodore 64 is expecting an input for line 100. Any
number typed in goes into A, for later use in the program. If the answer
typed was not a number, the 2REDO FROM START message appears,
which means that a string was received when a number was expected.
If the operator just hits without typing anything, the vari-
able’s value doesn’t change.

Now the next question mark, for line 110, appears. If we type only
one number and hit , the Commodore 64 will now display 2
question marks (??), which means that more input is required. You can

54 BASIC LANGUAGE VOCABULARY

just type as many inputs as you need separated by commas, which
prevents the double question mark from appearing. If you type more
data than the INPUT statement requested, the 2EXTRA IGNORED mes-
sage appears, which means that the extra items you typed were not put
into any variables.

Line 120 displays the word PROMPT before the question mark ap-
pears. The semicolon is required between the prompt and any list of
variables.

The INPUT statement can never be used outside a program. The
Commodore 64 needs space for a buffer for the INPUT variables, the
same space that is used for commands.

INPUT#

TYPE: I/O Statement
FORMAT: INPUT# <file number> , <variable list>

Action: This is usually the fastest and easiest way to retrieve data
stored in a file on disk or tape. The data is in the form of whole vari-
ables of up to 80 characters in length, as opposed to the one-at-a-time
method of GET#. First, the file must have been OPENed, then INPUT#
can fill the variables.

The INPUT# command assumes a variable is finished when it reads a
RETURN code (CHR$ (13)), a comma (,), semicolon (;), or colon (:).
Quote marks can be used to enclose these characters when writing if
they are needed (see PRINT# statement).

If the variable type used is numeric, and non-numeric characters are
received, a BAD DATA error results. INPUT# can read strings up to 80
characters long, beyond which a STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an
entire logical line and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, A$, B$

BASIC LANGUAGE VOCABULARY 55

INT

TYPE: Integer Function
FORMAT: INT (<numeric>)

Action: Returns the integer value of the expression. If the expression
is positive, the fractional part is left off. If the expression is negative,
any fraction causes the next lower integer to be returned.

EXAMPLES of INT Function:
120 PRINT INT(99.4343), INT(—12.34)

99 -13
LEFT$

TYPE: String Function
FORMAT: LEFT$ (<string™>, <integer>)

Action: Returns a string comprised of the leftmost <integer> char-
acters of the <string>. The integer argument value must be in the
range 0 to 255. If the integer is greater than the length of the string, the
entire string will be returned. If an <integer> value of zero is used,
then a null string (of zero length) is returned.

EXAMPLES of LEFT$ Function:

10 A$ = “COMMODORE COMPUTERS"”
20 B$ = LEFT$(A$,9): PRINT B$
RUN

COMMODORE

56 BASIC LANGUAGE VOCABULARY

LEN

TYPE: Integer Function
Format: LEN (<string™>)

Action: Returns the number of characters in the string expression.
Non-printed characters and blanks are counted.

EXAMPLE of LEN Function:
CC$ = “COMMODORE COMPUTER": PRINT LEN(CCS$)
18

LET

TYPE: Statement
FORMAT: [LET] <variable> = <expression>>

Action: The LET statement can be used to assign a value to a vari-
able. But the word LET is optional and therefore most advanced pro-
grammers leave LET out because it’s always understood and wastes val-
vable memory. The equal sign (=) alone is sufficient when assigning the
value of an expression to a variable name.

EXAMPLES of LET Statement:

10 LET D= 12 (This is the same as D = 12)

20 LET E$ = “ABC”

30 F$ = “WORDS”

40 SUM$ = E$ + F$ (SUM$ would equal ABCWORDS)

BASIC LANGUAGE VOCABULARY 57

LIST

TYPE: Command
FORMAT: LIST [[<first-line>]—[<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC
program currently in the memory of your Commodore 64. This lets you
use your computer’s powerful screen editor to edit programs which
you've LISTed both quickly and easily.

The LIST system command displays all or part of the program that is
currently in memory on the default output device. The LIST will normally
be directed to the screen and the CMD statement can be used to switch
output to an external device such as a printer or a disk. The LIST com-
mand can appear in a program, but BASIC always returns to the system
READY message after a LIST is executed.

When you bring the program LIST onto the screen, the “scrolling” of
the display from the bottom of the screen to the top can be slowed by
holding down the ConTRol key. LIST is aborted by typing
the key.

If no line-numbers are given the entire program is listed. If only the
first-line number is specified, and followed by a hyphen (-), that line and
all higher-numbered lines are listed. If only the last line-number is spec-
ified, and it is preceded by a hyphen, then all lines from the beginning
of the program through that line are listed. If both numbers are spec-
ified, the entire range, including the line-numbers LISTed, is displayed.

EXAMPLES of LIST Command:

LIST (Lists the program currently in memory.)

LIST 500 (Lists line 500 only.)

LIST 150- (Lists all lines from 150 to the end.)

LIST -1000 (Lists all lines from the lowest through 1000.)

LIST 150-1000 (Lists lines 150 through 1000, inclusive.)
10 PRINT “THIS IS LINE 10”

20 LIST (LIST used in Program Mode)

30 PRINT “THIS IS LINE 30"

58 BASIC LANGUAGE VOCABULARY

LOAD

TYPE: Command
FORMAT: LOAD [""<file-name>"'’'] [,<device>]
[,<address>]

Action: The LOAD statement reads the contents of a program file from
tape or disk into memory. That way you can use the information LOADed
or change the information in some way. The device number is optional,
but when it is left out the computer will automatically default to 1, the
cassette unit. The disk unit is normally device number 8. The LOAD
closes all open files and, if it is used in direct mode, it performs a CLR
(clear) before reading the program. If LOAD is executed from within a
program, the program is RUN. This means that you can use LOAD to
“chain” several programs together. None of the variables are cleared
during a chain operation.

If you are using file-name pattern matching, the first file which
matches the pattern is loaded. The asterisk in quotes by itself (“**)
causes the first file-name in the disk directory to be loaded. if the file-
name used does not exist or if it is not a program file, the BASIC error
message ?FILE NOT FOUND occurs.

When LOADing programs from tape, the <file-name> can be left
out, and the next program file on the tape will be read. The Commodore
64 will blank the screen to the border color after the PLAY key is
pressed. When the program is found, the screen clears to the back-
ground color and the “FOUND” message is displayed. When the @
key, key, BB key, or is pressed, the file will
be loaded. Programs will LOAD starting at memory location 2048 unless
a secondary <address> of 1 is used. If you use the secondary address
of 1 this will cause the program to LOAD to the memory location from
which it was saved.

BASIC LANGUAGE VOCABULARY 59

EXAMPLES of LOAD Command:

LOAD (Reads the next program on tape)
LOAD A$ (Uses the name in A$ to search)
LOAD “*,8 (LOADs first program from disk)
LOAD ““,1,1 (Looks for the first program on

tape, and LOADs it into the same
part of memory that it came

from)
LOAD ““STAR TREK” (LOAD a file from tape)
PRESS PLAY ON TAPE
FOUND STAR TREK
LOADING
READY.
LOAD “FUN”,8 (LOAD a file from disk)
SEARCHING FOR FUN
LOADING
READY.
LOAD “GAME ONE",8,1 (LOAD a file to the specific
SEARCHING FOR GAME ONE memory location from which the
LOADING program was saved on the disk)
READY.

60 BASIC LANGUAGE VOCABULARY

LOG

TYPE: Floating-Point Function
FORMAT: LOG (<numeric>)

Action: Returns the natural logarithm (log to the base of e) of the
argument. If the value of the argument is zero or negative the BASIC
error message ?ILLEGAL QUANTITY will occur.

EXAMPLES of LOG Function:

25 PRINT LOG(45/7)
1.86075234

10 NUM = LOG(ARG) / LOG(10) (Calculates the LOG of ARG to the
base 10)

MID$

TYPE: String Function
FORMAT: MID$ (<string>, <numeric-1> [,<numeric-
2>))

Action: The MID$ function returns a sub-string which is taken from
within a larger <string> argument. The starting position of the sub-
string is defined by the <numeric-1> argument and the length of the
sub-string by the <numeric-2> argument. Both of the numeric argu-
ments can have values ranging from 0 to 255.

If the <numeric-1> value is greater than the length of the <string>,
or if the <numeric-2> value is zero, then MID$ gives a null string value.
If the <numeric-2> argument is left out, then the computer will assume
that a length of the rest of the string is to be used. And if the source
string has fewer characters than <numeric-2>, from the starting posi-
tion to the end of the string argument, then the whole rest of the string is
used.

EXAMPLE of MID$ Function:
10 A$="GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$ + MID$(BS, 8, 8)
GOOD EVENING

BASIC LANGUAGE VOCABULARY 61

NEW

TYPE: Command
FORMAT: NEW

Action: The NEW command is used to delete the program currently in
memory and clear all variables. Before typing in a new program, NEW
should be used in direct mode to clear memory. NEW can also be used
in a program, but you should be aware of the fact that it will erase
everything that has gone before and is still in the computer’s memory.
This can be particularly troublesome when you're trying to debug your
program.

BE CAREFUL: Not clearing out an old program before typing a new one can result in
a confusing mix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the program and all variables)
10 NEW (Performs a NEW operation and STOPs the program.)

NEXT

TYPE: Statement
FORMAT: NEXT [<counter>>] [,<counter>]

Action: The NEXT statement is used with FOR to establish the end of a
FOR. . . NEXT loop. The NEXT need not be physically the last statement
in the loop, but it is always the last statement executed in a loop. The
<counter> is the loop index’s variable name used with FOR to start the
loop. A single NEXT can stop several nested loops when it is followed by
each FOR’s <counter>> variable name(s). To do this each name must
appear in the order of inner-most nested loop first, to outer-most nested
loop last. When using a single NEXT to increment and stop several vari-
able names, each variable name must be separated by commas. Loops
can be nested to 9 levels. If the counter variable(s) are omitted, the
counter associated with the FOR of the current level (of the nested loops)
is incremented.

62 BASIC LANGUAGE VOCABULARY

When the NEXT is reached, the counter value is incremented by 1 or
by an optional STEP value. It is then tested against an end-value to see
if it's time to stop the loop. A loop will be stopped when a NEXT is found
which has its counter value greater than the end-value.

EXAMPLES of NEXT Statement:
10FORJ=1TO 5: FORK = 10TO 20: FORN = 5TO —5 STEP —1

20 NEXT N, K, J (Stopping Nested Loops)

10 FORL = 1TO 100
20 FORM =1TO 10

30 NEXT M

400 NEXT L (Note how the loops do NOT cross each
other)

10 FORA =1T0 10

20FOR B =1 TO 20

30 NEXT

40 NEXT (Notice that no variable names are
needed)

NOT

TYPE: Logical Operator
FORMAT: NOT <expression>

Action: The NOT logical operator “complements’” the value of each bit
in its single operand, producing an integer “twos-complement’ result. In
other words, the NOT is really saying, “if it isn’t. . . . When working
with a floating-point number, the operands are converted to integers
and any fractions are lost. The NOT operator can also be used in a
comparison to reverse the true/false value which was the result of a
relationship test and therefore it will reverse the meaning of the com-
parison. In the first example below, if the “twos-complement”’ of “AA" is
equal to “BB"” and if “BB” is NOT equal to “CC" then the expression is
true.

BASIC LANGUAGE VOCABULARY 63

EXAMPLES of NOT Operator:
10 IF NOT AA = BB AND NOT(BB = CC) THEN

NN% = NOT 96: PRINT NN%
—97

NOTE: To find the value of NOT use the expression X=(—(X+1)). (The two’s comple-
ment of any integer is the bit complement plus one.) |

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <line-
number> [, <line-number>]

Action: The ON statement is used to GOTO one of several given line-
numbers, depending upon the value of a variable. The value of the
variables can range from zero through the number of lines given. If the
value is a non-integer, the fractional portion is left off. For example, if
the variable value is 3, ON will GOTO the third line-number in the list.

If the value of the variable is negative, the BASIC error message
?ILLEGAL QUANTITY occurs. If the number is zero, or greater than the
number of items in the list, the program just “ignores’ the statement and
continues with the statement following the ON statement.

ON is really an underused variant of the IF. . .THEN. . . statement.
Instead of using a whole lot of IF statements each of which sends the
program to 1 specific line, 1 ON statement can replace a list of IF
statements. When you look at the first example you should notice that
the 1 ON statement replaces 4 IF. . .THEN. . . statements.

EXAMPLES of ON Statement:
ON —(A=7)—2*(A=3)— 3*(A<3)—4*(A>7)GOTO 400,900,1000,100

ON X GOTO 100,130,180,220
ON X+3 GOSUB 9000,20,9000
100 ON NUM GOTO 150, 300, 320, 390

500 ON SUM / 2 + 1 GOSUB 50, 80, 20

64 BASIC LANGUAGE VOCABULARY

OPEN

TYPE: I/O Statement
FORMAT: OPEN <file-num>, [<device>] [,<address>]
[,“<file-name> [,<type>] [,<mode>]"]

Action: This statement OPENs a channel for input and/or output to a
peripheral device. However, you may NOT need all those parts for
every OPEN statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER
2) DEVICE NUMBER

The <file-num> is the logical file number, which relates the OPEN,
CLOSE, CMD, GET#, INPUT#, and PRINT# statements to each other
and associates them with the file-name and the piece of equipment
being used. The logical file number can range from 1 to 255 and you
can assign it any number you want in that range.

NOTE: File numbers over 128 were really designed for other uses so it's good practice
to use only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has
its own number which it answers to. The <device> number is used with
OPEN to specify on which device the data file exists. Peripherals like
cassette decks, disk drives or printers also answer to several secondary
addresses. Think of these as codes which tell each device what opera-
tion to perform. The device logical file number is used with every GET#,
INPUT#, and PRINT#.

If the <device> number is left out the computer will automatically
assume that you want your information to be sent to and received from
the Datassette™, which is device number 1. The file-name can also be
left out, but later on in your program, you can NOT call the file by name
if you have not already given it one. When you are storing files on cas-
sette tape, the computer will assume that the secondary <address> is
zero (0) if you omit the secondary address (a READ operation).

BASIC LANGUAGE VOCABULARY 65

A secondary address value of one (1) OPENs cassette tape files for
writing. A secondary address value of two (2) causes an end-of-tape
marker to be written when the file is later closed. The end-of-tape
marker prevents accidentally reading past the end of data which results
in the BASIC error message ?DEVICE NOT PRESENT.

For disk files, the secondary addresses 2 thru 14 are available for
data-files, but other numbers have special meanings in DOS commands.
You must use a secondary address when using your disk drive(s). (See
your disk drive manual for DOS command details.)

The <file-name> is a string of 1—16 characters and is optional for
cassette or printer files. If the file <type> is left out the type of file will
automatically default to the Program file unless the <mode> is given.
Sequential files are OPENed for reading <mode>>=R unless you specify
that files should be OPENed for writing <mode>=W is specified. A file
<type> can be used to OPEN an existing Relative file. Use REL for
<type> with Relative files. Relative and Sequential files are for disk
only.

If you try to access a file before it is OPENed the BASIC error message
?FILE NOT OPEN will occur. If you try to OPEN a file for reading which
does not exist the BASIC error message ?FILE NOT FOUND will occur. If
a file is OPENed to disk for writing and the file-name already exists, the
DOS error message FILE EXISTS occurs. There is no check of this type
available for tape files, so be sure that the tape is properly positioned or
you might accidentally write over some data that had previously been
SAVEd. If a file is OPENed that is already OPEN, the BASIC error mes-
sage FILE OPEN occurs. (See Printer Manual for further details.)

66 BASIC LANGUAGE VOCABULARY

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 “DISK-OUTPUT,
SEQ,W”

10 OPEN 1, 1, 2, “TAPE-WRITE”

10 OPEN 50, 0

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1,1,0, “NAME”

10 OPEN 1,1,1, “NAME”

10 OPEN 1,2,0, CHR$ (10)

10 OPEN 1,4,0, “STRING"”

10 OPEN 1,4,7, “STRING"

10 OPEN 1,5,7, “STRING"”

10 OPEN 1,8,15, “COMMAND"

(Opens sequential file on disk)
(Write End-of-File on Close)
(Keyboard input)

(Screen output)

(Printer output)

(Read from cassette)

(Write to cassette)

(Open channel to RS-232 device)
(Send upper case/graphics to
the printer)

(Send upper/lower case to
printer)

(Send upper/lower case to

printer with device # 5)
(Send a command to disk)

BASIC LANGUAGE VOCABULARY 67

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Action: Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more re-
lations and return a true or false value which can then be used in a
decision. When used in calculations, the logical OR gives you a bit result
of 1 if the corresponding bit of either or both operands is 1. This will
produce an integer as a result depending on the values of the operands.
When used in comparisons the logical OR operator is also used to link
two expressions into a single compound expression. If either of the ex-
pressions are true, the combined expression value is true (—1). In the
first example below if AA is equal to BB OR if XX is 20, the expression is
true.

Logical operators work by converting their operands to 16-bit, signed,
two’s complement integers in the range of —32768 to +32767. If the
operands are not in the range an error message results. Each bit of the
result is determined by the corresponding bits in the two operands.

EXAMPLES of OR Operator:
100 IF (AA = BB) OR (XX = 20) THEN
230 KK% = 64 OR 32: PRINT KK% (You typed this with a bit
value of 1000000 for 64
and 100000 for 32)
96 (The computer responded

with bit value 1100000.
1100000=96.)

68 BASIC LANGUAGE VOCABULARY

PEEK

TYPE: Integer Function
FORMAT: PEEK (<numeric>)

Action: Returns an integer in the range of 0 to 255, which is read
from a memory location. The <numeric> expression is a memory loca-
tion which must be in the range of 0 to 65535. If it isn’t then the BASIC
error message ?ILLEGAL QUANTITY occurs.

EXAMPLES of PEEK Function:

10 PRINT PEEK(53280) AND 15 (Returns value of screen
border color)
5 A% =PEEK(45)+PEEK(46)*256 (Returns address of BASIC

variable table)

POKE

TYPE: Statement
FORMAT: POKE <location>, <value>

Action:The POKE statement is used to write a one-byte (8-bits) binary
value into a given memory location or input/output register. The
<location> is an arithmetic expression which must equal a value in the
range of O to 65535. The <value> is an expression which can be re-
duced to an integer value of 0 to 255. If either value is out of its respec-
tive range, the BASIC error message ?ILLEGAL QUANTITY occurs.

The POKE statement and PEEK statement (which is a built-in function
that looks at a memory location) are useful for data storage, controlling
graphics displays or sound generation, loading assembly language sub-
routines, and passing arguments and results to and from assembly lan-
guage subroutines. In addition, Operating System parameters can be
examined using PEEK statements or changed and manipulated using
POKE statements. A complete memory map of useful locations is given
in Appendix G.

BASIC LANGUAGE VOCABULARY 69

EXAMPLES of POKE Statement:

POKE 1024, 1 (Puts an “A’ at position 1 on the screen)
POKE 2040, PTR (Updates Sprite #0 data pointer)

10 POKE RED, 32

20 POKE 36879, 8

2050 POKE A, B

POS

TYPE: Integer Function
FORMAT: POS (<dummy>)

Action: Tells you the current cursor position which, of course, is in the
range of O (leftmost character) though position 79 on an 80-character
logical screen line. Since the Commodore 64 has a 40-column screen,
any position from 40 through 79 will refer to the second screen line. The
dummy argument is ignored.

EXAMPLE of POS Function:

1000 IF POS(0) > 38 THEN PRINT CHR$(13)

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<,/;><variable>]

Action: The PRINT statement is normally used to write data items to
the screen. However, the CMD statement may be used to re-direct that
output to any other device in the system. The <variable(s)> in the
output-list are expressions of any type. If no output-list is present, a
blank line is printed. The position of each printed item is determined by
the punctuation used to separate items in the output-list.

The punctuation characters that you can use are blanks, commas, or
semicolons. The 80-character logical screen line is divided into 8 print
zones of 10 spaces each. In the list of expressions, a comma causes the
next value to be printed at the beginning of the next zone. A semicolon
causes the next value to be printed immediately following the previous
value. However, there are two exceptions to this rule:

70 BASIC LANGUAGE VOCABULARY

1) Numeric items are followed by an added space.

2) Positive numbers have a space preceding them.

When you use blanks or no punctuation between string constants or
variable names it has the same effect as a semicolon. However, blanks
between a string and a numeric item or between two numeric items will
stop output without printing the second item.

If a comma or a semicolon is at the end of the output-list, the next
PRINT statement begins printing on the same line, and spaced accord-
ingly. If no punctuation finishes the list, a carriage-return and a line-
feed are printed at the end of the data. The next PRINT statement will
begin on the next line. If your output is directed to the screen and the
data printed is longer than 40 columns, the output is continued on the
next screen line.

There is no statement in BASIC with more variety than the PRINT
statement. There are so many symbols, functions, and parameters
associated with this statement that it might almost be considered as a
language of its own within BASIC; a language specially designed for
writing on the screen.

EXAMPLES of PRINT Statement:

1)
5X =5
10 PRINT —5*X, X—5, X+5, X 1 5
-25 0 10 3125
2)
5 X=9

10 PRINT X;”SQUARED 1S”;X*X;AND";
20 PRINT X “CUBED IS” X T 3

9 SQUARED IS 81 AND 9 CUBED IS 729
3)

90 AA$="ALPHA":BB$="BAKER"”: CC$="CHARLIE“:DD$="DOG":
EE$="ECHO"
100 PRINT AABB;CC$ DD$,EE$
ALPHABAKERCHARLIEDOG ECHO

BASIC LANGUAGE VOCABULARY 71

Quote Mode

Once the quote mark (B) is typed, the cursor controls stop
operating and start displaying reversed characters which actually stand
for the cursor control you are hitting. Thi€ allows you to program these
cursor controls, because once the text inside the quotes is PRINTed they
perform their functions. The m key is the only cursor control
not affected by “quote mode.”

1. Cursor Movement
The cursor controls which can be “programmed” in quote mode are:

KEY APPEARS AS

T cRrsR ||

If you wanted the word HELLO to PRINT diagonally from the upper left
corner of the screen, you would type:

PRINT (EERETIED + (EEH & (D | G . GRS O

which would appear as:
PRNT B HB e @ L@ L@ o

2. Reverse Characters

=800

Holding down the key and hitting a will cause n to ap-
pear inside the quotes. This will make all characters start printing in
reverse video (like a negative of a picture). To end the reverse printing

hit B . which prints a [Jor else PRINT a (CHR$(13)).

(Just ending the PRINT statement without a semicolon or comma will
take care of this.)

3. Color Controls

Holding down the key or [€ key with any of the 8 color keys
will make a special reversed character appear in the quotes. When the
character is PRINTed, then the color change will occur.

72 BASIC LANGUAGE VOCABULARY

KEY COLOR APPEARS AS
Black
2] White
cre J 3 Red
4] Cyan
B8 Purple
G Green
(1] Blue
(8] Yellow

@ Orange
@ B Brown
(Cf 3] Light Red
E n Grey 1
C B Grey 2
[C<)f 6 Light Green
(x| Light Blue
a0 Grey 3

mCEDOXNNCCENE™YREN

If you wanted to PRINT the word HELLO in cyan and the word THERE
in white, type:

PRINT * O Hewo B B THERE”

which would appear as:

PRINT “ B\] HELLO [@ THERE”

4. Insert Mode

The spaces created by using the key have some of the same
characteristics as quote mode. The cursor controls and color controls
show up as reversed characters. The only difference is in the ond

DEL , which performs its normal function even in quote mode, now

BASIC LANGUAGE VOCABULARY 73

creates the . And , which created a special character in
quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINT statement containing
DELetes, which cannot be PRINTed in quote mode. Here is an example
of how this is done:

10 PRINTHELLO” [IRITES Bl R INST/DEL | INST/DEL
INST/DEL g

which displays as

10 PRINT“HELLO P

When the above line is RUN, the word displayed will be HELP, be-
cause the last two letters are deleted and the P is put in their place.

WARNING: The DELetes will work when LISTing as well as PRINTing, so editing a !
line with these characters will be difficult.

The ““insert mode’’ condition is ended when the RETURN
(or il RETURN) key is hit, or when as many characters have

been typed as spaces were inserted.

5. Other Special Characters

There are some other characters that can be PRINTed for special
functions, although they are not easily available from the keyboard. In
order to get these into quotes, you must leave empty spaces for them in
the line, hit or , and go back to the
spaces with the cursor controls. Now you must hit ,
to start typing reversed characters, and type the keys shown below:

Function Type Appears As

swirt J
o

switch to lower case

0
switch to upper case

0

(1]

disable case-switching keys

aaNa%

enable case-switching keys

74 BASIC LANGUAGE VOCABULARY

The will work in the LISTing as well as PRINT-
ing, so editing will be almost impossible if this character is used. The
LISTing will also look very strange.

PRINT#

TYPE: I/O Statement
FORMAT: PRINT# <file-number> [<variable>]
[<,);><variable>]

Actions: The PRINT# statement is used to write data items to a logical
file. It must use the same number used to OPEN the file. Output goes to
the device-number used in the OPEN statement. The <variable> ex-
pressions in the output-list can be of any type. The punctuation char-
acters between items are the same as with the PRINT statement and
they can be used in the same ways. The effects of punctuation are
different in two significant respects.

When PRINT# is used with tape files, the comma, instead of spacing
by print zones, has the same effect as a semicolon. Therefore, whether
blanks, commas, semicolons or no punctuation characters are used be-
tween data items, the effect on spacing is the same. The data items are
written as a continuous stream of characters. Numeric items are fol-
lowed by a space and, if positive, are preceded by a space.

If no punctuation finishes the list, a carriage-return and a line-feed
are written at the end of the data. If a comma or semicolon terminates
the output-list, the carriage-return and line-feed are suppressed. Re-
gardless of the punctuation, the next PRINT# statement begins output in
the next available character position. The line-feed will act as a stop
when using the INPUT# statement, leaving an empty variable when the
next INPUT# is executed. The line-feed can be suppressed or compen-
sated for as shown in the examples below.

The easiest way to write more than one variable to a file on tape or
disk is to set a string variable to CHR$(13), and use that string in be-
tween all the other variables when writing the file.

BASIC LANGUAGE VOCABULARY 75

EXAMPLES of PRINT# Statement:

1)
10 OPEN 1,1,1, “TAPE FILE”
20 R$ = CHR$(13) (By Changing the CHR$(13) to
30 PRINT# 1,1;R$;2;R$;3;R$;4;,R$;5 CHR$(44) you put a “, between
40 PRINT# 1,6 each variable. CHR$(59) would
50 PRINT# 1,7 put a “;" between each
variable.)
2)
10 CO$=CHR$(44): CR$=CHR$(13)
20 PRINT#1, “AAA“CO$’BBB”, AAA,BBB CCCDDDEEE
“CCC”;”DDD";"EEE“CR$ (carriage return)
“FFF'“CR$; FFF(carriage return)

30 INPUT#1, A$,BCDE$,F$

3)
5 CR$=CHR$(13)
10 PRINT#2, “AAA";CR$;“BBB" (10 blanks) AAA
20 PRINT#2, “CCC"; BBB

(10 blanks)CCC
30 INPUT#2, A$,B$,DUMMY$,C$

READ

TYPE: Statement
FORMAT: READ <variable> [,<variable>]

Action: The READ statement is used to fill variable names from con-
stants in DATA statements. The data actually read must agree with the
variable types specified or the BASIC error message ?SYNTAX ERROR
will result.* Variables in the DATA input-list must be separated by com-
mas.

A single READ statement can access one or more DATA statements,
which will be accessed in order (see DATA), or several READ statements
can access the same DATA statement. If more READ statements are exe-
cuted than the number of elements in DATA statements(s) in the pro-

76 BASIC LANGUAGE VOCABULARY

gram, the BASIC error message ?OUT OF DATA is printed. If the
number of variables specified is fewer than the number of elements in
the DATA statement(s), subsequent READ statements will continue read-
ing at the next data element. (See RESTORE.)

*NOTE: The ?SYNTAX ERROR will appear with the line number from the DATA state-
ment, NOT the READ statement.

EXAMPLES of READ Statement:

110 READ A,B,C$
120 DATA 1,2,HELLO

100 FOR X=1 TO 10: READ A(X):NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24
210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line 5))
1 READ CITY$,STATES, ZIP

5 DATA DENVER,COLORADO, 80211

REM

TYPE: Statement
FORMAT: REM [<remark>]

Action: The REM statement makes your programs more easily under-
stood when LISTed. It's a reminder to yourself to tell you what you had in
mind when you were writing each section of the program. For instance,
you might want to remember what a variable is used for, or some other
useful information. The REMark can be any text, word, or character
including the colon (:) or BASIC keywords.

The REM statement and anything following it on the same line-number
are ignored by BASIC, but REMarks are printed exactly as entered when
the program is listed. A REM statement can be referred to by a GOTO or
GOSUB statement, and the execution of the program will continue with
the next higher program line having executable statements.

BASIC LANGUAGE VOCABULARY 77

EXAMPLES of REM Statement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=1 TO 20 :REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): NEXT

40 AVG=SUM/20

RESTORE

TYPE: Statement
FORMAT: RESTORE

Action: BASIC maintains an internal pointer to the next DATA constant
to be READ. This pointer can be reset to the first DATA constant in a
program using the RESTORE statement. The RESTORE statement can be
used anywhere in the program to begin re-READing DATA.

EXAMPLES of RESTORE Statement:

100 FOR X=1 TO 10: READ A(X): NEXT
200 RESTORE
300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA 1,2,3,4

20 DATA 5,6,7,8

30 FORL=1TO 8
40 READ A: PRINT A
50 NEXT

60 RESTORE

70 FOR L=1TO 8
80 READ A: PRINT A
90 NEXT

78 BASIC LANGUAGE VOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called
for by a GOSUB statement. RETURN restarts the rest of your program at
the next executable statement following the GOSUB. If you are nesting
subroutines, each GOSUB must be paired with at least one RETURN
statement. A subroutine can contain any number of RETURN statements,
but the first one encountered will exit the subroutine.

EXAMPLE of RETURN Statement:

10 PRINT “THIS IS THE PROGRAM"”

20 GOSUB 1000

30 PRINT “PROGRAM CONTINUES”

40 GOSUB 1000

50 PRINT “MORE PROGRAM”

60 END

1000 PRINT “THIS IS THE GOSUB":RETURN

RIGHTS$

TYPE: String Function
FORMAT: RIGHT$ (<string™>, <numeric>)

Action: The RIGHT$ function returns a sub-string taken from the right-
most end of the <string> argument. The length of the sub-string is
defined by the <numeric> argument which can be any integer in the
range of 0 to 255. If the value of the numeric expression is zero, then a
null string (") is returned. If the value you give in the <numeric>
argument is greater than the length of the <string> then the entire
string is returned.

EXAMPLE of RIGHT$ Function:

10 MSG$ = “COMMODORE COMPUTERS”
20 PRINT RIGHT$(MSG$,9)

RUN

COMPUTERS

BASIC LANGUAGE VOCABULARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND (<<numeric>)

Action: RND creates a floating-point random from 0.0 to 1.0. The
computer generates a sequence of random numbers by performing cal-
culations on a starting number, which in computer jargon is called a
seed. The RND function is seeded on system power-up. The <numeric>
argument is a dummy, except for its sign (positive, zero, or negative).

If the <numeric> argument is positive, the same "“pseudorandom”
sequence of numbers is returned, starting from a given seed valuve. Dif-
ferent number sequences will result from different seeds, but any se-
quence is repeatable by starting from the same seed number. Having a
known sequence of “random” numbers is useful in testing programs.

If you choose a <numeric> argument of zero, then RND generates a
number directly from a free-running hardware clock (the system “jiffy
clock”). Negative arguments cause the RND function to be re-seeded
with each function call.

EXAMPLES of RND Function:

220 PRINT INT(RND(0)*50) (Return random integers
0-49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2 (Simulates 2 dice)

100 X=INT(RND(1)*1000)+1 (Random integers from
1-1000)

100 X=INT(RND(1)*150)+100 (Random numbers from
100-249)

100 X=RND(1)*(U-L)+L (Random numbers between
upper (U) and lower
(L) limits)

80 BASIC LANGUAGE VOCABULARY

RUN

TYPE: Command
FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program cur-
rently in memory. The RUN command causes an implied CLR operation
to be performed before starting the program. You can avoid the CleaR-
ing operation by using CONT or GOTO to restart a program instead of
RUN. If a <line-number> is specified, your program will start on that
line. Otherwise, the RUN command starts at first line of the program.
The RUN command can also be used within a program. If the <line-
number> you specify doesn’t exist, the BASIC error message UNDEF'D
STATEMENT occurs.

A RUNning program stops and BASIC returns to direct mode when an
END or STOP statement is reached, when the last line of the program is
finished, or when a BASIC error occurs during execution.

EXAMPLES of RUN Command:

RUN (Starts at first line of program)

RUN 500 (Starts at line-number 500)

RUN X (Starts at line X, or UNDEF’'D STATEMENT ERROR
if there is no line X)

SAVE

TYPE: Command
FORMAT: SAVE [“<file-name>"] [,<device-number>]
[, <address>]

Action: The SAVE command is used to store the program that is cur-
rently in memory onto a tape or diskette file. The program being SAVEd
is only affected by the command while the SAVE is happening. The pro-
gram remains in the current computer memory even after the SAVE op-
eration is completed until you put something else there by using another
command. The file type will be “prg” (program). If the <device-
number> is left out, then the C64 will automatically assume that you
want the program saved on cassette, device number 1. If the <device-
number> is an <8>, then the program is written onto disk. The SAVE

BASIC LANGUAGE VOCABULARY 81

statement can be used in your programs and execution will continue
with the next statement after the SAVE is completed.

Programs on tape are automatically stored twice, so that your Com-
modore 64 can check for errors when LOADing the program back in.
When saving programs to tape, the <file-name> and secondary <ad-
dress> are optional. But following a SAVE with a program name in
quotes (“ ") or by a string variable (---$) helps your Commodore 64 find
each program more easily. If the file-name is left out it can NOT be
LOADed by name later on.

A secondary address of 1 will tell the KERNAL to LOAD the tape at a
later time, with the program currently in memory instead of the normal
2048 location. A secondary address of 2 will cause an end-of-tape
marker to follow the program. A secondary address of 3 combines both
functions.

When saving programs onto a disk, the <file-name> must be pre-
sent,

EXAMPLES of SAVE Command:

SAVE (Write to tape without a name)

SAVE “ALPHA”, 1 (Store on tape as file-name “alpha’)
SAVE “ALPHA”, 1, 2 (Store “alpha” with end-of-tape marker)
SAVE “FUN.DISK"”,8 (SAVES on disk (device 8 is the disk))
SAVE A$ (Store on tape with the name A$)

10 SAVE “HI” (SAVEs program and then move to next

program line)

SAVE “ME”,1,3 (Stores at same memory location and
puts an end-of-tape marker on)

82 BASIC LANGUAGE VOCABULARY

SGN

TYPE: Integer Function
FORMAT: SGN (<<numeric>)

Action: SGN gives you an integer value depending upon the sign of
the <numeric> argument. If the argument is positive the result is 1, if
zero the result is also 0, if negative the result is —1.

EXAMPLE of SGN Function:

90 ON SGN(DV)+2 GOTO 100, 200, 300
(jump to 100 if DV=negative, 200 if DV=0, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT: SIN (<numeric>)

Action: SIN gives you the sine of the <numeric> argument, in ra-
dians. The value of COS(x) is equal to SIN(x+3.14159265/2).

EXAMPLE of SIN Function:

235 AA = SIN(1.5): PRINT AA
. 997494987

SPC

TYPE: String Function
FORMAT: SPC (<numeric>)

Action: The SPC function is used to control the formatting of data, as
either an output to the screen or into a logical file. The number of
SPaCes given by the <numeric> argument are printed, starting at the
first available position. For screen or tape files the value of the argument
is in the range of 0 to 255 and for disk files up to 254. For printer files,
an automatic carriage-return and line-feed will be performed by the
printer if a SPaCe is printed in the last character position of a line. No
SPaCes are printed on the following line.

BASIC LANGUAGE VOCABULARY 83

EXAMPLE of SPC Function:

10 PRINT “RIGHT “; “HERE &";
20 PRINT SPC(5) “OVER” SPC(14) “THERE”
RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function
FORMAT: SQR (<numeric>)

Action: SQR gives you the value of the SQuare Root of the
<numeric> argument. The value of the argument must not be negative,
or the BASIC error message ?ILLEGAL QUANTITY will happen.

EXAMPLE of SQR Function:
FOR J = 2 TO 5: PRINT J*5, SQR(J * 5): NEXT
10 3.16227766

15 3.87298335
20 4.47213595

25 5
READY
STATUS

TYPE: Integer Function
FORMAT: STATUS

Action: Returns a completion STATUS for the last input/output opera-
tion which was performed on an open file. The STATUS can be read
from any peripheral device. The STATUS (or simply ST) keyword is a

84 BASIC LANGUAGE VOCABULARY

system defined variable-name into which the KERNAL puts the STATUS of
I/O operations. A table of STATUS code values for tape, printer, disk

and RS-232 file operations is shown below:

ST Bit | ST Numeric Cassette Serial Tape Verify
Position Value Read Bus R/'W + Load
0 1 time out
write
1 2 time out
read
2 4 short block short block
3 8 long block long block
4 16 unrecoverable any mismatch
read error
5 32 checksum checksum
error error
6 64 end of file EOI
7 —128 end of tape device not | end of tape
present

EXAMPLES of STATUS Function:

10 OPEN 1, 4: OPEN 2, 8, 4, “MASTER FILE,SEQ,W"

20 GOSUB 100: REM CHECK STATUS

30 INPUT#2, A$, B, C

40 IF STATUS AND 64 THEN 80: REM HANDLE END-OF-FILE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, AS$, B; C

70 GOTO 20

80 CLOSE1: CLOSE2

90 GOSUB 100: END

100 IF ST > 0 THEN 9000: REM HANDLE FILE /O ERROR
110 RETURN

BASIC LANGUAGE VOCABULARY

85

STEP

TYPE: Statement
FORMAT: [STEP <expression™]

Action: The optional STEP keyword follows the <end-value> expres-
sion in a FOR statement. It defines an increment value for the loop
counter variable. Any value can be used as the STEP increment. Of
course, a STEP value of zero will loop forever. If the STEP keyword is left
out, the increment value will be +1. When the NEXT statement in a FOR
loop is reached, the STEP increment happens. Then the counter is tested
against the end-value to see if the loop is finished. (See FOR statement
for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLES of STEP Statement:
25 FOR XX = 2 TO 20 STEP 2 (Loop repeats 10 times)

35 FOR ZZ = 0 TO —20 STEP —2 (Loop repeats 11 times)

STOP

TYPE: Statement
FORMAT: STOP

Action: The STOP statement is used to halt execution of the current
program and return to direct mode. Typing the key on the
keyboard has the same effect as a STOP statement. The BASIC error
message ?BREAK IN LINE nnnnn is displayed on the screen, followed
by READY. The “nnnnn” is the line-number where the STOP occurs. Any
open files remain open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO
statements.

EXAMPLES of STOP Statement:

10 INPUT#1, AA, BB, CC
20 IF AA = BB AND BB = CC THEN STOP
30 STOP

(If the variable AA is —1 and BB is equal to CC then:)
BREAK IN LINE 20
BREAK IN LINE 30 (For any other data values)

86 BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT: STR$ (<numeric>)

Action: STR$ gives you the STRing representation of the numeric value
of the argument. When the STR$ value is converted to each variable
represented in the <numeric> argument, any number shown is fol-
lowed by a space and, if it's positive, it is also preceded by a space.

EXAMPLE of STR$ Function:

100 FIT = 1.5E4: ALPHAS$ = STR$(FLT)
110 PRINT FLT, ALPHAS

15000 15000

SYS

TYPE: Statement
FORMAT: SYS <memory-location>

Action: This is the most common way to mix a BASIC program with a
machine language program. The machine language program begins at
the location given in the SYS statement. The system command SYS is
used in either direct or program mode to transfer control of the micro-
processor to an existing machine language program in memory. The
memory-location given is by numeric expression and can be anywhere in
memory, RAM or ROM.

When you’re using the SYS statement you must end that section of
machine language code with an RTS (ReTurn from Subroutine) instruction
so that when the machine language program is finished, the BASIC
execution will resume with the statement following the SYS command.

EXAMPLES of SYS Statement:
SYS 64738 (Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 (Goes to machine code location 4400
and returns immediately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: String Function
FORMAT: TAB (<numeric>)

Action: The TAB function moves the cursor to a relative SPC move
position on the screen given by the <numeric> argument, starting with
the left-most position of the current line. The value of the argument can
range from 0 to 255. The TAB function should only be used with the
PRINT statement, since it has no effect if used with PRINT# to a logical
file.

EXAMPLE of TAB Function:

100 PRINT “NAME” TAB(25) “AMOUNT": PRINT
110 INPUT#1, NAMS$, AMTS
120 PRINT NAM$ TAB(25) AMTS

NAME AMOUNT
G.T. JONES 25.
TAN

TYPE: Floating-Point Function
FORMAT: TAN (<numeric>)

Action: Returns the tangent of the value of the <numeric> expression
in radians. If the TAN function overflows, the BASIC error message ?DI-
VISION BY ZERO is displayed.

EXAMPLE of TAN Function:

10 XX = .785398163: YY = TAN(XX): PRINT YY
1

88 BASIC LANGUAGE VOCABULARY

TIME

TYPE: Numeric Function
FORMAT: TI

Action: The Tl function reads the interval Timer. This type of “clock” is
called a “jiffy clock.” The “jiffy clock” value is set at zero (initialized)
when you power-up the system. This 1/60 second interval timer is turned
off during tape I/0.

EXAMPLE of Tl Function:
10 PRINT TI/60 “SECONDS SINCE POWER UP”

TIME$

TYPE: String Function
FORMAT: TI$

Action: The TI$ timer looks and works like a real clock as long as your
system is powered-on. The hardware interval timer (or jiffy clock) is read
and used to update the value of TI$, which will give you a TIme $tring of
six characters in hours, minutes and seconds. The TI$ timer can also be
assigned an arbitrary starting point similar to the way you set your
wristwatch. The value of TI$ is not accurate after tape I/0.

EXAMPLE of TI$ Function:
1 TI$ = “000000”: FOR J=1 TO 10000: NEXT: PRINT TI$

000011

BASIC LANGUAGE VOCABULARY 89

USR

TYPE: Floating-Point Function
FORMAT: USR (<numeric>)

Action: The USR function jumps to a User callable machine language
SubRoutine which has its starting address pointed to by the contents of
memory locations 785-786. The starting address is established before
calling the USR function by using POKE statements to set up locations
785-786. Unless POKE statements are used, locations 785—-786 will give
you an ?ILLEGAL QUANTITY error message.

The value of the <numeric> argument is stored in the floating-point
accumulator starting at location 97, for access by the Assembler code,
and the result of the USR function is the value which ends up there when
the subroutine returns to BASIC.

EXAMPLES of USR Function:
10 B = T * SIN(Y)

20 C USR (B/2)
30D USR (B/3)

VAL

TYPE: Numeric Function
FORMAT: VAL (<string>)

Action: Returns a numeric VAlue representing the data in the
<string> argument. If the first non-blank character of the string is not a
plus sign (+), minus sign (=), or a digit the VALue returned is zero.
String conversion is finished when the end of the string or any non-digit
character is found (except decimal point or exponential e).

EXAMPLE of VAL Function:

10 INPUT#1, NAMS, ZIP$
20 IF VAL(ZIP$) < 19400 OR VAL(ZIP$) > 96699
THEN PRINT NAMS$ TAB(25) “GREATER PHILADELPHIA”

90 BASIC LANGUAGE VOCABULARY

VERIFY

TYPE: Command
FORMAT: VERIFY [“<file-name>"'] [,<device>]

Action: The VERIFY command is used, in direct or program mode, to
compare the contents of a BASIC program file on tape or disk with the
program currently in memory. VERIFY is normally used right after a
SAVE, to make sure that the program was stored correctly on tape or
disk.

If the <device> number is left out, the program is assumed to be on
the Datassette™ which is device number 1. For tape files, if the <file-
name> is left out, the next program found on the tape will be com-
pared. For disk files (device number 8), the file-name must be present. If
any differences in program text are found, the BASIC error message
?VERIFY ERROR is displayed.

A program name can be given either in quotes (“) or as a string
variable. VERIFY is also used to position a tape just past the last pro-
gram, so that a new program can be added to the tape without acci-
dentally writing over another program.

EXAMPLES of VERIFY Command:

VERIFY (Checks 1st program on tape)
PRESS PLAY ON TAPE

OK

SEARCHING

FOUND <FILENAME>

VERIFYING

9000 SAVE ““ME”,8:
9010 VERIFY “ME”,8 (Looks at device 8 for the program)

BASIC LANGUAGE VOCABULARY 91

WAIT

TYPE: Statement
FORMAT: WAIT <location™>, <mask-1> [,<mask-2>>]

Action: The WAIT statement causes program execution to be sus-
pended until a given memory address recognizes a specified bit pattern.
In other words WAIT can be used to halt the program until some external
event has occurred. This is done by monitoring the status of bits in the
input/output registers. The data items used with WAIT can be any
numeric expressions, but they will be converted to integer values.

For most programmers, this statement should never be used. It causes
the program to halt until a specific memory location’s bits change in a
specific way. This is used for certain /O operations and almost nothing
else.

The WAIT statement takes the value in the memory location and per-
forms a logical AND operation with the value in mask-1. If there is a
mask-2 in the statement, the result of the first operation is exclusive-
ORed with mask-2. In other words mask-1 “filters out” any bits that you
don’t want to test. Where the bit is 0 in mask-1, the corresponding bit in
the result will always be 0. The mask-2 value flips any bits, so that you
can test for an off condition as well as an on condition. Any bits being
tested for a 0 should have a 1 in the corresponding position in mask-2.

If corresponding bits of the <mask-1> and <mask-2> operands differ,
the exclusive-OR operation gives a bit result of 1. If corresponding bits get
the same result the bit is 0. It is possible to enter an infinite pause with the
WAIT statement, in which case the and keys
can be used to recover. Hold down the key and then
press . Thefirst example below WAITs until a key is pressed on
the tape unit to continue with the program. The second example will WAIT
until a sprite collides with the screen background.

EXAMPLES of WAIT Statement:

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868, 144, 16 (144 & 16 are masks. 144=10010000 in
binary and 16=10000 in binary. The
WAIT statement will halt the pro-
gram until the 128 bit is on or
until the 16 bit is off)

92 BASIC LANGUAGE VOCABULARY

THE COMMODORE 64 KEYBOARD
AND FEATURES

The Operating System has a ten-character keyboard “buffer” that is
used to hold incoming keystrokes until they can be processed. This buf-
fer, or queue, holds keystrokes in the order in which they occur so that
the first one put into the queue is the first one processed. For example, if
a second keystroke occurs before the first can be processed, the second
character is stored in the buffer, while processing of the first character
continues. After the program has finished with the first character, the
keyboard buffer is examined for more data, and the second keystroke
processed. Without this buffer, rapid keyboard input would occasionally
drop characters.

In other words, the keyboard buffer allows you to “type-ahead” of
the system, which means it can anticipate responses to INPUT prompts
or GET statements. As you type on the keys their character values are
lined up, single-file (queued) into the buffer to wait for processing in the
order the keys were struck. This type-ahead feature can give you an
occasional problem where an accidental keystroke causes a program to
fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be
corrected by the CuRSoR-Left or DELete keys
and then retyping the character, and the corrections will be processed
before a following carriage-return. However, if you press the
key, no corrective action is possible, since all characters in the buffer up
to and including the carriage-return will be processed before any cor-
rections. This situation can be avoided by using a loop to empty the
keyboard buffer before reading an intended response:

10 GET JUNKS$: IF JUNK$ <>’"* THEN 10: REM EMPTY THE
KEYBOARD BUFFER

In addition to GET and INPUT, the keyboard can also be read using
PEEK to fetch from memory location 197 ($00C5) the integer value of the
key currently being pressed. If no key is being held when the PEEK is
executed, a value of 64 is returned. The numeric keyboard values,
keyboard symbols and character equivalents (CHR$) are shown in Ap-
pendix C. The following example loops until a key is pressed then con-
verts the integer to a character value.

10 AA = PEEK(197): IF AA = 64 THEN 10
20 BB$ = CHR$(AA)

BASIC LANGUAGE VOCABULARY 93

The keyboard is treated as a set of switches organized into a matrix
of 8 columns by 8 rows. The keyboard matrix is scanned for key
switch-closures by the KERNAL using the CIA #1 1/0O chip (MOS 6526
Complex Interface Adapter). Two CIA registers are used to perform the
scan: register #0 at location 56320 ($DCO0) for keyboard columns and
register #1 at location 56321 ($DCO1) for keyboard rows.

Bits 0—7 of memory location 56320 correspond to the columns 0-7.
Bits 0—~7 of memory location 56321 correspond to rows 0—7. By writing
column values in sequence, then reading row values, the KERNAL de-
codes the switch closures into the CHR$ (N) value of the key pressed.

Eight columns by eight rows yields 64 possible values. However, if you
first strike the [JJ. or @ keys or hold down
the key and type a second character, additional values are
generated. This is because the KERNAL decodes these keys separately
and “remembers” when one of the control keys was pressed. The result
of the keyboard scan is then placed in location 197.

Characters can also be written directly to the keyboard buffer at lo-
cations 631-640 using a POKE statement. These characters will be
processed when the POKE is used to set a character count into location
198. These facts can be used to cause a series of direct-mode com-
mands to be executed automatically by printing the statements onto the
screen, putting carriage-returns into the buffer, and then setting the
character count. In the example below, the program will LIST itself to
the printer and then resume execution.

10 PRINT CHR$(147)"”PRINT#1: CLOSE 1: GOTO 50“

20 POKE 631,19: POKE 632,13: POKE 633,13: POKE 198,3
30 OPEN 1,4: CMD1: LIST

40 END

50 REM PROGRAM RE-STARTS HERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient
facilities for editing program text. Once a section of a program is listed
to the screen, the cursor keys and other special keys are used to move
around the screen so that you can make any appropriate changes. After
making all the changes you want to a specific line-number of text, hit-
ting the key anywhere on the line, causes the SCREEN
EDITOR to read the entire 80-character logical screen line.

94 BASIC LANGUAGE VOCABULARY

The text is then passed to the Interpreter to be tokenized and stored in
the program. The edited line replaces the old version of that line in
memory. An additional copy of any line of text can be created simply by
changing the line-number and pressing .

If you use keyword abbreviations which cause a program line to ex-
ceed 80 characters, the excess characters will be lost when that line is
edited, because the EDITOR will read only two physical screen lines. This
is also why using INPUT for more than a total of 80 characters is not
possible. Thus, for all practical purposes, the length of a line of BASIC
text is limited to 80 characters as displayed on the screen.

Under certain conditions the SCREEN EDITOR treats the cursor control
keys differently from their normal mode of handling. If the CuRSoR is
positioned to the right of an odd number of double-quote marks (") the
EDITOR operates in what is known as the QUOTE-MODE.

In quote mode data characters are entered normally but the cursor
controls no longer move the CuRSoR, instead reversed characters are
displayed which actually stand for the cursor control being entered. The
same is true of the color control keys. This allows you to include cursor
and color controls inside string data items in programs. You will find that
this is a very important and powerful feature. That's because when the
text inside the quotes is printed to the screen it performs the cursor
positioning and color control functions automatically as part of the
string. An example of using cursor controls in strings is:

You type — 10 PRINT “A(R)(R)B(L)(L)(L)C(R)(R)D":REM(R)=CRSR
RIGHT, (L)=CRSR LEFT

Computer prints — AC BD

The key is the only cursor control NOT affected by quote
mode. Therefore, if an error is made while keying in quote mode,
the key can’'t be used to back up and strike over the
error—even the key produces a reverse video character. In-
stead, finish entering the line, and then, after hitting the
key, you can edit the line normally. Another alternative, if no further
cursor-controls are needed in the string, is to press the
and keys which will cancel QUOTE MODE. The cursor
control keys that you can use in strings are shown in Table 2-2.

BASIC LANGUAGE VOCABULARY 95

Table 2-2. Cursor Control Characters in QUOTE MODE

Control Key Appearance

CRSR up
CRSR down
CRSR left
CRSR right
cir
HOME
INST

EROEEQ0

When you are NOT in quote mode, holding down the key and
then pressing the INSerT key shifts data to the right of the cur-
sor to open up space between two characters for entering data between
them. The Editor then begins operating in INSERT MODE until all of the
space opened up is filled.

The cursor controls and color controls again show as reversed char-
acters in insert mode. The only difference occurs on the DELete and
INSerT key. The instead of operating normally as in
the quote mode, now creates the reversed . The key,
which created a reverse character in quote mode, inserts spaces nor-
mally.

Ths means that a PRINT statement can be created, containing DE-
Letes, which can’t be done in quote mode. The insert mode is cancelled
by pressing the , and , or and
keys. Or you can cancel the insert mode by filling all the
inserted spaces. An example of using DEL characters in strings is:

10 PRINT “HELLO" P

(Keystroke sequence shown above, appearance when listed below)
10 PRINT“HELP”

When the example is RUN, the word displayed will be HELP, because
the letters LO are deleted before the P is printed. The DElete character
in strings will work with LIST as well as PRINT. You can use this to “hide’
part or all of a line of text using this technique. However, trying to edit a
line with these characters will be difficult if not impossible.

96 BASIC LANGUAGE VOCABULARY

There are some other characters that can be printed for special func-
tions, although they are not easily available from the keyboard. In order
to get these into quotes, you must leave empty spaces for them in the
line, press , and go back to edit the line. Now you hold down
the (ConTRol) key and type HEXTYITIEM (ReVerSe-ON) to start

typing reversed characters. Type the keys as shown below:

Key Function Key Entered Appearance
Shifted RETURN (M] N
Switch to upper/lower case (N] (N]

Switch to upper/graphics (N] u

Holding down the key and hitting causes a
carriage-return and line-feed on the screen but does not end the string.
This works with LIST as well as PRINT, so editing will be almost impossi-
ble if this character is used. When output is switched to the printer via
the CMD statement, the reverse “N” character shifts the printer into its
upper-lower case character set and the "N’ shifts the printer
into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down
the ConTRol key and pressing ReVerSe [, causing a re-
versed R to appear inside the quotes. This will make all characters print
in reverse video (like a negative of a photograph). To end the reverse

printing, press and (ReVerSe OFF) by holding
down the key and typing the key, which prints a
reverse R. Numeric data can be printed in reverse video by first printing
a CHR$(18). Printing a CHR$(146) or a carriage-return will cancel re-
verse video output.

BASIC LANGUAGE VOCABULARY 97

CHAPTER 3

PROGRAMMING
GRAPHICS

ON THE
COMMODORE 64

Graphics Overview

Graphics Locations

Standard Character Mode
Programmable Characters
Multi-Color Mode Graphics
Extended Background Color Mode
Bit Mapped Graphics
Multi-Color Bit Map Mode
Smooth Scrolling

Sprites

Other Graphics Features
Programming Sprites—Another
Look

99

GRAPHICS OVERVIEW

All of the graphics abilities of the Commodore 64 come from the 6567
Video Interface Chip (also known as the VIC-II chip). This chip gives a
variety of graphics modes, including a 40 column by 25 line text display,
a 320 by 200 dot high resolution display, and SPRITES, small movable
objects which make writing games simple. And if this weren’t enough,
many of the graphics modes can be mixed on the same screen. It is
possible, for example, to define the top half of the screen to be in high
resolution mode, while the bottom half is in text mode. And SPRITES will
combine with anything! More on sprites later. First the other graphics
modes.

The VIC-II chip has the following graphics display modes:

A) CHARACTER DISPLAY MODES

1) Standard Character Mode

a) ROM characters

b) RAM programmable characters
2) Multi-Color Character Mode

a) ROM characters

b) RAM programmable characters
3) Extended Background Color Mode

a) ROM characters

b) RAM programmable characters

B) BIT MAP MODES
1) Standard Bit Map Mode
2) Multi-Color Bit Map Mode

C) SPRITES

1) Standard Sprites
2) Multi-Color Sprites

100 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general information first. There are 1000 possible locations on
the Commodore 64 screen. Normally, the screen starts at location 1024
($0400 in HEXadecimal notation) and goes to location 2023. Each of
these locations is 8 bits wide. This means that it can hold any integer
number from 0 to 255. Connected with screen memory is a group of
1000 locations called COLOR MEMORY or COLOR RAM. These start at
location 55296 ($D800 in HEX) and go up to 56295. Each of the color
RAM locations is 4 bits wide, which means that it can hold any integer
number from O to 15. Since there are 16 possible colors that the Com-
modore 64 can use, this works out well.

In addition, there are 256 different characters that can be displayed
at any time. For normal screen display, each of the 1000 locations in
screen memory contains a code number which tells the VIC-II chip which
character to display at that screen location.

The various graphics modes are selected by the 47 CONTROL regis-
ters in the VIC-Il chip. Many of the graphics functions can be controlled
by POKEing the correct value into one of the registers. The VIC-II chip is
located starting at 53248 ($D000 in HEX) through 53294 ($D02E in HEX).

VIDEO BANK SELECTION

The VIC-II chip can access (“see”) 16K of memory at a time. Since
there is 64K of memory in the Commodore 64, you want to be able to
have the VIC-Il chip see all of it. There is a way. There are 4 possible
BANKS (or sections) of 16K of memory. All that is needed is some means
of controlling which 16K bank the VIC-II chip looks at. In that way, the
chip can “see” the entire 64K of memory. The BANK SELECT bits that
allow you access to all the different sections of memory are located in
the 6526 COMPLEX INTERFACE ADAPTER CHIP #2 (CIA #2). The POKE
and PEEK BASIC statements (or their machine language versions) are
used to select a bank by controlling bits 0 and 1 of PORT A of CIA#?2
(location 56576 (or $DD00 HEX)). These 2 bits must be set to outputs by
setting bits 0 and 1 of location 56578 ($DD02,HEX) to change banks. The
following example shows this:

POKE 56578,PEEK(56578)OR 3 :REM MAKE SURE BITS O AND 1 ARE
SET TO OUTPUTS
POKE 56576,(PEEK(56576)AND 252)OR A:REM CHANGE BANKS

“A" should have one of the following values:

PROGRAMMING GRAPHICS 101

VALUE | BITS | BANK | STARTING VIC-Il CHIP RANGE
OF A LOCATION
0 00 3 49152 [($C000— $FFFF)*
1 01 2 32768 |($8000—$BFFF)
2 10 1 16384 [($4000-$7FFF)"
3 11 0 0 |($0000—-$3FFF) (DEFAULT VALUE)

This 16K bank concept is part of everything that the VIC-Il chip does.
You should always be aware of which bank the VIC-II chip is pointing
at, since this will affect where character data patterns come from,
where the screen is, where sprites come from, etc. When youturn on the
power of your Commodore 64, bits 0 and 1 of location 56576 are auto-
matically set to BANK 0 ($0000—$3FFF) for all display information.

|

! "NOTE: The Commodore 64 character set is not available to the VIC-II chip in BANKS ;
i 1 and 3. (See character memory section.) |

== = = = SR ERE |

SCREEN MEMORY

The location of screen memory can be changed easily by a POKE to
control register 53272 ($D018 HEX). However, this register is also used
to control which character set is used, so be careful to avoid disturbing
that part of the control register. The UPPER 4 bits control the location of
screen memory. To move the screen, the following statement should be
used:

POKES53272,(PEEK(53272)AND15)ORA

102 PROGRAMMING GRAPHICS

Where “A” has one of the following values:

LOCATION*
A BITS
DECIMAL HEX
0 0000XXXX 0 $0000
16 0001 XXXX 1024 $0400 (DEFAULT)
32 0010XXXX 2048 $0800
48 0011XXXX 3072 $0C00
64 0100XXXX 4096 $1000
80 0101 XXXX 5120 $1400
96 0110XXXX 6144 $1800
112 0111XXXX 7168 $1C00
128 1000XXXX 8192 $2000
144 1001 XXXX 9216 $2400
160 1010XXXX 10240 $2800
176 101 1XXXX 11264 $2C00
192 1100XXXX 12288 $3000
208 1101XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 111 1XXXX 15360 $3C00

“Remember that the BANK ADDRESS of the VIC-1l chip must be added in.

You must also tell the KERNAL’S screen editor where the screen is as follows: POKE
648, page (where page = address/256, e.g., 1024/256= 4, so POKE 648,4).

COLOR MEMORY

Color memory can NOT move. It is always located at locations 55296
($D800) through 56295 ($DBE7). Screen memory (the 1000 locations
starting at 1024) and color memory are used differently in the different
graphics modes. A picture created in one mode will often look com-
pletely different when displayed in another graphics mode.

CHARACTER MEMORY

Exactly where the VIC-II gets it character information is important to
graphic programming. Normally, the chip gets the shapes of the char-
acters you want to be displayed from the CHARACTER GENERATOR
ROM. In this chip are stored the patterns which make up the various
letters, numbers, punctuation symbols, and the other things that you see

PROGRAMMING GRAPHICS 103

on the keyboard. One of the features of the Commodore 64 is the ability
to use patterns located in RAM memory. These RAM patterns are
created by you, and that means that you can have an almost infinite set
of symbols for games, business applications, etc.

A normal character set contains 256 characters in which each char-
acter is defined by 8 bytes of data. Since each character takes up 8
bytes this means that a full character set is 256*8=2K bytes of memory.
Since the VIC-Il chip looks at 16K of memory at a time, there are 8
possible locations for a complete character set. Naturally, you are free
to use less than a full character set. However, it must still start at one of
the 8 possible starting locations.

The location of character memory is controlled by 3 bits of the VIC-II
control register located at 53272 ($D018 in HEX notation). Bits 3,2, and
1 control where the characters’ set is located in 2K blocks. Bit 0 is ig-
nored. Remember that this is the same register that determines where
screen memory is located so avoid disturbing the screen memory bits. To
change the location of character memory, the following BASIC state-
ment can be used:

POKE 53272,(PEEK(53272)AND240)OR A

Where A is one of the following values:

*
VALUE LOCATION OF CHARACTER MEMORY

BITS
of A DECIMAL HEX

0 | XXXX000X 0 $0000—-$07FF

XXXX001X 2048 |$0800—$0FFF

4 | XXXX010X 4096 |$1000—-$17FF ROM IMAGE in BANK
0 & 2 (default)

6 | XXXX011X 6144 |$1800—$1FFF ROM IMAGE in BANK
0& 2

N

8 | XXXX100X 8192 |$2000—$27FF
10 | XXXX101X | 10240 |$2800— $2FFF
12 [XXXX110X| 12288 |[$3000-$37FF
14 | XXXX111X | 14336 |$3800—$3FFF

“Remember to add in the BANK address.

104 PROGRAMMING GRAPHICS

The ROM IMAGE in the above table refers to the character generator
ROM. It appears in place of RAM at the above locations in bank 0. It
also appears in the corresponding RAM at locations 36864—40959
($9000—$9FFF) in bank 2. Since the VIC-II chip can only access 16K of
memory at a time, the ROM character patterns appear in the 16K block
of memory the VIC-II chip looks at. Therefore, the system was designed
to make the VIC-II chip think that the ROM characters are at 4096—8191
($1000—$1FFF) when your data is in bank 0, and 36864—40959
($9000—$9FFF) when your data is in bank 2, even though the character
ROM is actually at location 53248-57343 ($D000—$DFFF). This imaging
only applies to character data as seen by the VIC-II chip. It can be used
for programs, other data, etc., just like any other RAM memory.

NOTE: If these ROM images get in the way of your own graphics, then set the BANK
SELECT BITS to one of the BANKS without the images (BANKS 1 or 3). The ROM
patterns won’t be there.

The location and contents of the character set in ROM are as follows:

ADDRESS VIC-II
BLOCK [DECIMAL HEX IMAGE

0 53248 DOOO-DI1FF [1000—11FF [Upper case characters
53760 D200-D3FF |1200-13FF | Graphics characters
54272 D400—D5FF | 1400— 15FF | Reversed upper case
characters

54784 D400—-D7FF |1600—17FF | Reversed graphics
characters

1 55296 D800—D9FF |1800—19FF |Lower case characters
55808 DAOO—-DBFF |1A00—1BFF |Upper case & graphics
characters

56320 DCOO—-DDFF |1CO0—1DFF|Reversed lower case
characters

56832 DEOO—DFFF | 1EOO—1FFF |Reversed upper case &
graphics characters

CONTENTS

Sharp-eyed readers will have just noticed something. The locations
occupied by the character ROM are the same as the ones occupied by
the VIC-II chip control registers. This is possible because they don’t oc-
cupy the same locations at the same time. When the VIC-II chip needs to

PROGRAMMING GRAPHICS 105

access character data the ROM is switched in. It becomes an image in
the 16K bank of memory that the VIC-II chip is looking at. Otherwise,
the area is occupied by the I/O control registers, and the character ROM
is only available to the VIC-II chip.

However, you may need to getto the character ROM if you are going
to use programmable characters and want to copy some of the char-
acter ROM for some of your character definitions. In this case you must
switch out the I/O register, switch in the character ROM, and do your
copying. When you're finished, you must switch the I/O registers back in
again. During the copying process (when I/O is switched out) no inter-
rupts can be allowed to take place. This is because the 1/O registers are
needed to service the interrupts. If you forget and perform an interrupt,
really strange things happen. The keyboard should not be read during
the copying process. To turn off the keyboard and other normal inter-
rupts that occur with your Commodore 64, the following POKE should be
used:

POKE 56334,PEEK(56334)AND254 (TURNS INTERRUPTS OFF)

After you are finished getting characters from the character ROM,
and are ready to continue with your program, you must turn the
keyboard scan back on by the following POKE:

POKE 56334,PEEK(56334)OR1 (TURNS INTERRUPTS ON)

The following POKE will switch out I/O and switch the CHARACTER
ROM in:

POKE 1,PEEK(1)AND251

The character ROM is now in the locations from 53248—57343 ($D000—
$DFFF).

To switch 1/O back into $D000 for normal operation use the following
POKE:

POKE 1,PEEK(1)OR 4

106 PROGRAMMING GRAPHICS

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when
you first turn it on. It is the mode you will generally program in.

Characters can be taken from ROM or from RAM, but normally they
are taken from ROM. When you want special graphics characters for a
program, all you have to do is define the new character shapes in RAM,
and tell the VIC-Il chip to get its character information from there in-
stead of the character ROM. This is covered in more detail in the next
section.

In order to display characters on the screen in color, the VIC-II chip
accesses the screen memory to determine the character code for that
location on the screen. At the same time, it accesses the color memory
to determine what color you want for the character displayed. The
character code is translated by the VIC-Il into the starting address of the
8-byte block holding your character pattern. The 8-byte block is located
in character memory.

The translation isn’t too complicated, but a number of items are com-
bined to generate the desired address. First the character code you use
to POKE screen memory is multiplied by 8. Next add the start of char-
acter memory (see CHARACTER MEMORY section). Then the Bank Select
Bits are taken into account by adding in the base address (see VIDEO
BANK SELECTION section). Below is a simple formula to illustrate what
happens:

CHARACTER ADDRESS = SCREEN CODE*8+(CHARACTER
SET*2048)+(BANK*16384)

CHARACTER DEFINITIONS

Each character is formed in an 8 by 8 grid of dots, where each dot
may be either on or off. The Commodore 64 character images are
stored in the Character Generator ROM chip. The characters are stored
as a set of 8 bytes for each character, with each byte representing the
dot pattern of a row in the character, and each bit representing a dot.
A zero bit means that dot is off, and a one bit means the dot is on.

The character memory in ROM begins at location 53248 (when the I/O
is switched off). The first 8 bytes from location 53248 ($D000) to 53255
($D007) contain the pattern for the @ sign, which has a character code
value of zero in the screen memory. The next 8 bytes, from location

PROGRAMMING GRAPHICS 107

53256 ($D008) to 53263 ($DO0OF), contain the information for forming the
letter A.

IMAGE BINARY PEEK
o 00011000 24
o 00111100 60
wEER 01100110 102
REEEEE 01111110 126
wERH 01100110 102
*O¥% 01100110 102
wERH 01100110 102
00000000 0

Each complete character set takes up 2K (2048 bits) of memory, 8
bytes per character and 256 characters. Since there are two character
sets, one for upper case and graphics and the other with upper and
lower case, the character generator ROM takes up a total of 4K loca-
tions.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no
way to change them for customizing characters. However, the memory
location that tells the VIC-Il chip where to find the characters is a pro-
grammable register which can be changed to point to many sections of
memory. By changing the character memory pointer to point to RAM,
the character set may be programmed for any need.

If you want your character set to be located in RAM, there are a few
VERY IMPORTANT things to take into account when you decide to actu-
ally program your own character sets. In addition, there are two other
important points you must know to create your own special characters:

1) It is an all or nothing process. Generally, if you use your own char-
acter set by telling the VIC-II chip to get the character information
from the area you have prepared in RAM, the standard Commo-
dore 64 characters are unavailable to you. To solve this, you must
copy any letters, numbers, or standard Commodore 64 graphics
you intend to use into your own character memory in RAM. You can
pick and choose, take only the ones you want, and don’t even
have to keep them in order!

108 PROGRAMMING GRAPHICS

2) Your character set takes memory space away from your BASIC
program. Of course, with 38K available for a BASIC program,
most applications won’t have problems.

WARNING: You must be careful to protect the character set from being overwritten

by your BASIC program, which also uses the RAM.

There are two locations in the Commodore 64 to start your character
set that should NOT be used with BASIC: location 0 and location
2048. The first should not be used because the system stores important
data on page 0. The second can’t be used because that is where your
BASIC program starts! However, there are 6 other starting positions for
your custom character set.

The best place to put your character set for use with BASIC while
experimenting is beginning at 12288 ($3000 in HEX). This is done by
POKEing the low 4 bits of location 53272 with 12. Try the POKE now, like
this:

POKE 53272,(PEEK(53272)AND240)+12

Immediately, all the letters on the screen turn to garbage, This is
because there are no characters set up at location 12288 right now . . .
only random bytes. Set the Commodore 64 back to normal by hitting

the key and then the key.

Now let's begin creating graphics characters. To protect your char-
acter set from BASIC, you should reduce the amount of memory BASIC
thinks it has. The amount of memory in your computer stays the
same. . . it's just that you've told BASIC not to use some of it. Type:

PRINT FRE(0)—(SGN(FRE(0))<0)*65535

The number displayed is the amount of memory space left unused. Now
type the following:

POKE 52,48:POKES56,48:CLR
Now type:

PRINT FRE(0)—(SGN(FRE(0))<<0)*65535

PROGRAMMING GRAPHICS 109

See the change? BASIC now thinks it has less memory to work with. The
memory you just claimed from BASIC is where you are going to put your
character set, safe from actions of BASIC.

The next step is to put your characters into RAM. When you begin,
there is random data beginning at 12288 ($3000 HEX). You must put
character patterns in RAM (in the same style as the ones in ROM) for the
VIC-II chip to use.

The following program moves 64 characters from ROM to your char-
acter set RAM:

S FRIMTCHR®C 1420 CREM] ITCH T

Gt TR CREM

ERWE MEMOR'Y

TRHDZTS CREM TURM OFF

INTERRUFT T1f
: FEEKY 13 AND2S L REM SWITCH IM
L PEEK S T+5
“REM
‘REM FESTART

.‘3‘ FHU

Now POKE location 53272 with (PEEK(53272)AND240)+12. Nothing
happens, right? Well, almost nothing. The Commodore 64 is now getting
it's character information from your RAM, instead of from ROM. But
since we copied the characters from ROM exactly, no difference can be
seen. . . . yet.

You can easily change the characters now. Clear the screen and type
an @ sign. Move the cursor down a couple of lines, then type:

FOR | = 12288 TO 12288 +7:POKE |, 255 — PEEK(l) : NEXT

You just created a reversed @ sign!

TIP: Reversed characters are just characters with their bit patterns in character memory

reversed.

Now move the cursor up to the program again and hit
again to re-reverse the character (bring it back to normal). By looking at
the table of screen display codes, you can figure out where in RAM each
character is. Just remember that each character takes eight memory
locations to store. Here’'s a few examples just to get you started:

110 PROGRAMMING GRAPHICS

CHARACTER | DISPLAY CODE | CURRENT STARTING LOCATION IN RAM
@ 0 12288
A 1 12296
! 33 12552
> 62 12784

Remember that we only took the first 64 characters. Something else
will have to be done if you want one of the other characters.

What if you wanted character number 154, a reversed Z? Well, you
could make it yourself, by reversing a Z, or you could copy the set of
reversed characters from the ROM, or just take the one character you
want from ROM and replace one of the characters you have in RAM that
you don’t need.

Suppose you decide that you won’t need the > sign. Let's replace the
> sign with the reversed Z. Type this:

FOR 1=0 TO 7: POKE 12784 + |, 255—PEEK(I+12496): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how
many times you type the >, it comes out as a reversed Z. (This change
is really an illusion. Though the > sign looks like a reversed Z, it still acts
like a > in a program. Try something that needs a > sign. It will still
work fine, only it will look strange.)

A quick review: You can now copy characters from ROM into RAM.
You can even pick and choose only the ones you want. There’s only one
step left in programmable characters (the best step!) . . . making your
own characters.

Remember how characters are stored in ROM? Each character is
stored as a group of eight bytes. The bit patterns of the bytes directly
control the character. If you arrange 8 bytes, one on top of another,
and write out each byte as eight binary digits, it forms an eight by eight
matrix, looking like the characters. When a bit is a one, there is a dot at
that location. When a bit is a zero, there is a space at that location.

When creating your own characters, you set up the same kind of table
in memory. Type NEW and then type this program:

10 FOR | = 12448 TO 12455 : READ A: POKE |,A: NEXT
20 DATA 60, 66, 165, 129, 165, 153, 66, 60

PROGRAMMING GRAPHICS m

Now type RUN. The program will replace the letter T with a smile face
character. Type a few T's to see the face. Each of the numbers in the
DATA statement in line 20 is a row in the smile face character. The
matrix for the face looks like this:

7 6543210 BINARY DECIMAL
ROW 0 *oE ok ox 00111100 60
1 * * 01000010 66
2 & * * S 10100101 165
3 * & 10000001 129
4 * * * * 10100101 165
5 * * o & 10011001 153
6 * * 01000010 66
ROW 7 *ok ok ox 00111100 60

N OO v & WN

Figure 3-1. Programmable Character Worksheet.

12 PROGRAMMING GRAPHICS

The Programmable Character Worksheet (Figure 3-1) will help you
design your own characters. There is an 8 by 8 matrix on the sheet, with
row numbers, and numbers at the top of each column. (If you view each
row as a binary word, the numbers are the value of that bit position.
Each is a power of 2. The leftmost bit is equal to 128 or 2 to the 7th
power, the next is equal to 64 or 2 to the 6th, and so on, until you reach
the rightmost bit (bit 0) which is equal to 1 or 2 to the 0 power.)

Place an X on the matrix at every location where you want a dot to be
in your character. When your character is ready you can create the
DATA statement for your character.

Begin with the first row. Wherever you placed an X, take the number
at the top of the column (the power-of-2 number, as explained above)
and write it down. When you have the numbers for every column of the
first row, add them together. Write this number down, next to the row.
This is the number that you will put into the DATA statement to draw this
row.

Do the same thing with all of the other rows (1-7). When you are
finished you should have 8 numbers between 0 and 255. If any of your
numbers are not within range, recheck your addition. The numbers must
be in this range to be correct! If you have less than 8 numbers, you
missed a row. It's OK if some are 0. The O rows are just as important as
the other numbers.

Replace the numbers in the DATA statement in line 20 with the num-
bers you just calculated, and RUN the program. Then type a T. Every
time you type it, you'll see your own character!

If you don’t like the way the character turned out, just change the
numbers in the DATA statement and re-RUN the program until you are
happy with your character.

That's all there is to it!

HINT: For best results, always make any vertical lines in your characters at least 2
dots (bits) wide. This helps prevent CHROMA noise (color distortion) on your char-
acters when they are displayed on a TV screen.

PROGRAMMING GRAPHICS ns3

Here is an example of a program using standard programmable
characters:

251

AT]
FEM CHARACTER REAMGE T2 BE COFIED

CREM CORY AL
+ IS+ T, PEER

=R CHARACTER
DoREM OCOFY A

HARAZTER
Ga0R1REM

CHHDEZGE Y 12 REM SZET CHAR

FEM FROGREAM ZHAF SE THRL &2

M D0 ALL & EYTES FARACTER

:_@ FEHP HHMIEF FEM READ IM 1.°3TH OF CHARAZTER DATH
CSHCHAR D +EYTE HUMEER - REM 3TORE THE

AR REM ALSD COULD BE OMEXT EYTE.

1esid FEH LIHE 1 i PTE THE HEUL DEFIHED CHARACTERS
Litd THE SCREEM

“lnETHf'PEH WATT FOR

; DTHEMGIOTIO TE

FE

EEM DHTH FDE C HRHCTEE EB
24,229, 1532, 132 REM DATA

27V REM DATA FOR

24 REM DATA
} IHHPHITEF
24E EMD

114 PROGRAMMING GRAPHICS

MULTI-COLOR MODE GRAPHICS

Standard high-resolution graphics give you control of very small dots
on the screen. Each dot in character memory can have 2 possible
values, 1 for on and O for off. When a dot is off, the color of the screen
is used in the space reserved for that dot. If the dot is on, the dot is
colored with the character color you have chosen for that screen posi-
tion. When you’re using standard high-resolution graphics, all the dots
within each 8 X8 character can either have background color or fore-
ground color. In some ways this limits the color resolution within that
space. For example, problems may occur when two different colored
lines cross.

Multi-color mode gives you a solution to this problem. Each dot in
multi-color mode can be one of 4 colors: screen color (background color
register #0), the color in background register #1, the color in back-
ground color register #2, or character color. The only sacrifice is in the
horizontal resolution, because each multi-color mode dot is twice as
wide as a high-resolution dot. This minimal loss of resolution is more
than compensated for by the extra abilities of multi-color mode.

MULTI-COLOR MODE BIT

To turn on multi-color character mode, set bit 4 of the VIC-Il control
register at 53270 ($D016) to a 1 by using the following POKE:

POKE 53270,PEEK(53270)OR 16

To turn off multi-color character mode, set bit 4 of location 53270 to a
0 by the following POKE:

POKE 53270,PEEK(53270)AND 239

Multi-color mode is set on or off for each space on the screen, so that
multi-color graphics can be mixed with high-resolution (hi-res) graphics.
This is controlled by bit 3 in color memory. Color memory begins at
location 55296 ($D800 in HEX). If the number in color memory is less
than 8 (0—7) the corresponding space on the video screen will be
standard hi-res, in the color (0—7) you’ve chosen. If the number located
in color memory is greater or equal to 8 (from 8 to 15), then that space
will be displayed in multi-color mode.

PROGRAMMING GRAPHICS 15

By POKEing a number into color memory, you can change the color of
the character in that position on the screen. POKEing a number from 0 to
7 gives the normal character colors. POKEing a number between 8 and
15 puts the space into multi-color mode. In other words, turning BIT 3
ON in color memory, sets MULTI-COLOR MODE. Turning BIT 3 OFF in
color memory, sets the normal, HIGH-RESOLUTION mode.

Once multi-color mode is set in a space, the bits in the character
determine which colors are displayed for the dots. For example, here is
a picture of the letter A, and its bit pattern:

IMAGE BIT PATTERN

o 00011000
ok 00111100
rH ok 01100110
ok 01111110
wE A 01100110
R HE 01100110
rE o wH 01100110

00000000

In normal or high-resolution mode, the screen color is displayed
everywhere there is a 0 bit, and the character color is displayed where
the bit is a 1. Multi-color mode uses the bits in pairs, like so:

IMAGE BIT PATTERN
AABB 00 01 10 00
CCcCC 00 11 11 00

AABBAABB 01 1001 10
AACCCCBB 01 111110
AABBAABB 011001 10
AABBAABB 011001 10
AABBAABB 01 10 01 10

00 00 00 00

In the image area above, the spaces marked AA are drawn in the
background #1 color, the spaces marked BB use the background #?2
color, and the spaces marked CC use the character color. The bit pairs
determine this, according to the following chart:

116 PROGRAMMING GRAPHICS

BIT PAIR COLOR REGISTER LOCATION

00 Background #0 color (screen color) 53281 ($D021)
01 Background #1 color 53282 ($D022)
10 Background #2 color 53283 ($D023)
11 Color specified by the color RAM

lower 3 bits in color memory

NOTE: The sprite foreground color is a 10. The character foreground color is a 11. :l

Type NEW and then type this demonstration program:

198 POKESZ221.1'REM SET BACKGROUMWD COLOR #5 TO

WHITE

11‘7‘ POKES32EZ
28 POREESZ2283.

I'IF‘HHGE

130 POKES2270.PEEK (S22T@N0R1E:REEM TURM OM

MULTICOLOR MODE

140 C=13%403€+2%256 REM SET C TO FOIMT TO COLOR

MEMORY

150 PRIMTCHRSC 147 "ARRAARRAAAR"

160 FORL=ATOZ

170 POKEC+L,2:REM USE MULTI ELACE

120 HEXT

ZCREM SET BACKGROLUMD COLOR #1 TO CYAN
"REM SET BACKEGROUMD COLDRE #2 TO

lJ'.\

The screen color is white, the character color is black, one color regis-
ter is cyan (greenish blue), the other is orange.

You're not really putting color codes in the space for character color,
you're actually using references to the registers associated with those
colors. This conserves memory, since 2 bits can be used to pick 16 colors
(background) or 8 colors (character). This also makes some neat tricks
possible. Simply changing one of the indirect registers will change every
dot drawn in that color. Therefore everything drawn in the screen and

PROGRAMMING GRAPHICS 117

background colors can be changed on the whole screen instantly. Here
is an example of changing background color register #1:

LEE FOk
FULT I
1T1E FRIMTCHE

Eo0R DS REM TURN OH

L2 FPRIMT" WS
ML T T

1 FOR ORARGE OR

CHET

-~ H'1 TYFE CTRL & 7 FOR BLLUE COLOR

] TOSEE HEXT
(1)
S0 FRIMTUEHIT R KEY"
131 TF A" " THER 160

By using the @ key and the COLOR keys the characters can be
changed to any color, including multi-color characters. For example,
type this command:

POKE 53270, PEEK(53270)OR 16:PRINT @] “;: REM IT.RED/
MULTI-COLOR RED

The word READY and anything else you type will be displayed in
multi-color mode. Another color control can set you back to regular text.

1s PROGRAMMING GRAPHICS

Here is an example of a program using multi-color programmable

characters:

18 REM # EWAMFLE & #
SB REM CREATIMG MULT
3 FEEK (!

CREM

COLOR PROGRAMMAEBLE CHARACTERS
SOAMDESS FOREY FEEK (1 PAMDESL
ARACTER RAMGE TO BE COFRIED

» FPER CHARACTER
TatREM COFY A

?FEM l"rIF'r‘ FII

S+ 1

ATT0 T REM GOTD HEST P” QR CHARACTER
iEl FEEE LD ORG PORKED ﬁ#.PEEHﬁ SR REM

SET CHAR

COLOR #8 TO DBLACE
COLOR #1 T RED
COLOR #2 TO
ARACTERS S8 THRL A2
HARACTER

- DFTH
STORE THE

CHRES O L D TR SS D CHRE
= MEMLY DEFIMED CHRRACTERS

SECREM DHETH FOR

TOREM DATA FOR

BB, @ REM DETRFOR

ol AT REM IIRTAH FOR

PROGRAMMING GRAPHICS

CEEITHRE ST

19

EXTENDED BACKGROUND COLOR MODE

Extended background color mode gives you control over the back-
ground color of each individual character, as well as over the fore-
ground color. For example, in this mode you could display a blue char-
acter with a yellow background on a white screen.

There are 4 registers available for extended background color mode.
Each of the registers can be set to any of the 16 colors.

Color memory is used to hold the foreground color in extended back-
ground mode. It is used the same as in standard character mode.

Extended character mode places a limit on the number of different
characters you can display, however. When extended color mode is on,
only the first 64 characters in the character ROM (or the first 64 char-
acters in your programmable character set) can be used. This is be-
cause two of the bits of the character code are used to select the back-
ground color. It might work something like this:

The character code (the number you would POKE to the screen) of the
letter “A” is a 1. When extended color mode is on, if you POKEd a 1 to
the screen, an “A” would appear. If you POKEd a 65 to the screen
normally, you would expect the character with character code (CHRS$)
129 to appear, which is a reversed “A.” This does NOT happen in ex-
tended color mode. Instead you get the same unreversed “A” as before,
but on a different background color. The following chart gives the
codes:

CHARACTER CODE BACKGROUND COLOR REGISTER
RANGE BIT 7 BIT 6 NUMBER ADDRESS
0-63 0 0 0 53281 ($D021)
64-127 0 1 1 53282 ($D022)
128—-191 1 0 2 53283 ($D023)
192-255 1 1 3 53284 ($D024)

Exrended color mode is turned ON by setting bit 6 of the VIC-II regis-
ter to a 1 at location 53265 ($D011 in HEX). The following POKE does it:

POKE 53265, PEEK(53265)OR 64

120 PROGRAMMING GRAPHICS

Extended color mode is turned OFF by setting bit 6 of the VIC-II regis-
ter to a 0 at location 53265 ($D011). The following statement will do this:

POKE 53265, PEEK(53265)AND 191

BIT MAPPED GRAPHICS

When writing games, plotting charts for business applications, or
other types of programs, sooner or later you get to the point where you
want high-resolution displays.

The Commodore 64 has been designed to do just that: high resolution
is available through bit mapping of the screen. Bit mapping is the
method in which each possible dot (pixel) of resolution on the screen is
assigned its own bit (location) in memory. If that memory bit is a one,
the dot it is assigned to is on. If the bit is set to zero, the dot is off.

High-resolution graphic design has a couple of drawbacks, which is
why it is not used all the time. First of all, it takes lots of memory to bit
map the entire screen. This is because every pixel must have a memory
bit to control it. You are going to need one bit of memory for each pixel
(or one byte for 8 pixels). Since each character is 8 by 8, and there are
40 lines with 25 characters in each line, the resolution is 320 pixels (dots)
by 200 pixels for the whole screen. That gives you 64000 separate dots,
each of which requires a bit in memory. In other words, 8000 bytes of
memory are needed to map the whole screen.

Generally, high-resolution operations are made of many short, sim-
ple, repetitive routines. Unfortunately, this kind of thing is usually rather
slow if you are trying to write high-resolution routines in BASIC. How-
ever, short, simple, repetitive routines are exactly what machine lan-
guage does best. The solution is to either write your programs entirely in
machine language, or call machine language, high-resolution sub-
routines from your BASIC program using the SYS command from BASIC.
That way you get both the ease of writing in BASIC, and the speed of
machine language for graphics. The VSP cartridge is also available to
add high-resolution commands to COMMODORE 64 BASIC.

All of the examples given in this section will be in BASIC to make them
clear. Now to the technical details.

BIT MAPPING is one of the most popular graphics techniques in the
computer world. It is used to create highly detailed pictures. Basically,
when the Commodore 64 goes into bit map mode, it directly displays an

PROGRAMMING GRAPHICS 121

8K section of memory on the TV screen. When in bit map mode, you can
directly control whether an individual dot on the screen is on or off.

There are two types of bit mapping available on the Commodore 64.
They are:

1) Standard (high-resolution) bit mapped mode (320-dot by 200-dot
resolution)
2) Multi-color bit mapped mode (160-dot by 200-dot resolution)

Each is very similar to the character type it is named for: standard has
greater resolution, but fewer color selections. On the other hand, multi-
color bit mapping trades horizontal resolution for a greater number of
colors in an 8-dot by 8-dot square.

STANDARD HIGH-RESOLUTION BIT MAP MODE

Standard bit map mode gives you a 320 horizontal dot by 200 vertical
dot resolution, with a choice of 2 colors in each 8-dot by 8-dot section.
Bit map mode is selected (turned ON) by setting bit 5 of the VIC-II
control register to a 1 at location 53265 ($D011 in HEX). The following
POKE will do this:

POKE 53265,PEEK(53265)OR 32

Bit map mode is turned OFF by setting bit 5 of the VIC-Il control
register to 0 at location 53265 ($D011), like this:

POKE 53265,PEEK(53265)AND 223

Before we get into the details of the bit map mode, there is one more
issue to tackle, and that is where to locate the bit map area.

HOW IT WORKS

If you remember the PROGRAMMABLE CHARACTERS section you will
recall that you were able to set the bit pattern of a character stored in
RAM to almost anything you wanted. If at the same time you change the
character that is displayed on the screen, you would be able to change
a single dot, and watch it happen. This is the basis of bit-mapping. The

122 PROGRAMMING GRAPHICS

entire screen is filled with programmable characters, and you make
your changes directly into the memory that the programmable char-
acters get their patterns from.

Each of the locations in screen memory that were used to control what
character was displayed, are now used for color information. For
example, instead of POKEing a 1 in location 1024 to make an “A" ap-
pear in the top left hand corner of the screen, location 1024 now con-
trols the colors of the bits in that top left space.

Colors of squares in bit map mode do not come from color memory,
as they do in the character modes. Instead, colors are taken from
screen memory. The upper 4 bits of screen memory become the color of
any bit that is set to 1 in the 8 by 8 area controlled by that screen
memory location. The lower 4 bits become the color of any bit that is set
to a 0.

EXAMPLE: Type the following:

% EA FUT EIT
MEFE T e
12 FORES . : AOREZECREM EMTER BIT MAF MODE

Now RUN the program.

Garbage appears on the screen, right? Just like the normal screen
mode, you have to clear the HIGH-RESOLUTION (HI-RES) screen before
you use it. Unfortunately, printing a CLR won’t work in this case. Instead
you have to clear out the section of memory that you're using for your
programmable characters. Hit the and keys, then
add the following lines to your program to clear the HI-RES screen:

2@ FORI=EASETOBASE+TIS: FOKEL, @ MEXT :REM CLERR BIT
MAF

3@ FORI=1G24TOZEEE
CYAM AMD ELFICK

CFOEET L ZHMEST CREM SET COLOR TO

Now RUN the program again. You should see the screen clearing, then
the greenish blue color, cyan, should cover the whole screen. What we
want to do now is to turn the dots on and off on the HI-RES screen.

PROGRAMMING GRAPHICS 123

To SET a dot (turn a dot ON) or UNSET a dot (turn a dot OFF) you must
know how to find the correct bit in the character memory that you have
to set to a 1. In other words, you have to find the character you need to
change, the row of the character, and which bit of the row that you
have to change. You need a formula to calculate this.

We will use X and Y to stand for the horizontal and vertical positions
of a dot. The dot where X=0 and Y=0 is at the upper-left of the dis-
play. Dots to the right have higher X values, and the dots toward the
bottom have higher Y values. The best way to use bit mapping is to
arrange the bit map display something like this:

Each dot will have an X and a Y coordinate. With this format it is easy
to control any dot on the screen.

124 PROGRAMMING GRAPHICS

However, what you actually have is something like this:

TOP LINE

(ROW 0)
[0 0]
<
m
NO O A WOWN =

______ BYTE 320
BYTE 321
BYTE 322
BYTE 323
BYTE 324
BYTE 325
BYTE 326
______ BYTE 327

SECOND LINE
(ROW 1)

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

8 BYTE 16 BYTE 24 ..
9
10
11
12
13
14
15

328 BYTE 336 BYTE 344
329
330
331
332
333
334
335

BYTE
BYTE
BYTE
BYTE
BYTE

312
313
314
315
316
317
318
319

632
633
634
635
636
637
638
639

The programmable characters which make up the bit map are ar-

ranged in 25 rows of 40 columns each. While this is a good method of

organization for text, it makes bit mapping somewhat difficult. (There is
a good reason for this method. See the section on MIXED MODES.)
The following formula will make it easier to control a dot on the bit

map screen:

The start of the display memory area is known as the BASE. The row

number (from 0 to 24) of your dot is:

ROW = INT(Y/8) (There are 320 bytes per line.)

The character position on that line (from 0 to 39) is:

CHAR = INT(X/8) (There are 8 bytes per character.)

The line of that character position (from 0 to 7) is:

LINE = Y AND 7

PROGRAMMING GRAPHICS

125

The bit of that byte is:

BIT = 7—(X AND 7)

Now we put these formulas together. The byte in which character
memory dot (X,Y) is located is calculated by:

BYTE = BASE + ROW*320+ CHAR*8 + LINE

To turn on any bit on the grid with coordinates (X,Y), use this line:

POKE BYTE, PEEK(BYTE) OR 21BIT

Let’s add these calculations to the program. In the following example,
the COMMODORE 64 will plot a sine curve:

EMOWANWE WMILL FILL THE SCREEM
[

The calculation in line 60 will change the values for the sine function
from a range of +1 to —1 to a range of 10 to 170. Lines 70 to 100
calculate the character, row, byte, and bit being affected, using the
formulae as shown above. Line 125 signals the program is finished by
changing the color of the top left corner of the screen. Line 130 freezes
the program by putting it into an infinite loop. When you have finished

looking at the display, just hold down and hit FIRIE-

126 PROGRAMMING GRAPHICS

As a further example, you can modify the sine curve program to dis-
play a semicircle. Here are the lines to type to make the changes:

HALF THE SiCREEM

This will create a semicircle in the HI-RES area of the screen.

WARNING: BASIC variables can overlay your high-resolution screen. If you need
more memory space you must move the bottom of BASIC above the high-resolution
screen area. Or, you must move your high-resolution screen area. This problem will
NOT occur in machine language. It ONLY happens when you’re writing programs in
BASIC.

MULTI-COLOR BIT MAP MODE

Like multi-color mode characters, multi-color bit map mode allows you
to display up to four different colors in each 8 by 8 section of bit map.
And as in multi-character mode, there is a sacrifice of horizontal resolu-
tion (from 320 dots to 160 dots).

Multi-color bit map mode uses an 8K section of memory for the bit
map. You select your colors for multi-color bit map mode from (1) the
background color register 0, (the screen background color), (2) the video
matrix (the upper 4 bits give one possible color, the lower 4 bits an-
other), and (3) color memory.

Multi-color bit mapped mode is turned ON by setting bit 5 of 53265
($D011) and bit 4 at location 53270 ($D016) to a 1. The following POKE
does this:

POKE 53265,PEEK(53625)OR 32: POKE 53270,PEEK(53270)OR 16

PROGRAMMING GRAPHICS 127

Multi-color bit mapped mode is turned OFF by setting bit 5 of 53265
($D011) and bit 4 at location 53270 ($D016) to a 0. The following POKE
does this:

POKE 53265,PEEK(53265)AND 223: POKE 53270,PEEK(53270)AND 239

As in standard (HI-RES) bit mapped mode, there is a one to one cor-
respondence between the 8K section of memory being used for the dis-
play, and what is shown on the screen. However, the horizontal dots are
two bits wide. Each 2 bits in the display memory area form a dot, which
can have one of 4 colors.

BITS COLOR INFORMATION COMES FROM

00 Background color #0 (screen color)
01 Upper 4 bits of screen memory
10 Lower 4 bits of screen memory

1 Color nybble (nybble = 1/2 byte = 4 bits)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and
vertical directions. Smooth scrolling is a one pixel movement of the
entire screen in one direction. It can move either up, or down, or left, or
right. It is used to move new information smoothly onto the screen, while
smoothly removing characters from the other side.

While the VIC-II chip does much of the task for you, the actual scroll-
ing must be done by a machine language program. The VIC-II chip
features the ability to place the video screen in any of 8 horizontal posi-
tions, and 8 vertical positions. Positioning is controlled by the VIC-II
scrolling registers. The VIC-Il chip also has a 38 column mode, and a 24
row mode. the smaller screen sizes are used to give you a place for your
new data to scroll on from.

The following are the steps for SMOOTH SCROLLING:

128 PROGRAMMING GRAPHICS

1) Shrink the screen (the border will expand).

2) Set the scrolling register to maximum (or minimum value depend-
ing upon the direction of your scroll).

3) Place the new data on the proper (covered) portion of the screen.

4) Increment (or decrement) the scrolling register until it reaches the
maximum (or minimum) value.

5) At this point, use your machine language routine to shift the entire
screen one entire character in the direction of the scroll.

6) Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D016) must be
set to a 0. The following POKE does this:

POKE 53270,PEEK(53270)AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to a
1. The following POKE does this:

POKE 53270,PEEK(53270)OR 8

To go into 24 row mode, bit 3 of location 53265 ($D011) must be set to
a 0. The following POKE will do this:

POKE 53265,PEEK(53265)AND 247

To return to 25 row mode, set bit 3 of location 53265 ($D011) to a 1.
The following POKE does this:

POKE 53265,PEEK(53265)OR 8

When scrolling in the X direction, it is necessary to place the VIC-II
chip into 38 column mode. This gives new data a place to scroll from.
When scrolling LEFT, the new data should be placed on the right. When
scrolling RIGHT the new data should be placed on the left. Please note
that there are still 40 columns to screen memory, but only 38 are visible.

When scrolling in the Y direction, it is necessary to place the VIC-II chip
into 24 row mode. When scrolling UP, place the new data in the LAST
row. When scrolling DOWN, place the new data on the FIRST row. Un-
like X scrolling, where there are covered areas on each side of the
screen, there is only one covered area in Y scrolling. When the Y scroll-

PROGRAMMING GRAPHICS 129

ing register is set to O, the first line is covered, ready for new data.
When the Y scrolling register is set to 7 the last row is covered.

For scrolling in the X direction, the scroll register is located in bits 2 to
0 of the VIC-Il control register at location 53270 ($D016 in HEX). As
always, it is important to affect only those bits. The following POKE does
this:

POKE 53270, (PEEK(53270)AND 248)+X

where X is the X position of the screen from 0 to 7.

For scrolling in the Y direction, the scroll register is located in bits 2 to
0 of the VIC-Il control register at location 53265 ($D011 in HEX). As
always, it is important to affect only those bits. The following POKE does
this:

POKE 53265, (PEEK(53265)AND 248)+Y

where Y is the Y position of the screen from 0 to 7.

To scroll text onto the screen from the bottom, you would step the
low-order 3 bits of location 53265 from 0-7, put more data on the
covered line at the bottom of the screen, and then repeat the process.
To scroll characters onto the screen from left to right, you would step the
low-order 3 bits of location 53270 from 0 to 7, print or POKE another
column of new data into column O of the screen, then repeat the pro-
cess.

If you step the scroll bits by —1, your text will move in the opposite
direction.

EXAMPLE: Text scrolling onto the bottom of the screen:

13 FIOKES SAMHDZST CREM GO

THTD 24 R

2K FF IHTCH CREM
1!FFIHTFHF FOLV S HERT CREM MOVE

IF: Tll THE I?”TT”I'1
Z SOAAMHDE

420+ T FRIMT CREM

CREM
DEI I |“
3 HE T GOTOSE

130 PROGRAMMING GRAPHICS

SPRITES

A SPRITE is a special type of user definable character which can be
displayed anywhere on the screen. Sprites are maintained directly by
the VIC-Il chip. And all you have to do is tell a sprite “what to look like,”
“what color to be,” and “where to appear.” The VIC-Il chip will do the
rest! Sprites can be any of the 16 colors available.

Sprites can be used with ANY of the other graphics modes, bit
mapped, character, multi-color, etc., and they’ll keep their shape in all
of them. The sprite carries its own color definition, its own mode (HI-RES
or multi-colored), and its own shape.

Up to 8 sprites at a time can be maintained by the VIC-Il chip auto-
matically. More sprites can be displayed using RASTER INTERRUPT
techniques.

The features of SPRITES include:

1) 24 horizontal dot by 21 vertical dot size.
2) Individual color control for each sprite.
3) Sprite multi-color mode.
) Magnification (2X) in horizontal, vertical, or both directions.
) Selectable sprite to background priority.
6) Fixed sprite to sprite priorities.
) Sprite to sprite collision detection.
) Sprite to background collision detection.

These special sprite abilities make it simple to program many arcade
style games. Because the sprites are maintained by hardware, it is even
possible to write a good quality game in BASIC!

There are 8 sprites supported directly by the VIC-II chip. They are
numbered from 0 to 7. Each of the sprites has it own definition location,
position registers and color register, and has its own bits for enable and
collision detection.

DEFINING A SPRITE
Sprites are defined like programmable characters are defined. How-
ever, since the size of the sprite is larger, more bytes are needed. A

sprite is 24 by 21 dots, or 504 dots. This works out to 63 bytes (504/8

PROGRAMMING GRAPHICS 131

0Z MOY

61 mOY

81 MOY

L1 MmOY

9l mOY

SL MOY

vL mOY

€1 MOy

ZL MmoY

LL mOY

0L MOY

6 MOY

8 MOY

L Moy

9 MOY

S MOY

v MOB

€ MOY

Z mod

L MmOY

0 MOY

9l

143

v9

8zl

9l

143

v9

2143

91

43

¥9

8¢t

(WvAx1 = NO)
S3NIVA
viva g

118

€2

144

34

0z

61

81

Ll

9l

St

143

€l

1413

L

ok

80

20

SO

¥0

€0

20

00

H38WNN
NWNI0D

Figure 3-2. Sprite Definition Block.

PROGRAMMING GRAPHICS

132

bits) needed to define a sprite. The 63 bytes are arranged in 21 rows of
3 bytes each. A sprite definition looks like this:

BYTE O BYTE 1 BYTE 2
BYTE 3 BYTE 4 BYTE 5
BYTE 6 BYTE 7 BYTE 8
BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take a look at the
sprite definition block on the bit level. It would look something like Figure
3-2.

In a standard (HI-RES) sprite, each bit set to 1 is displayed in that
sprite’s foreground color. Each bit set to 0 is transparent and will display
whatever data is behind it. This is similar to a standard character.

Multi-color sprites are similar to multi-color characters. Horizontal
resolution is traded for extra color resolution. The resolution of the sprite
becomes 12 horizontal dots by 21 vertical dots. Each dot in the sprite
becomes twice as wide, but the number of colors displayable in the
sprite is increased to 4.

SPRITE POINTERS

Even though each sprite takes only 63 bytes to define, one more byte
is needed as a place holder at the end of each sprite. Each sprite, then,
takes up 64 bytes. This makes it easy to calculate where in memory your
sprite definition is, since 64 bytes is an even number and in binary it's an
even power.

Each of the 8 sprites has a byte associated with it called the SPRITE
POINTER. The sprite pointers control where each sprite definition is lo-
cated in memory. These 8 bytes are always located as the last 8 bytes
of the 1K chunk of screen memory. Normally, on the Commodore 64,
this means they begin at location 2040 ($07F8 in HEX). However, if you
move the screen, the location of your sprite pointers will also move.

Each sprite pointer can hold a number from 0 to 255. This number
points to the definition for that sprite. Since each sprite definition takes
64 bytes, that means that the pointer can ““see” anywhere in the 16K
block of memory that the VIC-1I chip can access (since 25664=16K).

PROGRAMMING GRAPHICS 133

If sprite pointer #0, at location 2040, contains the number 14, for
example, this means that sprite 0 will be displayed using the 64 bytes
beginning at location 14*64 = 896 which is in the cassette buffer. The
following formula makes this clear:

LOCATION = (BANK * 16384) + (SPRITE POINTER VALUE * 64)

Where BANK is the 16K segment of memory that the VIC-II chip is look-
ing at and is from 0 to 3.

The above formula gives the start of the 64 bytes of the sprite
definition block.

When the VIC-Il chip is looking at BANK 0 or BANK 2, there is a ROM
IMAGE of the character set present in certain locations, as mentioned
before. Sprite definitions can NOT be placed there. If for some reason
you need more than 128 different sprite definitions, you should use one
of the banks without the ROM IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-Il control register at location 53269 ($D015 in HEX) is known
as the SPRITE ENABLE register. Each of the sprites has a bit in this
register which controls whether that sprite is ON or OFF. The register
looks like this:

$D015 76543210

To turn on sprite 1, for example, it is necessary to turn that bit to a 1.
The following POKE does this:

POKE 53269 ,PEEK(53269)OR 2

A more general statement would be the following:

POKE 53269,PEEK(53269)OR (21SN)

where SN is the sprite number, from 0 to 7.

NOTE: A sprite must be turned ON before it can be seen. _I

134 PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is turned off by setting its bit in the VIC-Il control register at
53269 ($3D015 in HEX) to a 0. The following POKE will do this:

POKE 53269, PEEK(53269)AND (255—21SN)

where SN is the sprite number from 0 to 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-II chip.
Each of the sprites has its own sprite color register. These are the mem-
ory locations of the color registers:

ADDRESS DESCRIPTION
53287 ($D027) SPRITE O COLOR REGISTER
53288 ($D028) SPRITE 1 COLOR REGISTER
53289 ($D029) SPRITE 2 COLOR REGISTER
53290 ($D02A) SPRITE 3 COLOR REGISTER
53291 ($D028B) SPRITE 4 COLOR REGISTER
53292 ($D02C) SPRITE 5 COLOR REGISTER
53293 ($D02D) SPRITE 6 COLOR REGISTER
53294 ($DO2E) SPRITE 7 COLOR REGISTER

All dots in the sprite will be displayed in the color contained in the
sprite color register. The rest of the sprite will be transparent, and will
show whatever is behind the sprite.

MULTI-COLOR MODE

Multi-color mode allows you to have up to 4 different colors in each
sprite. However, just like other multi-color modes, horizontal resolution is
cut in half. In other words, when you’re working with sprite multi-color
mode (like in multi-color character mode), instead of 24 dots across the
sprite, there are 12 pairs of dots. Each pair of dots is called a BIT PAIR.
Think of each bit pair (pair of dots) as a single dot in your overall sprite
when it comes to choosing colors for the dots in your sprites. The table

PROGRAMMING GRAPHICS 135

below gives you the bit pair values needed to turn ON each of the four
colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

00 TRANSPARENT, SCREEN COLOR

01 SPRITE MULTI-COLOR REGISTER #0 (53285) ($D025)
10 SPRITE COLOR REGISTER

11 SPRITE MULTI-COLOR REGISTER #1 (53286) ($D026)

NOTE: The sprite foreground color is a 10. The character foreground is a 11.]

SETTING A SPRITE TO MULTI-COLOR MODE

To switch a sprite into multi-color mode you must turn ON the VIC-II
control register at location 53276 ($D01C). The following POKE does this:

POKE 53276,PEEK(53276) OR (21SN)

where SN is the sprite number (0 to 7).
To switch a sprite out of multi-color mode you must turn OFF the VIC-II
control register at location 53276 ($D01C). The following POKE does this:

POKE 53276,PEEK(53276) AND (255—21SN)

where SN is the sprite number (0 to 7).
EXPANDED SPRITES

The VIC-II chip has the ability to expand a sprite in the vertical direc-
tion, the horizontal direction, or both at once. When expanded, each dot
in the sprite is twice as wide or twice as tall. Resolution doesn’t actually
increase . . . the sprite just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in
the VIC-IlI control register at location 53277 ($DO1D in HEX) must be
turned ON (set to a 1). The following POKE expands a sprite in the X
direction:

POKE 53277,PEEK(53277)OR (21SN)
where SN is the sprite number from 0 to 7.

136 PROGRAMMING GRAPHICS

To unexpand a sprite in the horizontal direction, the corresponding bit
in the VIC-II control register at location 53277 ($D01D in HEX) must be
turned OFF (set to a 0). The following POKE “unexpands” a sprite in the
X direction:

POKE 53277,PEEK(53277)AND (255—21SN)

where SN is the sprite number from 0 to 7.

To expand a sprite in the vertical direction, the corresponding bit in
the VIC-Il control register at location 53271 ($D017 in HEX) must be
turned ON (set to a 1). The following POKE expands a sprite in the Y
direction:

POKE 53271,PEEK(53271)OR (2{SN)

where SN is the sprite number from 0 to 7.

To unexpand a sprite in the vertical direction, the corresponding bit in
the VIC-Il control register at location 53271 ($D017 in HEX) must be
turned OFF (set to a 0). The following POKE “unexpands” a sprite in the
Y direction:

POKE 53271,PEEK(53271)AND (255—21SN)

where SN is the sprite number from 0 to 7.

SPRITE POSITIONING

Once you’ve made a sprite you want to be able to move it around the
screen. To do this, your Commodore 64 uses three positioning registers:

1) SPRITE X POSITION REGISTER
2) SPRITE Y POSITION REGISTER
3) MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X position register, a Y position register, and a bit
in the X most significant bit register. This lets you position your sprites
very accurately. You can place your sprite in 512 possible X positions
and 256 possible Y positions.

The X and Y position registers work together, in pairs, as a team. The
locations of the X and Y registers appear in the memory map as follows:
First is the X register for sprite 0, then the Y register for sprite 0. Next

PROGRAMMING GRAPHICS 137

comes the X register for sprite 1, the Y register for sprite 1, and so on.
After all 16 X and Y registers comes the most significant bit in the X
position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You
use the locations at their appropriate time through POKE statements:

LOCATION
DESCRIPTION
DECIMAL HEX

53248 ($D000) SPRITE O X POSITION REGISTER
53249 ($D001) SPRITE O Y POSITION REGISTER
53250 ($D002) SPRITE 1 X POSITION REGISTER
53251 ($D003) SPRITE 1 Y POSITION REGISTER
53252 ($D004) SPRITE 2 X POSITION REGISTER
53253 ($D005) SPRITE 2 Y POSITION REGISTER
53254 ($D006) SPRITE 3 X POSITION REGISTER
53255 ($D007) SPRITE 3 Y POSITION REGISTER
53256 ($D008) SPRITE 4 X POSITION REGISTER
53257 ($D009) SPRITE 4 Y POSITION REGISTER
53258 ($D00A) SPRITE 5 X POSITION REGISTER
53259 ($D00B) SPRITE 5 Y POSITION REGISTER
53260 ($D00C) SPRITE 6 X POSITION REGISTER
53261 ($D00D) SPRITE 6 Y POSITION REGISTER
53262 ($DOOE) SPRITE 7 X POSITION REGISTER
53263 ($DOOF) SPRITE 7 Y POSITION REGISTER
53264 ($D010) SPRITE X MSB REGISTER

The position of a sprite is calculated from the TOP LEFT corner of the
24 dot by 21 dot area that your sprite can be designed in. It does NOT
matter how many or how few dots you use to make up a sprite. Even if
only one dot is used as a sprite, and you happen to want it in the middle
of the screen, you must still calculate the exact positioning by starting at
the top left corner location.

VERTICAL POSITIONING

Setting up positions in the horizontal direction is a little more difficult
than vertical positioning, so we’ll discuss vertical (Y) positioning first.

There are 200 different dot positions that can be individually pro-
grammed onto your TV screen in the Y direction. The sprite Y position
registers can handle numbers up to 255. This means that you have more

138 PROGRAMMING GRAPHICS

than enough register locations to handle moving a sprite up and down.
You also want to be able to smoothly move a sprite on and off the
screen. More than 200 values are needed for this.

The first on-screen value from the top of the screen, and in the Y
direction for an unexpanded sprite is 30. For a sprite expanded in the Y
direction it would be 9. (Since each dot is twice as tall, this makes a
certain amount of sense, as the initial position is STILL calculated from
the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the
screen (all 21 possible lines displayed) is 50.

The last Y value in which an unexpanded sprite is fully on the screen is
229. The last Y value in which an expanded sprite is fully on the screen
is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

18 FRINT

2 FOE % ’

IRTA FROM B &

2R FIOR T DK S HERT CREEM PORE SFRITE
IATA IHTO E b A

4 =5 = CREM SET BEGIMHIHNG
OF WIDED CHIF

=iE FOKEW+ET .1 CREM EHARLE SPRITE
1

EEL FIOREN TR CREM ZET SFRITE @

LR

CEN+1L 10 'REM SET SFRITE O
TI0H
(BN 1S B POKEY . 100 ‘REM SET SFRITE @

TIOM

HORIZONTAL POSITIONING

Positioning in the horizontal direction is more complicated because
there are more than 256 positions. This means that an extra bit, or 9th
bit is used to control the X position. By adding the extra bit when neces-
sary a sprite now has 512 possible positions in the left/right, X, direc-
tion. This makes more possible combinations than can be seen on the
visible part of the screen. Each sprite can have a position from 0 to 511.
However, only those values between 24 and 343 are visible on the
screen. If the X position of a sprite is greater than 255 (on the right side
of the screen), the bit in the X MOST SIGNIFICANT BIT POSITION register
must be set to a 1 (turned ON). If the X position of a sprite is less than

PROGRAMMING GRAPHICS 139

‘AL BWOY JNOA 10} SPIBPURIS UOISSILISURI) UOISIAS|A) UBDIIAWY ULION.

8S18) pye (ovis) 0ZE
|

(818) pZ (8315) 88y
|

|
|
I
|
I
|

(v4s) 062 — —- —-(v4s) 0S2
(533) 622 — ——
SMOH §2 ~(oas) 80z
SNWN109 oV
«OSIN
V34V ONIM3IA 378ISIA
ze$) 0§ - - - — — (@9) 05
—d a9 62
(80s) g— ——— = -

| |
| |
1 |
(851$) ppe (8218) 962

(818) pz (00%) D

Figure 3-3. Sprite

PROGRAMMING GRAPHICS

140

‘AL BWOY JNOA 10} SPIBPUBIS UOISSIWISURI) UOISIASI] UBDIIBWY YJION .

(3v18) Gee
|

|
|
|
|
]

(948) 9yg- — — —
(138) 622~ — — —

(9e$) pG — —

©003) 2L ———————

|

|

|

|
(4v1$) GEE

(Le1s) LILE
'

(418) 1E
|

SMOHY vZ
SNWNI0D 8¢
-OS1N

V34V ONIM3IA 378ISIA

(4118) 282

(448) 1€

(0318) 08y

— — (949) 9pZ

— — (009 v0Z

-~ — — (989) p§

— — —-— (12%) €¢

|
(208) 2

Positioning Charts.

141

PROGRAMMING GRAPHICS

256 (on the left side of the screen), then the X MSB of that sprite must
be 0 (turned OFF). Bits O to 7 of the X MSB register correspond to sprites
0 to 7, respectively.

The following program moves a sprite across the screen:

EXAMPLE:

When moving expanded sprites onto the left side of the screen in the
X direction, you have to start the sprite OFF SCREEN on the RIGHT SIDE.
This is because an expanded sprite is larger than the amount of space
available on the left side of the screen.

EXAMPLE:
- Joue vove

The charts in Figure 3-3 explain sprite positioning.

By using these values, you can position each sprite anywhere. By mov-
ing the sprite a single dot position at a time, very smooth movement is
easy to achieve.

142 PROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpanded sprites are at least partially visible in the 40 column,
25 row mode within the following parameters:

1 < =X< = 343

30 < =Y < = 249

In the 38 column mode, the X parameters change to the following:

8 < =X< = 334

In the 24 row mode, the Y parameters change to the following:

34 < =Y < = 245

by

Expanded sprites are at least partially visible in the 40 column, by 25

row mode within the following parameters:
489 > = X < = 343

9> =Y < = 249

In the 38 column mode, the X parameters change to the following:

496 > = X < = 334

In the 24 row mode, the Y parameters change to the following:

B =Y =245

PROGRAMMING GRAPHICS

143

SPRITE DISPLAY PRIORITIES

Sprites have the ability to cross each other’s paths, as well as cross in
front of, or behind other objects on the screen. This can give you a truly
three dimensional effect for games.

Sprite to sprite priority is fixed. That means that sprite O has the high-
est priority, sprite 1 has the next priority, and so on, until we get to
sprite 7, which has the lowest priority. In other words, if sprite 1 and
sprite 6 are positioned so that they cross each other, sprite 1 will be in
front of sprite 6.

So when you’re planning which sprites will appear to be in the fore-
ground of the picture, they must be assigned lower sprite numbers than
those sprites you want to put towards the back of the scene. Those
sprites will be given higher sprite numbers.

NOTE: A “window” effect is possible. If a sprite with higher priority has “holes” in it
(areas where the dots are not set to 1 and thus turned ON), the sprite with the iower
priority will show through. This also happens with sprite and background data.

Sprite to background priority is controllable by the SPRITE-BACK-
GROUND priority register located at 53275 ($D01B). Each sprite has a
bit in this register. If that bit is 0, that sprite has a higher priority than
the background on the screen. In other words, the sprite appears in
front of background data. If that bit is a 1, that sprite has a lower
priority than the background. Then the sprite appears behind the back-
ground data.

COLLISION DETECTS

One of the more interesting aspects of the VIC-II chip is its collision
detection abilities. Collisions can be detected between sprites, or be-
tween sprites and background data. A collision occurs when a non-zero
part of a sprite overlaps a non-zero portion of another sprite or char-
acters on the screen.

144 PROGRAMMING GRAPHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged,
in the spite to sprite collision register at location 53278 ($DO1E in HEX) in
the VIC-II chip control register. Each sprite has a bit in this register. If
that bit is a 1, then that sprite is involved in a collision. The bits in this
register will remain set until read (PEEKed). Once read, the register is
automatically cleared, so it is a good idea to save the value in a vari-
able until you are finished with it.

NOTE: Collisions can take place even when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data collisions are detected in the sprite to data collision
register at location 53279 ($DOTF in HEX) of the VIC-II chip control regis-
ter.

Each sprite has a bit in this register. If that bit is a 1, then that sprite
is involved in a collision. The bits in this register remain set until read
(PEEKed). Once read, the register is automatically cleared, so it is a
good idea to save the value in a variable until you are finished with it.

NOTE: MULTI-COLOR data 01 is considered transparent for collisions, even though it
shows up on the screen. When setting up a background screen, it is a good idea to
make everything that should not cause a collision 01 in multi-color mode.

PROGRAMMING GRAPHICS 145

18 REM SFRITE E¥AMFLE 1...

28 FEM THE HOT AIF PHLLDﬂH

28 WIC=13#482€:REM THIZ I% WHERE THE “IC REGISTERS
PEDIH

35 POKEWIC+Z21,1:FEM EMAELE SFRITE @

jF FOREVIC+33, 14:REM SET BACKGROUMD COLOR TO LIGHT
ELLIE

AV POEEWIC+ZZ,1FEM EXFAMD SFRITE & IM Y

23 POREMIC+Z9.1:REM EXFAMD SFRITE 8 IM *

43 FOREZD48, 132 REM SET SFRITE 8°% FOIMTER

128 POREVIC+HE, 1Ak REM SET SFREITE 873 ¥ FOSITIOH
FOREWIC+1, 188 :REM SET SPRITE @73 % FOSITION
FOREMICH 1:REM ZET SPRITE 8°% COLOR

FORY=8TO FEM EYTE COUMTER WITH SFRITE LOOF
FEARDA:REM READ IM A EYTE

FORE1SZ2#54+Y, A REM STORE THE DHTA IM SFRITE

’”M HEXTY :REM CLOBE LOOF
Di=1:T'=1

AN

OO

1 w=FPEERCWICH REM LOOK AT SFRITE 8°% H PDEITIDH
B Y=FEERCWIC+12REM LOQK HT SPREITE 875 % POSITION
g IFY=Sa0rRY=282THEHDY=~DY ' REM IF Y% Iﬂ ﬂH THE

EDhE IF THE.

3rd REM C!PEEH< THEH REWERZE LELLTH *
2 GAMDCFEEK CWIC+H1IS AMDNL 2 =BTHEMHD®=-1X ' FEM [F
RITE I%....

238 REM TOUCHIMG THE LEFT EDGE cx=24 AHD THE M:ZE
FOR =FRITE @ IS @3, REVERSE IT

488 IFA=4@aAHD(FEEK (VIC+1EDAMDL v =1 THEMD®=-0%"REM IF
EFRITE iSoooa

418 REM TOUCHIMWG THE RIGHT EDGE <Cx=48 AHD THE M:E
FOR SFRITE @ IS 1), REWERSE IT

428 IFyu=255ANIDK=1 THEHK=-1 1 SIDE=1

428 FEM SWITCH TO COTHER LE OF THE =CFEEM

G448 TFa=aRMNDI =1 THEM: e SIDE=H

4 24 PEH JNITFH TO COTHER =I1DE OF THE SCREEHM

E A REM ADD DELTH @ TO X

47 HHD;J- FEM MAKE SURE ¥ IS IM ALLOWED RAMGE
4 ?=?+D? FEM ADD DELTA Y TO ¥

4 FOREMIC+1E, SIDE

4 FOKEVIC, S REM FUT HEW + “WALUE IHWTO SFRITE &7
v POEITION

S1@ FOREVIC+1.%EEM FUT HEW Y WALUE IMTO ZFRITE
SN POSITION
GOTOZde
REM #4444

AR

AN

DA O

Zul

146 PROGRAMMING GRAPHICS

]H FEFM SFRITE EXAMPLE ...
EREM THE HOT AIR BALLOOM AGAIH
”Il'l AR REM THIS IS WHERE THE WIC REGISTERS

FIEM EMAEBLE SFRITES @ THRL S

CRGROUHID COLOR T3 LTGEHT

S @ AMD 1IN Y
(ST 25 A B A
FOIMTER
FOIMTER
FOIHTER
FOIHTER
FOIMTER
(& uHTEFt

L7 PR IMNT " TRIE I TWD HIRES SFRITEZ

R it Lo vove
i LlOTIIR =30

TOEMCH VFITHE

EM THE START NELOCE THAT

» EYTE COUMTER WITH SPFRITE LOOF
MR BEYTE
THE THFETH IM ZFRITE AREA

EIT IO
’ TTICH

HEHI“"—-Ii 'TREM I.F ks O THE

THEH

: “REE DELTA ¥
FEEK (Y10

D =R VHEMDW=~T0 0 REM T

N R)
5 OREM TOUCHIMG THE LEFT EDGE. THEW REVERSE IT

PROGRAMMING GRAPHICS

147

AR PEER OV TR DS MDY b=l THEM D=~ REM IF

: THE ECREEM

TO (..'THL
HOD DELT E
SOREM MARE SURE
H HDD DEI’H YT

OF THE SCREEM

TH ALLCWED RAMGEE

SR ’I F'l IT HERK ¥ WALUE THTD SPRITE &°%

A REM FUT HEW W WRLUDE THTD

= T TE
CHUURER FUTOMER YOWELUE THTO SPRITE

TOoHEM Y OWELUE THTO SPRITE

[P P 5 5 O 5 O = O s O S s N = O A P =

18 REM SFRITE EXAMFLE Z...

2@ REM THE HOT RIR GORF

@ WIC=S3295: REM THIS IS WHERE THE VIC REGISTERS
BEGIM

5 POEEWIC+Z1.1:REM EMAELE SFRITE @

148 PROGRAMMING GRAPHICS

e PORENVIC+HZ2. 14 REM SET BACKGROUMWD COLOR TO LIGHT

‘REM ESFAMD SFRITE & IM Y
s 1 REM ESPAMD SFRITE @ IM =
2UREM SET SFRITE @75 FOIMTER
] TURH QR MULTICOLOR
SET MULTICOLOR @
R SET MULTICOLOR 1
1 REM OZET SFRITE & i Bl
FREM SET SFRITE YORFOSITICON
REM SET SFRITE @75 COLOR
"REM EYTE COUMTER WITH SFRITE LOOF
FREAD IH Fi EYTE
THFE THE DATA IW ZFRITE AREA

1
N =
=)

Ly R o v

L

12!

N FORY=ET 08
5 FEHDH REM

AT SFRITE @°% FOSTTION
IH AT SFRITE SN POSTTION

=-I%Y:REM IF Y% iE oM THE

IF“~JHHF?=_-J

REEH THEH REWERZE DELTH Y
4HHD'FEEHC?ID+1-?HHD1?*ETHEHD

3 FEH TUULHIHH THE LEFT EDGE. THEW REWERSE IT
7 g AHDYFEER OV ICH1E3AMDL =1 THEHD =T REM TF

THE RIGHT EDCGE. THEW REVERSE IT

wW=1THEM 1:5IDE=1

HITrH TO OTHER TE OF THE ZSCREEM

AR D D=~] THE R CEIDE=R

SWITCH TO OTHER SIDE OF THE SCREEM

g CREM ADD DELTH « TO =

HHI'..T'E‘FE” MAKE SURE = IS IM ALLOWED RAMFZE
W=DV CREM ADD DELTA Y TOY

P FOEEWICH+H1E, SIDE

FOEEVIC, K REM FUT HEW = WALJE IHTD ZF

DETTION

FOEEVICHL Y REM FUT HEW Y WALUE IMTO SFRITE

YOROSITION

SZE CETAR$:REM GET A EEY FROM THE EEYECARD

Sl IFAE="M"THEMPOKEY ITC+22, 1 REM SER SELECTED

HHLTIuDL|F
: "HYTHEMFOEESYTC+22 .03 REM USER ZELECTED

LT Tk

SINTES s

—
J..
BN
—
=
-
-4
=
—
(241
=)
'Y
{3

SlEE
S 18E, 17VE, 178, 17, 17
B, 178

B, 1VE, 85, 178, 42,178

Ty o=
o -

PROGRAMMING GRAPHICS

149

OTHER GRAPHICS FEATURES
SCREEN BLANKING

Bit 4 of the VIC-II control register controls the screen blanking func-
tion. It is found in the control register at location 53265 ($D011). When it
is turned ON (in other words, set to a 1) the screen is normal. When bit 4
is set to O (turned OFF), the entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just isn't
displayed.

POKE 53265,PEEK(53265)AND 239
To bring back the screen, use the POKE shown below:

POKE 53265,PEEK(53265)OR 16

NOTE: Turning off the screen will speed up the processor slightly. This means that '

program RUNning is also sped up. l
J

RASTER REGISTER

The raster register is found in the VIC-II chip at location 53266
($D012). The raster register is a dual purpose register. When you read
this register it returns the lower 8 bits of the current raster position. The
raster position of the most significant bit is in register location 53265
($D011). You use the raster register to set up timing changes in your
display so that you can get rid of screen flicker. The changes on your
screen should be made when the raster is not in the visible display area,
which is when your dot positions fall between 51 and 251.

When the raster register is written to (including the MSB) the number
written to is saved for use with the raster compare function. When the
actual raster value becomes the same as the number written to the
raster register, a bit in the VIC-Il chip interrupt register 53273 ($D019) is
turned ON by setting it to 1.

NOTE: If the proper interrupt bit is enabled (turned on), an interrupt (IRQ) will occur.

150 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt
source. The current status of bit 2 of the interrupt register will be a 1
when two sprites hit each other. The same is true, in a corresponding 1
to 1 relationship, for bits 0—3 listed in the chart below. Bit 7 is also set
with a 1, whenever an interrupt occurs.

The interrupt status register is located at 53273 ($D019) and is as
follows:

LATCH BIT # DESCRIPTION

IRST 0 Set when current raster count = stored raster count

IMDC 1 Set by SPRITE-DATA collision (1st one only, until reset)
IMMC 2 Set by SPRITE-SPRITE collision (1st one only, until reset)
ILP 3 Set by negative transition of light pen (1 per frame)

IRQ 7 Set by latch set and enabled

Once an interrupt bit has been set, it's “latched” in and must be
cleared by writing a 1 to that bit in the interrupt register when you're
ready to handle it. This allows selective interrupt handling, without hav-
ing to store the other interrupt bits.

The INTERRUPT ENABLE REGISTER is located at 53274 ($DO1A). It has
the same format as the interrupt status register. Unless the correspond-
ing bit in the interrupt enable register is setto a 1, no interrupt from that
source will take place. The interrupt status register can still be polled for
information, but no interrupts will be generated.

To enable an interrupt request the corresponding interrupt enable bit
(as shown in the chart above) must be set to a 1.

This powerful interrupt structure lets you use split screen modes. For
instance you can have half of the screen bit mapped, half text, more
than 8 sprites at a time, etc. The secret is to use interrupts properly. For
example, if you want the top half of the screen to be bit mapped and
the bottom to be text, just set the raster compare register (as explained
previously) for halfway down the screen. When the interrupt occurs, tell
the VIC-II chip to get characters from ROM, then set the raster compare
register to interrupt at the top of the screen. When the interrupt occurs
at the top of the screen, tell the VIC-II chip to get characters from RAM
(bit map mode).

PROGRAMMING GRAPHICS 151

You can also display more than 8 sprites in the same way. Unfortu-
nately BASIC isn’t fast enough to do this very well. So if you want to start
using display interrupts, you should work in machine language.

SUGGESTED SCREEN AND CHARACTER
COLOR COMBINATIONS

Color TV sets are limited in their ability to place certain colors next to
each other on the same line. Certain combinations of screen and char-
acter colors produce blurred images. This chart shows which color com-
binations to avoid, and which work especially well together.

CHARACTER COLOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ol X|e|[X|@e|@e|®| X | oe|@o|X|0o|0o|0o|0o|0]|e
lle|X|®o|(X|oe|@o|l@o|X|®| o |00 0| X |eo]|e®
2| X|o|X|X|®|X|X|0o|®o|X|®|X|[X|X]|X]|®
Sle|[X[X|X|X|®|@|[X|[X|X|X|®|X|X]|®]|X
dle|® | X|X| X|X|X|X|X]|X|X|X|[X|X]|X]|®
5|le|@|xX|®| X|X|X|X|X|X|X|®|X|e|X]|®
§ 6|lo | e | X || X[X|X|[X[X]|X[X]|X|X]|0o|leo]|e®
S 7|le|x|e|x|x|x|e[x|e|le|o|e|e|x|x]|X
Z gle|e|le|x|x|x|Xx|e|X|e|X|x|[Xx|x|Xx]|e®
g 9| X |e|X[X|X|X|[X|o|o|X|o|X|[X|X|X]|e
P1w|le|e|le| x| x| x|x|o|x|e|x|x|x|x|x]|e
Mle|le|X|®|X|X|X|o|[X|X|[X|X|o|0]|®]|e
1220 |o|@®| X[x| X|®|X|x|®|[X|a|X|X|X]|e
13|le | X[X|X|X|o|O®|X|[X|X]|X|0|X|X|X]|X
140 |o|X|o|X|X|@|X|X|X|X|®|X|X|X|®
15| 0|e|X|@®@|@®@|@|X|X|O®|®| @g|@|X|®]|X
© = EXCELLENT
® - FAIR
X = POOR

152 PROGRAMMING GRAPHICS

PROGRAMMING SPRITES—ANOTHER LOOK

For those of you having trouble with graphics, this section has been
designed as a more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC—A SHORT PROGRAM

There are at least three different BASIC programming techniques
which let you create graphic images and cartoon animations on the
Commodore 64. You can use the computer’s built-in graphics character
set (see Page 376). You can program your own characters (see Page
108) or . . . best of all . . . you can use the computer’s built-in “sprite
graphics.” To illustrate how easy it is, here’s one of the shortest
spritemaking programs you can write in BASIC:

This program includes the key “ingredients” you need to create any
sprite. The POKE numbers come from the SPRITEMAKING CHART on
Page 176. This program defines the first sprite . . . sprite 0 . . . as a
solid white square on the screen. Here’s a line-by-line explanation of the
program:

LINE 10 clears the screen.

LINE 20 sets the “sprite pointer” to where the Commodore 64 will
read its sprite data from. Sprite O is set at 2040, sprite 1 at 2041, sprite
2 at 2042, and so on up to sprite 7 at 2047. You can set all 8 sprite
pointers to 13 by using this line in place of line 20:

20 FOR SP=2040T02047:POKE SP,13:NEXT SP

LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore
64’s RAM memory starting at location 832 (each sprite requires 63 bytes
of memory). The first sprite (sprite 0) is “addressed’” at memory locations

832 to 894.

PROGRAMMING GRAPHICS 153

LINE 40 sets the variable “V” equal to 53248, the starting address of
the VIDEO CHIP. This entry lets us use the form (V+number) for sprite
settings. We're using the form (V+number) when POKEing sprite settings
because this format conserves memory and lets us work with smaller
numbers. For example, in line 50 we typed POKE V+21. This is the same
as typing POKE 53248+ 21 or POKE 53269 . . . but V+21 requires less
space than 53269, and is easier to remember.

LINE 50 enables or “turns on” sprite 0. There are 8 sprites, numbered
from 0 to 7. To turn on an individual sprite, or a combination of sprites,
all you have to do is POKE V+21 followed by a number from 0 (turn all
sprites off) to 255 (turn all 8 sprites on). You can turn on one or more
sprites by POKEing the following numbers:

ALL ON |SPRITEO |SPRITE1 | SPRITE2 |SPRITE3 | SPRITE4 | SPRITES | SPRITES | SPRITE7 |ALL OFF
V+21,255|V+21,1 | V+21,2 | V+21,4 | V+21,8 | V+21,16(V+21,32| V+21,64(V+21,128| V+21,0

POKE V+21,1 turns on sprite 0. POKE V+21,128 turns on sprite 7. You
can also turn on combinations of sprites. For example, POKE V+21,129
turns on both sprite 0 and sprite 7 by adding the two “turn on” numbers
(1+128) together. (See SPRITEMAKING CHART, Page 176.)

LINE 60 sets the COLOR of sprite 0. There are 16 possible sprite
colors, numbered from O (black) to 15 (grey). Each sprite requires a
different POKE to set its color, from V+39 to V+46. POKE V+39,1
colors sprite 0 white. POKE V+46,15 colors sprite 7 grey. (See the
SPRITEMAKING CHART for more information.)

When you create a sprite, as you just did, the sprite will STAY IN
MEMORY until you POKE it off, redefine it, or turn off your computer.
This lets you change the color, position and even shape of the sprite in
DIRECT or IMMEDIATE mode, which is useful for editing purposes. As an
example, RUN the program above, then type this line in DIRECT mode
(without a line number) and hit the key:

POKE V+39,8

The sprite on the screen is now ORANGE. Try POKEing some other num-
bers from 0 to 15 to see the other sprite colors. Because you did this in
DIRECT mode, if you RUN your program the sprite will return to its origi-
nal color (white).

154 PROGRAMMING GRAPHICS

LINE 70 determines the HORIZONTAL or “X"” POSITION of the sprite
on the screen. This number represents the location of the UPPER LEFT
CORNER of the sprite. The farthest left horizontal (X) position which you
can see on your television screen is position number 24, although you
can move the sprite OFF THE SCREEN to position number 0.

LINE 80 determines the VERTICAL or “Y” POSITION of the sprite. In
this program, we placed the sprite at X (horizontal) position 24, and Y
(vertical) position 100. To try another location, type this POKE in DIRECT

mode and hit IEGITM:

POKE V,24:POKE V+1,50

This places the sprite at the upper left corner of the screen. To move the
sprite to the lower left corner, type this:

POKE V,24:POKE V+1,229

Each number from 832 to 895 in our sprite 0 address represents one
block of 8 pixels, with three 8-pixel blocks in each horizontal row of the
sprite. The loop in line 80 tells the computer to POKE 832,255 which
makes the first 8 pixels solid . . . then POKE 833,255 to make the second
8 pixels solid, and so on to location 894 which is the last group of 8
pixels in the bottom right corner of the sprite. To better see how this
works, try typing the following in DIRECT mode, and notice that the
second group of 8 pixels is erased:

POKE 833,0 (to put it back type POKE 833,255 or RUN your program)

The following line, which you can add to your program, erases the
blocks in the MIDDLE of the sprite you created:

90 FOR A=836 TO 891 STEP 3:POKE A,0:NEXT A

Remember, the pixels that make up the sprite are grouped in blocks of
eight. This line erases the 5th group of eight pixels (block 836) and every
third block up to block 890. Try POKEing any of the other numbers from
832 to 894 with either a 255 to make them solid or 0 to make them
blank.

PROGRAMMING GRAPHICS 155

CRUNCHING YOUR SPRITE PROGRAMS

Here’s a helpful “crunching” tip: The program described above is already short, but it
can be made even shorter by “crunching” it smaller. In our example we list the key
sprite settings on separate program lines so you can see what's happening in the

program. In actual practice, a good programmer would probably write this program
as a TWO LINE PROGRAM . . . by “crunching” it as follows:

10PRINTCHR$(147):V=53248:POKEV +21,1:POKE2040,13:
POKEV+39,1
20FORS=832T0O894:POKES,255:NEXT:POKEV,24:POKEV+ 1,100

For more tips on how to crunch your programs so they fit in less memory and run more

L_efﬁciem‘ly, see the “crunching guide” on Page 24.

TV SCREEN

pa
e X POSITION = HORIZO
-
<
<
[
o
w
>
]
Z
2
[
7 /
(%3]
g /
>
/)
/-

A Sprite located here must have both its
X-position (horizontal) and Y-position (vertical)
set so it can be displayed on the screen.

Figure 3-4. The display screen is divided into a grid of X and Y coor-
dinates.

156 PROGRAMMING GRAPHICS

POSITIONING SPRITES ON THE SCREEN

The entire display screen is divided into a grid of X and Y coordi-
nates, like a graph. The X COORDINATE is the HORIZONTAL position
across the screen and the Y COORDINATE is the VERTICAL position up
and down (see Figure 3-4).

To position any sprite on the screen, you must POKE TWO SETTINGS

. . the X position and the Y position . . . these tell the computer where
to display the UPPER LEFT HAND CORNER of the sprite. Remember that
a sprite consists of 504 individual pixels, 24 across by 21 down . . . so if
you POKE a sprite onto the upper left corner of your screen, the sprite
will be displayed as a graphic image 24 pixels ACROSS and 21 pixels
DOWN starting at the X-Y position you defined. The sprite will be dis-
played based on the upper left corner of the entire sprite, even if you
define the sprite using only a small part of the 24X 21-pixel sprite area.

To understand how X-Y positioning works, study the following dia-
gram (Figure 3-5), which shows the X and Y numbers in relation to your
display screen. Note that the GREY AREA in the diagram shows your
television viewing area . . . the white area represents positions which
are OFF your viewing screen . . .

X POSITIONS RUN FROM 0 TO 255,
0 24 THEN YOU MUST POKE V+16, 1 255

=———AND START OVER AT 0 10 91
i

; t
0 91

0=

T

|
_ _ X = 255.Y = 50 | POKE V+16, 1 AND
oS B S E I'X =65 Y = 50
e X = 231,Y = 50 ' N

i B O

VIEWING SCREEN ARE

[3)
=}
|
I
1

X =24 Y = 229 X =229, Y = 231

N
Lz

7
X = 24, Y = 250 POKE V+16, 1 AND
X =65Y = 229

Y POSITIONS RUN FROM
0 TO 255

5
2

Figure 3-5. Determining X-Y sprite positions.

PROGRAMMING GRAPHICS 157

To display a sprite in a given location, you must POKE the X and Y
settings for each SPRITE . . . remembering that every sprite has its own
unique X POKE and Y POKE. The X and Y settings for all 8 sprites are
shown here:

POKE THESE VALUES TO SET X-Y SPRITE POSITIONS

SPRITEQ | SPRITEY | SPRITE2 | SPRITE3 | SPRITE4 | SPRITES | SPRITE6 SPRITE7

SET X |V,X V+2,X | V44,X | V+6,X | VH8,X | V410X | V+12,X | V4+14,X
SETY |V+1,Y [Vv+3,Y | v45Y |V+7,Y | V+9,Y VHI1L,Y | V413,Y [V+15Y

RIGHTX | V+16,1 | V+16,2 | V+16,4 V+16,8 V+16,16 | V+16,32| V+16,64 | V+16,128

POKEING AN X POSITION: The possible values of X are 0 to 255,
counting from left to right. Values 0 to 23 place all or part of the sprite
OUT OF THE VIEWING AREA off the left side of the screen . . . values 24
to 255 place the sprite IN THE VIEWING AREA up to the 255th position
(see next paragraph for settings beyond the 255th X position). To place
the sprite at one of these positions, just type the X-POSITION POKE for
the sprite you're using. For example, to POKE sprite 1 at the farthest left
X position IN THE VIEWING AREA, type: POKE V+2,24.

X VALUES BEYOND THE 255TH POSITION: To get beyond the 255th
position across the screen, you need to make a SECOND POKE using the
numbers in the “RIGHT X" row of the chart (Figure 3-5). Normally, the
horizontal (X) numbering would continue past the 255th position to 256,
257, etc., but because registers only contain 8 bits we must use a “sec-
ond register” to access the RIGHT SIDE of the screen and start our X
numbering over again at 0. So to get beyond X position 255, you must
POKE V+16 and a number (depending on the sprite). This gives you 65
additional X positions (renumbered from 0 to 65) in the viewing area on
the RIGHT side of the viewing screen. (You can actually POKE the right
side X value as high as 255, which takes you off the right edge of the

viewing screen.)

POKEING A Y POSITION: The possible values of Y are 0 to 255, count-
ing from top to bottom. Values O to 49 place all or part of the sprite OUT
OF THE VIEWING AREA off the TOP of the screen. Values 50 to 229 place
the sprite IN THE VIEWING AREA. Values 230 to 255 place all or part of
the sprite OUT OF THE VIEWING AREA off the BOTTOM of the screen.

158 PROGRAMMING GRAPHICS

Let's see how this X-Y positioning works, using sprite 1. Type this pro-

gram:

21,2 POKEZEST, 13

This simple program establishes sprite 1 as a solid box and positions it
at the upper left corner of the screen. Now change line 40 to read:

40 POKE V+3,229

This moves the sprite to the bottom left corner of the screen. Now let’s
test the RIGHT X LIMIT of the sprite. Change line 30 as shown:

30 POKE V+2,255

This moves the sprite to the RIGHT but reaches the RIGHT X LIMIT, which
is 255. At this point, the “most significant bit” in register 16 must be SET.
In other words, you must type POKE V+ 16 and the number shown in the
“RIGHT X" column in the X-Y POKE CHART above to RESTART the X
position counter at the 256th pixel/position on the screen. Change line 30
as follows:

30 POKE V+16, PEEK(V+16)OR 2:POKE V+2,0

POKE V+16,2 sets the most significant bit of the X position for sprite 1
and restarts it at the 256th pixel/position on the screen. POKE V+2,0
displays the sprite at the NEW POSITION ZERO, which is now reset to the
256th pixel.

To get back to the left side of the screen, you must reset the most
significant bit of the X position counter to O by typing (for sprite 1):

POKE V+16, PEEK(V+16)AND 253

TO SUMMARIZE how the X positioning works . . . POKE the X POSI-
TION for any sprite with a number from 0 to 255. To access a position
beyond the 255th position/pixel across the screen, you must use an ad-
ditional POKE (V+16) which sets the most significant bit of the X position
and start counting from 0 again at the 256th pixel across the screen.

PROGRAMMING GRAPHICS 159

This POKE starts the X numbering over again from 0 at the 256th posi-
tion (Example: POKE V+16, PEEK(V+16)OR 1 and POKE V,1 must be
included to place sprite 0 at the 257th pixel across the screen.) To get
back to the left side X positions you have to TURN OFF the control setting
by typing POKE V+16, PEEK(V+16)AND 254.

POSITIONING MULTIPLE SPRITES ON THE SCREEN

Here’s a program which defines THREE DIFFERENT SPRITES (0, 1, and
2) in different colors and places them in different positions on the
screen:

S5 HEST

CROKEN+GE, T FOKEY 44, S

For convenience, all 3 sprites have been defined as solid squares,
getting their data from the same place. The important lesson here is
how the 3 sprites are positioned. The white sprite 0 is at the top lefthand
corner. The yellow sprite 1 is at the bottom lefthand corner but HALF the
sprite is OFF THE SCREEN (remember, 24 is the leftmost X position in the
viewing area . . . an X position less than 24 puts all or part of the sprite
off the screen and we used an X position 12 here which put the sprite
halfway off the screen). Finally, the orange sprite 2 is at the RIGHT X
LIMIT (position 255) . . . but what if you want to display a sprite in the
area to the RIGHT of X position 255?

DISPLAYING A SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires a special
POKE which SETS the most significant bit of the X position and starts over
at the 256th pixel position across the screen. Here’s how it works . . .

First, you POKE V+16 with the number for the sprite you're using
(check the “RIGHT X" row in the X-Y chart . . . we'll use sprite 0). Now
we assign an X position, keeping in mind that the X counter starts over
from O at the 256th position on the screen. Change line 50 to read as
follows:

50 POKE V+16,1:POKE V,24:POKE V+1,75

160 PROGRAMMING GRAPHICS

This line POKEs V+16 with the number required to “open up” the right
side of the screen. . .the new X position 24 for sprite 0 now begins 24
pixels to the RIGHT of position 255. To check the right edge of the
screen, change line 60 to:

60 POKE V+16,1:POKE V,65:POKE V+1,75

Some experimentation with the settings in the sprite chart will give you
the settings you need to position and move sprites on the left and right
sides of the screen. The section on “moving sprites” will also increase
your understanding of how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or
BEHIND each other on the screen. This incredible three dimensional illu-
sion is achieved by the built-in SPRITE PRIORITIES which determine which
sprites have priority over the others when 2 or more sprites OVERLAP on
the screen.

The rule is “first come, first served” which means lower-numbered
sprites AUTOMATICALLY have priority over higher-numbered sprites. For
example, if you display sprite 0 and sprite 1 so they overlap on the
screen, sprite 0 will appear to be IN FRONT OF sprite 1. Actually, sprite
0 always supersedes all the other sprites because it's the lowest num-
bered sprite. In comparison, sprite 1 has priority over sprites 2—7; sprite
2 has priority over sprites 3—7, etc. Sprite 7 (the last sprite) has LESS
PRIORITY than any of the other sprites, and will always appear to be
displayed “BEHIND"” any other sprites which overlap its position.

To illustrate how priorities work, change lines 50, 60, and 70 in the
program above to the following:

l FI'IP‘E' SR, TOROEEY 4L,
T FOEEV+LE. B

cE 1 : F'IZIKE'-.'
s FI IP E"4 G POREN+S

You should see a white sprite on top of a yellow sprite on top of an
orange sprite. Of course, now that you see how priorities work, you can
also MOVE SPRITES and take advantage of these priorities in your ani-
mation.

PROGRAMMING GRAPHICS 161

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a
coloring book. Every sprite consists of tiny dots called pixels. To draw a
sprite, all you have to do is “color in” some of the pixels.

Look at the spritemaking grid in Figure 3-6. This is what a blank sprite
looks like:

ON —
A O
N W
o —
[oo]

N

N

Figure 3-6. Spritemaking grid.

Each little “square’ represents one pixel in the sprite. There are 24 pixels
across and 21 pixels up and down, or 504 pixels in the entire sprite. To
make the sprite look like something, you have to color in these pixels
using a special PROGRAM . . . but how can you control over 500 indi-
vidual pixels? That’s where computer programming can help you. In-
stead of typing 504 separate numbers, you only have to type 63 num-
bers for each sprite. Here’s how it works . . .

162 PROGRAMMING GRAPHICS

CREATING A SPRITE . . . STEP BY STEP

To make this as easy as possible for you, we’ve put together this
simple step by step guide to help you draw your own sprites.
STEP 1:

Write the spritemaking program shown here ON A PIECE OF PAPER . . .
note that line 100 starts a special DATA section of your program which
will contain the 63 numbers you need to create your sprite.

< T o)

+H R HEST

128|6432(16| 8 | 4 | 2 | 1 |128|64|32/16 | 8| 4 | 2 | 1 128 64(32({16| 8 | 4|2 |1

DATFL44.
TETAY 44 .
DHETHA LS

> DATH
2 DATHL
DAT

STEP 2:

Color in the pixels on the spritemaking grid on Page 162 (or use a piece
of graph paper . . . remember, a sprite has 24 squares across and 21
squares down). We suggest you use a pencil and draw lightly so you can
reuse this grid. You can create any image you like, but for our example
we’ll draw a simple box.

STEP 3:

Look at the first EIGHT pixels. Each column of pixels has a number (128,
64, 32, 16, 8, 4, 2, 1). The special type of addition we are going to
show you is a type of BINARY ARITHMETIC which is used by most com-

PROGRAMMING GRAPHICS 163

puters as a special way of counting. Here’s a close-up view of the first
eight pixels in the top left hand corner of the sprite:

STEP 4:

Add up the numbers of the SOLID pixels. This first group of eight pixels
is completely solid, so the total number is 255.

STEP 5:

Enter that number as the FIRST DATA STATEMENT in line 100 of the
Spritemaking Program below. Enter 255 for the second and third groups
of eight.

STEP 6:

Look at the FIRST EIGHT PIXELS IN THE SECOND ROW of the sprite. Add
up the values of the solid pixels. Since only one of these pixels is solid,
the total value is 128. Enter this as the first DATA number in line 101.

1618|421

STEP 7:

Add up the values of the next group of eight pixels (which is 0 because
they’re all BLANK) and enter in line 101. Now move to the next group of
pixels and repeat the process for each GROUP OF EIGHT PIXELS (there
are 3 groups across each row, and 21 rows). This will give you a total of
63 numbers. Each number represents ONE group of 8 pixels, and 63
groups of eight equals 504 total individual pixels. Perhaps a better way
of looking at the program is like this . . . each line in the program
represents ONE ROW in the sprite. Each of the 3 numbers in each row
represents ONE GROUP OF EIGHT PIXELS. And each number tells the
computer which pixels to make SOLID and which pixels to leave blank.

164 PROGRAMMING GRAPHICS

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACE BY RUNNING TO-
GETHER ALL THE DATA STATEMENTS, AS SHOWN IN THE SAMPLE PRO-
GRAM BELOW. Note that we asked you to write your sprite program on
a piece of paper. We did this for a good reason. The DATA STATEMENT
LINES 100~-120 in the program in STEP 1 are only there to help you see
which numbers relate to which groups of pixels in your sprite. Your final
program should be “crunched” like this:

1@ PRINT" 3" :POKES3
26 FOKEY

CFOEETZ2EL &

R

S+H LG HERT
Slalasee, .18, 1, 144,08,

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let’s do some interesting things
with it. To move your sprite smoothly across the screen, add these two
lines to your program:

50 POKE V+5,100:FOR X=24TO255:POKE V+4,X:NEXT:POKE
V+16,4
55 FOR X=0TO65:POKE V+4,X:NEXT X:POKE V+16,0:GOTO 50

LINE 50 POKEs the Y POSITION at 100 (try 50 or 229 instead for
variety). Then it sets up a FOR . . . NEXT loop which POKEs the sprite
into X position 0 to X position 255, in order. When it reaches the 255th
position, it POKEs the RIGHT X POSITION (POKE V+16,4) which is re-
quired to cross to the right side of the screen.

LINE 55 has a FOR . . . NEXT loop which continues to POKE the sprite
in the last 65 positions on the screen. Note that the X value was reset to
zero but because you used the RIGHT X setting (POKE V+16,2) X starts
over on the right side of the screen.

This line keeps going back to itself (GOTO 50). If you just want the
sprite to move ONCE across the screen and disappear, then take out
GOTOS50.

PROGRAMMING GRAPHICS 165

Here’s a line which moves the sprite BACK AND FORTH:

50 POKE V+5,100:FOR X=24TO255:POKE V+4,X:NEXT: POKE
V+16,4:FOR X=0TO65: POKE V+4,X: NEXT X

55 FOR X=65TO0 STEP—1:POKE V+4,X:NEXT:POKE V+16,0: FOR
X=255TO24 STEP—1: POKE V+4,X:NEXT

60 GOTO 50

Do you see how these programs work? This program is the same as the
previous one, except when it reaches the end of the right side of the
screen, it REVERSES ITSELF and goes back in the other direction. That is
what the STEP—1 accomplishes . . . it tells the program to POKE the
sprite into X values from 65 to 0 on the right side of the screen, then
from 255 to 0 on the left side of the screen, STEPping backwards
minus —1 position at a time.

VERTICAL SCROLLING

This type of sprite movement is called “scrolling.” To scroll your sprite
up or down in the Y position, you only have to use ONE LINE. ERASE
LINES 50 and 55 by typing the line numbers by themselves and

hitting like this:

50 (IEIEM)
55 ((T)

Now enter LINE 50 again as follows:

50 POKE V+4,24:FOR Y=0TO255:POKE V+5,Y:NEXT

THE DANCING MOUSE—A SPRITE PROGRAM EXAMPLE

Sometimes the techniques described in a programmer’s reference
manual are difficult to understand, so we’ve put together a fun sprite
program called “Michael’s Dancing Mouse.” This program uses three
different sprites in a cute animation with sound effects—and to help
you understand how it works we've included an explanation of EACH
COMMAND so you can see exactly how the program is constructed:

166 PROGRAMMING GRAPHICS

FOKES+E., 188 POKES+12, 15: FOKES+13, 21"
R vt Joie /mowe]

S FRINT"J3": :

H FORS o

el pol]
48 FRIMTTAEC1E00" &1 AM THE DAMCIMG MOUSE! Q"
4 =l F| =3 1"4 -

] T L
-] T
=
=

12!

PROGRAMMING GRAPHICS 167

LINE 5:

$=54272

POKES +24,15

POKES,220

POKES +1,68

POKES+5,15

POKES+6,215

LINE 10:
POKES+7,120
POKES+8,100
POKES+12,15

POKES+13,215

LINE 15:

PRINT”
z

V=53248

POKEV+21,1

Sets the variable S equal to 54272, which is the
beginning memory location of the SOUND CHIP.
From now on, instead of poking a direct memory
location, we will POKE S plus a value.

Same as POKE 54296,15 which sets VOLUME to
highest level.

Same as POKE 54272,220 which sets Low Fre-
quency in Voice 1 for a note which approximates
high C in Octave 6.

Same as POKE 54273,68 which sets High Fre-
quency in Voice 1 for a note which approximates
high C in Octave 6.

Same as POKE 54277,15 which sets Attack/Decay
for Voice 1 and in this case consists of the
maximum DECAY level with no attack, which pro-
duces the “echo” effect.

Same as POKE 54278,215 which sets Sustain/ Re-
lease for Voice 1 (215 represents a combination
of sustain and release values).

Same as POKE 54279,120 which sets the Low Fre-
quency for Voice 2.

Same as POKE 54280,100 which sets the High
Frequency for Voice 2.

Same as POKE 54284,15 which sets Attack/Decay
for Voice 2 to same level as Voice 1 above.
Same as POKE 54285,215 which sets Sustain/ Re-
lease for Voice 2 to same level as Voice 1 above.

Clears the screen when the program begins.
Defines the variable “V” as the starting location
of the VIC chip which controls sprites. From now
on we will define sprite locations as V plus a
valuve.

Turns on (enables) sprite number 1.

168 PROGRAMMING GRAPHICS

LINE 20:

FORS1=12288
TO 12350

READ Q1

POKES1,Q1

NEXT

We are going to use ONE SPRITE (sprite 0) in this
animation, but we are going to use THREE sets of
sprite data to define three separate shapes. To
get our animation, we will switch the POINTERS
for sprite 0 to the three places in memory where
we have stored the data which defines our three
different shapes. The same sprite will be rede-
fined rapidly over and over again as 3 different
shapes to produce the dancing mouse animation.
You can define dozens of sprite shapes in DATA
STATEMENTS, and rotate those shapes through
one or more sprites. So you see, you don’t have to
limit one sprite to one shape or vice-versa. One
sprite can have many different shapes, simply by
changing the POINTER SETTING FOR THAT
SPRITE to different places in memory where the
sprite data for different shapes is stored. This
line means we have put the DATA for “sprite
shape 1” at memory locations 12288 to 12350.

Reads 63 numbers in order from the DATA state-
ments which begin at line 100. Q1 is an arbitrary
variable name. It could just as easily be A, Z1 or
another numeric variable.

Pokes the first number from the DATA statements
(the first “Q1“ is 30) into the first memory location
(the first memory location is 12288). This is the
same as POKE12288,30.

This tells the computer to look BETWEEN the FOR
and NEXT parts of the loop and perform those
in-between commands (READQ1 and POKES1,Q1
using the NEXT numbers in order). In other words,
the NEXT statement makes the computer READ the
NEXT Q1 from the DATA STATEMENTS, which is O,
and also increments S1 by 1 to the next value,
which is 12289. The result is POKE12289,0 . . .
the NEXT command makes the loop keep going
back until the last values in the series, which are
POKE 12350,0.

PROGRAMMING GRAPHICS 169

LINE 25:

FORS2=12352
TO 12414

READQ2

POKES2,Q2

NEXT
LINE 30:

FORS3=12416
TO 12478
READQ3
POKES3,Q3

NEXT

LINE 35:

POKEV+39,15
POKEV+1,68

The second shape of sprite zero is defined by the
DATA which is located at locations 12352 to
12414. NOTE that location 12351 is SKIPPED . . .
this is the 64th location which is used in the
definition of the first sprite group but does not
contain any of the sprite data numbers. Just re-
member when defining sprites in consecutive lo-
cations that you will use 64 locations, but only
POKE sprite data into the first 63 locations.
Reads the 63 numbers which follow the numbers
we used for the first sprite shape. This READ sim-
ply looks for the very next number in the DATA
area and starts reading 63 numbers, one at a
time.

Pokes the data (Q2) into the memory locations
(S2) for our second sprite shape, which begins at
location 12352.

Same use as line 20 above.

The third shape of sprite zero is defined by the
DATA to be located at locations 12416 to 12478.
Reads last 63 numbers in order as Q3.

Pokes those numbers into locations 12416 to
12478.

Same as lines 20 and 25.

Sets color for sprite 0 to light grey.

Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
comparison, position 50 is the top lefthand corner
Y position on the viewing screen.

170 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(160)

2 oo

| AM THE
DANCING
MOUSE!

Eu

LINE 45:

P=192

LINE 50:

FORX=0TO347
STEP3

Tabs 160 spaces from the top lefthand CHAR-
ACTER SPACE on the screen, which is the same as
4 rows beneath the clear command . . . this starts
your PRINT message on the 6th line down on the
screen.

Hold down the key and press the key
marked at the same time. If you do this
inside quotation marks, a “reversed E” will ap-
pear. This sets the color to everything PRINTed
from then on to WHITE.

This is a simple PRINT statement.

This sets the color back to light blue when the
PRINT statement ends. Holding down E and
at the same time inside quotation marks

causes a “reversed diamond symbol” to appear.

Sets the variable P equal to 192. This number 192
is the pointer you must use, in this case to “point”
sprite 0 to the memory locations that begin at lo-
cation 12288. Changing this pointer to the loca-
tions of the other two sprite shapes is the secret of
using one sprite to create an animation that is
actually three different shapes.

Steps the movement of your sprite 3 X positions at
a time (to provide fast movement) from position 0
to position 347.

PROGRAMMING GRAPHICS 171

LINE 55:

RX=INT(X/256)

LX=X—RX*256

LINE 60:

POKEV, LX

POKEV+16,RX

LINE 70:

IFP=192THEN
GOSUB200

RX is the integer of X/256 which means that RX is
rounded off to 0 when X is less than 256, and RX
becomes 1 when X reaches position 256. We will
use RX in a moment to POKE V+16 with a 0 or 1
to turn on the “RIGHT SIDE” of the screen.
When the sprite is at X position 0, the formula
looks like this: LX = 0 — (O times 256) or 0. When
the sprite is at X position 1 the formula looks like
this: LX = 1 — (0 times 256) or 1. When the sprite
is at X position 256 the formula looks like this: LX
= 256 — (1 times 256) or 0 which resets X back to
0 which must be done when you start over on the
RIGHT SIDE of the screen (POKEV+16,1).

You POKE V by itself with a value to set the Hori-
zontal (X) Position of sprite O on the screen. (See
SPRITEMAKING CHART on Page 176). As shown
above, the value of LX, which is the horizontal
position of the sprite, changes from 0 to 255 and
when it reaches 255 it automatically resets back
to zero because of the LX equation set up in line
55. ’
POKEV+16 always turns on the “right side” of
the screen beyond position 256, and resets the
horizontal positioning coordinates to zero. RX is
either a 0 or a 1 based on the position of the
sprite as determined by the RX formula in line 55.

If the sprite pointer is set to 192 (the first sprite
shape) the waveform control for the first sound ef-
fect is set to 129 and 128 per line 200.

172 PROGRAMMING GRAPHICS

LINE 75:

IFP=193THEN
GOSUB300

LINE 80:

POKE2040,P

FORT=1TO60:
NEXT

LINE 85:

P=P+1

IFP>194THEN
P=192

If the sprite pointer is set to 193 (the second
sprite shape) the waveform control for the second
sound effect (Voice 2) is set to 129 and 128 per
line 300.

Sets the SPRITE POINTER to location 192 (re-
member P=192 in line 45? Here’s where we use
the P).

A simple time delay loop which sets the speed at
which the mouse dances. (Try a faster or slower
speed by increasing/decreasing the number 60.)

Now we increase the value of the pointer by add-
ing 1 to the original value of P.

We only want to point the sprite to 3 memory lo-
cations. 192 points to locations 12288 to 12350,
193 points to locations 12352 to 12414, and 194
points to locations 12416 to 12478. This line tells
the computer to reset P back to 192 as soon as P
becomes 195 so P never really becomes 195. P is
192, 193, 194 and then resets back to 192 and
the pointer winds up pointing consecutively to the
three sprite shapes in the three 64-byte groups of
memory locations containing the DATA.

PROGRAMMING GRAPHICS 173

LINE 90:

NEXTX After the sprite has become one of the 3 different
shapes defined by the DATA, only then is it
allowed to move across the screen. It will jump 3
X positions at a time (instead of scrolling smoothly
one position at a time, which is also possible).
STEPping 3 positions at a time makes the mouse
“dance” faster across the screen. NEXT X matches
the FOR. . . X position loop in line 50.

LINE 95

END ENDs the program, which occurs when the sprite
moves off the screen.

LINES 100-109

DATA The sprite shapes are read from the data num-
bers, in order. First the 63 numbers which com-
prise sprite shape 1 are read, then the 63 num-
bers for sprite shape 2, and then sprite shape 3.
This data is permanently read into the 3 memory
locations and after it is read into these locations,
all the program has to do is point sprite O at the
3 memory locations and the sprite automatically
takes the shape of the data in those locations.
We are pointing the sprite at 3 locations one at a
time which produces the “animation” effect. If
you want to see how these numbers affect each
sprite, try changing the first 3 numbers in LINE
100 to 255, 255, 255. See the section on defining
sprite shapes for more information.

174 PROGRAMMING GRAPHICS

LINE 200:

POKES+4,129

POKES+4,128

RETURN

LINE 300:

POKES+11,129

POKES+11,128

RETURN

Waveform control set to 129 turns on the sound
effect.

Waveform control set to 128 turns off the sound
effect.

Sends program back to end of line 70 after
waveform control settings are changed, to resume
program.

Waveform control set to 129 turns on the sound
effect.
Waveform control set to 128 turns off the sound
effect.
Sends program back to end of line 75 to resume.

PROGRAMMING GRAPHICS 175

EASY SPRITEMAKING CHART

(Second Color)

SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE [SPRITE | SPRITE
0 1 2 3 4 5 6 7

Turn on Sprite V+21,1 [V+21,2 |V+21,4 [V+21,8 |V+21,16|V+21,32|V+21,64 |V+21,128
Put in Memory 2040, |2041, (2042, (2043, [2044, 2045, 2046, 2047,
(Set Pointers) 192 193 194 195 196 197 198 199
Locations for 12288 [12352 12416 [12480 |12544 12608 12672 12736
Sprite Pixel to to to to to to to to
(12288-12798) (12350 |12414 [12478 12542 (12606 [12670 12734 12798
Sprite Color V+39,C | V+40,C |V+41,C [V+42,C |V+43,C |V+44,C |V+45,C [V+46,C
Set LEFT X V+0,X |V+2,X |V+4,X |V+6,X |V+8,X |V+10,X [V+12,X [V+14,X
Position (0—255)
Set RIGHT X V+16,1 |V+16,2 |V+16,4 [V+16,8 |V+16,16|V+16,32 [V+16,64 [V+16,128
Position (0-255) [v+0,X |V+2,X |V+4,X [V+6,X |V+8,X [V+10,X [V+12,X |V+14,X
Set Y Position V+1,Y |V43,Y |V+5Y [V+7,Y |V+9,Y [V+I1,Y [VHI3,Y [V+15Y
Expand Sprite V+29,1 |V+29,2 |V+29,4 (V+29,8 |V+29,16(V+29,32|V+29,64 |V+29,128
Horizontally/X
Expand Sprite V+23,1 (V+23,2 |V+23,4 [V+23,8 |V+23,16|V+23,32|V+23,64 |V+23,128
Vertically/Y
Turn On (Set) V+28,1 |V+28,2 |V+28,4 |V+28,8 |V+28,16|V+28,32|V+28,64 |V+28,128
Multi-Color Mode
Multi-Color 1 V+37,C [V+37,C [V+37,C [V+37,C [V+37,C |V+37,C |V+37,C |V+37,C
(First Color)
Multi-Color 2 V+38,C |V+38,C [V+38,C |V+38,C [V+38,C |V+38,C |V+38,C |V+38,C

Set Priority
of Sprites

The rule is that lower numbered sprites always have display priority over higher

numbered sprites. For example, sprite O has priority over ALL other sprites, sprite

7 has last priority. This means lower numbered sprites always appear to move
IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (Sprite

to Sprite) V+30 IF PEEK(V+30)ANDX=X THEN [action]
Collision (Sprite
to Background) |V+31 IF PEEK(V +31)ANDX=X THEN [action]

176 PROGRAMMING GRAPHICS

SPRITEMAKING NOTES

Alternative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

Put in Memory SPRITE O SPRITE 1 SPRITE 2 If you're using 1 to 3 sprites
(Set pointers) 2040,13 2041,14 2042,15 you can use these memory
locations in the cassette
Sprite Pixel 832 896 960 buffer (832 to 1023) but
Locations for to 894 to 958 to 1022 for more than 3 sprites we
Blocks 13-15 suggest using locations from

12288 to 12798 (see chart).

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V+21 and the
number from the chart . . . BUT . . . turning on just ONE sprite will turn
OFF any others. To turn on TWO OR MORE sprites, ADD TOGETHER the
numbers of the sprites you want to turn on (Example: POKE V+21, 6 turns
on sprites 1 and 2). Here is a method you can use to turn one sprite off
and on without affecting any of the others (useful for animation).

EXAMPLE:

To turn off just sprite O type: POKE V+21,PEEK V+21AND(255-1).
Change the number 1 in (255—1) to0 1,2,4,8,16,32,64, or 128 (for sprites
0-7). To re-enable the sprite and not affect the other sprites currently
turned on, POKE V+21, PEEK(V+21)OR 1 and change the OR 1 to OR 2
(sprite 2), OR 4 (sprite 3), etc.

X POSITION VALUES BEYOND 255:

X positions run from 0 to 255 . . . and then START OVER from O to
255. To put a sprite beyond X position 255 on the far right side of the
screen, you must first POKE V+16 as shown, THEN POKE a new X value
from 0 to 63, which will place the sprite in one of the X positions at the
right side of the screen. To get back to positions 0-255, POKE V+16,0
and POKE in an X value from 0 to 255.

Y POSITION VALUES:

Y positions run from 0 to 255, including 0 to 49 off the TOP of the
viewing area, 50 to 229 IN the viewing area, and 230 to 255 off the
BOTTOM of the viewing area.

PROGRAMMING GRAPHICS 177

SPRITE COLORS:

To make sprite 0 WHITE, type: POKE V+39,1 (use COLOR POKE SET-
TING shown in chart, and INDIVIDUAL COLOR CODES shown below):

0—BLACK 4—PURPLE 8—ORANGE 12—MED. GREY
1 —WHITE 5—GREEN 9—BROWN 13—LT. GREEN
2—RED 6—BLUE 10—LT. RED 14—LT. BLUE
3—CYAN 7—YELLOW 11—DARK GREY 15—LT. GREY

MEMORY LOCATION:

17

reserve’ a separate 64-BYTE BLOCK of numbers in the
computer’s memory for each sprite of which 63 BYTES will be used for

You must

sprite data. The memory settings shown below are recommended for
the “sprite pointer” settings in the chart above. Each sprite will be
unique and you’ll have to define it as you wish. To make all sprites
exactly the same, point the sprites you want to look the same to the
same register for sprites.

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings are RECOMMENDATIONS ONLY.

Caution: you can set your sprite pointers anywhere in RAM memory
but if you set them too “low” in memory a long BASIC program may
overwrite your sprite data, or vice versa. To protect an especially LONG
BASIC PROGRAM from overwriting sprite data, you may want to set the
sprites at a higher area of memory (for example, 2040,192 for sprite 0
at locations 12288 to 12350 . . . 2041,193 at locations 12352 to 12414
for sprite 1 and so on . . . by adjusting the memory locations from which
sprites get their “data,” you can define as many as 64 different sprites
plus a sizable BASIC program. To do this, define several sprite “shapes”
in your DATA statements and then redefine a particular sprite by chang-
ing the “pointer” so the sprite you are using is “pointed” at different
areas of memory containing different sprite picture data. See the “Danc-
ing Mouse” to see how this works. If you want two or more sprites to
have THE SAME SHAPE (you can still change position and color of each
sprite), use the same sprite pointer and memory location for the sprites
you want to match (for example, you can point sprites 0 and 1 to the
same location by using POKE 2040,192 and POKE 2041, 192).

178 PROGRAMMING GRAPHICS

PRIORITY:

Priority means one sprite will appear to move “in front of” or “behind”
another sprite on the display screen. Sprites with more priority always
appear to move "“in front of” or “on top of” sprites with less priority. The
rule is that lower numbered sprites have priority over higher numbered
sprites. Sprite O has priority over all other sprites. Sprite 7 has no priority
in relation to the other sprites. Sprite 1 has priority over sprites 2—7, etc.
If you put two sprites in the same position, the sprite with the higher
priority will appear IN FRONT OF the sprite with the lower priority. The

|//

sprite with lower priority will either be obscured, or will “show through”

(from “behind”) the sprite with higher priority.
USING MULTI-COLOR:

You can create multi-colored sprites although using multi-color mode
requires that you use PAIRS of pixels instead of individual pixels in your
spiite picture (in other words each colored “dot” or “block” in the sprite
will consist of two pixels side by side). You have 4 colors to choose from:
Sprite Color (chart above), Multi-Color 1, Multi-Color 2 and “Background
Color” (background is achieved by using zero settings which let the
background color “show through”). Consider one horizontal 8-pixel block
in a sprite picture. The color of each PAIR of pixels is determined accord-
ing to whether the left, right, or both pixels are solid, like this:

[[| BACKGROUND (Making BOTH PIXELS BLANK (zero) lets the
INNER SCREEN COLOR (background) show
through.)

MULTI-COLOR 1 (Making the RIGHT PIXEL SOLID in a pair of
pixels sets BOTH PIXELS to Multi-Color 1.)

SPRITE COLOR (Making the LEFT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)

MULTI-COLOR 2 (Making BOTH PIXELS SOLID in a pair of pixels
sets BOTH PIXELS to Multi-Color 2.)

PROGRAMMING GRAPHICS 179

Look at the horizontal 8-pixel row shown below. This block sets the
first two pixels to background color, the second two pixels to Multi-Color
1, the third two pixels to Sprite Color and the fourth two pixels to Multi-
Color 2. The color of each PAIR of pixels depends on which bits in
each pair are solid and which are blank, according to the illustration
above. After you determine which colors you want in each pair of pixels,
the next step is to add the values of the solid pixels in the 8-pixel block,
and POKE that number into the proper memory location. For example, if
the 8-pixel row shown below is the first block in a sprite which begins at
memory location 832, the value of the solid pixels is 16+8+2+1 = 27,
so you would POKE 832,27.

27

)
16 +8+2+1
|128l64l32|16|8|4|2|1l

O

LOOKS LIKE THIS IN SPRITE

&

BACKGROUND MULTICOLOR SPRITE MULTICOLOR
COLOR) COLOR 2

COLLISION:

You can detect whether a sprite has collided with another sprite by
using this line: IF PEEK(V +30)ANDX=XTHEN [insert action here]. This line
checks to see if a particular sprite has collided with ANY OTHER SPRITE,
where X equals 1 for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3,
16 for sprite 4, 32 for sprite 5, 64 for sprite 6, and 128 for sprite 7. To
check to see if the sprite has collided with a “BACKGROUND CHAR-
ACTER"” use this line: IF PEEK(V+31)ANDX=XTHEN [insert action here].

180 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you to create a sprite using blanks and
solid circles (n) in DATA statements. The sprite and the num-
bers POKEd into the sprite data registers are displayed.

- DETE
1 DFETH"
DT
DT
DETR"
JACRIER
TATA"
DT
DATEH"
DATHE"
DT
T
C DATE"
THETAR"
b DT
S DATA"
& DETHY
7 DFTE
2 DATHY
IRTA"
DATA"

ORI =2TOes FOE

Ll DL
o B o R
00000 REE BB bR
Ll L] LT
Sippbb BhE BB
0008 S0E 000D
GBbBE BB BEBY
Ll L1111
0 B oo R R
000000 RERER
® BREERBGGE B
B BEBBEEE B
% s00de @
B ERE B
® SRS B

TR T

PROGRAMMING GRAPHICS

CFORJI=ATOT B=Q

CHAPTER I

PROGRAMMING
SOUND AND
MUSIC ON YOUR
COMMODORE 64

Introduction

Volume Control

Frequencies of Sound Waves
Using Multiple Voices
Changing Waveforms
The Envelope Generator
Filtering
Advanced Techniques
Synchronization and Ring
Modulation

183

INTRODUCTION

Your Commodore computer is equipped with one of the most sophisti-
cated electronic music synthesizers available on any computer. It comes
complete with three voices, totally addressable, ATTACK/DECAY/
SUSTAIN/RELEASE (ADSR), filtering, modulation, and “white noise.” All
of these capabilities are directly available for you through a few easy to
use BASIC and/or assembly language statements and functions. This
means that you can make very complex sounds and songs using pro-
grams that are relatively simple to design.

This section of your Programmer’s Reference Guide has been created
to help you explore all the capabilities of the 6581 ““SID” chip, the sound
and music synthesizer inside your Commodore computer. We'll explain
both the theory behind musical ideas and the practical aspects of turn-
ing those ideas into real finished songs on your Commodore computer.

You need not be an experienced programmer nor a music expert to
achieve exciting results from the music synthesizer. This section is full of
programming examples with complete explanations to get you started.

You get to the sound generator by POKEing into specified memory
locations. A full list of the locations used is provided in Appendix O. We
will go through each concept, step by step. By the end you should be
able to create an almost infinite variety of sounds, and be ready to
perform experiments with sound on your own.

Each section of this chapter begins by giving you an example and a
full line-by-line description of each program, which will show you how to
use the characteristic being discussed. The technical explanation is for
you to read whenever you are curious about what is actually going on.

The workhorse of your sound programs is the POKE statement. POKE
sets the indicated memory location (MEM) equal to a specified value
(NUM).

POKE MEM,NUM

The memory locations (MEM) used for music synthesis start at 54272
($D400) in the Commodore 64. The memory locations 54272 to 54296
inclusive are the POKE locations you need to remember when you're
using the 6581 (SID) chip register map. Another way to use the locations
above is to remember only location 54272 and then add a number from
0 through 24 to it. By doing this you can POKE all the locations from
54272 to 54296 that you need from the SID chip. The numbers (NUM)

184 PROGRAMMING SOUND AND MUSIC

that you use in your POKE statement must be between O and 255,
inclusive.

When you’'ve had a little more practice with making music, then you
can get a little more involved, by using the PEEK function. PEEK is a
function that is equal to the value currently in the indicated memory

location.
X=PEEK(MEM)

The value of the variable X is set equal to the current contents of mem-
ory location MEM.

Of course, your programs include other BASIC commands, but for a
full explanation of them, refer to the BASIC Statements section of this
manual.

Let’s jump right in and try a simple program using only one of the
three voices. Computer ready? Type NEW, then type in this program,
and save it on your Commodore DATASSETTE™ or disk. Then, RUN it.

EXAMPLE PROGRAM 1:

EL B HEST | REM CLERR SOUND CHIF
=

CREM ZET WOLUME TO
L
4 READHF . LF . DR
SE - IFHFRTHEHEHT
1 HF FOEES, LF

Here’'s a line-by-line description of the program you’ve just typed in.
Refer to it whenever you feel the need to investigate parts of the pro-
gram that you don’t understand completely.

PROGRAMMING SOUND AND MUSIC 185

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 1:

Line(s) Description

5 Set S to start of sound chip.

10 Clear all sound chip registers.

20 Set Attack/Decay for voice 1 (A=0,D=9).
Set Sustain/Release for voice 1 (S=0,R=0).

30 Set volume at maximum.

40 Read high frequency, low frequency, duration of note.

50 When high frequency less than zero, song is over.

60 Poke high and low frequency of voice 1.

70 Gate sawtooth waveform for voice 1.

80 Timing loop for duration of note.

90 Release sawtooth waveform for voice 1.

100 Return for next note.

110-180 | Data for song: high frequency, low frequency, duration
(number of counts) for each note.

190 Last note of song and negative 1s signaling end of song.

VOLUME CONTROL

Chip register 24 contains the overall volume control. The voiume can
be set anywhere between 0 and 15. The other four bits are used for
purposes we'll get into later. For now it is enough to know volume is 0 to
15. Look at line 30 to see how it's set in Example Program 1.

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves. Think of throwing
a stone into a pool and seeing the waves radiate outward. When similar
waves are created in air, we hear it. If we measure the time between
one peak of a wave and the next, we find the number of seconds for
one cycle of the wave (n = number of seconds). The reciprocal of this
number (1/n) gives you the cycles per second. Cycles per second are
more commonly known as the frequency. The highness or lowness of a
sound (pitch) is determined by the frequency of the sound waves pro-
duced.

The sound generator in your Commodore computer uses two locations
to determine the frequency. Appendix E gives you the frequency values
you need to reproduce a full eight octaves of musical notes. To create a

186 PROGRAMMING SOUND AND MUSIC

frequency other than the ones listed in the note table use “Fout (fre-
quency output) and the following formula to represent the frequency (F,)
of the sound you want to create. Remember that each note requires
both a high and a low frequency number.

Fn = Fout/.06097

Once you've figured out what F, is for your “new’” note the next step is
to create the high and low frequency values for that note. To do this you
must first round off F, so that any numbers to the right of the decimal
point are left off. You are now left with an integer value. Now you can
set the high frequency location (Fy,;) by using the formula F.,;=INT(F,/256)
and the low frequency location (F,,) should be F,=F,—(256*F;).

At this point you have already played with one voice of your compu-
ter. If you wanted to stop here you could find a copy of your favorite
tune and become the maestro conducting your own computer orchestra
in your “at home” concert hall.

USING MULTIPLE VOICES

Your Commodore computer has three independently controlled voices
(oscillators). Our first example program used only one of them. Later on,
you'll learn how to change the quality of the sound made by the voices.
But right now, let’s get all three voices singing.

This example program shows you one way to translate sheet music for
your computer orchestra. Try typing it in, and then SAVE it on your
DATASSETTE™ or disk. Don‘t forget to type NEW before typing in this
program.

EXAMPLE PROGRAM 2:

18 Z=54272 FORL=5TOS CFOKEL. B HEST
28 DIMHOZ, 200, L2, 288, 002, 2880

28 DIMFEC11o

43 WORL=1T M L =650
1) EStla, 2 FOKE CPORES+EZ, 244
€8 FORI=ATOL1 RERDFGCT 2 HEST

FORK=ATOZ

I=0

FEATIMM

IFHM=BTHEH”

UB

T

¥,
L}

o
(=)
=

=
A

UH 1 IFHH TATHEHMM=~HM - WR= W E=G
3 e -ﬁ*DFn,;l

HT= HH—I P?DPa

FR=FLHT

[O
~} 0 B G [e T

Co o o 0 T X

PROGRAMMING SOUND AND MUSIC 187

128 [FOCK=YTHEHZEO

188 FORJ=cTOOCHSTER-1: FF FR2 HEST
ZHE HFR=FF. 256 LFX=FR~255%HF
216 IFDRX=1THEMHIE, I)»HFn-L(kJIﬁ=LFH1ECK;IJﬂMH-
I=I+1:G0OT0O126

2@ FORJ=1TODRK-1 HOE, TosHFR Lok, Tie=lFR Ok, Tr=hA:
I=I+1 HEKT

230 HOK L To=HFR Lok, To=LFu:CCk, Ti=WE

248 I=I+1:60701:28

IFIHIMTHEMIM=1

HE#T

IR
DX

DA G R R X

b
b
b
o,
b
b
b
5

=Ty O s QO Pl X

o]

4] DHTH’4

B IATHSE
2

il

1

IATHS4S
1 DATAZS4, 5

DHTHI
IATALS
DATALEf

IATALS
IATHZE
IATALS
IATAZEE,
IATALSTYT.
IATHIEZ . S
A TIHTHE

216,311, 26

188 PROGRAMMING SOUND AND MUSIC

Here is a line-by-line explanation of Example Program 2. For now, we

are interested in how the three voices are controlled.

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 2:

Line(s) Description

10 Set S equal to start of sound chip and clear all sound
chip registers.

20 Dimension arrays to contain activity of song, 1/16th of a
measure per location.

30 Dimension array to contain base frequency for each note.

40 Store waveform control byte for each voice.

50 Set high pulse width for voice 2.
Set high frequency for filter cutoff.
Set resonance for filter and filter voice 3.

60 Read in base frequency for each note.

100 Begin decoding loop for each voice.

110 Initialize pointer to activity array.

120 Read coded note.

130 If coded note is zero, then next voice.

140 Set waveform controls to proper voice.
If silence, set waveform controls to O.

150 Decode duration and octave.

160 Decode note.

170 Get base frequency for this note.

180 If highest octave, skip division loop.

190 Divide base frequency by 2 appropriate number of times.

200 Get high and low frequency bytes.

210 If sixteenth note, set activity array: high frequency, low
frequency, and waveform control (voice on).

220 For all but last beat of note, set activity array: high
frequency, low frequency, waveform control (voice on).

230 For last beat of note, set activity array: high frequency,
low frequency, waveform control (voice off).

240 Increment pointer to activity array. Get next note.

250 If longer than before, reset number of activities.

260 Go back for next voice.

500 Set Attack/Decay for voice 1 (A=0, D=0).
Set Sustain/Release for voice 1 (S=15, R=0).

PROGRAMMING SOUND AND MUSIC 189

Line(s) Description
510 Set Attack/Decay for voice 2 (A=5, D=5).
Set Sustain/Release for voice 2 (S=8, R=5).
520 Set Attack/Decay for voice 3 (A=0, D=10).
Set Sustain/Release for voice 3 (S=12, R=5).
530 Set volume 15, low-pass filtering.
540 Start loop for every 1/16th of a measure.
550 POKE low frequency from activity array for all voices.
560 POKE high frequency from activity array for all voices.
570 POKE waveform control from activity array for all voices.
580 Timing loop for 1/16th of a measure and back for next
1/16th measure.
590 Pause, then turn off volume.
600-620 Base frequency data.
1000-1999 | Voice 1 data.
2000-2999 | Voice 2 data.
3000-3999 | Voice 3 data.

The values used in the data statements were found by using the note
table in Appendix E and the chart below:

NOTE TYPE DURATION
116 128
1/8 256
DOTTED 1/8 384
1/4 512
1/4+1/16 640
DOTTED 1/4 768
1/2 1024
1/2+1/16 1152
1/2+1/8 1280
DOTTED 1/2 1536
WHOLE 2048

190 PROGRAMMING SOUND AND MUSIC

The note number from the note table is added to the duration above.
Then each note can be entered using only one number which is decoded
by your program. This is only one method of coding note values. You
may be able to come up with one with which you are more comfortable.
The formula used here for encoding a note is as follows:

1) The duration (number of 1/16ths of a measure) is multiplied by 8.

2) The result of step 1 is added to the octave you’'ve chosen (0-7).

3) The result of step 2 is then multiplied by 16.

4) Add your note choice (0—11) to the result of the operation in step
3.

In other words:
((((D*8)+0) *16)+N)

Where D = duration, O = octave, and N = note
A silence is obtained by using the negative of the duration number
(number of 1/16ths of a measure * 128).

CONTROLLING MULTIPLE VOICES

Once you have gotten used to using more than one voice, you will find
that the timing of the three voices needs to be coordinated. This is ac-
complished in this program by:

1) Divide each musical measure into 16 parts.
2) Store the events that occur in each 1/16th measure interval in three
separate arrays.

The high and low frequency bytes are calculated by dividing the fre-
quencies of the highest octave by two (lines 180 and 190). The
waveform control byte is a start signal for beginning a note or continu-
ing a note that is already playing. It is a stop signal to end a note. The
waveform choice is made once for each voice in line 40.

Again, this is only one way to control multiple voices. You may come
up with your own methods. However, you should now be able to take
any piece of sheet music and figure out the notes for all three voices.

PROGRAMMING SOUND AND MUSIC 191

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of a
sound is determined primarily by its “waveform.” If you remember the
example of throwing a pebble into the water you know that the waves
ripple evenly across the pond. These waves almost look like the first
sound wave we’re going to talk about, the sinusoidal wave, or sine
wave for short (shown below).

To make what we're talking about a bit more practical, let's go back
to the first example program to investigate different waveforms. The
reason for this is that you can hear the changes more easily using only
one voice. LOAD the first music program that you typed in earlier, from
your DATASSETTE™ or disk, and RUN it again. That program is using the
sawtooth waveform (shown here)

from the 6581 SID chip’s sound generating device. Try changing the note
start number in line 70 from 33 to 17 and the note stop number in line 90
from 32 to 16. Your program should now look like this:

192 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 3 (EXAMPLE 1 MODIFIED):

Now RUN the program.

Notice how the sound quality is different, less twangy, more hollow.
That’s because we changed the sawtooth waveform into a triangular
waveform (show below).

The third musical waveform is called a variable pulse wave (shown
below).

|=—PULSE WIDTH —

PROGRAMMING SOUND AND MUSIC 193

It is a rectangular wave and you determine the length of the pulse
cycle by defining the proportion of the wave which will be high. This is
accomplished for voice 1 by using registers 2 and 3: Register 2 is the low
byte of the pulse width (L,, = O through 255). Register 3 is the high 4
bits (H,w = 0 through 15).

Together these registers specify a 12-bit number for your pulse width,
which you can determine by using the following formula:

PW, = How*256 + Loy
The pulse width is determined by the following equation:
PWout = (PW,/40.95) %

When PW, has a value of 2048, it will give you a square wave. That
means that register 2 (L,yw) = 0 and register 3 (H,,) = 8.
Now try adding this line to your program:

15 POKES+3,8:POKES+2,0

Then change the start number in line 70 to 65 and the stop number in
line 90to 64, and RUN the program. Now change the high pulse width
(register 3 in line 15) from an 8 to a 1. Notice how dramatic the differ-
ence in sound quality is?

The last waveform available to you is white noise (shown here).

It is used mostly for sound effects and such. To hear how it sounds, try
changing the start number in line 70 to 129 and the stop number in line
90 to 128.

UNDERSTANDING WAVEFORMS

When a note is played, it consists of a sine wave oscillating at the
fundamental frequency and the harmonics of that wave.

194 PROGRAMMING SOUND AND MUSIC

The fundamental frequency defines the overall pitch of the note.
Harmonics are sine waves having frequencies which are integer multi-
ples of the fundamental frequency. A sound wave is the fundamental
frequency and all of the harmonics it takes to make up that sound.

«——RESULTANT WAVE

FUNDAMENTAL (1ST HARMONIC)

2ND HARMONIC

3RD HARMONIC

In musical theory let’s say that the fundamental frequency is harmonic
number 1. The second harmonic has a frequency twice the fundamental
frequency, the third harmonic is three times the fundamental frequency,
and so on. The amounts of each harmonic present in a note give it its
timbre.

An acoustic instrument, like a guitar or a violin, has a very compli-
cated harmonic structure. In fact, the harmonic structure may vary as a
single note is played. You have already played with the waveforms
available in your Commodore music synthesizer. Now let’s talk about
how the harmonics work with the triangular, sawtooth, and rectangular
waves.

A triangular wave contains only odd harmonics. The amount of each
harmonic present is proportional to the reciprocal of the square of the
harmonic number. In other words harmonic number 3 is 1/9 quieter than
harmonic number 1, because the harmonic 3 squared is 9 (3 X 3) and
the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular wave to a
sine wave oscillating at the fundamental frequency.

Sawtooth waves contain all the harmonics. The amount of each har-
monic present is proportional to the reciprocal of the harmonic number.
For example, harmonic number 2 is 1/2 as loud as harmonic number 1.

The square wave contains odd harmonics in proportion to the recip-
rocal of the harmonic number. Other rectangular waves have varying
harmonic content. By changing the pulse width, the timbre of the sound
of a rectangular wave can be varied tremendously.

PROGRAMMING SOUND AND MUSIC 195

By choosing carefully the waveform used, you can start with a har-
monic structure that looks somewhat like the sound you want. To refine
the sound, you can add another aspect of sound quality available on
your Commodore 64 called filtering, which we’ll discuss later in this
section.

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you first hear
it, all the way through until it dies out and you can’t hear it anymore.
When a note is first struck, it rises from zero volume to its peak volume.
The rate at which this happens is called the ATTACK. Then, it falls from
the peak to some middle-ranged volume. The rate at which the fall of
the note occurs is called the DECAY. The mid-ranged volume itself is
called the SUSTAIN level. And finally, when the note stops playing, it
falls from the SUSTAIN level to zero volume. The rate at which it falls is
called the RELEASE. Here is a sketch of the four phases of a note:

Each of the items mentioned above give certain qualities and restric-
tions to a note. The bounds are called parameters.

The parameters ATTACK/DECAY/SUSTAIN/RELEASE and collectively
called ADSR, can be controlled by your use of another set of locations in
the sound generator chip. LOAD your first example program again. RUN
it again and remember how it sounds. Then, try changing line 20 so the
program is like this:

196 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 4 (EXAMPLE 1 MODIFIED):

G FREFDHF . L
IFHF @ THEHEHT
+1 . HF FOKES, LF

T
FORT=1TOSE HEXT
GOTH
AT

20 DRETALD,

Registers 5 and 6 define the ADSR for voice 1. The ATTACK is the high
nybble of register 5. Nybble is half a byte, in other words the lower 4 or
higher 4 on/off locations (bits) in each register. DECAY is the low nybble.
You can pick any number 0 through 15 for ATTACK, multiply it by 16 and
add to any number 0 through 15 for DECAY. The values that correspond

to these numbers are listed below.

SUSTAIN level is the high nybble of register 6. It can be 0 through 15.
It defines the proportion of the peak volume that the SUSTAIN level will

be. RELEASE rate is the low nybble of register 6.

PROGRAMMING SOUND AND MUSIC

197

Here are the meanings of the values for ATTACK, DECAY, and RE-
LEASE:

VALUE | ATTACK RATE (TIME/CYCLE) | DECAY/RELEASE RATE (TIME/CYCLE)
0 2 ms 6 ms
1 8 ms 24 ms
2 16 ms 48 ms
3 24 ms 72 ms
4 38 ms 114 ms
5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms

10 500 ms 1.55s
11 800 ms 2.4 s
12 1s 3s
13 3s 9s
14 5s 15 s
15 8s 24 s

Here are a few sample settings to try in your example program. Try
these and a few of your own. The variety of sounds you can produce is
astounding! For a violin type sound, try changing line 20 to read:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Change the waveform to triangle and get a xylophone type sound by
using these lines:

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=0;R=9

70 POKES+4,17
90 POKES+4,16: FORT=1TOS50:NEXT

198 PROGRAMMING SOUND AND MUSIC

Change the waveform to square and try a piano type sound with these
lines:

15 POKES +3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;S=0;R=0
70 POKES+4,65

90 POKES+4,64:FORT=1TO50:NEXT

The most exciting sounds are those unique to the music synthesizer
itself, ones that do not attempt to mimic acoustic instruments. For
example try:

20 POKES+5,144:POKES+6,243:REM A=9;D=0; S=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a
filter. The SID chip is equipped with three types of filtering. They can be
used separately or in combination with one another. Let's go back to the
sample program you’'ve been using to play with a simple example that
uses a filter. There are several filter controls to set.

You add line 15 in the program to set the cutoff frequency of the filter.
The cutoff frequency is the reference point for the filter. You SET the high
and low frequency cutoff points in registers 21 and 22. To turn ON the
filter for voice 1, POKE register 23.

Next change line 30 to show that a high-pass filter will be used (see
the SID register map).

PROGRAMMING SOUND AND MUSIC 199

EXAMPLE PROGRAM 5 (EXAMPLE 1 MODIFIED):

1. HE L PROREES, LF
1

FORT=1T0D
FOEES+3 . :

CHERT
S22 FORT=1TOZE HEWT

IATAY

Try RUNning the program now. Notice the lower tones have had their
volume cut down. It makes the overall quality of the note sound tinny.
This is because you are using a high-pass filter which attenuates (cuts
down the level of) frequencies below the specified cutoff frequency.

There are three types of filters in your Commodore computer’s SID
chip. We have been using the high-pass filter. It will pass all the fre-
quencies at or above the cutoff, while attenuating the frequencies below
the cutoff.

AMOUNT PASSED

CUTOFF
|

FREQUENCY

The SID chip also has a low-pass filter. As its name implies, this filter
will pass the frequencies below cutoff and attenuate those above.

200 PROGRAMMING SOUND AND MUSIC

AMOUNT PASSED

CUTOFF

FREQUENCY

Finally, the chip is equipped with a bandpass filter, which passes a
narrow band of frequencies around the cutoff, and attenuates all
others.

AMOUNT PASSED

CUTOFF
1

FREQUENCY

The high- and low-pass filters can be combined to form a notch reject
filter which passes frequencies away from the cutoff while attenuating
at the cutoff frequency.

—

AMOUNT PASSED

CUEOFF

FREQUENCY

PROGRAMMING SOUND AND MUSIC 201

Register 24 determines which type filter you want to use. This is in
addition to register 24’s function as the overall volume control. Bit 6
controls the high-pass filter (0 = off, 1 = on), bit 5 is the bandpass
filter, and bit 4 is the low-pass filter. The low 3 bits of the cutoff fre-
quency are determined by register 21 (L) (Lis = O through 7). While the
8 bits of the high cutoff frequency are determined by register 22 (Hy)
(Hes = O through 255).

Through careful use of filtering, you can change the harmonic struc-
ture of any waveform to get just the sound you want. In addition, chang-
ing the filtering of a sound as it goes through the ADSR phases of its life
can produce interesting effects.

ADVANCED TECHNIQUES

The SID chip’s parameters can be changed dynamically during a note
or sound to create many interesting and fun effects. In order to make
this easy to do, digitized outputs from oscillator three and envelope
generator three are available for you in registers 27 and 28, respec-
tively.

The output of oscillator 3 (register 27) is directly related to the
waveform selected. If you choose the sawtooth waveform of oscillator 3,
this register will present a series of numbers incremented (increased
step by step) from 0 to 255 at a rate determined by the frequency of
oscillator 3. If you choose the triangle waveform, the output will incre-
ment from 0 up to 255, then decrement (decrease step by step) back
down to 0. If you choose the pulse wave, the output will jump back-
and-forth between 0 and 255. Finally, choosing the noise waveform will
give you a series of random numbers. When oscillator 3 is used for
modulation, you usually do NOT want to hear its output. Setting bit 7 of
register 24 turns the audio output of voice 3 off. Register 27 always
reflects the changing output of the oscillator and is not affected in any
way by the envelope (ADSR) generator.

202 PROGRAMMING SOUND AND MUSIC

Register 25 gives you access to the output of the envelope generator
of oscillator 3. It functions in much the same fashion that the output of
oscillator 3 does. The oscillator must be turned on to produce any output
from this register.

Vibrato (a rapid variation in frequency) can be achieved by adding
the output of oscillator 3 to the frequency of another oscillator. Example
Program 6 illustrates this idea.

EXAMPLE PROGRAM 6:

Here is a line-by-line explanation of Example Program 6:

PROGRAMMING SOUND AND MUSIC 203

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 6:

Lines(s) Description

10 Set S to beginning of sound chip.

20 Clear all sound chip locations.

30 Set high pulse width for voice 1.

40 Set Attack/Decay for voice 1 (A=2, D=9).
Set Sustain/Release for voice 1 (S=5, R=9).

50 Set low frequency for voice 3.

60 Set triangle waveform for voice 3.

70 Set volume 15, turn off audio output of voice 3.

80 Read frequency and duration of note.

90 If frequency equals zero, stop.

100 POKE start pulse waveform control voice 1.

110 Start timing loop for duration.

120 Get new frequency using oscillator 3 output.

130 Get high and low frequency.

140 POKE high and low frequency for voice 1.

150 End of timing loop.

160 POKE stop pulse waveform control voice 1.

170 Go back for next note.

500-550 | Frequencies and durations for song.

560 Zeros signal end of song.

A wide variety of sound effects can also be achieved using dynamic
effects. For example, the following siren program dynamically changes
the frequency output of oscillator 1 when it's based on the output of
oscillator 3’s triangular wave:

204 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 7:

CESLL B HERT

Here is a line-by-line explanation of Example Program 7:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 7:

Line(s) Description
10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set low frequency of voice 3.
40 Set triangular waveform voice 3.
50 Set high pulse width for voice 1.
60 Set volume 15, turn off audio output of voice 3.
70 Set Sustain/Release for voice 1 (S=15, R=0).
80 POKE start pulse waveform control voice 1.
90 Set lowest frequency for siren.
100 Begin timing loop.
10 Get new frequency using output of oscillator 3.
120 Get high and low frequencies.
130 POKE high and low frequencies for voice 1.
140 End timing loop.
150 Turn off volume.

PROGRAMMING SOUND AND MUSIC 205

The noise waveform can be used to provide a wide range of sound
effects. This example mimics a hand clap using a filtered noise
waveform:

EXAMPLE PROGRAM 8:

o e

4,12
IS5 HEXT | POKES+4, 128
HEXT :HERT

100 FORT=
118 FORT=1T
120 FOKES+24, @

Here is a line-by-line explanation of Example Program 8:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 8:

Line(s) Description
10 Set S to start of sound chip.
20 Clear all sound chip registers.
30 Set high and low frequencies for voice 1.
40 Set Attack/Decay for voice 1 (A=0, D=8).
50 Set high cutoff frequency for filter.
60 Turn on filter for voice 1.
70 Set volume 15, high-pass filter.
80 Count 15 claps.
90 Set start noise waveform control.
100 Wait, then set stop noise waveform control.
110 Wait, then start next clap.
120 Turn off volume. B

206 PROGRAMMING SOUND AND MUSIC

SYNCHRONIZATION AND
RING MODULATION

The 6581 SID chip lets you create more complex harmonic structures

through synchronization or ring modulation of two voices.

The process of synchronization is basically a logical ANDing of two

wave forms. When either is zero, the output is zero. The following

example uses this process to create an imitation of a mosquito:

EXAMPLE PROGRAM 9:

Here is a line-by-line explanation of Example Program 9:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 9:

Line(s) Description

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set high frequency voice 1.

40 Set Attack/Decay for voice 1 (A=13, D=11).

50 Set high frequency voice 3.

60 Set volume 15.

70 Set start triangle, sync waveform control for voice 1.
80 Timing loop.

90 Set stop triangle, sync waveform control for voice 1.
100 Wait, then turn off volume.

The synchronization feature is enabled (turned on) in line 70, where
bits 0,1, and 4 of register 4 are set. Bit 1 enables the syncing function

between voice 1 and voice 3. Bits 0 and 4 have their usual functions of

gating voice 1 and setting the triangular waveform.

PROGRAMMING SOUND AND MUSIC 207

Ring modulation (accomplished for voice 1 by setting bit 3 of register
4 in line 70 of the program below) replaces the triangular output of
oscillator 1 with a “ring modulated” combination of oscillators 1 and 3.
This produces non-harmonic overtone structures for use in mimicking bell
or gong sounds. This program produces a clock chime imitation:

EXAMPLE PROGRAM 10:

TS B HET

B FORT=1TOLE

Here is a line-by-line explanation of Example Program 10:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 10:

Line(s) Description
10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency for voice 1.
40 Set Attack/Decay for voice 1 (A=0, D=9).
50 Set high frequency for voice 3.
60 Set volume 15.
70 Count number of dings, set start triangle, ring mod
waveform control voice 1.
80 Timing loop, set stop triangle, ring mod.
90 Timing loop, next ding.

The effects available through the use of the parameters of your
Commodore 64's SID chip are numerous and varied. Only through ex-
perimentation on your own will you fully appreciate the capabilities of
your machine. The examples in this section of the Programmer’s Refer-
ence Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORE COM-
PUTER for everything from simple fun and games to professional-type
musical instruction.

208 PROGRAMMING SOUND AND MUSIC

CHAPTER

BASIC TO
MACHINE
LANGUAGE

What Is Machine Language?
How Do You Write Machine
Language Programs?
Hexadecimal Notation
Addressing Modes

Indexing

Subroutines

Useful Tips for the Beginner
Approaching a Large Task
MCS6510 Microprocessor Instruction
Set

Memory Management on the
Commodore 64

The KERNAL

KERNAL Power-Up Activities
Using Machine Language From
BASIC

Commodore 64 Memory Map

209

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's
a very special microchip which is the “brain” of the computer. The
Commodore 64 is no exception. Every microprocessor understands its
own language of instructions. These instructions are called machine lan-
guage instructions. To put it more precisely, machine language is the
ONLY programming language that your Commodore 64 understands. It
is the NATIVE lunguage of the machine.

If machine language is the only language that the Commodore 64
understands, then how does it understand the CBM BASIC programming
language? CBM BASIC is NOT the machine language of the Commodore
64. Whkat, then, makes the Commodore 64 understand CBM BASIC in-
structions like PRINT and GOTO?

To answer this question, you must first see what happens inside your
Commodore 64. Apart from the microprocessor which is the brain of the
Commodore 64, there is a machine language program which is stored in
a special type of memory so that it can’t be changed. And, more impor-
tantly, it does not disappear when the Commodore 64 is turned off,
unlike a program that you may have written. This machine language
program is called the OPERATING SYSTEM of the Commodore 64. Your
Commodore 64 knows what to do when it's turned on becuause its
OPERATING SYSTEM (program) is automatically “RUN.”

210 BASIC TO MACHINE LANGUAGE

The OPERATING SYSTEM is in charge of “organizing” all the memory
in your machine for various tasks. It also looks at what characters you
type on the keyboard and puts them onto the screen, plus a whole
number of other functions. The OPERATING SYSTEM can be thought of
as the "“intelligence and personality” of the Commodore 64 (or any com-
puter for that matter). So when you turn on your Commodore 64, the
OPERATING SYSTEM takes control of your machine, and ofter it has
done its housework, it then says:

READY.
|

The OPERATING SYSTEM of the Commodore 64 then allows you to
type on the keyboard, and use the built-in SCREEN EDITOR on the Com-
modore 64. The SCREEN EDITOR allows you to move the cursor, DElLete,
INSert, etc., and is, in fact, only one part of the operating system that is
built in for your convenience.

All of the commands that are available in CBM BASIC are simply
recognized by another huge machine language program built into your
Commodore 64. This huge program “RUNs” the appropriate piece of
machine language depending on which CBM BASIC command is being
executed. This program is called the BASIC INTERPRETER, because it
interprets each command, one by one, unless it encounters a command
it does not understand, and then the familiar message appears:

?SYNTAX ERROR

READY.
|

WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEK and POKE commands in the CBM
BASIC language for changing memory locations. You’ve probably used
them for graphics on the screen, and for sound effects. Each memory
location has its own number which identifies it. This number is known as
the “address” of a memory location. If you imagine the memory in the
Commodore 64 as a street of buildings, then the number on each door
is, of course, the address. Now let’s look at which parts of the street are
used for what purposes.

BASIC TO MACHINE LANGUAGE 211

SIMPLE MEMORY MAP OF THE COMMODORE 64

ADDRESS

DESCRIPTION

0&1

2
up to:
1023

1024
up to:
2039

2040
up to:
2047

2048
up to:
40959

40960
up to:
49151

49152
up to:
53247

53248
up to:
53294
54272
up to:
55295

55296
up to:
56296

56320
up to:
57343

57344
up to:
65535

— 6510 Registers.

—Start of memory.
—Memory used by the operating system.

—Screen memory.

—SPRITE pointers.

—This is YOUR memory. This is where your BASIC or

machine language programs, or both, are stored.

—8K CBM BASIC Interpreter.

—Special programs RAM area.

—VIC-II.

—SID Registers.

—Color RAM.

—1/O Registers. (6526's)

—8K CBM KERNAL Operating System.

212 BASIC TO MACHINE LANGUAGE

If you don’t understand what the description of each part of memory
means right now, this will become clear from other parts of this manual.

Machine language programs consist of instructions which may or may
not have operands (parameters) associated with them. Each instruction
takes up one memory location, and any operand is contained in one or
two locations following the instruction.

In your BASIC programs, words like PRINT and GOTO do, in fact, only
take up one memory location, rather than one for each character of the
word. The contents of the location that represents a particular BASIC
keyword is called a token. In machine language, there are different
tokens for different instructions, which also take up just one byte (mem-
ory location=byte).

Machine language instructions are very simple. Therefore, each indi-
vidual instruction cannot achieve a great deal. Machine language in-
structions either change the contents of a memory location, or change
one of the internal registers (special storage locations) inside the micro-
processor. The internal registers form the very basis of machine lan-
guage.

THE REGISTERS INSIDE THE 6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Various ma-
chine language instructions allow you to copy the contents of a memory
location into the accumulator, copy the contents of the accumulator into
a memory location, modify the contents of the accumulator or some
other register directly, without affecting any memory. And the ac-
cumulator is the only register that has instructions for performing math.

THE X INDEX REGISTER

This is a very important register. There are instructions for nearly all of
the transformations you can make to the accumulator. But there are
other instructions for things that only the X register can do. Various ma-
chine language instructions allow you to copy the contents of a memory
location into the X register, copy the contents of the X register into a
memory location, and modify the contents of the X, or some other regis-
ter directly.

BASIC TO MACHINE LANGUAGE 213

THE Y INDEX REGISTER

This is a very important register. There are instructions for nearly all of
the transformations you can make to the accumulator, and the X regis-
ter. But there are other instructions for things that only the Y register can
do. Various machine language instructions allow you to copy the con-
tents of a memory location into the Y register, copy the contents of the Y
register into a memory location, and modify the contents of the Y, or
some other register directly.

THE STATUS REGISTER

This register consists of eight “flags” (a flag = something that indi-
cates whether something has, or has not occurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction
being executed. Since the operating system is always “RUN"ning in the
Commodore 64 (or, for that matter, any computer), the program counter
is always changing. It could only be stopped by halting the microproces-
sor in some way.

THE STACK POINTER

This register contains the location of the first empty place on the stack.
The stack is used for temporary storage by machine language pro-
grams, and by the computer.

THE INPUT/OUTPUT PORT

This register appears at memory locations 0 (for the DATA DIRECTION
REGISTER) and 1 (for the actual PORT). It is an 8-bit input/output port.
On the Commodore 64 this register is used for memory management, to
allow the chip to control more than 64K of RAM and ROM memory.

The details of these registers are not given here. They are explained
as the principles needed to expluin them are explained.

HOW DO YOU WRITE MACHINE LAN-
GUAGE PROGRAMS?

Since machine language programs reside in memory, and there is no
facility in your Commodore 64 for writing and editing machine language

214 BASIC TO MACHINE LANGUAGE

programs, you must use either a program to do this, or write for yourself
a BASIC program that “allows” you to write machine language.

The most common methods used to write machine language pro-
grams are assembler progams. These packages allow you to write ma-
chine language instructions in a standardized mnemonic format, which
makes the machine language program a lot more readable than a
stream of numbers! Let’s review: A program that allows you to write
machine language programs in mnemonic format is called an assem-
bler. Incidentally, a program that displays a machine language pro-
gram in mnemonic format is called a disassembler. Available for your
Commodore 64 is a machine language monitor cartridge (with assem-
bler/ disassembler, etc.) made by Commodore:

64MON

The 64MON cartridge available from your local dealer, is a program
that allows you to escape from the world of CBM BASIC, into the land of
machine language. It can display the contents of the internal registers in
the 6510 microprocessor, and it allows you to display portions of mem-
ory, and change them on the screen, using the screen editor. It also has
a built-in assembler and disassembler, as well as many other features
that allow you to write and edit machine language prograrms easily. You
don’t HAVE to use an assembler to write machine language, but the task
is considerably easier with it. If you wish to write machine language
programs, it is strongly suggested that you purchase an assembler of
some sort. Without an assembler you will probably have to “POKE" the
machine language program into memory, which is totally unadvisable.
This manual will give its examples in the format that 64MON uses, from
now on. Nearly all assembler formats are the same, therefore the ma-
chine language examples shown will almost certainly be compatible
with any assembler. But before explaining any of the other features of
64MON, the hexadecimal numbering system must be explained.

HEXADECIMAL NOTATION

Hexadecimal notation is used by most machine language program-
mers when they talk about a number or address in a machine language
program.

Some assemblers let you refer to addresses and numbers in decimal

(base 10), binary (base 2), or even octal (base 8) as well as hexadeci-

BASIC TO MACHINE LANGUAGE 215

mal (base 16) (or just “hex” as most people say). These assemblers do
the conversions for you.

Hexadecimal probably seems a little hard to grasp at first, but like
most things, it won’t take long to master with practice.

By looking at decimal (base 10) numbers, you can see that each digit
falls somewhere in the range between zero and a number equal to the
base less one (e.g., 9). THIS IS TRUE OF ALL NUMBER BASES. Binary
(base 2) numbers have digits ranging from zero to one (which is one less
than the base). Similarly, hexadecimal numbers should have digits rang-
ing from zero to fifteen, but we do not have any single digit figures for
the numbers ten to fifteen, so the first six letters of the alphabet are
used instead:

DECIMAL HEXADECIMAL BINARY

o
o

00000000
00000001
006000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000

O NO O A WN —

O A WN—=O O
O M mMOUON ®P»POONOOLEWN—

o

216 BASIC TO MACHINE LANGUAGE

Let's look at it another way; here’s an example of how a base 10
(decimal number) is constructed:

Base raised by
increasing powers: ... 10° 10210' 10°
Equals: 1000 100 10 1

Consider 4569 (base 10) 4 5 6 9
=(4X1000)+(5X100)+(6X10)+9

Now look at an example of how a base 16 (hexadecimal number) is
constructed:

Base raised by
increasing powers: ... 163 16216' 16°
Equals: 4096 256 16 1

Consider 11D9 (base 16) 1 1 D 9
=1X4096+1X256+13X16+9

Therefore, 4569 (base 10) = 11D9 (base 16)
The range for addressable memory locations is 0-65535 (as was
stated earlier). This range is therefore O—FFFF in hexadecimal notation.
Usually hexadecimal numbers are prefixed with a dollar sign ($). This
is to distinguish them from decimal numbers. Let's look at some "“hex”
numbers, using 64MON, by displaying the contents of some memory by
typing:

SYS 8*4096 (or SYS 12*4096)
B *
PC SR AC XR YR SP
.; 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:
.M 0000 0020 (and press).

you will see rows of 9 hex numbers. The first 4-digit number is the ad-
dress of the first byte of memory being shown in that row, and the other
eight numbers are the actual contents of the memory locations begin-
ning at that start address.

You should really try to learn to “think” in hexadecimal. It's not too
difficult, because you don’t have to think about converting it back into

BASIC TO MACHINE LANGUAGE 217

decimal. For example, if you said that a particular value is stored at
$14ED instead of 5357, it shouldn’t make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION
LDA — LOAD THE ACCUMULATOR

In 6510 assembly language, mnemonics are always three characters.
LDA represents “load accumulator with . . . ,” and what the ac-
cumulator should be loaded with is decided by the parameter(s) asso-
ciated with that instruction. The assembler knows which token is repre-
sented by each mnemonic, and when it “ossembles’” an instruction, it
simply puts into memory (at whatever address has been specified), the
token, and what parameters, are given. Some assemblers give error
messages, or warnings when you try to assemble something that either
the assembler, or the 6510 microprocessor, cannot do.

If you put a “#" symbol in front of the parameter associated with the
instruction, this means that you want the register specified in the instruc-
tion to be loaded with the “value’ after the “#.” For example:

LDA #$05 «—6T mEX

This instruction will put $05 (decimal 5) into the accumulator register.
The assembler will put into the specified address for this instruction, $A9
(which is the token for this particular instruction, in this mode), and it will
put $05 into the next location after the location containing the instruction
($A9).

If the parameter to be used by an instruction has “#* before it; i.e.,

‘

the parameter is a “value,” rather than the contents of a memory loca-
tion, or another register, the instruction is said to be in the “immediate”
mode. To put this into perspective, let's compare this with another
mode:

If you want to put the contents of memory location $102E into the

accumulator, you're using the “absolute” mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes because
the latter does not have a “#" before the parameter. The 6510 micro-
processor can distinguish between the immediate mode, and the abso-
lute mode of the LDA instruction, because they have slightly different
tokens. LDA (immediate) has $A9 as its token, and LDA (absolute), has
$AD as its token.

218 BASIC TO MACHINE LANGUAGE

The mnemonic representing an instruction usually implies what it
does. For instance, if we consider another instruction, LDX, what do you
think this does?

If you said “load the X register with . . . ,” go to the top of the class.
If you didn’t, then don’t worry, learning machine language does take
patience, and cannot be learned in a day.

The various interral registers can be thought of as special memory
locations, because they too can hold one byte of information. It is not
necessary for us to explain the binary numbering system (base 2) since it
follows the same rules as outlined for hexadecimal and decimal outlined
previously, but one “bit” is one binary digit and eight bits make up one
byte! This means that the maximum number that can be contained in a
byte is the largest number that an eight digit binary number can be. This
number is 11111111 (binary), which equals $FF (hexadecimal), which
equals 255 (decimal). You have probably wondered why only numbers
from zero to 255 could be put into a memory location. If you try POKE
7680,260 (which is a BASIC statement that “says’: Put the number two
hundred and sixty, into memory location seven thousand, six hundred
and eighty,” the BASIC interpreter knows that only numbers 0 — 255 can
be put in a memory location, and your Commodore 64 will reply with:

?ILLEGAL QUANTITY ERROR

READY.
[]

If the limit of one byte is $FF (hex), how is the address parameter in the
absolute instruction “LDA $102E” expressed in memory? It's expressed in
two bytes (it won't fit into one, of course). The lower (rightmost) two
digits of the hexadecimal address form the “low byte” of the address,
and the upper (leftmost) two digits form the “high byte.”

The 6510 requires any address to be specified with its low byte first,
and then the high byte. This means that the instruction “LDA $102E"” is
represented in memory by the three consecutive values:

$AD, $2E, $10
Now all you need to know is one more instruction and then you can write
your first program. That instruction is BRK. For a full explanation of this
instruction, refer to M.O.S. 6502 Programming Manuai. But right now,

you can think of it as the END instruction in machine language.

BASIC TO MACHINE LANGUAGE 219

If we write a program with 64MON and put the BRK instruction at the
end, then when the program is executed, it will return to 64MON when it
is finished. This might not happen if there is a mistake in your program,
or the BRK instruction is never reached (just like an END statement in
BASIC may never get executed). This means that if the Commodore 64
didn’t have a STOP key, you wouldn’t be able to abort your BASIC pro-
grams!

WRITING YOUR FIRST PROGRAM

If you've used the POKE statement in BASIC to put characters onto the
screen, you're aware that the character codes for POKEing are different
from CBM ASCII character values. For example, if you enter:

PRINT ASC(“A”) (and press [N)

the Commodore 64 will respond with:

65

READY.

However, to put an “A” onto the screen by POKEing, the code is 1,
enter:

SHIFT CLR/HOME to clear the screen

POKE 1024,1:POKE 55296,14 (and) (1024 is the start
of screen memory)

The “P” in the POKE statement should now be an “A.”
Now let’s try this in machine language. Type the following in 64MON:

"o

(Your cursor should be flashing alongside a right now.)

.A 1400 LDA #$01 (and press A)

220 BASIC TO MACHINE LANGUAGE

The Commodore 64 will prompt you with:

.A 1400 A9 01 LDA #$01
LA 1402 B

Type:
.A 1402 STA $0400

(The STA instruction stores the contents of the accumulator in a specified
memory location.)
The Commodore 64 will prompt you with:

.A 1405 B

Now type in:

.A 1405 LDA #$0E
.A 1407 STA $D800
.A 140A BRK

Clear the screen, and type:
G 1400

The G should turn into an “A” if you've done everything correctly.

You have now written your first machine language program. lts pur-
pose is to store one character (“A”) at the first location in the screen
memory. Having achieved this, we must now explore some of the other
instructions, and principles.

ADDRESSING MODES
ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of a high
and a low order byte. The high order byte is often referred to as the
page of memory. For example, the address $1637 is in page $16 (22),
and $0277 is in page $02 (2). There is, however, a special mode of
addressing known as zero page addressing and is, as the name implies,
associated with the addressing of memory locations in page zero. These

BASIC TO MACHINE LANGUAGE 221

addresses, therefore, ALWAYS have a high order byte of zero. The zero
page mode of addressing only expects one byte to describe the ad-
dress, rather than two when using an absolute address. The zero page
addressing mode tells the microprocessor to assume that the high order
address is zero. Therefore zero page addressing can reference memory
locations whose addresses are between $0000 and $00FF. This may not
seem too important at the moment, but you'll need the principles of zero
page addressing soon.

THE STACK

The 6510 microprocessor has what is known as a stack. This is used
by both the programmer and the microprocessor to temporarily re-
member things, and to remember, for example, an order of events. The
GOSUB statement in BASIC, which allows the programmer to call a sub-
routine, must remember where it is being called from, so that when the
RETURN statement is executed in the subroutine, the BASIC interpreter
“knows” where to go back to continue executing. When a GOSUB
statement is encountered in a program by the BASIC interpreter, the
BASIC interpreter “pushes” its current position onto the stack before
going to do the subroutine, and when a RETURN is executed, the in-
terpreter “pulls” off the stack the information that tells it where it was
before the subroutine call was made. The interpreter uses instructions
like PHA, which pushes the contents of the accumulator onto the stack,
and PLA (the reverse) which pulls a value off the stack and into the
accumulator. The status register can also be pushed and pulled with the
PHP and PLP, respectively.

The stack is 256 bytes long, and is located in page one of memory. It
is therefore from $0100 to $01FF. It is organized backwards in memory.
in other words, the first position in the stack is at $01FF, and the last is
at $0100. Another register in the 6510 microprocessor is called the stack
pointer, and it always points to the next available location in the stack.
When something is pushed onto the stack, it is placed where the stack
pointer points to, and the stack pointer is moved down to the next posi-
tion (decremented). When something is pulled off the stack, the stack
pointer is incremented, and the byte pointed to by the stack pointer is
placed into the specified register.

222 BASIC TO MACHINE LANGUAGE

Up to this point, we have covered immediate, zero page, and abso-
lute mode instructions. We have also covered, but have not really talked
about, the “implied” mode. The implied mode means that information is
implied by an instruction itself. In other words, what registers, flags,
and memory the instruction is referring to. The examples we have seen
are PHA, PLA, PHP, and PLP, which refer to stack processing and the
accumulator and status registers, respectively.

NOTE: The X register will be referred to as X from now on, and similarly A (ac-
cumulator), Y (Y index register), S (stack pointer), and P (processor status).

INDEXING

Indexing plays an extremely important part in the running of the 6510
microprocessor. It can be defined as “creating an actual address from a
base address plus the contents of either the X or Y index registers.”

For example, if X contains $05, and the microprocessor executes an
LDA instruction in the “absolute X indexed mode” with base address
(e.g., $9000), then the actual location that is loaded into the A register
is $9000 + $05 = $9005. The mnemonic format of an absolute indexed
instruction is the same as an absolute instruction except a “, X" or “,Y"
denoting the index is added to the address.

EXAMPLE:
LDA $9000,X

There are absolute indexed, zero page indexed, indirect indexed,
and indexed indirect modes of addressing available on the 6510

microprocessor.
INDIRECT INDEXED

This only allows usage of the Y register as the index. The actual ad-
dress can only be in zero page, and the mode of instruction is called
indirect because the zero page address specified in the instruction con-
tains the low byte of the actual address, and the next byte to it contains
the high order byte.

BASIC TO MACHINE LANGUAGE 223

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $1E. If the instruction to load the accumulator in the indirect inde-
xed mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of $02
High order = contents of $03
Y register =$00

Thus the actual address = $1E45 + Y = $1E45.
The title of this mode does in fact imply an indirect principle, although
this may be diffizult to grasp at first sight. Let’s look at it another way:
“I am going to deliver this letter to the post office at address
$02, MEMORY ST., and the address on the letter is $05 houses past
$1600, MEMORY street.” This is equivalent to the code:

LDA #$00 — load low order actual base address
STA $02 — set the low byte of the indirect address
LDA #$16 — load high order indirect address

STA $03 — set the high byte of the indirect address
LDY #$05 — set the indirect index (Y)

LDA ($02),Y — load indirectly indexed by Y

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This
is the same as indirect indexed, except it is the zero page address of the
pointer that is indexed, rather than the actual base address. Therefore,
the actual base address IS the actual address because the index has
already been used for the indirect. Index indirect would also be used if

224 BASIC TO MACHINE LANGUAGE

a table of indirect pointers were located in zero page memory, and the
X register could then specify which indirect pointer to use.

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $10. If the instruction to load the accumulator in the indexed indi-
rect mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of ($02+X)
High order = contents of ($03+X)
$00

X register

Thus the actual pointer is in = $02 + X = $02.

Therefore, the actual address is the indirect address contained in $02
which is again $1045.

The title of this mode does in fact imply the principle, although it may
be difficult to grasp at first sight. Look at it this way:

“l am going to deliver this letter to the fourth post office at address
$02, MEMORY ST., and the address on the letter will then be delivered to
$1600, MEMORY street.”” This is equivalent to the code:

LDA #$00 — load low order actual base address
STA $06 — set the low byte of the indirect address
LDA #%$16 — load high order indirect address

STA $07 — set the high byte of the indirect address
LDX #%$04 — set the indirect index (X)

LDA ($02,X) —Iload indirectly indexed by X

|

NOTE: Of the two indirect methods of addressing, the first (indirect indexed) is far
more widely used.

L

BASIC TO MACHINE LANGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the ability to
test, and detect certain conditions, in a smiliar fashion to the “IF . . .
THEN, IF . . . GOTO" structure in CBM BASIC.

The various flags in the status register are affected by different in-
structions in different ways. For example, there is a flag that is set when
an instruction has caused a zero result, and is reset when a result is not
zero. The instruction:

LDA #300

will cause the zero result flag to be set, because the instruction has
resulted in the accumulator containing a zero.

There are a set of instructions that will, given a particular condition,
branch to another part of the program. An example of a branch instruc-
tion is BEQ, which means Branch if result EQual to zero. The branch
instructions branch if the condition is true, and if not, the program con-
tinues onto the next instruction, as if nothing had occurred. The branch
instructions branch not by the result of the previous instruction(s), but by
internally examining the status register. As was just mentioned, there is
a zero result flag in the status register. The BEQ instruction branches if
the zero result flag (known as Z) is set. Every branch instruction has an
opposite branch instruction. The BEQ instruction has an opposite instruc-
tion BNE, which means Branch on result Not Equal to zero (i.e., Z not
set).

The index registers have a number of associated instructions which
modify their contents. For example, the INX instruction INcrements the X
index register. If the X register contained $FF before it was incremented
(the maximum number the X register can contain), it will “wrap around”
back to zero. If you wanted a program to continue to do something until
you had performed the increment of the X index that pushed it around
to zero, you could use the BNE instruction to continue “looping” around,
until X became zero.

The reverse of INX, is DEX, which is DEcrement the X index register. If
the X index register is zero, DEX wraps around to $FF. Similarly, there
are INY and DEY for the Y index register.

226 BASIC TO MACHINE LANGUAGE

But what if a program didn’t want to wait until X or Y had reached (or
not reached) zero? Well there are comparison instructions, CPX and
CPY, which allow the machine language programmer to test the index
registers with specific values, or even the contents of memory locations.
If you wanted to see if the X register contained $40, you would use the

instruction:
CPX #%$40 — compare X with the “value” $40.
BEQ — branch to somewhere else in the
(some other program, if this condition is “true.”
part of the
program)

The compare, and branch instructions play a major part in any machine
language program.

The operand specified in a branch instruction when using 64MON is
the address of the part of the program that the branch goes to when the
proper conditions are met. However, the operand is only an offset,
which gets you from where the program currently is to the address spec-
ified. This offset is just one byte, and therefore the range that a branch
instruction can branch to is limited. It can branch from 128 bytes back-
ward, to 127 bytes forward.

NOTE: This is a total range of 255 bytes which is, of course, the maximum range ot
values one byte can contain.

64MON will tell you if you “branch out of range” by refusing to “as-
semble” that particular instruction. But don’t worry about that now be-
cause it's unlikely that you will have such branches for quite a while. The
branch is a “quick’ instruction by machine language standards because
of the “offset” principle as opposed to an absolute address. 64MON
allows you to type in an absolute address, and it calculates the correct
offset. This is just one of the “comforts” of using an assembler.

NOTE: It is NOT possible to cover every single branch instruction. Fer further informa- 1
tion, refer to the Bibliography section in Appendix F. [
L ceoemmmeem-m e

BASIC TO MACHINE LANGUAGE 227

SUBROUTINES

In machine language (in the same way as using BASIC), you can call
subroutines. The instruction to call a subroutine is JSR (Jump to Sub-
Routine), followed by the specified absolute address.

Incorporated in the operating system, there is a machine language
subroutine that will PRINT a character to the screen. The CBM ASCII
code of the character should be in the accumulator before calling the
subroutine. The address of this subroutine is $FFD2.

Therefore, to print “HI” to the screen, the following program should
be entered:

.A 1400 LDA #$48 — load the CBM ASCII code of “H”

.A 1402 JSR $FFD2 — print it

A 1405 LDA #%49 — load the CBM ASCII code of “I”

.A 1407 JSR $FFD2 — print that too

.A 140A LDA #30D — print a carriage return as well

.A 140C JSR $FFD2

.A 140F BRK — return to 64MON

.G 1400 — will print “HI” and return to 64MON

The “PRINT a character” routine we have just used is part of the
KERNAL jump table. The instruction similar to GOTO in BASIC is JMP,
which means JuMP to the specified absolute address. The KERNAL is a
long list of “standardized” subroutines that control ALL input and output
of the Commodore 64. Each entry in the KERNAL JMPs to a subroutine in
the operating system. This “jump table” is found between memory loca-
tions $FF84 to $FFF5 in the operating system. A full explanation of the
KERNAL is available in the “KERNAL Reference Section” of this manual.
However, certain routines are used here to show how easy and effective
the KERNAL is.

Let’s now use the new principles you've just learned in another pro-
gram. It will help you to put the instructions into context:

228 BASIC TO MACHINE LANGUAGE

This program will display the alphabet using a KERNAL routine. The

only new instruction introduced here is TXA Transfer the contents of the X

index register, into the Accumulator.

>>>>>>>

1400 LDX #$41 — X = CBM ASCII of “A"
1402 TXA — A =X

1403 JSR $FFD2 — print character

1406 INX — bump count

1407 CPX #$5B — have we gone past “Z" ?
1409 BNE $1402 — no, go back and do more
140B BRK — yes, return to 64MON

To see the Commodore 64 print the alphabet, type the familiar com-

mand:

.G

1400

The comments that are beside the program, explain the program flow

and logic. If you are writing a program, write it on paper first, and then

test it in small parts if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other

peoples’ machine language programs. These are published all the time
in magazines and newsletters. Look at them even if the article is for a
different computer, which also uses the 6510 (or 6502) microprocessor.
You should make sure that you thoroughly understand the code that you

look at. This will require perseverence, especially when you see a new
technique that you have never come across before. This can be infuriat-

ing, but if patience prevails, you will be the victor.
Having looked at other machine language programs, you MUST write
your own. These may be utilities for your BASIC programs, or they may

be an all machine language program.

BASIC TO MACHINE LANGUAGE 229

You should also use the utilities that are available, either IN your
computer, or in a program, that aid you in writing, editing, or tracking
down errors in a machine language program. An example would be the
KERNAL, which allows you to check the keyboard, print text, control
peripheral devices like disk drives, printers, modems, etc., manage
memory and the screen. It is extremely powerful and it is advised
strongly that it is used (refer to KERNAL section, Page 268).

Advantages of writing programs in machine language:

1. Speed—Machine language is hundreds, and in some cases
thousands of times faster than a high level language such as
BASIC.

2. Tightness—A machine language program can be made totally
“watertight,” i.e., the user can be made to do ONLY what the
program allows, and no more. With a high level language, you

"

are relying on the user not “crashing” the BASIC interpreter by

entering, for example, a zero which later causes a:
?DIVISION BY ZERO ERROR IN LINE 830

READY.
]

In essence, the computer can only be maximized by the machine lan-
guage programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain
amount of subconscious thought has usually taken place. You think
about how certain processes are carried out in machine language.
When the task is started, it is usually a good idea to write it out on
paper. Use block diagrams of memory usage, functional modules of
code required, and a program flow. Let’s say that you wanted to write a
roulette game in machine language. You could outline it something like
this:

230 BASIC TO MACHINE LANGUAGE

Display title

Ask if player requires instructions
YES—display them—Go to START
NO—Go to START

START Initialize everything

MAIN display roulette table

Take in bets

Spin wheel

Slow wheel to stop

Check bets with result

Inform player

Player any money left?

YES—Go to MAIN

NO—Inform user!, and go to START

This is the main outline. As each module is approached, you can
break it down further. If you look at a large indigestable problem as
something that can be broken down into small enough pieces to be
eaten, then you’ll be able to approach something that seems impossible,
and have it all fall into place.

This process only improves with practice, so KEEP TRYING.

BASIC TO MACHINE LANGUAGE 231

MCS6510 MICROPROCESSOR

ADC Add Memory to Accumulator with Carry
AND “AND” Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR “Exclusive-Or’’ Memory with Accumulator
INC Increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

232 BASIC TO MACHINE LANGUAGE

INSTRUCTION SET—ALPHABETIC SEQUENCE

JSR

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation
“OR’" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

BASIC TO MACHINE LANGUAGE

233

The following notation applies to this summary:

A Accumulator

X, Y Index Registers

M Memory

P Processor Status Register
S Stack Pointer

Y/ Change

_ No Change

+ Add

AN Logical AND

- Subtract

¥V Logical Exclusive Or
4 Transfer from Stack
v Transfer to Stack

-+ Transfer to

A Transfer from

\' Logical OR

B Program Counter

PCH Program Counter High
PCL Program Counter Low
OPER OPERAND

it IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a
reference number (Ref: XX) which directs the user to
that Section in the MCS6500 Microcomputer Family
Programming Manual in which the instruction is defined

and discussed.

234 BASIC TO MACHINE LANGUAGE

ADC

Operation:

A+M+C»A,C

Add memory to accumulator with carry

ADC

NZCIDV

(Ref: 2.2.1) S ==

Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles

Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 L%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Operj, Y 71 2 5%

* Add 1 if page boundary is crossed.

AND

Logical AND to the accumulator

“AND’ memory with accumulator

AND

Operation: A A M > A N2CIDV
(Ref: 2.2.4.1) S A == ==

Addressing Assembly Language op No. No.

Mode Form CODE Bytes Cycles

Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4
Absolute, Y AND Oper, Y 39 3 4
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

BASIC TO MACHINE LANGUAGE 235

ASl ASL Shift Left One Bit (Memory or Accumulator) ASl

Operation: C <« E u <@ NZCIDV

Jdd===
(Ref: 10.2)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles

Accumulator ASL A BA 1 2
Zero Page ASL Oper 36 2 S
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper [} 3 6
Absolute, X ASL Cper, X 1E 3 7

BC(BCC Branch on Carry Clear Bcc
Operation: Branch on C = @ N2ZCIDV

(Ref: 4.1.2.3)

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BCC Oper 9@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

Bcs BCS Branch on carry set BCS

Operation: Branch on C =1 NZCIDV

(Ref: 4.1.2.4)

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BCS Oper B@ 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

236 BASIC TO MACHINE LANGUAGE

BEQ BEQ Branch on result zero BEQ
Operation: Branch on 2 = 1 N2 CIDV
(Ref: 4.1.2.5) @ e o
Addressing Assembly Language OopP No. No.
Mode Form CODE Bytes Cycles
Relative BEQ Oper F@ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.
BIT BIT Test bits in memory with accumulator BIT

Operation: AN M, M7 > N, M() -V

Bit 6 and 7 are transferred to the status register. NZCIDV
If the result of AAM is zero then Z = 1, otherwise M7/ =i e M6
R (Ref: 4.2.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BMI BMI Branch on result minus BMI
Operation: Branch on N = 1 NZCIDV
(Ref: 4.1.2.1) — 7777
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Relative BMI Oper 3¢ 2 2

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BASIC TO MACHINE LANGUAGE 237

BNE BNE Brench on result not zero B“E

Operation: Branch on Z = 0 Nz2CIDV

(Ref: 4.1.2.6)

Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Relative BNE Oper D@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPl BPL Branch on result plus BP'.

Operation: Branch on N = @ NZ2CI1DV

(Ref: 4.1.2.2)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Relative BPL Oper 19 2 X

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BRK BRK Force Break BRK

Operation: Forced Interrupt PC + 2 + P ¢ N&gCIDV
e 1 —_——
(Ref: 9.11)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied BRK 1%} 1 7

1. A BRK command cannot be masked by setting I.

238 BASIC TO MACHINE LANGUAGE

Bvc BVC Branch on overflow clear BVC

Operation: Branch on V = 0 NZCIDV
(Ref: 4.1.2.8) T T T T 77
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BVC Oper 5@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BVS BVS Branch on overflow set BVS

Operation: Branch on V = 1 N2CIDV

(Ref: 4.1.2.7)

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BVS Oper 70 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CLC CLC Clear carry flag CLC

Operation: @ » C N2CIDYV
(Ref: 3.0.2) U ==
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied CIEG 18 1 2

BASIC TO MACHINE LANGUAGE 239

CLb

CLD Clear decimal mode

CLD

Operation: @ »+ D N2CIDV
S
(Ref: 3.3.2)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2

cu

Operation: @ + I

CLI Clear interrupt disable bit

cu

NZCIDV

(Ref: 3.2.2) —--0--
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied CLI 58 1 2
ctv CLV Clear overflow flag Clv
Operation: @ + V NZCIDV
————— ()
(Ref: 3.6.1)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied CLV B8 1 2

240 BASIC TO MACHINE LANGUAGE

Cmp

Operation: A - M

CMP Compare memory and accumulator

NZCIDV
YA A - ==

cmp

(Ref: 4.2.1)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #Oper c9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CcD 3 4
Absolute, X CMP Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4%
(Indirect, X) CMP (Oper, X) Ccl 2 6
(Indirect), Y CMP (Oper), Y D1 2 5%
* Add 1 if page boundary is crossed.
cpx CPX Compare Memory and Index X cpx
Operation: X - M NZCIDUV
S ===
(Ref: 7.8)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CPX #Oper EQ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare memory and index Y CPY
Operation: Y - M N2 CIDUV
A ===
(Ref: 7.9)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Immediate CPY #Oper co 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper cc 3 4

BASIC TO MACHINE LANGUAGE 241

DEC

Operation: M -

DEC Decrement memory by one

N2CIDV
Vi p—

DEC

(Ref: 10.8)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC Oper Cc6 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7

DEX DEX Decrement index X by one

Operation: X - 1 » X

NaCIDV
e

(Ref: 7.6)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
fmplied DEX CA 1 2

DEY

Operation: Y - 1 - Y

DEY Decrement index Y by one

N2CI1IDV
J ===

DEY

(Ref: 7.7)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied DEY 88 1 2

242 BASIC TO MACHINE LANGUAGE

EOR

Operation: A ¥ M > A

EOR "Exclusive—Or’ memory with accumulator

NZCIDV
S e

EOR

(Ref: 2.2.4.3)

Addressing Assembly Language OP No. No.

Mode Form CODE Bytes Cycles
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 b*
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.

INC

Operation: M + 1 » M

INC Increment memory by one

NZ2CIDV
VAV

INC

(Ref: 10.7)
Addressing Assembly Language cp No. No.
Mode Form CODE Bytes Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
l"x INX Increment Index X by one l"x
Operation: X + 1 » X N3 CIDV
S —
(Ref: 7.4)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2

BASIC TO MACHINE LANGUAGE 243

lNY INY Increment Index Y by one lNY
Operation: Y + 1 + Y N2CIDV
VA
(Ref: 7.5)
Addressing Assembly Language opP No. No.
Mode Form * CODE Bytes Cycles
Implied INY c8 1 2
JMP JMP Jump to new location JMP
Operation: (PC + 1) » PCL NZCIDV
(Ref: 4.0.2)
+ P CH I == ={ P S
(PC +2) > PCH (pef: 9.8.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5
JSR ISR Jump to new location scving return address JSR
Operation: PC + 2 4+, (PC + 1) ~ PCL NZCIDV
(PC+ 2 >-PCH _ ___ __
(Ref: 8.1)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6

244 BASIC TO MACHINE LANGUAGE

lDA LDA Load accumulator with memory lDA

Operation: M » A NZCIDV
(Ref: 2.1.1) i
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate LDA # Oper A9 2 2
Zero Page LD2 Oper AS 2 3
Zero Page, X LDA Oper, X BS 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y Bl 2 5%

* Add 1 if page boundary is crossed.

le LDX Load index X with memory le
Operation: M -+ X N2CIDV
(Ref: 7.0) ===
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 when page boundary is crossed.

BASIC TO MACHINE LANGUAGE 245

DY

LDY Load index Y with memory

LDY

Operation: M - Y N3 CIDV
VAV
(Ref: 7.1)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Immediate LDY #Oper AD 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4%
* Add 1 when page boundary is crossed.
lSR LSR Shift right one bit fmemory or accumulator) lSR
Operation: @ — n..a — C N3 CIDV
g v/ —-==
(Ref: 10.1)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Aczumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X SE 3 7
NOP NOP No operation NOP
Operation: No Operation (2 cycles) N3 CIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2

246 BASIC TO MACHINE LANGUAGE

ORA

ORA “OR’ memory with accumulator

ORA

Operation: A VM > A NZ2CIDV
VAV
(Ref: 2.2.3.1)
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Immediate ORA #Oper 39 2 2
Zero Page ORA Oper 95 2 3
Zero Page, X ORA Oper, X 15 4
Absolute ORA Oper @D 3 4
Absolute, X ORA Oper, X 1D 3 L%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) @31 2 6
(Indirect), Y ORA (Oper), Y 11 2 5

* Add 1 on page crossing

PHA

Operation: A +

PHA Push accumulator on stack

(Ref: 8.95)
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3

PHP

Operation: P+

PHP Push processor status on stack

(Ref: 8.11) T T 77T 77
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHP @8 1 3

BASIC TO MACHINE LANGUAGE 247

PLA

PLA Pull accumulator from stack

PLA

Operation: A ¢t N2 CIDV
VAV
(Ref: 8.6)
Addressing Assembly Language OP No No.
Mode Form CODE Bytes Cycles
Implied PLA 68 1 4
PlP PLP Pull processor status from stack PlP
Operation: P + NZCIDV

Frem Stack

(Ref: 8.12)
Addressing Assembly Language OP No No.
Mode Form CODE Bytes Cycles
Implied PLP 28 1 4
RO'. ROL Rotate one bit left (memory or accumulator) RO'_
Mor A
Operation: ﬂﬂ « [C] « NZCIDV
YA - ==
(Ref: 10.3)
Addressing Assembly Language OP No No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7
-

248 BASIC TO MACHINE LANGUAGE

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operation:7l6[5|4[3lzlll¢'j NZ2CIDV

(Ref: 10.4) S I = e

Addressing Assembly Language oP No. No.

Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 7

Note: ROR instruction is available on MCS650X micro-
processors after June, 1976.

RTI RTI Return from interrupt RTI
Operation: Pt PCt NZ2CIDV
k
(Ref: 9.6) From Stac
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied RTI 4@ 1 6

RTS RTS Return from subroutine RTS

Operation: PC+, PC + 1— PC N32CIDV
(Ref: 8.2) T T T T 77
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied RTS 60 1 6

BASIC TO MACHINE LANGUAGE 249

SB(SBC Subtract memory from accumulator with borrow SB(

Operation: A -~ M- C > A NZ2CIDUV
Note: C = Borrow (Ref: 2.2.2) A A —-=
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper ES5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 L%
Absolute, Y SBC Oper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5%

* Add 1 when page boundary is crossed.

SEC

Operation: 1 - C

SEC Set carry flag

(Ref: 3.0.1)] Qe
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEC 38 1 2
SED SED Set decimal mode SED
Operation: 1 + D N2CIDV
A 1 -
(Ref: 3.3.1)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied SED F8 l 1 2

250 BASIC TO MACHINE LANGUAGE

SE' SEI Setinterrupt disable status SEI

Operation: 1 - I NZCIDV
P l - —
(Ref: 3.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEI 78 1 2

STA STA Store accumulator in memory STA
Operation: A > M NZCIDUV

(Ref: 2.1.2)

Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6

STX STX Store index X in memory STX

Operation: X - M NZCIDV
(Ref: 7.2) S
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4

BASIC TO MACHINE LANGUAGE 251

STY STY Store index Y in memory S T Y

Operation: Y + M N3CIDV
(Ref: 7.3)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2
Absolute STY Oper 8C 3
TAx TAX Transfer accumulator toindex X TAx
Operation: A+ X N3CIDV
VAV
(Ref: 7.11)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA 1 2
TAY TAY Transfer accumulator to index Y TAY
Operation: A + Y NZ2CIDUV
- — -
(Ref: 7.13)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 1 2

252 BASIC TO MACHINE LANGUAGE

Tsx TSX Transfer stack pointer to index X Tsx

Operation: S -+ X NZCIDV

(Ref: 8.9) LS
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes | Cycles
Implied TSX BA 1 2
TXA TXA Transfer index X to accumulator TXA
Operation: X ~+ A N2CIDUV
(Ref: 7.12) S ===
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A 1 2
sz TXS Transfer index X to stack pointer sz
Operation: X =+ S N2 CIDV
(Ref: 8.8 T T T T 77
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TXS 9A 1 2

TYA TYA Transfer index Y to accumulator TYA

Operation: Y + A NZCIDV

oS - ===
(Ref: 7.14)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Implied TYA 98 1 2

BASIC TO MACHINE LANGUAGE 253

INSTRUCTION ADDRESSING MODES AND

Zero Page, Y
(Indirect), Y
Absolute Indirect

Zero Page, X
Absolute

Absolute, X
Absolute, Y
Implied
Relative
(Indirect, X)

Accumulator
Immediate
Zero Page

*

ADC 4 4* 4*
AND 4 4* 4*
ASL ; . 6 7 . o s
B8CC s s s f & s o® ow ow 2%
BCS s i s s i awm w2
BEQ C s s mw w25
BIT .. 3 .. 4
B8MI B)
BNE 2,
BPL e 2
BRK T
BvC . S
BVS .
CLC
CLD
CLi
CLvV
CMmP
CPX
CPY
DEC B : i
DEX s owm m a s e = w2

DEY O 2
EOR .2 4*4* . . 6 5°.
INC . . . 3
INX s & @& 5 i & s = 2

INY 7.
JMP « s = & 2+ 3 . <« w - 2 . b

.

NN
AwWww
(o)~ 9 -}

(o2]e]

U:U"

N -

NNNN

a6 5

NNN
NWWwWw:*
(o200 ~ P NP~

aw

Add one cycle if indexing across page boundary
** Add one cycle if branch is taken, Add one additional

254 BASIC TO MACHINE LANGUAGE

RELATED EXECUTION TIMES (in clock cycles)

Zero Page, X
Zero Page, Y
Absolute
Absolute, Y
(Indirect, X)
(Indirect),Y
Absolute Indirect

Accumulator
Immediate
Zero Page
Absolute, X
Implied

Relative

JSR
LDA
LDX
LDY :
LSR 2
NOP -
ORA .2
PHA .
PHP
PLA
PLP
ROL
ROR
RTI
RTS S
SBC . 23 4 . 4 44"
SEC s 5w s
SED
SEI
STA .. 3 . 4
STX 3 . 4 4
STY 3 . 4
TAX

TAY

TSX

TXA

TXS

TYA

*

NN
NNN-
(6] W' OWWWw-
(o] b Obd b
[¢)] L LA
~ H» H
* *
o
*

bbhbWW' N

(o]
[($)]

NNN OO

NNNNNNC

if branching operation crosses page boundary

BASIC TO MACHINE LANGUAGE 255

99 -
g1 -
92 -
93 -
P4 -
@5 -
96 -
@7 -
98 -
99 -
PA -
B -
g9c -
D -
PE -
gF -
19 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -

1B -
1C -
1D -
1E -
1F -

256

BRK

ORA - (Indirect,X)

Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA - Absolute
ASL - Absolute
Future Expansion

BPL

ORA - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

ORA ~ Zero Page,X
ASL - Zero Page,X
Future Expansion

CLC

ORA - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

ORA - Absolute,X

ASL - Absolute,X

Future Expansion

BASIC TO MACHINE LANGUAGE

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion
BM1

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absolute,X

Future Expansion

49
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
SE
SF

RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR - Absolute,X

Future Expansion

69
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
iC
7D
7E
7F

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page,X
ROR - Zero Page,X
Future Expansion
SEI

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X

Future Expansion

BASIC TO MACHINE LANGUAGE 257

80
81
82
83
34
85
86
87
88
89
8A
8B
8C
8D
8E

99
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

258

Future Expansion
STA - (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA - Zero Page
STX - Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion

BCC

STA - (Indirect),Y

Future Expansion

Future Expansion

STY - Zero Page,X
STA - Zero Page,X
STX - Zero Page,Y
Future Expansion

TYA

STA - Absolute,Y

TXS

Future Expansion

Future Expansion

STA - Absolute,X

Future Expansion

Future Expansion

BASIC TO MACHINE LANGUAGE

AQ
Al
A2
A3
Al
AS
A6
A7
A8
A9

AB
AC

AF
B@
Bl
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

LDY - Immediate
LDA - (Indirect,X)
LDX -~ Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
LDA - Absolute
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page,X
LDA - Zero Page,X
LDX - Zero Page,Y
Future Expansion
CLV

LDA - Absolute,Y
TSX

Future Expansion
LDY - Absolute,X
LDA - Absolute,X
LDX - Absolute,Y

Future Expansion

co
c1
c2
c3
ch
C5
cé6
c7
c8
c9
CA
CB
cc
CD
CE
CF
D@
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

CPY - Immediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion

BNE

CMP - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion

CLD

CMP - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

CMP - Absolute,X

DEC - Absolute,X

Future Expansion

E¢
El
E2
E3
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F@
F1
F2
F3
Fé4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

CPX - Immediate

SBC - (Indirect,X)

Future Expansion
Future Expansion
CPX - Zero Page
SBC - Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX - Absolute
SBC - Absolute
INC - Absolute
Future Expansion

BEQ

SBC - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

SBC - Zero Page,X
INC - Zero Page,X
Future Expansion

SED

SBC - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

SBC - Absolute,X

INC - Absolute,X

Future Expansion

BASIC TO MACHINE LANGUAGE

259

MEMORY MANAGEMENT ON THE
COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of
ROM, containing BASIC, the operating system, and the standard char-
acter set. It also accesses input/output devices as a 4K chunk of mem-
ory. How is this all possible on a computer with a 16-bit address bus,
that is normally only capable of addressing 64K?

The secret is in the 6510 processor chip itself. On the chip is an input/
output port. This port is used to control whether RAM or ROM or 1/O will
appear in certain portions of the system’s memory. The port is also used
to control the Datassette™, so it is important to affect only the proper
bits.

The 6510 input/output port appears at location 1. The data direction
register for this port appears at location 0. The port is controlled like any
of the other input/output ports in the system . . . the data direction
controls whether a given bit will be an input or an output, and the actual
data transfer occurs through the port itself.

The lines in the 6510 control port are defined as follows:

NAME BIT DIRECTION DESCRIPTION
LORAM 0 OUTPUT Control for RAM/ROM at
$A000—$BFFF (BASIC)
HIRAM 1 OUTPUT Control for RAM/ROM at
$E000— $FFFF (KERNAL)
CHAREN 2 OUTPUT Control for I/O/ROM at
$D000—$DFFF
3 OUTPUT Cassette write line
4 INPUT Cassette switch sense
5 OuTPUT Cassette motor control

The proper value for the data direction register is as follows:

BITS 5 4 3 2 1 0
10 1 1 1 1

(where 1 is an output, and 0 is an input).

260 BASIC TO MACHINE LANGUAGE

This gives a value of 47 decimal. The Commodore 64 automatically
sets the data direction register to this value.

The control lines, in general, perform the function given in their de-
scriptions. However, a combination of control lines are occasionally used
to get a particular memory configuration.

LORAM (bit 0) can generally be thought of as a control line which
banks the 8K byte BASIC ROM in and out of the microprocessor address
space. Normally, this line is HIGH for BASIC operation. If this line is
programmed LOW, the BASIC ROM will disappear from the memory
map and be replaced by 8K bytes of RAM from $A000— $BFFF.

HIRAM (bit 1) can generally be thought of as a control line which
banks the 8K byte KERNAL ROM in and out of the microprocessor ad-
dress space. Normally, this line is HIGH for BASIC operation. If this line
is programmed LOW, the KERNAL ROM will disappear from the memory
map and be replaced by 8K bytes of RAM from $E000— $FFFF.

NOTE: For more details on LORAM and HIRAM see the memory maps on pages
262-267.

CHAREN (bit 2) is used only to bank the 4K byte character generator
ROM in or out of the microprocessor address space. From the processor
point of view, the character ROM occupies the same address space as
the 1/0O devices ($D000—$DFFF). When the CHAREN line is setto 1 (as is
normal), the 1/O devices appear in the microprocessor address space,
and the character ROM is not accessable. When the CHAREN bit is
cleared to 0, the character ROM appears in the processor address
space, and the I/O devices are not accessable. (The microprocessor only
needs to access the character ROM when downloading the character set
from ROM to RAM. Special care is needed for this . . . see the section
on PROGRAMMABLE CHARACTERS in the GRAPHICS chapter). CHAREN
can be overridden by other control lines in certain memory
configurations. CHAREN will have no effect on any memory
configuration without I/O devices. RAM will appear from $D000—$DFFF
instead.

NOTE: In any memory map containing ROM, a WRITE (a POKE) to a ROM location will
store data in the RAM “under” the ROM. Wriiting to a ROM location stores data in the
“hidden” RAM. For example, this allows a hi-resolution screen to be kept underneath
a ROM, and be changed without having to bank the screen back into the processor
address space. Of course a READ of a ROM location will return the contents of the
ROM, not the “hidden’” RAM.

BASIC TO MACHINE LANGUAGE 261

COMMODORE 64 FUNDAMENTAL MEMORY MAP

8K KERNAL ROM
E000-FFFF OR
RAM
4K 110 OR RAM OR
BD=CIAR? CHARACTER ROM
CO000-CFFF 4K RAM
8K BASIC ROM
OR
A000-BFFF RAM
OR
ROM PLUG-IN
8K RAM
8000-9FFF OR
ROM PLUG-IN
4000-7FFF 16K RAM
0000-3FFF 16K RAM

/0 BREAKDOWN

DO00-D3FF VIC (Video Controller)
D400-D7FF SID (Sound Synthesizer)
D800-DBFF Color RAM

DCOO-DCFF CIA1 (Keyboard)

DDOO-DDFF CIA2 (Serial Bus, User Port/RS-232)
DEOO-DEFF Open I/O slot #1 (CP/M Enable)

DFOO-DFFF Open 1/O slot #2 (Disk)

262 BASIC TO MACHINE LANGUAGE

1K Bytes
1K Bytes
1K Nybbles
256 Bytes
256 Bytes
256 Bytes
256 Bytes

The two open /O slots are for general purpose user I/O, special pur-
pose /O cartridges (such as IEEE), and have been tentatively designated
for enabling the Z-80 cartridge (CP/M option) and for interfacing to a
low-cost high-speed disk system.

The system provides for “auto-start’” of the program in a Commodore
64 Expansion Cartridge. The cartridge program is started if the first nine
bytes of the cartridge ROM starting at location 32768 ($8000) contain
specific data. The first two bytes must hold the Cold Start vector to be
used by the cartridge program. The next two bytes at 32770 ($8002)
must be the Warm Start vector used by the cartridge program. The next
three bytes must be the letters, CBM, with bit 7 set in each letter. The
last two bytes must be the digits “80" in PET ASCII.

COMMODORE 64 MEMORY MAPS

The following tables list the various memory configurations available
on the COMMODORE 64, the states of the control lines which select each
memory map, and the intended use of each map.

X = DON'T CARE
8K KERNAL ROM 0 = LOW
E000 1 = HIGH
o ST LORAM = 1
4K RAM (BUFFER) HIRAM =1
C000 GAME =1
8K BASIC ROM EXHONMES=1
A000
8K RAM
8000
16K RAM
4000
16K RAM
This is the default BASIC memory
map which provides BASIC 2.0 and
38K contiguous bytes of user RAM.
0000

BASIC TO MACHINE LANGUAGE 263

264

EO0O
D000
C000

8000

4000

0000

E000
D000
C000

8000

4000

0000

8K RAM

4K 110

4K RAM

16K RAM

16K RAM

16K RAM

8K KERNAL ROM

4K 11O

4K RAM

16K RAM

16K RAM

16K RAM

BASIC TO MACHINE LANGUAGE

X = DON'T CARE
0 LOwW
1 HIGH

LORAM
HIRAM
GAME
EXROM
OR
LORAM
HIRAM 0
GAME 0

(THE CHARACTER ROM
IS NOT ACCESSIBLE BY
THE CPU IN THIS MAP)
EXROM =0

[[I'}

X = O =

1

Inn

This map provides 60K bytes of
RAM and IO devices. The user
must write his own I/O driver
routines.

X = DON'T CARE
0 = LOW

1 = HIGH
LORAM =0
HIRAM =
GAME =1
EXROM = X

This map is intended for use with
softload tanguages(including
CP/M), providing 52K contiguous
bytes of user RAM, 1/O devices,
and I/O driver routines.

C000

8000

4000

0000

EO0O

D000

C000

A000

8000

4000

0000

16K RAM

o x
n o n

DON'T CARE
LOwW
HIGH

LORAM

16K RAM

HIRAM
GAME
EXROM
OR
LORAM
HIRAM
GAME

I unn
X = 0o

16K RAM

W
ox oo

EXROM

16K RAM

This map gives access to all 84K
bytes of RAM. The I/O devices
must be banked back into the
processor's address space for any
/0 operation.

8K KERNAL ROM

DON'T CARE
Low
HIGH

o
nonn

4K 1/0

4K RAM (BUFFER)

LORAM

8K BASIC ROM

HIRAM
GAME
EXROM

I un
O QO — -

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

This is the standard configuration
for a BASIC system with a BASIC
expansion ROM. This map provides
32K contiguous bytes of user RAM
and up to 8K bytes of BASIC
“enhancement.’

BASIC TO MACHINE LANGUAGE

265

266

EO00
D000
C000

A000

8000

4000

0000

EO00
D000
C000

8000

4000

0000

8K KERNAL ROM

4K 110

4K RAM (BUFFER)

8K ROM (CARTRIDGE)

8K RAM

16K RAM

16K RAM

8K KERNAL ROM

4K 11O

4K RAM (BUFFER)

16K ROM (CARTRIDGE)

16K RAM

16K RAM

BASIC TO MACHINE LANGUAGE

o X
o #

DON'T CARE
Low
HIGH

LORAM
HIRAM
GAME
EXROM

o
oo a0

This map provides 40K contiguous
bytes of user RAM and up to 8K
bytes of plug-in ROM for special
ROM-based applications which don't
require BASIC.

DON'T CARE
LOW
HIGH

o
oo

LORAM
HIRAM
GAME
EXROM

LI A R

(= =y

This map provides 32K contiguous
bytes of user RAM and up to 16K
bytes of plug-in ROM for special
ROM-based applications which don't
require BASIC (word processors.
other languages, etc.).

EO0O

D000

C000

A000

8000

4000

1000
0000

8K CARTRIDGE ROM

4K 110

4K OPEN

8K OPEN

8K CARTRIDGE ROM

16K OPEN

12K OPEN

4K RAM

X = DON'T CARE
0= LOW
1 = HIGH

LORAM
HIRAM
GAME
EXROM

o

-+ O X X

This is the ULTIMAX video game
memory map. Note that the 2K

byte “expansion RAM" for the
ULTIMAX, if required, is accessed
out of the COMMODORE 64 and any

RAM in the cartridge is ignored.

BASIC TO MACHINE LANGUAGE

267

THE KERNAL

One of the problems facing programmers in the microcomputer field
is the question of what to do when changes are made to the operating
system of the computer by the company. Machine language programs
which took much time to develop might no longer work, forcing major
revisions in the program. To alleviate this problem, Commodore has
developed a method of protecting software writers called the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the input,
output, and memory management routines in the operating system. The
locations of each routine in ROM may change as the system is up-
graded. But the KERNAL jump table will always be changed to match. If
your machine language routines only use the system ROM routines
through the KERNAL, it will take much less work to modify them, should
that need ever arise.

The KERNAL is the operating system of the Commodore 64 computer.
All input, output, and memory management is controlled by the
KERNAL.

To simplify the machine language programs you write, and to make
sure that future versions of the Commodore 64 operating system don't
make your machine language programs obsolete, the KERNAL contains
a jump table for you to use. By taking advantage of the 39 input/output
routines and other utilities available to you from the table, not only do
you save time, you also make it easier to translate your programs from
one Commodore computer to another.

The jump table is located on the last page of memory, in read-only
memory (ROM).

To use the KERNAL jump table, first you set up the parameters that the
KERNAL routine needs to work. Then JSR (Jump to SubRoutine) to the
proper place in the KERNAL jump table. After performing its function,
the KERNAL transfers control back to your machine language program.
Depending on which KERNAL routine you are using, certain registers
may pass parameters back to your program. The particular registers for
each KERNAL routine may be found in the individual descriptions of the
KERNAL subroutines.

268 BASIC TO MACHINE LANGUAGE

A good question at this point is why use the jump table at all? Why
not just JSR directly to the KERNAL subroutine involved? The jump table
is used so that if the KERNAL or BASIC is changed, your machine lan-
guage programs will still work. In future operating systems the routines
may have their memory locations moved around to a different position
in the memory map . . . but the jump table will still work correctly!

KERNAL POWER-UP ACTIVITIES

1) On power-up, the KERNAL first resets the stack pointer, and clears
decimal mode.

2) The KERNAL then checks for the presence of an autostart ROM car-
tridge at location $8000 HEX (32768 decimal). If this is present, nor-
mal initialization is suspended, and control is transferred to the car-
tridge code. If an autostart ROM is not present, normal system ini-
tialization continues.

3) Next, the KERNAL initializes all INPUT/OUTPUT devices. The serial bus
is initialized. Both 6526 CIA chips are set to the proper values for
keyboard scanning, and the 60-Hz timer is activated. The SID chip is
cleared. The BASIC memory map is selected and the cassette motor
is switched off. (See page 263 for more information.)

4) Next, the KERNAL performs a RAM test, setting the top and bottom of
memory pointers. Also, page zero is initialized, and the tape buffer
is set up.

The RAM TEST routine is a nondestructive test starting at location
$0300 and working upward. Once the test has found the first non-
RAM location, the top of RAM has its pointer set. The bottom of
memory is always set to $0800, and the screen setup is always set at
$0400.

5) Finally, the KERNAL performs these other activities. I/O vectors are
set to default values. The indirect jump table in low memory is estab-
lished. The screen is then cleared, and all screen editor variables
reset. Then the indirect at $A000 is used to start BASIC.

BASIC TO MACHINE LANGUAGE 269

HOW TO USE THE KERNAL

When writing machine language programs it is often convenient to
use the routines which are already part of the operating system for
input/output, access to the system clock, memory management, and
other similar operations. It is an unnecessary duplication of effort to
write these routines over and over again, so easy access to the operat-
ing system helps speed machine language programming.

As mentioned before, the KERNAL is a jump table. This is just a col-
lection of JMP instructions to many operating system routines.

To use a KERNAL routine you must first make all of the preparations that
the routine demands. If one routine says that you must call another
KERNAL routine first, then that routine must be called. If the routine
expects you to put a number in the accumulator, then that number must
be there. Otherwise your routines have little chance of working the way
you expect them to work.

After all preparations are made, you must call the routine by means
of the JSR instruction. All KERNAL routines you can access are structured
as SUBROUTINES, and must end with an RTS instruction. When the
KERNAL routine has finished its task, control is returned to your program
at the instruction after the JSR.

Many of the KERNAL routines return error codes in the status word or
the accumulator if you have problems in the routine. Good programming
practice and the success of your machine language programs demand
that you handle this properly. If you ignore an error return, the rest of
your program might “bomb.”

That's all there is to do when you're using the KERNAL. Just these
three simple steps:

1) Set up
2) Call the routine
3) Error handling

270 BASIC TO MACHINE LANGUAGE

The following conventions are used in describing the KERNAL routines:

—FUNCTION NAME: Name of the KERNAL routine.

—CALL ADDRESS: This is the call address of the KERNAL routine, given

in hexadecimal.

—COMMUNICATION REGISTERS: Registers listed under this heading
are used to pass parameters to and from the KERNAL routines.

—PREPARATORY ROUTINES: Certain KERNAL routines require that data
be set up before they can operate. The routines needed are listed
here.

—ERROR RETURNS: A return from a KERNAL routine with the CARRY set
indicates that an error was encountered in processing. The ac-
cumulator will contain the number of the error.

— STACK REQUIREMENTS: This is the actual number of stack bytes used
by the KERNAL routine.

—REGISTERS AFFECTED: All registers used by the KERNAL routine are
listed here.

—DESCRIPTION: A short tutorial on the function of the KERNAL routine
is given here.

The list of the KERNAL routines follows.

BASIC TO MACHINE LANGUAGE 27

USER CALLABLE KERNAL ROUTINES

ADDRESS FUNCTION
NAME HEX DECIMAL ¢

ACPTR $FFAS 65445 Input byte from serial
port.

CHKIN $FFC6 65478 Open channel for input

CHKOUT $FFC9 65481 Open channel for output

CHRIN $FFCF 65487 Input character from
channel

CHROUT $FFD2 65490 Output character to chan-
nel

clout $FFA8 65448 Output byte to serial port

CINT $FF81 65409 Initialize screen editor

CLALL $FFE7 65511 Close all channels and
files

CLOSE $FFC3 65475 Close a specified logical
file

CLRCHN $FFCC 65484 Close input and output
channels

GETIN $FFE4 65508 Get character from
keyboard queue
(keyboard buffer)

IOBASE $FFF3 65523 Returns base address of
I/0 devices

IOINIT $FF84 65412 Initialize input/output

LISTEN $FFB1 65457 Command devices on the
serial bus to LISTEN

LOAD $FFD5 65493 Load RAM from a device

MEMBOT $FF9C 65436 Read/set the bottom of
memory

MEMTOP $FF99 65433 Read/set the top of mem-
ory

OPEN $FFCO 65472 Open a logical file

272 BASIC TO MACHINE LANGUAGE

ADDRESS

NAME HEX DECIMAL FUNCTION

PLOT $FFFO 65520 Read/set X,Y cursor posi-
tion

RAMTAS $FF87 65415 Initialize RAM, allocate
tape buffer, set screen
$0400

RDTIM $FFDE 65502 Read real time clock

READST $FFB7 65463 Read 1/O status word

RESTOR $FF8A 65418 Restore default I/O vectors

SAVE $FFD8 65496 Save RAM to device

SCNKEY $FFOF 65439 Scan keyboard

SCREEN $FFED 65517 Return X,Y organization
of screen

SECOND $FF93 65427 Send secondary address
after LISTEN

SETLFS $FFBA 65466 Set logical, first, and sec-
ond addresses

SETMSG $FF90 65424 Control KERNAL messages

SETNAM $FFBD 65469 Set file name

SETTIM $FFDB 65499 Set real time clock

SETTMO $FFA2 65442 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK $FFB4 65460 Command serial bus de-
vice to TALK

TKSA $FF96 65430 Send secondary address
after TALK

UDTIM $FFEA 65514 Increment real time clock

UNLSN $FFAE 65454 Command serial bus to
UNLISTEN

UNTLK $FFAB 65451 Command serial bus to
UNTALK

VECTOR $FF8D 65421 Read/set vectored I/O

BASIC TO MACHINE LANGUAGE

273

B-1. Function Name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFA5 (hex) 65445 (decimal)
Communication registers: .A

Preparatory routines: TALK, TKSA

Error returns: See READST

Stack requirements: 13

Registers affected: .A, .X

Description: This is the routine to use when you want to get informa-
tion from a device on the serial bus, like a disk. This routine gets a byte
of data off the serial bus using full handshaking. The data is returned in
the accumulator. To prepare for this routine the TALK routine must be
called first to command the device on the serial bus to send data
through the bus. If the input device needs a secondary command, it
must be sent by using the TKSA KERNAL routine before calling this
routine. Errors are returned in the status word. The READST routine is
used to read the status word.

How to Use:

0) Command a device on the serial bus to prepare to send data to
the Commodore 64. (Use the TALK and TKSA KERNAL routines.)

1) Call this routine (using JSR).

2) Store or otherwise use the data.

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR
STA DATA

274 BASIC TO MACHINE LANGUAGE

B-2. Function Name: CHKIN

Purpose: Open a channel for input

Call address: $FFC6 (hex) 65478 (decimal)
Communication registers: .X

Preparatory routines: (OPEN)

Error returns: 3,5,6

Stack requirements: None

Registers affected: .A, .X

Description: Any logical file that has already been opened by the
KERNAL OPEN routine can be defined as an input channel by this
routine. Naturally, the device on the channel must be an input device.
Otherwise an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard, this
routine must be called before using either the CHRIN or the GETIN KER-
NAL routines for data input. If you want to use the input from the
keyboard, and no other input channels are opened, then the calls to this
routine, and to the OPEN routine are not needed.

When this routine is used with a device on the serial bus, it auto-
matically sends the talk address (and the secondary address if one was
specified by the OPEN routine) over the bus.

How to Use:

0) OPEN the logical file (if necessary; see description above).
1) Load the .X register with number of the logical file to be used.
2) Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2
JSR CHKIN

BASIC TO MACHINE LANGUAGE 275

B-3. Function Name: CHKOUT

Purpose: Open a channel for output

Call address: $FFC9 (hex) 65481 (decimal)
Communication registers: .X

Preparatory routines: (OPEN)

Error returns: 0,3,5,7 (See READST)

Stack requirements: 4+

Registers affected: .A, .X

Description: Any logical file number that has been created by the
KERNAL routine OPEN can be defined as an output channel. Of course,
the device you intend opening a channel to must be an output device.
Otherwise an error will occur, and the routine will be aborted.

This routine must be called before any data is sent to any output
device unless you want to use the Commodore 64 screen as your output
device. If screen output is desired, and there are no other output chan-
nels already defined, then calls to this routine, and to the OPEN routine
are not needed.

When used to open a channel to a device on the serial bus, this
routine will automatically send the LISTEN address specified by the OPEN
routine (and a secondary address if there was one).

How to Use:

|
REMEMBER: this routine is NOT NEEDED to send data to the screen. J

0) Use the KERNAL OPEN routine to specify a logical file number, a
LISTEN address, and a secondary address (if needed).

1) Load the .X register with the logical file number used in the open
statement.

2) Call this routine (by using the JSR instruction).

EXAMPLE:

LDX #3 ;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:

#3: Flle not open
#5: Device not present
#7: Not an output file

276 BASIC TO MACHINE LANGUAGE

B-4. Function Name: CHRIN

Purpose: Get a character from the input channel
Call address: $FFCF (hex) 65487 (decimal)
Communication registers: .A

Preparatory routines: (OPEN, CHKIN)

Error returns: O (See READST)

Stack requirements: 7+

Registers affected: .A, .X

Description: This routine gets a byte of data from a channel already
set up as the input channel by the KERNAL routine CHKIN. If the CHKIN
has NOT been used to define another input channel, then all your data
is expected from the keyboard. The data byte is returned in the ac-
cumulator. The channel remains open after the call. '

Input from the keyboard is handled in a special way. First, the cursor
is turned on, and blinks until a carriage return is typed on the keyboard.
All characters on the logical screen line (up to 80 characters) can be
retrieved one at a time by calling this routine. When the carriage return
is retrieved, the entire line has been processed. The next time this
routine is called, the whole process begins again, i.e., by flashing the
cursor.

How to Use:

FROM THE KEYBOARD
1) Retrieve a byte of data by calling this routine.
2) Store the data byte.
3) Check if it is the last data byte (is it a CR ?).
4) If not, go to step 1.

EXAMPLE:

LDY $#00 ;PREPARE THE .Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA,Y ;STORE THE YTH DATA BYTE IN THE YTH
;LOCATION IN THE DATA AREA.

INY
CMP #CR ;IS IT A CARRIAGE RETURN?
BNE RD ;NO, GET ANOTHER DATA BYTE

BASIC TO MACHINE LANGUAGE 277

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES
0) Use the KERNAL OPEN and CHKIN routines.
1) Call this routine (using a JSR instruction).
2) Store the data.

EXAMPLE:

JSR CHRIN
STA DATA

B-5. Function Name: CHROUT

Purpose: Output a character

Call address: $FFD2 (hex) 65490 (decimal)
Communication registers: A

Preparatory routines: (CHKOUT,OPEN)
Error returns: O (See READST)

Stack requirements: 8+

Registers affected: .A

Description: This routine outputs a character to an already opened
channel. Use the KERNAL OPEN and CHKOUT routines to set up the
output channel before calling this routine. If this call is omitted, data is
sent to the default output device (number 3, the screen). The data byte
to be output is loaded into the accumulator, and this routine is called.
The data is then sent to the specified output device. The channel is left
open after the call.

NOTE: Care must be taken when using this routine to send data to a specific serial
device since data will be sent to all open output channels on the bus. Unless this is
desired, all open output channels on the serial bus other than the intended destination
channel must be closed by a call to the KERNAL CLRCHN routine.

278 BASIC TO MACHINE LANGUAGE

How to Use:

0) Use the CHKOUT KERNAL routine if needed (see description
above).

1) Load the data to be output into the accumulator.

2) Call this routine.

EXAMPLE:
;DUPLICATE THE BASIC INSTRUCTION CMD 4,”A";
LDX #4 ;LOGICAL FILE #4
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A
JSR CHROUT ;SEND CHARACTER

B-6. Function Name: CIOUT

Purpose: Transmit a byte over the serial bus
Call address: $FFA8 (hex) 65448 (decimal)
Communication registers: .A

Preparatory routines: LISTEN, [SECOND]
Error returns: See READST

Stack requirements: §

Registers affected: None

Description: This routine is used to send information to devices on the
serial bus. A call to this routine will put a data byte onto the serial bus
using full serial handshaking. Before this routine is called, the LISTEN
KERNAL routine must be used to command a device on the serial bus to
get ready to receive data. (If a device needs a secondary address, it
must also be sent by using the SECOND KERNAL routine.) The ac-
cumulator is loaded with a byte to handshake as data on the serial bus.
A device must be listening or the status word will return a timeout. This
routine always buffers one character. (The routine holds the previous
character to be sent back.) So when a call to the KERNAL UNLSN routine
is made to end the data transmission, the buffered character is sent
with an End Or Identify (EOI) set. Then the UNLSN command is sent to
the device.

BASIC TO MACHINE LANGUAGE 279

How to Use:

0) Use the LISTEN KERNAL routine (and the SECOND routine if

needed).
1) Load the accumulator with a byte of data.
2) Call this routine to send the data byte.

EXAMPLE:

LDA #'X ;SEND AN X TO THE SERIAL BUS
JSR CIOUT

B-7. Function Name: CINT

Purpose: Initialize screen editor & 6567 video chip
Call address: $FF81 (hex) 65409 (decimal)
Communication registers: None

Preparatory routines: None

Error returns: None

Stack requirements: 4

Registers affected: .A, .X, .Y

Description: This routine sets up the 6567 video controller chip in the
Commodore 64 for normal operation. The KERNAL screen editor is also
initialized. This routine should be called by a Commodore 64 program
cartridge.

How to Use:
1) Call this routine.
EXAMPLE:

JSR CINT
JMP RUN ;BEGIN EXECUTION

280 BASIC TO MACHINE LANGUAGE

B-8. Function Name: CLALL

Purpose: Close all files

Call address: $FFE7 (hex) 65511 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 11

Registers affected: .A, .X

Description: This routine closes all open files. When this routine is
called, the pointers into the open file table are reset, closing all files.
Also, the CLRCHN routine is automatically called to reset the I/O chan-
nels.

How to Use:
1) Call this routine.
EXAMPLE:

JSR CLALL ;CLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS
JMP RUN ;BEGIN EXECUTION

B-9. Function Name: CLOSE

Purpose: Close a logical file

Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: 0,240 (See READST)

Stack requirements: 2+

Registers affected: .A, .X, .Y

Description: This routine is used to close a logical file after all I/O
operations have been completed on that file. This routine is called after
the accumulator is loaded with the logical file number to be closed (the
same number used when the file was opened using the OPEN routine).

BASIC TO MACHINE LANGUAGE 281

How to Use:

1) Load the accumulator with the number of the logical file to be
closed.
2) Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear I/O channels

Call address: $FFCC (hex) 65484 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 9

Registers affected: .A, .X

Description: This routine is called to clear all open channels and re-
store the I/O channels to their original default values. It is usually called
after opening other I/O channels (like a tape or disk drive) and using
them for input/output operations. The default input device is O
(keyboard). The default output device is 3 (the Commodore 64 screen).

If one of the channels to be closed is to the serial port, an UNTALK
signal is sent first to clear the input channel or an UNLISTEN is sent to
clear the output channel. By not calling this routine (and leaving lis-
tener(s) active on the serial bus) several devices can receive the same
data from the Commodore 64 at the same time. One way to take ad-
vantage of this would be to command the printer to TALK and the disk to
LISTEN. This would allow direct printing of a disk file.

This routine is automatically called when the KERNAL CLALL routine is
executed.

How to Use:

1) Call this routine using the JSR instruction.
EXAMPLE:

JSR CLRCHN

282 BASIC TO MACHINE LANGUAGE

B-11. Function Name: GETIN

Purpose: Get a character

Call address: $FFE4 (hex) 65508 (decimal)
Communication registers: .A

Preparatory routines: CHKIN, OPEN

Error returns: See READST

Stack requirements: 7+

Registers affected: .A (.X, .Y)

Description: If the channel is the keyboard, this subroutine removes
one character from the keyboard queue and returns it as an ASCII value
in the accumulator. If the queue is empty, the value returned in the
accumulator will be zero. Characters are put into the queue auto-
matically by an interrupt driven keyboard scan routine which calls the
SCNKEY routine. The keyboard buffer can hold up to ten characters.
After the buffer is filled, additional characters are ignored until at least
one character has been removed from the queue. If the channel is RS-
232, then only the .A register is used and a single character is returned.
See READST to check validity. If the channel is serial, cassette, or
screen, call CHRIN routine.

How to Use:

1) Call this routine using a JSR instruction.
2) Check for a zero in the accumulator (empty buffer).
3) Process the data.

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

BASIC TO MACHINE LANGUAGE 283

B-12. Function Name: IOBASE

Purpose: Define /O memory page

Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: -X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: -X, .Y

Description: This routine sets the X and Y registers to the address of
the memory section where the memory mapped I/O devices are located.
This address can then be used with an offset to access the memory
mapped /O devices in the Commodore 64. The offset is the number of
locations from the beginning of the page on which the I/O register you
want is located. The .X register contains the low order address byte,
while the .Y register contains the high order address byte.

This routine exists to provide compatibility between the Commodore
64, VIC-20, and future models of the Commodore 64. If the I/O locations
for a machine language program are set by a call to this routine, they
should still remain compatible with future versions of the Commodore
64, the KERNAL and BASIC.

How to Use:

1) Call this routine by using the JSR instruction.

2) Store the .X and the .Y registers in consecutive locations.
3) Load the .Y register with the offset.

4) Access that I/O location.

EXAMPLE:

; SET THE DATA DIRECTION REGISTER OF THE USER PORT TO O (INPUT)
JSR IOBASE

STX POINT ;SET BASE REGISTERS

STY POINT+1

LDY #2

LDA #0 ;OFFSET FOR DDR OF THE USER PORT

STA (POINT), Y ;SET DDR TO 0

284 BASIC TO MACHINE LANGUAGE

B-13. Function Name: IOINIT

Purpose: Initialize 1/O devices

Call Address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .A, .X, .Y

Description: This routine initializes all input/output devices and
routines. It is normally called as part of the initialization procedure of a
Commodore 64 program cartridge.

EXAMPLE:
JSR IOINIT

B-14. Function Name: LISTEN

Purpose: Command a device on the serial bus to listen
Call Address: $FFB1 (hex) 65457 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will command a device on the serial bus to
receive data. The accumulator must be loaded with a device number
between 0 and 31 before calling the routine. LISTEN will OR the number
bit by bit to convert to a listen address, then transmits this data as a
command on the serial bus. The specified device will then go into listen
mode, and be ready to accept information.

How to Use:

1) Load the accumulator with the number of the device to command
to LISTEN.
2) Call this routine using the JSR instruction.

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN
LDA #8
JSR LISTEN

BASIC TO MACHINE LANGUAGE 285

B-15. Function Name: LOAD

Purpose: Load RAM from device

Call address: $FFD5 (hex) 65493 (decimal)
Communication registers: .A,.X,.Y
Preparatory routines: SETLFS, SETNAM
Error returns: 0,4,5,8,9, READST

Stack requirements: None

Registers affected: .A, X, .Y

Description: This routine LOADs data bytes from any input device di-
rectly into the memory of the Commodore 64. It can also be used for a
verify operation, comparing data from a device with the data already in
memory, while leaving the data stored in RAM unchanged.

The accumulator (.A) must be set to 0 for a LOAD operation, or 1 for a
verify. If the input device is OPENed with a secondary address (SA) of 0
the header information from the device is ignored. In this case, the .X
and .Y registers must contain the starting address for the load. If the
device is addressed with a secondary address of 1, then the data is
loaded into memory starting at the location specified by the header. This
routine returns the address of the highest RAM location loaded.

Before this routine can be called, the KERNAL SETLFS, and SETNAM
routines must be called.

L NOTE: You can NOT LOAD from the keyboard (0), R$-232 (2), or the screen (3). ‘

How to Use:

0) Call the SETLFS, and SETNAM routines. If a relocated load is de-
sired, use the SETLFS routine to send a secondary address of O.

1) Set the .A register to O for load, 1 for verify.

2) If a relocated load is desired, the .X and .Y registers must be set

to the start address for the load.

~

3) Call the routine using the JSR instruction.

286 BASIC TO MACHINE LANGUAGE

EXAMPLE:

;LOAD A FILE FROM TAPE

LDA
LDX
LDY
JSR

LDA

LDX

LDY
JSR
LDA
LDX
LDY
JSR
STX
STY
JMP
NAME .BYT
NAME 1 7

#DEVICE1 ;SET DEVICE NUMBER
#FILENO ;SET LOGICAL FILE NUMBER
CMDI1 ;SET SECONDARY ADDRESS
SETLFS

#NAME1-NAME ;LOAD .A WITH NUMBER OF
;CHARACTERS IN FILE NAME

#<NAME LOAD .X AND .Y WITH
;ADDRESS OF

#>NAME ;FILE NAME

SETNAM

#0 ;SET FLAG FOR A LOAD

#$FF ;ALTERNATE START

#$FF

LOAD

VARTAB ;END OF LOAD

VARTAB +1

START

‘FILE NAME'

B-16. Function Name: MEMBOT

Purpose: Set bottom of memory
Call address: $FF9C (hex) 65436 (decimal)
Communication registers: .X,.Y

Preparatory routines: None

Error returns: None

Stack requirements: None
Registers affected: .X, .Y

Description: This routine is used to set the bottom of the memory. If
the accumulator carry bit is set when this routine is called, a pointer to
the lowest byte of RAM is returned in the .X and .Y registers. On the
unexpanded Commodore 64 the initial value of this pointer is $0800
(2048 in decimal). If the accumulator carry bit is clear (=0) when this
routine is called, the values of the .X and .Y registers are transferred to
the low and high bytes, respectively, of the pointer to the beginning of

RAM.

BASIC TO MACHINE LANGUAGE

How to Use:

TO READ THE BOTTOM OF RAM
1) Set the carry.
2) Call this routine.

TO SET THE BOTTOM OF MEMORY
1) Clear the carry.
2) Call this routine.

EXAMPLE:

; MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

B-17. Function Name: MEMTOP

Purpose: Set the top of RAM

Call address: $FF99 (hex) 65433 (decimal)
Communication registers: . X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine is used to set the top of RAM. When this
routine is called with the carry bit of the accumulator set, the pointer to
the top of RAM will be loaded into the .X and .Y registers. When this
routine is called with the accumulator carry bit clear, the contents of the
X and .Y registers are loaded in the top of memory pointer, changing
the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JSR MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

288 BASIC TO MACHINE LANGUAGE

B-18. Function Name: OPEN

Purpose: Open a logical file

Call address: $FFCO (hex) 65472 (decimal)
Communication registers: None
Preparatory routines: SETLFS, SETNAM
Error returns: 1,2,4,5,6,240, READST
Stack requirements: None

Registers affected: .A, .X, .Y

Description: This routine is used to OPEN a logical file. Once the logi-
cal file is set up, it can be used for input/output operations. Most of the
I/O KERNAL routines call on this routine to create the logical files to
operate on. No arguments need to be set up to use this routine, but both
the SETLFS and SETNAM KERNAL routines must be called before using
this routine.

How to Use:

0) Use the SETLFS routine.
1) Use the SETNAM routine.
2) Call this routine.

EXAMPLE:
This is an implementation of the BASIC statement: OPEN 15,8,15,”1/ O"

LDA #NAME2-NAME ;LENGTH OF FILE NAME FOR SETLFS
LDY #>NAME ;ADDRESS OF FILE NAME
LDX # <NAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
NAME .BYT ‘I/O’
NAME2

BASIC TO MACHINE LANGUAGE 289

B-19. Function Name: PLOT

Purpose: Set cursor location

Call address: $FFFO (hex) 65520 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, X, .Y

Description: A call to this routine with the accumulator carry flag set
loads the current position of the cursor on the screen (in X,Y coordinates)
into the .Y and .X registers. Y is the column number of the cursor location
(0—39), and X is the row number of the location of the cursor (0—24). A
call with the carry bit clear moves the cursor to X, Y as determined by
the .Y and X registers.

How to Use:

READING CURSOR LOCATION
1) Set the carry flag.
2) Call this routine.
3) Getthe X and Y position fromthe .Y and . X registers, respectively.

SETTING CURSOR LOCATION
1) Clear carry flag.
2) Set the .Y and .X registers to the desired cursor location.
3) Call this routine.

EXAMPLE:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX #10

LDY #5

CLC

JSR PLOT

290 BASIC TO MACHINE LANGUAGE

B-20. Function Name: RAMTAS

Purpose: Perform RAM test

Call address: $FF87 (hex) 65415 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine is used to test RAM and set the top and
bottom of memory pointers accordingly. It also clears locations $0000 to
$0101 and $0200 to $03FF. It also allocates the cassette buffer, and sets
the screen base to $0400. Normally, this routine is called as part of the
initialization process of a Commodore 64 program cartridge.

EXAMPLE:
JSR RAMTAS

B-21. Function Name: RDTIM

Purpose: Read system clock

Call address: $FFDE (hex) 65502 (decimal)
Communication registers: .A, . X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine is used to read the system clock. The clock’s
resolution is a 60th of a second. Three bytes are returned by the routine.
The accumulator contains the most significant byte, the X index register
contains the next most significant byte, and the Y index register contains
the least significant byte.

EXAMPLE:

JSR RDTIM
STY TIME
STX TIME+1
STA TIME+2

TIME *=*+3

BASIC TO MACHINE LANGUAGE 291

B-22. Function Name: READST

Purpose: Read status word

Call address: $FFB7 (hex) 65463 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine returns the current status of the I/O devices in
the accumulator. The routine is usually called after new communication
to an I/O device. The routine gives you information about device status,
or errors that have occurred during the I/O operation.

The bits returned in the accumulator contain the following information:
(see table below)

ST ST TAPE
BIT NUMERIC CASSETTE |SERIAURW | VERIFY
POSITION VALUE READ + LOAD
0 1 Time out
write
1 2 Time out
read
2 4 Short block Short block
3 8 Long block Long block
4 16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EQI line
7 —128 End of tape Device not| End of
present tape

292 BASIC TO MACHINE LANGUAGE

How to Use:

1) Call this routine.
2) Decode the information in the .A register as it refers to your pro-

gram.
EXAMPLE:
;CHECK FOR END OF FILE DURING READ
JSR READST
AND #64 ;CHECK EOF BIT (EOF=END OF FILE)
BNE EOF ;BRANCH ON EOF

B-23. Function Name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine restores the default values of all system vec-
tors used in KERNAL and BASIC routines and interrupts. The KERNAL
VECTOR routine is used to read and alter individual system vectors.

How to Use:

1) Call this routine.
EXAMPLE:

JSR RESTOR

B-24. Function Name: SAVE

Purpose: Save memory to a device

Call address: $FFD8 (hex) 65496 (decimal)
Communication registers: .A,.X,.Y
Preparatory routines: SETLFS, SETNAM
Error returns: 5,8,9, READST

Stack requirements: None

Registers affected: .A, . X, .Y

BASIC TO MACHINE LANGUAGE 293

Description: This routine saves a section of memory. Memory is saved
from an indirect address on page 0 specified by the accumulator to the
address stored in the .X and .Y registers. It is then sent to a logical file
on an input/output device. The SETLFS and SETNAM routines must be
used before calling this routine. However, a file name is not required to
SAVE to device 1 (the Datassette™ recorder). Any attempt to save to
other devices without using a file name results in an error.

e — — —_ - e —

| NOTE: Device 0 (the keyboard), device 2 (RS-232), and device 3 (the screen) cannot E
i be SAVEd to. If the attempt is made, an error occurs, and the SAVE is stopped. |
L - i R =

How to Use:

0) Use the SETLFS routine and the SETNAM routine (unless a SAVE with
no file name is desired on “a save to the tape recorder”).

1) Load two consecutive locations on page O with a pointer to the
start of your save (in standard 6502 low byte first, high byte next
format).

2) Load the accumulator with the single byte page zero offset to the
pointer.

3) Load the .X and .Y registers with the low byte and high byte re-
spectively of the location of the end of the save.

4) Call this routine.

EXAMPLE:
LDA #1 ;DEVICE=1:CASSETTE
JSR SETLFS
LDA #0 ;NO FILE NAME
JSR SETNAM
LDA PROG ;LOAD START ADDRESS OF SAVE
STA TXTTAB ; (LOW BYTE)
LDA PROG+1
STA TXTTAB+1 ; (HIGH BYTE)
LDX VARTAB ;LOAD .X WITH LOW BYTE OF END OF SAVE
LDY VARTAB+1 ;LOAD .Y WITH HIGH BYTE

LDA #<TXTTAB ;LOAD ACCUMULATOR WITH PAGE O OFFSET
JSR SAVE

294 BASIC TO MACHINE LANGUAGE

B-25. Function Name: SCNKEY

Purpose: Scan the keyboard

Call address: $FF9F (hex) 65439 (decimal)
Communication registers: None
Preparatory routines: IOINIT

Error returns: None

Stack requirements: 5

Registers affected: .A, .X, .Y

Description: This routine scans the Commodore 64 keyboard and
checks for pressed keys. It is the same routine called by the interrupt
handler. If a key is down, its ASCIl value is placed in the keyboard
quevue. This routine is called only if the normal IRQ interrupt is bypassed.

How to Use:

1) Call this routine.

EXAMPLE:
GET JSR SCNKEY ;SCAN KEYBOARD
JSR GETIN ;GET CHARACTER
CMP #0 ;1S 1T NULL?
BEQ GET ;YES . . . SCAN AGAIN

JSR CHROUT ;PRINT IT

B-26. Function Name: SCREEN

Purpose: Return screen format

Call address: $FFED (hex) 65517 (decimal)
Communication registers: .X,.Y
Preparatory routines: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine returns the format of the screen, e.g., 40
columns in .X and 25 lines in .Y. The routine can be used to determine
what machine a program is running on. This function has been im-
plemented on the Commodore 64 to help upward compatibility of your
programs.

BASIC TO MACHINE LANGUAGE 295

How to Use:

1) Call this routine.

EXAMPLE:

JSR SCREEN
STX MAXCOL
STY MAXROW

B-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: .A

Preparatory routines: LISTEN

Error returns: See READST

Stack requirements: 8

Registers affected: .A

Description: This routine is used to send a secondary address to an
I/O device after a call to the LISTEN routine is made, and the device is
commanded to LISTEN. The routine canNOT be used to send a second-
ary address after a call to the TALK routine.

A secondary address is usually used to give setup information to a
device before I/O operations begin.

When a secondary address is to be sent to a device on the serial bus,

the address must first be ORed with $60.

How to Use:

1) Load the accumulator with the secondary address to be sent.
2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15
LDA #8

JSR LISTEN

LDA #3$60+15

JSR SECOND

296 BASIC TO MACHINE LANGUAGE

B-28. Function Name: SETLFS

Purpose: Set up a logical file

Call address: $FFBA (hex) 65466 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine sets the logical file number, device address,
and secondary address (command number) for other KERNAL routines.

The logical file number is used by the system as a key to the file table
created by the OPEN file routine. Device addresses can range from 0 to
31. The following codes are used by the Commodore 64 to stand for the
CBM devices listed below:

ADDRESS DEVICE

Keyboard

Datassette™ #1

RS-232C device

CRT display

Serial bus printer

CBM serial bus disk drive

W A WN —= O

Device numbers 4 or greater automatically refer to devices on the
serial bus.

A command to the device is sent as a secondary address on the serial
bus after the device number is sent during the serial attention handshak-
ing sequence. If no secondary address is to be sent, the .Y index regis-
ter should be set to 255.

How to Use:

1) Load the accumulator with the logical file number.
2) Load the .X index register with the device number.
3) Load the .Y index register with the command.

EXAMPLE:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:
LDA #32
LDX #4

BASIC TO MACHINE LANGUAGE 297

LDY #255
JSR SETLFS

B-29. Function Name: SETMSG

Purpose: Control system message output
Call address: $FF90 (hex) 65424 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A

Description: This routine controls the printing of error and control mes-
sages by the KERNAL. Either print error messages or print control mes-
sages can be selected by setting the accumulator when the routine is
called. FILE NOT FOUND is an example of an error message. PRESS
PLAY ON CASSETTE is an example of a control message.

Bits 6 and 7 of this value determine where the message will come
from. If bit 7 is 1, one of the error messages from the KERNAL is printed.
If bit 6 is set, control messages are printed.

How to Use:

1) Set accumulator to desired value.
2) Call this routine.

EXAMPLE:

LDA #$40

JSR SETMSG ;TURN ON CONTROL MESSAGES
LDA #$80

JSR SETMSG ;TURN ON ERROR MESSAGES

LDA #0

JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

B-30. Function Name: SETNAM

Purpose: Set up file name

Call address: $FFBD (hex) 65469 (decimal)
Communication registers: .A, X, .Y
Preparatory routines: None

Stack requirements: None

Registers affected: None

298 BASIC TO MACHINE LANGUAGE

Description: This routine is used to set up the file name for the OPEN,
SAVE, or LOAD routines. The accumulator must be loaded with the
length of the file name. The .X and .Y registers must be loaded with the
address of the file name, in standard 6502 low-byte/high-byte format.
The address can be any valid memory address in the system where a
string of characters for the file name is stored. If no file name is desired,
the accumulator must be set to 0, representing a zero file length. The .X
and .Y registers can be set to any memory address in that case.

How to Use:

1) Load the accumulator with the length of the file name.

2) Load the .X index register with the low order address of the file
name.

3) Load the .Y index register with the high order address.

4) Call this routine.

EXAMPLE:
LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME ;LOAD ADDRESS OF FILE NAME
LDY #>NAME
JSR SETNAM

B-31. Function Name: SETTIM

Purpose: Set the system clock

Call address: $FFDB (hex) 65499 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: A system clock is maintained by an interrupt routine that
updates the clock every 1/60th of a second (one “jiffy”’). The clock is
three bytes long, which gives it the capability to count up to 5,184,000
jiffies (24 hours). At that point the clock resets to zero. Before calling this
routine to set the clock, the accumulator must contain the most
significant byte, the .X index register the next most significant byte, and
the .Y index register the least significant byte of the initial time setting
(in jiffies).

How to Use:

1) Load the accumulator with the MSB of the 3-byte number to set the
clock.

BASIC TO MACHINE LANGUAGE 299

2) Load the .X register with the next byte.
3) Load the .Y register with the LSB.
4) Call this routine.

EXAMPLE:
;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0 ; MOST SIGNIFICANT
LDX # >3600
LDY # <3600 ; LEAST SIGNIFICANT
JSR SETTIM

B-32. Function Name: SETTMO

Purpose: Set IEEE bus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

NOTE: This routine is used ONLY with an |EEE add-on card!

Description: This routine sets the timeout flag for the IEEE bus. When
the timeout flag is set, the Commodore 64 will wait for a device on the
IEEE port for 64 milliseconds. If the device does not respond to the
Commodore 64’s Data Address Valid (DAV) signal within that time the
Commodore 64 will recognize an error condition and leave the hand-
shake sequence. When this routine is called when the accumulator con-
tains a O in bit 7, timeouts are enabled. A 1 in bit 7 will disable the

timeouts.

NOTE: The Commodore 64/Executive 64 uses the timeout feature to communicate that
a disk file is not found on an attempt to OPEN a file only with an IEEE card.

How to Use:

TO SET THE TIMEOUT FLAG
1) Set bit 7 of the accumulator to O.
2) Call this routine.

TO RESET THE TIMEOUT FLAG

1) Set bit 7 of the accumulator to 1.
2) Call this routine.

300 BASIC TO MACHINE LANGUAGE

EXAMPLE:

;DISABLE TIMEOUT
LDA #0
JSR SETTMO

B-33. Function Name: STOP

Purpose: Check if key is pressed
Call address: $FFE1 (hex) 65505 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: None

Stack requirements: None

Registers affected: .A, .X

Description: If the key on the keyboard was pressed during
a UDTIM call, this call returns the Z flag set. In addition, the channels
will be reset to default values. All other flags remain unchanged. If
the key is not pressed then the accumulator will contain a byte
representing the last row of the keyboard scan. The user can also check
for certain other keys this way.

How to Use:

0) UDTIM should be called before this routine.
1) Call this routine.
2) Test for the zero flag.

EXAMPLE:

JSR UDTIM ;SCAN FOR STOP
JSR STOP

BNE *+5 ;KEY NOT DOWN
JMP READY ;= . .. STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: $FFB4 (hex) 65460 (decimal)
Communication registers: .A

Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: .A

BASIC TO MACHINE LANGUAGE 301

Description: To use this routine the accumulator must first be loaded
with a device number between 0 and 31. When called, this routine then
ORs bit by bit to convert this device number to a talk address. Then this
data is transmitted as a command on the serial bus.

How to Use:

1) Load the accumulator with the device number.
2) Call this routine.

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

B-35. Function Name: TKSA

Purpose: Send a secondary address to a device commanded to TALK
Call address: $FF96 (hex) 65430 (decimal)

Communication registers: .A

Preparatory routines: TALK

Error returns: See READST

Stack requirements: 8

Registers affected: .A

Description: This routine transmits a secondary address on the serial
bus for a TALK device. This routine must be called with a number be-
tween 0 and 31 in the accumulator. The routine sends this number as a
secondary address command over the serial bus. This routine can only
be called after a call to the TALK routine. It will not work after a LISTEN.

How to Use:

0) Use the TALK routine.
1) Load the accumulator with the secondary address.
2) Call this routine.

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4

JSR TALK

LDA #7

JSR TALKSA

302 BASIC TO MACHINE LANGUAGE

B-36. Function Name: UDTIM

Purpose: Update the system clock

Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X

Description: This routine updates the system clock. Normally this
routine is called by the normal KERNAL interrupt routine every 1/60th of
a second. If the user program processes its own interrupts this routine
must be called to update the time. In addition, the key routine
must be called, if the key is to remain functional.

How to Use:

1) Call this routine.

EXAMPLE:
JSR UDTIM

B-37. Function Name: UNLSN

Purpose: Send an UNLISTEN command
Cal! address: $FFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: .A

Description: This routine commands all devices on the serial bus to
stop receiving data from the Commodore 64 (i.e., UNLISTEN). Calling
this routine results in an UNLISTEN command being transmitted on the
serial bus. Only devices previously commanded to listen are affected.
This routine is normally used after the Commodore 64 is finished sending
data to external devices. Sending the UNLISTEN commands the listening
devices to get off the serial bus so it can be used for other purposes.

How to Use:

1) Call this routine.

BASIC TO MACHINE LANGUAGE 303

EXAMPLE:

JSR UNLSN
B-38. Function Name: UNTLK

Purpose: Send an UNTALK command

Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None

Error returns: See READST

Stack requirements: 8

Registers affected: .A

Description: This routine transmits an UNTALK command on the serial
bus. All devices previously set to TALK will stop sending data when this
command is received.

How to Use:
1) Call this routine.
EXAMPLE:

JSR UNTALK

B-39. Function Name: VECTOR

Purpose: Manage RAM vectors

Call address: $FF8D (hex) 65421 (decimal)
Communication registers: .X,.Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine manages all system vector jump addresses
stored in RAM. Calling this routine with the the accumulator carry bit set
stores the current contents of the RAM vectors in a list pointed to by the
X and .Y registers. When this routine is called with the carry clear, the
user list pointed to by the .X and .Y registers is transferred to the system
RAM vectors. The RAM vectors are listed in the memory map.

304 BASIC TO MACHINE LANGUAGE

SYSTEM RAM VECTORS LISTING

RETURNED LOCATION | [LOW BYTE] VECTOR [HIGH BYTE]
X + 256 * .Y + 0 CINV + 1
+ 2 CBINV + 3
+ 4 NMINV + 5
+ 6 IOPEN + 7
+ 8 ICLOSE + 9
+10 ICHKIN +11
+12 ICHOUT +13
+14 ICLRCH +15
+16 IBASIN Sl
+18 IBSOUT +19
+20 ISTOP +21
+22 IGETIN +23
+24 ICLALL +25
+26 USRCMD +27
+28 ILOAD +29
+30 ISAVE +31
TOTAL BYTES: 32

(for explandation of individual vectors, see page 319)

NOTE: This routine requires caution in its use. The best way to use it is to first read the
entire vector contents into the user area, alter the desired vectors, and then copy the
contents back to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS
1) Set the carry.
2) Set the .X and .y registers to the address to put the vectors.
3) Call this routine.

LOAD THE SYSTEM RAM VECTORS
1) Clear the carry bit.
2) Set the .X and .Y registers to the address of the vector list in RAM
that must be loaded.
3) Call this routine.

BASIC TO MACHINE LANGUAGE 305

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<<USER
LDY #>USER

SEC

JSR VECTOR ;READ OLD VECTORS

LDA #<MYINP ;CHANGE CHKIN VECTOR
STA USER-+10

LDA #>MYINP

STA USER+11

LDX #-<<USER

LDY #>USER

CLC

JSR VECTOR ;ALTER SYSTEM

USER *=*+32

ERROR CODES

The following is a list of error messages which can occur when using
the KERNAL routines. If an error occurs during a KERNAL routine, the
carry bit of the accumulator is set, and the number of the error message

is returned in the accumulator.

NOTE: Some KERNAL I/O routines do not use these codes for error messages. Instead,
errors are identified using the KERNAL READST routine.

NUMBER

MEANING

0

NV O NO O &b Wi~

N
N
o

Routine terminated by the key
Too many open files

File already open

File not open

File not found

Device not present

File is not an input file

File is not an output file

File name is missing

llegal device number
Top-of-memory change RS-232 buffer allocation/deallocation

306 BASIC TO MACHINE LANGUAGE

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on
the Commodore 64, including special statements as part of CBM BASIC
as well as key locations in the machine. There are five main ways to use

machine language routines from BASIC on the Commodore 64. They

are:

1)

2)

1) The BASIC SYS statement

2) The BASIC USR function

3) Changing one of the RAM I/O vectors

4) Changing one of the RAM interrupt vectors
5) Changing the CHRGET routine

The BASIC statement SYS X causes a JUMP to a machine language
subroutine located at address X. The routine must end with an RTS
(ReTurn from Subroutine) instruction. This will transfer control back
to BASIC.

Parameters are generally passed between the machine lan-
guage routine and the BASIC program using the BASIC PEEK and
POKE statements, and their machine language equivalents.

The SYS command is the most useful method of combining
BASIC with machine language. PEEKs and POKEs make multiple
parameter passing easy. There can be many SYS statements in a
program, each to a ditferent (or even the same) machine lan-
guage routine.

The BASIC function USR(X) transfers control to the machine lan-
guage subroutine located at the address stored in locations 785
and 786. (The address is stored in standard low-byte/high-byte
format.) The value X is evaluated and passed to the machine lan-
guage subroutine through floating point accumulator #1, located
beginning at address $61 (see memory map for more details). A
value may be returned back to the BASIC program by placing it in
the floating point accumulator. The machine language routine must
end with an RTS instruction to return to BASIC.

This statement is different from the SYS, because you have to set
up an indirect vector. Also different is the format through which
the variable is passed (floating point format). The indirect vector
must be changed if more than one machine language routine is
used.

BASIC TO MACHINE LANGUAGE 307

3) Any of the input/output or BASIC internal routines accessed through

=

the vector table located on page 3 can be replaced, or amended
by user code. Each 2-byte vector consists of a low byte and a high
byte address which is used by the operating system.

The KERNAL VECTOR routine is the most reliable way to change
any of the vectors, but a single vector can be changed by POKEs.
A new vector will point to a user prepared routine which is meant
to replace or augment the standard system routine. When the ap-
propriate BASIC command is executed, the user routine will be
executed. If after executing the user routine, it is necessary to exe-
cute the normal system routine, the user program must JMP (JuMP)
to the address formerly contained in the vector. If not, the routine
must end with a RTS to transfer control back to BASIC.

The HARDWARE INTERRUPT (IRQ) VECTOR can be changed. Every
1/60th of a second, the operating system transfers control to the
routine specified by this vector. The KERNAL normally uses this for
timing, keyboard scanning, etc. If this technique is used, you
should always transfer control to the normal IRQ handling routine,
unless the replacement routine is prepared to handle the CIA chip.
(REMEMBER to end the routine with an RTI (ReTurn from Interrupt).

This method is useful for tasks which must happen concurrently
with a BASIC program, but has the drawback of being more
difficult.

NOTE: ALWAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTOR!

5) The CHRGET routine is used by BASIC to get each character/token.

308

This makes it simple to add new BASIC commands. Naturally,
each new command must be executed by a user written machine
language subroutine. A common way to use this method is to
specify a character (@ for example) which will occur before any of
the new commands. The new CHRGET routine will search for the
special character. If none is present, control is passed to the nor-
mal BASIC CHRGET routine. If the special character is present, the
new command is interpreted and executed by your machine lan-
guage program. This minimizes the extra execution time added by
the need to search for additional commands. This technique is
often called a wedge.

BASIC TO MACHINE LANGUAGE

WHERE TO PUT MACHINE LANGUAGE ROUTINES

The best place for machine language routines on the Commodore 64
is from $C000—$CFFF, assuming the routines are smaller than 4K bytes
long. This section of memory is not disturbed by BASIC.

If for some reason it's not possible or desirable to put the machine
language routine at $C000, for instance if the routine is larger than 4K
bytes, it then becomes necessary to reserve an area at the top of mem-
ory from BASIC for the routine. The top of memory is normally $9FFF.
The top of memory can be changed through the KERNAL routine
MEMTOP, or by the following BASIC statements:

10 POKES1,L:POKES2,H:POKESS5,L:POKES6,H:CLR

Where H and L are the high and low portions, respectively, of the new
top of memory. For example, to reserve the area from $9000 to $9FFF
for machine language, use the following:

10 POKE51,0:POKE52,144:POKES55,0:POKES6,144:CLR

HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language pro-
grams to a BASIC program. They are:
1) DATA STATEMENTS:

By READing DATA statements, and POKEing the values into memory at
the start of the program, machine language routines can be added. This
is the easiest method. No special methods are needed to save the two
parts of the program, and it is fairly easy to debug. The drawbacks
include taking up more memory space, and the wait while the program
is POKEd in. Therefore, this method is better for smaller routines.

EXAMPLE:
10 RESTORE:FORX=1TO9:READA:POKE12*4096+X,A:NEXT

BASIC PROGRAM

1000 DATA 161,1,204,204,204,204,204,204,96

BASIC TO MACHINE LANGUAGE 309

2) MACHINE LANGUAGE MONITOR (64MON):

This program allows you to enter a program in either HEX or SYM-
BOLIC codes, and save the portion of memory the program is in. Advan-
tages of this method include easier entry of the machine language
routines, debugging aids, and a much faster means of saving and load-
ing. The drawback to this method is that it generally requires the BASIC
program to load the machine language routine from tape or disk when

it is started. (For more details on 64MON see the machine language
section.)

EXAMPLE:
The following is an example of a BASIC program using a machine

language routine prepared by 64MON. The routine is stored on tape:

10 IF FLAG=1 THEN 20

15 FLAG=1:LOAD “MACHINE LANGUAGE ROUTINE NAME”,1,1
20

REST OF BASIC PROGRAM
3) EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using a machine language monitor, but
programs are even easier to enter. Disadvantages are also similar to the
use of a machine language monitor.

COMMODORE 64 MEMORY MAP

I
LABEL A:[fl)l(ESS lgii#gll:l DESCRIPTION
D6510 0000 0] 6510 On-Chip Data-
Direction Register
R6510 0001 1 6510 On-Chip 8-Bit
Input/Output Register
0002 2 Unused
ADRAY1 0003-0004 | 3—4 Jump Vector: Convert
Floating—Integer

310 BASIC TO MACHINE LANGUAGE

HEX
LABEL ADDRESS Lgﬁ;{xg& DESCRIPTION

ADRAY2 0005-0006 | 5-6 Jump Vector: Convert
Integer—Floating

CHARAC 0007 7 Search Character

ENDCHR 0008 8 Flag: Scan for Quote at
End of String

TRMPOS 0009 9 Screen Column From Last
TAB

VERCK 000A 10 Flag: 0 = Load, 1 = Ver-
ify

COUNT 0008 11 Input Buffer Pointer / No.
of Subscripts

DIMFLG 000C 12 Flag: Default Array DI-
Mension

VALTYP 000D 13 Data Type: $FF = String,
$00 = Numeric

INTFLG 00OE 14 Data Type: $80 = Integer,
$00 = Floating

GARBFL 000F 15 Flag: DATA scan/LIST
quote/Garbage Coll

SUBFLG 0010 16 Flag: Subscript Ref / User
Function Call

INPFLG 0011 17 Flag: $00 = INPUT, $40
= GET, $98 = READ

TANSGN 0012 18 Flag: TAN sign / Compari-
son Result

0013 19 Flag: INPUT Prompt

LINNUM 0014-0015 | 20-21 Temp: Integer Value

TEMPPT 0016 22 Pointer: Temporary String
Stack

LASTPT 0017-0018 | 23-24 Last Temp String Address

TEMPST 0019-0021 | 25-33 Stack for Temporary
Strings

INDEX 0022-0025 | 34-37 Utility Pointer Area

RESHO 0026—-002A | 38—-42 Floating-Point Product of
Multiply

TXTTAB 002B-002C | 43-44 Pointer: Start of BASIC

Text

BASIC TO MACHINE LANGUAGE 311

DECIMA
LABEL ADHDERXESS I.OC?\TIOI':I DESCRIPTION
VARTAB 002D—-002E | 45—-46 Pointer: Start of BASIC
Variables
ARYTAB 002F-0030 | 47-48 Pointer: Start of BASIC
Arrays
STREND 0031-0032 | 49-50 Pointer: End of BASIC Ar-
rays (+1)
FRETOP 0033-0034 | 51-52 Pointer: Bottom of String
Storage
FRESPC 0035-0036 | 53-54 Utility String Pointer
MEMSIZ 0037-0038 | 55-56 Pointer: Highest Address
Used by BASIC
CURLIN 0039-003A | 57-58 Current BASIC Line
Number
OLDLIN 003B-003C | 59-60 Previous BASIC Line
Number
OLDTXT 003D—-003E | 61-62 Pointer: BASIC Statement
for CONT
DATLIN O03F-0040 | 63-64 Current DATA Line
Number
DATPTR 0041-0042 | 65-66 Pointer: Current DATA
Item Address
INPPTR 0043-0044 | 67-68 Vector: INPUT Routine
VARNAM 0045-0046 | 69-70 Current BASIC Variable
Name
VARPNT 0047-0048 | 71-72 Pointer: Current BASIC
Variable Data
FORPNT 0049-004A | 73-74 Pointer: Index Variable
for FOR/NEXT
004B-0060 | 75-96 Temp Pointer / Data Area
FACEXP 0061 97 Floating-Point Accumu-
lator #1: Exponent
FACHO 0062—-0065 | 98—101 Floating Accum. #1:
Mantissa
FACSGN 0066 102 Floating Accum. #1: Sign
SGNFLG 0067 103 Pointer: Series Evaluation

312 BASIC TO MACHINE LANGUAGE

Constant

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION
BITS 0068 104 Floating Accum. #1:
Overflow Digit
ARGEXP 0069 105 Floating-Point Accumu-
lator #2: Exponent
ARGHO 006A—-006D | 106—109 Floating Accum. #2:
Mantissa
ARGSGN 006E 110 Floating Accum. #2: Sign
ARISGN 006F 1M1 Sign Comparison Result:
Accum. #1 vs #2
FACOV 0070 112 Floating Accum. #1.
Low-Order (Rounding)
FBUFPT 0071-0072 | 113-114 Pointer: Cassette Buffer
CHRGET 0073-008A | 115-138 Subroutine: Get Next Byte
of BASIC Text
CHRGOT 0079 21 Entry to Get Same Byte of
Text Again
TXTPTR 007A-007B | 122-123 Pointer: Current Byte of
BASIC Text
RNDX 008B—008F | 139-143 Floating RND Function
Seed Value
STATUS 0090 144 Kernal I/O Status
Word: ST
STKEY 0091 145 Flag: STOP key / RVS key
SVXT 0092 146 Timing Constant for Tape
VERCK 0093 147 Flag: 0 = Load, 1 = Ver-
ify
C3PO 0094 148 Flag: Serial Bus—Output
Char. Buffered
BSOUR 0095 149 Buffered Character for
Serial Bus
SYNO 0096 150 Cassette Sync No.
0097 151 Temp Data Area
LDTND 0098 152 No. of Open Files / Index
to File Table
DFITN 0099 153 Default Input Device (0)
DFLTO 009A 154 Default Output (CMD)

Device (3)

BASIC TO MACHINE LANGUAGE 313

HEX DECI
LABEL ADDRESS lOCA'xOAll:I DESCRIPTION

PRTY 0098 155 Tape Character Parity

DPSW 009C 156 Flag: Tape Byte-Received

MSGFLG 009D 157 Flag: $80 = Direct Mode,
$00 = Program

PTR1 009E 158 Tape Pass 1 Error Log

PTR2 009F 159 Tape Pass 2 Error Log

TIME 00A0—-00A2 | 160162 Real-Time Jiffy Clock
(approx) 1/60 Sec

00A3—-00A4 | 163164 Temp Data Area

CNTDN 00A5 165 Cassette Sync Countdown

BUFPNT 00A6 166 Pointer: Tape I/O Buffer

INBIT 00A7 167 RS-232 Input Bits / Cas-
sette Temp

BITCI 00A8 168 RS-232 Input Bit Count /
Cassette Temp

RINONE 00A9 169 RS-232 Flag: Check for
Start Bit

RIDATA 00AA 170 RS-232 Input Byte
Buffer/Cassette Temp

RIPRTY 00AB 171 RS-232 Input Parity / Cas-
sette Short Cnt

SAL 00AC—-00AD | 172-173 Pointer: Tupe Buffer/
Screen Scrolling

EAL OOAE—OOAF | 174-175 Tape End Addresses/End
of Program

CMPO 00BO-00B1 |176-177 Tape Timing Constants

TAPE1 00B2-00B3 | 178-179 Pointer: Start of Tape Buf-
fer

BITTS 00B4 180 RS-232 Out Bit Count /
Cassette Temp

NXTBIT 00BS5 181 RS-232 Next Bit to Send/
Tape EOT Flag

RODATA 00B6 182 RS-232 Out Byte Buffer

FNLEN 00B7 183 Length of Current File
Name

LA 00B8 184 Current Logical File

314 BASIC TO MACHINE LANGUAGE

Number

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

SA 00B9 185 Current Secondary Ad-
dress

FA 00BA 186 Current Device Number

FNADR 00BB-00BC | 187-188 Pointer: Current File
Name

ROPRTY 00BD 189 RS-232 Out Parity / Cas-
sette Temp

FSBLK OOBE 190 Cassette Read/Write Block
Count

MYCH O00BF 191 Serial Word Buffer

CASI 00CO 192 Tape Motor Interlock

STAL 00C1-00C2 | 193-194 1/O Start Address

MEMUSS 00C3-00C4 | 195-196 Tape Load Temps

LSTX 00C5 197 Current Key Pressed:
64 = No Key

NDX 00Cé6 198 No. of Chars. in
Keyboard Buffer
(Queve)

RVS 00C7 199 Flag: Print Reverse
Chars.—1=Yes, 0=No
Used

INDX 00C8 200 Pointer: End of Logical
Line for INPUT

LXSP 00C9-00CA | 201-202 Cursor X-Y Pos. at Start of
INPUT

SFDX 00CB 203 64 = No Key

BLNSW 00CC 204 Cursor Blink enable: 0 =
Flash Cursor

BLNCT 00CD 205 Timer: Countdown to
Toggle Cursor

GDBLN 00CE 206 Character Under Cursor

BLNON OOCF 207 Flag: Last Cursor Blink
On/Off

CRSW 00DO 208 Flag: INPUT or GET from
Keyboard

PNT 00D1-00D2 | 209-210 Pointer: Current Screen

Line Address

BASIC TO MACHINE LANGUAGE 315

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION
PNTR 00D3 211 Cursor Column on Current
Line
QTSW 00D4 212 Flag: Editor in Quote
Mode, $00 = NO
LNMX 00D5 213 Physical Screen Line
Length
TBLX 00D6 214 Current Cursor Physical
Line Number
00oD7 215 Temp Data Area
INSRT 00D8 216 Flag: Insert Mode, >0 =
INSTs
LDTB1 00D9-00F2 | 217-242 Screen Line Link Table /
Editor Temps
USER OOF3—-00F4 | 243-244 Pointer: Current Screen
Color RAM loc.
KEYTAB OOF5—-00F6 | 245-246 Vector: Keyboard Decode
Table
RIBUF OOF7—-00F8 | 247-248 RS-232 Input Buffer
Pointer
ROBUF OOF9—00FA | 249-250 RS-232 Output Buffer
Pointer
FREKZP OOFB—OOFE | 251-254 Free 0-Page Space for
User Programs
BASZPT OOFF 255 BASIC Temp Data Area
0100-01FF | 256-511 Micro-Processor System
Stack Area
0100-010A | 256-266 Floating to String Work
Area
BAD 0100-013E | 256-318 Tape Input Error Log
BUF 0200-0258 | 512-600 System INPUT Buffer
LAT 0259-0262 | 601-610 KERNAL Table: Active Log-
ical File No's.
FAT 0263-026C | 611-620 KERNAL Table: Device No.
for Each File
SAT 026D-0276 | 621-630 KERNAL Table: Second
Address Each File
KEYD 0277-0280 | 631-640 Keyboard Buffer Queue

316 BASIC TO MACHINE LANGUAGE

(FIFO)

HEX DECIMAL
LABEL ADDRESS I.OCE\TION DESCRIPTION

MEMSTR 0281-0282 | 641-642 Pointer: Bottom of Memory
for O.S.

MEMSIZ 0283-0284 | 643-644 Pointer: Top of Memory for
O.S.

TIMOUT 0285 645 Flag: Kernal Variable for
IEEE Timeout

COLOR 0286 646 Current Character Color
Code

GDCOL 0287 647 Background Color Under
Cursor

HIBASE 0288 648 Top of Screen Memory
(Page)

XMAX 0289 649 Size of Keyboard Buffer

RPTFLG 028A 650 Flag: REPEAT Key Used,
$80 = Repeat

KOUNT 0288 651 Repeat Speed Counter

DELAY 028C 652 Repeat Delay Counter

SHFLAG 028D 653 Flag: Keyb’rd SHIFT Key/
CTRL Key/C= Key

LSTSHF 028E 654 Last Keyboard Shift Pat-
tern

KEYLOG 028F—0290 | 655-656 Vector: Keyboard Table
Setup

MODE 0291 657 Flag: $00=Disable SHIFT
Keys, $80 = Enable
SHIFT Keys

AUTODN 0292 658 Flag: Auto Scroll Down, O
= ON

M51CTR 0293 659 RS-232: 6551 Control
Register Image

MS51CDR 0294 660 RS-232: 6551 Command
Register Image

M51AJB 0295-0296 | 661-662 RS-232 Non-Standard BPS
(Time/2-100) USA

RSSTAT 0297 663 RS-232: 6551 Status Regis-
ter Image

BITNUM 0298 664 RS-232 Number of Bits

Left to Send

BASIC TO MACHINE LANGUAGE 317

HEX I
LABEL ADDRESS I.gEZCA'xgll"l DESCRIPTION
BAUDOF 0299—-029A | 665-666 RS-232 Baud Rate: Full Bit
Time (us)
RIDBE 0298 667 RS-232 Index to End of
Input Buffer
RIDBS 029C 668 RS-232 Start of Input Buf-
fer (Page)
RODBS 029D 669 RS-232 Start of Output
Buffer (Page)
RODBE 029E 670 RS-232 Index to End of
Output Buffer
IRQTMP 029F—-02A0 | 671-672 Holds IRQ Vector During
Tape 1/O
ENABL 02A1 673 RS-232 Enables
02A2 674 TOD Sense During Cas-
sette 1/O
02A3 675 Temp Storage For Cassette
Read
02A4 676 Temp D1IRQ Indicator For
Cassette Read
02A5 677 Temp For Line Index
02A6 678 PALNTSC Flag, 0=
NTSC, 1= PAL
02A7—-02FF | 679-767 Unused
IERROR 0300-0301 | 768—-769 Vector: Print BASIC Error
Message
IMAIN 0302-0303 | 770-771 Vector: BASIC Warm Start
ICRNCH 0304-0305 | 772-773 Vector: Tokenize BASIC
Text
IQPLOP 0306-0307 | 774-775 Vector: BASIC Text LIST
IGONE 0308-0309 | 776-777 Vector: BASIC Char. Dis-
patch
IEVAL 030A—-030B | 778-779 Vector: BASIC Token
Evaluation
SAREG 030C 780 Storage for 6502 .A Reg-
ister
SXREG 030D 781 Storage for 6502 .X Regis-

318 BASIC TO MACHINE LANGUAGE

ter

X DECIMAL
LABEL ADHDERESS LOCATION DESCRIPTION

SYREG 030E 782 Storage for 6502 .Y Regis-
ter

SPREG 030F 783 Storage for 6502 .SP
Register

USRPOK 0310 784 USR Function Jump Instr
(4Q)

USRADD 0311-0312 | 785-786 USR Address Low Byte/
High Byte

0313 787 Unused

CINV 0314-0315 | 788-789 Vector: Hardware IRQ
Interrupt

CBINV 0316-0317 | 790-791 Vector: BRK Instr. Interrupt

NMINV 0318-0319 | 792-793 Vector: Non-Maskable
Interrupt

IOPEN 031A-031B | 794-795 KERNAL OPEN Routine
Vector

ICLOSE 031C-031D | 796-797 KERNAL CLOSE Routine
Vector

ICHKIN 031E—031F | 798-799 KERNAL CHKIN Routine
Vector

ICKOUT 0320-0321 | 800-801 KERNAL CHKOUT Routine
Vector

ICLRCH 0322-0323 | 802-803 KERNAL CLRCHN Routine
Vector

IBASIN 0324-0325 | 804-805 KERNAL CHRIN Routine
Vector

IBSOUT 0326-0327 | 806—-807 KERNAL CHROUT Routine
Vector

ISTOP 0328-0329 | 808—-809 KERNAL STOP Routine
Vector

IGETIN 032A-032B | 810-811 KERNAL GETIN Routine
Vector

ICLALL 032C-032D | 812-813 KERNAL CLALL Routine
Vector

USRCMD 032E-032F | 814-815 User-Defined Vector

ILOAD 0330-0331 | 816-—817 KERNAL LOAD Routine

Vector

BASIC TO MACHINE LANGUAGE 319

HEX DECIMAL
LABEL ADDRESS | LOCATION gl
ISAVE 0332-0333 |818-819 KERNAL SAVE Routine Vec-
tor
0334—-033B |820-827 Unused
TBUFFR 033C—03FB |828—-1019 Tape I/O Buffer
03FC—03FF |1020-1023 Unused
VICSCN 0400—07FF |1024-2047 1024 Byte Screen Memory
Area
0400-07E7 |1024-2023 Video Matrix: 25 Lines X
40 Columns
07F8—07FF |2040-2047 Sprite Data Pointers
G800—9FFF |2048—40959 | Normal BASIC Program
Space
8000—9FFF |32768-40959| VSP Cartridge ROM—
8192 Bytes
AOOO—BFFF |40960—49151| BASIC ROM—8192 Bytes
(or 8K RAM)
COO0—CFFF | 49152—-53247| RAM— 4096 Bytes
DO0O—DFFF | 53248-57343| Input/Output Devices and
Color RAM
or Character Generator
ROM
or RAM—4096 Bytes
EOOO—FFFF |57344—-65535| KERNAL ROM—8192

Bytes (or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

320 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION
0000 0 7-0 MOS 6510 Data Direction
Register (xx101111)
Bit=1: Output, Bit=0:
Input, x=Don’t Care
0001 1 MOS 6510 Micro-Processor

On-Chip I/O Port
/LORAM Signal (0=Switch
BASIC ROM Out)

HEX DECIMAL BITS DESCRIPTION
1 /HIRAM Signal (0=Switch
Kernal ROM Out)
2 /CHAREN Signal
(0=Switch Char. ROM
In)
3 Cassette Data Output Line
4 Cassette Switch Sense
1 = Switch Closed
5 Cassette Motor Control
0 = ON, 1 = OFF
6-7 Undefined
D000—-DO2E (5324854271 MOS 6566 VIDEO INTER-
FACE CONTROLLER
(VIC)
D000 53248 Sprite 0 X Pos
D001 53249 Sprite 0 Y Pos
D002 53250 Sprite 1 X Pos
D003 53251 Sprite 1 Y Pos
D004 53252 Sprite 2 X Pos
D005 53253 Sprite 2 Y Pos
D006 53254 Sprite 3 X Pos
D007 53255 Sprite 3 Y Pos
D008 53256 Sprite 4 X Pos
D009 53257 Sprite 4 Y Pos
DOOA 53258 Sprite 5 X Pos
DOOB 53259 Sprite 5 Y Pos
DOOC 53260 Sprite 6 X Pos
DOOD 53261 Sprite 6 Y Pos
DOOE 53262 Sprite 7 X Pos
DOOF 53263 Sprite 7 Y Pos
D010 53264 Sprites 0—7 X Pos (msb of
X coord.)
DO11 53265 VIC Control Register
7 Raster Compare: (Bit 8)
See 53266
() Extended Color Text

Mode: 1 = Enable

BASIC TO MACHINE LANGUAGE 321

HEX DECIMAL BITS DESCRIPTION

5 Bit-Map Mode: 1 = En-
able

4 Blank Screen to Border
Color: 0 = Blank

3 Select 24/25 Row Text
Display: 1 = 25 Rows
2-0 Smooth Scroll to Y Dot-
Position (0-7)

D012 53266 Read Raster / Write Raster
Value for Compare IRQ
D013 53267 Light-Pen Latch X Pos
D014 53268 Light-Pen Latch Y Pos
D015 53269 Sprite Display Enable:

1 = Enable

D016 53270 VIC Control Register
7-6 Unused

5 ALWAYS SET THIS BIT TO
0!

4 Multi-Color Mode: 1 =
Enable (Text or Bit-
Map)

3 Select 38/40 Column Text
Display: 1 = 40 Cols
2-0 Smooth Scroll to X Pos
D017 53271 Sprites 0—7 Expand 2X
Vertical (Y)

D018 53272 VIC Memory Control Reg-
ister

7-4 Video Matrix Base Ad-
dress (inside VIC)

3-1 Character Dot-Data Base
Address (inside VIC)
D019 53273 VIC Interrupt Flag Regis-
ter (Bit = 1: IRQ Oc-
curred)

7 Set on Any Enabled VIC
IRQ Condition

3 Light-Pen Triggered IRQ
Flag

322 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION
Sprite to Sprite Collision
IRQ Flag
Sprite to Background
Collision IRQ Flag
Raster Compare IRQ Flag
DO1A 53274 IRQ Mask Register: 1 =
Interrupt Enabled
DO1B 53275 Sprite to Background
Display Priority: 1 =
Sprite
DO1C 53276 Sprites 0—7 Multi-Color
Mode Select: 1 =
M.C.M.
DOID 53277 Sprites 0-7 Expand 2X
Horizontal (X)
DO1E 53278 Sprite to Sprite Collision
Detect
DO1F 53279 Sprite to Background
Collision Detect
D020 53280 Border Color
D021 53281 Background Color 0
D022 53282 Background Color 1
D023 53283 Background Color 2
D024 53284 Background Color 3
D025 53285 Sprite Multi-Color Regis-
ter O
D026 53286 Sprite Multi-Color Regis-
ter 1
D027 53287 Sprite 0 Color
D028 53288 Sprite 1 Color
D029 53289 Sprite 2 Color
DO02A 53290 Sprite 3 Color
D028 53291 Sprite 4 Color
D02C 53292 Sprite 5 Color
D02D 53293 Sprite 6 Color
DO2E 53294 Sprite 7 Color
D400-D7FF (5427255295 MOS 6581 SOUND

BASIC TO MACHINE LANGUAGE

INTERFACE DEVICE
(SID)

323

HEX

DECIMAL

BITS

DESCRIPTION

D400

D401

D402

D403

D404

D405

D406

324

54272
54273
54274

54275 7-
3

54276

54277

54278

BASIC TO MACHINE LANGUAGE

Voice 1: Frequency
Control—Low-Byte

Voice 1: Frequency
Control —High-Byte

Voice 1: Pulse Waveform
Width— Low-Byte

Unused

Voice 1: Pulse Waveform
Width—High-Nybble

Voice 1: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform,

1 = On

Select Sawtooth
Waveform, 1 = On

Select Triangle Waveform,
1 = On

Test Bit: 1
cillator 1

Ring Modulate Osc. 1 with
Osc. 3 Output, 1 = On

Synchronize Osc. 1 with
Osc. 3 Frequency, 1 =
On

Gate Bit: 1 = Start Att/
Dec/Sus, 0 = Start Re-
lease

= Disable Os-

Envelope Generator 1: At-
tack / Decay Cycle
Control

Select Attack Cycle Dura-
tion: 0-15

Select Decay Cycle Dura-
tion: 0—15

Envelope Generator 1:
Sustain / Release Cycle
Control

HEX

DECIMAL

DESCRIPTION

D407

D408

D409

D40A

D40B

D40C

54279

54280

54281

54282

54283

54284

Select Sustain Cycle Du-
ration: 0—15

Select Release Cycle Du-
ration: 0-15

Voice 2: Frequency
Control—Low-Byte

Voice 2: Frequency
Control—High-Byte

Voice 2: Pulse Waveform
Width— Low-Byte

Unused

Voice 2: Pulse Waveform
Width—High-Nybble

Voice 2: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform,

1 = On

Select Sawtooth
Waveform, 1 = On

Select Triangle
Waveform, 1 = On

Test Bit: 1 = Disable Os-
cillator 2

Ring Modulate Osc. 2 with
Osc. 1 Output, 1 = On

Synchronize Osc. 2 with
Osc. 1 Frequency, 1 =
On

Gate Bit: 1 = Start Att/
Dec/Sus, 0 = Start Re-
lease

Envelope Generator 2: At-
tack / Decay Cycle
Control

Select Attack Cycle Dura-
tion: 0—-15

BASIC TO MACHINE LANGUAGE 325

HEX

DECIMAL

BITS

DESCRIPTION

D40D

D40E

D40F

D410

D411

D412

326

54285

54286
54287
54288

54289 7-
3

54290

BASIC TO MACHINE LANGUAGE

Select Decay Cycle Dura-
tion: 0—-15

Envelope Generator 2:
Sustain / Release Cycle
Control

Select Sustain Cycle Du-
ration: 0—15

Select Release Cycle Du-
ration: 0—15

Voice 3: Frequency
Control—Low-Byte

Voice 3: Frequency
Control—High-Byte

Voice 3: Pulse Waveform
Width—Low-Byte

Unused

Voice 3: Pulse Waveform
Width—High-Nybble

Voice 3: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform, 1
= On

Select Sawtooth
Waveform, 1 = On

Select Triangle Waveform,
1 = On

Test Bit: 1 = Disable Os-
cillator 3

Ring Modulate Osc. 3 with
Osc. 2 Output, 1 = On

Synchronize Osc. 3 with
Osc. 2 Frequency, 1 =
On

| Gate Bit: 1 = Start Att/

Dec/Sus, 0 = Start Re-
lease

HEX

DECIMAL

BITS

DESCRIPTION

D413

D414

D415

D416

D417

D418

54291

54292

54293

54294

54295

54296

Envelope Generator 3: At-
tack / Decay Cycle
Control

Select Attack Cycle Dura-
tion: 0—15

Select Decay Cycle Dura-
tion: 0-15

Envelope Generator 3:
Sustain / Release Cycle
Control

Select Sustain Cycle Du-
ration: 0-15

Select Release Cycle Du-
ration: 0—-15

Filter Cutoff Frequency:
Low-Nybble (Bits 2—0)

Filter Cutoff Frequency:
High-Byte

Filter Resonance Control /
Voice Input Control

Select Filter Resonance:
0-15

Filter External Input: 1 =
Yes, 0 = No

Filter Voice 3 Output: 1 =
Yes, 0 = No

Filter Voice 2 Output: 1 =
Yes, 0 = No

Filter Voice 1 Output: 1 =
Yes, 0 = No

Select Filter Mode and
Volume

Cut-Off Voice 3 Output: 1
= Off, 0 = On

Select Filter High-Pass
Mode: 1 = On

Select Filter Band-Pass
Mode: 1 = On

BASIC TO MACHINE LANGUAGE 327

HEX

DECIMAL

BITS

DESCRIPTION

D419

D41A

D41B

D41C

D500-D7FF
D800—-DBFF
DCOO0-DCFF

DCO00

DCO1

54297

54298

54299

54230

5452855295
55296—-56319
56320—-56575

56320

56321

w W

onN

328 BASIC TO MACHINE LANGUAGE

Select Filter Low-Pass
Mode: 1 = On

Select Output Volume:
0-15

Analog/Digital Converter:
Game Paddle 1 (0-
255)

Analog/Digital Converter:
Game Paddle 2 (0-
255)

Oscillator 3 Random
Number Generator

Envelope Generator 3
Output

SID IMAGES

Color RAM (Nybbles)

MOS 6526 Complex
Interface Adapter (CIA)
#1

Data Port A (Keyboard,
Joystick, Paddles,
Light-Pen)

Write Keyboard Column
Values for Keyboard
Scan

Read Paddles on Port A /
B (01 = Port A, 10 =
Port B)

Joystick A Fire Button: 1 =
Fire

Paddle Fire Buttons

Joystick A Direction
(0-15)

Data Port B (Keyboard,
Joystick, Paddles):
Game Port 1

HEX

DECIMAL

BITS

DESCRIPTION

DCO02

DCO3

DCO4
DCO5
DC06
DCo7
DCo8
DCO09
DCOA
DCOB
DCoC

DCOD

56322

56323

56324
56325
56326
56327
56328
56329
56330
56331
56332

56333

w W

oN

BASIC TO MACHINE LANGUAGE

Read Keyboard Row
Values for Keyboard
Scan

Timer B: Toggle/Pulse
Output

Timer A: Toggle/Pulse
Output

Joystick 1 Fire Button: 1 =
Fire

Paddle Fire Buttons

Joystick 1 Direction

Data Direction
Register—Port A
(56320)

Data Direction
Register—Port B
(56321)

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-of-Day Clock: 1/10
Seconds

Time-of-Day Clock: Sec-
onds

Time-of-Day Clock: Min-
utes

Time-of-Day Clock: Hours
+ AM/PM Flag (Bit 7)

Synchronous Serial I/O
Data Buffer

CIA Interrupt Control
Register (Read IRQs/
Write Mask)

IRQ Flag (1 = IRQ Oc-
curred) / Set-Clear Flag

FLAG1 IRQ (Cassette Read
/ Serial Bus SRQ Input)

329

HEX DECIMAL BITS DESCRIPTION

3 Serial Port Interrupt

2 Time-of-Day Clock Alarm
Interrupt

1 Timer B Interrupt

0 Timer A Interrupt

DCOE 56334 CIA Control Register A

7 Time-of-Day Clock Fre-
quency: 1 = 50 Hz, O
= 60 Hz

6 Serial Port I/O Mode: 1 =
Output, 0 = Input

5 Timer A Counts: 1 = CNT
Signals, 0 = System 02
Clock

4 Force Load Timer A: 1 =
Yes

3 Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

2 Timer A Output Mode to
PB6: 1 = Toggle, 0 =
Pulse

1 Timer A Output on PB6: 1
= Yes, 0 = No

0 Start/Stop Timer A: 1 =
Start, 0 = Stop

DCOF 56335 CIA Control Register B

7 Set Atarm/TOD-Clock: 1 =

Alarm, 0 = Clock
330 BASIC TO MACHINE LANGUAGE

HEX

DECIMAL

BITS

DESCRIPTION

DDO0-DDFF

DDOO

DDO1

56576—-56831

56576

56577

N

Timer B Mode Select:

00 = Count System 02
Clock Pulses

01 = Count Positive
CNT Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While
CNT Positive

Same as CIA Control Reg.
A—for Timer B

MOS 6526 Complex Inter-
face Adapter (CIA) #2

Data Port A (Serial Bus,
RS-232, VIC Memory
Control)

Serial Bus Data Input

Serial Bus Clock Pulse
Input

Serial Bus Data Output

Serial Bus Clock Pulse
Output

Serial Bus ATN Signal
Output

RS-232 Data Output (User
Port)

VIC Chip System Memory
Bank Select (Default =
11)

Data Port B (User Port,
RS-232)

User / RS-232 Data Set
Ready

BASIC TO MACHINE LANGUAGE 331

HEX DECIMAL BITS DESCRIPTION

6 User / RS-232 Clear to
Send

5 User

4 User / RS-232 Carrier De-
tect

3 User / RS-232 Ring Indi-
cator

2 User / RS-232 Data Termi-
nal Ready

1 User / RS-232 Request to
Send

0 User / RS-232 Received
Data

DDO02 56578 Data Direction
Register—Port A
DDO3 56579 Data Direction
Register—Port B
DDO4 56580 Timer A: Low-Byte

DDO5 56581 Timer A: High-Byte
DDO06 56582 Timer B: Low-Byte

DDO7 56583 Timer B: High-Byte
DDO8 56584 Time-of-Day Clock: 1/10
Seconds

DDO9 56585 Time-of-Day Clock: Sec-
onds

DDOA 56586 Time-of-Day Clock: Min-
vtes

DDOB 56587 Time-of-Day Clock: Hours
+ AM/PM Flag (Bit 7)
DDOC 56588 Synchronous Serial 1/O
Data Buffer

DDOD 56589 CIA Interrupt Control
Register (Read NMIs/
Write Mask)

332 BASIC TO MACHINE LANGUAGE

HEX

DECIMAL

BITS

DESCRIPTION

DDOE

DDOF

56590

56591

NMI Flag (1 = NMI Oc-
curred) / Set-Clear Flag

FLAG1 NMI (User/RS-232
Received Data Input)

Serial Port Interrupt

Timer B Interrupt

Timer A Interrupt

CIA Control Register A

Time-of-Day Clock Fre-
quency: 1 = 50 Hz, 0
= 60 Hz

Serial Port I/O Mode: 1 =
Output, 0 = Input

Timer A Counts: 1 = CNT
Signals, 0 = System 02
Clock

Force Load Timer A: 1 =
Yes

Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

Timer A Output Mode to
PB6: 1 = Toggle, 0 =
Pulse

Timer A Output on PB6: 1
= Yes, 0 = No

Start/Stop Timer A: 1 =
Start, 0 = Stop

CIA Control Register B

Set Alarm/TOD-Clock: 1 =
Alarm, 0 = Clock

BASIC TO MACHINE LANGUAGE 333

HEX DECIMAL

BITS

DESCRIPTION

DEOO~- DEFF

DFOO-DFFF

56832-57087

5708857343

Timer B Mode Select:
00 = Count System 02
Clock Pulses
01 = Count Positive
CNT Transitions
10 = Count Timer A
Underflow Pulses
11 = Count Timer A
Underflows While
CNT Positive
Same as CIA Control Reg.
A—for Timer B
Reserved for Future I/O
Expansion
Reserved for Future I/O
Expansion

334

BASIC TO MACHINE LANGUAGE

CHAPTER

INPUT/OUTPUT
GUIDE

Introduction

Output to the TV

Output to Other Devices

The Game Ports

RS-232 Interface Description
The User Port

The Serial Bus

The Expansion Port

Z-80 Microprocessor Cartridge

335

INTRODUCTION

Computers have three basic abilities: they can calculate, make deci-
sions, and communicate. Calculation is probably the easiest to program.
Most of the rules of mathematics are familiar to us. Decision making is
not too difficult, since the rules of logic are relatively few, even if you
don’t know them too well yet.

Communication is the most complex, because it involves the least
exacting set of rules. This is not an oversight in the design of computers.
The rules allow enough flexibility to communicate virtually anything, and
in many possible ways. The only real rule is this: whatever sends infor-
mation must present the information so that it can be understood by the
receiver.

NOTE: The tables and device numbers in this section refer to Commodore’s 1515
and 1525 printers or the 1540 and 1541 disk drives. For equivalent information on
Commodore’s newest line of peripherals, like the 1520 plotter or the 1526 and
MPP-801 printers see the User’s Guide that comes with that particular hardware.

OUTPUT TO THE TV

The simplest form of output in BASIC is the PRINT statement. PRINT
uses the TV screen as the output device, and your eyes are the input
device because they use the information on the screen.

When PRINTing on the screen, your main objective is to format the
information on the screen so it's easy to read. You should try to think like
a graphic artist, using colors, placement of letters, capital and lower
case letters, as well as graphics to best communicate the information.
Remember, no matter how smart your program, you want to be able to
understand what the results mean to you.

The PRINT statement uses certain character codes as “commands’ to
the cursor. The m key doesn’t actually display anything, it just
makes the cursor change position. Other commands change colors,
clear the screen, and insert or delete spaces. The key has a
character code number (CHR$) of 13. A complete table of these codes is
contained in Appendix C.

There are two functions in the BASIC language that work with the
PRINT statement. TAB positions the cursor on the given position from the
left edge of the screen, SPC moves the cursor right a given number of
spaces from the current position.

336 INPUT/OUTPUT GUIDE

Punctuation marks in the PRINT statement serve to separate and for-
mat information. The semicolon (;) separates 2 items without any spaces
in between. If it is the last thing on a line, the cursor remains after the
last thing PRINTed instead of going down to the next line. It suppresses
(replaces) the RETURN character that is normally PRINTed at the end of
the line.

The comma (,) separates items into columns. The Commodore 64 has
4 columns of 10 characters each on the screen. When the computer
PRINTs a comma, it moves the cursor right to the start of the next col-
umn. If it is past the last column of the line, it moves the cursor down to
the next line. Like the semicolon, if it is the last item on a line the
RETURN is suppressed.
") separate literal text from variables. The first
quote mark on the line starts the literal area, and the next quote mark

The quote marks (

ends it. By the way, you don’t have to have a final quote mark at the
end of the line.

The RETURN code (CHR$ code of 13) makes the cursor.go to the next
logical line on the screen. This is not always the very next line. When
you type past the end of a line, that line is linked to the next line. The
computer knows that both lines are really one long line. The links are
held in the line link table (see the memory map for how this is set up).

A logical line can be 1 or 2 screen lines long, depending on what was
typed or PRINTed. The logical line the cursor is on determines where
the key sends it. The logical line at the top of the screen
determines if the screen scrolls 1 or 2 lines at a time.

There are other ways to use the TV as an output device. The chapter
on graphics describes the commands to create objects that move across
the screen. The VIC chip section tells how the screen and border colors
and sizes are changed. And the sound chapter tells how the TV speaker
creates music and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen,
like a cassette deck, printer, disk drive, or modem. The OPEN statement
in BASIC creates a “channel” to talk to one of these devices. Once the
channel is OPEN, the PRINT# statement will send characters to that
device.

INPUT/OUTPUT GUIDE 337

EXAMPLE of OPEN and PRINT# Statements:

100 OPEN 4, 4: PRINT# 4, “WRITING ON PRINTER"

110 OPEN 3, 8, 3, “0:DISK-FILE,S,W": PRINT# 3, “SEND TO DISK"
120 OPEN 1, 1, 1, “TAPE-FILE”: PRINT# 1, “WRITE ON TAPE”

130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, “SEND TO MODEM"

The OPEN statement is somewhat different for each device. The pa-

rameters in the OPEN statement are shown in the table below for each

device.

TABLE of OPEN Statement Parameters:

FORMAT: OPEN file#, device#, number, string

2—14 = Data Channel

15 = Command
Channel

DEVICE |DEVICE# NUMBER STRING
CASSETTE 1 0 = Input File Name
1 = Output
2 = Output with
EOT
MODEM 2 0 Control Registers
SCREEN 3 0,1
PRINTER 4 or 5 |0 = Upper/Graphics Text Is PRINTed
7 = Upper/Lower Case
DISK 8 to 11 | 0 = Program File Drive #: Program
LOAD File Name
1 = Program File Drive #: Program
SAVE File Name

Drive #, File Name,
File Type, Read/Write
Command

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main con-

cern when sending output to the printer is to create a format that is easy

on the eyes. Your tools here include reversed, double-width, capital and

lower case letters, as well as dot-programmable graphics.

The SPC function works for the printer in the same way it works for the

screen. However, the TAB function does not work correctly on the print-

338

INPUT/OUTPUT GUIDE

er, because it calculates the current position on the line based on the
cursor’s position on the screen, not on the paper.

The OPEN statement for the printer creates the channel for communi-
cation. It also specifies which character set will be used, either upper
case with graphics or upper and lower case.

EXAMPLES of OPEN Statement for Printer:

OPEN 1, 4: REM UPPER CASE/GRAPHICS
OPEN 1, 4, 7: REM UPPER AND LOWER CASE

When working with one character set, individual lines can be PRINTed
in the opposite character set. When in upper case with graphics, the
cursor down character (CHR$(17)) switches the characters to the upper
and lower case set. When in upper and lower case, the cursor up char-
acter (CHR$(145)) allows upper case and graphics characters to be
PRINTed.

Other special functions in the printer are controlled through character
codes. All these codes are simply PRINTed just like any other character.

TABLE of Printer Control Character Codes:

CHR$ CODE PURPOSE
10 Line feed

| 13 RETURN (automatic line feed on CBM printers)
14 Begin double-width character mode
15 End double-width character mode
18 Begin reverse character mode
146 End reverse character mode
17 Switch to upper/lower case character set
145 Switch to upper case/graphics character set
16 Tab to position in next 2 characters

‘ 27 Move to specified dot position

1 8 Begin dot-programmable graphic mode

“ 26 Repeat graphics data

See your Commodore printer’s manual for details on using the com-
mand codes.

OUTPUT TO MODEM

The modem is a simple device that can translate character codes into
audio pulses and vice-versa, so that computers can communicate over

INPUT/OUTPUT GUIDE 339

telephone lines. The OPEN statement for the modem sets up the pa-
rameters to match the speed and format of the other computer you are
communicating with. Two characters can be sent in the string at the end
of the OPEN statement.

The bit positions of the first character code determine the baud rate,
number of data bits, and number of stop bits. The second code is op-
tional, and its bits specify the parity and duplex of the transmission. See
the RS-232 section or your VICMODEM manual for specific details on this
device.

EXAMPLE of OPEN Statement for Modem:

OPEN 1, 2, 0, CHR$(6): REM 300 BAUD
100 OPEN 2, 2, 0, CHR$(163) CHR$(112): REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information In-
terchange, known as ASCII (pronounced ASK-KEY). This standard set of
character codes is somewhat different from the codes used in the Com-
modore 64. When communicating with other computers, the Commo-
dore character codes must be translated into their ASCII counterparts. A
table of standard ASCII codes is included in this book in Appendix C.

Output to the modem is a fairly uncomplicated task, aside from the
need for character translation. However, you must know the receiving
device fairly well, especially when writing programs where your
computer “talks” to another computer without human intervention. An
example of this would be a terminal program that automatically types in
your account number and secret password. To do this successfully, you
must carefully count the number of characters and RETURN characters.
Otherwise, the computer receiving the characters won’t know what to do
with them.

WORKING WITH CASSETTE TAPE

Cassette tapes have an almost unlimited capacity for data. The
longer the tape, the more information it can store. However, tapes are
limited in time. The more data on the tape, the longer the time it takes
to find the information.

The programmer must try to minimize the time factor when working
with tape storage. One common practice is to read the entire cassette
data file into RAM, then process it, and then re-write all the data on the
tape. This allows you to sort, edit, and examine your data. However,
this limits the size of your files to the amount of available RAM.

340 INPUT/OUTPUT GUIDE

If your data file is larger than the available RAM, it is probably time
to switch to using the floppy disk. The disk can read data at any position
on the disk, without needing to read through all the other data. You can
write data over old data without disturbing the rest of the file. That's
why the disk is used for all business applications like ledgers and mail-
ing lists.

The PRINT# statement formats data just like the PRINT statement
does. All punctuation works the same. But remember, you're not work-
ing with the screen now. The formatting must be done with the INPUT#
statement constantly in mind.

Consider the statement PRINT# 1, A$, B$, C$. When used with the
screen, the commas between the variables provide enough blank space
between items to format them into columns ten characters wide. On
cassette, anywhere from 1 to 10 spaces will be added, depending on
the length of the strings. This wastes space on your tape.

Even worse is what happens when the INPUT# statement tries to read
these strings. The statement INPUT# 1, A$, B$, C$ will discover no data
for B$ and C$. A$ will contain all three variables, plus the spaces be-
tween them. What happens? Here's a look at the tape file:

A$="DOG"” B$="CAT" C$="TREE"
PRINT# 1, A3, B, C$

1234567891011 1213 141516171819 20 21 22 23 24 25
DOG cC AT T R E E RETURN

The INPUT# statement works like the regular INPUT statement. When
typing data into the INPUT statement, the data items are separated,
either by hitting the key or using commas to separate them.
The PRINT# statement puts a RETURN at the end of a line just like the
PRINT statement. A$ fills up with all three values because there’s no
separator on the tape between them, only after all three.

A proper separator would be a comma (,) or a RETURN on the tape.
The RETURN code is automatically put at the end of a PRINT or PRINT #
statement. One way to put the RETURN code between each item is to
use only one item per PRINT# statement. A better way is to set a vari-
able to the RETURN CHR$ code, which is CHR$(13), or use a comma.
The statement for this is R$= /, : PRINT# 1, A$ R$ B$ R$ C$. Don’t use
commas or any other punctuation between the variable names, since
the Commodore 64 can tell them apart and they’ll only use up space in
your program.

INPUT/OUTPUT GUIDE 341

A proper tape file looks like this:

1234567891011 1213
DOG, CAT, T R E E RETURN

The GET# statement will pick data from the tape one character at a
time. It will receive each character, including the RETURN code and
other punctuation. The CHR$(0) code is received as an empty string, not
as a one character string with a code of 0. If you try to use the ASC
function on an empty string, you get the error message ILLEGAL
QUANTITY ERROR.

The line GET# 1, A$: A= ASC(A$) is commonly used in programs to
examine tape data. To avoid error messages, the line should be mod-
ified to GET#1, A$: A= ASC(A$+ CHR$(0)). The CHR$(0) at the end
acts as insurance against empty strings, but doesn’t affect the ASC
function when there are other characters in A$.

DATA STORAGE ON FLOPPY DISKETTES

Diskettes allow 3 different forms of data storage. Sequential files are
similar to those on tape, but several can can be used at the same time.
Relative files let you organize the data into records, and then read and
replace individual records within the file. Random files let you work with
data anywhere on the disk. They are organized into 256 byte sections
called blocks.

The PRINT# statement’s limitations are discussed in the section on
cassette tape. The same limitations to format apply on the disk.
RETURNs or commas are needed to separate your data. The CHR$(0) is
still read by the GET# statement as an empty string.

Relative and random files both make use of separate data and com-
mand “channels.” Data written to the disk goes through the data chan-
nel, where it is stored in a temporary buffer in the disk’s RAM. When the
record or block is complete, a command is sent through the command
channel that tells the drive where to put the data, and the entire buffer
is written.

Applications that require large amounts of data to be processed are
best stored in relative disk files. These will use the least amount of time
and provide the best flexibility for the programmer. Your disk drive
manual gives a complete programming guide to use of disk files.

342 INPUT/OUTPUT GUIDE

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which allow the use of
joysticks, paddles, or a light pen. Each port will accept either one joy-
stick or one paddle pair. A light pen can be plugged into Port A (only) for
special graphic control, etc. This section gives you examples of how to use
the joysticks and paddles from both BASIC and machine language.

The digital joystick is connected to CIA #1 (MOS 6526 Complex Inter-
face Adapter). This input/output device also handles the paddle fire but-
tons and keyboard scanning. The 6526 CIA chip has 16 registers which
are in memory locations 56320 through 56335 inclusive ($DCOO0 to
$DCOF). Port 2 data appears at location 56320 (DC00) and Port 1 data is
found at location 56321 ($DCO1).

A digital joystick has five distinct switches, four of the switches are
used for direction and one of the switches is used for the fire button. The
joystick switches are arranged as shown:

(Top)
FIRE
(Switch 4)
upP
(Switch 0)

LEFT N RIGHT
(Switch 2) : (Switch 3)
DOWN
(Switch 1)

These switches correspond to the lower 5 bits of the data in location
56320 or 56321. Normally the bit is set to a one if a direction is NOT
chosen or the fire button is NOT pressed. When the fire button is

INPUT/OUTPUT GUIDE 343

pressed, the bit (bit 4 in this case) changes to a 0. To read the joystick
from BASIC, the following subroutine should be used:

1 SET WP DIRECTION STRIMG

v"”" "

P non I l[I.lJll 2 l|‘-,'IL‘JH
Jroom e E,—n SUHEY, v

' I‘EHII THE JOYSTICHK
SR LTS "”"THEH::-I;I'FYEH CHE

IF R DIRECTION LA

OO REN DUTRUT WHICH DIRECT IO
GECREM CHECE IF FIRE BUTTOM WAS

et A N B W 121
TICK “ALLUE

FIRE BUTTOM STATULS

1OFORM DIRECTIOM WALLE

L NOTE: For the second joystick, set JV = PEEK (56321).

The values for JV correspond to these directions:

JV EQUAL TO DIRECTION

NONE

up

DOWN

LEFT

UP & LEFT
DOWN & LEFT
RIGHT

UP & RIGHT
DOWN & RIGHT

o

O 0V O NOWLHEWN -~

—

344 INPUT/OUTPUT GUIDE

A small machine code routine which accomplishes the same task is as

follows

1@a@ JPAGE CIOYSTICH.
ROITIHE

LDH $ICoa
LI R

LI #@
©DATH IH

L=k H
-THHIFIFHHT

DE
LLDZED THEH 1T

CMIVE L
LIRS
CHO W SHAMGE S .

1

JHAT RTIS
BUTTOM STHETE.

iS5 BITS

JPROTLCES

T

R RO e R T

CIF T=1 THEW BUTTOM HOT FRESSED.

JOYSTICK ~ RBUTTOM REAT

:HUTHGR -~ BILL HIMDORFF

CGET IMFUT FROM FORT

JTHIES ROUTIME READES HMD
SIOYETICK SFIREERUTTON

STHE ACCUMUOLATOR., THIS

COMTAIM THE

STHFORMATION. IF A SHITCH

A ZERD BIT. IF

JIT FRODMCES A OHE EBIT.
JECTIONS ARE RIGHT. LEFT,
JEITE=RIGHT. BITZ2=LEFT.
SEITE=FORMART AHD

JHT RTES TIME D4 AMD I

SOIRECTION HUMBERS I.E.

=1 CMOVE RIGHT ., Dia=-1

CHAMGE .

sI'=1 CMOVE DM SCREEMD
P THE FORMARD JOYSTICK

JTO MOVE UF THE SCREER

FPOSITION TO MOVE T0JkH

TIME THE CHERY FLAG COMTHIMS THE FIRE

IF C=8 THEH

INPUT/OUTPUT GUIDE

345

PADDLES

A paddle is connected to both CIA #1 and the SID chip (MOS 6581
Sound Interface Device) through a game port. The paddle value is read
via the SID registers 54297 ($D419) and 54298 ($D41A). PADDLES ARE
NOT RELIABLE WHEN READ FROM BASIC ALONE!!!! The best way to use
paddles, from BASIC or machine code, is to use the following machine
language routine. . . . (SYS to it from BASIC then PEEK the memory
locations used by the subroutine).

SFOR FOUR PADDLES

SEHTREY FOIHT FOR
ET

SGET CURREMNT WELLE

SEVE TT FILAY

T PORT A FOR

LI
FOLED
ETA FPORTF PRNDREDS

MOPRIE OF

CWRTT A WHTLE

SCET ¥ WALLE

LA 51T

s FGET MOMALLE
STE PDLY =

346 INPUT/OUTPUT GUIDE

TIME 70 FE

CHFKE 1T THE

FAOBTHRA
Ol

JEIT & 15 POk A

SALL PRTRS TR

FeREn TN

T FHDDLE FEOUTIME START
AN) FUUTIHE

EM ’ET FAODLE OHE “WHLLUE
" " L "
" " THREE "
" " I“I‘:'I L”’:“ "n

"w-aEH FwIHT ADDLE WALLES
HHTTHH HTLEE

cELLUFIRE R OMIER
'.-M HHIT A HMHILE

HT FIFE

I O

sa FRINTY T FRINT CGOTO 28 REM CLERR

FEER AMTY DO

141,6, 193,163,132, 141,

L 252 1T

2, L, 1

L1, SR ITE B 123,141, 2, 2200175,

INPUT/OUTPUT GUIDE

AT ZE 2R, 1SV B 1FE1ITR.9,220, 3,128,

347

LIGHT PEN

The light pen input latches the current screen position into a pair of
registers (LPX, LPY) on a low-going edge. The X position register 19
($13) will contain the 8 MSB of the X position at the time of transition.
Since the X position is defined by a 512-state counter (9 bits), resolution
to 2 horizontal dots is provided. Similarly, the Y position is latched in its
register 20 ($14), but here 8 bits provide single raster resolution within
the visible display. The light pen latch may be triggered only once per
frame, and subsequent triggers within the same frame will have no
effect. Therefore, you must take several samples before turning the pen
to the screen (3 or more samples average), depending upon the char-
acteristics of your light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a built-in RS-232 interface for connection to
any RS-232 modem, printer, or other device. To connect a device to the
Commodore 64, all you need is a cable and a little bit of programming.

RS-232 on the Commodore 64 is set-up in the standard RS-232 for-
mat, but the voltages are TTL levels (0 to 5V) rather than the normal
RS-232 —12 to 12 volt range. The cable between the Commodore 64
and the RS-232 device should take care of the necessary voltage con-
versions. The Commodore RS-232 interface cartridge handles this prop-
erly.

The RS-232 interface software can be accessed from BASIC or from
the KERNAL for machine language programming.

RS-232 on the BASIC level uses the normal BASIC commands: OPEN,
CLOSE, CMD, INPUT#, GET#, PRINT#, and the reserved variable ST.
INPUT# and GET# fetch data from the receiving buffer, while PRINT#
and CMD place data into the transmitting buffer. The use of these com-
mands (and examples) will be described in more detail later in this
chapter.

The RS-232 KERNAL byte and bit level handlers run under the control
of the 6526 CIA #2 device timers and interrupts. The 6526 chip gener-

348 INPUT/OUTPUT GUIDE

ates NMI (Non-Maskable Interrupt) requests for RS-232 processing. This
allows background RS-232 processing to take place during BASIC and
machine language programs. There are built-in hold-offs in the KERNAL,
cassette, and serial bus routines to prevent the disruption of data stor-
age or transmission by the NMIs that are generated by the RS-232
routines. During cassette or serial bus activities, data can NOT be re-
ceived from RS-232 devices. But because these hold-offs are only local
(assuming you’re careful about your programming) no interference
should result.

There are two buffers in the Commodore 64 RS-232 interface to help
prevent the loss of data when transmitting or receiving RS-232 informa-
tion.

The Commodore 64 RS-232 KERNAL buffers consist of two first-in/
first-out (FIFO) buffers, each 256 bytes long, at the top of memory. The
OPENing of an RS-232 channel automatically allocates 512 bytes of
memory for these buffers. If there is not enough free space beyond the
end of your BASIC program no error message will be printed, and the
end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by using the CLOSE com-
mand.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second OPEN
statement will cause the buffer pointers to be reset. Any characters in
either the transmit buffer or the receive buffer will be lost.

Up to 4 characters can be sent in the filename field. The first two are
the control and command register characters; the other two are re-
served for future system options. Baud rate, parity, and other options
can be selected through this feature.

No error-checking is done on the control word to detect a non-
implemented baud rate. Any illegal control word will cause the system
output to operate at a very slow rate (below 50 baud).

BASIC SYNTAX:

OPEN 1fn,2,0,”<control register><command register><opt baud
low><opt baud high>"

Ifn—The logical file number (Ifn) then can be any number from 1
through 255. But be aware of the fact that if you choose a logical file
number that is greater than 127, then a line feed will follow all carriage
returns.

INPUT/OUTPUT GUIDE 349

BAUD RATE
0|0 |0]|o0|USERRATE

Sl B o|lojo|[1]| s0BAUD

0-1 STOP BIT

12 STOP BITS Sl I I I
olof1[1] 110
o[1]ofo| 1345
o[1]of1] 150
o[1[1]0| 300

WORD LENGTH ST T T oo

BIT DATA

6] 5| WORD LENGTH 1]olofo| 1200

olo| 8BITS 11001 1800 [NI]

01 7 BITS 1]ol1]0] 2400 (NI]

1lo| eBiITS 1o |1[1] 3600 (NI)

1] 1 5 BITS 1{1]o|o] 4800 NI]
1 [1o|1] 7200 (NI]

UNUSED —
1{1[1]0] 9600 (N1]
111 [1]1 [19200 (NI]

Figure 6-1. Control Register Map.

<control register>—1Is a single byte character (see Figure 6-1, Con-
trol Register Map) required to specify the baud rates. If the lower 4 bits
of the baud rate is equal to zero (0), the <opt baud low><opt baud

high> characters give you a rate based on the following:

<opt baud low>=<system frequency/rate/2—100— <opt baud

high>*256
<opt baud high>=INT((system frequency/rate/2—100)/256

350 INPUT/OUTPUT GUIDE

IEEEEEN

PARITY OPTIONS

BIT

BIT
6

BIT
5

OPERATIONS

0

PARITY DISABLED, NONE
GENERATED/RECEIVED

ODD PARITY
RECEIVER/TRANSMITTER

EVEN PARITY
RECEIVER/TRANSMITTER

MARK TRANSMITTED
PARITY CHECK DISABLED

SPACE TRANSMITTED
PARITY CHECK DISABLED

The formulas above

system frequency

DUPLEX

0-FULL DUPLEX
1-HALF DUPLEX

UNUSED

UNUSED

UNUSED

Figure 6-2. Command Register Map.

dard)

are based on the fact that:

HANDSHAKE

0-3 LINE
1-X LINE

= 1.02273E6 NTSC (North American TV stan-

= 0.98525E6 PAL (U.K. and most European TV

standard)

<command register> —Is a single byte character (see Figure 6-2,
Command Register Map) that defines other terminal parameters. This
character is NOT required.

INPUT/OUTPUT GUIDE 351

KERNAL ENTRY:

OPEN ($FFCO) (See KERNAL specifications for more information on
entry conditions and instructions.)

IMPORTANT NOTE: In a BASIC program, the RS-232 OPEN command should be per-
formed before creating any variables or arrays because an automatic CLR is per-
formed when an RS-232 channel is OPENed (This is due to the allocation of 512 bytes
at the top of memory.) Also remember that your program will be destroyed if 512
bytes of space are not available at the time of the OPEN statement.

GETTING DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel, the Commodore 64 re-
ceiver buffer will hold up to 255 characters before the buffer overflows.
This is indicated in the RS-232 status word (ST in BASIC, or RSSTAT in
machine language). If an overflow occurs, then all characters received
during a full buffer condition, from that point on, are lost. Obviously, it
pays to keep the buffer as clear as possible.

If you wish to receive RS-232 data at high speeds (BASIC can only go
so fast, especially considering garbage collects. This can cause the re-
ceiver buffer to overflow), you will have to use machine language
routines to handle this type of data burst.

BASIC SYNTAX:

Recommended: GET#Ifn, <string variable>
NOT Recommended: INPUT#Ifn ,<variable list>

KERNAL ENTRIES:

CHKIN ($FFC6)—See Memory Map for more information on entry and
exit conditions.

GETIN ($FFE4)—See Memory Map for more information on entry and
exit conditions.

CHRIN ($FFCF)—See Memory Map for more information on entry and
exit conditions.

352 INPUT/OUTPUT GUIDE

NOTES:

If the word length is less than 8 bits, all unused bit(s) will be assigned a value of
zero.

If a GET# does not find any data in the buffer, the character “ (a null) is returned.

If INPUT# is used, then the system will hang in a waiting condition until a non-null
character and a following carriage return is received. Therefore, if the Clear To Send
(CTS) or DataSsette Ready (DSR) line(s) disappear during character INPUT#, the sys-
tem will hang in a RESTORE-only state. This is why the INPUT# and CHRIN routines
are NOT recommended.

The routine CHKIN handles the x-line handshake which follows the EIA standard
(August 1979) for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Re-
ceived line signal (DCD) lines are implemented with the Commodore 64 computer
defined as’the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before
a full buffer hold-off occurs. The system will wait in the CHROUT routine

until transmission is allowed or the EMYAHd ond RESTORE keys
are used to recover the system through a WARM START.

BASIC SYNTAX:

CMD Ifn—acts same as in the BASIC specifications.
PRINT#I|fn,<variable list>

KERNAL ENTRIES:

CHKOUT ($FFC9)—See Memory Map for more information on entry
and exit conditions.

CHROUT ($FFD2)—See Memory Map for more information on entry
conditions.

INPUT/OUTPUT GUIDE 353

IMPORTANT NOTES: There is no carriage-return delay built into the output channel.
This means that a normal RS-232 printer cannot correctly print, unless some form of
hold-off (asking the Commodore 64 to wait) or internal buffering is implemented by
the printer. The hold-off can easily be implemented in your program. If a CTS (x-line)
handshake is implemented, the Commodore 64 buffer will fill, and then hold-off more
output until transmission is allowed by the RS-232 device. X-line handshaking is a
handshake routine that uses multi-lines for receiving and transmitting data.

The routine CHKOUT handles the x-line handshake, which follows the EIA standard
(August 1979) for RS-232-C interfaces. The RTS, CTS, and DCD lines are implemented
with the Commodore 64 defined as the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 file discards all data in the buffers at the time of
execution (whether or not it had been transmitted or printed out), stops
all RS-232 transmitting and receiving, sets the RTS and transmitted data
(Sout) lines high, and removes both RS-232 buffers.

BASIC SYNTAX:
CLOSE Ifn

KERNAL ENTRY:

CLOSE ($FFC3)—See Memory Map for more information on entry and
exit conditions.

NOTE: Care should be taken to ensure all data is transmitted before closing the
channel. A way to check this from BASIC is:

100 SS=ST: IF(SS=0 OR SS=8) THEN 100
110 CLOSE Ifn

354 INPUT/OUTPUT GUIDE

Table 6-1. User-Port Lines

(6526 DEVICE #2 Loc. $DDO0—$DDOF)

PIN | 6526 IN/
DESCRIPTION EIA ABV MODES

ID ID ouT

C PBO |RECEIVED DATA (BB) Sin IN 12
D PB1 |REQUEST TO SEND (CA) RTS OouT | 1*2
E PB2 | DATA TERMINAL READY | (CD) DTR OouT | 1*2

F PEB3 |RING INDICATOR (CE) RI IN 3

H PB4 |RECEIVED LINE SIGNAL | (CF) DCD IN 2

J PB5 | UNASSIGNED () XXX IN 3

K PB6 |CLEAR TO SEND (CB) CTS IN 2

L PB7 | DATA SET READY (CC) DSR IN 2

B |FLAG2 | RECEIVED DATA (BB) Sin IN 12
M PA2 |TRANSMITTED DATA (BA) Sout Oout| 12
A | GND |PROTECTIVE GROUND | (AA) GND 12
N | GND |SIGNAL GROUND (AB) GND 123
MODES:

1) 3-LINE INTERFACE (Sin,Sout,GND)

2) X-LINE INTERFACE

3) USER AVAILABLE ONLY (Unused/unimplemented in code.)
* These lines are held high during 3-LINE mode.

(71 [6] (5] [4] [3] [2] [1] [0O] (Machine Lang.—RSSTAT

:—PARITY ERROR BIT
i— FRAMING ERROR BIT
RECEIVER BUFFER OVERRUN BIT
RECEIVER BUFFER—EMPTY
(USE TO TEST AFTER A GET#)
CTS SIGNAL MISSING BIT
UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTED BIT

Figure 6-3. RS-232 Status Register.

INPUT/OUTPUT GUIDE 355

NOTES:

If the BIT=0, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST.

If ST is read by BASIC or by using the KERNAL READST routine the RS-232 status
word is cleared when you exit. If multiple uses of the STATUS word are necessary the
ST should be assigned to another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last
external 1/O used.

SAMPLE BASIC PROGRAMS

18 REM THIZ FPROGREAM ZEMDZ AMD RECEIWES DATH
TOAFRDM A SILEMT 7ol
11 FREM TERMIMAL MODIFIED FOR FET ASCII
28 FREM TI SILEMT 7@@ SET-UFP: Z@3@ BAUD, 7-BIT ASCIL.
MARE PARITY.
=1 REM FULL DUIFLEX
2@ REM SAME SET-UFP AT COMPUTER ILIZIMG Z-LIHE
IMTERFALCE
193 OFEM 2,2, 2 CHRECE+ZZ 0 +CHREECZZ+1 220 ' REM OFEM
THE CHAMHEL
118 GET#Z,A% FEM TURM OH THE RECEIVER CHAMHEL
CTOSS A MULL
298 FEM MAIW LOOF
21/ GET EBf:REM SET FROM COMPUTER KEYECOARD
220 IF BEC"" THEM PRIMTH#Z,E#£. :REM IF A KEY
FRESSED, SEMD TO TERMIMAL
223 GET#2,C%:FEM GET A KEY FROM THE TERMIMAL
243 PRIMY Bf.CE: CREM PRIMT ALL IMPUTS TO COMPUTER
SCREEH

298 SEs=sST: IF SRE=@A OF SR=2 THEW 2@ REM CHECE
STATUS, IF GOOD THEMW COMTIMUE
FEM ERREOR REFORTIMG
FRIMT "ERRORE: .
IF Sk AMD 1 THEHM FRIMT "FPARITY"
IF ZF AMD & THEHW FPRIMT "FRAME"
IF = AMD 4 THEW FRIMT "RECEIWER EBUFFER FULL"
IF SF AMD 123 THEM FRINT "EBREAK"
IF "“FEEEYS ¢ AMD 13 THEM 268 REM WAIT LUMTIL
CHARS TREAMZMITTED
CLOSE 2 EMD

3
1

Calt 0 ot Gt Gl 0 GO Qo i ,,\

=TT A
[i O R A I R N

356 INPUT/OUTPUT GUIDE

16 _FEM THIS FROGRAM SEMDS AWD FECEIVES TRUE ASCII
IATA

163 OFEM S,
116 DIN F?
204 FOR

A Tl ZTHE i
A FOR JI=£5 TO 4ﬁ } < HERT
FOR J=21 TO 35:
=k HERT

FOR J=132 TO 21!
THI1dE =16 THY
@ FOR JI=8 TO 255
A K=Tu0T
IF ¥
HET

PRIMT " "CHREZC147)
GET#5. A%

CATHEN FyoK o= Frik+1280=]

[} |‘.'

;B IF AF=""0F ST<0E THEM 266
228 FPRIMT " “"CHREFOISY) CHESCFRCASCOAE) 30
248 IF FROASCORE) »=324 THEW POKEZ1Z.6
258 GOTO "1|.1
ZE@ FRIMTCHREFCRW " “"CHRFCL1EGV) CHREZO1460 0 (GET AF
a7a IF AFC"THEMPRIMTHS, CHESCTHORASCORF) 20
A3 CT=CT+1
250 IF CT=2 THEMCT=@:RW=184-FY

416 GOTOZ1

RECEIVER/TRANSMITTER BUFFER BASE LOCATION
POINTERS

$00F7 —RIBUF—A two-byte pointer to the Receiver Buffer base loca-
tion.

$00F9-ROBUF—A two-byte pointer to the Transmitter Buffer base
location.

The two locations above are set up by the OPEN KERNAL routine, each
pointing to a different 256-byte buffer. They are de-allocated by writing
a zero into the high order bytes ($00F8 and $00FA), which is done by the
CLOSE KERNAL entry. They may also be allocated/de-allocated by the
machine language programmer for his/lher own purposes, removing/
creating only the buffer(s) required. When using a machine language
program that allocates these buffers, care must be taken to make sure
that the top of memory pointers stay correct, especially if BASIC pro-
grams are expected to run at the same time.

INPUT/OUTPUT GUIDE 357

ZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

$00A7 —INBIT—Receiver input bit temp storage.
$00A8-BITCl— Receiver bit count in.

$00A9—-RINONE —Receiver flag Start bit check.
$00AA—RIDATA —Receiver byte buffer/assembly location.
$00AB-RIPRTY —Receiver parity bit storage.

$00B4 —BITTS— Transmitter bit count out.

$00B5 - NXTBIT—Transmitter next bit to be sent.
$00B6—-RODATA —Transmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given
as a guide to understand the associated routines. These cannot be used
directly by the BASIC or KERNAL level programmer to do RS-232 type
things. The system RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293-M51CTR—Pseudo 6551 control register (see Figure 6-1).

$0294-M51COR—Pseudo 6551 command register (see Figure 6-2).

$0295-M51AJB—Two bytes following the control and command
registers in the file name field. These locations contain the
baud rate for the start of the bit test during the interface
activity, which, in turn, is used to calculate baud rate.

$0297 —RSSTAT —The RS-232 status register (see Figure 6-3).

$0298-BITNUM—The number of bits to be sent/received.

$0299-BAUDOF—Two bytes that are equal to the time of one bit
cell. (Based on system clock/baud rate.)

358 INPUT/OUTPUT GUIDE

$029B-RIDBE—The byte index to the end of the receiver FIFO
buffer.

$029C—-RIDBS—The byte index to the start of the receiver FIFO
buffer.

$029D—-RODBS —The byte index to the start of the transmitter FIFO
buffer.

$029E-RODBE—The byte index to the end of the transmitter FIFO
buffer.

$02A1-ENABL—Holds current active interrupts in the CIA #2 ICR.
When bit 4 is turned on means that the system is waiting for
the Receiver Edge. When bit 1 is turned on then the system is
receiving data. When bit 0 is turned on then the system is
transmitting data.

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside
world. By using the lines available at this port, you can connect the
Commodore 64 to a printer, a Votrax Type and Talk, a MODEM, even
another computer.

The port on the Commodore 64 is directly connected to one of the
6526 CIA chips. By programming, the CIA will connect to many other
devices.

PORT PIN DESCRIPTION

1 2 3 45 6 7 8 9 10 1112

IR

A BCDETFHUJKLMN

INPUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

PIN

TOP SIDE DESCRIPTION NOTES

1 GROUND

2 +5V (100 mA MAX.)

3 RESET By grounding this pin, the Commodore
64 will do a COLD START, resetting
completely. The pointers to a BASIC
program will be reset, and memory
will be cleared. This is also a RESET
output for the external devices.

4 CNTI Serial port counter from CIA #1 (SEE
CIA SPECS).

5 SP1 Serial port from CIA #1 (SEE 6526 CIA
SPECS).

6 CNT2 Serial port counter from CIA #2 (SEE
CIA SPECS).

7 SP2 Serial port from CIA #1 (SEE 6526 CIA
SPECS).

8 PC2 Handshaking line from CIA #2 (SEE
CIA SPECS).

9 SERIAL This pin is connected to the ATN line of

ATN the serial bus.

10 9 VAC+phase |Connected directly to the Commodore

1 9 VAC —phase |64 transformer (50 mA MAX.).

12 GND

BOTTOM SIDE

A GND The Commodore 64 gives you control

B FLAG2 over PORT B on CIA chip #1. Eight

C PBO lines for input or output are available,

D PB1 as well as 2 lines for handshaking with

E PB2 an outside device. The I/O lines for

F PB3 PORT B are controlled by two loca-

H PB4 tions. One is the PORT itself, and is lo-

J PB5 cated at 56577 ($DDO1 HEX). Naturally

K PB6 you PEEK it to read an INPUT, or POKE

L PB7 it to set an OUTPUT. Each of the eight

M PA2 I/O lines can be set up as either an

N GND INPUT or an OUTPUT by setting the

i DATA DIRECTION REGISTER properly.

360

INPUT/OUTPUT GUIDE

The DATA DIRECTION REGISTER has its location at 56579 ($DDO03
hex). Each of the eight lines in the PORT has a BIT in the eight-bit DATA
DIRECTION REGISTER (DDR) which controls whether that line will be an
input or an output. If a bit in the DDR is a ONE, the corresponding line
of the PORT will be an OUTPUT. If a bit in the DDR is a ZERO, the
corresponding line of the PORT will be an INPUT. For example, if bit 3 of
the DDR is setto 1, then line 3 of the PORT will be an output. A further
example:

If the DDR is set like this:

BIT#: 76543210
VALUE: 00111000

You can see that lines 5,4, and 3 will be outputs since those bits are
ones. The rest of the lines will be inputs, since those lines are zeros.
To PEEK or POKE the USER port, it is necessary to use both the DDR
and the PORT itself.
Remember that the PEEK and POKE statements want a number from
0—255. The numbers given in the example must be translated into dec-
imal before they can be used. The value would be:

25+ 22+ 22 =32+ 16+ 8 =56

Notice that the bit # for the DDR is the same number that = 2 raised to
a power to turn the bit value on.

(16 = 214=2%x2%X2x2, 8 = 213=2X2X2)

The two other lines, FLAG1 and PA2 are different from the rest of the
USER PORT. These two lines are mainly for HANDSHAKING, and are
programmed differently from port B.

Handshaking is needed when two devices communicate. Since one
device may run at a different speed than another device it is necessary
to give the devices some way of knowing what the other device is doing.
Even when the devices are operating at the same speed, handshaking is
necessary to let the other know when data is to be sent, and if it has
been received. The FLAG1 line has special characteristics which make it
well suited for handshaking.

FLAG1 is a negative edge sensitive input which can be used as a
general purpose interrupt input. Any negative transition on the FLAG line
will set the FLAG interrupt bit. If the FLAG interrupt is enabled, this will

INPUT/OUTPUT GUIDE 361

cause an INTERRUPT REQUEST. If the FLAG bit is not enabled, it can be
polled from the interrupt register under program control.

PA2 is bit 2 of PORT A of the CIA. It is controlled like any other bit in
the port. The port is located at 56576 ($DD00). The data direction regis-
ter is located at 56578 ($DDO02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICA-
TIONS IN APPENDIX M.

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Com-
modore 64 communicate with devices such as the VIC-1541 DISK DRIVE
and the VIC-1525 GRAPHICS PRINTER. The advantage of the serial bus
is that more than one device can be connected to the port. Up to 5
devices can be connected to the serial bus at one time.

There are three types of operation over a serial bus—CONTROL,
TALK, and LISTEN. A CONTROLLER device is one which controls operation
of the serial bus. A TALKER transmits data onto the bus. A LISTENER
receives data from the bus.

The Commodore 64 is the controller of the bus. It also acts as a
TALKER (when sending data to the printer, for example) and as a LIS-
TENER (when loading a program from the disk drive, for example).
Other devices may be either LISTENERS (the printer), TALKERS, or both
(the disk drive). Only the Commodore 64 can act as the controller.

All devices connected on the serial bus will receive all the data
transmitted over the bus. To allow the Commodore 64 to route data to its
intended destination, each device has a bus ADDRESS. By using this
device address, the Commodore 64 can control access to the bus. Ad-
dresses on the serial bus range from 4 to 31.

The Commodore 64 can COMMAND a particular device to TALK or
LISTEN. When the Commodore 64 commands a device to TALK, the de-
vice will begin putting data onto the serial bus. When the Commodore
64 commands a device to LISTEN, the device addressed will get ready to
receive data (from the Commodore 64 or from another device on the
bus). Only one device can TALK on the bus at a time; otherwise, the data
will collide and the system will crash in confusion. However, any number
of devices can LISTEN at the same time to one TALKER.

362 INPUT/OUTPUT GUIDE

COMMON SERIAL BUS ADDRESSES

NUMBER DEVICE
4 or 5 VIC-1525 GRAPHIC PRINTER
8 VIC-1541 DISK DRIVE

Other device addresses are possible. Each device has its own ad-
dress. Certain devices (like the Commodore 64 printer) provide a choice
between two addresses for the convenience of the user.

The SECONDARY ADDRESS is to let the Commodore 64 transmit setup
information to a device. For example, to OPEN a connection on the bus
to the printer, and have it print in UPPER/LOWER case, use the following:

OPEN 1,4,7

where,
1 is the logical file number (the number you PRINT# to),
4 is the ADDRESS of the printer, and
7 is the SECONDARY ADDRESS that telis the printer to go intc UPPER/
LOWER case mode.

There are 6 lines used in serial bus operation—3 input and 3 output.
The 3 input lines bring data, control, and timing signals into the Com-
modore 64. The 3 output lines send data, control, and timing signals
from the Commodore 64 to external devices on the serial bus.

SERIAL BUS PINOUTS

PIN DESCRIPTION
1 SERIAL SRQ IN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL CLK IN/OUT
) SERIAL DATA IN/OUT
| 6 NO CONNECTION

INPUT/OUTPUT GUIDE 363

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can bring this signal LOW when it re-
quires attention from the Commodore 64. The Commodore 64 will then
take care of the device. (See Figure 6-4).

NORMAL
H BYTE SENT UNDER ATTENTION (TO DEVICES)—~I T”DATA BYTES
ATN \ /
| ’
CLOCK l I TSIIIHHIHIHHH
~TaT~ } |TNE\I‘H—TV —~{Tgh-
s T [WUEEEEEE L
] L— LSB MSB
T } [
HT DATA VALID 7
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED
END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)
ATN
TALKER READY-TO-SEND TALKER SENDING
}
CLOCK ||||||||
|~—L-Tgs Tsh|-LTy | |

DATA |4 E 1 | |
Mee 4lTH LTYEJTE|1-~—TRY
! LISTENER READY-FOR-DATA
EOI-TIMEOUT HANDSHAKE SYSTEM LINE

LISTENER READY-FOR-DATA RELEASE
TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

J L

L—»LTFR

ATN J DEVICE ACKNOWLEDGES IT IS NOW TALKER
TALKER READY-TO-SEND

cock [N t| | TNE
| *ITRI‘, TDCITDA.’ [4Tv
|] g I EEEE

MS[IBTF | *| Ty !—- Lo M-S.IBTF L—

READY FOR DATA
BECOMES LISTENER, CLOCK = HIGH, DATA LOW

Figure 6-4. Serial

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this signal to start a command sequence for
a device on the serial bus. When the Commodore 64 brings this signal
LOW, all other devices on the bus start listening for the Commodore 64
to transmit an address. The device addressed must respond in a preset
period of time; otherwise, the Commodore 64 will assume that the de-
vice addressed is not on the bus, and will return an error in the STATUS
WORD. (See Figure 6-4).

TALKER READY-TO-SEND

TALKER SENDING
Ts Tne
T | [N | ~Teg~ |\ 4Ty
B 0 K
L =
T M DATAVALD Bty
LISTENER READY-FOR.DATA LISTENER DATA-ACCEPTED

SERIAL BUS TIMING

Description Symbol | Min. Typ- Max.
ATN RESPONSE (REQUIRED)' TaT — — 1000yt
LISTENER HOLD-OFF Th 0 — o
NON-EOI RESPONSE TO RFD?2 TnE — 40pts | 200ps
BIT SET-UP TALKER# Ts 20ps 70ps —
DATA VALID Ty 204ts 20418 —
FRAME HANDSHAKE3 T 0 20 1000uts
FRAME TO RELEASE OF ATN TR 2018 — —
BETWEEN BYTES TIME Tgg 100us — —
EOI RESPONSE TIME Tve 200ps | 2504s —
EOI RESPONSE HOLD TIME® Tg 60415 — —
TALKER RESPONSE LIMIT Thy 0 30us 60us
BYTE-ACKNOWLEDGE*) 20y1s 30s —
TALK-ATTENTION RELEASE Trk 20ys 30ys 100yts
TALK-ATTENTION ACKNOWLEDGE Toe 0 — —
TALK-ATTENTION ACK. HOLD Tpa 80us — —
EOI ACKNOWLEDGE TeR 60sts — —

Notes:

1. If maximum time exceeded, device not present error.

2. 1f maximum time exceeded, EOQl response required.

3. If maximum time exceeded, frame error.

4. Ty and Tpg minimum must be 60yts for external device to be a talker.
5. Tg minimum must be 80yts for external device to be a listener.

Bus Timing.

INPUT/OUTPUT GUIDE 365

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing the data sent on the serial bus. (See
Figure 6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line. (See
Figure 6-4.)

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on
the back of the Commodore 64. With the Commodore 64 facing you, the
expansion connector is on the far right of the back of the computer. To
use the connector, a 44-pin (22/22) male edge connector is required.

This port is used for expansions of the Commodore 64 system which
require access to the address bus or the data bus of the computer.
Caution is necessary when using the expansion bus, because it's possi-
ble to damage the Commodore 64 by a malfunction of your equipment.

The expansion bus is arranged as follows:

2221201918 17161514131211109 8 7 6 5 4 3 2 1

ZYXWVUTSRPNMLKJIJHFEDCSBA

The signals available on the connector are as follows:

NAME [PIN DESCRIPTION
GND 1 | System ground
+5 VDC | 2 |(Total USER PORT and CARTRIDGE devices can
+5 VDC | 3 |draw no more than 450 mA.)
RQ 4 |Interrupt Request line to 6502 (active low)
RIW 5 |Read/Write
DOT
CLOCK 6 |8.18 MHz video dot clock
/o1 7 |1/O block 1 @ $DE0O0— $DEFF (active low) unbuffered 1/O
GAME 8 |active low Is ttl input
"EXROM 9 |active low Is ttl input
1/02 10 [1/O block 2 @ $DFOO—$DFFF (active low) buff‘ed Is tl
output

366 INPUT/OUTPUT GUIDE

NAME

DESCRIPTION

ROML
BA
DMA

D7
D6

D5

D4

D3

D2

D1

DO
GND
GND
ROMH
RESET
NMI

¢2
A1l5
Al4
A13
Al12
All
A10
A9
A8
A7
A6
A5
A4
A3
A2
Al
AOQ
GND

N<X<XS<CAHwD®mODZIT-~AR-ITm

8K decoded RAM/ROM block @ $8000 (active low)
buffered Is ttl output

Bus available signal from the VIC-II chip
unbuffered 1 Is load max.

Direct memory access request line (active low input)
Is ttl input

Data bus bit 7 W
Data bus bit 6
Data bus bit 5
Data bus bit 4 \ unbuffered, 1 Is tl load max
Data bus bit 3
Data bus bit 2
Data bus bit 1
Data bus bit 0 J
System ground

8K decoded RAM/ROM block @ $E000 buffered

6502 RESET pin (active low) buff’ed ttl out/unbuff‘ed in
6502 Non Maskable Interrupt (active low) buff’ed ttl out,
unbuff’ed in

Phase 2 system clock
Address bus bit 15 Y
Address bus bit 14
Address bus bit 13
Address bus bit 12
Address bus bit 11
Address bus bit 10
Address bus bit 9
Address bus bit 8 L unbuffered, 1 Is ttl load max
Address bus bit 7
Address bus bit 6
Address bus bit 5
Address bus bit 4
Address bus bit 3
Address bus bit 2
Address bus bit 1
Address bus bit 0 _J
System ground

Overbar means active low

INPUT/OUTPUT GUIDE 367

Following is a description of some important lines on the expansion
port:

Pins 1,22,A,Z are connected to the system ground.

Pin 6 is the DOT CLOCK. This is the 8.18-MHz video dot clock. All
system timing is derived from this clock.

Pin 12 is the BA (BUS AVAILABLE) signal from the VIC-II chip. This line
will go low 3 cycles before the VIC-Il takes over the system busses, and
remains low until the VIC-Il is finished fetching display information.

Pin 13 is the DMA (DIRECT MEMORY ACCESS) line. When this line is
pulled low, the address bus, the data bus, and the Read/Write line of
the 6510 processor chip enter high-impedance state mode. This allows
an external processor to take control of the system busses. This line
should only be pulled low when the ¢2 clock is low. Also, since the
VIC-Il chip will continue to perform display DMA, the external device
must conform to the VIC-II timing. (See VIC-II timing diagram.) This line
is pulled up on the Commodore 64.

Z-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how
versatile your Commodore 64 really is. But what makes this machine
even more capable of meeting your needs is the addition of peripheral
equipment. Peripherals are things like Datassette™ recorders, disk
drives, printers, and modems. All these items can be added to your
Commodore 64 through the various ports and sockets on the back of
your machine. The thing that makes Commodore peripherals so good is
the fact that our peripherals are “intelligent.” That means that they don’t
take up valuable Random Access Memory space when they're in use.
You're free to use all 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most programs
you write on your Commodore 64 today will be upwardly compatible
with any new Commodore computer you buy in the future. This is par-
tially because of the qualities of the computer’s Operating System (OS).

However, there is one thing that the Commodore OS can’t do: make
your programs compatible with a computer made by another company.

368 INPUT/OUTPUT GUIDE

Most of the time you won’t even have to think about using another com-
pany’s computer, because your Commodore 64 is so easy to use. But for
the occasional user who wants to take advantage of software that may
not be available in Commodore 64 format we have created a Commo-
dore CP/M® cartridge.

CP/M® is not a “computer dependent”’ operating system. Instead it
uses some of the memory space normally available for programming to
run its own operating system. There are advantages and disadvantages
to this. The disadvantages are that the programs you write will have to
be shorter than the programs you can write using the Commodore 64’s
built-in operating system. In addition, you can NOT use the Commodore
64's powerful screen editing capabilities. The advantages are that you
can now use a large amount of software that has been specifically de-
signed for CP/M® and the Z-80 microprocessor, and the programs that
you write using the CP/M® operating system can be transported and run
on any other computer that has CP/M® and u Z-80 card.

By the way, most computers that have a Z-80 microprocessor require
that you go inside the computer to actually install a Z-80 card. With this
method you have to be very careful not to disturb the delicate circuitry
that runs the rest of the computer. The Commodore CP/M® cartridge
eliminates this hassle because our Z-80 cartridge plugs into the back of
your Commodore 64 quickly and easily, without any messy wires that
can cause problems later.

USING COMMODORE CP/M®

The Commodore Z-80 cartridge let’s you run programs designed for a
Z-80 microprocessor on your Commodore 64. The cartridge is provided
with a diskette containing the Commodore CP/M® operating system.

RUNNING COMMODORE CP/M®
To run CP/M@®;

1) LOAD the CP/M® program from your disk drive.
2) Type RUN.

3) Hit the key.

INPUT/OUTPUT GUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessi-
ble by the built-in 6510 central processor, OR 48K bytes of RAM are
available for the Z-80 central processor. You can shift back and forth
between these two processors, but you can NOT use them at the same
time in a single program. This is possible because of your Commodore
64’s sophisticated timing mechanism.

Below is the memory address translation that is performed on the
Z-80 cartridge. You should notice that by adding 4096 bytes to the
memory locations used in CP/M® $1000 (hex) you equal the memory
addresses of the normal Commodore 64 operating system. The corre-
spondence between Z-80 and 6510 memory addresses is as follows:

Z-80 ADDRESSES 6510 ADDRESSES
DECIMAL HEX DECIMAL HEX

0000—-4095 0000—O0FFF 4096—-8191 1000— 1FFF

4096-8191 1000- 1FFF 8192-12287 2000—2FFF

8192—-12287 2000—-2FFF 12288-16383 3000—3FFF
12288—-16383 3000—3FFF 16384-20479 4000—4FFF
16384—-20479 4000—4FFF 20480-24575 5000— 5FFF
20480-24575 5000— 5FFF 24576-28671 6000—6FFF
24576-28671 6000—6FFF 28672-32767 7000—7FFF
28672--32767 7000—7FFF 32768—-36863 8000—8FFF
32768-36863 8000—-8FFF 36864—-40959 9000—9FFF
36864—40959 9000—9FFF 40960—-45055 AO000—AFFF
40960—-45055 AO00O0—AFFF 45056—-49151 BOOO—BFFF
45056—-49151 BOOO—BFFF 49152-53247 CO00—CFFF
49152—-53247 CO00—CFFF 53248—-57343 DOOO—DFFF
53248-57343 DO0O— DFFF 57344-61439 EOOO—EFFF
57344—-61439 EOOO —EFFF 61440-65535 FOOO—FFFF
61440—-65535 FOOO—-FFFF 0000- 4095 0000—O0FFF

370 INPUT/OUTPUT GUIDE

To TURN ON the Z-80 and TURN OFF the 6510 chip, type in the follow-
ing program:

TO BE USED WITH THE &8@ CAkD

1 FEH THI=
¢ 'THF SECTETA AT F LSRN

IT FI

15 AMD EMARLES
ST OBE TURHED

ST
FEHD

MONED

FOCODE TO TE

G HEM

DFHTH TR

BE PR

COUR ZE0 CARD REGUIRES

DATA HERE
0 REM LD HL. WM GLOCATION G

AT THAT LOCAT IOH

DFATH
DETH
TFTH
DHTH

EM LT CHHY . A
: - HIOF
FEM JHF 0

For more details about Commodore CP/M® and the Z-80 microproces-
sor look for the cartridge and the Z-80 Reference Guide at your local
Commodore computer dealer.

INPUT/OUTPUT GUIDE 37

APPENDICES

373

APPENDIX A

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo-
dore 64 BASIC allows the user to abbreviate most keywords. The ab-

breviation for PRINT is a question mark. The abbreviations for other

words are made by typing the first one or two letters of the word, fol-
lowed by the SHIFTed next letter of the word. If the abbreviations are

used in a program line, the keyword will LIST in the full form.

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
ABS ABmE: ~[]] END e EE N e [/
a0 AE@EN A/ EXP e B x E [
ASC AEEs AV FN NONE FN
ATN A B 1 Al FOR F @ o F]
cirs c @@+ <[] FRE F EED R P
coste ci@m@o <[] GET c B ¢ ¢ &
CLR c EmE. cd GET# NONE GET#
cmo ¢ E@m [\ cosue GOEERS Go[v)
conT c @Eo c[] coro c@mo o [
cos NONE cos IF NONE IF
pATA D EIED A D (4] INPUT NONE INPUT
DEF O siiiFr I o [INPUT# | N L)
DIM o CED N INT NONE INT
374 APPENDIX A

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
terts L (ED F te[4 RIGHTs R [ER | RN]
LEN NONE LEN RND R EER N R [
LET . O ¢ L 3 RUN R EER v R[A
LisT W shie t K] save s (G A s (4]
oAb LEmEo [SGN s B ¢ s[[]
LOG ~ NONE LOG SIN Y shirr I N
mios MEER mKE] sPC(s 6 P s
NEW NONE NEW SQR S Q s @
NEXT N (IED ¢ N STATUS ST ST
Nt NE@o N[ster sT(EHED € S|
ON NONE ON stor s G T s [
oPeN OFIER P o] st STENERR ST
OR NONE OR SYS s €@ v s [
PEEK Y shier i3 P TAB(T BGED A T [#]
POKE r E&E o P [:] TAN NONE TAN
POS NONE POS THEN T H T[]
PRINT 2 ? TIME T T
PRINT# P [BIIaD R P Q TIME$ TI$ TI$
ReaD R (ENED E R |usk v B s u (V]
REM NONE REM VAL vVEGE A v(4
RESTORE RE [S RE [v] veriry v (EXED ¢ v]
RETURN RE (IR 7 Re([] (war wEDED A w4

APPENDIX A 375

APPENDIX B

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore
64 character sets. It shows which numbers should be POKEd into screen
memory (locations 1024-2023) to get a desired character. Also shown is
which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at
the same time you have characters from the other set displayed. The
sets are switched by holding down the and @ keys simul-
taneously.

From BASIC, POKE 53272,21 will switch to upper case mode and
POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The
reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKE the code
for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each
character displayed on the screen (locations 55296-56295). To change
the color of the circle to yellow (color code 7) you would POKE the corre-
sponding memory location (55776) with the character color: POKE
55776,7.

Refer to Appendix D for the complete screen and color memory maps,
along with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 2764,
91-93, 96-104, 106-121, 123—-127.

SCREEN CODES

SETt1 SET2 POKE | SET1 SET2 POKE ‘ SET1 SET2 POKE

@ 0 Cc c 3 F f 6
A a 1 D d 4 G g 7
B b 2 E e 5 H h 8

376 APPENDIX B

POKE

n
©

©0
o

~
[{e]

@
(e}

02}
(7o}

o
~

-~
N~

N
~

()
~

<
~

wn
~

[{e]
~

~
~

@©
N~

(o}
~

o
@

4l
@®

[§Y)
@

™
@

<
@

n
@

o
@

~
@

@©
@

D
@

o
o]

1
o]

N
(o2}

m < mMOOWUwWOQ OGT-—- > 132Z 0adacwkr->D>32 X >N

7]

b 00D 0DOE5H4PNONLODEORIENXO e k&
Y 5889592399522 38R 38853885883
o~

[,

@

m%&,(\).+,m —~ O ~ N O < O o N ® O -<__>9.DH_
(7]
flocroereer 223 s8R IRENRRBS 8838 8
~N

5l - — x — E £ o a o = ® < 3 > 3 X > N

(7]

mIJKLMNOPORSTUVWXYZ[E]T& - * &
7]

377

APPENDIX B

S8ET1 S8ET2 POKE| S8ET1 SET2 POKE | SET1 S8ET2 POKE
il 3 | P @ 15| L 117
B s« 106 | (1 118
N N | [H w07 | O 119

9% | [m 108 | ™ 120
L o7 | [109 | (o 121
- 9% | {) 110 | 122
] 9% | 11 | g 123
O 100 | [H 12 | W 124
[101 | 1 13 | H] 125
2 102 | 114 | W] 126
] 103 | H] 115 | Mg 127
™ 104 | L[] 116

378

Codes from 128-255 are reversed images of codes 0-127.

APPENDIX B

APPENDIX C

ASCIl AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT
CHR$(X), for all possible values of X. It will also show the values ob-
tained by ty