

COMMODORE 641[

PROGRAMMER1S
REFERENCE GUIDE

P u b l ished by

Commodore Bus i ness Mach i nes, I nc.

First Edition

Eleventh Printing - 1984

Copyright © 1982 by Commodore Business Machines, Inc.

All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica­

tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior

written permission of COMMODORE BUSINESS MACH I NES, Inc.

ii

TABLE OF CONTENTS

INTRODUCTION . ix

• What's Inc l uded? . x

• How to Use This Reference Guide . xi
• Commodore 64 Appl ications Guide . XII
• Commodore I nformation Network . xvi i

1. BASIC PROGRAMMING RULES
• Introd uction . .

• Screen Display Codes (BASIC Character Set)

The Operating System (OS) . .

• Programming Numbers and Va riables

Integer, F loating-Point and Str ing Consta nts

I nteger, F loati ng-Po int and Str ing Variab les

Integer, F loating-Po int and Str ing Arrays

• Expressions and Operators . .

Arithmetic Expressions . .

Arithmetic Operations . .

Relational Operators . .

Log ica l Operators . .

H iera rchy of Operations . .

String Operations . .

Stri ng Expressions . .

• Programming Techn iques . .

Data Conversions . .

Using the IN PUT Statement . .

Using the GET Statement . .
How to Crunch BASIC Programs . .

2. BASIC LANGUAGE VOCABULARY

• Introduction . .

• BASIC Keywords, Abbreviations, and Function Types
• Descr iption of BASIC Keywords (Alphabetica l)

• The Commodore 64 Keyboard and Features

• Screen Ed itor . .

iii

1
2
2
2
4
4
7
8
9

1 0
1 0
1 2
J3
1 5
1 6
1 7
1 8
1 8
1 8
22
24

29
30
3 1
35
93
94

3 . PROGRAMMING GRAPHICS ON THE
COMMODORE 64 . 99

• Graph ics Overview . 1 00
Character Display Modes . 1 00
Bit Map Modes . 1 00
Sprites . 1 00

• Graph ics locations . 1 0 1
Video Bank Selection . 1 0 1
Screen Memory . 1 02
Color Memory . 1 03
Character Memory . 1 03

• Sta ndard Character Mode . 1 07
Character Defin it ions . 1 07

• Programmable Characters 1 08

• Mu lti-Color Mode Gra ph ics . . . 1 1 5
Mu lti-Color Mode Bit . 1 1 5

• Extended Backg round Color Mode . 1 20

• Bit Ma pped Graph ics . 1 2 1
Sta ndard H igh-Resol ution Bit Map Mode 1 22
How It Works . 1 22

• Multi-Co lor Bit Map Mode . 1 27

• Smooth Scro l l i ng . 1 28

• Sprites . 1 3 1
Defin ing a Sprite . 13 1
Sprite Poi nters . 1 33
Turn i ng Sprites On . 1 34
Turn ing Sprites Off . 1 35
Colors . 1 35
Mu lti-Color Mode . 1 35
Setti ng a Sprite to Mu lti-Color Mode 136
Expa nded Sprites 1 36
Sprite Position ing . 1 37
Sprite Position ing Summary . 1 43
Sprite Display Priorities . 1 44
Co l l is ion Detects . 1 44

• Other Graph ics Featu res . 1 50
Screen B lanking . 1 50
Raster Reg ister . 1 50
Interrupt Status Reg ister . 1 5 1
Suggested Screen and Character Color Combi nations . . . 1 52

iv

• Programming Sprites-Another Look 1 53
Making Sprites i n BASIC-A Short Program 1 53
Crunch ing Your Sprite Programs . 1 56
Position ing Sprites on the Screen . 1 57
Sprite Priorities . 1 6 1
Drawing a Sprite . 1 62
Creating a Sprite . . . Step by Step 1 63
Movi ng Your Sprite on the Screen . 1 65
Vertica l Scro l l i ng . 1 66
The Dancing Mouse -A Sprite Program Example 1 66
Easy $pritema king Chart . 1 76
Spritemaking Notes . 1 77

4. PROGRAMMING SOUND AND MUSIC
ON YOUR COMMODORE 64 . . . 1 83
• I n troduction . 1 84

Volume Contro l . 1 86
Frequencies of Sound Waves . 1 86

• Using Multi p le Voices . 1 87
Contro l l i ng Mult ip le Voices . 1 9 1

• Changing Waveforms . 1 92
Understanding Waveforms . 1 94

• The Enve lope Generator . 1 96
• Fi ltering . 1 99
• Advanced Techn iques . 202
• Synchron ization and Ring Modulation 207

5. BASIC TO MACHINE LANGUAGE 209
• What is Mach ine La nguage? . 2 1 0

What Does Machine Code Look Li ke? 21 1
Simple Memory Ma p of the Commodore 64 2 1 2
The Reg isters I nside the 65 1 0 Microprocessor 2 1 3

• How Do You Write Machine La nguage Programs? 2 1 4
64MON . 2 1 5

• Hexadecimal Notation . 2 1 5
Your F i rst Machine Language Instruction 2 1 8
Writi ng Your F i rst Prog ram . 220

• Add ressi ng Modes . 22 1
Zero Page . 22 1
The Stack . 222

v

• I ndexing . 223
I nd i rect I ndexed . 223
Indexed Ind i rect . 224
Branches and Test ing . 226

• Subroutines . 228
• Useful Tips for the Beg i nner . 229
• Approach ing a Large Task . 230
• MCS65 1 0 Microprocessor Instruction Set-

Alphabetic Sequence . 232
Instruction Address i ng Modes a nd

Related Execution Times . 254
• Memory Ma nagement on the Commodore 64 260
• The KERNAL . 268
• KERNAL Power-U p Activities . 269

How to Use the KE RNAL . 270
User Ca l lab le KERNAL Routines . 272
E rror Codes . 306

• Using Mach ine La nguage From BASIC 307
Where to Put Mach ine La nguage Routines 309
How to Enter Mach i ne Language . 309

• Commodore 64 Memory Map . 3 1 0
Commodore 64 I nput/Output Ass ignments 320

6. INPUT/OUTPUT GUIDE . 335
• Introduction . 336
• Output to the TV . 336
• Output to Other Devices . 337

Output to Printer . 338
Output to Modem . 339
Working With Cassette Tape . 340
Data Storage on F loppy Diskettes . 342

• The Game Ports . 343
Padd les . 346
Light Pen . 348

• RS-232 I nterface Description . 348
Genera l Outl i ne . 348
Open ing an RS-232 Channe l . 349
Gett ing Data F rom an RS-232 Channe l 352
Send i ng Data to an RS-232 Channel 353
C los ing an RS-232 Data Channe l . 354
Sample BASIC Programs . 356

vi

Receiver/Transmitter Buffer Base location Pointers 357
Zero-Page Memory locations and Usage

for RS-232 System I nterface . 358
Nonzero-Page Memory locations a nd Usage

for RS-232 System I nterface . 358
• The User Port . 359

Port Pin Description 359
• The Seria l Bus . 362

Ser ia l Bus P inouts . 363
• The Expansion Port . 366
• Z-80 Microprocessor Cartridge . 368

Us ing Commodore C P/M® . 369
Runn ing Commodore C P/M® . 369

APPENDICES . 373
A. Abbreviations for BASIC Keywords . 374
B. Screen Display Codes . 376
C. ASCI I a nd CHR$ Codes . 379
D . Screen and Color Memory Maps . 382
E . Music Note Va l ues . 384
F . B ib l iography . 388
G. VIC Chip Reg ister Map . 391
H. Deriv ing Mathematical Functions . 394
I . Pinouts for I nput/Output Devices . 395
J . Converti ng Standard BASIC Programs to

Commodore 64 BASIC . 398
K. Error Messages . 400
l. 65 1 0 Microprocessor Ch ip Specifications 402
M. 6526 Complex I nterface Adapter (CIA)

Ch ip Specifications . 4 1 9
N . 6566/6567 (VIC- I I) Ch ip Specifications 436
O. 658 1 Sound I nterface Device (SI D) Ch ip Specifications . . . 457
P. G lossary . 482

INDEX . 483

COMMODORE 64 QUICK REFERENCE CARD 487

SCHEMATIC DIAGRAM OF THE COMMODORE 64 491

vii

INTRODUCTION

The COMMODORE 64/EXECUTIVE 64 PROGRAMMER'S REFERENCE

GUIDE has been developed as a working tool and reference source for
those of you who want to maximize your use of the bu i lt- in capabi lities
of your COMMODORE 64 and EXECUTIVE 64. This manua l contains the
information you need for your programs, from the s implest example a l l
the way to the most complex. The PROGRAMMER'S REFERENCE GUIDE

is designed so that everyone from the beginning BAS IC programmer to
the professional experienced in 6502 machine language can get infor­
mation to develop his or her own creative programs . At the same time
this book shows you how clever your 64 rea l ly i s .

Th is REFERENCE GUIDE is not designed to teach the BAS IC pro­
g ramming language or the 6502 machine language. There i s , however,
an extensive g lossary of terms and a "semi-tutoria l" approach to many
of the sections in the book. I f you don't a l ready have a working knowl­
edge of BAS IC and how to use it to program, we suggest that you study
the COMMODORE 64 USER'S GUIDE that came with your computer. The
USER'S GUIDE gives you an easy to read introduction to the BAS IC pro­
g ramming language . I f you sti l l have difficu lty understand ing how to use
BAS IC then turn to the back of this book (or Appendix N in the USER'S

GUIDE) and check out the Bib l iogra phy.
The COMMODORE 64/EXECUTIVE 64 PROGRAMMER'S REFERENCE

GUIDE is just that; a reference. Like most reference books , your abi l ity to
a pply the information creatively rea l ly depends on how much knowledge
you have about the subject. I n other words if you a re a novice pro­
grammer you wil l not be able to use a l l the facts and figu res in this book
unti l you expand your current programming knowledge.

ix

What you can do with this book is to find a considerable amount of
valuable programming reference informotion written in easy to read,
p lo in Engl ish with the programmer's jargon explained . On the other
hand the programming professional wi l l find a l l the information needed
to use the capabi l ities of the 64 effectively.

WHAT'S INCLUDED?

• Our complete "BASIC dictionary" inc ludes Commodore BASIC lan­
g uage commands, statements and functions l isted in alphabetical
order. We've created a "quick l ist" which contains a l l the words
and their abbreviations . This i s followed by a section conta in ing a
more detai led definition of each word along with sample BASIC
programs to il lustrate how they work.

• I f you need an introduction to using machine language with BASIC
programs our layman's overview wi l l get you started.

• A powerful feature of a l l Commodore computers is cal led the KER­
NAl . I t helps insure that the programs you write today can a lso be
used on your Commodore computer of tomorrow.

• The I nput/Output Programming section g ives you the opportunity to
use your computer to the l imit. It describes how to hook-up and use
everything from l ightpens and joysticks to disk drives, printers, and
telecommunication devices ca l led modems .

• You can explore the world of SPRITES, programmable characters,
a nd high resolution g raphics for the most deta i led and advanced
an imated pictures in the microcomputer industry.

• You can a lso enter the world of music synthesis and create your
own songs and sound effects with the best bui lt-i n synthesizer
avai lable i n any persona l computer.

• I f you're an experienced programmer, the soft load language sec­
tion g ives you information about the 64's abi l ity to run CP/M* and
high level languages. This is in addition to BAS IC .

Th ink of your 64 PROGRAMMER'S REFERENCE GUIDE as a useful tool
to help you and you wi l l enjoy the hours of programming ahead of you .

'CP/M i s a registered trademark af Digital Research, Inc .

x I NTRODUCTION

HOW TO USE THIS REFERENCE GUIDE

Throughout this manual certain conventional notations are used to de­
scribe the syntax (programming sentence structure) of BASIC commands
or statements and to show both the requi red and optional parts of each
BAS IC keyword . The rules to use for interpreting statement syntax are as
fol lows:

1 . BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spelled exactly as shown .

2 . Items shown within quotation marks (" ") indicate variable data
which you must put in. Both the quotation marks and the data
inside the quotes must appear where shown in each statement.

3. Items inside the square brackets ([]) indicate an optional state­
ment parameter. A parameter is a l imitation or additional q ual ifier
for your statements . If you use an optiona l parameter you must
supply the data for that optional parameter. In addition, e l l ipses
(. . .) show that an optional item can be repeated as many times
as a programming line a l lows.

4. If an item in the square brackets ([]) i s U N DERLINED, that means
that you MUST use those certain characters in the optional pa­
rameters, and they also have to be spel led exactly as shown.

5. Items inside ang le brackets «» indicate variable data which you
provide. While the s lash (/) indicates that you must make a choice
between two mutual ly exclusive options.

EXAMPLE OF SYNTAX FORMAT:

OPEN <fi le-n u m > , < devi ce> [' <add ress> l, ["<d rive > : <fi le­
name>] L<mode>]"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,"0:STOCK FOLIO,S, W"
20 OPEN 1 , 1 ,2,"CHECKBOOK"
30 OPEN 3,4

When you actual ly apply the syntax conventions in a practical situa­
tion, the sequence of porameters in your statements might not be
exactly the same as the sequence shown in syntax examples . The
examples are not meant to show every possible sequence. They a re
intended to present a l l requ i red and optional parameters.

INTRODUCTION xi

Prog ramming examples in this book a re shown with bla nks separating
words and operators for the sake of readabi l ity . Norma lly though ,
BAS IC doesn't requ i re b lanks between words un less leaving them out
would g ive you an ambiguous or incorrect syntax .

Shown below a re some examples and descriptions of the symbols
used for va rious statement parameters in the fol lowing chapters . The l ist
is not meant to show every possibi l ity, but to g ive you a better under­
stand ing as to how syntax examples a re presented .

SYMBOL
<flle-num>
<device>
<address>

<drive>
<fi le-name>
<constant>

<variable>

<string>
<number>

50
4
1 5

o

EXAMPLE

"TEST . DATA"
"ABCDEFG"

X 1 45

AB$
1 2345

<l ine-number> 1 000
<numeric> 1 .5E4

DESCRIPTION
A logical file n umber
A hardware device number
A serial bu s secondary
device address
number
A physical d isk d rive number
The name of a data or prog ram fi le
Lite ral data suppl ied by
the programmer
Any BAS IC data variable name or
constant
Use of a string type variable required
Use of a numeric type variable
requ i red
An actua l prog ram l ine number
An integer o r floating-point variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought a bout buying a computer you probably asked
you rself, "Now that I can afford to buy a computer, what can I do with
it once I get one?"

The g reat thing a bout your COMMODORE 64 is that you can make it
do what YOU want it to do ! You can make it ca lc u late and keep track of
home and business budget needs . You can use it for word process ing .
You can make it play a rcade-style action games. You can make it sing .
You can even c reate you r own an imated ca rtoons, and more . The best
part of owning a COMMODORE 64 is that even if it did on ly one of the
th ings l isted below it would be well worth the price you paid for it. But
the 64 is a complete computer and it does do EVERYTH ING l isted and
then some !

xii INTRODUCTION

By the way, in addition to everything here you can pick up a lot of
other c reative and practical ideas by sign ing up with a local Commo­
dore Users' C lub, subscribing to the COMMODORE and POWER/PLAY
magazines, and joining the COMMODORE INFORMATION NETWORK on
CompuServe ™ .

APPLICATION

ACTION PACKED
GAMES

ADVERTIS ING &
MERCHANDISING

AN IMATION

BABYSITTI NG

COMMENTS/REQUIREMENTS

You can get real Ba l ly Midway a rcade games
l ike Omega Race, Gorf and Wizard of War, as
wel l as "play and lea rn" games l ike Math
Teacher I , Home Babysitter and Commodore
Artist.

Hook your COMMODORE 64 to a TV, put it in
a store window with a flash ing , an imated ,
and musical message and you've got a g reat
point of purchase store display.

Commodore's Sprite Graph ic s a l l ow you to
c reate real cartoons with 8 different levels so
that shapes can move in front of or behind
each other .

The COMMODORE 64 HOME BABYS ITT ER
cartridge can keep your youngest chi ld occu­
pied for hours and teach a lphabet/ keyboard
recognition at the same time . It also teaches
special learning concepts and relationships.

BASIC PROGRAMMING Your COMMODORE 64 USER'S GUIDE and the
TEACH YOU RSELF PROGRAMMING series of
books and tapes offer an excel lent sta rting
point.

BUSIN ESS
S PREADSHEET

COMMUNICATION

The COMMODORE 64 offers the "Easy" series
of business aids inc luding the most powerful
word p rocesso r a n d l a rgest s p rea d sheet
avai lable for any personal computer.

Enter the fascinating world of computer "net­
worki ng . " If you hook a V ICMODEM to your
COMMODORE 64 you can commun icate with
other computer owners all around the world .

I NTRODUCTION xiii

COMPOSING SONGS

C P/M*

DEXTERITY TRAIN ING

EDUCATION

FORE IGN LANGUAGE

GRAPHICS AND ART

Not on ly that, if you jo in the COMMODORE
INFORMATION NETWORK on CompuServe™
you can get the latest news and updates on
a l l Commodore products, financ ia l i nforma­
tion , shop at home services, you can even
play games with the friends you make through
the information systems you join .

The COMMODORE 64 i s equ ipped with the
most soph isticated bui lt-in music synthesizer
avai lable on any computer . It has three com­
pletely programmable voices, nine ful l music
octaves, a nd four contro l l ab le waveforms .
Look fo r Commodore Music Cartridges and
Commodore Music books to help you create o r
reproduce a l l kinds of music and sound effects .

Commodore offers a CP/M* add-on and ac­
cess to software through an easy-to-Ioad car­
tridge .

Hand/Eye coordination and manua l dexterity
a re a ided by several Commodore games . . .
inc lud ing "Jupiter Lander" and n ight d riving
s imu lation .

Whi le working with a computer i s an educa­
tion in itself, The COMMODORE Educational
Resou rce Book conta ins general information
on the educationa l uses of computers . We
also have a variety of learn ing cartridges de­
signed to teach everything from music to math
and a rt to astronomy.

The COMMODORE 64 prog rammable char­
acter set lets you replace the standard char­
acter set with user defined fore ign language
characters.

In addition to the Sprite Graphics mentioned
above, the COMMODORE 64 offers h i gh­
resolution , mu lti-color g raphics plotting , pro-

'CP/M is a Registered trademark af Digital Research, Inc.

xiv INTRODUCTION

INSTRUMENT
CONTROL

JOU RNALS AND
CREATIVE WRITING

LlGHTPEN CONTROL

MACH INE CODE
PROGRAMMING

PA YROLL & FORMS
PRINTOUT

PRINTING

RECIPES

grammable cha racters, and combinations of
a l l the d ifferent graphics and character d is­
play modes.

You r COMMODORE 64 has a ser ia l po rt ,
RS-232 port and a user port for use with a
variety of special industrial app l ications . An
I EEE/488 cartridge is a l so avai lable as an op­
tional extra .

The COMMODORE 64 wil l soon offer an ex­
ceptional word processing system that matches
or exceeds the qua l it ies and flex ib i l it ies of
most "h igh-priced" word processors avai lab le .
Of course you can save the i nformation on
e ither a 1 54 1 Disk Drive or a Datassette ™
recorder and have it printed out us ing a VIC­
PR INTER or PLOTTER.

Appl ications requir ing the use of a l ightpen
can be performed by any l ightpen that will fit
the COMMODORE 64 game port connector .

Your COMMODORE 64 PROGRAMMER'S REF­
ERENCE GUIDE inc ludes a machine language
section , as wel l as a BASIC to machine code
interface section . There's even a b ibl iog raphy
avai lable for more in-depth study.

The COMMODORE 64 can be programmed to
handle a variety of entry-type business appl i­
cations . Upper/lower case letters combined
with C64 "business form" g raphics make it
easy for you to design forms which can then
be printed on your printer.

The COMMODORE 64 interfaces with a vari­
ety of dot matrix and letter q ua l ity printers as
well as p lotters.

You can store your favorite recipes on your
COMMODORE 64 and its d is k or cassette
storage unit, and end the need for messy rec­
ipe cards that often get lost when you need
them most.

INTRODUCTION xv

SIMU LATIONS

SPORTS DATA

STOCK QUOTES

Computer s imulations let you conduct danger­
ous or expensive experiments at min imum risk
and cost.

The Source™ and CompuServe™ both offer
sports information which you can get using
your COMMODORE 64 and a VICMODEM .

With a VICMODEM and a subscription to any
of the appropriate network services, your
COMMODORE 64 becomes your own private
stock ticker.

These are just a few of the many appl ications for you and your
COMMODORE 64. As you can see, for work or play, at home, i n school
or the office, your COMMODORE 64 g ives you a practical solution for
j ust about any need .

Commodore wants you to know that our support for users only STARTS
with your pu rchase of a Commodore computer . That's why we've
created two publ ications with Commodore information from around the
world , and a "two-way" computer information network with va luable
input for users in the U . S . and Canada from coast to coast.

In addition , we wholeheartedly encourage and support the g rowth of
Commodore Users' C lubs a round the world . They are an excel lent source
of information for every Commodore computer owner from the beg inner
to the most advanced . The magazines and network, which are more
ful ly described below, have the most up-to-date information about how
to get involved with the Users' C lub in your area .

Fina l ly, your local Commodore dealer is a useful source of Commo­
dore support and information .

POWER/PLAY
The Home Computer Magazine

When it comes to enterta inment, learning at home and practica l home
appl ications , POWER/PLAY i s THE prime source of information for Com­
modore home users. Find out where your nearest user c lubs are and
what they're doing, learn about software, games, programming tech­
n iques, telecommun ications, and new products. POWER/PLAY is your
personal connection to other Commodore users, outside softwa re and
hardware developers, and to Commodore itself. Publ ished quarterly.
On ly $ 1 0 .00 for a year of home computing excitement.

xv; I NTRODUCTION

COMMODORE
The Microcomputer Magazine

Widely read by educators, businessmen and students, as well as

home computerists, COMMODORE Magazine is our main vehicle for

sharing exclusive information on the more technical use of Commodore
systems. Regular departments cover business, science and education,
programming tips, "excerpts from a technical notebook," and many
other features of interest to anyone who uses or is thinking about pur­

chasing Commodore equipment for business, scientific or educational
applications. COMMODORE is the ideal complement to POWER! PLAY.

Published bi-monthly. Subscription price: $ 1 5 .00 per year.

AND FOR EVEN MORE INFORMATION .
. . . DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your
subscription to POWER/PLAY and COMMODORE magazines, the COM­

MODORE INFORMATION NETWORK-our "paperless magazine"-is
available now over the telephone using your Commodore computer and

modem.
Join our computer club, get help with a computing problem, "talk" to

other Commodore friends, or get up-to-the-minute information on new

products, software and educational resources. Soon you will even be
able to save yourself the trouble of typing in the program listings you

find in POWER/PLAY or COMMODORE by downloading direct from the
Information Network (a new user service planned for early 1983). T he
best part is that most of the answers are there before you even ask the

questions. (How's that for service?)
To call our electronic magazine you need only a modem and a sub­

scription to CompuServe TM, one of the nation's largest telecommunica­
tions networks. (To make it easy for you Commodore includes a FREE
year's subscription to CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServe™ data bank and
connect your phone to the modem. When the CompuServe™ video text
appears on your screen type G CBM on your computer keyboard. When
the COMMODORE INFORMATION NETWORK'S table of contents, or

"menu," appears on your screen choose from one of our sixteen de­

partments, make yourself comfortable, and enjoy the paperless maga­

zine other magazines are writing about.

INTRODUCTION xvii

For more information, visit your Commodore dealer.

COMMODORE INFORMATION NETWORK

Main Men u Description
Direct Access Codes
Special Commands
Use r Questions
Public Bul letin Boa rd
Magazines and Newsletters
Products Announced
Commodore News Direct

xviii I NTRODUCTION

Commodore Dealers
Educationa l Resources
User Groups
Desc ription s
Questions and Answers
Software Tips
Technical Tips
Directory Descriptions

CHAPTER 1

BASIC
PROGRAMMING

RULES
• I ntrod uction

• Screen Display Codes (BASI C

C ha racter Set)

• Prog ra m m i n g N u m b e rs a nd

Va ria bles

• Expressions a n d Operators

• Prog ra m m i n g Tec h n iques

INTRODUCTION

This chapter tal ks about how BAS IC stores and manipulates data . The
topics inc lude:

1) A br ief mention of the operating system components and functions
as wel l as the character set used in the Commodore 64.

2) The formation of constants and variables. What types of variables
there are. And how constants and variables are stored in memory.

3) The ru les for ar ithmetic calculations, relationship tests, str ing han­
d l ing , and log ica l operations. Also included are the ru les for form­
ing expressions, and the data conversions necessary when you're
using BASIC with m ixed data types.

SCREEN DISPLAY CODES
(BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Operating System is contained in the Read Only Memory (ROM)
chips and is a combination of th ree separate , but interrelated, program
modules.

1) The BAS IC I nterpreter
2) The KERNAL
3) The Screen Editor

1) The BASIC Interpreter is responsible for analyzing BASIC state­
ment syntax and for performing the requ i red calcu lations and/or
data manipulation . The BAS IC I nterpreter has a vocabulary of 65
"keywords" which have special meanings. The upper and lower
case a lphabet and the digits 0-9 a re used to make both keywords
and variable names. Certain punctuation characters and special
symbols a l so have meanings for the I nterpreter . Table 1 - 1 l ists the
special cha racters and their uses .

2) The KERNAL hand les most of the interrupt leve l processing in the
system (for deta i ls on interrupt level processing , see Chapter 5).
The KERNAL a lso does the actual input and output of data .

3) The Screen Editor controls the output to the video screen (television
set) and the editing of BASIC program text. In addition , the Screen
Editor intercepts keyboard input so that it can decide whether the

2 BASIC PROGRAMMI N G RULES

CHARACTER

+

*

/
i
(

Table 1 - 1 . CBM BASIC Character Set

NAME a nd DESCRIPTION

BLANK-sepa rates keywords and va riable names
SEMI-COLON-used in var iable l i sts to format output
EQUAL S IGN -value ass ignment and relationship

testi ng
PLUS S IGN -arithmetic addition or string concatenation

(concatenation: l inking together in a chain)
MINUS S IGN-arithmetic subtraction, unary minus (- 1)
ASTER ISK-arithmetic mu lt ipl ication
SLASH-arithmetic d ivision
UP ARROW-arithmetic exponentiation
LEFT PARENTHES IS-expression evaluation and

functions
) R IGHT PARENTHES IS-expression eva luation and

functions
% PERCENT -declares variable name as an integer
NUMBER-comes before logical fi le number in input/

output statements
$ DOLLAR S IGN-declares variable name as a stri ng

?
<
>
7T

COMMA- used in variable l ists to format output;
also separates command parameters

PER IOD-decimal point in floating point constants
QUOTATION MARK-encloses stri ng constants
COLON -sepa rates mu ltiple BAS IC statements in a l ine
QUESTION MARK-abbreviation for the keyword PR INT
LESS THAN - used in relationsh ip tests
GREATER THAN -used in relationsh ip tests
PI -the numeric constant 3. 141592654

characters put in should be acted upon immed iately, or passed on
to the BASIC I nterpreter .

The Operating System gives you two modes of BASIC operation :

1) D IRECT Mode
2) PROGRAM Mode

1) When you're us ing the D I RECT mode, BAS IC statements don't have
l i n e n u m ber s i n f ront of the statement . They a re exec uted
whenever the I@i@i key is pressed .

2) The PROGRAM mode is the one you use for running programs .

BASIC PROGRAMMI NG RULES 3

When us ing the PROGRAM mode, a l l of your BASIC statements
must have l ine numbers in front of them . You can have more than
one BASIC statement i n a l ine of your p rogram , but the number of
statements i s l im ited by the fact that you can only put 80 char­
acters on a logical screen l ine . This means that if you are going to
go over the 80 character l im it you have to put the entire BAS IC
statement that doesn't fit on a new l ine with a new l i ne number .

NOTE: Always type N E W and h i t ED!IlllI before starting a n e w program .

The Commodore 64 has two complete character sets that you can use
either from the keyboard or i n your programs.

I n SET 1 , the upper case a lphabet and the numbers 0-9 are avai lable
without press ing the BIID key. I f you hold down the BIID key
whi le typing , the g raphics characters on the R IGHT side of the front of
the keys are used . If you hold down the [!l key whi le typing, the
g raphics characters on the LEFT side of the front of the key are used .
Holding down the BIID key whi le typing any character that doesn't
have g raphic symbols on the front of the key gives you the symbol on the
top most part of the key.

I n SET 2, the lower case a lphabet and the numbers 0-9 are avai lable
without pressing the BIID key. The upper case a lphabet is avai lable
when you hold down the Emil key while typing . Again, the graphic
symbols on the LEFT side of the front of the keys a re displayed by press­
ing the [!l key, while the symbols on the top most part of any key
wi thout g ra p h ic s c h a racters a re se l ected when you ho l d d own
the Emil key whi le typing .

To switch from one character set to the other press the [!l and
the BIID keys together .

Emil I4l!1ttilolil on the standard C64 produces LOAD l;l§ii!;lil RUN
l;liiiWI which loads the next file off cassette and attempts to execute
it.

BIID 1JII1tfi!o!4 on the EXECUTIVE SX-64 or DX-64 performs a
LOAD ":*",8 1;l§i'WI RUN 1;l§i'WI

If you try to access device 1 (norma l ly Datassette) on the EXECUTIVE

64 series , an ?ILLEGAL DEVICE NUMBER ERROR is retu rned f rom
BAS I C , while C-SET and . A=9 is returned to the ca l l ing routine.

4 BASIC PROGRAMMING RULES

PROGRAMMING NUMBERS AND VARIABLES

INTEGER, FLOATING-POINT AND STRING CONSTANTS

Constants are the data values that you put in your BAS IC statements .
BAS IC uses these values to represent data during statement execution .
CBM BASIC can recognize and manipulate three types of constants:

1) I NTEGER NUMBERS
2) FLOAT ING-PO INT NUMBERS
3) STR INGS

I nteger constants a re whole numbers (numbers without dec ima l
points). I nteger constants must be between - 32768 and +32767. In­

teger constants do not have dec imal points or commas between digits .

I f the plus (+) s ign is left out, the constant is assumed to be a positive
number. Zeros coming before a constant are ignored and shouldn't be
used since they waste memory and slow down your program . However,
they won't cause an error. I ntegers are stored in memory as two-byte
b inary numbers. Some examples of i nteger constants are :

- 1 2
8765

- 32768
+44

o
- 32767

NOTE : Do NOT put commas inside a ny number. For example, always type 32,000 as
32000. If you put a comma in the middle of a number you wil l get the BASIC error

message ?SYNTAX ERROR.

Floating-point constants are positive or negative numbers and can
contain fractions . Fractional parts of a number may be shown using a
decima' point. Once again remember that commas are NOT used be­
tween numbers . If the plus s ign (+) is left off the front of a number, the
Commodore 64 assumes that the number is positive. If you leave off the
decimal point the computer wi l l assume that it follows the last d ig it of
the number. And as with integers, zeros that come before a constant
a re ignored . Floating-point constants can be used in two ways:

1) SIMPLE NUMBER
2) SCIENT IF IC NOTATION

BASIC PROGRAMMING RULES 5

Floating-point constants wi l l show you up to n ine d ig its on your screen .
T he se d i g i ts c a n rep re sen t va l u e s between - 999999999 . a n d
+ 999999999. I f you enter more than n ine d ig its the number wil l be
rounded based on the tenth d ig it . If the tenth d ig it is g reater than or
equal to 5 the number wi l l be rounded upward . Less than 5 the number
wil l be rounded downward . Th is could be important to the final tota ls of
some numbers you may want to work with .

Floating-point numbers are stored (us ing five bytes of memory) and
are manipu lated in calcu lations with ten places of accuracy. However,
the numbers are rounded to n ine d ig its when results are printed . Some
examples of s imple floating-point numbers are:

1 . 23
- .998877

+ 3 . 1 459
. 7777777

-333 .

. 0 1

Numbers smal ler than . 0 1 o r larger than 999999999. wi l l b e printed i n
sc ientific notation. I n scientific notation a floating-point constant i s made
up of three parts:

1) THE MANT ISSA
2) THE LETTER E
3) THE EXPONENT

The mantissa is a s imple floating-point number. The letter E is used to
tell you that you're seeing the number in exponentia l form . I n other
words E represents * 1 0 (eg . , 3E3 = 3* 1 0t3 = 3000) . And the exponent is
what multipl ication power of 1 0 the number i s raised to .

Both the mantissa and the exponent are s igned (+ or -) numbers .
The exponent's range is from - 39 to +38 and it ind icates the number of
places that the actual decimal point in the mantissa would be moved to
the left (-) or r ight (+) if the va lue of the constant were represented as
a s imple number.

There i s a l im it to the s ize of floating-point numbers that BAS IC can
h a n d l e , e v e n i n s c i e n t i fi c n o ta t i o n : t h e l a r g e s t n u m b e r i s
+ 1 . 70 1 4 1 1 83 E+38 and ca lcu lations which wou ld result i n a la rger
number wi l l d isplay the BASIC error message ?OVERFLOW ERROR. The
sma llest floating-point number is + 2. 93873588E - 39 and calculations
which result in a smal ler value g ive you zero as an answer and NO error
message. Some examples of floating-point numbers in scientific notation
(and their decimal va lues) are :

6 BASIC PROGRAMMING RULES

235.988E-3 (. 235988)
2359E6 (2359000000 .)
- 7 . 09E - 1 2 (- . 00000000000709)
- 3 . 1 4 1 59E+5 (- 3 1 4 1 59 .)

String constants a re g roups of a lphanumeric information l ike letters ,
numbers and symbols . When you enter a string from the keyboard, it
can have any length up to the space avai lable in an 80-cha racter l ine
(that i s , any cha racter spaces NOT taken up by the l ine number and
other required parts of the statement) .

A str ing constant can contain b lanks, letters, numbers, punctuation
and color or cursor control characters in any combination . You can even
put commas between numbers. The only character which cannot be in­

cluded in a string is the double quote mark ("). This is because the
double quote mark is used to define the beg inning and end of the stri ng .
A string can a l so have a nu l l va lue-which means that it can contain no
cha racter data . You can leave the end ing quote mark off of a string if
it's the last item on a l ine or if it's fol lowed by a colon (:) . Some exam­
p les of stri ng constants a re:

(a nul l string)
" HELLO"
"$25,000. 00"
"NUMBER OF EMPLOYEES"

NOTE: Use CHR$(34) to include quotes (") in strings.

INTEGER, FLOATING-POINT AND STRING VARIABLES

Variables are names that represent data values used in your BAS IC
statements . The value represented by a variable can be ass igned by
setting it equa l to a constant, or it can be the result of ca lcu lations in the
program . Variable data , l ike constants, can be integers, floating-point
numbers, or strings . I f you refer to a variable name in a program before
a va lue has been assigned , the BAS IC I nterpreter will automatica l ly
c reate the variable with a value of zero if it's an integer or floating-point
number . Or it wi l l c reate a variable with a nu l l value if you're us ing
strings .

Va riable names can be any length but on ly the first two cha racters
a re considered significant in CBM BAS IC . This means that a l l names
used for variables must NOT have the same first two characters . Vari-

BASIC PROGRAMMING RULES 7

able names may NOT be the same as BASIC keywords and they may

NOT contain keywords in the m iddle of variable names. Keywords in­
clude a l l BAS IC commands , statements, function names and logical
operator names . I f you accidenta lly use a keyword in the middle of a
variable name, the BASIC error message ?SYNTAX ERROR wil l show up
on your screen .

The characters used to form variable names are the a lphabet and the
numbers 0-9 . The first character of the name must be a letter. Data
type declaration characters (%) and ($) can be used as the last char­
acter of the name . The percent s ign (%) decla res the variable to be an
integer and the do l la r s ign ($) declares a string variable . If no type
declaration character is used the I nterpreter wi l l assume that the vari­
able is a floating-point. Some examples of variable names, value as­
s ignments and data types are:

A$="GROSS SALES"
MTH$= "JAN" +A$
K%=5
CNT% =CNT% + 1
FP= 1 2 . 5
SUM= FP*CNT%

(string variable)
(str ing variable)
(integer variable)
(integer variab le)
(floating-point variable)
(floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or l ist) of associated data items referred to by a
s ingle variable name. I n other words, an array is a sequence of related
variables . A table of numbers can be seen as an array, for example .
The i nd ividua l numbers with in the tab le become "e lements" of the
array.

Arrays are a useful shorthand way of describing a large number of
related variables . Take a table of numbers for instance. Let's say that
the table has 1 0 rows of numbers with 20 numbers i n each row. That
makes a tota l of 200 numbers i n the tab le . Without a s ing le array name
to cal l on you would have to assign a un ique name to each value in the
table. But because you can use arrays you only need one name for the
array and all the elements in the array are identified by their individual
locations within the array.

Array names can be i ntegers, floating-points or string data types and
a l l elements in the array have the same data type as the array name.
Arrays can have a s ing le d imension (as in a s imple l ist) or they can have
mu ltiple d imensions (imagine a gr id marked in rows and columns or a

8 BASIC PROGRAMMING RULES

Rubik's Cube®). Each element of an array is uniquely identified and re­
ferred to by a subscript (or index variable) fol lowing the a rray name,
enclosed within parentheses () .

The maximum number of d imensions an a rray can have in theory i s
255 and the number of elements in each d imension is l im ited to 32767.
But for practica l purposes a rray sizes a re l im ited by the memory space
avai lable to hold their data and/or the 80 character logical sc reen l ine .
If an a rray has only one d imension and i ts subscr ipt va lue wi l l never
exceed 1 0 (1 1 items : 0 thru 1 0) then the a rray will be c reated by the
Interpreter and fil led with zeros (or nu l l s if string type) the first t ime any
element of the a rray is referred to, otherwise the BASIC DIM statement
must be used to define the shape and size of the a rray. The amount of
memory requ i red to store an a rray can be determined as fol lows:

5 bytes for the a rray name
+ 2 bytes for each d imension of the array
+ 2 bytes per element for integers

OR + 5 bytes per element for floating-point
OR + 3 bytes per element for strings

AND + byte per cha racter in each string element

Subscr ipts can be integer constants , variables , or an ar ithmetic ex­
pression which g ives an integer result. Separate subscr ipts, with com­
mas between them, are required for each d imension of an a rray. Sub­
scripts can have values from zero up to the number of elements in the
respective d imensions of the a rray. Va lues outside that range will cause
the BASIC error message ?BAD SUBSCRIPT. Some examples of a rray
names, value assignments and data types are:

A$(O) ="GROSS SALES" (string array)
MTH$(K%) = "JAN" (string array)
G2%(X)=5 (integer a rray)
CNT%(G2%(X))= CNT% (1)- 2 (integer array)
FP(1 2* K%)=24 . 8 (floating-point a rray)
SUM(CNT%(1))= FPjK% (floating-point array)

A(5)=0

B(5,6)=0

(sets the 5th element in the 1 d imensional
a rray cal led "A" equal to 0)

(sets the element in row position 5 and
column position 6 in the 2 d imensional a rray
cal led "B" equal to 0)

BASIC PROGRAMMING RULES 9

C(1 , 2 , 3)=0 (sets the element in row position 1 , column
position 2 , and depth position 3 in the
3 dimensional a rray cal led "C" equal to 0)

EXPRESSIONS AND OPERATORS

Expressions are formed us ing constants, variables and/or a rrays. An
expression can be a s ing le constant, s imple variab le , or an a rray vari­
able of any type. It can also be a combination of constants and vari­
ab les with a rithmeti c , re lationa l or log ica l operators des igned to
produce a s ing le va lue . How operators work is explained below. Ex­
pressions can be sepa rated into two classes:

1) AR ITHMET IC
2) STR ING

Expressions a re normal ly thought of as having two or more data items
cal led operands . Each operand is sepa rated by a s ing le operator to
produce the desired result. This is usua l ly done by assigning the value of
the expression to a variable name. All of the examples of constants and
variables that you've seen so far , were a l so examples of expressions .

An operator is a special symbol the BAS IC I nterpreter in you r Com­
modore 64 recogn izes as representing an operation to be performed on
the variables or constant data . One or more operators, combined with
one or more variables and/or constants form an express ion . Arithmetic,
relationa l and logical operators a re recognized by Commodore 64
BAS IC .

ARITHMETIC EXPRESSIONS

Arithmetic express ions, when sol·Jed , wil l g ive an integer or floating­
point va lue . The a rithmetic operators (+, - , *, /, j) are used to perform
addition , subtraction , mu lt ipl ication , d ivision and exponentiation opera­
tions respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defi nes an arithmetic operation which is per­
formed on the two operands on either side of the operator . Arithmetic
operations a re performed using floating-point numbers . I ntegers are

1 0 BASIC PROGRAMMING RULES

converted to floating-point numbers before an ar ithmetic operation is
performed . The result is converted back to an integer if it is assigned to
an integer variable name.

ADDITION (+): The plus s ign (+) specifies that the operand on the
right is added to the operand on the left.

EXAMPLES:

2 + 2
A + B + C
X% + l
BR+ l 0E - 2

SUBTRACTION (-): The minus s ign (-) specifies that the operand on
the right is subtracted from the operand on the left.

EXAMPLES:

4- 1
1 00-64
A- B
55- 1 42

The minus can also be used as a unary minus . That means that it is
the minus s ign in front of a negative number. This is equal to subtracting
the number from zero (0).

EXAMPLES:

- 5
-9E4
- B
4 - (- 2) same a s 4 + 2

MULTIPLICATION (*) : An asterisk (*) specifies that the operand o n the
left is mu ltip l ied by the operand on the r ight.

EXAMPLES:

1 00*2
50*0
A*X l
R% * 1 4

DIVISION (I) : The s lash (/) specifies that the operand on the left is
d ivided by the operand on the r ight.

BASIC PROGRAMMING RULES 1 1

EXAMPLES:
1 0/2
6400/4
AlB
4E2/XR

EXPONENTIATION (j) : The up arrow (j) specifies that the operand on
the left is raised to the power specified by the operand on the right (the
exponent). If the operand on the right is a 2, the number on the left is
squared; if the exponent is a 3 , the number on the left is cubed, etc . The
exponent can be any number so long as the result of the operation gives
a va lid floating-point number.

EXAMPLES:
2j2 Equivalent to: 2*2
3j3 Equivalent to: 3*3*3
4j4 Equivalent to: 4*4*4*4
ABjCD
3j -2 Equivalent to: 1/3 * 1/3

RELATIONAL OPERATORS

The relational operators « , = , > , < = , > = , < » are primarily used
to compare the values of two operands, but they a lso produce an arith­
metic result . The relational operators and the logical operators (AND,
OR, and NOT), when used in comparisons, actual ly produce an arith­
metic truelfa lse eva luation of an expression . If the relationship stated in
the expression is true the result is assigned an integer va lue of - 1 and if
it's false a value of 0 is assigned. These are the relational operators:

EXAMPLES:

1 = 5-4
1 4>66
1 5> = 1 5

< LESS THAN
EQUAL TO

> GREATER THAN
< = LESS THAN OR EQUAL TO
> = GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

result true (- 1)
result false (0)
result true (- 1)

1 2 BASIC PROGRAMMING RULES

Relationa l operators can be used to compare strings . For comparison
purposes, the letters of the a lphabet have the order A<B<C<D, etc .
Strings are compared by eva luating the relationsh ip between corre­
sponding cha racters from left to right (see Str ing Operations) .

EXAMPLES:

"A" < "B"
"XII = /lyy"
BB$ < > CC$

result true (- 1)

resu lt false (0)

Numeric data items can only be compared (or assigned) to other
numeric items. The same is true when comparing str ings, otherwise the
BAS IC error message ?TYPE MISMATCH wil l occur . Numeric operands
are compared by first converting the values of either or both operands
from integer to floating-point form , as necessary. Then the relationsh ip
of the floating-point values is eva l uated to g ive a true/fa lse result.

At the end of all comparisons, you get an integer no matter what
data type the operand is (even if both are str ings) . Because of this, a
comparison of two operands can be used as an operand in performing
calculations . The resu lt wi l l be - l or 0 and can be used as anyth ing but
a d ivisor, since d ivision by zero is i l lega l .

LOGICAL OPERATORS

The logical operators (AN D, OR, NOT) can be used to modify the
meanings of the relational operators or to produce an arithmetic result.
log ical operators can produce resu lts other than - 1 and 0, though any
nonzero result is considered true when testing for a true/fa lse condition .

The logical operators (sometimes cal led Boolean operators) can also
be used to perform logic operations on individual b inary d ig its (bits) in
two operands . But when you're us ing the NOT operator, the operation is
performed only on the s ing le operand to the right. The operands must
be in the integer range of values (- 32768 to + 32767) (floating-point
numbers are converted to integers) and logical operations g ive an in­
teger resu lt.

log ical operations are performed bit-by-corresponding-bit on the two
operands . The logical AND produces a bit result of 1 only if both
operand bits a re 1 . The logical OR produces a bit result of 1 if either
operand bit is 1 . The logical NOT is the opposite value of each bit as a
s ing le operand . I n other words, it's really saying , " I f it's NOT 1 then it is
O. I f it's NOT 0 then it is 1 . "

BASIC PROGRAMMING RULES 1 3

The exclusive OR (XOR) doesn't have a logical operator but it is per­
formed as part of the WAIT statement. Exc lus ive OR means that if the bits of
two operands a re equal then the result is 0 otherwise the result is 1 .

Logical operations a re defined by g roups of statements which , taken
together, constitute a Boolean "truth table" as shown in Table 1 -2 .

Table 1 -2 . Boolean Truth Table
�----------------- ---------------------------,

The AN D operation resu lts i n a 1 on ly if both bits a re 1 :

1 AND 1 1
o AND 1 0
1 AND 0 0
o AND 0 0

The OR operation resu lts i n a 1 if either bit IS 1 :

OR 1
o OR 1 1
1 OR 0 1
o OR 0 0

The NOT operation log ica I ly complements each bit :

NOT 1 0
NOT 0

The exc l us ive OR (XOR) is part of the WAIT statement:

1 XOR 1 0
1 XOR 0
o XOR 1 1
o XOR 0 0

The logical operators AND, OR and NOT spec ify a Boolean arithmetic
operation to be performed on the two operand expressions on either
side of the operator . In the case of NOT, ONLY the operand on the
R IGHT is considered . Log ical operations (or Boolean a rithmetic) aren't
performed until a l l a rithmetic and relational operations in an expression
have been completed .

1 4 BASIC PROGRAMMING RULES

EXAMPLES:

I F A= 1 00 AND B = 1 00 THEN 1 0

A=96 AND 32: PR INT A

I F A = 1 00 OR B = 1 00 THEN 20

A=64 OR 32 : PRINT A

I F NOT X<Y THEN 30

X= NOT 96

HIERARCHY OF OPERATIONS

(if both A and B have a va lue
of 1 00 then the result is
true)

(A = 32)

(if A or B is 1 00 then the
resu lt is true)

(A = 96)

(if x> =Y the result is true)

(result is - 97 (two's complement))

Al l expressions perform the d ifferent types of operations accord ing to
a fixed hierarchy. In other words, certa in operations are performed be­
fore other ope rations . The normal order of operations can be mod ified
by enclosing two or more operands within parentheses () , c reating a
"subexpression ." The parts of an expression enclosed in parentheses wil l
be reduced to a single va lue before working on pa rts outside the par­
entheses .

When you use pa rentheses in expressions, they must be paired so that
you a lways have an equa l n um ber of left and r ight parentheses .
Otherwise, the BAS IC error message ?SYNTAX ERROR wil l appear.

Expressions which have operands inside parentheses may themselves
be enc losed in parentheses, forming complex expressions of mu ltiple
leve ls . This is ca l led nesting . Parentheses can be nested in expressions
to a maximum depth of ten levels-ten matching sets of parentheses .
The inner-most expression has its operations performed fi rst. Some
examples of expressions are:

A + B
Cj(D+E)/2
((X- Cj(D+ E)/2)* 1 0) + 1
GG$>HH$

BASIC PROGRAMMING RULES 1 5

JJ$ +"MORE"
K% = 1 AND M<>X
K% = 2 OR (A= B AND M<X)
NOT (D=E)

The BAS IC I nterpreter wil l norma lly perform operations on expressions
by performing arithmetic operations fi rst, then relational operations , and
log ica l operations last . Both a rithmetic and logical operators have an
order of precedence (or hierarchy of operations) within themselves. On
the other hand , relational operators do not have an order of precedence
and wil l be performed as the expression is eva luated from left to r ight.

If a l l remain ing operators i n an expression have the same level of
precedence then operations happen from left to r ight. When performing
operations on expressions with in parentheses, the normal order of pre­
cedence is ma intained . The h ierarchy of a rithmetic and logical opera­
t ions is shown in Table 1 -3 from first to last in order of precedence.

Table 1 -3 . Hierarchy of Operations Performed on Expressions

OPERATOR DESCR IPTION EXAMPLE

i Exponentiation BASE i EXP

- Negation (Unary Minus) -A

* / Multipl ication AB * CD
Division EF / GH

\
+ � Addition CNT + 2

Subtraction J K - PQ

> = < Relational Operations A <= B

NOT Log ical NOT NOT K%
(I nteger Two's Complement)

AND Log ical AND J K AND 1 28

OR Log ical OR PQ OR 1 5

STRING OPERATIONS

Strings a re compared us ing the same relational operators (= , <>,

1 6 BASIC PROGRAMMING RULES

< = , > = , < , » that are used for comparing numbers. String compari­
sons are made by taking one character at a time (Ieft-to-r ight) from
each string and eva luating each character code position from the PETI
CBM character set. If the cha racter codes a re the same, the characters
are equa l . If the cha racter codes d iffer, the character with the lower
code number is lower in the character set. The compa rison stops when
the end of either string is reached . All other things being equa l , the
shorter string is considered less than the longer stri ng . Leading or tra il­
ing b lanks ARE significant.

Regardless of the data types, at the end of al l comparisons you get
an integer result. This is true even if both operands are stri ngs . Because
of this a comparison of two string operands can be used as an operand
in performing calculations . The result wil l be - l or 0 (true or false) and
can be used as anyth ing but a d ivisor since division by zero is i l lega l .

STRING EXPRESSIONS

Expressions a re treated as if an implied "<>0" fol lows them. This
means that if an expression is true then the next BASIC statements on
the same p rog ram l ine are executed . If the expression is false the rest of
the l ine i s ignored and the next l ine in the prog ram is executed .

J ust as with numbers, you can also perform operations on string vari­
ables. The on ly string ar ithmetic operator recognized by CBM BASI C is
the plus sign (+) which is used to perform concatenation of str ings .
When strings a re concatenated , the string on the r ight of the plus s ign is
appended to the str ing on the left, forming a third str ing as a result. The
result can be printed immediately, used in a comparison , or assigned to
a variable name. If a string data item is compared with (or set equal to)
a numeric item , or vice-versa , the BAS IC error message ?TYPE MIS­
MATCH wi l l occur . Some examples of string expressions and concatena­
tion a re :

1 0 A$ = "FILE" : B$="NAME"
20 NAM$ = A$ + B$ (g ives the string : FILENAME)
30 RES$ = "NEW " + A$ + B$ (gives the stri ng : NEW FILENAME)

t Note space here.

BASIC PROGRAMMING RULES 1 7

PROGRAMMING TECHNIQUES

DATA CONVERSIONS

When necessary, the CBM BASIC I nterpreter wi l l convert a numeric
data item from an integer to floating-point, or vice-versa, according to
the fol lowing rules:

• All a rithmetic and relational operations are performed in floating­
point format . I ntegers are converted to float ing-point form for
eva luation of the expression , and the result is converted back to
i nteger. logical operations convert their operands to integers and
return an intege r result .

• I f a numeric variable name of one type i s set equal to a numeric
data item of a d ifferent type, the number wi l l be converted and
stored as the data type dec lared in the variable name.

• When a floating-point va lue is converted to an integer, the frac­
tional portion is truncated (el im inated) and the integer result is less
than or equal to the floating-point va lue . If the resu lt is outside the
range of +32767 thru - 32768, the BAS IC error message ?ILLEGAL

QUANTIT Y wil l occu r .

USING THE INPUT STATEMENT

Now that you know what variables are, let's take that i nformation and
put it together with the I N PUT statement for some practical prog ram­
ming appl ications .

I n our fi rst example, you can th ink of a variable as a "storage com­
partment" where the Commodore 64 stores the user's response to your
prompt question . To write a program which asks the user to type in a
name, you might ass ign the variable N$ to the name typed i n . Now
every time you PR INT N$ in you r p rogram, the Commodore 64 wi l l
automatical ly PRINT the name that the user typed i n .

Type the word N EW on your Commodore 64 . H it the ';I#I'@+ key,
and try this example:

10 PRINT "YOUR NAME" : lN PUT N$
20 PR INT "HELLO," N$

1 8 BASIC PROGRAMMING RU LES

In this example you used N to remind you rself that this variable stands
for "NAME." The dol lar s ign ($) is used to te l l the computer that you're
using a string variable . It is important to d ifferentiate between the two
types of variables:

1) NUMER IC
2) STR ING

You probably remember from the earlier sections that numeric vari­
ables a re used to store number values such as 1 , 1 00, 4000, etc . A
numeric va riable can be a single letter (A), any two letters (AB), a letter
and a number (AI) , or two letters and a number (AB 1) . You can save
memory space by using shorter variables. Another helpful hint is to use
letters and numbers for d ifferent categories in the same program (A 1 ,
A2, A3) . Also, if you want whole numbers for an answer instead of
numbers with decimal points, a l l you have to do is put a percent sign
(%) at the end of your variable name (AB% , A l % , etc .)

Now let's look at a few examples that use different types o f variables
and expressions with the I N PUT statement.

1 0 PRINT "ENTER A N UMBER" : IN PUT A
20 PRINT A

1 0 PRINT "ENTER A WORD" : INPUT A$
20 PRINT A$

10 PRINT "ENTER A NUMBER" : INPUT A
20 PRINT A "TIMES 5 EQUALS" A * 5

NOTE: Example 3 shaws that MESSAGES or PROMPTS are inside the q uotation
marks (" ") whi le the variables are outside. Notice, too, that in line 20 the variable A
was printed first, then the message "'TIMES S EQUALS", and then the calculatio n ,

m u ltiply variable A by S (A"S).

Calcu lations a re important in most programs . You have a choice of
using "actual numbers" or variables when doing calculations, but if
you're working with numbers supplied by a user you must use numeric
variables. Begin by asking the user to type in two numbers l ike this:

1 0 PRINT "TYPE 2 NUMBERS" : INPUT A: IN PUT B

BASIC PROGRAMMING RULES 1 9

INCOME/EXPENSE BUDGET EXAMPLE

5 P I? HIT "�A!Fm
1 11 F'R I tn " t'1OtnHL'T' mcOt'1E " : H1F'UT IIj
20 PI': I t--IT
:3l1 F'F: I I'--IT " C<PEH::::E O:ITECiOP'T' 1 " : I t·WUT E 1 :t

40 PP I I···IT " E>':F'Et-·I::::E FH'1OUI·n " : I t··IPUT E 1

50 PP I I·n

6�j PI': I tn " E:'<PEI"4SE [:I:ITEOOF.:'T' 2 " : I I··WUT E2$

7'0 P P l t--I T " C:F'Et ·I::::E Fit'10UtH " I HP U T [2
:::121 F ' P I : --IT

90 F'F: I rH " E: ':F'Et·j:3E [:14TE[iOF:'.,' :3 " : I t·WUT E::::t

1 00 PR I tn " E:":F'Et·j:::E FitKII.Jt·.jT " : I t·WUT E:::
1 1 0 P I? an " ::T"---BIIiI m!Imlm
1 ;:-:0 E = E 1 +E2+[:3

1 3 121 ET" =E, " I 1" ·1
140 F'P H I T " t'1ot' ITHL 'T' HICOt'1E : :$ " Hj

1 50 F'F: I H T " TOTAL C:F'Et·4::::E:::: : :$ " E
1 6121 PF: I 1',41 " rl"lL.nHCE EOUlcIL.::: · :$ " I \'-1-·E
1 7'121 Pi': I I·n
H::i21 F'P l ln E U " = " ':: E L ' E :H<1 00 " ;'; OF TOH1L D':PEt'j:::;ES "
1 9121 PP I I·n E2:1; " ", " 0:: E;;, ,.." E) :� 1 (II:J " ;-; OF T O T m. DiPEt·jS[:::: "
;:-,0121 PF: I 1··· ITE:3:t " ", " 0:: E:C: , " 'E ::O l 1 121�] " ;.; OF TOTf"lL E:':PEt-j:3E::: "

Z: l(l pf:: Hn
2 2 0 F'P I t·n " 'T'OUP E:;': F'E�6E:::: = " E P +' 1 1210 " ;.; OF ',.'OUF: TOTlo11..

I t·jCCWIE "

23121 FOR X= l T05121012l : HEXT PR I HT
::40 F" P I I··ll " 1�:EPEflT";' ':: 'T' O F,: t'j ::O " : I 1··jPUT "r'$: : I F 'T':$= " 'T' " THEt·j5
2�5 121 F'P I I' I T " :.1" : Elm

'BIID m!Imlm

NOTE: I N can NOT = 0, and E l , E2, E3 can NOT al l be 0 at the some time.

20 BASIC PROGRAMMING RULES

LlNE-BY-LiNE EXPLANATION OF

INCOME/EXPENSE BUDGET EXAMPLE

l i ne(s) Description

5 Clears the screen.
1 0 PR INT/IN PUT statement.
20 I nserts blank l ine .
30 Expense Category 1 = E 1 $.
40 Expense Amount = E l .
50 Inserts b lank l ine .
60 Expense Category 2 = E2$.
70 Expense Amount 2 = E2 .
80 I nserts blank l ine .
90 Expense Category 3 = E3$.

1 00 Expense Amount 3 = E3 .
1 1 0 Clears the screen .
1 20 Add Expense Amounts = E .
1 30 Calculate Expense/lncome% .
1 40 Display I ncome.
1 50 Display Tota l Expenses.
1 60 Display I ncome - Expenses.
1 70 I nserts b lank l ine.
1 80-200 lines 1 80-200 calcu late % each expense

amount is of total expenses.
2 1 0 I nserts blank l ine.
220 Display Ell % .
230 Time delay loop.

Now mu ltiply those two numbers together to create a new variable C as
shown in l ine 20 below:

20 C =A*8

To PR INT the resu lt as a message type

30 PRINT A "TIMES" 8 "EQUALS" C

Enter these 3 l ines and RUN the program . Notice that the messages a re
ins ide the quotes whi le the variables are not.

BASIC PROGRAMMING RULES 2 1

Now let's say that you wanted a dol lar s ign ($) in front of the number
represented by variable C . The $ must be PR INTed ins ide q uotes and in
front of variable C . To add the $ to your prog ram hit the i;li!ittile!il
and liMNil. keys . Now type in l ine 40 as fol lows:

40 PRINT "$" C

Now hit liljii@1 , type RUN and hit 1;Iii'WI again .
The dol lar sign goes i n quotes because the variable C only represents

a number and can't contain a $. I f the number represented by C was
1 00 then the Commodore 64 screen would display $ 1 00. But, if you
tried to PR INT $C without using the quotes, you would get a ?S YNTAX

ERROR message.
One last t ip about $$$: You can create a variable that represents a

dol lar sign which you can then substitute for the $ when you want to use
it with numeric variables. For example:

10 Z$="$"

Now whenever you need a dol lar sign you can use the string variable
Z$. Try this :

1 0 Z$ ="$": I N PUT A
20 PRINT Z$A

Line 1 0 defines the $ as a str ing variable cal led Z$, and then I NPUTs a
number cal led A. Line 20 PR INTs Z$ ($) next to A (number) .

You'l l probably find that it's easier to ass ign certa in characters, l ike
dol lar signs , to a string variable than to type "$" every time you want to
calculate dol lars or other items which requ i re " " l ike % .

USING THE GET STATEMENT

Most s imple programs use the I N PUT statement to get data from the
person operating the computer . When you're deal ing v/ith more complex
needs, l ike protection from typing errors, the GET statement gives you
more flexibi l ity and your prog ram more "intel l igence." This section shows
you how to use the GET statement to add some special screen editing
features to your programs .

2 2 BASIC PROGRAMMING RULES

The Commodore 64 has a keyboard buffer that holds up to 1 0 char­
acters . This means that if the computer is busy doing some operation
and it's not reading the keyboard , you can still type in up to 1 0 char­
acters, which wil l be used as soon as the Commodore 64 fin ishes what it
was doing . To demonstrate this, type in this prog ram on your Commo­
dore 64:

NEW
1 0 TI$ ="OOOOOO"

2 0 IF TI$ < "000 0 1 5" THEN 2 0

Now type RUN , hit ';liiii;lli and while the prog ram is RUNning type
in the word HEllO.

Notice that noth ing happened for about 1 5 seconds when the pro­
g ram sta rted . Only then did the message HEllO appea r on the screen.

I magine standing in l ine for a movie . The first person in the l ine is the
fi rst to get a ticket and leave the l ine. The last person in l ine is last for a
ticket. The GET statement acts l ike a ticket taker . First it looks to see if
there a re any cha racters " in l ine ." I n other words have any keys been
typed . If the answer is yes then that character gets placed in the ap­
propriate variable . If no key was pressed then an empty value is as­
signed to a va riable.

At this point it's important to note that if you try to put more than 1 0
characters into the buffer at one time, a l l those over the 1 0th character
wil l be lost.

Since the GET statement will keep going even when no character is
typed , it is often necessary to put the GET statement into a loop so that it
wil l have to wait until someone hits a key or until a character is received
through your prog ram .

Below i s the recommended form for the GET statement. Type NEW to
e rase your previous program .

1 0 GET A $: I F A $ = "" THEN 1 0

Notice that there i s N O SPACE between the quote marks ('''') o n this l ine .
Th is indicates an empty value and sends the program back to the GET
statement in a continuous loop until someone hits a key on the computer .
Once a key is hit the program wi l l continue with the l ine fol lowing l i ne
1 0 . Add this l i ne to your prog ram:

1 00 PR INT A$; : GOTO 10

BASIC PROGRAMMING RULES 23

Now RUN the program . Notice that no cursor . appears on the screen ,
but a ny cha racter you type wi l l be printed in the screen. Th i s 2-l ine
program can be turned into part of a screen ed itor program as shown
below.

There are many th ings you can do with a screen ed itor. You can have
a flash ing cursor. You can keep certain keys l ike i9':t4Ii@i from
accidental ly erasing the whole screen. You might even want to be able
to use your function keys to represent whole words or phrases. And
speaking of function keys, the fol lowing program l ines g ive each func­
tion key a special purpose . Remember this is only the beg inn ing of a
program that you can customize for your needs .

20 I F A$
30 I F A$
40 I F A$
50 I F A$

CHR$(1 33) THEN POKE 53280,8:GOTO 10
C H R$(1 34) THEN POKE 5328 1 ,4 :GOTO 10
CHR$(1 35) THEN A$ = "DEAR SI R:" + C H R$(1 3)
C H R$(1 36) THEN A$ ="SINCERELY," +CHR$(1 3)

The CHR$ numbers in parentheses come from the CHR$ code chart in
Appendix C . The chart l i sts a d ifferent number for each character. The
four function keys a re set up to perform the tasks represented by the
instructions that fol low the word THEN in each l ine . By changing the
C H R$ number ins ide each set of parentheses you can designate d iffer.
ent keys . Different instructions would be performed if you changed the
information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions-and power-into your BAS IC pro­
grams by making each program as short as possib le . This process of
shorten ing programs is ca l led "crunching ."

Crunching programs lets you squeeze the maximum possible n umber
of instructions into your program . It also helps you reduce the s ize of
programs which might not otherwise run i n a g iven s ize; and if you're
writing a program which requ ires the input of data such as inventory
items, numbers or text, a short program wi l l leave more memory space
free to hold data .

ABBREVIATING KEYWORDS

A l ist of keyword abbreviations is g iven in Appendix A. This is helpful
when you program because you can actual ly crowd more information on
each l ine us ing abbreviations . The most frequently used abbreviation is

24 BASIC PROGRAMMIN G RULES

the q uestion mark (?) which is the BAS IC abbreviation for the PR INT
command . However, if you L IST a program that has abbreviations , the
Commodore 64 will automatical ly print out the l isting with the ful l-length
keywords . If any prog ram line exceeds 80 characters (2 l ines on the
screen) with the keywords unabbreviated, and you want to change it,
you will have to re-enter that line with the abbreviations before saving
the program . SAVEing a prog ram incorporates the keywords without
inflating any lines because BASIC keywords are token ized by the Com­
modore 64 . Usua lly, abbreviations are added after a program is written
and it isn't going to be LI STed any more before SAVEing .

SHORTENING PROGRAM LINE NUMBERS

Most prog rammers start their programs at l ine 1 00 and number each
l ine at interva ls of 1 0 (i . e . , 1 00, 1 1 0, 1 20). This a l lows extra lines of
i nstruction to be added (I l l , 1 1 2, etc .) as the program is developed .
One means of crunching the program after it is completed is to change

the l ine numbers to the lowest n umbers poss ible (i . e . , 1 , 2 , 3) because
longer l ine numbers take more memory than shorter numbers when ref­
erenced by GOTO and GOSUB statements . For instance, the number 1 00
uses 3 bytes of memory (one for each number) whi le the number 1 uses
only 1 byte .
PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in you r
prog ram by separating them by a colon . The only l imitation i s that al l
the instructions on each l ine, inc luding colons, should not exceed the
standard 80-character l ine length . Here is an example of two prog rams,
before and after crunching :

BEFORE CRUNCHING:

1 0 PR INT "HELLO . . . ";
20 FOR T= 1 TO 500:NEXT
30 PRINT "HEllO, AGAIN
40 GOTO 1 0

REMOVING REM STATEMENTS

AFTER CRUNCHING:

1 0 PRINT "HELLO . , ."; :FORT= HO
500:NEXT: PRINT"HELlO,
AGAIN , , ,":GOT0 1 0

REM statements a re helpful i n reminding you rself-or showing other
prog rammers-what a particu lar section of a program is doing . How­
ever, when the program is completed and ready to use, you probably

BASIC PROGRAMMING RU LES 25

won't need those REM statements anymore and you can save quite a bit
of space by removing the REM statements. If you p lan to revise or study
the program structure in the future , it's a good idea to keep a copy on
fi le with the REM statements i ntact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your p rogram it's
usual ly best to define those long words or numbers with a one or two
letter variable . Numbers can be defined as s ing le letters. Vl.brds and
sentences can be defined as string variables us ing a letter and dol lar
s ig n . Here's one example:

BEFORE CRUNCHING:

10 POKE 54296, 1 5
20 POKE 54276,33
30 POKE 54273, 1 0
40 POKE 54273,40
50 POKE 54273,70
60 POKE 54296,0

AFTER CRUNCHING:

1 0 V=54296:F =54273
20 POKEV, 1 5: POKE54276,33
30 POKEF, 1 0: POKEF,40: POKEF,70
40 POKEV,O

USING READ AND DATA STATEMENTS

large amounts of data can be typed in as one piece of data at a
time, over and over aga in . . . or you can print the instructional part of
the program ONCE and p rint a l l the data to be handled in a long run­
ning l i st cal led the DATA statement. This i s especia lly good for c rowding
large l i sts of numbers i nto a p rogram .

USING ARRAYS AND MATRICES

Arrays and matrices a re s im i lar to DATA statements in that long
amounts of data can be handled as a l ist, with the data handl ing por­
tion of the program d rawing from that l i st, i n sequence . Arrays d iffer in
that the l ist can be mu lti-dimensional

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
e l iminate a l l the spaces. Although we often inc lude spaces in sample
programs to provide c larity, you actua l ly don't need any spaces in your
program and will save space if you e l iminate them .

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particu lar l ine or instruction over and over, it m ight be
wise to GOSUB to the l i ne from several places i n your program , rather
than write the whole line or instruction every time you use it.

USING TAB AND SPC

I nstead of PR INTing several cursor commands to position a character
on the screen, it is often more economical to use the TAB and SPC in­
structions to position words or characters on the screen.

BASIC PROGRAMMING RULES 27

CHAPTER 2

BASIC LANGUAGE
VOCABULARY

• I ntrod uction

• BASI C Keywords, Abbreviations,

a nd F u nctio n Types

• Descr i ptio n of BASI C Keywords

(Al ph a betical)

• The COMMODOR E 64 Keyboa rd a nd

Featu res

• Screen E d itor

29

INTRODUCTION

This chapter explains CBM BASIC Language keywords . First we give
you an easy to read list of keywords , their abbreviations and what each
letter looks l ike on the screen . Then we explain how the syntax and
operation of each keyword works in deta i l , and examples a re shown to
give you an idea as to how to use them in your programs .

As a convenience, Commodore 64 BAS IC al lows you to abbreviate
most keywords. Abbreviations a re entered by typing enough letters of
the keyword to d istingu ish it from all other keywords , with the last letter
or graphics entered holding down the " key.

Abbreviations do NOT save a�y memory when they're used in pro­
grams, because a l l keywords a re reduced to s ingle-cha racter "tokens"
by the BAS IC I nterpreter . When a prog ram containing abbreviations is
listed, all keywords appear in their fully spel led form . You can use ab­
breviations to put more statements onto a prog ram l ine even if they
won't fit onto the aD-cha racter logical screen l ine . The Screen Editor
works on an aD-cha racter l ine. This means that if you use abbreviations
on any line that goes over aD characters, you will NOT be able to edit
that l ine when liSTed. I nstead, what you'l l have to do is (1) retype the
entire line including all abbreviations, or (2) break the s ingle line of code
into two lines, each with its own line number, etc .

A complete list of keywords, abbreviations, and their appearance on
the screen is presented in Table 2- 1 . They are followed by an a lpha­
betical description of al l the statements, commands, and functions
avai lable on your Commodore 64 .

This chapter also explains the BAS IC functions bui lt into the BAS IC
language I nterpreter . Bu ilt- in functions can be used in d i rect mode
statements or in any prog ram , without having to define the function
further . This is NOT the case with user-defined functions . The resu lts of
built-in BASIC functions can be used as immed iate output or they can be
assigned to a variable name of an appropriate type. There a re two
types of BAS IC functions :

1) NUMER IC
2) STR ING

Arguments of built-i n functions a re a lways enclosed in parentheses
() . The parentheses a lways come d i rectly after the function keyword
and NO SPACES between the last letter of the keyword and the left
parenthesis (.

30 BASIC LANGUAGE VOCABULARY

I

The type of argument needed is general ly decided by the data type in
the result . Functions wh ich return a string value as their result a re iden­
tified by having a dol lar sign ($) as the last cha racter of the keyword . I n
some cases string functions conta in o ne or more numeric argument .

Numeric functions wil l convert between integer and floating-point
format as needed . In the descriptions that follow, the data type of the
va lue returned i s shown with each function name. The types of argu­
ments are a lso given with the statement format.

Table 2- 1 . COMMODORE 64 BASIC KE YWORDS

COMMAND ABBREVIATION

ABS A EmIl B

AN D A EmIl N

ASC A EmIl S

ATN A EmIl T

CHR$ C EmIl H

CLOSE CL Emil 0

CLR C £lID L

CMD C EmIl M

CONT C EmIl 0

COS none

DATA D £lID A

DEF D EmIl E

D IM D EmIl I I

SCREE N FUNCTION TYPE

A IT] NUMER IC

A [2J
A � N UMERIC

A [[] NUMER IC

C [J] STR ING

CL 0
C 0
C [SJ
C 0
COS NUMER IC

D [!]
D El
D &J

BASIC LANGUAGE VOCABULARY 3 1

COMMAND ABBREVIATION

END E BIID N

EXP E BIID X

FN none

FOR F BIID 0

FRE F BIID R

GET G aD E

GET# none

GOSUB GO aD S

GOTO G aD 0

I F none

I NPUT none

I N PUT# I aD N

INT none

LEFT$ LE aD F

LEN none

LET L BIID E

L IST L BIID I

LOAD L aD 0

LOG none

32 BASIC LANGUAGE VOCABU LARY

SCREEN FU NCTION TYPE

E [ZJ
E [±J NUMER IC

FN

F 0
F bl NUMERIC

G El
GET#

GO �
G 0

I F

I N PUT

I [ZJ
INT NUMER IC

LE g STR ING

LEN NUMER IC

L El
L �
L 0

LOG NUMERIC

COMMAND ABBREVIATION

MID$ M BIIiI I

N EW none

NEXT N Emil E

NOT N Emil 0

ON none

OPEN 0 Emil P

OR none

PEEK P BIIiI E

POKE P Emil 0

POS none

PR INT ?

PR INT# P Emil R

R EAD R BIIiI E

REM none

RESTORE RE BIIiI S

R ETURN RE BIIiI T

R IGHT$ R Emil I

R N D R Emil N

RUN I R BIIiI U

SCREEN F UNCTION TYPE

M [;] STR I NG

NEW

N El
N 0

ON

0 0
OR

P D NUMER IC

P 0
POS NUMER IC

?

P bd
R D

REM

RE �
RE [JJ
R � STR I NG

R 0 NUMER IC

R Q
BASIC LANGUAGE VOCABU LARY 33

COMMAND ABBREVIATION

, SAVE S EDIIiI A

SGN S mil G

S IN S BIID I

SPC(S EDIIiI P

SQR S BIID Q

STATUS ST

STEP ST BIID E

STOP S BIID T

STR$ ST BIID R

SYS S EDIIiI Y

TAB(T EDIIiI A

TAN none

THEN T BIID H

T IME TI

T IME$ T I$

TO none

USR U BIID S

VAL V EDIIiI A

VER I FY V EmIlI E

WAIT W EmIII A

34 BASIC LANGUAGE VOCABULARY

SCREEN FU NCTION TYPE

S [!]
s IT] NUMER IC

s EJ NUMERIC

s O SPECIAL

S • NUMERIC

ST NUMER IC

ST EJ
s IT]
ST g STR ING

S []
T [!] SPECIAL

TAN NUMER IC

T O
T I NUMERIC

T I$ STR ING

TO

U � NUMERIC

V [!] NUMERIC

v EJ
W [!]

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function-Numeric
FORMAT: ABS(<expression»

Action: Returns the absolute value of the number, which is its value
without any signs. The absolute value of a negative number is that
number mu lt ipl ied by - 1 .

EXAMPLES of ABS Function:

1 0 X = ABS (Y)
1 0 PRINT ABS (X * J)
1 0 IF X = ABS (X) THEN PRINT "POSITIVE"

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits . It is a lso used
in operations to check the truth of both operands .

In Boolean algebra , the result of a n AND operation i s 1 only if both
n umbers being ANDed a re 1 . The resu lt is 0 if either or both is 0 (fa lse).

EXAMPLES of I -Bit AND Operation:

o

AND 0

o

1

AND 0

o

o

AND 1

o

AND 1

The Commodore 64 performs the AND operation on numbers in the
range from - 32768 to + 32767. Any fractional values are not used , and
n umbers beyond the range wil l cause an ?ILLEGAL QUANTIT Y error

BASIC LANGUAGE VOCABULARY 35

message. When converted to b inary format, the range al lowed yields 1 6
bits for each number. Corresponding bits are ANDed together, forming
a 1 6-bit resu lt i n the same range.

EXAMPLES of 1 6-Bit AND Operation:

1 7
AND 1 94

00000000000 1 000 1
AN D 00000000 1 1 0000 1 0

(B INARY) 0000000000000000

(DEC IMAL) o

32007
AND 28761

0 1 1 1 1 1 0 1 00000 1 1 1
AND 0 1 1 1 00000 1 0 1 1 00 1

(B INARY) 0 1 1 1 00000000000 1

(DECIMAL) 28673

-241
AND 1 5359

1 1 1 1 1 1 1 1 0000 1 1 1 1
AN D 00 1 1 1 0 1 1 1 1 1 1 1 1 1 1

(B I NARY) 00 1 1 1 0 1 1 0000 1 1 1 1

(DEC IMAL)

36 BASIC LANGUAGE VOCABULARY

1 5 1 1 9

When eva luating a number for truth or falsehood , the computer as­
sumes the number is true as long as its value isn't O. When eva luating a
comparison , it ass igns a value of - 1 if the result is true, whi le false has
a value of o. I n b inary format, - 1 is a l l l 's and 0 is a l l O's. Therefore,
when ANDing truelfa lse eva luations, the result wi l l be true if any bits in
the result are true .

EXAMPLES of Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THEN GOTO 1 0: REM ONLY TRUE IF BOTH X=7
AN D W=3 ARE TRU E

60 I F A AND Q = 7 THEN GOTO 1 0: REM TRU E I F A IS NON-ZERO
AND Q = 7 IS TRU E

ASC

TYPE: Function-Numeric
FORMAT: ASC (<string>)

Action: ASC wi l l return a number from 0 to 255 which corresponds to
the Commodore ASCI I va lue of the first character in the string . The table
of Commodore ASCI I values is shown in Appendix C .

EXAMPLES OF ASC Function:

1 0 PRINT ASC("Z")
20 X = ASC("ZEBRA")
30 J = ASC(J$)

I f there are no characters in the string , an ?ILLEGAL QUANTITY error
results. In the third example above, if J$ ="" , the ASC function will not
work. The GET and GET# statement read a C HR$(O) as a nu l l string . To
e l iminate this problem, you should add a CHR$(O) to the end of the
string as shown below.

EXAMPLE of ASC Function Avoiding ILLEGAL QUANTITY ERROR:

30 J = ASC(J$ + CH R$(O»

BASIC LANGUAGE VOCABULARY 37

ATN

TYPE: Function-Numeric
FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the
number . The result is the ang le (in radians) whose tangent is the number
g iven . The resu lt is a lways in the range -rr/2 to + rr/2.

EXAMPLES of ATN Function:

1 0 PRINT ATN (0)
20 X = ATN (J) * 1 80 / rr : REM CONVERT TO DEGREES

CHR$

TYPE: Function-String
FORMAT: CHR$ (<number>)

Action: This function converts a Commodore ASCI I code to its char­
acter equ ivalent. See Appendix C for a l ist of characters and their
codes. The number must have a value between 0 and 255, or a n ?IL­
LEGAL QUANTITY error message results .

EXAMPLES of CHR$ Function:

1 0 PRINT CH R$(65) : REM 65 = U PPER CASE A
20 A$ = CHR$(1 3) : REM 1 3 = RETURN KEY
50 A = ASC(A$) : A$ = CH R$(A): REM CONVERTS TO C64 ASCI I

CODE AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: 1/0 Statement
FORMAT: CLOSE <file number>

Action: This statement shuts off any data fi le or channel to a device.
The fi le number is the same as when the fi le or device was OPENed (see
OPEN statement and the section on I NPUT/OUTPUT programming) .

When working with storage devices l ike cassette tape and d isks, the
CLOSE operation stores any incomplete buffers to the device . When this
is not performed, the fi le wil l be incomplete on the tape and un readable
on the disk. The CLOSE operation isn't as necessary with other devices,
but it does free up memory for other fi les. See your external device
manua l for more deta i l s .

EXAMPLES of CLOSE Statement:

1 0 CLOSE 1
20 CLOSE X
30 CLOSE 9 * (1 + J)

ClR

TYPE: Statement
FORMAT: CLR

Action: This statement makes avai lable RAM memory that had been
used but is no longer needed . Any BAS IC program in memory is un­
touched, but a l l variables, a rrays , GOSUB addresses, FOR . . . N EXT
loops, user-defined functions, and fi les are erased from memory, and
the i r space i s made avai lable to new va riables, etc.

BASIC LANGUAGE VOCABULARY 39

In the case of fi les to the disk and cassette tape, they a re not properly
CLOSEd by the CLR statement. The information about the files is lost to
the computer, inc luding any incomplete buffers. The disk d rive wil l sti l l
think the file is OPEN . See the CLOSE statement for more information on
this.

EXAMPLE of CLR Statement:

1 0 X = 25
20 CLR
30 PRINT X

RUN
o

READY

CMD

TYPE: I/O Statement
FORMAT: CMD <file number> [, string]

Action: This statement switches the pr imary output device from the TV
screen to the file specified. This fi le could be on d isk, tape, printer, or an
I/O device l ike the modem. The fi le number must be specified in a prior
OPEN statement. The string , when specified, is sent to the fi le. This is
handy for titl ing printouts, etc .

When this command is in effect, any PR INT statements and LIST com­
mands wil l not d isplay on the screen, but wi l l send the text i n the same
format to the fi le .

To re-d i rect the output back to the screen, the PR INT# command
shou ld send a blank l i ne to the CMD device before CLOSEing, so it wi l l
stop expecting data (cal led "un-l isten ing" the device) .

40 BASIC LANGUAGE VOCABULARY

Any system error (l ike ?SYNTAX ERROR) wil l cause output to return to
the screen. Devices a ren't un-l istened by this, so you should send a
b lank l ine after a n error condition . (See your p rinter or disk manua l for
more deta i l s .)

EXAMPLES of CMD Statement:

OPEN 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM ON PRINTER
PRINT# 4 : CLOSE 4: REM U N-LISTENS AND CLOSES PRINTER

10 OPEN 1 , 1 , 1 , "TEST": REM CREATE SEQ F I LE
20 CMD 1 : REM OUTPUT TO TAPE F I LE , NOT SCREEN
30 FOR L = 1 TO 1 00
40 PRINT L: REM PUTS N UMBER IN TAPE BUFFER
50 N EXT
60 PRINT# 1 : REM U NLISTEN
70 CLOSE 1 : REM WRITE UNF IN ISHED BUFFER, PROPERLY F IN ISH

CONT

TYPE: Command
FORMAT: CONT

Action: This command re-starts the execution of a program which was
ha lted by a STOP o r END statement or the ';!ii1tfiloli key being
p ressed . The p rogram wi l l re-start at the exact place from which it left
off.

Whi le the p rogram is stopped , the user can inspect or change any
variables o r look at the program . When de-bugging o r examin ing a
program, STOP statements can be placed at strategic locations to a l low
examination of variables and to check the flow of the p rogram .

The erro r message CAN'T CONTINUE wi l l result from editing the
program (even j ust h itting +;!iliW+ with the cursor on an unchanged
l ine), or if the program ha lted due to an error, or if you caused an e rror
before typing CONT to re-start the p rogram .

EXAMPLE of CONT Command:

10 PI =O:C = l
20 P I = PI +4/C -4/(C + 2)
30 PRINT PI
40 C = C +4:GOTO 20

BASIC LANGUAGE VOCABULARY 4 1

This program calculates the value of PI . RUN this program, and after
a short whi le hit the 1;Jiilli"" key. You wil l see the d isplay:

BREAK IN 20 I NOTE: Might be different number. I
Type the command PR INT C to see how far the Commodore 64 has

gotten . Then use CO NT to resume from where the Commodore 64 left
off.

cos
TYPE: Function
FORMAT: COS (<number>)

Act ion: Th is mathematica l funct ion ca lcu lates the cos ine of the
number, where the number i s an angle i n rad ians .

EXAMPLES of COS Function:

1 0 PRINT COS (0)
20 X = COS (Y * 1T / 1 80) : REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA < l ist of constants>

Action: DATA statements store information within a program . The
program uses the information by means of the R EAD statement, which
pul ls successive constants from the DATA statements .

The DATA statements don't have to be executed by the program, they
only have to be present. Therefore, they a re usual ly placed at the end of
the program.

Al l data statements i n a program are treated as a continuous l ist.
Data is READ from left to r ight, from the lowest numbered l ine to the
h ighest. If the READ statement encounters data that doesn't fit the type
requested (if it needs a number and finds a stri ng) an error message
occurs.

42 BASIC LANGUAGE VOCABULARY

Any characters can be inc luded as data, but if certain ones a re used
the data item must be enclosed by quote marks (" ") . These include
punctuation l ike comma (,) , colon (:) , b lank spaces, and shifted letters,
graph ics, and cursor control characters .

EXAMPLES of OAT A Statement:

1 0 DATA 1 , 1 0, 5, 8
20 DATA JOHN, PAU L, GEORGE, R INGO
30 DATA "DEAR MARY, HOW ARE YOU , LOVE, BI LL"
40 DATA - 1 . 7E - 9, 3 .33

DEF FN

TYPE: Statement
FORMAT: DEF FN <name> (<variable>)

sion>
<expres-

Action: This sets up a user-defined function that can be used later i n
the program . The function can consist of any mathematical formula .
Usec-defined functions save space in p rograms where a long formula i s
used in several places . The formu la need on ly be specified once, i n the
defin ition statement, and then it is abbreviated as a function name. It
m ust be executed once, but a ny subsequent executions are i gnored.

The function name is the letters FN followed by any variable name.
Th is can be 1 o r 2 characters, the fi rst be ing a letter and the second a
letter o r d ig it.

EXAMPLES of DEF FN Statement:

1 0 DEF FN A (X) = X + 7
20 DEF FN AA (X) = Y * Z
30 DEF FNA9 (Q) = INT(RND(1)* Q+ 1)

The function i s ca l led later i n the program by us ing the function name
with a variable i n parentheses . This function name is used l i ke any other
variable, and its value i s automatica l ly calculated .

BASIC LANGUAGE VOCAB U LARY 43

EXAMPLES of FN Use:

40 PRINT FN A (9)
50 R = FNAA (9)
60 G = G + FN A9 (1 0)

I n l ine 50 above, the number 9 ins ide the pa rentheses does not affect
the outcome of the function, because the function defin ition in l ine 20
doesn't use the variable in the parentheses . The result is Y times Z,
regardless of the value of X. In the other two functions, the va lue in
parentheses does affect the result.

DIM

TYPE: Statement
FORMAT: DIM <variable> (<subscripts>) [,

<variable> (<subscripts>) . . .]

Action: This statement defi nes an a rray or matrix of variables. This
a l lows you to use the variable name with a subscr ipt. The subscr ipt
points to the element being used . The lowest element n umber in an
a rray is zero, and the highest is the number g iven in the DIM statement,
which has a maximum of 32767.

The DIM statement must be executed once and only once for each
array. A REDIM'D ARRAY error occurs if this l ine is re-executed . There­
fore, most programs perform all D IM operations at the very beginn ing .

There may be any number of d imensions and 255 subscripts in an
array, l im ited only by the amount of RAM memory which is avai lable to
hold the variables . The a rray may be made up of normal numeric vari­
ables, as shown above, or of strings or i nteger numbers . If the variables
are other than normal numeric, use the $ or % signs after the va riable
name to indicate str ing or integer va riables,

44 BASIC LANGUAGE VOCABULARY

If an array referenced in a prog ram was neve r D IMensioned, it is
automatica l ly d imensioned to 1 1 elements in each dimension used in the
first reference.

EXAMPLES of DIM Statement:

1 0 DIM A (1 00)
20 DIM Z (5, 7), Y (3, 4, 5)

30 DIM Y7% (Q)
40 DIM PH$ (1 000)
50 F (4) =9: REM AUTOMATICAllY PERFORMS DIM F (1 0)

EXAMPLE of FOOTBALL SCORE-KEEPING Using DIM:

1 0 DIM 5(1 , 5), T$(l)
20 IN PUT "TEAM NAMES"; T$(O), T$(l)
3 0 FOR Q = 1 TO 5 : FOR T = O TO 1
40 PRINT T$(T), "SCORE I N QUARTER" Q
50 IN PUT S(T,Q): S(T,O) = S(T,O) + S(T,Q)

60 N EXT T,Q
70 PRINT CH R$(1 47) "SCORE BOARD"
80 PRINT "QUARTE R"
90 FOR Q = l TO 5

1 00 PR INT TAB(Q*2 + 9) Q;
1 1 0 N EXT: PRINT TAB(1 5) "TOTAL"
1 20 FOR T=O TO 1 : PRINT T$(T);
1 30 FOR Q = l TO 5
1 40 PRINT TAB(Q*2 + 9) S(T,Q);
1 50 N EXT: PRINT TAB(l 5) S(T,O)
1 60 N EXT

CALCULATING MEMORY USED BY DIM:

5 bytes for the a rray name
2 bytes for each d imension
2 bytes/element for i nteger variables
5 bytes/element for norma l numeric variables
3 bytes/e lement for stri ng variables
1 byte for each character i n each str ing element

BASIC LANGUAGE VOCAB U LARY 45

END

TYPE: Statement
FORMAT: END

Action : Th i s fin ishes a program's execution and displays the READY
message, return ing control to the person operating the computer. There
may be any number of END statements within a program . Whi le it is not
necessary to inc lude any END statements at a l l , it is recommended that
a program does conclude with one, rather than just runn ing out of l ines.

The END statement is s im ilar to the STOP statement. The only d iffer­
ence is that STOP causes the computer to display the message BREAK
IN LINE XX and END just d isplays R EADY. Both statements a l low the
computer to resume execution by typing the CaNT command.

EXAMPLES of END Statement:

1 0 PRINT "DO YOU REALLY WANT TO RUN THIS PROGRAM"
20 I N PUT A$
30 IF A$ = "NO" THEN END
40 REM REST OF PROGRAM .
999 END

EXP

TYPE: Function-Numeric
FORMAT: EXP (<number>)

Act ion : Th i s m athemati c a l fu nct ion c a l c u l ates the constant e
(2 . 7 1 828 1 83) raised to the power of the number given . A value greater
than 88 .02969 1 9 causes an ?OVERFLOW error to occur .

EXAMPLES of EXP Function:

1 0 PRINT EXP (1)
20 X = Y * EXP (Z * Q)

46 BASIC LANGUAGE VOCABU LARY

FN

TYPE: Function-Numeric
FORMAT: FN <name> (<number>)

Action: This function references the previously DEFined formula spec­
ified by name. The number is substituted into its place (if any) and the
formula is calcu lated . The resu lt wil l be a numeric va lue.

This function can be used in d irect mode, as long as the statement
DEFining it has been executed .

If an FN is executed before the DEF statement wh ich defines it, an
U N DEF'D FU NCTION error occurs.

EXAMPLES of FN (User-Defined) Function:

PRINT FN A (Q)
1 1 00 J = FN J (7) + FN J (9)
9990 I F FN B7 (I + 1) = 6 THEN END

FOR . • . TO . . . [STEP . . .]
TYPE: Statement
FORMAT: FOR <variable>

< increment>]
<start> TO <l imit> [STEP

Action: This i s a specia l BAS IC statement that lets you easily use a
var iab le a s a counte r . You m ust spec ify certa i n parameters : the
floating-point variable name, its sta rting va lue, the l imit of the count,
and how much to add during each cyc le .

Here is a s imple BASIC program that counts from 1 to 1 0, PRINTing
each number and ENDing when complete, and using no FOR state­
ments:

1 00 L = 1
1 1 0 PRINT L
1 20 L = L +
1 30 I F L < = 1 0 THEN 1 1 0
1 40 END

BASIC LANGUAGE VOCABULARY 47

Using the FOR statement, here is the same program :

1 00 FOR L = 1 TO 1 0
1 1 0 PRINT L
1 20 NEXT L
1 30 END

As you can see, the prog ram is shorter and easier to understand using
the FOR statement.

When the FOR statement is executed, several operations take place.
The < sta rt> va lue is placed i n the <va riable> being used in the
counter . In the example above, a 1 is placed in L.

When the N EXT statement is reached, the < increment> va lue is
added to the <va riable> . If a STEP was not inc luded, the < increment>
is set to + 1 . The first time the program above h its l i ne 1 20, 1 is added
to L, so the new value of L is 2 .

Now the va lue in the <va riable> is compared to the < lim it>. If the
<l im it> has not been reached yet, the program GOes TO the line after
the or ig inal FOR statement. In this case, the value of 2 in L is less than
the l imit of 1 0, so it GOes TO l ine 1 1 0 .

Eventual ly, the value of <l im it> is exceeded by the <variable> . At
that time, the loop is concluded and the prog ram continues with the l ine
fol lowing the N EXT statement. In our example, the value of L reaches
1 1 , which exceeds the l imit of 1 0, and the p rogram goes on with l ine
1 30 .

When the va lue of <increment> is positive, the <variable> must
exceed the < l im it> , and when it is negative it must become less than
the <l im it> .

NOTE: A loop always executes at least once.

EXAMPLES of FOR . . . TO . . . STEP . . . Statement:

1 00 FOR L = 1 00 TO 0 STEP - 1
1 00 FOR L = PI TO 6*7T STEP .0 1
1 00 FOR AA = 3 TO 3

48 BASIC LANGUAGE VOCABU LARY

FRE

TYPE: Function
FORMAT: FRE (<variable>)

Action: This function tel l s you how much RAM is avai lable for your
program and its var iables . If a program tries to use more space than is
avai lable, the OUT OF MEMORY error results.

The number in parentheses can have any value, and it is not used in
the calcu lation .

NOTE: I f the result o f F R E i s negative, add 65536 t o the F R E number t o get the

number of bytes avai lable in memory.

EXAMPLES of FRE Function:

PRINT FRE (0)
l O X = (FRE (K) - 1 000) / 7
950 I F FRE (0) < 1 00 THEN PRINT "NOT ENOUGH ROOM"

NOTE: The following always tells you the current available RAM:

PRINT FRE(O) - (FRE(O) < 0)* 65536

GET

TYPE: Statement
FORMAT: GET <variable l ist>

Action: This statement reads each key typed by the user. As the user
is typing , the characters a re stored in the Commodore 64's keyboard
buffer . Up to 1 0 characters are stored here, and any keys struck after
the 1 0th are lost. Reading one of the characters with the GET statement
makes room for a nother character.

I f the GET statement specifies numeric data , and the user types a key
other than a number, the message ?SYNTAX ERROR appears . To be
safe, read the keys as strings and convert them to numbers later.

BASIC LANGUAGE VOCABU LARY 49

The GET statement can be used to avoid some of the l imitations of the
I N PUT statement. For more on this, see the section on Using the GET
Statement in the Prog ramming Techniq ues section .

EXAMPLES of GET Statement:

1 0 GET A$: I F A$ = "" THEN 1 0: REM LOOPS IN 1 0 UNTIL ANY KEY
H IT

20 GET A$, B$, C$, D$, E$: REM READS 5 KEYS
30 GET A, A$

GET#

TYPE: I/O Statement
FORMAT: GET# <file number>, <variable l ist>

Action: This statement reads characters one-at-a-time from the device
or fi le specified. It works the same as the GET statement, except that the
data comes from a different place than the keyboard . If no character is
received, the variable is set to an empty string (equal to "") or to 0 for
numeric variables. Characters used to separate data in fi les, l ike the
comma (,) or i@i@1 key code (ASC code of 1 3) , are received l ike
any other character .

When used with device #3 (TV screen) , this statement wi l l read char­
acters one by one from the screen . Each use of GET# moves the cursor 1
position to the right. The cha racter at the end of the logical l ine is
changed to a C H R$ (1 3) , the iUiiWI key code.

EXAMPLES of GET # Statement:

5 GET# 1 , A$
1 0 OPEN 1 , 3 : GET# 1 , Z7$
20 GET# 1 , A, B, C$, D$

50 BASIC LANGUAGE VOCAB U LARY

GOSU B

TYPE: Statement
FORMAT: GOSUB < l ine number>

Action: This is a special ized form of the GOTO statement, with one
important d ifference: GOSUB remembers where it came from . When the
RETURN statement (different from the 1;1+"1;11+ key on the keyboard)
i s reached in the program , the program j umps back to the statement
immed iately following the or ig inal GOSUB statement.

The major use of a subroutine (GOSUB real ly means GO to a SUB­
routine) is when a smal l section of program is used by d ifferent sections
of the program . By using subroutines rather than repeating the same
l ines over and over at d ifferent places i n the program, you can save lots
of program space . In this way, GOSUB is s imi lar to DEF FN . DEF FN lets
you save space when us ing a formula, whi le GOSUB saves space when
us ing a several-l ine routine . Here i s an inefficient program that doesn't
use GOSUB :

1 00 PRINT "THI S PROGRAM PRINTS"
1 1 0 FOR L = 1 TO 500 : NEXT
1 20 PRINT "SLOWLY ON TH E SCREEN"
1 30 FOR L = 1 TO 500 : NEXT
1 40 PRINT "USING A SIMPLE LOOP"
1 50 FOR L = 1 TO 500 : NEXT
1 60 PRINT "AS A TIME DELAY."
1 70 FOR L = 1 TO 500 : NEXT

Here is the same program us ing GOSUB :

1 00 PRINT "THIS PROGRAM PRINTS"
1 1 0 GOSUB 200
1 20 PRINT "SLOWLY ON THE SCREEN"
1 30 GOSUB 200
1 40 PRINT "USING A SIMPLE LOOP"
1 50 GOSUB 200
1 60 PRINT "AS A TIME DELAY."
1 70 GOSUB 200
1 80 END
200 FOR L = 1 TO 500 : NEXT
2 1 0 RETURN

BASIC LANGUAGE VOCABULARY 5 1

Each time the program .executes a GOSUB, the l ine number and posi­
tion in the program line �re saved in a special area called the "stack,"
which takes up 256 bytes of your memory. This l imits the amount of data
that can be stored in the stack. Therefore, the number of subroutine
return addresses that can be stored is l im ited , and care should be taken
to make sure every GOSUB h its the corresponding R ETURN , or else you'l l
run out of memory even though you have plenty of bytes free.

GOTO

TYPE: Statement
FORMAT: GOTO < l ine number>

or GO TO < l ine number>

Action: This statement al lows the BASIC program to execute l ines out
of numerical order. The word GOTO followed by a number wil l make
the prog ram jump to the l ine with that number . GOTO NOT followed by
a number equals GOTO O. It must have the l ine number after the word
GOTO.

It is possible to create loops with GOTO that will never end. The
s implest example of this is a line that GOes TO itself, l ike 1 0 GOTO 1 0.
These loops can be stopped us i ng the MilttiNa key on the key­
board .

EXAMPLES of GOTO Statement:

GOTO 1 00
1 0 GO TO 50
20 GOTO 999

I F . . . THEN

TYPE: Statement
FORMAT: IF <express

'
ion> THEN < l ine number>

IF <expression> GOTO <l ine number>
IF <expression> THEN <statements>

Action: This is the statement that g ives BASIC most of its "intel l i­
gence," the abi l ity to eva luate conditions a nd take different actions de­
pending on the outcome.

52 BASIC LANGUAGE VOCABULARY

The word I F is fol lowed by an expression, which can include varia­
bles, str ings, numbers, comparisons, and I<;>gical operators. The word
THEN appears on the same line and i s followed by either a l ine number
or one or more BASIC statements . When the expression is false, every­
th ing after the word THEN on that l ine is ignored , and execution con­
tinues with the next l ine n umber i n the program . A true resu lt makes the
program either branch to the l ine number after the word THEN or exe­
cute whatever other BAS IC statements are found on that l ine .

EXAMPLE of IF . . . GOTO . . . Statement:

1 00 I N PUT "TYPE A NUMBER"; N
1 1 0 I F N < = 0 GOTO 200

1 20 PRINT "SQUARE ROOT =" SQR(N)
1 30 GOTO 1 00

200 PRINT "NUMBER MUST BE >0"

2 1 0 GOTO 1 00

This program prints out the square root of any positive number . The I F
statement here i s used to val idate the result o f the I NPUT. When the
resu lt of N < = 0 i s true , the program skips to line 200, and when the
resu lt is false the next l ine to be executed is 1 20. Note that THEN GOTO
is not needed with I F . . . THEN , as in l ine 1 1 0 where GOTO 200 actual ly
means THEN GOTO 200.

EXAMPLE OF IF • . . THEN • • . Statement:

1 00 FOR L = 1 TO 1 00

1 1 0 I F RND(l) < . 5 THEN X
1 20 Y = Y+ 1

1 30 N EXT L
1 40 PRINT "HEADS = " X
1 50 PRINT "TAILS = " Y

X+ 1 GOTO 1 30

The I F i n l ine 1 1 0 tests a random number to see if it is less than . 5 .

When the result is true, the whole series of statements following the
word THEN are executed: flrst X is incremented by 1 , then the program
sk ips to l i ne 1 30. When the result is false, the program d rops to the next
statement, l i ne 1 20.

BASIC LANGUAGE VOCABULARY 53

INPUT

TYPE: Statement
FORMAT: INPUT [u< prompt>u ;] <variable l ist>

Action: This is a statement that lets the person RUNn ing the program
"feed" information into the computer . When executed, this statement
PRINTs a question mark (?) on the screen, and posit ions the cursor 1
space to the right of the question mark . Now the computer waits, cursor
bl ink ing, for the operator to type in the answer and press the l;l§liWM
key.

The word INPUT may be fol lowed by any text contained in quote
marks (" "). This text is PR INTed on the screen, fo l lowed by the ques­
tion mark.

After the text comes a semicolon (;) and the name of one or more
variables separated by commas . This variable is where the computer
stores the information that the operator types. The variable can be any
lega l var iable name, and you can have several d ifferent var iab le
names, each for a d ifferent i nput .

EXAMPLES of INPUT Statement:

1 00 IN PUT A
1 1 0 IN PUT B, C, 0
1 20 IN PUT "PROMPT"; E

When this program RUNs,the question mark appears to prompt the
operator that the Commodore 64 is expecting an input for line 1 00. Any
number typed in goes into A, for later use in the program . If the answer
typed was not a number, the ?REDO FROM START message appears,
which means that a str ing was received when a number was expected .
If the operator just h its 1;lii1l;!IM without typing anything , the vari­
able's va lue doesn't change.

Now the next question mark, for l ine 1 1 0, appears . I f we type on ly
one number and hit l;liiiWM , the Commodore 64 wi l l now d isplay 2
question marks (??), which means that more input is required . You can

54 BASIC LANGUAGE VOCABULARY

just type as many inputs as you need separated by commas, which
prevents the double q uestion mark from appearing . If you type more
data than the I N PUT statement requested, the ?EXTRA IGNORED mes­
sage appears, which means that the extra items you typed were not put
into any variables.

Line 1 20 d isplays the word PROMPT before the q uestion mark ap­
pears . The semicolon is requ i red between the prompt and any l ist of
variables.

The I N PUT statement can never be used outs ide a program . The
Commodore 64 needs space for a buffer for the I NPUT variables, the
same space that is used for commands.

INPUT#

TYPE: 1/0 Statement
FORMAT: INPUT# <file number> , <variable l ist>

Action: This is usual ly the fastest and easiest way to retrieve data
stored in a file on disk or tape. The data is in the form of whole vari­
ables of up to 80 characters in length , as opposed to the one-at-a-time
method of GET# . First, the file must have been OPENed, then I NPUT#
can fil l the variables.

The I N PUT# command assumes a variable i s fin ished when it reads a
RETURN code (CHR$ (1 3», a comma (,) , semicolon (;) , or colon (:) .
Quote marks can be used to enclose these cha racters when writing if
they are needed (see PR INT# statement) .

If the variable type used is numeric , a nd non-numeric characters a re
received, a BAD DATA error results . I NPUT# can read str ings up to 80
characters long , beyond which a STRING TOO LONG error resu lts .

When used with device #3 (the screen) , this statement wi l l read an
entire logical l ine and move the cursor down to the next l i ne .

EXAMPLES of INPUT# Statement:

1 0 INPUT# 1 , A
20 INPUT# 2, A$, B$

BASIC LANGUAGE VOCABU LARY 55

INT

TYPE: Integer Function
FORMAT: INT « numeric»

Action: Returns the integer value of the expression . If the expression
is positive, the fractional part is left off. If the expression is negative,
any fraction causes the next lower i nteger to be returned .

EXAMPLES of INT Function:

1 20 PRINT INT(99.4343), INT(- 1 2 .34)

99 - 1 3

LEFT$

TYPE: String Function
FORMAT: LEFT$ « string>, < integer»

Action: Returns a string comprised of the leftmost < integer> char­
acters of the <string> . The integer argument va lue must be in the
range 0 to 255. If the integer is g reater than the length of the string , the
entire string will be returned . If an < integer> va lue of zero is used,
then a nul l string (of zero length) is returned .

EXAMPLES of LEFT$ Function:

1 0 A$ = "COMMODORE COMPUTERS"
20 B$ = LEFT$(A$,9): PRINT B$
RUN

COMMODORE

56 BASIC LANGUAGE VOCABULARY

LEN

TYPE: Integer Function
Format: LEN « string»

Action: Returns the number of characters in the string expression.
Non-printed cha racters and blanks a re counted .

EXAMPLE of LEN Function:

CC$ = "COMMODORE COMPUTER"; PRINT LEN(CC$)

1 8

LET

TYPE: Statement
FORMAT: [LET] <variable> = <expression>

Action: The LET statement can be used to ass ign a value to a va ri­
able . But the word LET is optional and therefore most advanced pro­
g rammers leave LET out because it's a lways understood and wastes val­
uable memory. The equal sign (=) alone i s sufficient when assign ing the
value of an expression to a variable name.

EXAMPLES of LET Statement:

1 0 LET D = 1 2
20 LET E$ = "ABC"
30 F$ = "WORDS"
40 SUM$ = E$ + F$

(This is the same as D 1 2)

(SUM$ wou ld equal ABCWORDS)

BASIC LANGUAGE VOCAB U LARY 57

LIST

TYPE: Command
FORMAT: LIST [[<first-l ine> J - [< last-l ine>]]

Action: The L IST command a l lows you to look at l ines of the BAS IC
program currently i n the memory of your Commodore 64 . Th i s lets you
use your computer's powerful screen ed itol to edit prog rams which
you've L ISTed both quickly and easi ly.

The L IST system command d isplays a l l o r part of the program that is
currently i n memory on the defau lt output device. The L IST wi l l normally
be d i rected to the screen and the CMD statement can be used to switch
output to an external device such as a printer or a disk. The L IST com­
mand can appear in a program , but BASIC a lways returns to the system
R EADY message after a LIST is executed .

When you bring the program LIST onto the screen , the "scrol l ing" of
the display from the bottom of the screen to the top can be slowed by
ho ld ing down the ConTRol liB key. L IST is a bo rted by typ ing
the 'jilllNOiieli key.

If no l ine-numbers a re g iven the entire program is l isted . If on ly the
first- l ine number is specified, and followed by a hyphen (-), that l ine and
a l l h igher-numbered l ines are l isted . If on ly the last l i ne-number is spec­
ified, and it is preceded by a hyphen, then all l ines from the beg inning
of the program through that l ine are l isted . If both numbers are spec­
ified, the entire range, inc lud ing the l ine-numbers L ISTed, i s displayed.

EXAMPLES of LIST Command:

L IST (L ists the program currently i n memory .)

L IST 500 (L ists l i ne 500 only.)

L IST 1 50- (L ists a l l l i nes from 1 50 to the end .)

LIST - 1 000 (L ists a l l l i nes from the lowest through 1 000.)

L IST 1 50- 1 000 (L ists l i nes 1 50 through 1 000, i nc l usive .)

1 0 PRINT "TH IS I S LIN E 1 0"
20 LIST (LI ST used in Program Mode)
30 PRINT "TH IS I S LIN E 30"

58 BASIC LANGUAGE VOCABU LARY

LOAD

TYPE: Command
F O R M AT : L O A D [" < fi l e - n a m e > "] [, < d e v i c e >]

[,<address>]

Action: The LOAD statement reads the contents of a program file from
tape or disk into memory . That way you can use the information LOADed
or change the information in some way. The device number is optiona l ,
but when i t is left out the computer wi l l automatical ly defau lt to 1 , the
cassette unit. The disk unit is normal ly device number 8. The LOAD
closes all open fi les and, if it is used in d i rect mode, it performs a CLR
(clear) before reading the program . If LOAD is executed from within a
program , the program is RUN . This means that you can use LOAD to
"chain" several prog rams together. None of the variables are cleared
during a chain operation .

If you a re us ing fi le-name pattern match i ng , the fi rst fi le which
matches the pattern is loaded . The asterisk in quotes by' itself ("*")
causes the first file-name in the disk d i rectory to be loaded . if the file­
name used does not exist or if it is not a prog ram file, the BAS IC error
message ?FILE NOT FOUND occurs .

When LOADing prog rams from tape, the <file-name> can be left
out, and the next prog ram file on the tape wil l be read . The Commodore
64 wil l b lank the screen to the border color after the PLAY key is
pressed . When the prog ram is found, the screen clea rs to the back­
ground color and the " FOUND" message is displayed . When the �
key, ami key, = key, o r MINd.:'&, is pressed , the file wil l
be loaded. Programs wil l LOAD sta rting at memory location 2048 un less
a secondary <address> of 1 is used . If you use the secondary address
of 1 this will cause the program to LOAD to the memory location from
which it was saved .

BASIC LANGUAGE VOC A B U LARY S9

EXAMPLES of LOAD Command:

LOAD

LOAD A$

LOAD "*",8

LOAD "", 1 , 1

LOAD "STAR TREK"
PRESS PLAY ON TAPE
FOUND STAR TREK
LOADING
READY.

LOAD "FUN",8
SEARCH ING FOR FUN
LOADING
READY.

LOAD "GAME ONE",8 , 1
SEARCHING FOR GAME ONE
LOADING
READY.

60 BASIC LANGUAGE VOCABULARY

(Reads the next prog ram on ta pe)

(Uses the name in A$ to search)

(LOADs first program from d isk)

(Looks for the first program on
tape, and LOADs it i nto the same
part of memory that it came
from)

(LOAD a fi le from ta pe)

(LOAD a fi le from d isk)

(LOAD a fi le to the specific
memory l ocation from which the
program was saved on the d isk)

LOG

TYPE: Floating-Point Function
FORMAT: LOG « numeric»

Action: Returns the natural logarithm (log to the base of e) of the
argument. If the value of the argument is zero or negative the BAS IC
error message ?ILLEGAL QUANTITY wi l l occur .

EXAMPLES of LOG Function:

25 PRINT LOG(45/7)
1 . 86075234

1 0 NUM = LOG(ARG) / LOG(1 0) (Calcu lates the LOG of ARG to the
base 1 0)

MID$

TYPE: String Function
FORMAT: MID$ « string > , < numeric- l > [, < numeric-

2 >])

Action: The M ID$ function returns a sub-string which is taken from
within a larger <stri ng> argument. The starting position of the sub­
str ing is defined by the < numeric- l > a rg ument and the length of the
sub-string by the <numeric-2> argument. Both of the numeric arg�­
ments can have va lues ranging from 0 to 255.

If the < numeric- l > value is g reater than the length of the <string> ,
o r if the <numeric-2> val ue is zero, then M ID$ g ives a n u l l str ing va lue.
I f the <numeric-2> a rg ument is left out, then the computer wi l l assume
that a length of the rest of the string is to be used . And if t�e source
str ing has fewer characters than <numeric-2> , from the starting posi­
tion to the end of the string a rgument, then the whole rest of the str ing is
used .

EXAMPLE of MID$ Function:

1 0 A$ ="GOOD"
20 B$ = "MORNING EVEN ING AFTERNOON"
30 PRINT A$ + MI D$(B$, 8, 8)

GOOD EVENING

BASIC LANGUAGE VOCABU LARY 6 1

NEW

TYPE: Command
FORMAT: NEW

Action: The NEW command is used to delete the program currently in
memory and clea r a l l variables. Before typing in a new program, N EW
should be used in d irect mode to clear memory . NEW can also be used
in a p rogram, but you should be aware of the fact that it wil l erase
everything that has gone before and i s sti l l in the computer's memory.
This can be particu larly troublesome when you're trying to debug your
prog ram .

BE CAREFUL: Not clearing out an old program before typing a new one can result in
a confusing m ix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the prog ram and a l l variab les)
1 0 NEW (Performs a NEW operation and STOPs the prog ram .)

N EXT

TYPE: Statement
FORMAT: N EXT [<counter>] [,<counter>]

Action: The NEXT statement is used with FOR to establ ish the end of a
FOR . . . NEXT loop. The NEXT need not be physical ly the last statement
i n the loop, but it i s a lways the last statement executed in a loop . The
<counter> is the loop index's variable name used with FOR to start the
loop . A s ingle NEXT can stop several nested loops when it is followed by
each FOR's <counter> variable name(s). To do this each name must
appear in the order of inner-most nested loop first, to outer-most nested
loop last. When using a s ing le NEXT to inc rement and stop several vari­
able names, each variable name must be separated by commas. Loops
can be nested to 9 levels . If the counter variable(s) are omitted, the
counter associated with the FOR of the current level (of the nested loops)
is incremented .

62 BASIC LANGUAGE VOCABlllARY

When the N EXT is reached, the counter value is incremented by 1 or
by an optional STEP va lue . It i s then tested against a n end-va lue to see
if it's t ime to stop the loop . A loop wil l be stopped when a NEXT is found
which has i ts counter va lue g reater than the end-va lue .

EXAMPLES of NEXT Statement:

1 0 FOR J = 1 TO 5: FOR K = 1 0 TO 20: FOR N = 5 TO -5 STEP - 1

20 NEXT N , K, J

1 0 FOR L = 1 TO 1 00
20 FOR M = 1 TO 1 0
30 N EXT M
400 N EXT L

1 0 FOR A = 1 TO 1 0
2 0 FOR B = 1 TO 20
30 NEXT
40 N EXT

NOT

(Stopping Nested Loops)

(Note how the loops do NOT cross each
other)

(Notice that no var iable names a re
needed)

TYPE: Logical Operator
FORMAT: NOT <expression>

Action: The NOT logical operator "complements" the value of each bit
in its s ing le operand, producing an integer "twos-complement" result . I n
other words, the NOT is rea l ly saying , "if i t isn't . . . " . When working
with a floating-point number, the operands a re converted to integers
and any fractions a re lost. The NOT operator can also be used in a
comparison to reverse the truelfalse va lue which was the resu lt of a
relationsh ip test and therefore it wil l reverse the meaning of the com­
parison . In the fi rst example below, if the "twos-complement" of "AA" is
equal to "88" and if "8B" is NOT equal to "CC" then the expression is
true .

BASIC LANGUAGE VOCABULARY 63

EXAMPLES of NOT Operator:

1 0 IF NOT AA = BB AN D NOT(BB

NN%
-97

NOT 96: PRINT N N %

CC) TH EN

NOTE: To find the value of NOT use the expression X = (- (X + l » . (The two's comple­
ment of any integer is the bit complement plus one.)

ON

TYPE: Statement
FO RMAT : O N < v a r i a b l e > GOTO / G O S U B < I i n e ­

number> [, < l ine-number>]

Action: The ON statement is used to GOTO one of several g iven l ine­
numbers, depending upon the va lue of a va riable. The value of the
variables can range from zero th rough the number of l ines g iven . If the
value i s a non-integer, the fractiona l portion is left off. For example, if
the variable value is 3 , ON wil l GOTO the th i rd l ine-number in the l ist .

If the value of the variable is negative, the BASIC error message
?ILLEGAL QUANTITY occurs. If the number is zero, or g reater than the
number of items in the l ist, the prog ram just " ignores" the statement and
continues with the statement fol lowing the ON statement.

ON is rea l ly an underused variant of the IF . . . THEN . . . statement.
Instead of us ing a whole lot of IF statements each of which sends the
program to 1 specific l ine, 1 ON statement can replace a l ist of I F
statements. When you look at the first example you should notice that
the 1 ON statement replaces 4 I F . . . THEN . . . statements .

EXAMPLES of ON Statement:

ON -(A = 7) - 2*(A = 3) - 3*(A<3)-4*(A>7)GOTO 400,900, 1 000, 1 00

ON X GOTO 1 00, 1 30, 1 80,220

ON X+3 GOSUB 9000, 20,9000

1 00 ON NUM GOTO 1 50, 300, 320, 390

500 ON SUM / 2 + 1 GOSUB 50, 80, 20

64 BASIC LANGUAGE VOCABULARY

OPEN

TYPE: I/O Statement
FORMAT: OPEN <flle-num>, [<device>] [,<address>]

[,"<file-name> [,<type>] [,<mode>]"]

Action: This statement OPENs a channel for i nput and/or output to a
peripheral device. However, you may NOT need a l l those parts for
every OPEN statement. Some OPEN statements requ i re only 2 codes:

1) LOGICAL F I LE NUMBER
2) DEV ICE NUMBER

The <fl le-num> is the logical file number, wh ich relates the OPEN,
CLOSE, CMD, GET#, I N PUT#, and PRINT# statements to each other
and associates them with the fi le-name and the piece of equipment
being used . The logical fi le number can range from 1 to 255 and you
can assign it any number you want i n that range.

NOTE: File numbers over 128 were really designed for other uses s o it's good practice

to use only numbers below 1 27 for file numbers.

Each peripheral device (printer, d isk d rive , cassette) in the system has
its own number which it answers to . The <device> number is used with
OPEN to specify on which device the data fi le exists . Peripherals l ike
cassette decks, disk d rives or printers also answer to several secondary
addresses. Th ink of these as codes which tel l each device what opera­
tion to perform . The device logical fi le number is used with every GET#,
I N PUT#, and PR INT#.

I f the <device> number is left out the computer wi l l automatical ly
assume that you want your i nformation to be sent to and received from
the Datassette TM , which is device number 1 . The fi le-name can a lso be
left out, but later on in your program , you can NOT call the fi le by name
if you have not a l ready g iven it one. When you a re storing files on cas­
sette tape, the computer wil l assume that the secondary <address> is
zero (0) if you omit the secondary address (a READ operation) .

8ASIC LANGUAGE VOCAB U LARY 65

A secondary address va lue of one (1) OPENs cassette tape fi les for
writing . A secondary address value of two (2) causes an end-of-tape
ma rker to be written when the file i s later c losed . The end-of-tape
marker prevents accidenta l ly reading past the end af data which resu lts
in the BASIC error message ?DEVICE NOT PRESENT.

For disk fi les, the secondary addresses 2 thru 1 4 a re avai lable for
data-fi les, but other numbers have special meanings i n DOS commands.
You must use a secandary address when us ing your d isk d rive(s}. (See
your disk d rive manual for DOS command deta i l s .)

The <file-name> is a string of 1 - 16 characters and i s optional for
cassette or printer fi les. If the fi le <type> i s left out the type of file wi l l
automatical ly defau lt to the Program fi le unless the < mode> is g iven .
Sequential files are OPENed for reading < mode> = R unless you specify
that fi les should be OPENed for writing < mode > = W is specified . A file
<type> can be used to OPEN an ex isting Relative fi le . U se REL for
<type> with Relative fi les . Relative and Sequential files are for disk
only.

If you try to access a fi le before it is OPENed the BAS IC error message
?FILE NOT OPEN wil l occur . If you try to OPEN a fi le for reading which
does not exist the BAS IC error message ?FILE NOT FOUND wil l occur . If
a fi le is OPENed to disk for writing and the file-name a l ready exists, the
DOS error message FILE EXISTS occurs. There is no check of this type
avai lable for tape fi les, so be su re that the tape is properly positioned or
you might accidenta lly write over some data that had previously been
SAVEd . If a fi le i s OPENed that is a l ready OPEN, the BASIC error mes­
sage FILE OPEN occurs. (See Printer Manual for further deta i l s .)

66 BASIC LANGUAGE VOCABU LARY

EXAMPLES of OPEN Statements:

1 0 OPEN 2, 8, 4 "DISK-OUTPUT,
SEQ,W"

1 0 OPEN 1 , 1 , 2 , "TAPE-WRITE"

1 0 OPEN 50, 0

1 0 OPEN 1 2, 3

1 0 OPEN 1 30, 4

1 0 OPEN 1 , 1 ,0, "NAME"

1 0 OPEN 1 , 1 , 1 , "NAME"

1 0 OPEN 1 ,2 ,0, CHR$ (1 0)

1 0 OPEN 1 ,4,0, "STRING"

1 0 OPEN 1 ,4,7, "STRING"

1 0 OPEN 1 ,5,7, "STRING"

1 0 OPEN 1 ,8 , 1 5, "COMMAND"

(Opens sequentia l fi le on disk)

(Write End-of-Fi le on C lose)

(Keyboard input)

(Screen output)

(Pri nter output)

(Read from cassette)

(Write to cassette)

(Open channel to RS-232 device)

(Send u pper case/gra phics to
the pri nter)
(Send upper/lower case to
printer)
(Send upper/lower case to
printer with device # 5)
(Send a command to d isk)

BASIC LANGUAGE VOCABULARY 67

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Action: J ust as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two o r more re­
lations and return a true or false va lue which can then be used in a
decision . When used in ca lcu lations, the logical OR gives you a bit result
of 1 if the corre�pond ing bit of either or both operands is 1 . This wi l l
produce an integer as a resu lt depending on the values of the operands.
When used in comparisons the logical OR operator is also used to l ink
two expressions into a s ingle compound expression . I f either of the ex­
pressions a re true, the combined expression value is true (- 1) . In the
first example below if AA i s equal to BB OR if XX is 20, the expression is
true .

Log ical operators work by converting the i r operands to 1 6-bit, signed,
two's complement integers i n the range of - 32768 to +32767. If the
operands are not i n the range an error message results . Each bit of the
resu lt is determined by the corresponding bits in the two operands.

EXAMPLES of OR Operator:

1 00 IF (AA = BB) OR (XX = 20) THEN .

230 KK% = 64 OR 32 : PRINT KK%

96

68 BASIC LANGUAGE VOCA B U LARY

(You typed this with a bit
va lue of 1 000000 for 64
and 1 00000 for 32)

(The computer responded
with bit va lue 1 1 00000.
1 1 00000=96.)

PEEK

TYPE: Integer Function
FORMAT: PEEK « numeric»

Action: Returns an integer in the range of 0 to 255, which is read
from a memory location . The < numeric> expression i s a memory loca­
tion which must be in the range of 0 to 65535. I f it isn't then the BAS IC
error message ?ILLEGAL QUANTITY occurs .

EXAMPLES o f PEEK Function:

1 0 PRINT PEEK(53280) AND 1 5

5 A% = PE E K(45) + PE EK(46)* 256

POKE

TYPE: Statement

(Returns va lue of screen
border color)
(Returns address of BASIC
varia ble table)

FORMAT: POKE < location>, <value>

Action: The POKE statement is used to write a one-byte (8-bits) b ina ry
va l ue i nto a g iven memory locat ion o r i n put/output registe r . The
< location> is a n a rithmetic expression wh ich must equa l a value in the
range of 0 to 65535. The <value> is an expression which can be re­
duced to an integer value of 0 to 255. I f either va lue is out of its respec­
tive range, the BAS IC error message ?ILLEGAL QUANTITY occurs .

The POKE statement and PEEK statement (which is a bui lt-in function
that looks at a memory location) are useful for data storage, control l ing
graphics d isplays or sound generation, loading assembly language sub­
routines, and passing arguments and resu lts to and from assembly lan­
g uage subroutines. I n addition , Operating System parameters can be
examined us ing PEEK statements or changed and man ipu lated us ing
POKE statements. A complete memory map of useful locations is g iven
in Appendix G .

BASIC LANGUAGE VOCA B U LARY 69

EXAMPLES of POKE Statement:

POKE 1 024, 1
POKE 2040, PTR
1 0 POKE RED, 32
20 POKE 36879, 8
2050 POKE A, B

POS

(Puts an "A" at position 1 on the screen)
(U pdates Sprite #0 data poi nter)

TYPE: Integer Function
FORMAT: POS « dummy»

Adion: Tel ls you the current cursor position which , of course, is in the
range of 0 (leftmost character) though position 79 on an 80-character
logical screen l ine . Since the Commodore 64 has a 40-column screen ,
a ny position from 40 through 79 wi l l refer to the second screen l i ne . The
dummy argument is ignored .

EXAMPLE of POS Fundion:

1 000 IF POS(O) > 38 THEN PRINT CHR$(1 3)

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<,/;> <variable>]

Adion: The PR INT statement is normal ly used to write data items to
the screen . However, the CMD statement may be used to re-di rect that
output to any other device in the system . The <va riab le{s» in the
output-list are expressions of any type. If no output-list is present, a
b lank l ine is printed . The position of each printed item is determined by
the punctuation used to separate items in the output-list.

The punctuation characters that you can use a re b lanks, commas, or
semicolons. The 80-character logical screen line is d ivided into 8 print
zones of 1 0 spaces each . I n the l ist of expressions, a comma causes the
next va lue to be printed at the beg inn ing of the next zone . A semicolon
causes the next value to be pr inted immediately fol lowing the previous
va lue . However, there a re two exceptions to this ru le :

70 BASIC LANGUAGE VOCABU LARY

1) Numeric items a re fol lowed by an added space.
2) Positive numbers have a space preced ing them .
When you use blanks or no punctuation between string constants o r

variable names i t ha s the same effect as a semicolon . However, b lanks
between a string and a n umeric item or between two numeric items wil l
stop output without p rinting the second item .

If a comma or a semicolon i s a t the end of the output-list, the next
PR INT statement begins printing on the same l ine, and spaced accord­
ingly. If no punctuation fi nishes the l ist, a carriage-return and a l ine­
feed are printed at the end of the data . The next PR INT statement wil l
begin on the next l ine. If your output is d i rected to the screen and the
data printed is longer than 40 co lumns, the output is continued on the
next screen l ine .

There is no statement in BAS IC with more va riety than the PR INT
statement. There a re so many symbols , functions , and parameters
associated with this statement that it might a lmost be considered as a
language of its own with in BASIC; a language specia l ly designed for
writing on the screen .

EXAMPLES of PRINT Statement:

1)

5 X = 5
1 0 PRINT -5*X, X - 5, X+5, X i 5

- 25 o 1 0 3 1 25

2)

3)

5 X=9
1 0 PRINT X;"SQUARED IS";X*X;"AN D";
20 PRINT X "CU BED IS" X i 3

9 SQUARED IS 8 1 AN D 9 CUBED IS 729

90 AA$ =" AlPHA": BB$ ="BAKER" : CC$ ="CHARlI E": DD$ ="DOG":
EE$ ="ECHO"

1 00 PR INT AABB;CC$ DD$,EE$

AlPHABAKE RCHARLI EDOG ECHO

BASIC LANGUAGE VOCABULARY 7 1

Quote Mode

Once the quote mark (BIIiI fJ) is typed , the cursor controls stop
operating and start d isplaying reversed cha racters which actual ly stand
for the cursor control you a re h itti ng . Th� a l lows you to program these
cursor contro ls , because once the text inside the quotes i s PR INTed they
perform their functions . The iiMh.1j1 key is the only cursor control
not affected by "quote mode."

1 . Cursor Movement

The cursor controls which can be "programmed" in q uote mode are:

K EY APPEA RS AS
'9U41!t!MJ m

Emil 19IitJll'@' (4
1119M,11 m

Emil IIGMIII 0
$C9MiEl II

Emil [$9MiG D
If you wanted the word HELLO to PR INT diagona lly from the upper left

corner of the screen , you would type:

PRINT " '9.;+I!tIMI H 111%i;'�1 E 1119M;'1I L 111%i;'11 L IIIMi;'�1 0"

which wou ld a ppea r as:
PRINT " B H m E m m L m 0"

2. Reverse Characters

Holding down the EmI key and hitting II wil l cause II to ap­
pear ins ide the quotes . This wil l make a l l characters start printing in
reverse video (l ike a negative of a picture). To end the reverse printing
h it EmI EJ , which prints a g or else PR INT a +;li!i@' (CHR$(1 3)).
(Just ending the PR INT statement without a semicolon or comma wil l
take care of this .)

3. Color Controls

Holding down the EmI key or � key with any of the 8 color keys
wil l make a special reversed character appear in the quotes . When the
character is PR INTed, then the color change wi l l occur .

72 BASIC LANGUAGE VOCA B U LARY

K EY COLOR APPEARS AS
mIl D B lack •
mil . W h i te II
IBI D Red II
mil a Cyan �
mil . Purp le �
mil . G reen n
ED D B l u e 1:1
ED II Yel l ow iii

� D Orange D
� . Brown •
� D L i g h t Red �
� a G rey 1 �
� . G rey 2 C
� . L i g h t G reen II
� D L i g h t B l u e 0
� II G rey 3 • •

• •

I f you wanted to PR INT the word HELLO in cyan and the word THERE
in white, type:

PRINT " EmI a HELLO EmI li TH ERE"

which would appear as :

PRINT " � HELLO II TH ERE"

4. Insert Mode

The spaces created by using the iil�it.Nii key have some of the same
cha racteristics as q uote mode. The cursor controls and color controls
show up as reversed characters. The only difference is in the ED and

.. , which performs its normal function even in quote mode, now

BASIC LANGUAGE VOCABU LARY 73

creates the a . And _ ' which c reated a special character i n
q uote mode, inserts spaces normal ly.

Because of this, it is possible to c reate a PRINT statement contain ing
DELetes, which cannot be PR INTed in quote mode. Here is an example
of how this is done:

which d isplays as

10 PRINT"HELLO aD P"

When the above l ine is RUN, the word displayed wi l l be HELP, be­
cause the last two letters a re deleted and the P is put in thei r place .

WARNING: The DEletes wil l work when liSTing os well as PRINTing. so editing a
line with these characters wil l be difficult.

T h e " i n s e rt m od e" c o n d i t i o n i s e n d ed w h e n t h e IUii@1
(or " .iiiWI) key is hit, or when as many characters have
been typed as spaces were inse rted .

S. Other Special Characters

There a re some other characters that can be PRINTed for specia l
functions, a lthough they a re not eas i ly avai lable from the keyboard . In
order to get these into quotes, you must leave empty spaces for them in
the l i ne , h i t Pj'S!lljIiP or " IUII@I , and go back to the
spaces with the cursor contro ls . Now you must hit liD 'j1l14"II ,
to start typing reversed characters, and type the keys shown below:

Function

.. liJlllliJ�1
switch to lower case
switch to upper case
disable case-switching keys
enable case-switch ing keys

74 BASIC LAN GUAGE VOCABULARY

Type Appears As

BIID II • II II .. II •
III II a a

The lID +;liiIl;II+ wil l work in the L iSTing as well as PR INT­
ing , so editing will be a lmost impossible if this character is used . The
L iSTing wil l a lso look very strange .

PRINT#

TYPE: 1/0 Statement
FORMAT: PRINT#<file-number> [<variable>]

[<,I;> <variable>]

Actions: The PR INT# statement is used to write data items to a logical
ft le . I t must use the same number used to OPEN the ft le. Output goes to
the device-number used in the OPEN statement. The <variable> ex­
pressions in the output-list can be of any type. The punctuation char­
acters between items are the same as with the PR INT statement and
they can be used in the same ways. The effects of punctuation are
d ifferent in two s igniftcant respects .

When PR INT# is used with tape ft les, the comma, instead of spacing
by print zones, has the same effect as a semicolon . Therefore, whether
blanks, commas, semicolons or no punctuation characters are used be­
tween data items, the effect on spacing is the same. The data items are
written as a continuous stream of characters. Numeric items are fol­
lowed by a space and, if positive, a re preceded by a space .

If no punctuation ftnishes the l ist, a carriage- return and a l ine-feed
a re written at the end of the data . If a comma or semicolon terminates
the output- l ist, the carriage-return and l ine-feed are suppressed . Re­
gard less of the punctuation, the next PR INT# statement begins output in
the next avai lable character position . The l ine-feed wil l act as a stop
when us ing the I NPUT# statement, leaving an empty variable when the
next I NPUT# is executed . The l ine-feed can be suppressed or compen­
sated for as shown in the examples below.

The easiest way to write more than one variable to a ft le on tape o r
disk is to set a str ing variable to CHR$(1 3) , and u se that str ing in be­
tween all the other variables when writing the ft le.

BASIC LANGUAGE VOCAB U LARY 7S

EXAMPLES of PRINT# Statement:

1 }

2)

1 0 OPEN 1 , 1 , 1 , "TAPE FI LE"
20 R$ = CHR$(1 3)

30 PRINT# 1 , 1 ;R$;2;R$;3;R$;4;R$;5

40 PRINT# 1 ,6
50 PRINT# 1 , 7

1 0 CO$ =CHR$(44): CR$ = C H R$(1 3)

(By Changing the CHR$(1 3) to
CH R$(44) you put a "," between
each va riab le . CH R$(59) wou ld
put a ";" between each
va riab le .)

20 PRINT# l , "AAA"CO$"BBB", AAA, BBB CCCOOOEEE

3)

"CCC" ;"000" ;"E E E"CR$
"FFF"CR$;

30 I N PUT# l , A$, BCOE$,F$

5 CR$ =CH R$(1 3)
1 0 PRINT#2, "AAA";CR$;" BBB"
20 PRINT#2, "CCC";

30 IN PUT#2, A$, B$, OUMMY$,C$

READ

TYPE: Statement

(carriage return)
FFF(carriage return)

(1 0 b lanks) AAA
BBB
(1 0 b lanks)CCC

FORMAT: READ <variable> [,<variable>]

Action: The READ statement i s used to fi l l va riable names from con­
stants i n DATA statements . The data actua l ly read must agree with the
variable types specified or the BAS IC error message ?SYNTAX ERROR
will result . * Va riables in the DATA input- l ist must be separated by com­
mas .

A s ing le READ statement can access one or more DATA statements,
which wil l be accessed in order (see DATA), or several READ statements
can access the same DATA statement. If more READ statements are exe­
cuted than the number of e lements in DATA statements(s) in the pro-

76 BASIC LANGUAGE VOCAB U LARY

g ra m , the BAS I C error message ?OUT OF DATA is pr inted . I f the
number of variables specified is fewer than the number of elements in
the DATA statement(s), subsequent READ statements wi l l continue read­
ing at the next data element. (See R ESTORE .)

' NOTE: The ?SYNTAX ERROR will appear with the line n umber from the DATA state­

ment, NOT the READ statement.

EXAMPLES of READ Statement:

1 1 0 READ A,B,C$
1 20 DATA 1 ,2 , HELLO

1 00 FOR X = 1 TO 1 0: READ A(X) :N EXT

200 DATA 3 . 08, 5 . 1 9, 3 . 1 2, 3 . 98, 4.24
2 1 0 DATA 5 .08, 5 .55, 4 .00, 3 . 1 6, 3 . 37

(Fi l l s array items (l i ne 1) i n order of constants shown (l i ne 5»

1 READ CITY$,STATE$, Z I P

5 DATA DENVER,COLORADO, 802 1 1

REM

TYPE: Statement
FORMAT: REM [<remark>]

Action: The REM statement makes your programs more easily under­
stood when LISTed. It's a reminder to yourself to tel l you what you had in
mind when you were writing each section of the prog ram . For instance,
you might want to remember what a variable is used for, or some other
useful i nformation . The REMark can be any text, word , or character
inc luding the colon (:) or BAS IC keywords .

The REM statement and anything following i t on the same l ine-number
are ignored by BASIC, but REMarks are printed exactly as entered when
the prog ram is l isted . A REM statemp.nt can be referred to by a GO TO or
GOSUB statement, and the execution of the program wil l continue with
the next h igher program line having executable statements.

BASIC LANGUAGE VOCABU LARY 77

EXAMPLES of REM Statement:

1 0 REM CALCU LATE AVE RAGE VELOCITY
20 FOR X = 1 TO 20 : REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): N EXT
40 AVG =SUM/20

RESTORE

TYPE: Statement
FORMAT: RESTORE

Action: BASIC maintains an internal pointer to the next DATA constant
to be READ. This pointer can be reset to the first DATA constant in a
program using the RESTORE statement. The RESTORE statement can be
used anywhere in the program to beg in re-READing DATA.

EXAMPLES of RESTORE Statement:

1 00 FOR X = 1 TO 1 0: READ A(X): N EXT
200 RESTORE
300 FOR Y= 1 TO 1 0: READ B(Y): N EXT

4000 DATA 3 .08, 5 . 1 9, 3 . 1 2, 3 .98 , 4 . 24
4 1 00 DATA 5 .08, 5 .55, 4 . 00, 3 . 1 6, 3 .37

(F i l l s t he two a rrays with identical data)

1 0 DATA 1 ,2 ,3 ,4
20 DATA 5,6,7,8
30 FOR L = l TO 8
40 READ A: PRINT A
50 N EXT
60 RESTORE
70 FOR L= l T0 8
80 READ A: PRINT A
90 N EXT

78 BASIC LANGUAGE VOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine cal led
for by a GOSUB statement . RETURN resta rts the rest of your prog ram at
the next executable statement following the GOSUB . If you are nesting
subroutines, each GOSU B must be paired with at least one RETURN
statement. A subroutine can contain any number of RETURN statements,
but the first one encountered wil l exit the subrout ine.

EXAMPLE of RETURN Statement:

1 0 PRINT "TH IS IS THE PROGRAM"
20 GOSU B 1 000
30 PRINT "PROGRAM CONTI N U ES"
40 GOSU B 1 000
50 PRINT "MORE PROGRAM"
60 END
1 000 PRINT "TH IS IS THE GOSU B":RETURN

RIGHT$

TYPE: String Function
FORMAT: RIGHT$ « string >, < numeric»

Action: The R IGHT$ function returns a sub-string taken from the right­
most end of the <string> argument. The length of the sub-string is
defined by the <numeric> a rgument which can be any integer in the
range of 0 to 255. If the va lue of the numeric expression is zero, then a
nu l l string ("") is returned . If the va lue you g ive in the <numeric>
argument is g reater than the length of the <string> then the entire
string is returned .

EXAMPLE of RIGHT$ Function:

1 0 MSG$ = "COMMODORE COMPUTERS"
20 PRINT R IGHT$(MSG$,9)
RUN

COMPUTERS

BASIC LANGUAGE VOCAB U LARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND « numeric»

Action: R N D creates a floating-point random from 0.0 to 1 . 0. The
computer generates a sequence of random numbers by performing cal­
cu lations on a starting number, which in computer jargon is cal led a
seed . The R N D function is seeded on system power-up . The <numeric>
argument is a dummy, except for its s ign (positive, zero, or negative) .

If the <numeric> a rgument is positive, the same "pseudorandom"
sequence of numbers is returned , starting from a g iven seed va lue . Dif­
ferent number sequences wi l l result from d ifferent seeds, but any se­
quence is repeatable by starti ng from the same seed number. Having a
known sequence of " random" numbers is useful in testing prog rams .

If you choose a <numeric> a rgument of zero, then RND generates a
number d i rectly from a free-runn ing hardware clock (the system " j iffy
clock"). Negative arguments cause the RND function to be re-seeded
with each function ca l l .

EXAMPLES of RND Function:

220 PRINT I NT(RN D(O)* 50) (Return random integers
0-49)

1 00 X = I NT(RND(1)*6) + I NT(RND(1)*6) + 2 (S imulates 2 d ice)

1 00 X = I NT(RND(I)* 1 000) + 1 (Random integers from
1 - 1 000)

1 00 X = I NT(RND(I)* 1 50) + 1 00 (Ra ndom numbers from
1 00-249)

1 00 X=RND(I)* (U - l) + l (Ra ndom numbers between
u pper (U) and lower

80 BASIC LANGUAGE VOCABU LARY

(l) l im its)

RUN

TYPE: Command
FORMAT: RUN [< l ine-number>]

Action: The system command RUN is used to start the program cur­
rently in memory . The RUN command causes an impl ied ClR operation
to be performed before starting the program . You can avoid the CleaR­
ing operation by using CONT or GOTO to restart a prog ram instead of
RUN . If a <l ine-number> is specified, you r program wil l start on that
l ine . Otherwise, the RUN command sta rts at first l ine of the prog ram .
The RUN command can also be used with in a program . If the < I ine­
number> you specify doesn't exist, the BASI C error message UNDEF'D
STATEMENT occu rs .

A RUNning prog ram stops and BAS IC returns t o d i rect mode when an
END or STOP statement is reached, when the last l i ne of the program i s
fin ished, or when a BAS IC error occurs du ring execution .

EXAMPLES of RUN Command:

RUN (Sta rts at first l i ne of program)
RUN 500 (Sta rts at l i ne-number 500)
RUN X (Sta rts at l i ne X, or U NDEF'D STATEMENT ERROR

if there i s no l i ne X)

SAVE

TYPE: Command
FORMAT: SAVE [1/<file-name>l/] [, <device- number>]

[, <address>]

Action: The SAVE command is used to store the program that is cur­
rently in memory onto a tape o r diskette fi le. The program being SAVEd
is only affected by the command whi le the SAVE is happening . The pro­
g ram remains in the current computer memory even after the SAVE op­
eration is completed unti l you put someth ing else there by using another
command . The file type will be "prg" (prog ram) . If the <device­
number> is left out, then the C64 wil l automatical ly assume that you
want the prog ram saved on cassette, device number 1 . If the <device­
number> is an <8>, then the prog ram is written onto d isk . The SAVE

BASIC LANGUAGE VOCABULARY 8 1

statement can be used i n your programs and execution wi l l continue
with the next statement after the SAVE i s completed .

Programs on tape a re automatica lly stored twice, so that you r Com­
modore 64 can check for errors when LOADing the program back in.
When saving programs to tape, the <file-name> and secondary <ad­
d ress> a re optiona l . But fol lowing a SAVE with a program name in
quotes (" ") or by a string variable (---$) helps your Commodore 64 find
each program more eas i ly . If the fi le-name is left out it can NOT be
LOADed by name later on .

A secondary address of 1 wil l tell the KERNAL to LOAD the tape at a
later time, with the program currently in memory instead of the normal
2048 location . A secondary address of 2 wil l cause an end-of-tape
marker to fol low the program . A secondary address of 3 combines both
functions .

When saving programs onto a d isk, the <file-name> must be pre­
sent.

EXAMPLES of SAVE Command:

SAVE

SAVE "ALPHA",

SAVE "ALPHA", 1 , 2

SAVE "FU N . DISK",8

SAVE A$

1 0 SAVE "H I"

SAVE "ME", 1 ,3

(Write to tape without a name)

(Store on tape as fi le-name "a l pha")

(Store "a l pha" with end-of-tape marker)

(SAVES on d isk (device 8 is the d isk»

(Store on tape with the name A$)

(SAVEs program and then move to next
program l i ne)

(Stores at same memory location a nd
puts a n end-of-tape marker on)

82 BASIC LANGUAGE VOCABU LARY

SGN

TYPE: Integer Function
FORMAT: SGN « numeric»

Action: SGN g ives you an integer value depending upon the s ign of
the <numeric> a rgument. If the argument is positive the result is I , if
zero the resu lt is also 0, if negative the result is - I .

EXAMPLE of SGN Function:

90 ON SGN(DV) + 2 GOTO 1 00, 200, 300
(jump to 1 00 i f DV= negative, 200 if DV= O, 300 if DV= positive)

S IN

TYPE: Floating-Point Function
FORMAT: SIN « numeric»

Action: S IN gives you the s ine of the <numeric> argument, in ra­
d ians . The value of COS(x) is equal to S IN (x+3 . 1 4 1 59265/2).

EXAMPLE of SIN Function:

235 AA = S IN(I .5): PRINT AA
. 997494987

SPC

TYPE: String Function
FORMAT: SPC « numeric»

Action: The SPC function is used to control the formatting of data , as
either an output to the screen or into a logical file. The number of
SPaCes given by the <numeric> argument are printed , starting at the
first avai lable position . For screen or tape fi les the value of the argument
is in the range of 0 to 255 and for disk files up to 254. For printer files,
an automatic carriage-return and l ine-feed wil l be performed by the
pr inter if a SPaCe is p rinted in the last character position of a l ine . No
SPaCes a re printed on the following l ine.

BASIC LANGUAGE VOCABULARY 83

EXAMPLE of SPC Function:

1 0 PRINT "RIGHT "; "HERE &";
20 PRINT SPC(5) "OVER" SPC(1 4) "THERE"
RUN

R IGHT HERE & OVER

SQR

TYPE: Floating-Point Function
FORMAT: SQR « numeric»

THERE

Action : SQR g ives you the va l ue of the S Q u a re Root of the
<numeric> argument. The va lue of the argument must not be negative,
or the BAS IC error message ?ILLEGAL QUANTITY wil l happen.

EXAMPLE of SQR Function:

FOR J = 2 TO 5: PRINT J *5, SQR(J * 5): NEXT

1 0 3 . 1 6227766
1 5 3 . 87298335
20 4 .472 1 3595
25 5

READY

STATUS

TYPE: Integer Function
FORMAT: STATUS

Action: Returns a completion STATUS for the last i nput/output opera­
tion which was performed on an open file. The STATUS can be read
from any peripheral device . The STATUS (or s imply ST) keyword is a

84 BASIC LANGUAGE VOCABU LARY

system defined variable-name into which the KERNAL puts the STATUS of
I/O operations , A table of STATUS code values for tape, printer, disk
a nd RS-232 file operations is shown below:

ST Bit ST Numeric Cassette Serial
Position Va lue Read B,us R/w

0 1 time out
write

1 2 time out
read

2 4 short block

3 8 long block

4 1 6 unrecoverable
read error

5 32 checksum
error

6 64 end of file EOI

7 - 1 28 end of tape device not
present

EXAMPLES of STATUS Function:

1 0 OPEN 1 , 4: OPEN 2, 8, 4, "MASTER fI LE,SEQ, W"
20 GOSUB 1 00: REM CHECK STATUS
30 IN PUT#2, A$, B, C

Tape Verify
+ Load

short block

long block

any mismatch

checksum
error

end of tape

40 If STATUS AND 64 THEN 80: REM HAN DLE END-Of-fiLE
50 GOSUB 1 00: REM CHECK STATUS
60 PRINT# l , A$, B; C
70 GOTO 20
80 CLOSE 1 : CLOSE2
90 GOSUB 1 00: END
1 00 I f ST > 0 THEN 9000: REM HANDLE fiLE I/O ERROR
1 1 0 RETU RN

BASIC LANGUAGE VOCABULARY 85

STEP

TYPE: Statement
FORMAT: [STEP <expression >]

Action: The optiona l STEP keyword fol lows the <end-value> expres­
sion in a FOR statement. It defines an i nc rement value for the loop
counter va riable. Any value can be used as the STEP inc rement. Of
course , a STEP value of zero will loop forever . If the STEP keyword is left
out, the i nc rement value will be + 1 . When the N EXT statement in a FOR
loop is reached, the STEP increment happens . Then the counter is tested
against the end-value to see if the loop is finished . (See FOR statement
for more information .)

NOTE: The STEP value can NOT b e changed once it's i n the loop.

EXAMPLES of STEP Statement:

25 FOR XX 2 TO 20 STE P 2

35 FOR II o TO - 20 STEP -2

STOP
TYPE: Statement
FORMAT: STOP

(Loop repeats 1 0 times)

(Loop repeats 1 1 times)

Action: The STOP statement is used to halt execution of the current
prog ram and return to direct mode . Typing the l4i!1tJiioii key on the
keyboard has the same effect as a STOP statement. The BASIC error
message ?BREAK IN LINE nnnnn is displayed on the screen , fol lowed
by READY. The "nnnn n" is the l ine-number where the STOP occurs. Any
open fi les remain open and a l l variables a re preserved and can be
exam ined . The program can be restarted by using CONT or GOTO
statements .

EXAMPLES of STOP Statement:

1 0 IN PUT# I , AA. BB. CC
20 I F AA = BB AND BB = CC THEN STOP
30 STOP

(If the va r iable AA is - 1 and BB is equal to CC then:)
BREAK IN LINE 20
BREAK IN LIN E 30 (For any other data va l ues)

86 BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT: STR$ « numeric»

Action: STR$ g ives you the STRing representation of the numeric value
of the argument. When the STR$ value i s converted to each va riable
represented in the <numeric> argument, any number shown is fol­
lowed by a space and, if it's positive, it is also preceded by a space.

EXAMPLE of STR$ Function:

1 00 FLT = 1 . 5E4: ALPHA$
1 1 0 PRINT FLT, ALPHA$

1 5000 1 5000

SYS

TYPE: Statement

STR$(FLT)

FORMAT: SYS <memory-location>

Action: This is the most common way to m ix a BASIC program with a
machine language program . The machine language prog ram beg ins at
the location g iven in the SYS statement. The system command SYS is
used in either d irect o r program mode to transfer control of the micro­
processor to an existing machine language program in memory. The
memory-location g iven i s by n umeric expression and can be anywhere in
memory, RAM o r ROM. /

When you're us ing the SYS statement you must end that section of
machine language code with an RTS (ReTurn from Subroutine) instruction
so that when the machine language prog ram is fin ished, the BASIC
execution will resume with the statement fol lowing the SYS command.

EXAMPLES of SYS Statement:

SYS 64738

1 0 POKE 4400,96: SYS 4400

(Jump to System Cold Start i n ROM)

(Goes to machine code location 4400
and returns immediately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: String Function
FORMAT: TAB « numeric»

Action: The TAB function moves the cursor to a relative SPC move
position on the screen g iven by the <numeric> argument, starting with
the left-most position of the current l ine. The va lue of the a rgument can
range from 0 to 255. The TAB function should only be used with the
PR INT statement, s ince it has no effect if used with PR INT# to a logical
fi le .

EXAMPLE of TAB Function:

1 00 PRINT "NAME" TAB(25) "AMOUNT": PRINT
1 1 0 IN PUT# I , NAM$, AMT$
1 20 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT

G.T. JONES

TAN

TYPE: Floating-Point Function
FORMAT: TAN « numeric»

25.

Action: Returns the tangent of the value of the <numeric> expression
i n rad ians . If the TAN function overflows, the BAS IC error message ?DI­
VISION BY ZERO is d isplayed .

EXAMPLE of TAN Function:

1 0 XX = . 785398 1 63 : YY = TAN(XX): PRINT YY

88 BASIC LANGUAGE VOCABULARY

TIME

TYPE: Numeric Function
FORMAT: TI

Action: The T I function reads the interva l T imer . This type of "c lock" is
ca l led a " j iffy c lock ." The "jiffy c lock" value is set at zero (in itia l ized)
when you powe r-up the system . This 1 /60 second interva l t imer is turned
off du ring tape I/O .

EXAMPLE of TI Function:

1 0 PRINT TI/60 "SECONDS S INCE POWER U P"

TIME$

TYPE: String Function
FORMAT: TI$

Action: The T I$ t imer looks and works l ike a rea l c lock as long as you r
system is powered-on . The hardware interval t imer (or jiffy c lock) i s read
and used to update the value of T I$, which wil l g ive you a T ime $tring of
six cha racters in hours, minutes and seconds. The TI$ timer can a lso be
ass igned an a rbitrary sta rting point s imi lar to the way you set you r
wristwatch . The value of T I$ is not accurate after tape I/O.

EXAMPLE of TI$ Function:

1 TI$ = "000000": FOR J = 1 TO 1 0000: N EXT: PRINT TI$

0000 1 1

BASIC LANGUAGE VOCAB U LARY 89

USR

TYPE: Floating-Point Function
FORMAT: USR « numeric»

Action: The USR function j umps to a User cal lable machine language
SubRoutine which has its starting address pointed to by the contents of
memory locations 785- 786. The starting address is established before
cal l ing the USR function by using POKE statements to set up locations
785- 786. Un less POKE statements are used, locations 785- 786 wil l g ive
you an ?ILLEGAL QUANTITY error message.

The va lue of the <numeric> argument is stored in the floating-point
accumu lator starting at location 97, for access by the Assembler code,
and the result of the USR function is the value which ends up there when
the subroutine returns to BAS IC .

EXAMPLES of USR Function:

l O B = T * SIN(y)
20 C USR (B/2)
30 D = USR (B/3)

VAL

TYPE: Numeric Function
FORMAT: VAL « string »

Action: Retu rns a n ume ric VALue representi n g the data i n the
<string> argument. If the first non-blank character of the string is not a
plus s ign (+) , minus s ign (-) , or a dig it the VALue returned is zero .
String conversion is finished when the end of the string or any non-digit
character is found (except decimal point or exponential e) .

EXAMPLE of VAL Function:

1 0 IN PUT# I , NAM$, Z IP$
20 IF VAL(ZI P$) < 1 9400 OR VAL(ZI P$) > 96699

THEN PRINT NAM$ TAB(25) "GREATER PH I LADELPHIA"

90 BASIC LANGUAGE VOCABU LARY

VERIFY

TYPE: Command
FORMAT: VERIFY [/I<file-name>/I] [,<device>]

Action: The VER I FY command is used, in d irect or program mode, to
compare the contents of a BASIC program file on tape or d isk with the
program currently in memory. VER I FY is normal ly used right after a
SAVE, to make sure that the program was stored correctly on tape or
disk.

If the <device> number is left out, the program is assumed to be on
the Datassette ™ which is device n umber 1 . For tape files, if the <file­
name> is left out, the next prog ram found on the tape wil l be com­
pared . For disk files (device n umber 8). the file-name must be present. If
any differences in program text a re found, the BASIC error message
?VERIFY ERROR is displayed .

A program name can be g iven either in q uotes (n n) or as a string
variable. VER I FY is a lso used to position a tape just past the last pro­
gram, so that a new program can be added to the tape without acci­
denta l ly writing over another program .

EXAMPLES of VERIFY Command:

VERIFY
PRESS PLAY ON TAPE
OK
SEARCH ING
FOU ND <F I LENAME>
VERI FYING

9000 SAVE "ME",8:
901 0 VERIFY "MEn,8

(Checks 1 st program on tape)

(Looks at device 8 for the program)

BASIC LANGUAGE VOCABULARY 9 1

WAIT

TYPE: Statement
FORMAT: WAIT < location>, <mask- l > [,<mask-2 >]

Action: The WAIT statement causes program execution to be sus­
pended until a given memory address recognizes a specified bit pattern.
I n other words WAIT can be used to halt the program until some external
event has occurred . This is done by monitoring the status of bits in the
input/output registers . The data items used with WAIT can be any
n umeric expressions, but they wi l l be converted to integer va lues.

For most prog rammers, this statement should never be used . It causes
the prog ra m to halt until a specific memory location's bits change in a
specific way. This is used for certain I/O operations and a lmost nothing
else.

The WAIT statement takes the va lue in the memory location and per­
forms a logical AN D operation with the value in mask- I . If there is a
mask-2 in the statement, the result of the first operation is exclusive­
ORed with mask-2 . In other words mask- l "fi lters out" any bits that you
don't want to test. Where the bit is 0 in mask- I , the corresponding bit in
the result wil l a lways be O. The mask-2 value fl ips any bits, so that you
can test for an off condition as well as an on condition . Any bits being
tested for a 0 should have a 1 in the corresponding position in mask-2 .

If corresponding bits of the <mask- I > and < mask-2> operands differ,
the exclusive-OR operation gives a bit result of 1 . If corresponding bits get
the same result the bit is O. It is possible to enter an infinite pause with the
WAIT statement, in which case the MiiSiNI and If"iNjll keys
can be used to recover . Hold down the Ij!l!lSiml key and then
press IjMNjl, . The first example below WAITs until a key is pressed on
the tape unit to continue with the progra m . The second exa mple will WAIT
until a sprite col l ides with the screen background .

EXAMPLES of WAIT Statement:

WAIT 1 , 32, 32
WAIT 53273, 6, 6
WAIT 36868, 1 44, 1 6 (1 44 & 1 6 are masks. 1 44 = 1 00 1 0000 i n

b inary and 1 6 = 1 0000 i n b inary. The
WAIT statement wi l l halt the pro-
g ram u nt i l the 1 28 bit is on or
u nt i l the 1 6 bit is off)

92 BASIC LANGUAGE VOCABU LARY

THE COMMODORE 64 KEYBOARD
AND FEATURES

The Operating System has a ten-cha racter keyboard "buffer" that i s
used to hold incoming keystrokes until they can be processed . This buf­
fer , or q ueue, holds keystrokes i n the o rder in which they occur so that
the first one put into the queue is the first one processed . For example, if
a second keystroke occurs before the fi rst can be processed , the second
character is stored in the buffer, while processing of the first character
continues. After the prog ram has fin ished with the first cha racter, the
keyboard buffer is examined for more data , and the second keystroke
processed . Without this buffer, rapid keyboard input would occasional ly
drop characters .

I n other words, the keyboard buffer a l lows you to "type-ahead" of
the system , which means it can anticipate responses to I N PUT prompts
or GET statements. As you type on the keys their character values are
l ined up, sing le-fi le (q ueued) into the buffer to wait for processing in the
order the keys were struck. This type-ahead feature can give you an
occasional problem where an accidental keystroke causes a program to
fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be
corrected by the CuRSoR-Left $9;;;;- or DELete "MN.)i' keys
and then retyping the character, and the corrections wil l be processed
before a following carriage-return . However, if you press the 19'1I@'
key, no corrective action is possible, since a l l characters in the buffer up
to and inc lud ing the carriage-return wi l l be processed before any cor­
rections . This situation can be avoided by us ing a loop to empty the
keyboard buffer before reading an intended response:

1 0 G E T J U N K$: I F J U N K$ < > "" T H E N 1 0 : R EM E M PTY T H E
KEYBOARD BUFFER

I n addition to GET and I N PUT, the keyboard can also be read using
PEEK to fetch from memory location 1 97 ($00C5) the integer va lue of the
key cu rrently being pressed . If no key is being held when the PEEK is
executed, a va lue of 64 is returned . The numeric keyboard va lues,
keyboard symbols and character equivalents (CHR$) a re shown in Ap­
pendix C. The following example loops until a key is pressed then con­
verts the integer to a character va lue .

10 AA = PEEK(1 97): I F AA = 64 THEN 1 0
2 0 BB$ = CHR$(AA)

BASIC LANGUAGE VOCABU LARY 93

The keyboard is treated as a set of switches organized into a matrix
of 8 co lumns by 8 rows . The keyboard matrix is scanned for key
switch-closures by the KERNAL using the C IA # 1 I/O ch ip (MOS 6526
Complex I nterface Adapter) . Two CIA reg isters are used to perform the
scan: register #0 at location 56320 ($DCOO) for keyboard columns and
register # 1 at location 56321 ($DCO 1) for keyboard rows .

Bits 0- 7 of memory location 56320 correspond to the columns 0- 7.
Bits 0-7 of memory location 5632 1 correspond to rows 0-7. By writing
co lumn va lues in sequence, then reading row va lues, the KERNAL de­
codes the switch closures into the CHR$ (N) value of the key pressed .

E ight columns by eig ht rows yields 64 possible va lues . However, if you
fi r s t s t r i k e t h e lID , EmIl o r e k e y s o r h o l d d o w n
the Emil key and type a second character, additional va lues are
generated . This is because the KERNAL decodes these keys separately
and "remembers" when one of the control keys was pressed . The result
of the keyboard scan is then placed in location 1 97.

Characters can a lso be written directly to the keyboard buffer at lo­
cations 63 1 -640 us ing a POKE statement. These characters wi l l be
processed when the POKE is used to set a character count into location
1 98 . These facts can be used to cause a series of d i rect-mode com­
mands to be executed automatica l ly by printing the statements onto the
screen , putting carriage-returns into the buffer, and then setting the
character count. In the example below, the prog ram wil l L IST itself to
the printer and then resume execution .

10 PRINT CHR$(1 47)"PRINT# I : CLOSE 1 : GOTO 50"
20 POKE 63 1 , 1 9: POKE 632, 1 3 : POKE 633, 1 3 : POKE 1 98,3
30 OPEN 1 ,4 : CMD 1 : L IST
40 END
50 REM PROGRAM RE-STARTS H ERE

SCREEN EDITOR

The SCREEN ED ITOR provides you with powerful and convenient
facil ities for edit ing program text. Once a section of a program is l isted
to the screen, the cursor keys and other specia l keys are used to move
around the screen so that you can make any appropriate changes . After
making a l l the changes you want to a specific l ine-number of text, hit­
t ing the 1;liI'@' key anywhere on the l i ne , causes the SCREEN
EDITOR to read the entire 80-cha racter logical screen l ine .

94 BASIC LANGUAGE VOCABULARY

The text is then passed to the I nterpreter to be tokenized and stored in
the program . The ed ited l ine replaces the old version of that l ine i n
memory. An additional copy of any l i ne of text can be created s imply by
chang ing the l ine-number and pressing Mjli"@i .

I f you use keyword abbreviations which cause a program line to ex­
ceed 80 characters, the excess cha racters will be lost when that l ine is
edited, because the ED ITOR will read only two physical screen l ines. This
i s also why using I N PUT for more than a total of 80 characters is not
poss ib le . Thus, for a l l practical purposes, the length of a l ine of BASIC
text is l imited to 80 cha racters as displayed on the screen .

Under certain conditions the SCREEN EDITOR treats the cursor control

keys d ifferently from their normal mode of handl ing . If the CuRSoR is
positioned to the right of an odd number of double-quote ma rks (") the
ED ITOR operates in what i s known as the QUOTE-MODE.

I n quote mode data cha racters a re entered normal ly but the cursor
controls no longer move the CuRSoR, instead reversed characters are
displayed which actual ly stand for the cursor control being entered . The
same is true of the color control keys . This a l lows you to include c ursor
and color controls inside string data items in prog rgms . You wil l find that
tf.;s i s a very important and powerful feature. That's because when the
text inside the q uotes is printed to the screen it performs the cursor
position ing and color control functions a utomatica l ly a s part of the
stri ng . An example of using cu rsor controls in strings is:

You type � 1 0 PRINT " A(R)(R)S(L)(L)(L)C(R)(R)O":REM(R)=CRSR
RIGHT, (L)=CRSR LEFT

Computer pr ints � AC SO

The _ key is the on ly cu rsor control NOT affected by quote
mode. Therefore, if an error is made whi le keying in q uote mode,
the ($I9Mi- key can't be used to back up and strike over the
error-even the _ key produces a reverse video character. I n ­
stead , fin ish entering the l i ne , and then, after hitting the M;l§II@i
key, you can edit the l ine normal ly . Another a lternative, if no further
cu rsor-controls are needed in the stri ng , i s to press the Ui!lt!i(.j4
and 'i1H(,ji1j keys which wil l ca ncel QUOTE MODE. The cursor
control keys that you can use in strings a re shown in Table 2-2.

BASIC LANGUAGE VOCAB U LARY 95

Table 2-2 . Cursor Control Characters in QUOTE MODE

Control Key Appeara nce

CRSR up 1119$1;- D
CRSR down -9#111 m
CRSR left ($9#- II
CRSR rig ht -9;1'1;&1 II
CLR � ()
HOME .:mm II
I NST "MiNi' II

When you are NOT in quote mode, holding down the BIIiI key and
then pressing the INSerT lID key shifts data to the right of the cur­
sor to open up space between two characters for entering data between
them . The Ed itor then begins operating in INSERT MODE until a l l of the
space opened up is fi l led .

The cursor controls and color controls again show as reversed char­
acters in insert mode. The on ly difference occurs on the DELete and
INSerT iiMil,]Y. key. The .. instead of operating normal ly as in
the q uote mode, now creates the reversed a . The .. key,
which c reated a reverse cha racter in q uote mode, inserts spaces nor­
mal ly .

Ths means that a PR INT statement can be created, contain ing DE­
Letes, which can't be done in q uote mode. The insert mode is cancel led
by pressing the +;liiii;l/+ , BIIiI and _j!!"W+ , or 'j!iil4iio!ij and IjM(oj;!' keys . Or you can cancel the insert mode by fi l l ing a l l the
inserted spaces . An example of using DEL cha racters in strings is:

1 0 PR INT "HELLO" E!ll 1I1I 1ID P"
(Keystroke sequence shown above, a ppea rance when l isted below)
1 0 PR INT"HE LP"

When the example i s RUN , the word displayed will be HELP, because
the letters LO a re deleted before the P is printed . The DELete character
in strings will work with LIST as well as PR INT . You can use this to "hide"
part or all of a line of text using this technique. However, trying to edit a
l ine with these characters wi l l be difficult if not imposs ib le.

96 BASIC LANGUAGE VOCA B U LARY

There are some other cha racters that can be printed for special func­
tions , a lthough they are not easi ly avai lable from the keyboard . In order
to get these into q uotes, you must leave empty spaces for them in the
line, press I@IWI , and go back to edit the l ine . Now you hold down
the .. (ConTRol) key and type M;hn.I!M (ReVerSe-ON) to sta rt
typing reversed characters . Type the keys as shown below:

Key Function
Sh ifted RETURN
Switch to upper/lower case
Switch to upper/graphics

Key Entered

Emil II II Emil II

Appearance

• II
•

Ho ld i ng down the Emil key and h itti n g I;!iiil;/il cau ses a
ca rriage-return and l ine-feed on the screen but does not end the stri ng .
Th i s works with L IST as well as PR INT, so editing wil l be a lmost impossi­
ble if this cha racter is used . When output is switched to the printer via
the CMD statement, the reverse "N" character shifts the printer into its
upper-lower case cha racter set and the Emil "N" shifts the printer
i nto the upper-case/graphics cha racter set.

Reverse video cha racters can be included in strings by holding down
the ConTRol ami key and pressing ReVerSe lIB, causing a re­
versed R to appea r inside the q uotes . This wil l make all characters print
in reverse video (l ike a negative of a photograph) . To end the reverse
p rint in g , press .. and Mi,fi."M (ReVerSe OFF) by ho ld ing
down the .. key and typing the •• '."M key, which prints a
reverse R . Numeric data can be printed in reverse video by first printing
a CHR$(1 8) . Printing a CHR$(1 46) or a carriage-return wil l cancel re­
verse video output.

BASIC LANGUAGE VOCABULARY 97

CHAPTER 3

PROGRAMMING
GRAPHICS

ON THE
COMMODORE 64

• G ra p h ics Overview

• Gra p h ics locations

• Sta n d a rd C h a racter Mode

• Prog ra mma b l e C ha racte rs

• Mu lt i-Color Mode G ra p h ics

• Extended Backgrou nd Color Mode

• Bit Ma pped G ra p h ics

• Mu lt i-Color Bit Ma p Mod e

• Smooth Scro l l i ng

• Sprites

• Other G ra p h ics Featu res

• Prog ra mm i n g Sprites-Another

look

99

GRAPHICS OVERVIEW

Al l of the graphics abilities of the Commodore 64 come from the 6567
Video I nterface Chip (also known as the VIC-I I chip) . This chip g ives a
variety of g raphics modes, inc luding a 40 column by 25 l ine text display,
a 320 by 200 dot high resolution d isplay, and SPR ITES, small movable
objects which make writi ng games simple. And if this weren't enough ,
many of the g raphics modes can be mixed on the same screen . It i s
possible, for example, to define the top ha l f of the screen to be in high
resolution mode, whi le the bottom half is in text mode. And SPR ITES wi l l
combine with anythin g ! More on sprites later . First the other graphics
modes.

The VIC- I I ch ip has the following g raphics display modes:

A) CHARACTER DISPLAY MODES

1) Standard Character Mode
a) ROM cha racters
b) RAM progra m m a ble cha racters

2) Multi-Color Character Mode
a) ROM c h a racters
b) RAM prog ra m ma ble cha racte rs

3) Extended Background Color Mode
a) ROM cha racters
b) RAM progra m m a ble cha racters

B) BIT MAP MODES

1) Standard Bit Map Mode
2) Multi-Color Bit Map Mode

C) SPRITES

1) Standard Sprites
2) Multi-Color Sprites

1 00 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general information first. There a re 1 000 possible locations on
the Commodore 64 screen . Normally, the screen starts a t location 1 024
($0400 in H EXadecimal notation) and goes to location 2023. Each of
these locations is 8 bits wide . This means that it can hold any integer
number from 0 to 255. Connected with screen memory is a g roup of
1 000 locations cal led COLOR MEMORY or COLOR RAM. These start at
location 55296 ($D800 in HEX) and go up to 56295 . Each of the color
RAM locations is 4 bits wide, which means that it can hold any integer
number from 0 to 1 5 . Since there a re 1 6 possible colors that the Com­
modore 64 can use, this works out wel l .

I n addition , there a re 256 d ifferent characters that can be displayed
at any t ime. For normal screen display, each of the 1 000 locations in
screen memory conta ins a code number which tel ls the V IC-I I ch ip which
character to d isplay at that screen location .

The various g raphics modes a re selected by the 47 CONTROL regis­
ters in the VIC- I I ch ip . Many of the graphics functions can be control led
by POKEing the correct va lue into one of the registers. The V IC-I I chip is
located starting at 53248 ($DOOO in H EX) through 53294 ($D02E in H EX) .

VIDEO BANK SELECTION

The VIC- I I ch ip can access ("see") 1 6K of memory at a t ime. Since
there is 64K of memory in the Commodore 64, you want to be able to
have the V IC- I I ch ip see a l l of it . There is a way. There a re 4 possible
BANKS (or sections) of 1 6K of memory. All that is needed is some means
of control l ing which 1 6K bank the V IC-I I chip looks at. In that way, the
chip can "see" the entire 64K of memory . The BANK SELECT bits that
a l low you access to all the different sections of memory a re located in
the 6526 COMPLEX INTERFACE ADAPTER CHIP #2 (CIA #2) . The POKE
and PEEK BAS IC statements (or their machine language versions) are
used to select a bank by control l ing bits 0 and 1 of PORT A of CIA#2
(location 56576 (or $DDOO HEX)) . These 2 bits must be set to outputs by
setting bits 0 and 1 of location 56578 ($DD02 , HEX) to change banks. The
following example shows this:

POKE 56578, PEEK(56578)OR 3 : REM MAKE S U RE B ITS 0 AND 1 ARE
SET TO OUTPUTS
POKE 56576,(PEE K(56576)AND 252)OR A:REM CHANGE BANKS

"A" should have one of the fol lowing values:

PROGRAMMING GRAPHICS 1 0 1

VAL U E BITS BAN K START ING VIC- I I C H I P RANGE
OF A LOCATION

0 00 3 49 1 52 ($COOO- $FFFF)*
1 0 1 2 32768 ($8000-$BFFF)
2 1 0 1 1 6384 ($4000- $ 7FFF) *
3 1 1 0 0 ($0000-$3FFF) (DEFAULT VALUE)

This 1 6K bank concept is part of everything that the VIC- I I ch ip does.
You should a lways be aware of which bank the VIC- I I ch ip is pointing
at, s ince this wil l affect where cha racter data patterns come from,
where the screen i s , where sprites come from, etc . When you tu rn on the
power of you r Commodore 64, bits 0 and 1 of location 56576 a re auto­
matical ly set to BANK 0 ($0000-$3FFF) for a l l display information .

�------------- ::J * NOTE: The Commodore 64 character set is not avai lable to the VIC- I I chip in BANKS

1 and 3. (See character memory section .)
-----------_._------- ----- ---

SCREEN MEMORY

The location of screen memory can be changed easi ly by a POKE to
control register 53272 ($DO I 8 HEX) . However, this register is a lso used
to control which cha racter set is used, so be ca reful to avoid distu rbing
that part of the control register . The UPPER 4 bits control the location of
screen memory. To move the sc reen , the fo l lowing statement should be
used:

POKE53272, (PEE K(53272)AND 1 5)ORA

1 02 PROGRAMM I N G GRA PHICS

Where "A" has one of the fol lowing values:

A BITS

0 OOOOXXXX
1 6 000 1 XXXX
32 00 1 0XXXX
48 00 1 1 XXXX
64 0 1 00XXXX
80 0 1 0 1 XXXX
96 0 1 1 0XXXX

1 1 2 0 1 1 1 XXXX
1 28 1 000XXXX
1 44 1 00 1 XXXX
1 60 1 0 1 0XXXX
1 76 1 0 1 1 XXXX
1 92 1 1 00XXXX
208 1 1 0 1 XXXX
224 1 1 1 0XXXX
240 l l l l XXXX

--

LOCATION*

DEC IMAL H EX

0 $0000
1 024 $0400 (DEFAULT)
2048 $0800
3072 $OCOO
4096 $ 1 000
5 1 20 $ 1 400
6 1 44 $ 1 800
7 1 68 $ I COO
8 1 92 $2000
92 1 6 $2400
1 0240 $2800
1 1 264 $2COO
1 2288 $3000
1 33 1 2 $3400
1 4336 $3800
1 5360 $3COO

--- --- ----- - - -- - �--- -

r * Rempmber that the BANK ADDRESS of the VIC- I I c h i p must be added i n .

Y o u must a l so te l l t h e K E RNAL'S screen editor where t h e screen is as fol l ows: POKE

648, page (where page = add ress/256, e . g . , 1 024/256= 4, so POKE 648,4).

COLOR MEMORY

Color memory can NOT move . It is a lways located at locations 55296
($D800) th rough 56295 ($DBE7) . Screen memory (the 1 000 locations
starting at 1 024) and color memory a re used differently in the different
graphics modes. A picture created in one mode will often look com­
pletely different when displayed in another g raphics mode.

CHARACTER MEMORY

Exactly where the VIC-I I gets it character information is important to
g raphic prog ramming . Normal ly, the chip gets the shapes of the char­
acters you want to be displayed from the CHARACTER GENERATOR
ROM. In this chip a re stored the patterns which make up the various
letters, numbers, punctuation symbols, and the other things that you see

PROGRAMMING GRAPH ICS 1 03

on the keyboard . One of the features of the Commodore 64 is the abi l ity
to use patterns located in RAM memory. These RAM patte rns a re
created by you , and that means that you can have an a lmost infinite set
of symbols for gannes, business appl ications, etc .

A normal character set contains 256 characters in which each char­
acter is defined by 8 bytes of data . Since each character takes up 8
bytes this means that a ful l character set is 256*8=2K bytes of memory.
S ince the VIC-I I ch ip looks at 1 6K of memory at a t ime, there are 8
possible locations for a complete character set . Natural ly, you a re free
to use less than a ful l character set. However, it must sti l l start at one of
the 8 possible starting locations.

The location of character memory is controlled by 3 bits of the VIC- I I
control register located a t 53272 ($00 1 8 i n H EX notation) . Bits 3 ,2 , and
1 control where the cha racters' set is located in 2K blocks . Bit 0 is ig­
nored . Remember that th is is the same register that determines where
screen memory is located so avoid distu rbing the screen memory bits. To
change the location of cha racter memory, the following BAS IC state­
ment can be used :

POKE 53272,(PEEK(53272)AND240)OR A

Where A is one of the following values:

VALUE LOCATION OF CHARACTER MEMORY*
B ITS of A DECIMAL

0 XXXXOOOX 0 $0000-$07FF
2 XXXX00 1 X 2048 $0800-$OFFF
4 XXXX0 1 0X 4096 $ 1 000- $ 1 7FF

6 XXXX0 1 1 X 6 1 44 $ 1 800- $ 1 FFF

8 XXXX1 00X 8 1 92 $2000- $27FF
1 0 XXXX 1 0 1 X 1 0240 $2800- $2FFF
1 2 XXXX 1 1 0X 1 2288 $3000-$37FF
1 4 XXXX1 1 1 X 1 4336 $3800-$3FFF

I ' Remember to add in the BANK address.

1 04 PROGRAMM I N G GRAPH ICS

HEX

ROM IMAGE in BAN K
o & 2 (defau lt)
ROM IMAGE in BANK
0 & 2

The ROM IMAGE in the above table refers to the cha racter generator
ROM. It appears in place of RAM at the above locations in bank O. It
a l so appears i n the corresponding RAM at locations 36864- 40959
($9000-$9FFF) in bank 2 . Since the VIC- I I chip can only access 1 6K of
memory at a time, the ROM character patterns appea r in the 1 6K block
of memory the V IC- I I chip looks at. Therefore, the system was designed
to make the VIC-I I chip think that the ROM characters a re at 4096- 8 1 9 1
($ 1 000 - $ 1 F F F) when your data i s i n b a n k 0 , a nd 36864- 40959
($9000-$9FFF) when you r data is in bank 2 , even though the character
ROM is actually at location 53248-57343 ($DOOO-$DFFF) . This imaging
only applies to character data as seen by the VIC- I I ch ip. It can be used
for programs , other data , etc . , just l ike any other RAM memory .

NOTE: If these ROM images get in the way o f your own graphics, then set the BANK

SELECT BITS to one of the BAN K S without the images (BANKS 1 or 3). The ROM

patterns won't be there.

The location and contents of the character set in ROM are as fol lows:

ADDRESS VIC-I I CONTENTS
BLOCK DECIMAL H EX IMAGE

0 53248 DOOO- D I FF 1 000- 1 1 FF Upper case characters
53760 D200- D3FF 1 200- 1 3FF Graphics characters
54272 D400- D5FF 1 400- 1 5FF Reversed upper case

characters
54784 D600- D7FF 1 600- 1 7FF Reversed g raphics

cha racters
1 55296 D800- D9FF 1 800- 1 9FF Lower case characters

55808 DAOO-DBFF l AOO- l BFF Upper case & g raphics
characters

56320 DCOO- DDFF 1 COO- l DFF Reversed lower case
cha racters

56832 DEOO- DFFF 1 EOO- l FFF Reversed upper case &
g raphics cha racters

Sharp-eyed readers will have just noticed something . The locations
occupied by the character ROM are the same as the ones occupied by
the VIC-I I ch ip control reg isters . This is possib le because they don't oc­
cupy the same locations at the same time. When the V IC- I I chip needs to

PROGRAMMING GRAPHICS l OS

access character data the ROM is switched i n . It becomes an image in
the 1 6K bank of memory that the VIC-I I ch ip is looking at. Otherwise,
the a rea is occupied by the I/O control reg isters, and the character ROM
is only avai lable to the V IC-I I ch ip .

However, you may need to get to the character ROM i f you a re going
to use programmable cha racters and want to copy some of the char­
acter ROM for some of your character definitions . I n this case you must
switch out the I/O reg ister, switch in the cha racter ROM, and do your
copying . When you're finished , you must switch the I/O registers back in
again . Dur ing the copying process (when I/O i s switched out) no inter­
rupts can be a l lowed to take place. This is because the I/O registers are
needed to service the interrupts . If you forget and perform an interrupt,
rea l ly strange things happen . The keyboard should not be read during
the copying process. To turn off the keyboard and other normal inter­
rupts that occur with your Commodore 64, the following POKE should be
used:

POKE 56334, PEE K(56334)AND254 (TU RNS INTERRUPTS OFF)

After you a re finished getting cha racters from the character ROM,
and a re ready to contin ue with your prog ram , you must turn the
keyboard scan back on by the fol lowing POKE:

POKE 56334,PEEK(56334)OR1 (TURNS INTERRUPTS ON)

The following POKE wil l switch out I/O and switch the CHARACTER
ROM in :

POKE 1 , PEEK(1)AND25 1

The character ROM is now in the locations from 53248- 57343 ($0000-
$OFFF) .

To switch I/O back into $0000 for normal operation use the following
POKE:

POKE 1 , PEEK(1)OR 4

1 06 PROGRAMMING GRAPHICS

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when
you fi rst turn it on. It is the mode you will general ly program in.

Characters can be taken from ROM or from RAM, but normal ly they
a re taken from ROM. When you want special g raphics characters for a
program, a l l you have to do is define the new character shapes in RAM,
and tell the VIC- I I chip to get its character information from there in­
stead of the character ROM. This is covered in more deta il in the next
section .

In order to display characters on the screen in color, the V IC- I I chip
accesses the screen memory to determine the character code for that
location on the screen. At the same time, it accesses the color memory
to determine what color you want for the character displayed. The
cha racter code is translated by the VIC-I I into the starting address of the
8-byte block holding your character pattern . The 8-byte block is located
in cha racter memory.

The trans lation isn't too complicated, but a number of items are com­
bined to generate the desired address . First the character code you use
to POKE screen memory is mu ltiplied by 8 . Next add the start of char­
acter memory (see CHARACTER MEMORY section). Then the Bank Select
Bits are taken into account by adding in the base address (see VI DEO
BANK SELECTION section) . Below is a simple formula to i l lustrate what
happens:

C H A R AC T E R A D D R E S S = S C R E E N C O D E * 8 + (C H A R A C T E R
SET* 2048) +(BANK* 1 6384)

CHARACTER DEFINITIONS

Each cha racter is formed in an 8 by 8 g rid of dots, where each dot
may be either on or off. The Commodore 64 cha racter images are
stored in the Character Generator ROM chip. The characters are stored
as a set of 8 bytes for each character, with each byte representing the
dot pattern of a row in the character, and each bit representing a dot.
A zero bit means that dot is off, and a one bit means the dot is on .

The cha racter memory in ROM begins a t location 53248 (when the I/O
is switched off) . The first 8 bytes from location 53248 ($0000) to 53255
($0007) contain the pattern for the @ sign , which has a character code
value of zero in the screen memory. The next 8 bytes, from location

PROGRAMMING GRAPHICS 1 07

53256 ($D008) to 53263 ($DOOF), conta in the information for forming the
letter A.

IMAGE B INARY PEEK
* * 000 1 1 000 24

* * * * 00 1 1 1 1 00 60
* * * * 0 1 1 00 1 1 0 1 02
* * * * * * 0 1 1 1 1 1 1 0 1 26
* * * * 0 1 1 00 1 1 0 1 02
* * * * 0 1 1 00 1 1 0 1 02
* * * * 0 1 1 00 1 1 0 1 02

00000000 0

Each complete cha racter set takes up 2K (2048 bits) of memory, 8
bytes per character and 256 characters . Since there a re two cha racter
sets, one for upper case and graphics and the other with upper and
lower case, the cha racter generator ROM takes up a total of 4K loca­
tions .

PROGRAMMABLE CHARACTERS

Since the characters a re stored in ROM, i t wou ld seem that there i s no
way to change them for customizing characters . However, the memory
location that tel ls the VIC- I I chip where to find the characters is a pro­
g rammab le register which can be changed to point to many sections of
memory. By changing the character memory pointer to point to RAM,
the character set may be prog rammed for any need .

If you want your character set to be located in RAM, there a re a few
VERY IMPORTANT things to take into account when you decide to actu­
ally program your own character sets. In addition , there a re two other
important points you must know to c reate your own special characters:

1) It is an all or nothing process . Genera l ly, if you use your own char­
acter set by tel l ing the VIC-I I ch ip to get the character information
from the a rea you have prepared in RAM, the standard Commo­
dore 64 characters a re unavai lable to you . To solve this, you must
copy any letters, num bers, or standard Commodore 64 graphics
you intend to use into your own character memory in RAM. You can
pick and choose, take only the ones you want, and don't even
have to keep them in order!

1 08 PROGRAMMING GRAPHICS

2) Your character set takes memory space away from you r BAS IC
program . Of course, with 38K avai lable for a BAS IC program ,
most appl ications won't have problems.

WARNING: You must b e careful t o p rotect t h e character set from b e i n g overwritten

by your BASIC program, which a lso uses the RAM.

There a re two locations in the Commodore 64 to sta rt your cha racter
set that should NOT be used with BASIC: location 0 and location
2048. The fi rst should not be used because the system stores important
data on page O. The second can't be used because that i s where your
BAS IC prog ram starts ! However, there a re 6 other starting positions for
your custom character set.

The best place to put your character set for use with BAS IC while
experimenting is beg inning at 1 2288 ($3000 in HEX). This i s done by
POKEing the low 4 bits of location 53272 with 1 2 . Try the POKE now, l ike
this :

POKE 53272, (PEEK(53272)AND240) + 1 2

I mmediately, a l l the letters on the screen turn to garbage, Th is i s
because there are no characters set up at location 1 2288 right now . . .
only random bytes . Set the Commodore 64 back to normal by hitti ng
the li!ii/ijOiNi key and then the 'm"!;!' key.

Now let's begin c reating g raphics characters . To protect your char­
acter set from BASIC, you should reduce the amount of memory BAS IC
th inks i t ha s . The a mount o f memory in your computer stays the
same . . . it 's just that you've told BAS IC not to use some of it. Type:

PRINT FRE(O)-(SGN(FRE(O))<O)* 65535

The number displayed is the amount of memory space left unused. Now
type the fol lowing :

POKE 52,48: POKE56,48 :CLR

Now type:

PRINT FRE(0)-(SGN(FRE(0))<0)*65535

P ROGRAMMI N G GRAPHICS 1 09

See the change? BAS IC now thinks it has less memory to work with . The
memory you just claimed from BAS IC is where you a re going to put your
character set, safe from actions of BAS IC .

The next step is to pu t your cha racters i nto RAM. When you begin,
there is random data beginning at 1 2288 ($3000 HEX) . You must put
cha racter patterns in RAM (in the same style as the ones in ROM) for the
VIC-I I ch ip to use .

The fol lowing program moves 64 characters from ROM to your char­
acter set RAM:

5 PR I NTCHR$ (1 4 2)

UPF'EP CI=ISE

1 0 POKE52 , 48 : POKE56 , 4S : CLP

FOP CHI"IP I'iCTER:::;;
20 POKE56334 , PEEK (56334) AND254

KEYSCAN I NTERRUPT T I MER

30 POKE 1 , PEEK (1) AND25 1

CH�iRt=ICTEF:

: REt'1 :31,J I TCH TO

REM PESERVE MEMORY

: REt'1 TUF: t··1 OFF

40 FOR I =0T05 1 1 : POKE I + 1 2288 , PEEI : (I +53248) NEXT

50 POKE l , PEEK (1) OR4 ' REM SW I TCH I N I /O

60 POKE56334 , PEEK (56334) O R l : REM PESTART

KEYSCAN I N TERRUPT T I MER

70 nm

Now POKE location 53272 with (PEEK(53272)AN D240)+ 1 2 . Nothing
happens, right? Well , a lmost nothing . The Commodore 64 is now getting
it's cha racter information from your RAM, instead of from ROM. But
since we copied the cha racters from ROM exactly, no difference can be
seen yet.

You can easily change the characters now. Clear the sc reen and type
an @ sig n . Move the cursor down a couple of l ines, then type:

FOR I = 1 2288 TO 1 2288 +7 :POKE I, 255 - PEEK(I) : NEXT

You just c reated a reversed @ sig n !

i TIP: Reversed cha racters a re just cha racters with their bit patterns i n cha racter memory

reversed.
L.

Now move the cursor up to the program again and hit l;I§ii@1
again to re-reverse the character (bring it back to normal) . By looking at
the table of sc reen d isplay codes, you can figu re out where in RAM each
character i s . J u st remember that each character takes eight memory
locations to store . Here's a few examples just to get you started:

1 1 0 PROGRAMMING GRAPHICS

CHARACTER DISPLAY CODE CURRENT STARTING LOCATION IN RAM

@ 0 1 2288
A 1 1 2296
! 33 1 2552

> 62 1 2784

Remember that we only took the fi rst 64 cha racters . Something else
wil l have to be done if you want one of the other cha racters.

What if you wanted character number 1 54 , a reversed Z? Wel l , you
could make it yourself, by reversing a Z, or you could copy the set of
reversed characters from the ROM, or just take the one character you
want from ROM and replace one of the characters you have in RAM that
you don't need .

Suppose you decide that you won't need the > sign . Let's replace the
> s ign with the reversed Z. Type this:

FOR 1 =0 TO 7: POKE 1 2784 + I , 255- PEEK(I + 1 2496}: NEXT

Now type a > sig n . It comes up as a reversed Z . No matter how
many times you type the > , it comes out as a reversed Z. (This change
is rea l ly an i l lus io n . Though the > sign looks l ike a reversed Z , i t sti l l acts
l ike a > in a prog ram . Try something that needs a > sig n . It wil l sti l l
work fine , only it wil l look strange .)

A quick review: You can now copy characters from ROM into RAM.
You can even pick and choose only the ones you want. There's only one
step left in programmable characters (the best step !) . . . making your
own cha racters .

Remember how characters are stored in ROM? Each character is
stored as a g roup of eight bytes . The bit patterns of the bytes directly
control the character . If you a rrange 8 bytes, one on top of another,
and write out each byte as eight binary digits, it forms an eight by e ight
matrix, looking like the characters . When a bit is a one, there is a dot at
that location . When a bit is a zero, there is a space at that location .

When creating your own cha racters, you set up the same kind of table
in memory. Type NEW and then type this program :

1 0 FOR I = 1 2448 TO 1 2455 : READ A : POKE I ,A: NEXT
20 DATA 60, 66, 1 65, 1 29, 1 65, 1 53, 66, 60

PROGRAMMING GRAPHICS 1 1 1

Now type RUN . The program wil l replace the letter T with a smi le face
character . Type a few 1's to see the face . Each of the numbers in the
DATA statement i n l ine 20 is a row in the smi le face character. The
matrix for the face looks l ike this :

7 6 5 4 3 2 0 B INARY DECIMAL

ROW 0 * * * * 00 1 1 1 1 00 60
* * 0 1 0000 1 0 66

2 * * * * 1 0 1 00 1 0 1 1 65
3 * * 1 000000 1 1 29
4 * * * * 1 0 1 00 1 0 1 1 65
5 * * * * 1 00 1 1 00 1 1 53
6 * * 0 1 0000 1 0 66

ROW 7 * * * * 00 1 1 1 1 00 60

7 6 5 4 3 2 1 o
o
1

2
3
4
5
6
7

Figure 3- 1 . Programmable Character Worksheet.

1 1 2 PROGRAMMING GRAPHICS

The Programmable Character Worksheet (F igure 3- 1) wil l help you
design your own cha racters. There is an 8 by 8 matrix on the sheet, with
row numbers, and numbers at the top of each column . (I f you view each
row as a binary word , the numbers a re the va lue of that bit position .
Each is a power of 2 . The leftmost bit is equal to 1 28 o r 2 to the 7th
power, the next is equal to 64 or 2 to the 6th , and so on , until you reach
the rightmost b it (bit 0) wh ich is equal to 1 or 2 to the 0 power.)

Place an X on the matrix at every location where you want a dot to be
in your character. When your character is ready you can create the
DATA statement for your character .

Beg in with the first row. Wherever you placed an X , take the number
at the top of the co lumn (the power-of-2 number, as explained above)
and write it down . When you have the numbers for every co lumn of the
fi rst row, add them together . Vllrite this number down, next to the row.
This is the number that you wi l l put into the DATA statement to d raw this
row.

Do the same thing with a l l of the other rows (1 - 7) . When you are
finished you should have 8 numbers between 0 and 255. If any of your
numbers are not within range, recheck your addition . The numbers must
be in this range to be correct ! If you have less than 8 numbers, you
missed a row. It's OK if some a re o. The 0 rows are just as important as
the other numbers .

Replace the numbers in the DATA statement in l ine 20 with the num­
bers you just ca lculated, and RUN the program. Then type a T . Every
time you type it, you'l l see your own characte r !

If you don't l ike the way the character turned out, just change the
numbers in the DATA statement and re-RUN the program until you are
happy with your character .

That's a l l there is to i t !

HINT: For best results, always make any vertical lines i n your characters a t least 2

dots (bits) wide. This helps prevent C H R OMA noise (color distortion) on your char­

acters when they are displayed on a TV screen.

PROGRAMMI NG GRAPHICS 1 1 3

Here is an example of a p rog ram using standard prog rammable
characters:

1 0 REM t EXAMPLE 1 t
20 REM CREAT I NG PROGRAMMABLE CHARACTERS

3 1 POKE56334 , PEEK (56334) AND254 : POKE 1 . PEEK (I) AND25 1 :

REM TURN OFF KB AND I /O
35 FOR I =0T063 REM CHARACTER RANGE TO BE COP I ED

n:Ot'l ReWI

36 FORJ=0T07 REM COPY A L L 8 BYTES PER CHARACTER

37 POK E 1 2288+ I t8+J , PEEK (53248+ I t8+J) : REM COpy A

B'r'TE

38 NEXTJ : NEXT I REM GOTO NEXT BYTE OR CHARACTER

39 P O KE 1 , PE EK (1) OR4 : POKE56334 , PEEK (56334) O R I REM

TURN O N 1 10 AND KB

40 POKE53272 , (PE E K (53272) AND240) + 1 2 REM SET CHAR

PO I NTER TO MEM . 1 2288

50 FORCHAR=60T06 3 : REM PROGRAM CHARACTERS 50 THRU 63

80 FORBYTE=0T07 REM DO ALL 8 BYTES OF A CHARACTER

1 00 READ NUMBER REM READ I N 1 /8TH OF CHARACTER DATA

1 20 POKE I 2288+ (8tCHAR) +BYTE , NUMBER : REM STORE THE

DATFI 1 1 ·1 i"1Et'10R'T'

1 40 NEXTBYTE : NEXTCHAR REM A L S O COULD BE NEXT BYTE ,

CHflF:

1 50 PR I NTCHR$ (1 47) TAB (255) CHR$ (50) ;

1 55 RR I NTCHR' (6 1) TAB (55) CHR' (6 2) CHR$ (63)

1 60 REM L I NE 1 50 PUTS THE NEWLY DEF I NED CHARACTERS

Ot·4 THE S;CREEt·4

1 70 GETAS REM W A I T FOR USER TO PRESS A KEY

1 :::121 I FI"It,,, " " THD-·IOOTO 1 7121 : F.H1 IF t·m I<E'r':::: L,jEPE PPESSED .,

TF-dr' ACi I"l I t � 1
1 90 POKE53272 , 2 1 : PEM RETUPN TO NORMAL CHAPACTEPS

21210 DATA4 , 6 , 7 , 5 , 7 , 7 . 3 , 3 REM DATA FOR CHARACTER 60

2 1 0 DATA 3 2 , 9 5 . 224 . 1 6 0 . 224 , 224 , 1 92 , 1 92 : REM DATA

FOP CHARACTER 6 1

220 DATA 7 , 7 , 7 , 3 1 , 3 1 , 95 , 1 4 3 , 1 27 REM DATA FOR

CHI::IF-:FICTER 6;;:

23121 DATA 224 , 224 , 22 4 , 248 , 24 8 , 248 , 240 , 224 REM DATA

FOR CHARACTER 63

240 Et·m

1 1 4 PROGRAMMING GRAPHICS

MULTI-COLOR MODE GRAPHICS

Standard h ig h-resolution g raphics g ive you control of very smal l dots
on the screen . Each dot in character memory can have 2 poss ib le
va lues, 1 for on and 0 for off. When a dot is off, the color of the screen
is used in the space reserved for that dot. If the dot is on, the dot is
colored with the character color you have chosen for that screen posi­
tion . When you're us ing standard high-reso lution g raphics, all the dots
within each 8 X 8 character can either have backg round color or fore­
g round color. I n some ways this l imits the color resolution with in that
space . For example, problems may occur when two d ifferent colored
l ines c ross .

Multi-color mode gives you a solution to th is problem . Each dot in
multi-color mode can be one of 4 colors : screen color (backg round color
reg ister #0), the color in backg round reg ister # 1 , the color in back­
g round color register #2, or character color. The only sacrifice is in the
horizontal resol ution , because each mu lti-color mode dot is twice as
wide as a h ig h-resolution dot. This min imal loss of resolution is more
than compensated for by the extra abil ities of mu lti-color mode.

MULTI-COLOR MODE BIT

To turn on mu lti-color character mode, set bit 4 of the VIC-I I control
register at 53270 ($DO I 6) to a 1 by using the following POKE:

POKE 53270, PEE K(53270)OR 1 6

To turn off mu lti-color character mode, set bit 4 of location 53270 to a
o by the fol lowing POKE:

POKE 53270, PEEK(53270)AND 239

Multi-color mode is set on o r off for each space on the screen, so that
mu lti-color graphics can be mixed with high-resolution (hi-res) g raphics .
This is controlled by bit 3 in color memory. Color memory beg ins at
location 55296 ($D800 in H EX) . I f the number in co lor memory is less
than 8 (0- 7) the corresponding space on the video screen wil l be
standard hi-res, in the color (0- 7) you've chosen . I f the number located
in color memory is g reater or equal to 8 (from 8 to 1 5) , then that space
wil l be displayed in mu lti-color mode.

PROGRAMMING GRAPHICS 1 1 5

By POKEing a number into color memory, you can change the color of
the character in that position on the screen . POKEing a number from 0 to
7 gives the normal character colors. POKEing a number between 8 and
15 puts the space into multi-color mode. I n other words , turn ing BIT 3
ON in color memory, sets MULTI-COLOR MODE. Turning BIT 3 OFF in
color memory, sets the normal, H IGH-RESOLUTION mode.

Once multi-color mode is set in a space, the bits i n the character
determine which colors are displayed for the dots . For example, here is
a picture of the letter A, and its bit pattern :

IMAGE BIT PATTERN
* * 000 1 1 000

* * * * * 00 1 1 1 1 00
* * * * 0 1 1 00 1 1 0
* * * * * * 0 1 1 1 1 1 1 0
* * * * 0 1 1 00 1 1 0
* * * * 0 1 1 00 1 1 0
* * * * 0 1 1 00 1 1 0

00000000

I n normal or h igh-reso lution mode, the screen color is d i sp layed
everywhere there i s a 0 bit, and the character color i s d i splayed where
the bit is a 1 . Multi-color mode uses the bits in pairs, l ike so:

IMAGE BIT PATTERN
AABB 00 01 1 0 00
CCCC 00 1 1 1 1 00

AABBAABB 01 1 0 0 1 1 0
AACCCCBB 01 1 1 1 1 1 0
AABBAABB 0 1 1 0 0 1 1 0
AABBAABB 0 1 1 0 0 1 1 0
AABBAABB 01 10 0 1 1 0

00 00 00 00

I n the image area above, the spaces marked AA are d rawn in the
background # 1 color, the spaces marked BB use the background #2
color, and the spaces marked CC use the character color. The bit pairs
determine thi s , according to the fol lowing chart:

1 1 6 PROGRAMMING GRAPHICS

BIT PAI R COLOR REGISTER LOCATION

00 Background #0 color (screen color) 53281 ($002 1)
0 1 Background #1 color 53282 ($0022)
1 0 Background #2 color 53283 ($0023)
1 1 Color specified by the color RAM

lower 3 bits i n color memory

NOTE: The sprite foreground color is a 1 0. The character foreground color is a 1 1 .

Type NEW and then type this demonstration program:

1 00 POKE5328 1 , 1 : REt1 SET BACKOFWUt·m COLOP
�'JH I TE

1 1 (1 POKE532B2 .. 3 : REI1 :::ET BACKGROUt·m COLOR

1 213 pm:::E53283 ., 8 : REt1 SET BACf::GROUt·m COLOF.:
ORANGE

1 313 POKE53270 .. PEEK (53270) OR 1 6 : PEM TURN ON

t'lUL T I COLOR 110DE

ItO

1
#2

TO

TO

TO

1 413 C= 1 3*4096+8*256 : REM SET C TO PO I NT TO COLOR

l'lEt10RY

1 513 PR I tHCHR$ (1 47) " AAAAAAAAAA "

1 60 FOF.:L=0T09

1 713 POKEC+L , 8 : PEM USE MULT I BLACK

1 813 t'�E>::T

C'TAt�

The screen color is white, the character color is black, one color reg is­
ter is cyan (greenish b lue), the other is orange.

You're not rea l ly putting color codes in the space for character color,
you're actua l ly using references to the registers associated with those
colors . This conserves memory, since 2 bits can be used to pick 1 6 colors
(background) or 8 colors (character). This also makes some neat tricks
possible. Simply changing one of the indirect registers will change every
dot d rawn in that color. Therefore everything drawn in the screen and

PROGRAMMING GRAPHICS 1 1 7

background colors can be changed on the whole screen instantly. Here
is an example of changing backg round color register # 1 :

1 00 POKE53270 . PEEK (53270) OR l C : REM TURN ON
r'IULT I COLOR r''iC IDE
1 1 0 P R I NTCHR$ (l 4 7) CHRS (l 8) ; �a
1 2(1 PF: I I n " ;;r;�" .; : REr'l T'r'PE C'" 8, 1 FOf�: OF:AI'-1CiE OF:
MUL T I COLOR BLACK BACKCiROUND
1 JO For;:t ,,, 1 TO;;:::? : PF: I I'HCHF:$ (: G5 : , .; : 1 ' 1E><T
1 35 FORT= l T05(10 NEXT

1 "' 1:_'1 f:'F.'. I I···I·T , , �, , ,"" ".'F·!.,.'E.-Dr1 T'·'F·' E I-_·. T·F.'.L ,.",'., �" . '. - ' , FOR BL.UE COL,Of;:
CHI"II···IC::[
1 45 FORT = l T0500 NEXT �a
1 50 F'R I I ·IT " IIH I T 1=1 f'::E'T' "
1 60 C;E:�TI=IS ' I nu:,,, " " THEt-·l l GO
1 70 X= I NT (RND (1) * 1 6)
1 :,::0 PCIf'::E 53:<: ::::2 . ><
1 90 C,O T O 1 6121

By using the � key and the COLOR keys the characters can be
changed to any color, inc luding mu lti-color cha racters . For example,
type this command:

POKE 53270, PEEK(53270)OR 1 6: PR INT " • "; : REM LT. REOI
MU lTI-COLOR RED

t .--....-.

�
The word READY and anything e lse you type wil l be displayed in

mu lti-color mode. Another color control can set you back to regular text.

1 1 8 PROGRAMMING GRAPHICS

Here is an example of a prog ram using mu lti-color prog rammable
characters:

1 0 REM t EXAMPLE 2 t

20 REM C REAT I NG MULT I COLOR PROGRAMMABLE CHARACTERS

31 POKE56334 , PEEK (56334) AND254 : POKE 1 , PEEK C l) AND25 1

35 F O R I =OT063 REM CHARACTER RANGE TO BE COP I ED

F I:::: CWI pewl

36 FORJ=0T07 : REM COPY ALL 8 BYTES PER CHARACTER

37 POKE 1 2288+ I t8+ J , PEEK (53248+ l t8+J) : PEM COPY A

D'1'TE
38 NEXTJ , I " REM GOTO NEXT BYTE OR CHARACTER

39 POKE 1 . PEEK (1) OR4 POKE56334 . PEEK (56334) OP I REM

TURN ON I /O AND KB
40 POKE53272 , (PEEK (53272) AND24 0) + 1 2 REM SET CHAR

P O I NTER T O MEM . 1 22 8 8

50 POKE53270 ., PEEb� '� 53��70) OR 1 6

5 1 POKE5328 1 , O R E M SET BACKGROUND COLOR

52 POKE53282 , 2 " RE M SET BACKGROUND COLOR

53 POKE53283 . 7 REM SET BACKGROUND COLOP

0
1

2

T O :£:LACK

T O RED
TO

60 F ORCHAR=60T063 PEM PROGRAM CHARACTERS 60 THRU 63

SO FORBYTE=0T07 REM DO ALL 8 BYTES OF A CHARACTER

l OG READNUMBER REM READ 1 /8TH OF CHARACTER DATA

1 20 POKE 1 228S+ (StCHAP) +BYT E , NUMDER REM STORE THE

DATI"! 1 1"""1 i"'IE I"'":O';:'.,'

1 40 N EXTBYTE , CHAR
1 5121 �S!IIr!m
F'R I t"IT " �l" "n=I I' < 255 ::' C H F':t .:: 60 ::' CHP:t '� 6 1 ::' TfiB < 55) CHF:l '� 6;<: ::' CHRt < 63 ::'

1 60 REM L I NE 1 50 PUTS THE NEWLY DEF I NED CHARACTERS
O:" j THE :c;CI�:Er:]-i
1 7121 GETAl REM WA I T FOR USER TO PRESS A KEY

1 ;:::1) I F icl ;:'"' " " T HEI " I I ,' 121 " f,:Er'1 IF toW KE'1':::: t,lE I::::E F'RE:::;:::ED ,

T I': '1' AOt"! I t j

1 9121 POKE53272 , 2 1 POKE53278 , PEEK (5327 0) AND239 " REM

RETURN TO NORMAL CHARACTERS
280 DATA 1 29 , 37 , 2 1 , 29 . 93 , 8 5 , 8 5 , 85 REM D A T A FOR

CHf'lPI:'ICTEP 6 0

2 1 0 DAT A66 , 72 . 84 , 1 1 6 , 1 1 7 , 85 , 85 , 85 REM D A T A FOR
C H I::iPi:i C T E f;' 6 1
2 2 0 DATA87 , 87 , 85 . 2 1 , 8 , 8 , 40 , O : PEM DATA FOR

230 DA� A2 1 3 , 2 1 3 , 85 , 84 , 32 , 32 , 40 , O REM DATA FOR

CHf! I?fICTEF: 6 ::��

PROGRAMMING GRAPH ICS 1 1 9

EXTENDED BACKGROUND COLOR MODE

Extended backg round color mode gives you control over the back­
g round color of each ind ividual character, a s well a s over the fore­
ground color. For example, in this mode you could d i splay a blue char­
acter with a yel low background on a white screen .

There are 4 reg isters avai lable for extended background color mode.
Each of the registers can be set to any of the 16 colors .

Color memory is used to hold the foreground color i n extended back­
g round mode. It is u sed the same as in standard character mode.

Extended character mode places a l im it on the number of different
characters you can d isplay, however. When extended color mode is on ,
on ly the fi rst 64 characters i n the character ROM (or the first 64 char­
acters in your programmable character set) can be used. This is be­
cause two of the bits of the character code are u sed to select the back­
g round color. It m ight work something l ike this :

The character code (the number you would POKE to the screen) of the
letter "A" is a 1 . When extended color mode is on , if you POKEd a 1 to
the screen, an "A" would a ppear. If you POKEd a 65 to the screen
normal ly, you would expect the character with character code (CHR$)
1 29 to appear, which is a reversed "A." This does NOT happen in ex­
tended color mode. I nstead you get the same unreversed "A" as before,
but on a d ifferent background co lor . The fol lowing chart g ives the
codes:

CHARACTER CODE BACKGROUND COLOR REGISTER

RANGE BIT 7 BIT 6 NUMBER ADDRESS

0-63 0 0 0 5328 1 ($002 1)
64- 1 27 0 1 1 53282 ($0022)
1 28- 1 91 1 0 2 53283 ($0023)
1 92 - 255 1 1 3 53284 ($0024)

EXTended color mode is turned ON by setting bit 6 of the VIC- I I regis­
ter to a 1 at location 53265 ($00 1 1 i n H EX) . The following POKE does it:

POKE 53265, PEEK(53265)OR 64

1 20 PROGRAMMING GRAPHICS

Extended color mode is turned OFF by setting bit 6 of the V IC-I I regis­
ter to a 0 at location 53265 ($001 1) . The following statement will do this:

POKE 53265, PEEK(53265)AND 1 9 1

BIT MAPPED GRAPHICS

When writing games, plotting charts for business appl ications, o r
other types of programs, sooner or later you get to the point where you
want high-resolution displays .

The Commodore 64 has been designed to do j ust that: h i gh resolution
is avai lable through bit mapping of the screen . Bit mapping is the
method in which each possible dot (pixel) of resolution on the screen is
assigned its own bit (location) in memory. If that memory bit is a one,
the dot it is ass igned to is on. If the b it is set to zero, the dot is off.

High-resolution g raphic design has a couple of drawbacks, which is
why it is not used all the time. First of a l l , it takes lots of memory to bit
map the entire screen. This is because every pixel must have a memory
bit to control it. You are going to need one bit of memory for each pixel
(or one byte for 8 pixels) . Since each character is 8 by 8, and there are
40 l ines with 25 characters in each l ine, the resolution is 320 pixels (dots)
by 200 pixels for the whole screen . That g ives you 64000 separate dots,
each of which requires a bit in memory. In other words, 8000 bytes of
memary are needed to map the whole screen .

Generally, high-resolution operations are made o f many short, s im­
ple, repetitive routines. U nfortunately, this kind of thing is usual ly rather
slow if you are trying to write high-resolution routines in BAS IC . How­
ever, short, s imple, repetitive routines are exactly what machine lan­
guage does best. The solution is to either write your programs entirely i n
mach ine language, or ca l l mach ine language, h igh-resolution sub­
routines from your BASIC program using the SYS command from BAS IC .
That way you get both the ease of writing in BASIC , and the speed of
mach ine language for graphics. The VSP cartridge is a lso avai lable to
add h igh-resolution commands to COMMODORE 64 BAS IC .

Al l of the examples g iven in this section wil l be i n BASIC to make them
clear. Now to the techn ical detai ls .

BIT MAPPING i s one of the most popular g raphics techn iques in the
computer world . I t is used to create h ighly detailed pictures . Basical ly,
when the Commodore 64 goes into bit map mode, it d i rectly displays an

PROGRAMMING GRAPHICS 1 2 1

8K section of memory on the TV screen . When in bit map mode, you can
directly control whether an ind ividual dot on the screen is on o r off.

There a re two types of bit mapping avai lable on the Commodore 64 .
They are:

1) Standard (hig h-resolution) bit mapped mode (320-dot by 200-dot
resolution)

2) Mu lti-color bit mapped mode (1 60-dot by 200-dot resolution)

Each is very s imi lar to the character type it is named for: standard has
g reater resolution , but fewer color selections . On the other hand, mu lti­
color bit mapping trades horizontal resolution for a g reater number of
colors in an 8-dot by 8-dot square.

STANDARD HIGH-RESOLUTION BIT MAP MODE

Standard bit map mode gives you a 320 horizonta l dot by 200 vertica l
dot resolution , with a choice of 2 colors i n each 8-dot by 8-dot section .
Bit m a p mode i s selected (tu rned O N) by setting bit 5 o f the VIC- I I
control register to a 1 at location 53265 ($DO 1 1 in H EX) . The following
POKE wi l l do this:

POKE 53265, PEEK(53265)OR 32

Bit map mode is turned OFF by setting bit 5 of the V IC-I I control
register to 0 at location 53265 ($DO l l) , l ike this:

POKE 53265, PEEK(53265)AND 223

Before we get into the deta i ls of the bit map mode, there is one more
issue to tackle, and that is where to locate the bit map a rea .

HOW IT WORKS

If you remember the PROGRAMMABLE CHARACTERS section you will
reca l l tha� you were able to set the bit pattern of a character stored in
RAM to a lmost anything you wanted . If at the same time you change the
cha racter that is d isplayed on the screen, you would be able to change
a single dot, and watch it happen . This is the basis of bit-mapping . The

1 22 PROGRAMMING GRAPHICS

entire screen is fi l led with p rog rammable characters, and you make
your changes d i rectly into the memory that the p rog rammable char­
acters get their patterns from .

Each o f the locations in screen memory that were used to control what
cha racter was d isp layed , a re now used for color i nformatio n . For
example, instead of POKEing a 1 in location 1 024 to make an "A" ap­
pea r in the top left hand corner of the screen, location 1 024 now con­
trols the colors of the bits in that top left space .

Colors of squares in bit map mode do not come from co lor memory,
as they do in the character modes. I n stead , colors a re taken from
screen memory. The upper 4 bits of screen memory become the color of
any bit that is set to 1 in the 8 by 8 a rea controlled by that sc reen
memory location . The lower 4 bits become the color of any bit that is set
to a O.
EXAMPLE: Type the following:

5 BASE=2*4096 ' POKE53272 . PEEK (53272) OR8 REM PUT B I T

r'11"1P I"IT :::: 1 9 :;::

1 0 POKE53265 . PEEK (53265) OR32 : REM ENTER B I T MAP MODE

Now RUN the program .
Garbage appears o n the screen, right? Just like the normal screen

mode, you have to c lear the H IGH-RESOLUTION (H I-RES) screen before
you use it. Unfortunately, printing a CLR won't work in this case. I nstead
you have to c lear out the section of memory that you're using for your
prog rammable characters. Hit the 'i!iiltliNi and ';1+1101;1' keys, then
add the following l ines to your prog ram to clear the H I-RES screen:

20 FOR I =BASETOBASE+7999 : POKE I , 0 NEXT : REM CLEAR B I T
�1AP
30 F OR I = 1 024T02023 POKE I . 3 : NEXT : REM SET COLOR TO

C::'r'm,� AHD BLI"lCK

Now RUN the program again . You should see the screen c learing, then
the g reenish blue color, cyan , should cover the whole screen. What we
want to do now is to turn the dots on and off on the H I-RES screen .

PROGRAMMING GRAPHICS 1 23

To SET a dot (turn a dot ON) or UNSET a dot (tu rn a dot OFF) you must
know how to find the correct bit in the character memory that you have
to set to a 1 . In other words , you have to find the character you need to
change, the row of the character, and which bit of the row that you
have to change. You need a formula to calcu late this .

We will use X and Y to stand for the horizontal and vertical positions
of a dot . The dot where x=o and Y=O is at the upper-left of the dis­
play. Dots to the r ight have h igher X va lues, and the dots toward the
bottom have higher Y va lues . The best way to use bit mapping is to
a rrange the bit map d isplay something l ike this :

0 ------------------------- -------------- - ---- - -- X ------------------------ - - - - -- - - - - -- --- - - - - 3 1 9

Y

1 99 ------------ -------------------- - ------------ ---------- -- ------- --------- - -- -- -- -------------- .

Each dot will have an X and a Y coord inate . With this format it is easy
to control any dot on the screen.

1 24 PROGRAMMING GRAPHICS

However, what you actually have is something l ike this:

_ _ _ _ _ _ BYTE 0 BYTE 8 BYTE 1 6 BYTE 24 BYTE 3 1 2
BYTE 1 BYTE 9 BYTE 3 1 3
BYTE 2 BYTE 1 0 BYTE 3 1 4

w 8 Z BYTE 3 BYTE 1 1 BYTE 3 1 5
::::; ;: BYTE 4 BYTE 1 2 BYTE 3 1 6 c... 0 O O! BYTE 5 BYTE 1 3 BYTE 3 1 7 �

BYTE 6 BYTE 1 4 BYTE 3 1 8
BYTE 7 BYTE 1 5 BYTE 3 1 9

BYTE 320 BYTE 328 BYTE 336 BYTE 344 BYTE 632
BYTE 321 BYTE 329 BYTE 633

w BYTE 322 BYTE 330 BYTE 634 Z
::::; BYTE 323 BYTE 33 1 BYTE 635
o ;: BYTE 324 BYTE 332 BYTE 636 Z o O O! BYTE 325 BYTE 333 BYTE 637 u w BYTE 326 BYTE 334 BYTE 638 en

_ _ _ _ _ _ BYTE 327 BYTE 335 BYTE 639

The prog rammable characters which make up the bit map a re a r­
ranged in 25 rows of 40 co lumns each . While this is a good method of
organ ization for text, it makes bit mapping somewhat d ifficu lt. (There is
a good reason for this method . See the section on MIXED MODES .)

The following formula will make it easier to control a dot o n the bit
map screen :

The sta rt of the d isplay memory area is known as the BASE . The row
number (from 0 to 24) of your dot is:

ROW = I NT(Y/S) (There are 320 bytes per l i ne .)

The character position on that l ine (from 0 to 39) is:

CHAR = I NT(X/S) (There are S bytes per character.)

The line of that character position (from 0 to 7) is:

LIN E = Y AN D 7

PROGRAMMING GRAPHICS 1 25

The bit of that byte is :

B IT = 7- (X AND 7)

Now we put these formulas together . The byte in which character
memory dot (X, Y) is located is calcu lated by:

BYTE = BASE + ROW*320+ CHAR*a + L INE

To tu rn on any bit on the g rid with coordinates (X , V) , use this l ine:

POKE BYTE , PEEK(BYTE) OR 2jBIT

Let's add these calcu lations to the prog ram . I n the fol lowing example,
the COMMODORE 64 wi l l plot a s ine curve :

50 F ORX=0T03 1 9S TEP . 5 : RE M WAVE W I LL F I LL THE SCREEN

60 Y= I NT (90+80*S I N (X/ I 0 »
70 CH= I tH (>: :::)
co PO'-" I HT ('T' ::::)
:::�5 U·I'='T'm·m7
90 BY=BASE+PO*320+8*CH+LH

: [1210 B I :=:-;' ..• (::<m·m?)
1 1 121 F'OI<EB'·,' ., PEEf< (B'T' ::O O P (2 n: I
1 :21<.1 tlE:-:T:-:

1 25 POf<E 1 1<.1;;::4 ., 1 6

1 :;::('1 OOTO 1 3121

The calcu lation in l ine 60 wil l change the values for the sine function
from a range of + 1 to - 1 to a range of 1 0 to 1 70. Lines 70 to 1 00
calcu late the c ha racter, row, byte, and bit being affected, using the
formulae as shown above . Line 1 25 s ignals the program is finished by
changing the color of the top left corner of the screen . Line 1 30 freezes
the program by putting it into an infinite loop . When you have fin ished
looking at the display, just hold down 'jIIlIMUlI and hit l;lfilo!;!j .

1 26 PROGRAMMING GRAPHICS

As a further example, you can modify the s ine cu rve program to dis­
play a semicirc le . Here are the l ines to type to make the changes:

50 FORX=0T0 1 60 R E M DO HALF T H E SCREEN

55 '� 1 = 1 00+SQR (1 60*X-X*X)

56 Y2= 1 00-SQR (1 60*X-X* X)

60 FORY=Y 1 TOY2STEPY 1 -Y2
7121 CH= I t-n 0: >':/ :::' :;

:::0 F:O'" I t·n 0:: 'r' :;:: :;
:;:::5 U·j=" r'm·-ID?

':' 1 1 :t: 'T'''"<E:F� ::;E·+·F:O:+'::':;;:O+:::*CH+U·j

1 00 :t: I '�'7- (:<nt·W7)

1 10 F'OI<EE:'r' ., PEEl< 0: B'T') OR (2 lB I :;

1 1 4 �jE>(T

This will create a semic ircle in the H I -RES a rea of the screen .

WARNING: BASIC variables c a n overlay you r high-resolution screen. I f you need
more memory space you must move the bottom of BASIC a bove the high-resolution
screen a rea . Or, you must move you r high-resolution screen area. This problem will
NOT occur in machine language. It O N LY happens when you're writing programs in
BAS I C .

MULTI-COLOR BIT MAP MODE

Like mu lti-color mode cha racters, mu lti-color bit map mode al lows you
to d isplay up to fou r different colors in each 8 by 8 section of bit map .
And as in mu lti-cha racter mode , there i s a sacrifice of horizontal resolu­
tion (from 320 dots to 1 60 dots).

Multi-color bit map mode uses an 8K section of memory for the bit
map . You select your colors for mu lti-color bit map mode from (1) the
background color register 0, (the screen backg round color), (2) the video
matrix (the upper 4 bits g ive one possible color, the lower 4 bits an­
other), and (3) color memory.

Mu lti-color b it mapped mode is turned ON by setting bit 5 of 53265
($D0 1 1) and bit 4 at location 53270 ($DO I 6) to a 1 . The following POKE
does this:

POKE 53265 ,PEEK(53625)OR 32: POKE 53270, PEEK(53270)OR 1 6

PROGRAMMING GRAPHICS 1 27

Multi-color bit mapped mode is turned OFF by sett ing bit 5 of 53265
($001 1) and bit 4 at location 53270 ($00 1 6) to a O. The fol lowing POKE
does this :

POKE 53265,PEE K(53265)ANO 223: POKE 53270, PEEK(53270)ANO 239

As in standard (H I-RES) bit mapped mode, there is a one to one cor­
respondence between the 8K section of memory being used for the d is­
play, and what is shown on the screen. However, the horizonta l dots a re
two bits wide. Each 2 bits in the display memory a rea form a dot, which
can have one of 4 colors .

BITS COLOR I NFORMATION COMES FROM
00 Background color #0 (screen color)
0 1 Upper 4 bits o f screen memory
1 0
1 1

Lower 4 bits of screen memory
Color nybble (nybble = 1 /2 byte

SMOOTH SCROLLING

4 bits)

The VIC-I I ch ip supports smooth scrol l ing in both the horizontal and
vertica l d i rections . Smooth scro l l i ng is a one pixel movement of the
entire screen in one d i rection . It can move either up, or down, or left, or
r ight. It is used to move new information smoothly onto the screen , while
smoothly removing characters from the other s ide.

Whi le the VIC-I I ch ip does much of the task for you , the actual scrol l­
ing must be done by a machine language prog ram . The VIC- I I chip
features the abil ity to place the video screen in any of 8 horizontal posi­
tions , and 8 vertica l positions . Positioning is controlled by the VIC-I I
scrol l ing registers . The V IC- I I chip also has a 38 co lumn mode, and a 24
row mode. the smal ler screen sizes are used to give you a place for you r
new data to scroll on from.

The following are the steps fo r SMOOTH SCROLL ING:

1 28 PROGRAMMI NG GRAPHICS

1) Shrink the screen (the border wi l l expand) .
2) Set the scro l l ing reg ister to max imum (or min imum va lue depend­

ing upon the d i rection of your scro l l) .
3) Place the new data on the proper (covered) portion of the screen .
4) I nc rement (or decrement) the scrol l ing register until i t reaches the

maximum (or min imum) value .
5) At th i s point, use your machine language routine to shift the entire

screen one entire character i n the d i rection of the scrol l .
6) Go back to step 2 .

To go into 38 co lumn mode, bit 3 o f location 53270 ($00 1 6) must be
set to a O. The following POKE does this:

POKE 53270, PEEK(53270)ANO 247

To return to 40 column mode, set bit 3 of location 53270 ($00 1 6) to a
1 . The following POKE does this:

POKE 53270, PEEK(53270)OR 8

To go into 24 row mode, bit 3 of location 53265 ($00 1 1) must be set to
a O. The following POKE wi l l do this:

POKE 53265,PEEK(53265)ANO 247

To return to 25 row mode, set bit 3 of location 53265 ($00 1 1) to a 1 .
The fol lowing POKE does this :

POKE 53265 ,PE EK(53265)OR 8

When scrol l ing in the X direction, it is necessary to place the VIC- I I
ch ip into 38 co lumn mode. This gives new data a place to scroll from .
When scro l l i ng LEFT, the new data should be placed on the right. When
scrol l ing R IGHT the new data should be placed on the left. Please note
that there a re sti l l 40 columns to screen memory, but only 38 are visib le .

When scrol l ing in the Y d i rection , i t is necessary to p lace the VIC- I I chip
into 24 row mode. When scro l l ing UP , place the new data in the LAST
row. When scro l l ing DOWN, place the new data on the FI RST row. Un­
l ike X scrol l i ng , where there are covered areas on each side of the
screen, there is only one covered a rea in Y scro l l ing . When the Y scrol l-

PROGRAMMING GRAPH ICS 1 29

ing reg ister is set to 0, the fi rst l ine is covered , ready for new data .
When the Y scro l l ing reg ister is set to 7 the last row is covered .

For scro l l ing in the X direction, the scroll reg ister is located in bits 2 to
o of the V IC- I I control reg ister at location 53270 ($D0 1 6 in H EX). As
a lways , it is important to affect on ly those bits . The fol lowing POKE does
th is :

POKE 53270, (PEEK(53270}AND 248} +X

where X i s the X position of the screen from 0 to 7 .
For scro l l ing in the Y d irection, the scrol l register i s located in bits 2 to

o of the VIC- I I control reg i ster at location 53265 ($D0 1 1 in H EX). As
a lways , it is important to affect only those bits . The following POKE does
this :

POKE 53265, (PEEK(53265}AND 248} +Y

where Y is the Y position of the screen from 0 to 7 .
To scrol l text onto the screen from the bottom , you would step the

low-order 3 bits of location 53265 from 0-7, put more data on the
covered l ine at the bottom of the screen , and then repeat the process.
To scrol l cha racters onto the screen from left to right, you would step the
low-order 3 bits of location 53270 from 0 to 7, print or POKE another
co lumn of new data into column 0 of the screen , then repeat the pro­
cess.

If you step the scrol l bits by - 1 , your text wi l l move in the opposite
d i rection .

EXAMPLE: Text scroll ing onto the bottom of the screen:

1 0 PC�E5326 5 , PEEK (5326 5) AND247 : REM GO

I NT O 24 ROW MODE

2"-1 PF.: nHCHF.::t (1 47 ;' : PEt1

CLEAP THE SCREEN

30 F ORX= I T024 : PR I NTCHRS (1 7) ; : NEXT REM MOVE

T H E C�RSOR TO THE BOTTOM

40 POKE53265 . (PEEK (53265) AND248) + 7 PR I NT : REM

POS I T I ON FOR 1 ST SCROLL

50 PF: I I··IT " HELLO " ,:

50 FORP=5T00STEP- l

70 POKE53265 , (PEEK (53265) AND248) +P

80 FORX= I T050 : NEXT : REM
DELI'=t'r' L.OOP
:9121 I',IE:":T : (;OT040

1 30 PROGRAMMING GRAPH ICS

SPRITES

A SPRITE is a special type of user definable character which can be
d isplayed anywhere on the screen . Sprites a re maintained d i rectly by
the V IC- I I ch ip . And a l l you have to do is tel l a sprite "what to look l ike,"
"what co lor to be," and "where to appear ." The V IC-I I chip wi l l do the
rest ! Sprites can be any of the 1 6 colors avai lable .

Sp rites can be used with ANY of the other g raphics modes, bit
mapped , cha racter, mu lti-color, etc . , and they'll keep their shape in a l l
of them. The sprite carries its own color defin ition , its own mode (H I-RES
or mu lti-colored), and its own shape.

Up to 8 sprites at a time can be mainta ined by the V IC- I I chip auto­
matical ly. More sprites can be disp layed us ing RASTER INTERRUPT
techniques.

The features of SPRITES include:

1) 24 horizontal dot by 21 vertical dot size .
2) I nd ividua l color control for each sprite .
3) Sprite mu lti-color mode.
4) Magnification (2 X) in horizonta l , vertica l , or both directions .
5) Selectable sprite to backg round priority.
6) Fixed sprite to sprite prio rities.
7) Sprite to sprite col l ision detection .
8) Sprite to backg round col l ision detection.

These special sprite abi l ities make it simple to prog ram many arcade
style games. Because the sprites a re maintained by ha rdware , it is even
possib le to write a good qua lity game in BAS IC !

There a re 8 sprites supported d i rectly by the VIC-I I ch ip . They are
numbered from 0 to 7. Each of the sprites has it own definition location ,
position reg isters and color reg ister , and has its own bits for enable and
col l is ion detection .

DEFINING A SPRITE

Sprites are defined l ike programmable cha racters are defined. How­
ever, since the size of the sprite is larger, more bytes a re needed . A
sprite is 24 by 2 1 dots , or 504 dots. This works out to 63 bytes (504/8

PROGRAMMING GRAPHICS ' 3 '

Co>

..
.

C
O

L
U

M
N

0

0

0
1

0
2

0

3

0
4

0

5

06

0
7

0

8

09

N
U

M
B

E
R

1

0

11

1
2

1

3

1
4

1

5

1
6

1

7

1
8

1

9

2
0

2

1
2

2

2
3

""

B
IT

7

6

5

4

3

2

1
0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1
0

'"

 0 0 '"
 » � Z

'TI

0
cO·

0

c
'"

�

B
IT

 D
A

T
A

V
A

L
U

E
S

1

2
8

6

4

3
2

16

8

4

2

1

12
8

6

4

3
2

16

8

4

2

1

12
8

6

4

3
2

16

8

4

2

1

(O
N

",
 h

V
A

L
)

R
O

W
 0

R

O
W

 1

R
O

W
 2

»
CD

""

R
O

W
 3

:r

(oJ

n

�
VI

R

O
W

 4

II
I

R
O

W
 5

"lJ

�

R
O

W
6

�. CD
R

O
W

 7

0

R
O

W
8

CD ::!)

R

O
W

9

:::I �.
R

O
W

 1
0

o·

:::I
R

O
W

 1
1

CIJ

R
O

W
 1

2

0

n
R

O
W

 1
3

?C"

R
O

W
 1

4

R
O

W
 1

5

R
O

W
 1

6

R
O

W
 1

7

R
O

W
 1

8

R
O

W
 1

9

R
O

W
 2

0

bits) needed to define a sprite . The 63 bytes are arranged in 2 1 rows of
3 bytes each. A sprite definition looks l ike this:

BYTE 0
BYTE 3
BYTE 6

BYTE 60

BYTE 1
BYTE 4
BYTE 7

BYTE 6 1

BYTE 2
BYTE 5
BYTE 8

BYTE 62

Another way to view how a sprite is c reated is to take a look at the
sprite definition block on the bit leve l . It would look something l ike Figu re
3-2 .

I n a standard (H I-RES) sprite , each b it set to 1 is displayed in that
sprite's foreground color. Each bit set to 0 is transparent and wil l display
whatever data is behind it . This is simi lar to a standard character .

Multi-color sprites are s imi lar to multi-color cha racters . Horizonta l
resolution is traded for extra color reso lution. The resolution of the sprite
becomes 1 2 horizontal dots by 2 1 vertical dots . Each dot in the sprite
becomes twice as wide, but the number of colors d isplayable in the
sprite is increased to 4 .

SPRITE POINTERS

Even though each sprite takes on ly 63 bytes to define, one more byte
is needed as a place holder at the end of each sprite. Each sprite, then ,
takes up 64 bytes . Th i s makes i t easy to calcu late where in memory your
sprite defin ition is , since 64 bytes is an even number and in b inary it's an
even power.

Each of the 8 sprites has a byte associated with i t ca l led the SPRITE
POINTER. The sprite pointers control where each sprite defin ition is lo­
cated in memory . These 8 bytes are a lways located as the last 8 bytes
of the 1 K chunk of screen memory. Normal ly, on the Commodore 64,
this meCins they beg in at location 2040 ($07F8 in HEX). However, if you
move the screen , the location of you r sprite pointers will a l so move .

Each sprite pointer can hold a number from 0 to 255. This number
points to the defin ition for that sprite . Since each sprite definition takes
64 bytes, that means that the pointer can "see" anywhere in the 1 6K
block of memory that the V IC- I I ch ip can access (since 256* 64 = 1 6K) .

PROGRAMMING GRAPHICS 1 33

If sprite pointer #0, at location 2040, contains the number 1 4 , for
example, this means that sprite 0 wil l be displayed using the 64 bytes
beginning at location 1 4* 64 = 896 which is in the cassette buffer . The
following formula makes this c lear:

LOCATION = (BANK * 1 6384) + (SPR ITE POI NTER VALUE * 64)

Where BANK is the 1 6K segment of memory that the VIC- I I ch ip is look­
ing at and is from 0 to 3 .

T he above formu la g ives the sta rt o f the 64 bytes o f the spr ite
definition block.

When the VIC-I I chip is looking at BANK 0 or BANK 2, there is a ROM
IMAGE of the character set present i n certain locations, as mentioned
before. Sprite defi nitions can NOT be placed there. If for some reason
you need more than 1 28 d ifferent sprite defin itions , you should use one
of the banks without the ROM IMAGE, 1 or 3 .

TURNING SPRITES ON

The VIC- I I control register at location 53269 ($00 1 5 in H EX) is known
as the SPRITE ENABLE register . Each of the sprites has a bit in this
register which control s whether that sprite is ON or OFF . The register
loo'ks l ike this :

$00 1 5 7 6 5 4 3 2 1 0

To turn on sprite 1 , for example, it is necessa ry to turn that bit to a 1 .
The following POKE does this:

POKE 53269,PEEK(53269)OR 2

A more general statement would be the following :

POKE 53269, PEEK(53269)OR (2jSN)

where SN is the sprite number, from 0 to 7 .

NOTE: A sprite must b e turned O N before i t can b e see n .

1 34 PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is tu rned off by setting its bit in the VIC- I I control register at
53269 ($00 1 5 in H EX) to a O. The following POKE will do this:

POKE 53269, PEEK(53269)AND (255-2jSN)

where SN is the sprite number from 0 to 7 .

COLORS

A sprite can be any of the 1 6 colors generated by the V IC- I I ch ip .
Each of the sprites has its own sprite color reg ister . These a re the mem­
ory locations of the color registers:

ADDRESS

53287 ($0027)
53288 ($0028)
53289 ($0029)
53290 ($002A)
5329 1 ($002B)
53292 ($002C)
53293 ($0020)
53294 ($002E)

DESCRIPTION

SPRITE 0 COLOR REGISTER
SPRITE 1 COLOR REGISTER
SPR ITE 2 COLOR REGISTER
SPR ITE 3 COLOR REGISTER
SPRITE 4 COLOR REGISTER
SPR ITE 5 COLOR REGISTER
SPRITE 6 COLOR REGISTER
SPRITE 7 COLOR REGISTER

All dots in the sprite wil l be displayed in the color contained in the
sprite color register . The rest of the sprite wil l be transparent, and wi l l
show whatever i s behind the sprite .

MULTI-COLOR MODE

Multi-color mode a l lows you to have up to 4 d ifferent colors in each
sprite . However, j ust l ike other mu lti-color modes, horizonta l resolution is
cut i n half. In other words, when you're working with sprite mu lti-color
mode (l ike in mu lti-color character mode), instead of 24 dots across the
sprite , there a re 1 2 pairs of dots. Each pair of dots is cal led a BIT PAI R .
Think of each bit pair (pair of dots) a s a single dot i n your overal l sprite
when it comes to choosing colors for the dots in your sprites . The table

PROGRAMMING GRAPHICS 1 35

below g ives you the bit pair va lues needed to turn ON each of the four
colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

00 TRANSPARENT, SCREEN COlOR
0 1 SPRITE MULTI-COLOR REGISTER #0 (53285) ($0025)
1 0 SPRITE COlOR REGISTER
1 1 SPRITE MULTI-COLOR REGISTER # 1 (53286) ($0026)

NOTE: The sprite foreground color is 0 1 0 . The charocter foreground is a 1 1 .

SETTING A SPRITE TO MULTI-COLOR MODE

To switch a sprite i nto multi-color mode you must turn ON the VIC-I I
control reg ister at location 53276 ($001 C). The following POKE does this :

POKE 53276, PEEK(53276) OR (2jSN)

where SN is the sprite number (0 to 7).
To switch a sprite out of mu lti-color mode you must turn OFF the VIC- I I

control register a t location 53276 ($001 C) . The following POKE does this:

POKE 53276, PEEK(53276) AND (255-2jSN)

where SN is the sprite number (0 to 7).

EXPANDED SPRITES

The VIC-I I ch ip has the abi l ity to expand a sprite in the vertical direc­
tion , the horizontal direction , or both at once. When expanded , each dot
in the sprite is twice as wide or twice as ta l l . Resolution doesn't actually
increase . . . the sprite just gets bigger.

To expand a sprite in the horizontal d i rection, the corresponding bit in
the VIC- I I control reg ister at location 53277 ($001 D in HEX) must be
turned ON (set to a 1) . The following POKE expands a sprite in the X
direction:

POKE 53277, PEEK(53277)OR (2jSN)

where SN is the sprite number from 0 to 7.

1 36 PROGRAMMING GRAPHICS

To unexpand a sprite in the horizonta l d i rection, the corresponding bit
in the VIC- I I control reg ister at location 53277 ($00 1 0 in H EX) must be
turned OFF (set to a 0). The fol lowing POKE "unexpands" a sprite in the
X d i rection :

POKE 53277, PEEK(53277)ANO (255-2jSN)

where SN is the sprite number from 0 to 7.
To expand a sprite in the vertical d i rection, the corresponding bit i n

the V IC- I I control register at location 53271 ($00 1 7 in HEX) must be
tu rned ON (set to a 1) . The fol lowing POKE expands a spr ite i n the Y
d i rection:

POKE 53271 , PEEK(53271)OR (2jSN)

where SN is the sprite number from 0 to 7 .
To u nexpand a spr ite i n the vertical d i rection , the corresponding bit in

the VIC- I I control register at location 5327 1 ($00 1 7 in H EX) must be
turned OFF (set to a 0). The fol lowing POKE "unexpands" a sprite in the
Y d i rection :

POKE 5327 1 , PEEK(53271)ANO (255-2jSN)

where SN is the sprite number from 0 to 7 .

SPRITE POSITIONING

Once you've made a sprite you want to be able to move it around the
screen. To do this, your Commodore 64 uses three positioning reg isters:

1) SPR ITE X POSIT ION REGISTER
2) SPR ITE Y POSIT ION REGISTER
3) MOST S IGN I F ICANT B IT X POSIT ION REGISTER

Each sprite has an X position reg ister, a Y position register, and a bit
in the X most significant bit reg ister . This lets you position your sprites
very accurately. You can place your sprite in 5 1 2 possible X positions
and 256 possible Y positions.

The X and Y position registers work together, i n pairs, as a team . The
locations of the X and Y reg isters appear i n the memory map as fol lows:
F irst is the X register for sprite 0, then the Y register for sprite O. Next

PROGRAMMING GRAPHICS 1 37

comes the X reg ister for sprite 1 , the Y reg ister for sprite 1 , and so on .
After a l l 1 6 X and Y reg isters comes the most s ignificant bit in t he X
position (X MSB) located in its own reg ister .

The chart below l ists the locations of each sprite position reg ister . You
use the locations at their appropriate time through POKE statements:

LOCATION
DESCRIPTION

DECIMAL HEX

53248 ($DOOO) SPR ITE 0 X POS ITION REGISTER
53249 ($D00 1) SPRITE 0 Y POS IT ION REGISTER
53250 ($D002) SPRITE 1 X POS IT ION REGISTER
5325 1 ($D003) SPR ITE 1 Y POS IT ION REGISTER
53252 ($D004) SPRITE 2 X POSIT ION REGISTER
53253 ($D005) SPRITE 2 Y POSIT ION REGISTER
53254 ($D006) SPRITE 3 X POS IT ION REGISTER
53255 ($D007) SPRITE 3 Y POS ITION REGISTER
53256 ($D008) SPR ITE 4 X POS IT ION REGISTER
53257 ($D009) SPRITE 4 Y POS IT ION REGISTER
53258 ($DOOA) SPRITE 5 X POSIT ION REGISTER
53259 ($DOOB) SPRITE 5 Y POSIT ION REGISTER
53260 ($ DOOC) SPR ITE 6 X POSIT ION REGISTER
5326 1 ($DOOD) SPRITE 6 Y POSITION REGISTER
53262 ($DOOE) SPR ITE 7 X POS ITION REGISTER
53263 ($DOOF) SPR ITE 7 Y POS IT ION REGISTER
53264 ($D0 1 0) SPRITE X MSB REGI STER

The position of a sprite is calcu lated from the TOP LEFT corner of the
24 dot by 21 dot a rea that you r sprite can be designed in. It does NOT
matter how many or how few dots you use to make up a sprite . Even if
only one dot is used as a sprite, and you happen to wont it in the middle
of the screen, you must sti l l calculate the exact positioning by starting at
the top left corner location .

VERTICAL POSITIONING

Setting up positions in the horizontal d i rection is a little more difficult
than vertica l positioning , so we' l l d iscuss vertical (Y) positioning first.

There a re 200 different dot positions that can be individua l ly pro­
g rammed onto your TV screen in the Y d i rection . The sprite Y position
reg isters can handle numbers up to 255. This means that you have more

1 38 PROGRAMMING GRAPHICS

than enough reg ister locations to handle moving a sprite up and down .
You a lso want to be able to smoothly move a sprite on and off the
screen . More than 200 va lues a re needed for this .

The first on-screen va lue from the top of the screen, and in the Y
d i rection for an unexpanded sprite is 30. For a sprite expanded in the Y
d irection it would be 9. (Since each dot is twice as tal l , this makes a
certain amount of sense, as the in itial position is STILL calcu lated from
the top left corner of the sprite .)

The first Y value in which a sprite (expanded o r not) is ful ly on the
screen (al l 2 1 possib le l ines displayed) is 50.

The last Y va lue in which an unexpanded sprite is fu l ly on the screen is
229. The last Y value in which an expanded sprite is ful ly on the screen
is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

�BIiEm
1 121 PF" HlT " :J" FH" I C I..E: I"IP �::;C:r;: E:EI'�

�u POKE2040 , 1 3 F"EM GET SPR I T E 0
DATA FROM BLOCK 1 3

30 F O R I =0T 062 : POKE832+ I , 1 29 : NEXT PEM P O K E SPP I T E

DATA I NT O BLOCK 1 3 (1 3+64=832)
40 ".,'==5J���4:::

OF ',/ I DEO CH I E'

5121 PUKE\I+2 1 , 1

6121 P Of<E'.,.'+39 , 1

COLOF.:

"(121 pm::[" i+ 1 .' 1 DO
'r' PO:::; I T I ON

80 POKEV+ 1 6 , O POKEV , 1 00

>: PU::; I T I 01,·1

HORIZONTAL POSITIONING

:

:

PEM SET BEG I NN I NG

REM ENI"IBLE SPP I TE

PEM S E T SPP I TE 0

PEt" �:;ET �:;PR I TE ""

REt" �::;ET �::;PF" I T E 0

Position ing in the horizontal d i rection is more compl icated because
there a re more than 256 positions . This means that an extra bit, or 9th
bit is used to control the X position . By adding the extra bit when neces­
sary a sprite now has 5 1 2 possible positions in the left/right, X, d i rec­
tio n . This makes more possib le combinations than can be seen on the
vis ible part of the screen. Each sprite can have a position from 0 to 5 1 1 .
However, only those values between 24 and 343 are visible on the
screen. If the X position of a sprite is greater than 255 (on the right side
of the screen) , the bit i n the X MOST S IGN I FICANT BIT POS IT ION register
must be set to a 1 (tu rned ON) . If the X position of a sprite is less than

PROGRAMMING GRAPHICS 1 39

.,.

o

..,

'"
 o Cl '"

>
 � Z Cl Cl '"

>

..,

:J:

n

VI

"TI

lC
o c ... CD W
 W 11'1

"l
l ... :;:

CD

o
(S

O
O

)
24

 (
S

1S
)

1 1 1
1

1

29
 (

S
10

)
--

-L
 -

I

50
 (

S
3

2
)

-
-

-
I

20
8

25
0

I I
48

8
(S

1
E

S
)

24
 (

S
1S

)

VI
SI

BL
E

VI
EW

IN
G

 A
RE

A

N
TS

C
·

40
 C

O
LU

M
N

S

25
 R

O
W

S

'N
or

th
 A

m
er

ica
n t

el
ev

isi
on

 tr
an

sm
iss

io
n s

ta
nd

ar
ds

 lo
r y

ou
r h

om
e

TV
.

29
6

(S
12

S
) I

34
4

(S
1

5
S

)
1 1 , -

-
-

-
-

-
8

(S
O

S
)

-
50

 (
S

3
2

)

-
-

22
9

(S
E

5
)

0-
-

25
0

(S
F

A
)

32
0

(S
14

0
)

34
4

(S
1

5
S

)

""
 '"
 o G) '" :I> � Z G) G) '"
 :I> ""

:r
 ;:; '"
 "'"

�

o 1/1 :i:

o· ::I ::I (Q n

'7

Q � !II

7
(S

0
7

)
I

31
 (

S
1F

)

I

33
 (

S
2

1)

54
 (

S
3

6
)

20
4

(S
C

C
)

-
-

24
6

(S
F

6
)

1 I
48

0
(S

1
E

O
)

I
I

I
I

_
'-

_
I 31

 (
S

1F
)

28
7

(S
1

1
F

)
I

VI
SI

BL
E

VI
EW

IN
G

 A
RE

A

N
TS

C
'

38
 C

O
LU

M
N

S

24
 R

O
W

S

1

33
5

(S
14

F
)

I I I I _
_

_
_

_
_

_
 12

(S

O
C

)

-
-

54
 (

S
3

6
)

-
-

-
-

22
5

(S
E

1)

-
-

-
-

24
6

(S
F

6
)

3
1 1

 (
S

13
7

)
33

5
(S

14
F

)

·
N

o
rt

h
 A

m
e

ri
c

a
n

te

le
v

is
io

n
 t

ra
n

s
m

is
s

io
n

 s
ta

n
d

a
rd

s
 f

o
r

y
o

u
r

h
o

m
e

 T
V

.

256 (on the left side of the screen) , then the X MSB of that sprite must
be 0 (tu rned OFF) . Bits 0 to 7 of the X MSB reg ister correspond to sprites
o to 7, respectively.

The fol lowing program moves a sprite across the screen:

EXAMPLE:

1 0 r:' r': I l n , , �EIIImlm
20 POf::E:;::04 0 ., 1 3
3 0 FOR I =0T062 POKE832+ I , 1 29 NEXT
4(1 1,.,1 ;:;:5 :324::;

50 F'OI<:E',/+:, 1 , 1
60 POKE',." ""::::;' .' 1

70 F'OI<E'·/+ 1 .' 1 1210
eo FOP J "'OTOJ4?
90 HX= I NT (J/256) LX�J-256*HX

1 00 POKEV , L X POKEV+ 1 6 , HX NE�T

When moving expanded sprites onto the left side of the screen in the
X d i rection, you have to start the sprite OFF SCREEN on the R IGHT S I DE .
This is because an expanded sprite is larger than the amount of space
avai lable on the left side of the screen.

EXAMPLE:

�mam
1 121 I"'p nn " :T'
��o F'OI<:E2040 . . 1 3
3 0 FOR I =OT062 POKE832+ I , 1 29 NEXT
40 './ "" ::' ::,: ::4 :::

::';0 F'CW:r::: " /+2 1 , :[
60 POKEV+39 , 1 · POKEV+23 , l POKEV+29 , 1
?i2I 1"'mO::E ' ... '+ 1. , 1 1210

:::121 J ,o":I· :": ::::

90 HX= I NT (J/256) : LX=J-256tHX
1 00 POKEV , LX POKEV+ 1 6 , HX
1 1 0 J = J + l · I FJ)5 1 1 THENJ=12I

1 20 I F J)4880RJ(348GOT090

The charts in Figu re 3-3 explain sprite positioning .
By using these va lues, you can position each sprite anywhere. By mov­

ing the sprite a single dot position at a time, very smooth movement is
easy to achieve .

1 42 PROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpanded sprites a re at least partia l ly visible in the 40 col umn , by
25 row mode within the fol lowing parameters:

1 < = X < = 343

30 < = y < = 249

In the 38 col umn mode, the X parameters change to the fol lowing :

8 < = X < = 334

In the 24 row mode, the Y parameters change to the fol lowing :

34 < = Y < = 245

Expanded sprites are at least partial ly visible in the 40 column , by 25
row mode within the fol lowing parameters:

489 > = X < = 343

9 > = Y < = 249

In the 38 co lumn mode, the X parameters change to the fol lowing :

496 > = X < = 334

I n the 24 row mode, the Y parameters change to the fol lowing :

1 3 < = Y < = 245

PROGRAMMING GRAPH ICS 1 43

SPRITE DISPLAY PRIORITIES

Sprites have the abil ity to c ross each other's paths , as well as c ross in
front of, or behind other objects on the screen. This can g ive you a truly
th ree dimensional effect for games.

Sprite to sprite priority is ftxed . That means that sprite 0 has the h igh­
est prio rity, sprite 1 has the next priority, and so on , unti l we get to
sprite 7, which has the lowest priority. I n other words, if sprite 1 and
sprite 6 a re positioned so that they cross each other, sprite 1 wi l l be in
front of sprite 6 .

So when you're p lann ing which sprites wi l l appear to be in the fore­
g round of the picture, they must be assigned lower sprite numbers than
those sprites you want to put towards the back of the scene. Those
sprites wil l be given h igher sprite numbers.

NOTE : A "window" effect i s possible. I f a s prite with h igher priority has "holes" in i t
(areas where the dots a re not set to 1 and thus turned ON), the s prite with the lower

priority wi l l show through. This a l so happens with sprite and background data .

Sprite to background prio rity is contro l lable by the SPR ITE-BACK­
GROUND priority reg ister located at 53275 ($DOI B). Each sprite has a
bit in this reg ister . If that bit is 0, that sprite has a h ig her priority than
the backg round on the screen . I n other words, the sprite appears in
front of backg round data . If that bit is a I , that sprite has a lower
priority than the backg round . Then the sprite appea rs behind the back­
g round data .

COLLISION DETECTS

One of the more interesting aspects of the V IC- I I ch ip is its col l ision
detection abil ities . Col l is ions can be detected between sprites, or be­
tween sprites and backg round data . A col l ision occurs when a non-zero
part of a sprite overlaps a non-zero portion of another sprite or char­
acters on the screen .

1 44 PROGRAMMING GRAPHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite col l isions a re recognized by the computer, or flagged,
in the spite to sprite col l is ion register at location 53278 ($DOI E in H EX) in
the VIC-I I chip control register . Each sprite has a bit in this register . If
that bit is a I , then that sprite is involved in a col l is ion . The bits i n this
reg ister wil l remain set unti l read (PEEKed) . Once read, the register is
automatical ly c leared , so it is a good idea to save the value in a vari­
able until you a re fin ished with it.

NOTE : Coll isions can take place even when the sprites a re off screen .

SPRITE TO DATA COLLISIONS

Sprite to data col l isions are detected in the sprite to data col l ision
register at location 53279 ($DOI F in HEX) of the V IC- I I ch ip control regis­
ter.

Each sprite has a bit in this reg ister . If that bit is a I , then that sprite
is involved in a col l is ion . The bits in this register remain set until read
(PEEKed) . Once read, the register is automatical ly c leared , so it is a
good idea to save the va lue in a variable until you are fin ished with it.

NOTE: M U LTI-COLOR data 0 1 i s considered transparent for coll isions, even though it

shows up on the screen . When setting u p a background screen, it is a good idea to
make everything that should not cause a coll ision 0 1 in multi-color mode.

PROGRAMMING GRAPHICS 1 45

1 0 REM SPR I TE EXAMPLE 1 . . .

2 0 REM T H E HOT A I R BALLOON

30 V I C= 1 3*4096 : REM T H I S IS WHERE T H E V I C REG I STERS

BEG It�
35 POKEV I C+2 1 . 1 : REM ENABLE SPR I TE 0

36 POKEV I C+ 33 . 1 4 : REM SET BACKGROUND COLOR TO L I GHT

BLUE

37 POKEV I C+23 . 1 REM EXPAND SPR I TE ° I N Y

38 POKEV I C+29 . 1 : REM EXPAND SPR I TE ° I N X

40 PC�E2040 . 1 92 : REM SET SPR I TE 0 ' 5 P O I NTER

1 80 POKEV I C+0 , 1 0 0 : REM SET SPR I TE 0 ' S X POS I T I ON

1 90 POKEV I C+ l . 1 00 : REM SET SPR I TE 0 ' 5 Y POS I T I ON

220 POKEV I C+39 , I : REM SET SPR I TE 0 ' S COLOR

250 FORY=0T06 3 : REM BYTE COUNTER W I TH SPR I TE LOOP

3 0 0 READA : REM READ I N A BYTE

3 1 0 POKE I 92*64+Y . A : REM STORE THE DATA I N SPR I TE

AREA

320 NEXTY : REM CLOSE LOOP

330 m<:::: 1 : D 'T'= 1

340 X=PEEK (V I C) : REM LOOK AT SPR I TE 0 ' 5 X POS I T I ON

3 5 0 Y=PEEK C V I C + l) : REM LOOK AT S P R I TE 0 ' 5 Y POS I T I ON

360 I FY = 500RY=208THENDY=-DY : REM I F Y I S ON THE

EDGE OF T H E

370 REM SCREE N . THEN REVERSE D E L T A Y

380 I FX=24AND (PEEK C V I C+ 1 6) AND 1) =0 T HENDX=-DX : REM I F
::;PR I TE I S

3 9 0 REM TOUC H I NG T H E LEFT EDGE (X=24 AND T H E MSB

FOR SPR I TE 0 I S 0) , REVERSE I T

400 I FX = 4 0 AND { PEEK (V I C+ 1 6) AND 1) = I THENDX=-DX : REM I F

:3PF: I TE I :3 . . • •
4 1 0 REM TOUC H I NG T H E R I GHT EDGE (X= 4 0 AND THE MSB

FOR SPR I TE 0 I S I ' . REVERSE I T

420 I FX =255ANDDX= I THENX=- I : S I DE= 1

430 REM S W I T C H TO OTHER S I DE OF THE SCREEN

440 I FX=0ANDDX=- l THENX=256 : S I DE = 0

4 5 0 REM SW I TCH TO OTHER S I DE OF THE SCREEN

460 X=X+DX : REM ADD DELTA X TO X

470 X=XAND255 REM MAKE SURE X I S I N A LLOWED RANGE

480 Y=Y+DY R E M ADD DELTA Y TO Y

485 POKEV I C+ 1 6 . S I DE

490 POKEV I C , X REM PUT NEW X VALUE I NTO SPR I TE 0 ' S

:< F'OS I T I Ot·�
5 1 0 POKEV I C+ l . Y : REM PUT NEW Y VALUE I NT O SPR I TE

0 ' S ',' plJ:3 I T I m�

530 GOT0340

600 REM ***** SPR I TE DATA *****

6 1 0 DATA0 . 1 27 . 0 . 1 , 25 5 , 1 92 , 3 ! 255 . 2 24 , 3 , 23 1 . 224

620 DATA7 ! 2 1 7 , 240 . 7 . 223 . 240 . 7 , 2 1 7 . 24 0 . 3 , 2 3 1 . 224

630 DATA3 } 2 55 J 2 24 ! 3 ! 25 5 J 224 J 2 J 2 5 5 ., 1 60 ., l ! 1 27 J 64

640 DATA 1 , 62 , 64 . 0 . 1 56 , 1 2 8 . 0 . 1 56 . 1 28 , 0 . 73 . 0 . 0 . 73 , 0

650 DATA0 . 62 ! 0 , 0 . 62 . 0 . 0 , 62 , 0 , 0 . 28 . 0 . 0

1 46 PROGRAMMING GRAPHI C S

1 0 REM S PR I TE EXAMPLE 2 . . .

20 REM T H E HOT A I R BALLOON AGA I N

3 0 V I C = 1 3t4096 : REM TH I S I S WHERE THE V I C REG I STERS

BEO H ·I

35 POKEV I C+2 1 , 63 REM ENABLE SPR I TES 0 THRU 5
36 POKEV I C +33 , 1 4 : REM SET BACKGROUND COLOR TO L I G HT

PLUE::
37 POKEV I C+23 , 3 REM EXPAND SPR I TES 0 AND 1 I N Y

38 POKEV I C+29 , 3 : REM EXPAND SPR I TES 0 A N D 1 I N X

40 POKE::2040 , 1 92 REM SET S P R I T E 0 ' S P O I N T E R

50 POKE284 1 , 1 93 R E M S E T SPR I TE 1 ' 8 P O I NTER

60 POKE2042 , 1 9 2 R E M SET SPR I TE 2 ' S P O I NTER
78 POKE204 3 , 1 93 R E M SET SPR I TE 3 ' S P O I NTER

80 POKE204 4 , 1 9 2 REM SET SPR I T E 4 ' S PO I NTER

90 POKE2045 , 1 93 R E M SET S P R I TE 5 ' S PO I NTER

1 00 POKEV I C+4 , 30 R E M SET SPR I TE 2 ' S X POS I T I ON

1 1 0 POKEV I C + 5 , 58 R E M SET SPR I TE 2 ' S Y POS I T I ON

1 20 POKEV I C+6 , 65 : REM SET SPR I TE 3 ' 5 X POS I T I O N

1 30 P O K E V I C+ 7 , 58 REM SET S P R I TE 3 ' S Y POS I T I ON

1 40 POKEV I C+8 , 1 00 R E M S E T SPR I T E 4 ' S X POS I T I ON

1 50 POKEV I C+] , 58 REM S E T SPR I TE 4 ' S Y POS I T I ON

1 60 P O K E V I C + I 0 , 1 8 0 : RE M SET SPR I T E 5 ' S X P O S I T I ON

1 70 POKEV I C + l 1 , 5 8 R E M SET SPR I T E 5 ' S Y POS I T I ON ,,8311
1. 7':; F'F: H·I T " ::0" TFIB (1. '5 : ' " TH I :,,; I ::; nm I-I I PE :::; :::;fc,F' PES " ;

'mIDlB!ImD
1 '76 PF: I l'lrTl''l:E: (: :::�':;) " Ct··1 TOP OF' EI"ICH O T HE P "

1 80 POKEV I C+O , 1 00 PEM S E T SPP I TE � ' S X POS I T I ON

1 90 POKEV I C+ l , 1 00 PEM S E T S P R I T E 0 ' S Y POS I T I ON

200 POKEV I C+2 , 1 00 PEM SET SPR I T E l ' S X POS I T I ON

2 1 0 F'OKEV I C+3 , 1 80 REM SET SPP I T E l ' S Y POS I T I ON

220 PCIKE1) I C:+39) 1 : RE M SET SF'F� I TE O / �; C O L O R

230 POKEV I C+4 1 , 1 REM S E T SPR I TE 2 ' 8 C O L O R

240 POKEV I C� 4 3 , 1 REM SET SPP I T E 4 ' S COLOR

250 POKEV I C+40 . 6 F'EM SET SPF' I TE l ' S COLOR

260 POKEV I C+42 , 6 REM SET SPR I T E � , � COLOR

270 POKEV I C + 4 4 , 6 : PE M SET SPR I T E 5 ' S COLOP

280 FORX= 1 92 T 0 1 93 REM THE START OF THE LOOP THAT

DEF I NES THE SP R I TES

290 F ORY=OT063 REM BYTE C OUNTER W I T H SPR I T E LOOP

300 READA REM READ IN A BYTE
3 1 0 POKEX*C4+ Y , A REM ST ORE THE DATA IN SPR I TE AREA

320 NEXTY , X REM CLOS E LOOPS
:�::::C1 11» , 1 : D'T' =:. l

3 4 0 X=PEEK (V I C) : REM LOOK A T SPR I TE 0 ' S X POS I T I ON

350 Y=PEEK (V I C+ l) PEM LOOK AT SPR I TE 121 ' 8 Y POS I T I ON

360 I F Y=500RY= 2C18T HENDY=-DY : RE M I F Y I S ON THE

[D O E OF THE " " .

370 REM SCREEN , THEN REVERSE D E L T A Y

3 8 0 I F X = 2 4 A N D (PEEK (V I C + 1 6) AN D 1) = 0 T HENDX=-DX : PEM I F
�:;F'F: nE I :"; . . ,,
390 REM TOUCH I NG THE LEFT EDGE , THEN REVERSE I T

PROGRAMMING GRAPHICS 1 47

400 I FX=40AND (PEEK (V I C+ 1 6) AND 1) = l THENDX=-DX ' REM I F
::::F'F: I TE I ::'; . . .

4 1 0 REM TOUCH I NG THE R I GHT EDGE , THEN REVERSE I T

420 I F X=255ANDDX= 1 THENX=- l S I DE=3

430 REM S W I TCH TO OTHER S I DE O F THE SCREEN

440 I FX=OANDDX=- l THENX=256 S I DE=0

450 R E M SW I TCH TO OTHER S I DE OF THE SCREEN

4 6 0 X�X+DX REM ADD DELTA X T O X

4 7 0 X=XAND255 REM MAKE SURE X I S I N ALLOWED RANGE

480 Y=Y+DY REM ADD DELTA Y T O Y
485 POKEV I C + i 6 , S I D E

490 POKE V I C , X R E M PUT N E W X VALUE I NTO SPR I TE 0 ' S

:< 1"'0 ::::; I T I D I··j

500 POKEV I C+2 , X REM

1 .' :::; >': PO:::; I T I Ot·j
5 1 0 POKEV I C+ l , Y REM
() " :: 'r' F' 0::; I T I [It·1

520 POKEV I C+ 3 , Y : REM

:[.. ' :::; 'r' F'Ue; I T I O N

�S:::\'1 IC; 0"] 0:::: 4 °

PUT t·jE�,j

F'I.JT HD,j

F'UT 1· IEI.,j

::.;: ',/fiLUE

, T , " / loi LUE

, , " / i"lUJE T

600 REM ***** SPR I TE DATA *****

H·ITO ::WF: I TE

I tH O :::;PP I T E

Hno ::;PP I T E

6 1 0 DATA0 , 255 , 0 , 3 , 1 5 3 , 1 92 , 7 , 24 , 224 , 7 , 56 , 22 4 , 1 4 , 1 26 ,

1 t 2 ., H ., 1 :: 6 ., 1 1;;:: ., 1 4 ., E�6 ., 1 E:
620 DA'T' A 6 .· 1 26 ! 96 ! 7 ! 56 ! 224 ! 7 ! 5 6 ! 224 ! i ! 56 ! 1 28 ! 0 J 1 5 3 ,1

0 , 0 , 90 , (:1 , (1 ., 56 , 121
63121 DATA0 , 56 , (1 , 12I , 0 , 0 , 0 , 0 , 0 , 0 , 1 26 , O , O , 42 , O , O , 84 , O , O ,

4 0 , 121 , 0

640 DfHFIO , 0 , ;21 ., 0 , 1 0�� , 0 , 0 ., ::3 1 , 0 ., l2i ., 1 95 , 0 , 1 .' 1 29 .. 1 28 , 1 .'

1, 29 , E::::: ., 1 ., 1 2 9 ., 1 :;:::;::

650 DATA 1 , 1 29 , 1 28 , 0 , 1 95 , O , 0 , 1 95 , 0 , 4 , 1 95 , 32 , 2 , 1 02 ,

6 4 .. 2 .. ::'6 , 64 ., 1 , 0 ., 1 :;::::,

660 DRT A 1 , 0 , 1 28 , 0 , 1 53 , 0 , O , 1 53 , Q , 0 , O , Q , 0 , 84 , O , O , 42 ,

0 .1 D ., :;::121 .. 12/ .1 (1

1 0 REM SPR I TE EXAMPLE 3 • • •
20 REM THE HOT A I R GORF

3 0 V I C=5324S : REM T H I S I S WHERE THE V I C REG I STERS

BEO l t·j
35 POKEV I C+2 1 , 1 : REM ENABLE SPR I TE 0

1 48 PROGRAMMING GRAPHICS

36 POKEV I C+ 33 . 1 4 : RE M SET BACKGROUND COLOR TO L I GHT

BLUE
37 POKEV I C+23 . 1 : REM EXPAND SPR I TE 0 I N Y
38 POKEV I C+29 . 1 REM EXPAND SPR I TE 0 I N X

40 POKE2040 . 1 92 : REM SET SPR I TE 0 ' 5 PO I NTER

50 POKEV I C +28 . 1 : RE M TURN ON MULT I COLOR

60 POKEV I C+37 . 7 : RE M SET MULT I COLOR 0
70 P OKEV I C+38 . 4 REM SET MULT I COLOR 1
1 80 POKEV I C+0 , 1 00 REM SET SPR I TE 0 ' 8 X POS I T I ON

1 90 POKEV I C+ l . 1 00 REM SET SPR I TE 0 ' 5 Y POS I T I ON

220 POKEV I C+39 . 2 : REM SET SPR I TE 0 ' 8 COLOR
290 FORY=0T063 : REM BYTE COUNTER W I TH SPR I TE LOOP
300 READA : REM READ IN A BYTE
3 1 0 POKE 1 2288+Y . A : REM STORE THE DATA I N SPR I TE AREA
320 NEXT Y : REM CLOSE LOOP
:::3121 II>':"' 1 : D'T'= 1

340 X=PEEK (V I C) REM LOOK AT SPR I TE 0 ' S X POS I T I ON
35121 Y�PEEK (V I C+ l) : REM LOOK AT SPR I TE 0 ' S Y POS I T I ON
360 I FY=500RY=208THENDY=-DY : REM I F Y I S ON THE
EDGE OF THE . . .
370 REM SCREEN . THEN REVERSE DELTA Y
380 I F X=24AN D (P E EK (V I C+ 1 6) AND 1) =0THENDX=-DX REM
IF :::F'R I T [I :::; • . •
390 REM TOUCH I NG THE LEFT EDGE . THEN REVERSE I T
400 I FX =40AND (PEEK (V I C+ 1 6) AND 1) = l THENDX=-DX REM I F
::;PR I TE l ::; . . .
4 1 0 REM TOUCH I NG THE R I GHT EDGE . THEN REVERSE I T

420 I FX =255ANDDX = l THENX=- 1 S I DE= 1
4 3121 REM S W I TCH TO OTHER S I DE OF THE SCR[EN
440 I FX=I2IANDDX=- l THENX=256 : S I DE=0
450 REM SW I TC H TO OTHER S I DE OF THE SCREEN
46121 x=X+r� : RE M ADD DELTA X TO X

470 X=XAND255 : RE M MAKE SURE X I S I N ALLOWED RANGE

480 Y=Y+DY REM ADD DELTA Y TO Y
485 POKEV I C+ 1 6 . S I DE
490 POKEV I C . X : RE M PUT NEW X VALUE I NTO SPR I TE O · �
>:: F'o ::n TI m·�
5 1 0 POKE V I C+ l . Y : RE M PUT NEW Y VALUE I NTO SPR I TE

0 "' ::; 'T' POS I T I m·�

520 GETAS : RE M GET A K EY FROM THE KEYBOARD
5:;-, 1 I F A:t = " t'1 " THEt··IPOI<E',/ I C+28 . 1 : F.:EI"1 U:3ER :;:;ELECTED
r'1UL T I COU:IR

52;;:: I FA:t'" " 1-1 " THEt··IPOI<E'.,.' I C+2:3 . 13 : RE�1 USER :3EU�CTED
H I GH R E::;OLUT I Ot·�
5:30 00T0340
60121 REM ***** SPR I TE DATA *****

6 1 121 DATA64 . 0 , 1 . 1 6 . 1 7 0 , 4 , 6 . 1 7e . 1 44 . 1 0 . 1 7 0 , 1 60 . 4 2 ,
1 70 . 1 68 . 4 1 . 1 0 5 . 1 04 . 1 69 . 2 35 . 1 06
62121 DATA I 69 . 235 . 1 0 6 . 1 69 . 235 . 1 06 . 1 70 . 1 70 . 1 7 0 . 1 7 0 .
1 7121 . 1 7 121 . 1 70 . 1 7 0 . 1 70 . 1 7121 . 1 7 0 . 1 70

63121 DATA I 66 . 1 70 . 1 54 . 1 69 . 85 . 1 06 , 1 7 0 . 85 . 1 7 0 . 4 2 , 1 70 .

1 68 . 1 0 . 1 70 ., 1 60 ., 1 • 0 ., 64 ., 1 , 0 , 6 4
6 4 0 DATA5 . 0 . 80 . 0

PROGRAMMING GRAPHICS 1 49

OTHER GRAPHICS FEATURES

SCREEN BLANKING

Bit 4 of the VIC-I I control reg ister control s the screen b lanking func­
tion . It is found in the control register at location 53265 ($001 1) . When it
is turned ON (in other words , set to a 1) the screen is norma l . When bit 4
is set to 0 (turned OFF), the entire screen changes to border color .

The following POKE blanks the screen . No data is lost, i t iust isn't
displayed .

POKE 53265,PEEK(53265)AND 239

To bring back the screen , use the POKE shown below:

POKE 53265,PEE K(53265)OR 1 6

NOTE : Turn ing off the screen wi l l speed u p the processor sl ig htly. Th is meons that

program RUNning is a lso sped u p .

RASTER REGISTER

The raste r reg ister i s fo und in the V IC- I I chip at location 53266
($00 1 2) . The raster register is a dual purpose register . When you read
this reg ister it returns the lower 8 bits of the cu rrent raster position. The
raster position of the most s ignificant bit is in register location 53265
($00 1 1) . You use the raster reg ister to set up timing changes in your
display so that you can get rid of screen fl icker. The changes on your
screen should be made when the raster is not in the vis ible display a rea,
which is when your dot positions fa l l between 51 and 25 1 .

When the raster reg ister is written to (inc luding the MSB) the number
written to is saved for use with the raster compare function . When the
actual raster va lue becomes the same as the number written to the
raster reg ister, a bit in the VIC- I I ch ip interrupt register 53273 ($00 1 9) is
turned ON by setting it to 1 .

NOTE: If the proper interrupt bit is enab led (turned on), an interrupt (I RQ) wil l occur.

1 50 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt
source . The cu rrent status of bit 2 of the interrupt reg ister wil l be a 1
when two sprites hit each other . The same is true, in a corresponding 1
to 1 relationsh ip, for bits 0-3 l isted in the chart below. Bit 7 is also set
with a I , whenever an interrupt occurs .

The interrupt status register is located at 53273 ($DO 1 9) and is as
fo l lows:

LATCH BIT # DESC RIPTION

I RST 0 Set when current raster count = stored raster count
IMDC 1 Set by SPR ITE-DATA col l ision (1 st one only, until reset)
IMMC 2 Set by SPR ITE-SPRITE col l ision (1 st one only, until reset)
I LP 3 Set by negative transition of l ight pen (1 per frame)
I RQ 7 Set by latch set and enabled

Once an interrupt bit has been set, it's " latched" in and must be
c leared by writing a 1 to that bit in the interrupt register when you're
ready to handle it. This a l lows selective interrupt handl ing , without hav­
ing to store the other interrupt bits.

The INTERRUPT ENABLE REGISTER i s located at 53274 ($D01 A). I t has
the same format as the interrupt status register . Un less the correspond­
ing bit in the interrupt enable register is set to a I , no interrupt from that
source wi l l take place. The interrupt status register can sti l l be palled for
information , but no interrupts wil l be generated .

To enable an interrupt request the corresponding interrupt enable bit
(as shown in the chart above) must be set to a 1 .

This powerfu l interrupt structure lets you use split screen modes. For
instance you can have half of the screen bit mapped, half text, more
than 8 sprites at a time, etc . The secret is to use interrupts properly. For
example, if you want the top half of the screen to be bit mapped and
the bottam to be text, just set the raster compare register (as explained
previously) for halfway down the screen . When the interrupt occurs , te l l
the V IC- I I ch ip to get characters from ROM, then set the raster compare
reg ister to interrupt at the top of the screen . When the interrupt occurs
at the top of the screen , tell the VIC-I I chip to get characters from RAM
(bit map mode) .

PROGRAMMING GRAPHICS 1 5 1

You can also d isplay more than 8 sprites in the same way. Unfortu­
nately BASIC isn't fast enough to do this very wel l . So if you want to sta rt
using display interrupts, you should work in machine language.

SUGGESTED SCREEN AND CHARACTER
COLOR COMBINATIONS

Color TV sets are l im ited in their abi l ity to p lace certain colors next to
each other on the same l ine . Certa in combinations of screen and char­
acter colors produce blu rred images. This chart shows which color com­
binations to avoid, and which work especia l ly wel l together.

C H A RACT E R COLOR
o 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

0

2

3
4

5
a:
0 6
...J
0 7 (,)
z 8 UJ UJ a: 9 (,) (f) 1 0

1 1

1 2
1 3
1 4

1 5

x • X •

• X • X

X • X X

• X X X

• • X X

• • X •

• • X •
• X • X

• • • X

X • X X

• • • X

• • X •

• • • X

• X X X

• • X •
• • • X

e = EXCELLENT
• = FAI R
X = POOR

•

•
•

X

X

X

X

X

X

X

X

X

X

X

X

•

1 52 PROGRAMMING GRAPHICS

• X

• •

X X

• •
X X

X X

X X

X •

X X

X X

X X

X X

X •

• •

X •
• •

• • X • • • • • •
X • • • • • X • •

• • X • X X X X •
X X X X • X X • X

X X X X X X X X •

X X X X • X • X •

X X X X X X • • •
X • • • • • X X X

• X • X X X X X •

• • X • X X X X •
• X • X X X X X •

• X X X X • • • •
X X • X • X X X •
X X X X • X X X X

X X X X • X X X •

X X • • • • X • X

PROGRAMMING SPRITES -ANOTHER LOOK

For those of you having trouble with g raph ics, th is section has been
designed as a more elementary tutoria l approach to sprites .

MAKING SPRITES IN BASIC-A SHORT PROGRAM

There a re at least three different BAS IC prog ramming techniq ues
which let you c reate g raph ic images and ca rtoon animations on the
Commodore 64 . You can use the computer's bui lt-in g raphics character
set (see Page 376) . You can program your own cha racters (see Page
1 08) or . . . best of all . . . you can use the computer's bui lt- in "sprite
g raph ic s ." To i l l u strate how easy it i s , he re's one of the shortest
sprite making programs you can write in BAS IC :

1. 121 f:'P l t.n ,,�lB!mI
3121 FOPS=832T0832+62 POKES , 255 : NEXT
4(1 ',/:::::5::::;;�4:3

50 F'OKE',/+2 1 ., 1

60 F'Of<E"'''+39 ,. 1

'70 POKE ... " , 24

:;::0 POI<:E'· ... + 1. " :[00

This program includes the key " ingred ients" you need to create any
sprite . The POKE numbers come from the SPR ITEMAKING CHART on
Page 1 76 . This program defines the first sprite . . . sprite 0 . . . as a
solid white square on the screen . Here's a l ine-by-l ine explanation of the
program :

LINE 1 0 clears the screen.

LINE 20 sets the "sprite pointer" to where the Commodore 64 wi l l
read its sprite data from . Sprite 0 is set at 2040, sprite 1 at 204 1 , sprite
2 at 2042, and so on up to sprite 7 at 2047. You can set a l l 8 sprite
pointers to 1 3 by us ing this l ine in place of l ine 20:

20 FOR SP=2040T02047:POKE SP, 1 3 :NEXT SP

LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore
64's RAM memory starting at location 832 (each sprite requ i res 63 bytes
of memory). The fi rst sprite (sprite 0) is "addressed" at memory locations
832 to 894 .

PROGRAMMING GRAPHICS 1 53

LIN E 40 sets the variable "V" equal to 53248, the starting address of
the VI DEO CH IP . This entry lets us use the form (V+ number) for sprite
settings . "We're using the form (V+ number) when POKEing sprite settings
because this format conserves memory and lets us work with smal ler
numbers. For example, in l ine 50 we typed POKE V +2 1 . This is the same
as typing POKE 53248 + 21 o r POKE 53269 . . . but V + 21 requires less
space than 53269, and is easier to remember .

LINE SO enables or "turns on" sprite O. There are 8 sprites, numbered
from 0 to 7 . To turn on an individua l sprite, or a combination of sprites,
all you have to do is POKE V + 2 1 fol lowed by a number from 0 (tu rn a l l
sprites off) to 255 (tu rn a l l 8 sprites on) . You can turn on one or more
sprites by POKEing the fol lowing numbers:

POKE V+ 2 1 , 1 turns on sprite O. POKE V + 2 1 , 1 28 turns on sprite 7 . You
can also turn on combinations of sprites . For example, POKE V+2 1 , 1 29
turns on both sprite 0 and sprite 7 by adding the two "turn on" numbers
(1 + 1 28) together . (See SPR ITEMAKING CHART, Page 1 76 .)

LINE 60 sets the COLOR of sprite O. There are 16 possible sprite
colors, numbered from 0 (black) to 1 5 (g rey) . Each sprite requires a
different POKE to set its color, from V+39 to V+46. POKE V+39, 1
colors sprite 0 white . POKE V+46, 1 5 colors sprite 7 grey. (See the
SPRITEMAKING CHART for more information .)

When you create a sprite, as you just d id , the sprite wil l STAY IN
MEMORY until you POKE it off, redefine it, or turn off your computer .
This lets you change the color , position and even shape of the sprite in
D I RECT o r IMMEDIATE mode, which is useful for editing purposes . As an
example, RUN the program above, then type this l ine in D IRECT mode
(without a l ine number) and hit the '@'WI key:

POKE V+39,8

The sprite on the screen is now ORANGE. Try POKEing some other num­
bers from 0 to 1 5 to see the other sprite colors . Because you did this in
D I R ECT mode, i f you RUN your program the sprite wi l l return to its origi­
na l color (white) .

1 54 PROGRAMMING GRAPHICS

LINE 70 determines the HOR IZONTAL or "X" POSIT ION of the sprite
on the screen . This number represents the location of the UPPER lEFT
CORNER of the sprite . The farthest left horizontal (X) position which you
can see on your television sc reen is position number 24, a lthough you
can move the sprite OFF THE SCREEN to position number O.

LINE 80 determines the VERTICAL or "Y" POS ITION of the sprite . I n
this program , w e p laced the sprite a t X (horizontal) position 24, a n d Y
(vertica l) position 1 00. To try another location, type this POKE in DI RECT
mode and hit 'N'W':

POKE V,24:POKE V + l ,SO

This places the sprite at the upper left corner of the screen. To move the
sprite to the lower left corner, type this:

POKE V,24:POKE V+ l ,229

Each number from 832 to 895 in our sprite 0 address represents one
block of 8 pixels , with th ree 8-pixel blocks in each horizonta l row of the
sprite . The loop in line 80 tells the computer to POKE 832,255 which
makes the first 8 pixels solid . . . then POKE 833, 255 to make the second
8 pixels solid , and so on to location 894 which is the last g roup of 8
pixe ls in the bottom right corner of the sprite . To better see how this
works, try typing the fo l lowing in D I RECT mode, and notice that the
second group of 8 pixels is erased :

POKE 833,0 (to put it back type POKE 833,255 or RUN your program)

The following l ine, which you can add to your prog ram, erases the
blocks in the MI DDLE of the sprite you created:

90 FOR A = 836 TO 891 STEP 3 : POKE A,O:N EXT A

Remember, the pixels that make up the sprite are g rouped in blocks of
eight. This l ine erases the 5th g roup of eight pixels (block 836) and every
third block up to block 890. Try POKEing any of the other numbers from
832 to 894 with either a 255 to make them solid or 0 to make them
b lank .

PROGRAMMING GRAPHICS 1 55

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful "crunching" tip: The pragram described a bave is a l ready short, but it

can be made even shorter by "c runching" it smal ler . In our example we list the key

sprite sellings on separate program l ines so you can see what's ha ppening in the

program . In actual practice, a good prog rammer would probably write this program
as a TWO LINE PROGRAM . . by "crunching" it as follows:

1 0PRI NTC HR$(l 47) :V=53248 :POKEV+ 2 1 , I : POKE2040, 1 3:
POKEV+39, 1

20FORS =832T0894: POKES, 255:N EXT: POKEV,24:POKEV+ 1 , 1 00

For more tips on how to crunch your programs so they fit in less memory and run more

efficiently, see the "crunching g uide" on Page 24.

TV SC R E E N

�
· X POSITI' iAI

Q t;
/

/

\ J
"'

/

I
A Sprite located here must have both i ts
X-pos i t ion (horizontal) and V-pos i t ion (vert ical)
set so i t can be d isp layed on the screen.

ffi

!::»

Figure 3-4. The display screen is divided into a grid of X and Y coor­
dinates.

1 56 PROGRAMMING GRAPHICS

POSITIONING SPRITES ON THE SCREEN

The entire display screen is d ivided into a g rid of X and Y coordi­
nates, l ike a g raph . The X COORDINATE is the HORIZONTAL position
across the screen and the Y COORDINATE is the VERTICAL position up
and down (see Figu re 3-4) .

To position any sprite on the screen , you must POKE TWO SETT INGS
. . . the X position and the Y position . . . these te l l the computer where
to display the UPPER LEFT HAND CORNER of the sprite . Remember that
a sprite consists of 504 individua l p ixels, 24 across by 21 down . . . so if
you POKE a sprite onto the upper left corner of your screen , the sprite
wil l be displayed as a g raph ic image 24 pixels ACROSS and 2 1 pixels
DOWN starting at the X-Y position you defined . The sprite will be d is­
played based on the upper left corner of the entire sprite, even if you
define the sprite us ing only a smal l part of the 24 X 2 1 -pixel sprite a rea .

To understand how X-V position ing works, study the following dia­
g ram (F igure 3-5), which shows the X and Y numbers i n relation to your
display screen . Note that the GREY AREA in the d iagram shows your
television viewing a rea . . . the white a rea represents positions which
a re OFF your viewing screen . . .

X POSI T I O N S R U N FROM 0 TO 255,
o 24 T H EN YOU M UST POK E V + 16, 1 255

,""--i--- A N D START OVER AT 0 TO 91,.J·,4.-----'
o 9 1 O - - - r-�----------------------------�----------��

X = 24, Y = 50

50 - - -

x = 255. Y = 50

x = 23 1 , Y = 50

I POKE V+1 6, 1 AND I X = 65, Y = 50
I

� I � I
u.. VIEWING SCREEN AREA
z � I
� � l � � I
0 0 I

� 1
I � I o X = 229, Y = 231 I

� -
-
-L.-f-------!..---i---I
x = 24, Y = 250 POKE V + 1 6, 1 AND

X = 65, Y = 229

Figure 3-5. Determining X-V sprite_ positions.

PROGRAMMING GRAPHICS 1 57

To display a sprite in a given location, you must POKE the X and Y
settings for each SPRITE . . . remembering that every sprite has its own
unique X POKE and Y POKE. The X and Y settings for all 8 sprites a re
shown here:

POKE THESE VALUES TO SET X-Y SPRITE POSITIONS

SPRITEO SPRITE l SPRITEZ

SET X V,X v -t 2 . X V + 4 , X

SET Y V + l , Y V + 3 , Y v -t 5 , Y

RIGHTX V + 1 6 , 1 V + 1 6,2 V + 1 6,4

SPRITE3

V+6,X

V + 7, Y

V + 1 6,8

SPRITE4

V + 8 , X

V + 9 , Y

V + 1 6, 1 6

SPRITES

V + 1 O , X

V + 1 1 , Y

V + 1 6,32

SP'IITE6 SPRlTE7

V+ 1 2 ,X V+ 1 4, X

V+ 1 3 , Y V + 1 5, Y

V + 1 6,64 V + 1 6, 1 28

POKEING AN X POSITION: The possible values of X are 0 to 255,
counting from left to right. Va lues 0 to 23 place a l l o r part of the sprite
OUT OF THE V I EWING AREA off the left side of the screen . . . values 24
to 255 place the sprite I N THE V I EWING AREA up to the 255th position
(see next paragraph for settings beyond the 255th X position) . To place
the sprite at one of these positions, just type the X-POSITION POKE for
the sprite you're using. For example, to POKE sprite 1 at the farthest left
X position I N THE V IEWING AREA, type: POKE V +2,24 .

X VALUES BEYOND THE 255TH POSITION: To get beyond the 255th
position across the screen, you need to make a SECOND POKE using the
numbers in the "R IGHT X" row of the chart (F igure 3-5). Normally, the
horizontal (X) numbering would continue past the 255th position to 256,
257, etc . , but because reg isters only conta in 8 bits we must use a "sec­
ond register" to access the R IGHT S I DE of the screen and start our X
numbering over again at O . So to get beyond X position 255, you must
POKE V + 1 6 and a number (depending on the sprite) . This g ives you 65
additional X positions (renumbered from 0 to 65) in the viewing a rea on
the RIGHT side of the viewing screen . (You can actual ly POKE the rig ht
side X value as h igh as 255, which takes you off the right edge of the
viewing screen .)

POKEING A Y POSITION: The possible values o f Y are 0 to 255, count­
ing from top to bottom . Va lues 0 to 49 place a l l or part of the sprite OUT
OF THE V IEWING AREA off the TOP of the screen . Va lues 50 to 229 place
the sprite IN THE VIEWING AREA. Va lues 230 to 255 place al l or part of
the sprite OUT OF THE VIEWING AREA off the BOTTOM of the screen .

1 58 PROGRAMMING GRAPHICS

Let's see how this X-Y positioning works, using sprite 1 . Type this pro­
g ram:

1 121 F' F: I I n " 6,"1:'!,\?j1:;11:�tlt:wE"/+;': 1 , ;;, • F'OKE20 4 1 , 1 3 •
FORS=832T0895 ' POKES . 255 ' NEXT

;,0 PCIb::E',/ + 4 0 :. 7

30 pm<E',/+;, . 24

40 POI<:['o,,'+ :;: ., 5121

This s imple program establ ishes sprite 1 as a sol id box and positions it
at the upper left corner of the screen . Now change l ine 40 to read :

40 POKE V+3,229

This moves the sprite to the bottom left corner of the screen . Now let's
test the R IGHT X L IMIT of the sprite . Change l ine 30 as shown:

30 POKE V+2,255

This moves the sprite to the R IGHT but reaches the R IGHT X L IM IT, which
is 255. At this point, the "most significant bit" in register 1 6 must be SET .
I n other words , you must type POKE V + 1 6 a nd the number shown in the
"R IGHT X" column in the X-V POKE CHART above to RESTART the X
position counter at the 256th pixel/position on the screen . Change l ine 30
as follows:

30 POKE V+ 1 6, PEEK(V+ 1 6)OR 2 :POKE V+2,0

POKE V+ 1 6,2 sets the most sign ificant b it of the X position for sprite
and resta rts it at the 256th pixel/position on the screen . POKE V+2,O
displays the sprite at the N EW POSITION ZERO, which is now reset to the
256th pixe l .

To g e t back to t h e left side o f t h e screen, you m ust reset t h e most

significant bit of the X position counter to 0 by typing (for sprite I) :

POKE V+ 1 6, PEEK(V+ 1 6)AND 253

TO SUMMARIZE how the X position ing works . . . POKE the X POS I ­
T ION for any sprite with a number from 0 to 255 . To access a position
beyond the 255th position/pixel across the screen, you must use an ad­
ditional POKE (V + 1 6) which sets the most s ignificant bit of the X position
and start counting from 0 again at the 256th pixel across the screen .

PROGRAMMING GRAPHICS ' 59

This POKE starts the X numbering over again from 0 at the 256th posi­
tion (Example: POKE V+ 1 6, PEEK(V + 1 6)OR 1 and POKE V, l must be
included to place sprite 0 at the 257th pixel across the screen .) To get
back to the left side X positions you have to TURN OFF the control setting
by typing POKE V+ 1 6, PEEK(V + 1 6)AND 254.

POSITIONING MULTIPLE SPRITES ON THE SCREEN

Here's a program which defines THREE D I FFERENT SPR ITES (0, 1 , and
2) in d ifferent co lors and p laces them in d ifferent positions on the
screen :

< .. LiiIi1ilm
1 0 F'P I j'n " :1"�5 3;;-,4:3 : FOF.::::;=:::::::2T0895 : POKE:::) 255 : t'lE:":T

20 FOPM=2040T02042 : POKEM . 1 3 : NEXT

30 PCWE\I -I,,2 1 . 7

40 POKEV+39 . 1 : POKEV+40 . 7 : POKEV+4 1 . 8

50 POKEV . 24 : POKEV+ l . 50

60 POKEV+2 , 1 2 : POKEV+3 , 229

70 POKEV+4 . 255 POKEV+5 , 50

For convenience, a l l 3 sprites have been defined as sol id squares,
getting their data from the same place. The important lesson here is
how the 3 sprites are positioned . The white sprite 0 is at the top lefthand
corner. The yel low sprite 1 i s at the bottom lefthand corner but HALF the
sprite is OFF THE SCREEN (remember, 24 is the leftmost X position i n the
viewing area . . . an X position less than 24 puts a l l or part of the sprite
off the screen and we used an X position 1 2 here which put the sprite
ha lfway off the screen) . Final ly, the orange sprite 2 is at the R IGHT X
L IMIT (position 255) . . . but what if you want to display a sprite in the
area to the R IGHT of X position 255?

DISPLAYING A SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requi res a special
POKE which SETS the most s ignificant bit of the X posit ion and sta rts over
at the 256th pixel position across the screen. Here's how it works . . .

First, you POKE V+ 1 6 with the number for the sprite you're using
(check the "R IGHT X" row in the X-V chart . . . we' l l use sprite 0) . Now
we assign an X fjosition, keeping in mind that the X counter starts over
from 0 at the 756th position on the screen. Change l ine 50 to read as
follows:

50 POKE V+ 1 6, l : POKE V,24: POKE V+ l , 75

1 60 PROGRAMMING GRAPHICS

This l ine POKEs V+ 1 6 with the number requ ired to "open up" the right
side of the screen . . . the new X position 24 for sprite ° now begins 24
pixels to the R IGHT of position 255. To check the right edge of the
screen, change line 60 to:

60 POKE V+ 1 6, I : POKE V,65:POKE V + I , 75

Some experimentation with the sett ings in the sprite chart wil l g ive you
the sett ings you need to position and move sprites on the left and right
sides of the screen . The section on "moving sprites" wi l l also increase
your understand ing of how sprite position ing works.

SPRITE PRIORITIES

You can actual ly make d ifferent sprites seem to move IN FRONT OF or
BEH IND each other on the screen. This i ncredible three d imensional i l l u­
sion is ach ieved by the bui lt-i n SPRITE PR IOR IT IES which determine which
sprites have priority over the others when 2 or more sprites OVERLAP on
the screen .

The rule is "fi rst come, first served" which means lower-numbered
sprites AUTOMATICALLY have priority over h igher-numbered sprites . For
example, if you display sprite 0 and sprite 1 so they overlap on the
screen , sprite ° wil l appear to be IN FRONT OF sprite I . Actually, sprite
° always supersedes a l l the other sprites because it's the lowest num­
bered sprite . I n comparison , sprite 1 has priority over sprites 2-7; sprite
2 has priority over sprites 3-7, etc . Sprite 7 (the last sprite) has LESS
PR IOR ITY than any of the other sprites, and will a lways appear to be
displayed "BEH I N D" any other sprites which overlap its position .

To i l lustrate how priorities work, change l ines 50, 60, a nd 70 in the
program above to the following :

1 121 PP I trr " /i:,:)�15i��;�!t�OR::;=::::32TO:::95 : POKE S ., 255 : t·jE :":T

20 FORM=2048T02042 : POKE M . 1 3 : NEXT
3121 P Of<E\i+2 1 ., 7

48 POKEV+39 , 1 : POKEV+48 , 7 : POKEV+4 1 . 8

58 POKEV , 24 : POKEV+ l . 50 : POKEV+ 1 6 . 0

68 POKEV+2 , 34 : POKEV+3 . 6121

7121 POKEV+4 , 44 POKEV+5 . 70

You should see a white sprite on top of a yellow sprite on top of an
orange sprite . Of course, now that you see how priorities work, you can
also MOVE SPR ITES and take advantage of these priorities in your an i­
mation .

PROGRAMMING GRAPHICS 1 61

- - -- -- ----------------------

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a
coloring book. Every sprite consists of tiny dots cal led p ixels . To d raw a
sprite, a l l you have to do is "color in" some of the pixels .

Look at the spritemaking g rid in Fig ure 3-6. This is what a blank sprite
looks l ike:

1 1 1
2 6 3 1 2 6 3 1 2 6 3 1
8 4 2 6 8 4 2 1 8 4 2 6 8 4 2 1 8 4 2 6 8 4 2 1

Figure 3-6. Spritemaking grid.

Each little "square" represents one pixel in the sprite . There are 24 pixels
across and 21 pixels up and down, or 504 pixels in the entire sprite. To
make the sprite look l ike someth ing , you have to color in these pixels
using a special PROGRAM . . . but how can you control over 500 indi­
vidual pixels? That's where computer programming can help you . I n­
stead of typing 504 sepa rate numbers, you only have to type 63 num­
bers for each sprite . Here's how it works

1 62 PROGRAMMING GRAPHICS

CREATING A SPRITE . STEP BY STEP

To make this as easy as possible for you, we've put together this
s imple step by step guide to help you d raw your own sprites .

STEP 1 :

Write the spritemaking p rog ram shown here ON A PIECE O F PAPER . . .
note that l ine 1 00 starts a special DATA section of your program which
wil l conta in the 63 numbers you need to create your sprite .

�GIDIJ
1 0 F'R ItH " :-:J" : PCWE5:328C1 ., 5 : F'CIf'::E532:::: 1 ., oj
20 V=53�:48 POKEV+34 � 3

3 0 POKE53269 . 4 : POKE2042 . 1 3

4 0 FORN�0T062 : READQ : POKE832+N , Q : NEXT

128 54 32 16 8 4 2 1 128 64 32 16 I 8 4 2 1 1 28 64 32 16 8 4 2 1
1 (11Z.1 DF!TI�255 J 255., 255-

1 0 1 DATFl l �:::: ., 121 , 1 ---

102 DATA 1 2::: , (1 ., 1 --- m1t-H-t+-t-H++H-+++-H-t+-I-1H_#Jfl
1 0:3 DAHi 1 .:::: ., 0 , 1 ---
1. 04 DFITFH 4 4 , (1 , 1 --- HlH-t-Imd-++----H-++H-+-+-+_t-I-+++---iH--li*J
W5 DAHi 1. 4 4 , �) , l ----- Ifl1t-H!!tf--+-t-H++H-+++-H-t+-I-1H_#Jfl 1 06 :rH1ll� 1 44 , (1 , 1
1(17 DfnA 1 4 4 ., (� , 1 ---IiiH-Hfi-++----H-++H-+-+-+_t-I-+-+--+,H--li*J
we DATA 1 44 .d 3 ., 1 -----HiH-Hfi--+--+----H-++H-+-+-+_H-+-+--hH--li*J 1(19 Df1T FH 4 4 ., 0 ., 1 1_+"'H-++-I-1H++H-+++-H++H�
1 liZl Dt1lFi l 4 4 , (I ., 1

1 1 1 ItATr"H 4 4 , (1 , 1 ---
1 1 ;,: DHTI"U 4 4 ., '�I ., 1 E+-ifflH-+++-H-t+-t-H++H-+++-Srl
1 1 :": DATFi l 44 ., ll , 1 --- IiiH-H9-++----H-++HH-+-+_t-I-+++----H.--li*J
:l 1 4 DfiTt, l �:::: ., (1., l ---IfiH-t-I-+++----H-++HH-+-+_t-I-+++----H--li*J i � � i:�i� i �� : � : i ==-

-=--I;i-��+�t��t�"=-+��+�t��t�"=-+��+�t��t_=+"=-t�; 1 1 7 DAlF1 l �:::: , 121 ., 1 1_++-H-++-I-1H++H-+++-H++HIiilJ
1 1 ::: DATI� 1 2::: ., 0 ., 1 &-++-H-+-+-+_H-+-+--+----H-++-H-+-+-+_�
1 1 9 DATI� 1 :;:::: ., "" 1
1 20 DFiTFI;::�S5 , �:55 , �:�,5 =-IJIJ •• II_��.g ••••••••• 1
200 X =200 : Y = 1 00 : POKE53252 ; X : POKE53 253 � Y

STEP 2 :

Color i n the pixels o n the spritemaking g rid o n Page 1 62 (or use a piece
of g raph paper . . . remember, a sprite has 24 squares across and 2 1
sq uares down). We suggest you use a pencil and d raw l ightly so you can
reuse th is g rid . You can create any image you l ike, but for our example
we'l l d raw a s imple box.

STEP 3 :

Look a t the fi rst E IGHT pixe ls . Each column o f pixels ha s a number (1 28,
64, 32, 1 6, 8, 4, 2, 1) . The special type of addition we are going to
show you is a type of B INARY ARITHMETIC which is used by most com-

PROGRAMMING GRAPHICS 1 63

puters as a special way of counting . Here's a close-up view of the first
eight pixels in the top left hand corner of the sprite:

STEP 4:

Add up the numbers of the SOLI D pixels . This first g roup of eig ht pixels
is completely solid , so the total number is 255 .

STEP 5:

Enter that number as the F I RST DATA STATEMENT in l ine 1 00 of the
Spritemaking Program below. Enter 255 for the second and third g roups
of eig ht.

STEP 6:

Look at the F I RST E IGHT PIXELS IN THE SECOND ROW of the sprite . Add
up the values of the sol id pixels . Since only one of these pixels is solid ,
the total va lue is 1 28 . Enter this as the fi rst DATA number in l ine 1 0 1 .

1 6 8 4 2 1

STEP 7:

Add up the va l ues of the next g roup of eight pixels (which is 0 because
they're a l l BLANK) and enter in l ine 1 0 1 . Now move to the next g roup of
pixels and repeat the process for each GROUP OF E IGHT PIXELS (there
are 3 g roups across each row, and 2 1 rows) . This will g ive you a total of
63 numbers. Each number represents ONE g roup of 8 pixels , and 63
g roups of eig ht equals 504 total i nd ividual pixe ls . Perhaps a better way
of looking at the program is l ike this . . . each l ine in the program
represents ONE ROW in the sprite . Each of the 3 numbers in each row
represents ONE GROUP OF E IGHT PIXELS. And each number tel ls the
computer which pixels to make SOLID and which pixels to leave blank.

1 64 PROGRAMMING GRAPHICS

STEP 8:

CRUNCH YOU R PROGRAM I NTO A SMALLER SPACE BY RUNN ING TO­
GETHER ALL THE DATA STATEMENTS, AS SHOWN IN THE SAMPLE PRO­
GRAM BELOW. Note that we asked you to write your sprite program on
a piece of paper. I/IIe did this for a good reason. The DATA STATEMENT
LINES 1 00- 1 20 in the prog ram in STEP 1 are only there to help you see
which numbers relate to which g roups of pixels in your sprite . Your fina l
program shou ld be "crunched" l ike th is :

�m!ImlI
1 (I PI': I tIT " :J" : POf<E532:30 .. 5 : POKE532::' 1 .. 6

20 V=53248 : POKEV+34 .. 3

30 POKE53269 .. 4 : POKE2042 .. 1 3

4 0 FORN=0T062 : READQ : POKE:332+N . Q : NEXT

1 00 DATA255 .. 255 . 255 .. 1 2:3 . 0 . 1 . 1 2:3 . 0 . 1 . . 1 28 . 0 , 1 . 1 44 . 0 ,

1 .. 1 44 .. 0 , 1 .. 1 44 .. 0 .. 1 .. 1 44 .. (1 , 1

1 0 1 DFITFi 1 44 .. 0 .. 1 .. 1 44 .. 0 .· 1 .. 1 44 .. 0 .. 1 .. 1 44 .. 0 .. 1 .. 1 44 . 0 . 1 ..

1 44 .. (1 , 1 .. 1 2::: .. 121 •• 1 .. 1 2 ::: .. 10 , 1

1 02 DATA 1 28 , O , 1 , 1 28 , 0 . 1 . 1 2:3 , 0 . 1 , 1 28 , Q , 1 , 255 , 255 , 255

200 X=200 : Y= 1 00 : POKE53252 .. X : POKE53253 .. Y

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let's do some interesting things
with it . To move your sprite smoothly across the screen, add these two
l ines to your program :

50 POKE V+5, 1 00:FOR X= 24T0255: POKE V+4,X:NEXT:POKE
V+ 1 6,4

55 FOR X=OT065: POKE V+4,X: NEXT X:POKE V + 1 6,0:GOTO 50

LINE 50 POKEs the Y POS ITION at 1 00 (try 50 or 229 instead for
variety). Then it sets up a FOR . . . NEXT loop which POKEs the sprite
into X position 0 to X position 255, in order. When it reaches the 255th
position, it POKEs the R IGHT X POS ITION (POKE V + 1 6, 4) which is re­
q uired to cross to the right side of the screen .

LINE 55 has a FOR . . . NEXT loop which continues to POKE the sprite
in the last 65 positions on the screen. Note that the X value was reset to
zero but because you used the R IGHT X setting (POKE V + 1 6,2) X starts
over on the right side of the screen.

This l ine keeps going back to itself (GOTO 50) . If you just want the
sprite to move ONCE across the screen and d isappear, then take out
GOT050.

PROGRAMMING GRAPHICS 1 65

Here's a l ine which maves the sprite BACK AND FORTH :

50 POKE V + 5, 1 00 : F O R X = 24T0255 : POKE V + 4 , X : N EXT: POKE
V+ 1 6,4:FOR X=OT065: POKE V+4,X: NEXT X

55 FOR X = 65TOO STEP- l : POKE V+4,X:N EXT :POKE V + 1 6,0: FOR
X= 255T024 STEP- I : POKE V+4,X:NEXT

60 GOTO 50

Do you see how these programs work? This program is the same as the
previous one, except when it reaches the end of the right side of the
screen , it REVERSES ITSELF and goes back in the other d i rection. That is
what the STEP- l accompl ishes . . . it tel ls the program to POKE the
sprite i nto X values from 65 to 0 on the r ight side of the screen, then
from 255 to 0 on the left s ide of the screen , STEPping backwards
m inus - l position at a time.

VERTICAL SCROLLING

This type of sprite movement is cal led "scro l l ing ." To scrol l your sprite
up or down in the Y position, you on ly have to use ONE LI NE . ERASE
L I N E S 50 and 55 by typ i ng the l i ne n u m bers by themse lves and
hitting i@'WI l ike this :

50 (i@i@l
55 (i@IWI

Now enter L INE 50 again as follows:

50 POKE V+4,24 :FOR Y=OT0255 :POKE V+5,Y:NEXT

THE DANCING MOUSE-A SPRITE PROGRAM EXAMPLE

Sometimes the techniq ues desc ribed in a programmer's reference
manual are d ifficult to understand , so we've put together a fun sprite
prog ram cal led "Michael's Dancing Mouse ." This prog ram uses three
d ifferent sprites in a cute an imation with sound effects-and to help
you understand how it works we've included an explanation of EACH
COMMAND so you can see exactly how the program is constructed:

1 66 PROGRAMMING GRAPHICS

5 S=S4272 : POKES+24 . 1 5 : P O K ES . 220 : POKES+ l . 68 POKES+5 .
1 5 : POf(E::;+6 . 2 1 5
1 0 POKES+7 , 1 20 POKES+8 . 1 00 : POKES+ 1 2 . 1 5 POKES+ 1 3 . 2 1 5

,,8111 WiIillW
1 5 PR 1 l'n " :J" : ',,1=5::: :;-�48 : POKE',,1+2 1 .' 1
20 FORS 1 = 1 2288T0 1 2350 : PEADQ 1 : POKES 1 , Q 1 : NEXT
25 FOPS2m 1 2352T0 1 24 1 4 : READ02 : POKES2 . 02 : NEXT

30 FORS3= 1 24 1 6TO I 247S : READ03 : POKES3 , Q3 : NEXT
35 POKEV+39 . 1 5 : POKEV+ 1 . 68

,llD1J
40 PF: I t-HTAE: (1 60 ;' " =-I m'1 THE
45 P= 1 92

50 FORX=0T0347STEP3

55 RX= I NT (X/256) : LX=X-RX*256
50 POKEV . LX : POKEV+ 1 6 . RX

70 I FP= 1 92THENGOSUB20�
75 I FP = 1 93THENGOSUB300
80 POKE2040 . p : rORT= l T050 : NEXT
85 P=P+ l : I FP) 1 94THENP= 1 92
90 t lE>n
95 EI"·m

1 0 1 DATA63 . 25 5 . 252 . 3 1 . 1 87 . 248 . 3 . 1 8 7 . 1 92 . 1 . 255 . 1 28 .
3 . 1 89 . 1 92 . 1 , 23 1 . 1 28 . 1 . 255 . O

1 02 DATA3 1 . 25 5 . 0 . 0 , 1 24 , 0 , 0 . 254 . Q , 1 , 1 99 , 32 , 3 , 1 3 1 ,
��;;::4 ., 7 ., 1 .' 1 9:;-� ., 1 , 1 9;;:: , 0 ., 3 ., 1 9 2 ., 0

1 03 DATA30 , Q , 1 2 0 , 6 3 , 0 , 252 . 1 27 , 1 29 , 254 , 1 27 , 1 29 , 254 ,
1 27) 1 89) 254) 1 27) 2 5 5) 25�l

1 04 DATA63 , 255 , 252 , 3 1 , 22 1 , 248 , 3 , 22 1 , 1 92 , 1 , 255 , 1 28 ,

1 05 DRTA�: 1) 25 5) 255) 0) 1 24) 0 ., 0) 25 4) 0) 1 � 1 99) 0 : ·?) 1) 1 28)
7 , 0 , 204 , 1 , 1 28 , 1 24 , 7 , 1 2 8 , 5 6
1 06 DATA30 , 0 , 1 20 , 63 , O , 252 , 1 27 , 1 29 , 254 , 1 27 , 1 29 , 254 ,

1 07 DATA63 , 255 , 252 , 3 1 , 22 1 , 24 8 , 3 , 22 1 , 1 92 , 1 , 255 , 1 3 4 ,
:::: ., 1 ::� 9 " �::(14 " 1 .' 1 99 ., :1. 5��� " 1 .' ��5:; ., 4:3

1 08 DATA 1 . 255 , 224 , 1 , 25 2 , 0 . 3 , 254 , 0
1 09 D A T A 7 , 1 4 , 0 , 204 , 1 4 , Q , 24 8 , 5 6 , Q , 1 1 2 . 1 1 2 , Q , Q , 60 , Q ,

- 1

200 POKES+ 4 , 1 29 POKES+4 , 1 28 RETURN
300 POKES+ l 1 , 1 29 : POKES+ l 1 , 1 28 : RETURN

PROGRAMMING GRAPHICS 1 67

LINE 5:

5=54272

POKE5 +24, 1 5

POKES,220

POKES + l ,68

POKES +5, 1 5

POKES+6, 2 1 5

LINE 1 0:

POKES +7, 1 20

POKES + 8, 1 00

POKES + 1 2, 1 5

POKES + 1 3 ,2 1 5

LINE 1 5 :

V=53248

POKEV+ 2 1 , 1

Sets the var iable S equal to 54272, which is the
beg inn ing memory location of the SOUND CH I P.
From now on, i nstead of poking a d i rect memory
location , we wi l l POKE S p lus a va l ue.
Same as POKE 54296, 1 5 which sets VOLUME to
h ighest leve l .
Same as POKE 54272,220 which sets Low F re­
quency in Voice 1 for a note which approximates
h igh C i n Octave 6.
Same as POKE 54273,68 which sets H ig h Fre­
quency in Voice 1 for a note which approximates
h igh C in Octave 6.
Same as POKE 54277, 1 5 which sets Attack/Decay
for Vo ice 1 a n d i n t h i s case cons i sts of the
maximum DECAY level with no attack, which pro­
duces the "echo" effect.
Same as POKE 54278,2 1 5 which sets Susta i n/ Re­
lease for Voice 1 (2 1 5 represents a combination
of susta in and release va lues).

Same as POKE 54279, 1 20 which sets the Low Fre­
quency for Voice 2.
Same as POKE 54280, 1 00 which sets the H igh
Freq uency for Voice 2 .
Same as POKE 54284, 1 5 which sets Attack/Decay
for Voice 2 to same level as Voice 1 above .
Same as POKE 54285,2 1 5 which sets Susta in/ Re­
lease for Voice 2 to same level as Voice 1 above .

Clears the screen when the program beg i ns.
Defines the va riable "V" as the sta rti ng location
of the VIC ch ip which controls sprites. From now
on we wi l l define sprite locations as V plus a
va lue.
Turns on (enables) sprite number 1 .

1 68 PROGRAMMING GRAPHICS

LINE 20:

FORS 1 = 1 2288
TO 1 2350

READ Q l

POKES 1 ,Q l

NEXT

We are going to use ONE SPRITE (sprite 0) i n this
an imation, but we a re going to use THREE sets of
sprite data to define three sepa rate shapes. To
get our an imation, we wi l l switch the POINTERS
for sprite 0 to the three places in memory where
we have stored the data which defines our three
d ifferent sha pes . The same sprite wi l l be rede­
fined rapid ly over a nd over again as 3 d ifferent
shapes to produce the dancing mouse an imation .
You can define dozens of sprite shapes in DATA
STATEME NTS, a nd rotate those sha pes through
one or more sprites. So you see, you don't have to
l imit one sprite to one sha pe or vice-versa . One
sprite can have many d ifferent shapes, simply by
c h a n g i ng the PO I N T E R SETT I N G FOR THAT
SPRITE to d ifferent p laces i n memory where the
sprite data for d ifferent shapes is stored . This
l i ne means we have put the DATA for "sprite
sha pe 1 " at memory locations 1 2288 to 1 2350.

Reads 63 numbers in order from the DATA state­
ments which beg in at l ine 1 00. Ql is an a rbitrary
va riable name. It could just as easi ly be A, I I or
another numeric var iable.

Pokes the fi rst number from the DATA statements
(the first "Q l " is 30) i nto the first memory location
(the first memory location is 1 2288). This i s the
same as POKE 1 2288,30.

This tel l s the computer to look BETWEEN the FOR
and NEXT parts of the loop and perform those
i n-between commands (READQl and POKES 1 ,Ql
using the NEXT numbers in order) . I n other words,
the NEXT statement makes the computer READ the
NEXT Ql from the DATA STATEMENTS, which is 0,
and a lso i ncrements SI by 1 to the next va lue,
which is 1 2289. The result is POKE 1 2289,0 . . .
the NEXT command makes the loop keep going
back unti l the last va l ues i n the series, which are
POKE 1 2350,0.

PROGRAMMING GRAPHICS 1 69

LINE 25:

FORS2 = 1 2352
TO 1 24 1 4

READQ2

POKES2 ,Q2

NEXT

LINE 30:

FORS3 = 1 24 1 6
TO 1 2478
READQ3
POKES3,Q3

NEXT

LINE 35 :

POKEV+39, 1 5
POKEV+ 1 ,68

The second shape of sprite zero is defined by the
DATA which is located at l ocations 1 2352 to
1 24 1 4. NOTE that location 1 2351 is SKIPPED . . .
th is i s the 64th location which is used in the
defin ition of the first sprite g roup but does not
conta in a ny of the sprite data numbers. J ust re­
member when defin ing sprites in consecutive lo­
cations that you wi l l use 64 locations, but on ly
POKE sprite data into the first 63 locations.
Reads the 63 numbers which fol low the numbers
we used for the first sprite shape. This READ sim­
ply looks for the very next number in the DATA
a rea and starts reading 63 numbers, one at a
time.
Pokes the data (Q2) into the memory locations
(S2) for our second sprite shape, which begins at
location 1 2352.
Same use as l i ne 20 above .

The th i rd shape of sprite zero is defined by the
DATA to be located at locations 1 24 1 6 to 1 2478.
Reads last 63 numbers in order as Q3.
Pokes those n umbers i nto l ocations 1 24 1 6 to
1 2478.
Same as l i nes 20 and 25.

Sets color for sprite 0 to l ight g rey.
Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
compa rison, position 50 is the top lefthand corner
Y position on the viewing screen .

1 70 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(1 60)

I AM THE
DANCING
MOUSE!

� D"

LINE 45:

P = 1 92

LINE 50:

FORX= OT0347
STEP3

Tabs 1 60 spaces from the top leftha nd C HAR­
ACTER SPACE on the screen, which is the same as
4 rows beneath the clear command . . . this starts
your PRINT message on the 6th l i ne down on the
screen.
Hold down the lID key and press the key
marked l1li at the same time. If you do this
i nside quotation marks, a "reversed E" will ap­
pear. This sets the color to everyth ing PRINTed
from then on to WHITE.
This is a simple PRINT statement.

This sets the color back to l ight b l ue when the
PRINT statement ends. Holding down � and

D at the same t ime i ns ide q uotation marks
causes a "reversed d iamond symbol" to appear.

Sets the variable P equal to 1 92 . This number 1 92
is the pointer you must use, in this case to "point"
sprite 0 to the memory locations that begin at lo­
cation 1 2288. Changing this pointer to the loca­
tions of the other two sprite shapes is the secret of
using one sprite to create an an imation that is
actua l ly three d ifferent sha pes.

Steps the movement of your sprite 3 X positions at
a time (to provide fast movement) from position 0
to position 347.

PROGRAMMING GRAPHICS 1 71

LINE 55 :

RX = INT()(/256)

LX=X- RX* 256

LINE 60:

POKEV, LX

POKEY + 1 6, RX

LINE 70:

I F P= 1 92THEN
GOSU B200

RX is the integer of)(/256 which means that RX is
rounded off to 0 when X is less tha n 256, and RX
becomes 1 when X reaches position 256. We wi l l
use RX i n a moment to POKE V+ 1 6 with a 0 or 1
to turn on the "RIGHT SI DE" of the screen .
When the sprite is at X position 0, the formu la
looks l i ke this: LX = 0 - (0 times 256) or O. When
the sprite is at X position 1 the formu la looks l i ke
this: LX = 1 - (0 times 256) or 1 . When the sprite
is at X position 256 the formu la looks l i ke this: LX
= 256 - (1 times 256) or 0 which resets X back to
o which must be done when you start over on the
RIGHT S IDE of the screen (POKEV+ 1 6, 1) .

You POKE V by itself with a va lue to set the Hori­
zonta I (X) Position of sprite 0 on the screen . (See
SPRITEMAKING CHART on Page 1 76) . As shown
above, the va l ue of LX, which is the horizonta l
position of the sprite, cha nges from 0 to 255 and
when i t reaches 255 i t automatica l ly resets back
to zero because of the LX eq uation set up in l i ne
55 .
POKEV+ 1 6 a lways turns on the "right side" of
the screen beyond position 256, a nd resets the
horizontal positioning coord i nates to zero. RX is
either a 0 or a 1 based on the position of the
sprite as determi ned by the RX formu la in l ine 55.

If the sprite pointer is set to 1 92 (the first sprite
sha pe) the waveform control for the first sou nd ef­
fect is set to 1 29 and 1 28 per l ine 200.

1 72 PROGRAMMING GRAPHICS

LINE 75:

I F P= 1 93TH EN
GOSU B300

LINE 80:

POKE2040, P

FORT= l T060:
NEXT

LINE 85:

P = P + 1

I FP> 1 94THEN
P = 1 92

If the sprite poi nter is set to 1 93 (the second
sprite shape) the waveform control for the second
sou nd effect (Voice 2) is set to 1 29 and 1 28 per
l i ne 300.

Sets the SPRITE POINTER to location 1 92 (re­
member P = 1 92 in l i ne 45? Here's where we use
the P).
A s imple time delay loop which sets the speed at
which the mouse dances. (Try a faster or slower
speed by increasing/decreasing the number 60.)

Now we i ncrease the va lue of the pointer by add­
ing 1 to the orig ina l va lue of P.
We on ly wa nt to point the sprite TO 3 memory lo­
cations. 1 92 points to locations 1 2288 to 1 2350,
1 93 points to locations 1 2352 to 1 24 1 4, a nd 1 94
points to locations 1 24 1 6 to 1 2478. This l i ne tel l s
the computer to reset P back to 1 92 as soon as P
becomes 1 95 so P never rea l ly becomes 1 95 . P is
1 92, 1 93, 1 94 and then resets back to 1 92 and
the pointer winds up pointing consecutively to the
three sprite shapes in the three 64-byte g roups of
memory locations conta in ing the DATA.

PROGRAMMING GRAPHICS 1 73

LINE 90:

NEXTX

LINE 9S

END

LINES 1 00- 1 09

DATA

After the sprite has become one of the 3 d ifferent
sha pes d efined by the DATA, on l y then is it
a l lowed to move across the screen . It wi l l j ump 3
X positions at a time (instead of scro l l ing smooth ly
one position at a time, which is a l so possi ble).
STEPping 3 positions at a time makes the mouse
"dance" faster across the screen . NEXT X matches
the FOR . . . X position loop in l i ne 50.

ENDs the program, which occu rs when the sprite
moves off the screen .

The sprite sha pes are read from the data num­
bers, in order. F i rst the 63 numbers which com­
prise sprite shape 1 a re read , then the 63 num­
bers for sprite sha pe 2, a nd then sprite shape 3 .
This data is permanently read into the 3 memory
locations a nd after it is read into these locations,
a l l the prog ram has to do is point sprite 0 at the
3 memory locations and the sprite autowatica l ly
takes the shape of the data in those locations.
We are pointing the sprite at 3 locations one at a
time which produces the "a nimation" effect. If
you wa nt to see how these numbers affect each
sprite, try changing the first 3 numbers in L INE
1 00 to 255, 255, 255. See the section on defin ing
sprite sha pes for more i nformation.

1 74 PROGRAMMING GRAPHICS

LINE 200:

POKES +4, 1 29

POKES +4, 1 28

RETU RN

LINE 300:

POKES + 1 1 , 1 29

POKES + 1 1 , 1 28

RETU RN

Waveform contro l set to 1 29 turns on the sound
effect.
Waveform contro l set to 1 28 turns off the sound
effect.
Sends program back to end of l i n e 70 after
waveform control settings a re changed, to resume
program.

Waveform control set to 1 29 turns on the sound
effect.
Waveform control set to 1 28 turns off the sound
effect.
Sends program back to end of l i ne 75 to resume.

PROGRAMMING GRAPHICS 1 75

EASY SPRITEMAKING CHART

SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE

0 1 2 3 .. 5 6 7
Turn on Sprite V+ 2 1 , 1 V + 2 1 ,2 V+2 1 ,4 V+21 ,8 V+ 2 1 , 1 6 V + 2 1 ,32 V+21 ,64 V+ 2 1 , 1 28

Put in Memory 2040, 204 1 , 2042, 2043, 2044, 2045, 2046, 2047,

(Set Pointers) 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99

locations for 1 2288 1 2352 1 24 1 6 1 2480 1 2544 1 2608 1 2672 1 2736

Sprite Pixel to to to to to to to to

(1 2288- 1 2798) 1 2350 1 24 1 4 1 2478 1 2542 1 2606 1 2670 1 2734 1 2798

Sprite Color V+39,C V+40,C V+4 1 ,C V+42,C , V+43 ,C V+44,C V+45,C V+46,C

Set LEfT X V+O,X V+2,X V+4,X V+6,X V+8,X V + l 0,X V+ 1 2, X V+ 1 4, X

Position (0-255)

Set RIGHT X V+ 1 6, 1 V + 1 6, 2 V + 1 6,4 V+ 1 6,8 V + 1 6, 1 6 V+ 16,32 V+ 1 6,64 V+ 1 6, 1 28

Position (0- 255) V+O,X V+2,X V+4,X V+6,X V+8,X V+ l 0,X V + 1 2,X V+ 1 4,X

Set Y Position V+ l ,Y V+3,Y V+5,Y V+7,Y V+9,Y V + l l , Y V + 1 3,Y V+ 1 5,Y

Expand Sprite V+29,1 V+29,2 V+29,4 V+29,8 V+29, 1 6 V + 29,32 V+29,64 V+29, 1 28

Horizontally/X

Expand Sprite V+23, 1 V + 23,2 V+23,4 V+23,8 V+23, 1 6 V+23,32 V+23,64 V+23 , 1 28

Vertically/Y

Turn On (Set) V+28 , 1 V+28,2 V+28,4 V + 28,8 V+28 , 1 6 V + 28,32 V+28,64 V+28, 1 28

Multi-Color Mode

Multi-Color 1 V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C V+37,C

(first Color)

Multi-Color 2 V+38,C V+38,C V+ 38,C V+38,C V+38,C V+38,C V+38,C V+38,C

(Second Color)

Set Priority The rule is that lower numbered sprites always have display priority over higher

of Sprites numbered sprites. For example, sprite 0 has priority over All other sprites, sprite

7 has last priority. This means lower numbered sprites always appear to move

IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (SpritE

to Sprite) V+30 IF PEEK(V+ 30)ANDX = X THEN [action]

Collision (Sprite

to Background) V+31 I F PEEK(V + 3 1)ANDX=X THEN [action]

1 76 PROGRAMMING GRAPHICS

SPRITEMAKING NOTES

Alternative Sprite Memory Pointers and Memory Locat ions
Using Cassette Buffer

Put in Memory SPR ITE 0 SPRITE 1 SPRITE 2 If you're using 1 to 3 sprites

(Set pointers) 2040, 1 3 2041 , 1 4 2042 , 1 5 you can use these memory

locations in the cossette

Sprite Pixel 832 896 960 buffer (832 to 1 023) but

Locations for to 894 to 958 to 1 022 for more than 3 sprites we

Blocks 1 3 - 1 5 suggest using locations from

1 2288 to 1 2798 (see chart).

TURNING ON SPRITES:

You can turn on any individual sprite by us ing POKE V + 2 1 and the
number from the chart . . . BUT . . . turn ing on j ust ONE sprite will turn
OFF any othe rs . To turn on TWO OR MORE sprites , ADD TOGETHER the
numbers of the sprites you want to turn on (Example: POKE V +2 1 , 6 turns
on sprites 1 and 2) . Here is a method you can use to turn one sprite off
and on without affecting any of the others (useful for animation) .

EXAMPLE:

To turn off just sprite 0 type: POKE V + 2 1 , PEEK V+2 1 AND(255- 1) .
Change the number 1 in (255 - 1) to 1 , 2 ,4 , 8, 1 6, 32,64 , or 1 28 (for sprites
0-7) . To re-enable the sprite and not affect the other sprites currently
turned on , POKE V +2 1 , PEEK(V+ 2 1)OR 1 and change the OR 1 to OR 2
(sprite 2), OR 4 (sprite 3) , etc .

X POSITION VALUES BEYOND 255:

X positions run from 0 to 255 . . . and then START OVER from 0 to
255. To put a sprite beyond X position 255 on the far r ight side of the
screen , you must first POKE V+ 1 6 as shown, THEN POKE a new X value
from 0 to 63, which will place the sprite in one of the X positions at the
right side of the screen . To get back to position s 0-255, POKE V+ 1 6, 0
a nd POKE in an X value from 0 to 255 .

Y POSITION VALUES:

Y positions run from 0 to 255, inc luding 0 to 49 off the TOP of the
viewing area, 50 to 229 IN the viewing a rea , and 230 to 255 off the
BOTTOM of the viewing area.

PROGRAMMING GRAPHICS 1 77

SPRITE COLORS:

To make sprite 0 WHITE , type: POKE V+ 39, 1 (use COLOR POKE SET­
T ING shown in chart, and I N D IVI DUAL COLOR CODES shown below):

O-BLACK
I -WHITE
2 - RED
3-CYAN

4-PURPLE
5-GREEN
6- BLUE
7-YELLOW

MEMORY LOCATION:

8-0RANGE
9-BROWN
1 0-LT . RED

1 2-MED. GREY
1 3 -LT . GREEN
1 4-LT . BLUE

I I - DARK GREY 1 5-LT . GREY

You must " reserve" a sepa rate 64-BYTE BLOCK of numbers in the
computer's memory for each sprite of which 63 BYTES wi l l be used for
sprite data . The memory settings shown below are recommended for
the "sprite pointer" setti ngs in the chart above . Each sprite will be
uniq ue and you'l l have to define it as you wish . To make a l l sprites
exactly the same, point the sprites you want to look the same to the
same reg iste r for sprites .

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings a re RECOMMEN DATIONS ONLY.
Caution: you can set you r sprite pointers a nywhere in RAM memory

but if you set them too "low" in memory a long BAS IC program may
overwrite your sprite data , or vice versa . To protect a n especia l ly LONG
BAS IC PROGRAM from overwriting sprite data , you may want to set the
sprites at a higher a rea of memory (for example, 2040, 1 92 for sprite 0
at locations 1 2288 to 1 2350 . . . 204 1 , 1 93 at locations 1 2352 to 1 24 1 4
for sprite 1 and so o n . . . by ad justing the memory locations from which
sprites get their "data ," you can define as many as 64 d ifferent sprites
p lus a s izable BAS IC prog ram . To do this, define several sprite "shapes"
i n your DATA statements and then redefine a particu lar sprite by chang­
ing the "pointer" so the sprite you a re us ing is "pointed" at d ifferent
a reas of memory conta in ing d ifferent sprite picture data . See the "Danc­
ing Mouse" to see how this works . I f you want two or more sprites to
have THE SAME SHAPE (you can sti l l change position and color of each
sprite) ' use the same sprite pointer and memory location for the sprites
you want to match (for example, you can point sprites 0 and 1 to the
same location by us ing POKE 2040, 1 92 a nd POKE 204 1 , 1 92) .

1 78 PROGRAMMING GRAPHICS

PRIORITY:

Prio rity means one sprite wi l l appea r to move " in front of" or "behind"
another sprite on the display screen . Sprites with more prio rity a lways
a ppear to move "in front of" or "on top of" sprites with less priority . The
rule is that lower numbered sprites have prio rity over h igher numbered
sprites . Sprite 0 has prio rity over all other sprites . Sprite 7 has no prio rity
in relation to the other sprites . Sprite 1 has prio rity over sprites 2-7, etc .
If you put two sprites in the same position , the sprite with the h igher
prio rity wi l l appea r I N FRONT OF the sprite with the lower priority. The
sprite with lower priority wi l l either be obscured , or wi l l "show through"
(from "behind") the sprite with higher prio rity.

USING MULTI-COLOR:

You can c reate mu lti-colored sprites a lthough us ing multi-color mode
requ i res that you use PAI RS of pixe ls instead of ind ividua l pixels in your
sp,ite picture (in other wo rds each colored "dot" or "block" in the sprite
wil l con sist of two pixels side by s ide) . You have 4 colors to choose from:
Sprite Co lor (chart above). Multi-Color J , Mu lti-Color 2 and "Background
Color" (background is achieved by us ing zero sett ings which let the
background color "show through") . Consider one horizonta l 8-pixel block
in a sprite picture . The color of each PAI R of pixels is dete rmined accord­
ing to whether the left, rig ht, or both pixels a re solid, l ike this:

OJ BACKGROUND (Mak ing BOTH P IXELS BLANK (zero) lets the
I N N E R S C R E E N COLOR (b a c k g ro u n d) s how
through .)

I I II MULTI-COLOR 1 (Making the R IGHT P IXEL SOLI D in a pair of
pixels sets BOTH P IXELS to Multi-Color 1 .)

I III I SPRITE COLOR (Making the LEFT P IXEL SOL I D in a pair of pixels
sets BOTH P IXELS to Sprite Color .)

I t I MULTI-COLOR 2 (Making BOTH P IXELS SOLID in a pair of pixels
sets BOTH P IXELS to Mu lti-Color 2 .)

PROGRAMMING GRAPHI C S 1 79

Look at the horizonta l 8-pixel row shown below. This block sets the
first two pixels to background color, the second two pixels to Mu lti-Color
1 , the third two pixels to Sprite Color and the fourth two pixels to Mu lti­
Color 2. The color of each PAI R of pixels depends on which bits in
each pair are solid and which are blank, according to the i l l ustration
above . After you determine which colors you want in each pair of pixels ,
the next step is to add the values of the sol id pixels in the 8-pixel block,
and POKE that number into the proper memory location . For exam ple, if
the 8-pixel row shown below is the fi rst block in a sprite whic h begins at
memory location 832, the va lue of the solid pixels is 1 6+ 8 + 2 + 1 = 27,
so you would POKE 832, 27.

27
,

16 + 8 + 2 + 1

I 1 28 I 64 I 32 I 16 I 8 I 4

COLLISION:

You can detect whether a sprite has col l ided with another sprite by
us ing this l ine: I F PEEK(V+30)ANDX =XTHEN [insert action here] . This l ine
checks to see if a partic u lar sprite has col l ided with ANY OTHER SPR ITE,
where X equals 1 for sprite 0, 2 for sprite 1 , 4 for sprite 2, 8 for sprite 3,
1 6 for sprite 4, 32 for sprite 5 , 64 for sprite 6, and 1 28 for sprite 7 . To
check to see if the sprite has col l ided with a "BACKGROUND CHAR­
ACTER" use this l ine : IF PEEK(V + 3 l)ANDX= XTHEN [insert action here]'

1 80 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The fol lowing program al lows you to create a sprite using bla nks and
solid circles (IIDIiI II) in DATA statements . The sprite and the num­
bers POKEd into the sprite data registers a re displayed .

1 121 PP I t·n " A�II:�r':t{.!IJt:: : PCW:E:3::;;-,+ I . 0 : t jE>:T

;;-:0 OU:;U:E:60000

995' [I··m
6001210 Df'lT t'i "

600 0 1 DHH� "
61211210;;-, D t'iT lci "

61<:1003 DI=!TFi "
6 0 0 ;214 DnTI=! "
600121!:; III:Ht'i "

6C112i1216 D A T A "

61211210"7 Dt:lTicl "
60 1(1 0:;:: DATI"! "

6001219 III:ITi=I "

6121121 1 121 Di=!TI'::I "

60 12i 1 1 DfHf:j "
600 1 �� m:ITi=! "
600 1 :::: DfHA "

61210 1 4 IlfiTn "

600 1 5 DFITI=! "

6i21 121 1 6 DnTI=! "

600 1 7 DffTl=! "

6Dl2l 1 ::' DfiTjCi "

600 1 9 DI=!TA "

600;;::(1 DATA "

•••••••
•• IIUIIIII , ••• III' ••

........... '.,.,
••••• • •• '. '111

.11'...
••••• ••• • ••••
ill.... iIII. . . •. 11

••••• • ••••
.,.lIIGiIi ••••••••
......... '
,., •• ' •••• lftIiilllilll' '.

e
• ••••• •

., ••• ,.
• ••• •

• • •
• • •

.. . "'.
•••••
•••••

•••
60 1 00 V=53248 : POKEV . 200 : POKEV+ 1 . 1 00 : POKEV+2 1 . 1 :

POKEV+39 . 1 4 · POKE2040 . 1 3

60 1 1215 P OKEV+23 . 1 : POKEV+29 . 1

6 0 1 1 0 FOR I =OT020 : READA$: FORK=OT02 : T=0 : FORJ=OT07 : B=0

6121 1 40 I Ft-1 I D,*: ':: fi$., .J +K:+;:3+ 1 .· 1) = " . " THEN:£:= 1

60 1 50 T=T+B*2 t(7-J) : NEXT : PR I NTT ; : POKE832 + I *3+K . T :

�lD':T ; PI": Hn ; t·jDn
613200 PETur;:t·l

PROGRAMMING GRAPHICS 1 8 1

CHAPTER 4

PROGRAMMING
SOUND AND

MUSIC ON YOUR
COMMODORE 64

• I ntrod uctio n

Vol ume Control

F requencies of Sound Waves

• U s i n g Mu lti p l e Voices

• C h a n g i n g Waveforms

• The E nvel ope Generator

• F i lte r i n g

• Adva nced Tec h n iques

• Syn c h ro n i zation a n d R i n g

Mod u latio n

1 83

INTRODUCTION

Your Commodore computer is equipped with one of the most sophisti­
cated electronic music synthesizers ava i lable on any computer. It comes
com plete with th ree voice s , tota l ly add res sab le , ATTACK/DECAY/
SUSTAIN/RELEASE (ADSR), fi lter ing, modulation , and "white noise ." Al l
of these capabi l ities a re directly avai lable for you th rough a few easy to
use BAS IC and/or assembly language statements and functions . This
means that you can make very complex sounds and songs us ing pro­
g rams that are relatively simple to desig n .

This section o f your Programmer's Reference Guide ha s been created
to help you explore all the capabi lities of the 658 1 "S ID" chip, the sound
and music synthesizer ins ide your Commodore computer . VVe'1i explain
both the theory behind musical ideas and the practical aspects of turn­
ing those ideas into real finished songs on you r Commodore computer .

You need not be an experienced programmer nor a music expert to
achieve exciting results from the music synthesizer . This section is ful l of
programming examples with complete explanations to get you started .

You get to the sound generator by POKEing into specified memory
locations. A fu l l list of the locations used is provided in Appendix O. VVe
will go through each concept, step by step . By the end you should be
able to create an a lmost infin ite variety of sounds, and be ready to
perform experiments with sound on your own .

Each section of this chapter begins by g iving you an example and a
ful l l ine-by-l ine description of each program , which wi l l show you how to
use the characteristic being d iscussed . The technical explanation is for
you to read whenever you a re curious about what is actual ly going on .

The workhorse of your sound programs is the POKE statement. POKE
sets the ind icated memory location (MEM) equal to a specified value
(NUM).

POKE MEM, N UM

The memory locations (MEM) used for music synthesis start at 54272
($0400) in the Commodore 64. The memory locations 54272 to 54296
inclusive a re the POKE locations you need to remember when you're
us ing the 658 1 (SI D) chip register map . Another way to use the locations
above is to remember on ly location 54272 and then add a n umber from
o through 24 to it. By doing this you can POKE all the locations from
54272 to 54296 that you need from the S ID ch ip . The numbers (NUM)

1 84 PROGRAMMING SOU N D AND MUSIC

that you use in your POKE statement must be between 0 and 255,
inc lusive .

When you've had a little more practice with making music , then you
can get a little more involved, by using the PEEK function . PEEK is a
function that is equal to the value currently in the indicated memory
location .

X = PEEK(MEM)

The va lue of the va riable X is set equal to the current contents of mem­
o ry location MEM.

Of course, your programs include other BAS IC commands, but for a
fu l l explanation of them, refer to the BASIC Statements section of this
manua l .

Let's j ump r ight i n and try a s imple prog ram using only one of the
th ree voices . Computer ready? Type NEW, then type in this program,
and save i t on your Commodore DATASSETTE™ or disk. Then , RUN it.

EXAMPLE PROGRAM 1 :

�:. ::;=54�:?:;-�

10 FORL=STOS+24 : POKEL , O NEXT REM CLEAR SOUND CH I P
2 0 POKES+5 , 9 POKES+6 , 0

30 POKES+24 , 1 5 R E M SET VOLUME TO
r'1f'l:: I r' IUr'1

4 0 F.:Ef'IDHF .. LF , DR

5 0 I FHF(0THENEND

60 POKES+ l , HF : POKES , lF

1'121 POf:::[:::'+A , 3:::

80 FORT= 1 T ODp : NEXT

90 POKES+4 , 32 : FORT= l T050 NEXT

1 00 00T040

1 1 0 DATA25 , 1 7 7 , 25121 , 28 , 2 1 4 , 250

1 20 DATA25 , 1 7i' , 250 , 2 5 , 1 7i' , 250

1 3121 DATA25 , l i'7 , 1 25 , 28 , 2 1 4 , 1 25

1 40 DATA32 , 94 , i'50 , 25 , l i'i' , 250

1 50 DATA28 , 2 1 4 , 25 0 , 1 9 , 63 , 250

1 60 D A T A 1 9 , 63 , 250 , 1 9 , 63 , 250

1 70 D A T A2 1 , 1 54 , 63 , 24 , 63 , 63

1 80 DATA25 , 1 71' , 250 , 24 , 6 3 , 1 25

1 90 DATA I 9 , 63 , 25121 , - 1 , - 1 , - i

Here's a l i ne-by-l ine description of the program you've just typed i n .
Refer to i t whenever you feel the need to investigate parts of the pro­
g ram that you don't understand completely.

PROGRAMMING SOU N D AND MUSIC 1 85

LlNE-BY-LlNE EXPLANATION OF EXAMPLE PROGRAM 1 :

Line(s)

5
1 0

Descri ption

Set S to start of sound ch ip .
Clea r a l l sound ch ip reg isters .

--------------------�

20 Set Attack/Decay for voice 1 (A=0, D = 9) .
Set Sustain/Release for vo ice 1 (S=O, R = O) .

30 Set vo lume at maximum.
40 Read h igh frequency, low freq uency, duration of note .
50 When h igh frequency less than zero , song is over .
60 Poke h igh and low freq uency of vo ice 1 .
70 Gate sawtooth waveform for voice 1 .
80 T iming loop for duration of note .
90 Release sawtooth waveform for voice 1 .
1 00 Return for next note .
1 1 0- 1 80 Data for song : h igh frequency, low frequency, duration

(number of counts) for each note .
1 90 Last note of song and negative 1 s s igna l ing end of song .

VOLUME CONTROL

Chip reg ister 24 conta in s the overal l volume contro l . The voiume can
be set a nywhere between 0 and 1 5 . The other four bits are used for
purposes we' l l get i nto later. For now it is enough to know volume is 0 to
1 5 . Look at l ine 30 to see how it's set in Example Program 1 .

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves . Think of throwing
a stone into a pool and seeing the waves rad iate outward. When s imi lar
waves a re c reated in air , we hea r i t . If we measure the t ime between
one peak of a wave and the next, we find the number of seconds for
one cycle of the wave (n = number of seconds) . The reciproca l of this
number (l /n) g ives you the cycles per second . Cycles per second a re
more commonly known as the frequency. The h ighness or lowness of a
sound (pitch) is determined by the frequency of the sound waves pro­
duced .

The sound generator in your Commodore computer uses two locations
to determine the frequency. Append ix E gives you the frequency values
you need to reproduce a ful l e ight octaves of musical notes. To c reate a

1 86 PROGRAMMING SOUN D AND MUSIC

frequency other than the ones l isted in the note table use "Fout" (fre­
quency output) and the fol lowing formula to represent the frequency (Fn)
of the sound you want to create . Remember that each note requ i res
both a high and a low frequency number.

Fn = Fout ! . 06097

Once you've figu red out what Fn is for your "new" note the next step is
to c reate the h igh and low frequency va lues for that note . To do this you
must first round off Fn so that any numbers to the right of the decimal
point are left off. You are now left with an integer value. Now you can
set the h igh freq uency location (Fh i) by using the formula Fh i = I NT(Fni256)
and the low frequency location (Flo) should be F l o= Fn - (256* Fh i) '

At this point you have a l ready played with one voice of you r compu­
ter . If you wanted to stop here you could find a copy of your favorite
tune and become the maestro conducting your own computer orchestra
in you r "at home" concert ha l l .

USING MULTIPLE VOICES

Your Commodore computer ha s th ree independently controlled voices
(osc i l lators). Our fi rst example prog ram used only one of them . Later on ,
you' l l learn how to change the qua l ity of the sound made by the voices.
But right now, let's get a l l th ree voices s inging .

This example program shows you one way to translate sheet music for
your computer orchestra . Try typing it i n , and then SAVE it on you r
DATASSETTeM or d i s k . Don't forget to type NEW before typing in this
prog ram .

EXAMPLE PROGRAM 2 :
1 0 S=54272 : F OP L = S T OS+24 POKEL , 0 : NEXT

2 8 D I MH (2 , 200) , L (2 , 2 00) , C (2 . 200)

:30 D I r1Fc! (1 D
40 V (0) ; 1 7 : V (1) ;65 : V (2) ;33

50 POKES+ 1 0 , 8 POKES+22 , 1 28 · POKES+23 , 244

oU F O R I =8T O l l : PEADFQ ' I) : NEXT

WO FOPK=OT02

1 1 0 1 =0

1 20 READt-H"

1 30 I FNM=0THEN250

1 4 0 WR=V (K) : WB=WA- l · I FNM(0THENNM=-NM WA=O : WB=0

1 50 DP%�NM/ 1 28 : 0C%= (NM- 1 28*DR%) / 1 6

1 60 NT=NM- 1 28*DR%- 1 6*OC%

1 7121 Ff':=FC! doH)

PROGRAMMING SOU N D AND MUSIC 1 87

1 8121 I FOC%=7THEN2B0
1 9121 FORJ=6TOOC%ST EP - I FR=FR!2 NEXT

2121121 HF%=FR!256 : LF%=FR-256tHF%

2 1 121 I FDR%= I THENH C K . I) =HF% : L (K . I) =LF% C C K , I) =WA ·

1 = 1 + 1 : [;OT 0 1 2121

22121 FORJ= I TODR % - I H (K . I) =HF% : L (K , I) =LF% · C (K , I) =WA :

1 = 1 + 1 : t·�E:<T
23121 H (K , I) =HF% : L (K . I) =LF% C C K , I) =WB

240 I = I + 1 : GO T 0 1 2121

25121 I F I) I MTHEN I M= I

26121 t·�Dn
5121121 POKES+5 , 0 : POKES+6 , 240

5 1 121 POKES+ 1 2 , 85 : POKES+ 1 3 , 1 33

520 POKES+ 1 9 . I B : POKES+2B , 1 97

53121 POKES t24 ., 3 1

54121 F O R I =�nO H1

55121 POKE S , L (0 . I) : POKES+7 . L (I , I) : POKES+ 1 4 , L (2 , I)

56121 POKES+ l , H (B , I) : P OKES+8 . H (1 , 1) : POKES+ 1 5 , H (2 . I)

57121 POKES+4 . C (B . I) : POKES+ l 1 . C (1 . I) POKES+ 1 8 . C (2 , I)

58121 FORT= l T080 : NEXT : NEXT

59121 FORT= I T 020B : NEXT : POKES+24 . B
600 DATR34334 � 36376 J 38539) 40830

6 1 121 DATA43258 . 45830 . 48556 . 5 1 4 4 3

b�� DATA54502 , 5774 3 . 6 1 1 7 6 . 648 1 4

1 0121121 DATA594 . 594 . 594 , 596 . 596

1 121 1 121 DATA I 6 1 8 . 587 . 592 . 58 7 . 585 . 3 3 1 . 336

1 020 DATA 1 09 7 J 583 � 585 J 585 J 585 J 587) 587

1 030 DAT A 1 6B9 . 585 , 33 1 . 337 . 594 . 59 4 , 5 9 3

1 1214121 DATA I 6 1 8 . 594 . 596 . 594 , 592 . 587

1 1215121 DATA 1 6 1 6 . 587 . 585 . 33 1 . 3 36 , 84 1 , 327

U)6�1 DATA 1 6�j7

1 999 DATAB

2000 DATA583 J 58 5) 583 J 583 J 32 7 , 329

20 1 0 DATA 1 6 1 1 J 583 J 58 5 J 578 � 578 � 578

2020 DATA 1 96 , 1 98 . 583 . 326 , 578

2030 DATA326 J 327 J 3 29 J 327) 329 J 3 26) 578 J 583

2040 DATA 1 606 J 582) 322 J 324 ; 582) 587

2050 DATA329 . 327 . 1 606 . 583

212160 DATA327 . 329 . 587 . 33 1 . 329

2070 DATA329 . 32 8 . 1 609 , 57 8 , 8 3 4

2 0 8 0 DATA324 . 322 . 327 , 585 . 1 60 2
2 9 9 9 DATA0

300121 DATA567 . 566 . 567 . 3B4 . 306 . 308 , 3 1 0

30 1 121 DATA 1 59 1 . 567 . 3 1 1 . 3 1 0 . 567

312120 DATA306 . 3B4 . 299 . 308

312130 DATA304 . 1 7 1 . 1 76 . 3B6 . 29 1 . 55 1 . 30 6 . 308

304121 DATA3 1 121 , 3B 8 . 3 1 B . 3B6 , 295 , 2 9 7 . 299 , 3B4

3050 DATA I 58 6 . 562 . 567 . 3 1 B . 3 1 5 , 3 1 1

3060 DATA308 . 3 1 3 . 29 7

312170 DATA I 5 86 , 567 . 560 . 3 1 1 . 3B9

3080 DATA308 . 309 . 3 B 6 . 308

31219121 DAT A I 5 7 7 . 299 . 295 . 306 . 3 1 0 . 3 1 1 . 304

3 1 00 DATA562 . 54 6 , 1 575
:;:999 DATA�J

1 88 PROGRAMMING SOU N D AND MUSIC

Here is a l ine-by-l ine explanation of Example Program 2. For now, we
a re interested in how the th ree voices are contro l led.

LlNE-8Y-LiNE EXPLANATION OF EXAMPLE PROGRAM 2:

1 0

20

30
40
50

li ne(s)

60
1 00
1 1 0
1 20
1 30
1 40

1 50
1 60
1 70
1 80
1 90
200
2 1 0

220

230

240
250
260
500

Descr iption

Set S equal to start of so und chip and clear a l l sound
chip registers .
Dimension ar rays to contain activity of song, 1 / 1 6th of a
measure per location .
Dimensio'n a rray to conta in base frequency for each note.
Store waveform control byte for each vo ice .
Set h igh pulse width for voice 2 .
Set high freq uency for frlter cutoff.
Set resonance for fr lter and fr lter voice 3 .
Read in base frequency for each note .
Begin decod ing loop for each voice .
I n it ial ize pointer to activity array.
Read coded note .
If coded note is zero, then next voice.
Set waveform controls to proper voice .
If si lence , set waveform controls to O.
Decode duration and octave.
Decode note .
Get base freq uency for this note .
If hig hest octave, skip division loop.
Divide base frequency by 2 appropriate number of times.
Get h igh and low frequency bytes .
I f sixteenth note, set activity a rray: h i gh frequency, low
frequency, and waveform control (voice on) .
For a l l but last beat of note , set activity a rray: h igh
frequency, low frequency, waveform control (voice on) .
For last beat of note, set activity array: h igh frequency,
low frequency, waveform control (voice off).
I ncrement pointer to activity array. Get next note .
If longer than before, reset number of activities.
Go back for next voice .
Set Attack/Decay for voice 1 (A=O, D=O) .
Set Sustain/Release for voice 1 (S = 1 5 , R = O) .

PROGRAMMING SOUND A N D MUSIC 1 89

l i ners)

5 1 0

520

530
540
550
560
570
580

590
600-620

Descr i ption

Set Attack/Decay for voice 2 (A= 5, 0 = 5) .
Set Sustain/Release for voice 2 (S= 8, R =5) .
Set Attack/Decay for voice 3 (A=O, D= 1 0) .
Set Sustain/Re lease for voice 3 (S= 1 2 , R =5) .
Set vo lume 1 5 , low-pass fi ltering .
Start loop for every 1 / 1 6th of a measure .
POKE low frequency from activity a rray for a l l voices.
POKE high frequency from activity array for al l voices.
POKE waveform control from activity a rray for a l l voices.
T iming loop for 1 / 1 6th of a measure and back for next
1 / 1 6th measure .
Pause, then turn off volume.
Base freq uency data .

1 000- 1 999 Voice 1 data .
2000-2999 Voice 2 data .
3000-3999 Voice 3 data .

The values used in the data statements were found by us ing the note
table in Appendix E and the chart below:

NOTE TYPE

1 / 1 6
1 /8

DOTTED 1 /8
1 /4

1 /4 + 1 / 1 6
DOTTED 1 /4

1 /2
1 /2 + 1 / 1 6
1 / 2 + 1 /8

DOTTED 1 /2
WHOlE

1 90 PROGRAMMING SOU N D AND MUSIC

DURATION

1 28
256
384
5 1 2
640
768
1 024
1 1 52
1 280
1 536
2048

The note number from the note table is added to the duration above .
Then each note can be entered using only one number which is decoded
by your program . This is only one method of coding note values. You
may be a ble to come up with one with which you a re more comfortable .
The formula used here for encoding a note is a s follows:

1) The duration (number of 1 / 1 6ths of a measure) is mu ltiplied by 8 .
2) The result o f step 1 i s added to the octave you've chosen (0- 7) .
3) The result o f step 2 i s then mu ltiplied by 1 6 .
4) Add your note choice (0- 1 1) to the result of the operation in step

3 .

I n other words:

((((0*8) + 0) * 1 6)+N)

Where 0 = duration , 0 = octave, a nd N = note
A si lence is obta ined by using the negative of the duration number

(number of 1 / 1 6ths of a measure * 1 28) .

CONTROLLING MULTIPLE VOICES

Once you have gotten used to using more than one voice, you wil l find
that the t iming of the three voices needs to be coordinated . This is ac­
compl ished in this program by:

1) �ivide each musical measure into 1 6 parts.
2) Store the events that occu r in each 1 / 1 6th measure interval in three

sepa rate a rrays.

The high and low frequency bytes a re calcu lated by divid ing the fre­
q uenc ies of the h i g hest octave by two (l i nes 1 80 and 1 90) . The
waveform control byte is a start s igna ! for beginn ing a note or continu­
ing a note that is a l ready playing . It is a stop signa l to end a note . The
waveform choice is made once for each voice in l ine 40.

Again, this is on ly one way to control mu ltiple voices. You may come
up with you r own methods . However, you should now be able to take
any piece of sheet music and figure out the notes for all three voices .

PROGRAMMING SOU N D AND MUSIC 1 9 1

CHANGING WAVEFORMS

The tonal qua l ity of a sound is ca l led the timbre . The timbre of a
sound is determined primarily by its "waveform." If you remember the
example of th rowing a pebble into the water you know that the waves
ripple evenly across the pond . These waves almost look l ike the fi rst
sound wave we're going to talk about, the sinusoidal wave, or sine
wave for short (shown below).

To make what we're talk ing about a bit more practica l , let's go back
to the fi rst example program to investigate different waveforms. The
reason for this is that you can hear the changes more easily us ing only
one voice. LOAD the first music prog ram that you typed in earl ier, from
your DATASSETTE™ or disk, and RUN it again . That prog ram is using the
sawtooth waveform (shown here)

from the 658 1 S I D chip's sound generating device. Try changing the note
start number in l ine 70 from 33 to 1 7 and the note stop number in l ine 90
from 32 to 1 6 . Your prog ram should now look like this:

1 92 PROGRAMMING SOU N D AND MUSIC

EXAMPLE PROGRAM 3 (EXAMPLE 1 MODIFIED):

1 0 F ORL=STOS+24 POKEL , 0 : NEXT

20 POKES+5 , 9 POKES+6 , 0

3121 PCW:C::;+24 ., 1 5

4 0 PEADHF ., LF , DR

50 I FHF(0THENEND
60 POKES+ l , HF : POKES , LF

70 F' Of<E:;:;-1-4 ., 1 7

80 FOPT= l TODR : NEXT

90 POKES+4 , 1 6 : FORT= l T050 : NEXT

1 00 00T040

1 1 0 DATA25 . 1 77 , 250 , 28 , 2 1 4 , 250

1 20 DATA25 , 1 77 , 250 , 25 , 1 77 , 250

1 30 DATA25 , 1 77 , 1 25 , 28 , 2 1 4 , 1 25

1 40 DATA32 , 9 4 , 750 , 25 , 1 7 7 , 250

1 50 DATA28 , 2 1 4 , 25 0 , 1 9 , 63 , 250

1 60 DATA 1 9 , 6 3 , 250 , 1 9 , 63 , 250

1 70 DATA2 1 , 1 54 , 6 3 , 24 , 63 , 63

1 80 DATA25 , 1 77 , 250 , 24 , 63 , 1 25

1 90 D A TA I 9 , 63 , 250 , - 1 , - 1 . - 1

Now RUN the p rog ram .
Notice how the sound qua lity i s d ifferent, less twangy, more hol low.

That's because we changed the sawtooth waveform into a triangular
waveform (show below) .

The third musical waveform is cal led a variable pu lse wave (shown
below) .

'---
!--PULSE WIDTH-

'-- I..-

PROGRAMMING SOUN D AND MUSIC 1 93

It is a recta ngu lar wave and you determine the length of the pulse
cycle by defin ing the proportion of the wave which wi l l be high. This is
accomplished for voice 1 by using reg isters 2 and 3: Register 2 is the low
byte of the pu lse width (Lpw = 0 through 255) . Reg ister 3 is the high 4
bits (Hpw = 0 through 1 5) .

Together these registers spec ify a 1 2-bit number for your pulse width ,
which you can determine by us ing the fol lowing formu la :

The pu lse width is determined by the fol lowing equation :

PWout = (PWn /40. 95) %

When PWn has a va lue of 2048, it wi l l give you a square wave . That
means that reg ister 2 (Lpw) = 0 and register 3 (Hpw) = 8.

Now try adding this l ine to your prog ram:

1 5 POKES+3,8:POKES +2,O

Then change the start number in l ine 70 to 65 and the stop number i n
l i ne 90 to 64 , and RUN the program . Now change the h igh pulse width
(reg ister 3 i n line 1 5) from an 8 to a 1 . Notice how d ramatic the d iffer­
ence in sound qua l ity is?

The last waveform avai lab le to you is white noise (shown here).

It is used mostly for sound effects a nd such . To hear how it sounds, try
changing the start number in l ine 70 to 1 29 and the stop number in l ine
90 to 1 28.

UNDERSTANDING WAVEFORMS

When a note is played , it consists of a sine wave osci l lating at the
fundamental frequency and the harmonics of that wave .

1 94 PROGRAMMI N G SOU N D AND MUSIC

The funda mental frequency defines the overa l l pitch of the note.
Ha rmonics are s ine waves having frequencies which are integer mu lti­
ples of the fundamenta l frequency. A sound wave is the fundamenta l
frequency and a l l of the harmonics i t ta kes to make up that sound .

__ RESULTANT WAVE
FUNDAMENTAL (1 ST HARMONIC)

3RD HARMONIC

In musica l theory let's say that the fundamental frequency is ha rmonic
number 1 . The second ha rmonic has a frequency twice the fundamenta l
frequency, the third ha rmonic is th ree times the fundamental frequency,
and so on . The amounts of each ha rmonic present i n a note g ive it its
timbre.

An acoustic in strument, l ike a gu ita r or a vio l i n , has a very comp li­
cated ha rmonic structu re . In fact, the ha rmonic structure may va ry as a
s ing le note is played . You have a l ready played with the waveforms
avai lab le i n your Commodore mus ic synthesizer . Now let's ta l k about
how the ha rmonics work with the triangu lar , sawtooth, and rectangu la r
waves .

A triangu lar wave contains on ly odd harmonics . The amount of each
harmonic present is proportiona l to the reciproca l of the square of the
harmonic number . In other words ha rmonic number 3 is 1 /9 quieter than
harmonic number 1 , because the ha rmonic 3 squared is 9 (3 X 3) and
the rec iproca l of 9 is 1 /9 .

As you can see, there i s a s im i larity in shape of a triangu la r wave to a
s ine wave osc i l lating at the fundamental frequency.

Sawtooth waves conta in al l the harmonics . The amount of each har­
monic p resent is proportiona l to the rec iproca l of the ha rmonic number .
For exam ple, harmonic number 2 is 1 /2 as loud as harmonic number 1 .

The square wave conta ins odd harmonics in proportion to the recip­
rocal of the ha rmonic number . Other rectangu lar waves have va rying
harmonic content. By chang ing the pulse width , the timbre of the sound
of a rectangu la r wave can be varied tremendously.

PROGRAMMING SOU ND AND MUSIC 1 95

By choosing ca refully the waveform used, you can start with a har­
monic structure that looks somewhat l ike the sound you want. To refine
the sound, you can add another aspect of sound qua l ity avai lable on
your Commodore 64 cal led filtering , which we' l l discuss later in this
section .

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you fi rst hear
it , a l l the way through until i t d ies out and you can't hear it anymore.
When a note is fi rst struck, it r ises from zero volume to its peak volume .
The rate at which this happens i s ca l led the ATTACK. Then, i t fa l ls from
the peak to some midd le-ranged volume. The rate at which the fa l l of
the note occurs is cal led the DECAY. The mid-ranged volume itself is
cal led the SUSTAIN leve l . And fina lly, when the note stops playing, it
fal ls from the SUSTAIN level to zero volume. The rate at which it fal ls is
ca l led the RELEASE . Here is a sketch of the four phases of a note :

SUSTAIN LEVEL - -

I
I I

A : 0 : S

Each of the items mentioned above give certain qua lities and restric­
tions to a note . The bounds a re cal led parameters .

The parameters ATTACKIDECAY/SUSTAIN/RELEASE and col lectively
cal led ADSR, can be controlled by your use of another set of locations in
the sound generator ch ip . LOAD your first example prog ram again . RUN
it again and remember how i t sounds. Then, try changing l ine 20 so the
program is like this:

1 96 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 4 (EXAMPLE 1 MODIFIED):

10 F ORl=STOS+24 : POKEl , O NEXT

20 POKES+5 , 88 : POKES+ 6 , 1 95

:;:0 PCWB3+:;-:4 .. 1 5

40 F:E I:IDHF .. L F . DR

50 I FHF(0THENEND

60 POKES+ l , HF : POKES , LF

?iC1 PCW:E::;+4 , 33

80 FORT= l TODR NEXT

90 POKES+4 , 32 : FORT= l T050 NEXT

1 121121 GOT040

1 1 0 DATA25 , 1 ?7 , 250 , 28 , 2 1 4 . 250

1 20 D A T A2 5 . 1 77 . 250 . 25 , 1 7 7 . 2 5 0

1 30 DATA25 , 1 7? 1 25 , 28 , 2 1 4 . 1 25

1 40 DATA32 , 94 , 750 . 25 , 1 7? , 2 5 0
1 50 DATA28 , 2 1 4 , 250 , 1 9 , 63 , 250

1 60 DATA 1 9 . 6 3 . 250 , 1 9 . 63 , 250

1 70 DATA2 1 , 1 54 . 63 . 24 , 63 . 63

1 80 DATA25 , 1 77 , 250 , 24 . 6 3 . 1 25

1 90 DATA I 9 , C3 . 250 , - I , - 1 , - 1

Reg isters 5 and 6 define the ADSR for voice 1 . The ATTACK is the high
nybble of register 5 . Nybble is half a byte, in other words the lower 4 or
h igher 4 on/off locations (bits) in .each register . DECAY is the low nybble.
You can pick any number 0 through 1 5 for ATTACK, multiply it by 16 and
add to any number 0 through 1 5 for DECAY. The values that correspond
to these numbers a re listed below.

SUSTAIN level is the h igh nybble of register 6 . It can be 0 through 1 5 .
It defines the proportion of the peak volume that the SUSTAIN level wil l
be. RELEASE rate is the low nybble of register 6.

PROGRAMMING SOUND AND MUSIC 1 97

Here are the meanings of the values for ATTACK, DECAY, and RE­
LEASE :

VALUE ATTAC K RATE (TIME/CYCLE) DECAY/Re lEASE RATE (TIME/CYCLE)

0 2 ms 6 ms
1 8 ms 24 ms
2 1 6 ms 48 ms
3 24 ms 72 ms
4 38 ms 1 1 4 ms
5 56 ms 1 68 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 1 00 ms 300 ms
9 250 ms 750 ms

10 500 ms 1 . 5 s
1 1 800 ms 2 . 4 s
1 2 1 s 3 s
1 3 3 s 9 s
1 4 5 s 1 5 s
1 5 8 s 24 s

Here are a few sample settings to try in your example program . Try
these and a few of your own . The variety of sounds you can produce is
astounding ! For a viol in type sound, try changing l ine 20 to read :

20 POKES +5,88:POKES +6,89: REM A =5;D = 8;S =5; R = 9

Change the waveform to triang le a nd get a xylophone type sound by
using these l ines:

20 POKES +5,9: POKES+6,9: REM A =0;D = 9;S =0;R=9
70 POKES +4, 1 7
90 POKES +4, 1 6: FORT = 1 T050:NEXT

1 98 PROGRAMMING SOUND AND MUSIC

Change the waveform to square and try a piano type sound with these
l ines:

1 5 POKES +3,8 :POKES+2,0
20 POKES+5,9 :POKES+6,0: REM A =0;D = 9;S =0;R=0
70 POKES+4,65
90 POKES + 4,64:FORT = l T050:NEXT

The most exciting sounds are those uniq ue to the music synthesizer
itself, ones that do not attem pt to m im ic acoustic instruments . For
example try:

20 POKES +5 , 1 44:POKES+6,243 : REM A =9;D=0; S = 1 5; R=3

FILTERING

The harmon ic content o f a waveform can be changed by using a
fi lter . The S I D chip is equipped with three types of filtering . They can be
used separately or in combination with one another . Let's go back to the
sample program you've been using to play with a simple example that
uses a filter. There are several filter controls to set.

You add line 1 5 in the prog ram to set the cutoff frequency of the fi lter .
The cutoff frequency i s the reference point for the filter . You SET the high
and low frequency cutoff points in registers 21 and 22 . To turn ON the
filter for voice 1 , POKE register 23.

Next change l ine 30 to show that a high-pass filter wil l be used (see
the S ID register map) .

PROGRAMMING SOU ND AND MUSIC 1 99

EXAMPLE PROGRAM 5 (EXAMPLE 1 MODIFIED):

10 FORL=STOS+24 : POKEL , 8 : NEXT

1 5 PC�ES+22 , 1 28 POKES+2 1 , 0 : POKES+23 , 1
20 P�<ES+5 , 9 : POKES+6 , 0

JI2I POKE':::+24 ., 79

40 f;:EI"IDHF ., LF . ' [If;:
SCI I fCHF<8THEI �El m

68 POKES+ l , HF ; POKES , LF
7121 P OKE:::+4 ., ::;:J

80 FORT= 1 TODR NEXT

98 P OKES+4 , 32 : FOR T = I T050 : NEXT
1 1210 00T04121

1 1 121 DATA25 , 1 77 , 25C1 , 28 , 2 1 4 , 258

1 2121 DATA25 , 1 77 , 250 , 25 , 1 77 , 258

I JCI DATA25 , 1 77 , 1 25 , 28 , 2 1 4 , 1 25

1 40 DATA32 , 94 , 750 . 25 , 1 77 . 258

1 50 DATA28 , 2 1 4 . 25 0 , 1 9 , 63 , 250

1 60 D A TA 1 9 , 63 . 250 . 1 9 . 63 . 250

1 70 DATA2 1 . 1 54 . 6J , 24 , 6J , 63

1 80 DATA25 , 1 77 , 250 , 24 . 6J . 1 25

1 98 DATA I 9 . 6 3 , 250 . - 1 , - 1 , - 1

Try RUNning the program now. Notice the lower tones have had their
volume cut down . It makes the overal l qua l ity of the note sound tinny.
This is because you a re using a high-pass filter which attenuates (cuts
down the level of) freq uencies below the specified cutoff freq uency.

There a re th ree types of fi lters in your Commodore computer's SI D
ch ip . We have been using the h igh-pass fi lter . It wi l l pass a l l the fre­
q uencies at or above the cutoff, whi le attenuating the frequencies below
the cutoff.

o L1J (J) (J) « a.
f­Z ::::J o ::;; «

FREQUENCY

The SI D chip a lso has a low-pass fi lter . As its name implies, this fi lte r
wil l pass the frequencies below cutoff and attenuate those above .

200 PROGRAMMING SOU N D AND MUSIC

o w en en <t Q.
>­Z ::> a
:. <t

Final ly, the ch ip is equipped with a bandpass fi lter, which passes a
na r row band of frequencies a round the cutoff, and atten uates a l l
others.

o w en en <t Q.
>­Z ::> a
:. <t

FREQUENCY

The high- and low-pass fi lters can be combined to form a notch reiect

filter which posses frequencies away from the cutoff while attenuating
at the cutoff frequency.

o w en en <t Q.
>­Z ::> a :. <t

CUTOFF

FREQUENCY

PROGRAMMING SOU N D AND MUSIC 201

Register 24 determines which type fi lte r you want to use. This is in
add ition to reg ister 24's function as the overal l volume contro l . Bit 6
controls the hig h-pass fi lte r (0 = off, 1 = on) , bit 5 is the bandpass
fi lte r, and bit 4 is the low-pass fi lter. The low 3 bits of the cutoff fre­
quency a re determined by reg ister 2 1 (Lei) (Lei = 0 through 7). Whi le the
8 bits of the high cutoff frequency a re determined by register 22 (Hel)
(Hel = 0 through 255).

Through ca reful use of filter ing , you can change the ha rmonic struc­
ture of a ny waveform to get just the sound you want. In addition , chang­
ing the filte ring of a sound as i t goes through the ADSR phases of its l ife
can produce interesting effects .

ADVANCED TECHNIQUES

The S ID ch ip's pa rameters can be changed dynamical ly du ring a note
or sound to c reate many interesti ng and fun effects . In order to make
this easy to do, dig itized outputs from osci llator three and envelope
generator three a re avai lab le for you in reg isters 27 and 28, respec­
tively.

The output of osc i l lator 3 (reg i ste r 27) i s d i rectly related to the
waveform selected . I f you choose the sawtooth waveform of osci l l ator 3 ,
this reg ister wi l l present a series of numbers incremented (increased
step by step) from 0 to 255 at a rate determined by the frequency of
osci l lato r 3. If you choose the triang le waveform, the output wil l i ncre­
ment from 0 up to 255, then decrement (decrease step by step) back
down to o. If you choose the pulse wave, the output wi l l j ump back­
and-forth between 0 and 255 . F ina l ly, choosing the noise waveform wil l
g ive you a series of ra ndom numbers . When osci l lato r 3 is used for
modu lation , you usual ly do NOT want to hear its output. Setting bit 7 of
reg ister 24 turns the audio output of voice 3 off. Reg ister 27 a lways
reflects the chang ing output of the osci l l ator and is not affected in any
way by the envelope (ADSR) generator .

202 PROGRAMMING SOU ND AND MUSIC

Register 25 gives you access to the output of the envelope generator
of osci l lator 3. It functions in much the same fashion that the output of
osci l lator 3 does . The osci l lator must be turned on to produce any output
from this reg ister .

V ibrato (a rapid va riation in frequency) can be ach ieved by adding
the output of oscil lator 3 to the frequency of a nother osci l lator. Example
Program 6 i l lustrates this idea .

EXAMPLE PROGRAM 6:

1 121 �::; �:::5 4 ;��72

20 FORL=0T024 : POKES+L , O : NEXT

::::121 F'OKE:::+:: " :::

40 POKES+5 , 4 1 POKES+6 , 89

::;0 F·OI<E:::;'+- 1 4 ,. I I ?

60 f" 0 I<:E:::: + 1 :::: " 1 6

'7121 F'CWE ::: +;;-�4 , 1 43

::::121 p[FIDFr;: " IiI':
90 I FFP=0THENEND

1 D0 r:·m<E::: " - 4 ,. 65

1 1 0 FOPT'" 1 TO Df:::'+',?

1 20 F Q= FP�PEEK (S+2?) /2

1 30 H F = I NT (FQ/256) ' LF=FQAND255

1 40 POKES+0 , LF ' POKES+ l , HF

1 50 I',IE>:T

1 60 F'm<E::: + 4 , 64

1 7121 CiO T O :::O

500 DATA48 1 7 , 2 , 5 1 03 , 2 , 54 0? , 2

5 1 0 D A TA8583 , 4 , 5407 , 2 , 8583 , 4

520 DATA5407 , 4 , 8583 , 1 2 , 9634 , 2

5 3 0 DATA 1 0207 , 2 , 1 1218 1 4 , 2 , 8583 , 2

5 4 0 DATA9634 , 4 , 1 08 1 4 , 2 , 85S3 , 2

550 DATA9634 , 4 , 8583 , 1 2

560 DHTI"IO , 1j

Here is a l ine-by-l ine explanation of Example Program 6:

PROGRAMMING SOU N D AND MUSIC 203

LlNE-8Y-LiNE EXPLANATION OF EXAMPLE PROGRAM 6:

l ines(s)

1 0
20
30
40

50
60
70
80
90
1 00
1 1 0
1 20
1 30
1 40
1 50
1 60
1 70
500-550
560

Descr iption

Set S to beginn ing of sound ch ip .
Clear a l l sound ch ip locations .
Set h igh pulse width for voice 1 .
Set Attack/Decay for voice 1 (A= 2 , 0 = 9) .
Set Sustain/ Release for voice 1 (S = 5, R = 9) .
Set low frequency for voice 3 .
Set triangle waveform for voice 3 .
Set volume 1 5, turn off aud io output o f voice 3 .
Read frequency and duration of note.
If frequency equals zero, stop .
POKE sta rt pulse waveform control voice 1 .
Start timing loop for du ration .
Get new frequency us ing oscil lator 3 output.
Get high and low frequency.
POKE high and low frequency for voice 1 .
End of timing loop.
POKE stop pulse waveform control voice 1 .
Go back for next note .
Frequencies and durations for song .
Zeros signa l e nd o f song .

A wide va riety o f sound effects can also be ach ieved using dynamic
effects. For example , the fol lowing siren program dynamical ly changes
the frequency output of oscil lator 1 when it's based on the output of
osci l lator 3's triangu lar wave:

204 PROGRAMMING SOU ND AND MUSIC

EXAMPLE PROGRAM 7:
1 0 �:;::::5,;t;��?2
20 FORL=0T024 ' POKES+L , 0 NEXT

3D F'CW:E::::"f' 1 4 ., 5

40 PO I<E:::: + H:: ., 1 6
5�:1 F'Of<[::::+::;: ., :I.

6 121 F'O f<E::::: ·of';? 4 , 1 4 3

70 F'Of<E::::+6 ., �::40

:::: 121 F'OI<:C:::+A ., 6��;
90 FF:'�'�:5 :�::3�')

:l 121121 FOFT= 1 T02DD

1 1 0 FO=FR+F'E[K (S+ 27) +3 . 5

1 20 HF= I NT (FO/256) : LF=FQ- HF+256

1 3121 F'OKES+D , LF F'OKES+ :I. , HF

1 40 t·IE:'<T

1 '::;('1 r:'OI·<l::: ::::·t·24 , 0

Here is a l ine-by-l ine explanation of Example Program 7:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 7:

li ne(s) Descr iption

1 0 Set S to start of sound ch ip .
20 Clear sound ch ip registers .
30 Set low frequency of voice 3 .
40 Set triangu lar waveform voice 3 .
50 Set high pu lse width for voice 1 .
60 Set vo lume 1 5 , turn off audio output of voice 3 .
70 Set Sustain/Release for voice 1 (S= 1 5, R = O) .
80 POKE start pulse waveform control voice 1 .
90 Set lowest frequency for siren .
1 00 Begin timing loop.
1 1 0 Get new frequency using output of oscil lator 3 .
1 20 Get high and low frequencies.
1 30 POKE high and low frequencies for voice 1 .
1 40 End timing loop .
1 50 Tu rn off vo lume.

PROGRAMMING SOU ND A N D MUSIC 205

The noise waveform can be used to p rovide a wide range of sound
effects . This exam p le m i m ics a hand c l ap us ing a fi l tered no ise
waveform:

EXAMPLE PROGRAM 8:

10 ::::"" 54272

20 FORL=0T024 : POKES+L . 0 : NEXT

30 POKES+0 . 240 : �JKES+ l , 33
40 POKE::::+5 ., :::

50 POKE::::+;;-:;;-: .. 1 1214

613 F'OKE::::+23 ., 1

70 POKE�:+24 ., 79

:::0 FORt·�= 1 TO 1 5

91;) PCWE:::::+4 ., 1 29

1 00 FORT = I T0250 NEXT : POKES+4 .. 1 28

1 1 0 FORT� l T030 · NEXT : NEXT

1 20 F'Of'�E :::+24 .. (I

Here is a l ine-by-l ine explanation of Example Prog ram 8 :

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 8:

LI nets) Description

1 0 Set S to start of sound ch ip .
20 Clea r a l l sound chip reg isters .
30 Set h ig h and low frequencies for voice 1 .
40 Set Attack/Decay for voice 1 (A=O, 0 = 8) .
50 Set h igh cutoff frequency for filte r .
60 Turn on filter for voice 1 .
70 Set volume 1 5 , high-pass filte r .
80 Count 1 5 c laps .
90 Set sta rt noise waveform contro l .
1 00 Wait, then set stop noise waveform contro l .
1 1 0 Wait, then start next clap .
1 20 Turn off volume .

206 PROGRAMMING SOUND AND MUSIC

SYNCHRONIZATION AND
RING MODULATION

The 658 1 S ID ch ip lets you create more complex ha rmonic structures
through sync hron ization or ring modulation of two voices .

The process of synchron ization is bas ica l ly a logical ANDing of two
wave forms . When either is zero, the output is zero . The fo l lowing
example uses this process to create a n imitation of a mosquito:

EXAMPLE PROGRAM 9:

1 0 :=; �"54��?2
20 F O R L = O T024 ' POKES+L , 0 N E X T

:: :0 r:'OkE::;+ 1 .' 1 00

4 (1 P CWE:'O:-+·:: ., �: 1 9
:0121 PCWE:;:;+ 1 5 , :c:::;:
6 121 F'CW:E::;+24 , 1 ::':

7 0 F'CW E:::; +A , 1 �:)
;:::0 FORT"" 1. TOO:::Ot)O r'IE:'<T

90 r:.' Ci I<: 1,, ::::+ 4 , 1 ::::

1 80 FORT= l T0 1 000 NEXT : POKES+24 , O

Here is a l i ne-by- l ine explanation of Example Program 9:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 9:

l i nets)

1 0
20
30
40
50
60
70
80
90
1 00

Descr iption

Set S to start of sound ch ip .
C lear sound ch ip registers .
Set h igh frequency vo ice 1 .
Set Attack/Decay for voice 1 (A= 1 3 , D = 1 1) .
Set h i gh frequency voice 3 .
Set vo lume 1 5 .
Set sta rt triang le , sync waveform control for vo ice 1 .
T iming loop.
Set stop triang le , sync waveform control for voice 1 .
Wait, then turn off volume.

. ______ __ L-_____________________________ _____________________ �

The synchronization featu re is enabled (tu rned on) in l i ne 70, where
bits 0, 1 , and 4 of register 4 a re set. Bit 1 enables the sync ing function
between voice 1 and voice 3. Bits 0 and 4 have their usua l functions of
gating voice 1 and setti ng the triangu lar waveform .

PROGRAMMING SOU N D AND MUSIC 207

Ring modulation (accomplished for voice 1 by setting bit 3 of reg ister
4 in l ine 70 of the prog ram below) replaces the tria ngu lar output of
osci l l ator 1 with a " ring modulated" combination of osci l lators 1 and 3 .
This produces non-ha rmonic overtone structures for use i n mimicking bel l
or gong sounds. This program produces a clock ch ime imitation :

EXAMPLE PROGRAM 1 0;

1 [I ::;,,,, ::;.cf:;:: 7 :,

20 FORL:0T024 : POKES+l , 0 NEXT

:::121 rOf<E:::;+ 1 , 1 . 3(,1
40 PCW:E:::;+5 , :3
5121 p'm<ES+ 1 ::; ., ::::0

60 POI<:E:::·j-24 ., 1 :';

7 0 FORl= l T 0 1 2 : POKES+4 , 2 1

80 FORT= l T0 1 000 : NEXT POKES+4 , 20

90 FORT= l T 0 1 000 NEXT NEXT

Here is a l ine-by-l ine explanation of Example Program 1 0:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 1 0;

line(s) Descr i ption

1 0 Set S to start of sound ch ip ,
20 Clear sound ch ip registers .
30 Set high frequency for voice 1 .
40 Set Attack/Decay for voice 1 (A=O, D = 9) .
50 Set high frequency for voice 3 ,
60 Set volume 1 5 .
70 Count number of dings, set start triang le , ring

waveform control voice 1 .
80 T iming loop, set stop triang le , ring mod ,
90 Timing loop, next d ing .

mod

The effects ava i lab le through the use of the pa rameters of you r
Commodore 64's S ID ch ip a re numerous and va ried . Only through ex­
perimentation on your own wil l you ful ly appreciate the capabil ities of
your machine . The examples in this section of the Programmer's Refer­
ence Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORE COM­
PUTER for everything from simple fun and games to professiona l-type
musica l instruction .

208 PROGRAMMING SOU N D AND MUSIC

CHAPTER 5

BASIC TO
MACHINE

LANGUAGE
• What Is Mac h i n e La n g ua ge?

• How Do You Write Mac h i n e

La ng uage Prog ra ms?

• Hexa deci m a l Notation

• Add ressi ng Mod es

• I nd ex i n g

• S u b rout ines

• Usefu l T i ps for the Beg i n ne r

• Approach i ng a Large Task

• MCS65 1 0 Microprocessor I nstruction

Set

• Memory Ma n a gement on the

Commodore 64

• The K E RNAL

• K E RNAL Power-U p Activities

• Usi ng Mac h i ne La n g u a g e From

BASI C

• Commodore 64 Memory Map

209

WHAT IS MACHINE LANGUAGE?

At the h e a rt of every m ic rocomputer, is a centra l m ic roprocessor. It's

a very spec ia l m icroc h i p wh ich is the " b rain" of the com puter . The

Commodore 64 i s no excepti o n . Every microprocessor u n dersta nds its

own l a n g u a g e of i nst ruction s . These in structions a re c a l led mach ine lan­

g u a g e i nstruction s . To put i t m ore p recisely, mach ine l a n g u a g e is the

O N LY progra m m i n g l a n g u a g e that you r Com m odore 64 understa n d s . I t

is the NAT I V E language of the m a c h i n e .

I f m ach ine l a n g u a g e i s t h e on ly l a n g u a g e that t h e Com modore 64
understa n d s , then how does it understa n d the C BM BAS I C p rog ramming

l a n g u a g e ? C BM BAS I C i s NOT the mach ine l a n g u a g e of the Co mmodore

64 . What, then , m a kes the Com modo re 64 understa n d C BM BAS I C in­

structions l i ke P R I N T a n d GOTO?

To a n swer this q uestion , you m u st fi rst see what h a ppens ins ide yo u r

Com modore 64 . Apart from t h e microprocessor which is t h e bra in o f the

Com modore 64, there i s a m a c h in e l a n g u a g e p rog ram which is stored in

a spec i a l type of memory so fhat it can 't be c h a n g e d . And , more i m por­

tant ly, it does not d isappear when the Commodore 64 is turned off,

u n l i ke a p rog ram that you may h ave writte n . Th is mach ine l a n g u a g e

prog ram is c a l led t h e O PE RAT I N G SYSTEM o f the Commodore 64 . Your

Commodore 64 kn ows what to do when it's turned on bec a u s e i ts

OPERAT I N G SYSTEM (prog ram) is a utom atica l ly " R U N . "

2 1 0 BASIC TO MAC H I N E LANGUAGE

The O PE RATI N G SYSTEM is in cha rge of "org a n iz ing" a l l the me mory

in yo u r mach ine for va rious tasks . It a l so looks at what c h a racte rs yo u

type on the keyboa rd a n d p uts them onto the screen, p lus a whole

n u m ber of other functions . The O PERAT I N G SYSTEM c a n be thou g ht of

a s the "inte l l igence a n d persona l ity" of the Commodore 64 (or a ny com­

p uter fo r that matter) . So when you turn on you r Commodore 64, the

O P E RATI N G SYSTEM takes control of you r mach ine , and afte r it has

done its hou sework, it then says:

READY .

•

The OPERAT I N G SYSTEM of the Commodore 64 then a l lows you to

type on the keybo a rd , a n d use the b u ilt-in SCREEN E D ITOR on the Com­

modore 64. The S C R E E N E D ITOR a l lows you to move the c u rsor, DELete,

I N Se rt, etc . , and is, in fact, on ly one p a rt of t'he operating system that is

b u i lt in fo r you r conven ience .

Al l of the commands that a re ava i l a ble i n C BM BAS I C a re s im ply

reco g n i ze d by a nothe r huge machine l a n g u a g e p rog ram b u ilt into you r

Comm odore 64. Th is h u g e p rog ram " R U Ns" the a p propriate piece of

mach ine l a n g u a g e depend ing on which C BM BAS I C command is being

execute d . Th i s p rog ra m is ca l led the BAS I C I N T E R PRETE R , because i t

interprets each co m m a n d , one by one, u n less it encou nters a com mand

i t does not understa n d , a n d then the fa m i l iar message a p pears :

?SYNTAX E RROR

READY .
•

WHAT DOES MACHINE CODE LOOK LIKE?

You shou ld be fami l ia r with the PEEK and POKE commands in the C BM

BAS I C l a n g u a g e for c h a n g i n g me mory locatio n s . You've probably used

them for g ra p hics on the screen, and for sound effects . Each memory

location has its own n u m be r which ide ntifies it . Th is n um be r is known a s

t h e "addre ss" o f a memory location . I f y o u i m a g i ne t h e memory in the

Commodore 64 a s a street of bu i ld ings , then the n u m be r on each door

i s , of course, the ad d ress . Now l et's look at which p a rts of the street a re

used for what p u rposes .

BASIC TO MACH I N E LANGUAGE 2 1 1

SIMPLE MEMORY MAP OF THE COMMODORE 64

ADDRESS DESCRIPTION

o & 1 -65 1 0 Registers .

2 -Start of memory .
up to : -Memory used by the operating system .
1 023

1 024
up to:
2039

2040
up to:
2047

2048
up to:
40959

40960
up to :
491 5 1

491 52
up to :
53247

53248
up to:
53294

54272
up to:
55295

55296
up to:
56296

56320
up to:
57343

57344
up to:
65535

-Screen memory .

-SPR ITE pointers.

-This is YOUR memory. This is where your BAS IC or
machine language prog rams, or both, are stored .

-8K CBM BAS IC I nterpreter.

-Specia l prog rams RAM area .

-VIC-I I .

-SID Reg isters .

-Color RAM.

- I/O Registe rs . (6526's)

-SK CBM KERNAL Operating System .

2 1 2 BASIC TO MAC H I N E LANGUAGE

If you don't understand what the description of each part of memory
means right now, this wil l become c lear from other parts of this manua l .

Machine language prog rams consist of instructions which may or may
not have operands (parameters) associated with them . Each instruction
takes up one memory location, and any operand is conta ined in one or
two locations fol lowing the instruction .

I n your BAS IC prog rams, words l ike PR INT and GOTO do, in fact, on ly
take up one memory location, rather than one for each cha racter of the
word . The contents of the location that represents a particu lar BAS IC
keyword is ca l led a token . I n machine language, there are d ifferent
tokens for d ifferent instructions , which a l so take up just one byte (mem­
ory location = byte) .

Machine language instructions a re very s imple. Therefore, each indi­
vidua l instruction cannot achieve a g reat dea l . Machine language in­
structions either change the contents of a memory location, or change
one of the internal reg isters (special storage locations) inside the micro­
processor. The internal reg isters form the very basis of machine lan­
guage.

THE REGISTERS INSIDE THE 6S 1 0 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important reg ister in the microprocessor. Various ma­
ch ine language instructions a l low you to copy the contents of a memory
location into the accumu lator, copy the contents of the accumu lator into
a memory location, mod ify the contents of the accumu lator or some
other register d i rectly, without affecting any memory. And the ac­
cumu lator is the only reg ister that has instructions for performing math.

THE X INDEX REGISTER

This is a very important reg ister . There a re instructions for nea rly all of
the transformations you can make to the accumu lator . But there a re
other instructions for things that only the X reg ister can do. Various ma­
ch ine language instructions a l low you to copy the contents of a memory
location into the X register , copy the contents of the X reg ister into a
memory location, and mod ify the contents of the X , or some other regis­
ter d i rectly.

BASIC TO MAC H I N E LANGUAGE 2 1 3

THE Y INDEX REGISTER

This is a very important register . There are instructions for nea rly all of
the transformations you can make to the accumulator, and the X reg is­
ter. But there are other instructions for th ings that on ly the Y register can
do . Various machine language instructions a l low you to copy the con­
tents of a memory location into the Y register, copy the contents of the Y
register into a memory location, and modify the contents of the Y, or
some other reg i ste r d i rectly.

THE STATUS REGISTER

This register consists of eight "flags'· (a flag = someth ing that indi­
cates whether someth ing has, or has not occu rred) .

THE PROGRAM COUNTER

This conta ins the address of the current machine language instruction
being executed . Since the operating system is a lways "RUN"ning in the
Commodore 64 (or, for that matter, a ny computer) , the program counter
i s a lways changing . It could on ly be stopped by ha lting the microproces­
sor in some way.

THE STACK POINTER

This reg ister conta ins the location of the first empty p lace on the stack.
The stack is used for tempora ry storage by mach ine language pro­
grams , and by the computer .

THE INPUT/OUTPUT PORT

This reg ister appears at memory locations 0 (for the DATA D I R ECTION
REGISTER) and 1 (for the actual PORT) . It is an 8-bit input/output port.
On the Commodore 64 this register i s used for memory management, to
a l low the ch ip to control more than 64K of RAM and ROM memory.

The deta i l s of these reg isters are not g iven here . They are explained
as the principles needed to explain them are explained .

H OW D O Y O U W R I T E MAC H I N E LA N ­
GUAGE PROGRAMS?

Since machine language prog rams reside in memory, and there is no
fac i l ity in your Commodore 64 for writing and editing machine language

2 1 4 BASIC TO MAC H I N E LANGUAGE

programs, you must use either a program to do this, or write for yourself
a BASIC prog ram that "a l lows" you to write machine language .

The most common methods used to write mach ine language pro­
g rams a re assembler progams . These packages a l low you to write ma­
chine language instructions in a standardized mnemonic format, which
makes the machine language prog ram a lot more readable than a
stream of numbers ! let's review: A prog ram that a l lows you to write
machine language prog rams in mnemonic format is ca l led an assem­

bler. I nc identa l ly, a prog ram that d isplays a machine language pro­
g ram in mnemonic format is ca l led a disassembler . Avai lable for your
Commodore 64 is a machine language monitor ca rtr idge (with a ssem­
bler/ disassembler, etc .) made by Commodore:

64MON

The 64MON cartridge avai lab le from your local dealer, is a prog ram
that a l lows you to escape from the world of CBM BAS IC , into the land of
machine language . It can d isp lay the contents of the internal registers in
the 65 1 0 microprocessor, and it a l lows you to display portions of mem­
ory, and change them on the screen, using the screen editor . It a l so has
a bui lt-in assembler and disassembler, as well as many other features
that a l low you to write and edit machine language programs easily. You
don't HAVE to use an assembler to write machine language, but the task
is considerab ly easier with it. If you wish to write machine language
programs , it is strongly suggested that you purchase on assembler of
some sort. Without on assembler you wil l probably have to "POKE" the
machine language prog ram into memory, which is tota l ly unadvisable .
Th is manual wil l g ive its examples in the format that 64MON uses , from
now on . Nearly all assembler formats are the same, therefore the ma­
chine language examples shown wi l l a lmost certain ly be compatible
with any assembler . But before explaining any of the other features of
64MON, the hexadecima l numbering system must be explained .

HEXADECIMAL NOTATION

Hexadecimal notation i s used by most machine language prog ram­
mers when they ta lk about a number or address in a machine language
prog ra m .

Some assemblers let you refer to addresses a n d numbers i n decimal
(base 1 0) , b inary (base 2) , or even octa l (bose 8) as wel l as hexadeci-

BASIC TO MAC H I N E LANGUAGE 2 1 5

mal (base 1 6) (or just "hex" as most people say) . These assemblers do
the conversions for you .

Hexadecima l probably seems a l ittle hard to g rasp a t fi rst, but l ike
most th i�gs, it won't take long to master with practice .

By looking at dec imal (base 1 0) numbers, you can see that each dig it
fa l l s somewhere in the range between zero and a number equa l to the
base less one (e. g . , 9) . TH IS IS TRUE OF ALL NUMBER BASES. B inary
(base 2) numbers have dig its ranging from zero to one (wh ich is one less
than the base). S imi la rly, hexadecimal numbers should have dig its rang­
ing from zero to fifteen, but we do not have any s ing le d ig it figures for
the num bers ten to fifteen, so the fi rst six letters of the a lphabet are
used instead:

DECIMAL H EXADECIMAL

0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

2 1 6 BASIC TO MACH I N E LANGUAGE

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

1 0

BINARY

00000000
0000000 1
000000 1 0
000000 1 1
00000 1 00
00000 1 0 1
00000 1 1 0
00000 1 1 1
0000 1 000
0000 1 00 1
0000 1 0 1 0
0000 1 0 1 1
0000 1 1 00
0000 1 1 0 1
00001 1 1 0
0000 1 1 1 1
000 1 0000

Let's look at it another way; here's an example of how a base 1 0
(decimal number) is constructed:

Base raised by
increasing powers:

Equals : 1 000 1 00 1 0

Consider 4569 (base 1 0) 4 5 6 9
= (4 X 1 000)+ (5 X 1 00) + (6 X 1 0) + 9

Now look a t an example of how a base 1 6 (hexadec imal number) is
constructed:

Base raised by
inc reasing powers:

Equals : 4096 256 1 6

Consider 1 1 D9 (base 1 6) D 9
= 1 x 4096 + 1 X 256 + 1 3 X 1 6+9

Therefore, 4569 (base 1 0) = 1 1 D9 (base 1 6)
The range for addressable memory locations is 0-65535 (as was

stated earl ier) . This range is therefore O-FFFF in hexadecimal notation .
Usua l ly hexadecimal numbers are prefixed with a dol lar sign ($) . This

is to d istinguish them from decimal numbers. Let's look at some "hex"
numbers, using 64MON, by d isplaying the contents of some memory by
typing :

SYS 8*4096
B *

(or SYS 1 2*4096)

PC SR AC XR YR SP
. ; 0401 32 04 5E 00 F6 (these m a y be d ifferent)

Then if you type in :

. M 0000 0020 (and press '@i@I).
you wi l l see rows of 9 hex numbers . The first 4-d igit number is the ad­
dress of the first byte of memory being shown in that row, and the other
eight numbers a re the actual contents of the memory locations begin­
ning at that start address .

You should rea l ly try to learn to "think" in hexadecima l . It's not too
d ifficu lt, because you don't have to think about converting it back into

BASIC TO MACH I N E LANGUAGE 2 1 7

decima l . For example, if you said that a pa rticu la r va lue is stored at
$ 1 4ED instead of 5357, it shou ldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION

LDA - LOAD THE ACCUMULATOR

I n 65 1 0 assembly language, mnemonics a re always th ree characters .
LDA represents " load a cc u m u l ator with . . . , " and what the ac­
cumu lator should be looded with is decided by the pa rameter(s) asso­
ciated with that instruction . The assembler knows which token is repre­
sented by each mnemonic, and when it "assembles" an instruction, it
s imply puts into memory (at whatever address has been specified), the
token, and what para meters, a re given . Some assemblers g ive error
messages, or warnings when you try to assemble something that either
the assembler, or the 65 1 0 microprocessor, cannot do .

If you put a "#" symbol in front of the parameter associated with the
i nstruction , this means that you want the reg ister specified in the instruc­
tion to be loaded with the "va l ue" after the "# ." For example :

LDA #$05 �
This i nstruction wil l put $05 (dec imal 5) i nto the accumu lator register .
The assembler wi l l put into the specified address for th is in struction , $A9
(wh ich is the token for this particu lar i nstruction , in this mode), and it wi l l
put $05 into the next location after the location conta in ing the i nstruction
($A9) .

If the parameter to be used by an in struction has "#" before it; i . e . ,
the parameter i s a "va lue," rather than the contents o f a memory loca­
tion , or a nother register, the instruction is said to be in the " immediate"
mode. To put this i nto perspective , let's compare this with a nother
mode:

If you want to put the contents of memory location $ 1 02E i nto the
accumu lator, you're us ing the "absolute" mode of i nstruction :

LDA $ 1 02E

The assembler can d isti ng uish between the two d ifferent modes because
the latter does not have a "#" before the parameter . The 65 1 0 micro­
processor can di stingu ish between the immediate mode, and the abso­
l ute mode of the LDA instruction , because they have s l ightly different
tokens . lOA (immediate) has $A9 as its token, and lOA (absol ute) , has
$AD as its token .

2 1 8 BASIC TO MAC H I N E LANGUAGE

The m nemonic representing a n i n struction usua l ly im pl ies what it
does . For i nsta nce, if we consider a nother instruction, LOX, what do you
think this does?

If you said " load the X register with . . . ," go to the top of the c lass .
I f you didn't , then don't worry, learn ing mach ine language does take
patience, and cannot be learned in a day.

The various internal registers can be thought of as special memory
locations, because they too can hold one byte of i nformatio n . It is not
necessary for us to expla in the b inary numbering system (base 2) s ince it
fol lows the same ru les as outl ined for hexadecimal and decimal outl ined
previously, but one "bit" is one b inary digit and eight bits make up one
byte ! This means that the maximum number that can be contained in a
byte is the largest number that a n eight d ig it b inary n umber can be. This
n umber is l l l l l l l l (b inury), which equals $FF (hexadecimal) , which
equals 255 (dec ima l) . You have probably wondered why only numbers
from zero to 255 could be put into a memory location . I f you try POKE
7680,260 (wh ich is a BAS IC statement that "says": "Put the number two
hundred and sixty, into memory location seven thousand , six hundred
and eig hty," the BAS IC interpreter knows that only numbers 0 - 255 can
be put in a memory location, and you r Commodore 64 wi l l reply with :

?I LLEGAL QUANTITY E RROR

READY .
•

If the l imit of one byte is $FF (hex), how is the address parameter in the
absolute instruction " LOA $ 1 02E" expressed in memory? It's expressed in
two bytes (it won't fit into one, of course) . The lower (r ightmost) two
dig its of the hexadec imal address form the " low byte" of the address,
and the upper (leftmost) two d ig its form the "high byte . "

The 65 1 0 requ i res any add ress to be specified with its low byte fi rst,
and then the h igh byte . This means that the instruction "LOA $ 1 02E" is
represented in memory by the th ree consecutive values :

$AD, $2E , $ 1 0

Now a l l you need to know is one more instruction and then you can write
your first prog ra m . That in struction is BRK . For a fu l l explanation of this
instruction, refer to M .O . S . 6502 Pro g ra m m i n g M a n ua l . But right now,
you can think of it as the END instruction in machine language .

BASIC T O MAC H I N E LANGUAGE 2 1 9

If we write a prog ram with 64MON and put the BRK instruction at the
end, then when the program is executed, it wi l l return to 64MON when it
is fin ished. This might not happen if there is a mistake in your program,
or the BRK instruction i s never reached (just l ike an END statement in
BAS IC may never get executed) . Th is means that i f the Commodore 64
didn't have a STOP key, you wouldn't be able to abort you r BAS IC pro­
g rams !

WRITING YOU R FIRST PROGRAM

If you've used the POKE statement in BAS IC to put cha racters onto the
screen, you're aware that the character codes for POKEing are different
from CBM ASC I I character va lues. For example, if you enter:

PRINT ASC("A") (and press '@'WM

the Commodore 64 wil l respond with :

65

READY .
•

However, to put an "A" onto the screen by POKEing, the code is 1 ,
enter:

to c lear the screen

PO KE 1 024, 1 : POKE 55296, 1 4 (and '@";!I') (1 024 is the sta rt
of screen memory)

The "P" in the POKE statement should now be an "A."
Now let's try th is in machine language. Type the fol lowing in 64MON :

(Your cu rsor should be flashing a longside a " . " r ight now.)

.A 1 400 LDA #$01 (and press '@'i;lIM
220 BASIC TO MAC H I N E LANGUAGE

The Commodore 64 wil l prompt you with:

.A 1 400 A9 01

.A 1 402 •

Type:

.A 1 402 STA $0400

LOA #$01

(The STA instruction stores the contents of the accumu lator in a specified
memory location .)
The Commodore 64 wil l prompt you with:

.A 1 405 •

Now type i n :

. A 1 405 LOA #$OE
.A 1 407 STA $0800
.A 1 40A BRK

Clear the screen , and type:

G 1 400

The G should turn into an "A" if you've done everything correctly .
You have now written your first machine language program . Its pur­

pose is to store one cha racter ("A") at the first location in the screen
memory. Having ach ieved th is, we must now explore some of the other
instructions, and pr inciples.

ADDRESSING MODES

ZERO PAGE

As shown earl ier, absolute addresses are expressed in terms of a h igh
and a low order byte . The h igh order byte is often referred to as the
page of memory. For example, the address $ 1 637 i s in page $ 1 6 (22),
and $0277 i s in page $02 (2) . There is , however, a special mode of
add ressing known as zero page addressing and is , as the name impl ies,
associated with the addressing of memory locations in page zero . These

BASIC TO MAC H I N E LANGUAGE 2 2 1

addresses , therefore, ALWAYS have a h igh order byte of zero . The zero
page mode of addressing on ly expects one byte to describe the ad­
d ress, rather than two when us ing a n absolute address . The zero page
addressing mode tel ls the microprocessor to a ssume that the h igh order
address is zero . Therefore zero page addressing can reference memory
locations whose addresses are between $0000 and $OOFF . This may not
seem too important at the moment, but you'l l need the principles of zero
page addressing soon .

THE STACK

The 65 1 0 microprocessor has what is known as a stack . This is used
by both the prog rammer a nd the microprocessor to tempora ri ly re­
member th ings , and to remember , for example , an order of events . The
GOSUB statement i n BAS IC , which a l lows the prog rammer to ca l l a s ub­

routine , must remember where it is being ca l led from , so that when the
RETURN statement is executed in the subroutine , the BAS IC interpreter
"knows" where to go back to conti n ue executing . When a GOSU B
statement i s encountered in a program b y the BAS IC interpreter , the
BAS IC interpreter "pushes" its cu rrent position onto the stack before
going to do the subroutine , and when a RETURN is executed , the in­
te rpreter "pu l ls" off the stack the information that te l l s it where it was
before the subroutine ca l l was made . The interpreter uses instructions
l ike PHA, which pushes the contents of the acc umu lator onto the stack,
and PLA (the reverse) which pul ls a va lue off the stack and into the
accumu lator . The status reg iste r can a l so be pushed and pu l led with the
PHP and PLP, respectively.

The stack is 256 bytes long , and is located in page one of memory . It
is therefore from $0 1 00 to $01 FF. It is organized backwards in memory.
In other words , the fi rst position i n the stack is at $0 1 FF , and the last is
at $0 1 00. Another reg ister in the 65 1 0 microprocessor is ca l led the stack

pointer, and it a lways points to the next ava i lable location in the stock .
When something is pushed onto the stack, i t is p laced where the stack
pointer points to , and the stack pointer is moved down to the next posi­
tion (decremented) . When someth ing is pu l led off the stock, the stack
pointer is incremented , and the byte pointed to by the stack pointer is
placed into the specified register .

222 BASIC TO MAC H I N E LANGUAGE

Up to this point, we have covered immediate, zero page, and abso­
l ute mode instruction s . We have also covered , but have not rea l ly ta lked
about, the "implied" mode. The impl ied mode means that information is
impl ied by an instruction itself. In other words, what registers, flags ,
and memory the instruction i s referring to . The examples we have seen
are PHA, PLA, PHP, and PLP, which refer to stack processing and the
accumu lator and status registers, respectively.

NOTE: The X register will be referred to os X from now on, and similarly A (ac­

cumulator), Y (Y index register), 5 (stock pointer), and P (processor status).

INDEXING

I ndexing plays a n extremely important part in the runn ing o f the 65 1 0
mic roprocessor . It can be defined a s "creating a n actual address from a
base address p lus the contents of either the X or Y index registers . "

Fo r example, i f X contains $05, a nd the microprocessor executes a n
LDA instruction in the "absolute X indexed mode" with base add ress
(e. g . , $9000), then the actual location that is loaded into the A reg ister
is $9000 + $05 = $9005. The m nemonic format of an absolute i ndexed
instruction is the same as an absolute in struction except a " ,X" or ", Y"
denoting the index is added to the add ress .

EXAMPLE:

LOA $9000,X

There a re absolute indexed , zero page indexed , indirect indexed ,
a nd i ndexed i nd i rect modes of add ress ing ava i lab le on the 65 1 0
microprocessor.

INDI RECT INDEXED

This on ly a l lows usage of the Y register as the index. The actua l ad­
d ress can only be in zero page, and the mode of i n struction is ca l led
indirect because the zero page address specified in the instruction con­
tains the low byte of the actua l address, and the next byte to it conta ins
the high o rder byte.

BASIC TO MACH I N E LANGUAGE 223

EXAMPLE:

Let us suppose that location $02 conta ins $45, and l ocation $03 con­
tains $ 1 E . If the instruction to load the accumu lator in the ind irect inde­
xed mode is executed and the specified zero page address is $02 , then
the actual address wil l be:

Low order = contents of $02
H igh order = contents of $03
Y reg ister = $00

Thus the actua l address = $ 1 E45 + Y = $ 1 E45 .
The title of this mode does in fact imply an indirect principle, a lthough

th is may be difficu lt to grasp at fi rst s ight. Let's look at i t another way:
"I am go ing to de l ive r this lette r to the post office at add ress

$02 , MEMORY ST . , and the address on the letter is $05 houses past
$ 1 600, MEMORY street." This is equiva lent to the code:

LOA #$00
STA $02
LOA #$ 1 6
STA $03
LOY #$05
LOA ($02),Y

- load low order actua l base address
- set the low byte of the ind i rect address
- load h igh order ind i rect address
- set the h igh byte of the ind i rect address
- set the ind i rect i ndex (Y)
- load ind i rectly i ndexed by Y

INDEXED INDIRECT

I ndexed ind irect only a l lows usage of the X reg ister as the index. This
is the same as indirect indexed , except it is the zero page address of the
pointer that is indexed , rather than the actua l base address . Therefore,
the actua l base address IS the actua l address because the index has
a l ready been used for the ind irect. I ndex ind irect would a lso be used if

224 BASIC TO MAC H I N E LANGUAGE

a table of ind i rect pointers were located in zero page memory, and the
X reg ister could then specify which ind irect pointer to use.

EXAMPLE :

Let us suppose that location $02 conta ins $45, and location $03 con­
tains $ 1 0. If the instruction to load the accumulator i n the indexed indi­
rect mode is executed and the specified zero page address is $02, then
the actual address wil l be:

Low o rder
High o rder
X register

contents of ($02 + X)
contents of ($03 + X)
$00

Thus the actual pointer is i n = $02 + X = $02 .
Therefore, the actual address is the indirect address conta ined in $02

which is again $ 1 045.
The title of this mode does in fact imply the pr inciple, a lthough it may

be- d ifficult to g rasp at first sight. Look at it this way:
"I am going to deliver this letter to the fou rth post office at add ress

$02 ,MEMORY ST . , and the address on the letter will then be delivered to
$ 1 600, MEMORY street." This is equivalent to the code:

LOA #$00
STA $06
LOA #$ 1 6
STA $07
LOX #$04
LOA ($02 ,X)

- load l ow order actual base add ress
- set the l ow byte of the i nd i rect address
- load h igh order i nd i rect address
- set the h igh byte of the i nd i rect address
- set the i nd i rect i ndex (X)
-load i nd i rectly i ndexed by X

NOTE: Of the two indirect methods of addressing , the first (indirect indexed) is far

more widely used .

BASIC TO MAC H I N E LANGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the abi l ity to
test, and detect certain cond itions , in a smi l iar fashion to the " I F .
THEN , I F . . . GOTO" structure in CBM BAS IC .

The various fla gs in the status reg ister are affected by different in­
structions in different ways. For example , there is a flag that is set when
an instruction has caused a zero result , and is reset when a result is not
zero . The instruction :

LOA #$00

wil l cause the zero res u lt fla g to be set, because the instruction has
resu lted in the accumu l ator conta in ing a zero.

There are a set of instructions that wil l , g iven a particu lar condition ,
branch to another part of the prog ram . An example of a branch instruc­
tion is BEQ, which means B ra nc h if res ult EQual to zero . The branch
instructions bra n c h if the condition is true, and if not , the prog ram con­
tinues onto the next instruction , as if nothing had occurred . The branch
instructions brdnch not by the result of the previous in struction(sl, but by
internal ly examin ing the status reg ister . As was just mentioned , there is
a zero result fla g in the status registe r . The BEQ instruction branches if
the zero result flag (known as Z) is set. Every branch instruction has an
opposite branch instruction . The BEQ instruction has an opposite instruc­
tion BNE , which means Branch o n result Not Equal to zero (i . e . , Z not
set) .

The index registers have a number of associated instructions which
mod ify their contents . For example, the INX instruction INcrements the X
index reg iste r . If the X reg ister contained $FF before it was incremented
(the maximum number the X reg ister can conta in) , it will "wrap a round"
back to zero . If you wanted a prog ram to continue to do something IJntil
you had performed the increment of the X index that pushed it a round
to zero, you could use the BNE instruction to continue " looping" around,
unti l X became zero .

The reverse of INX , is DEX, which is DEcrement the X index reg ister . If
the X index register is zero, DEX wraps around to $FF . S imi la r ly, there
are INY and DEY for the Y index reg iste r .

226 BASIC TO MAC H I N E LANGUAGE

But what if a prog ram did n't want to wait until X or Y had reached (or
not reached) zero? Wel l there a re comparison instructions, CPX and
CPY, wh ich a l low the mach ine language progra mmer to test the i ndex
registers with specific va lues, or even the contents of memory locations .
If you wanted to see i f the X reg ister contained $40, you would use the
instruction :

CPX #$40
BEQ
(some other
part of the
program)

- compa re X with the "va lue" $40.
- branch to somewhere e lse i n the

program, if this condition is "true ."

The compa re, and branch instruction s play a major part i n any mach ine
language prog ra m .

The operand specified in a branch instruction when using 64MON is
the address of the part of the program that the branch goes to when the
proper conditions a re met. However, the operand is on ly an offset,

which gets you from where the program currently is to the address spec­
ifled . This offset is just one byte, and therefore the range that a branch
instruction can branch to is l im ited . It can branch from 1 28 bytes back­
ward , to 1 27 bytes forward .

NOTE : This is a total range of 255 bytes which is , of course, the m aximum range ot

values one byte can conta i n .

64MON wil l te l l you if you "branch out of range" by refus ing to "as­
semble" that pa rticu lar instruction . But don't worry about that now be­
cause it's un l ikely that you wi l l have such branches for q uite a whi le . The
branch i s a "qu ick" instruction by machine language standards because
of the "offset" pr inc iple as opposed to an absolute address . 64MON
a l lows you to type in an a bsolute address, and it calculates the correct
offset. This is just one of the "comforts" of us ing an assembler .

NOTE: It i s N O T possible t o cover every single branch instructio n . F o r further informa­

tion, refer to the Bibliography section in Appendix F.

BASIC TO MAC H I N E LANGUAGE 227

SUBROUTINES

I n machine language (in the same way as us ing BASIC) , you can ca l l
subroutines . The instruction to ca l l a subroutine is JSR (Jump to Sub­
Routine), followed by the specified absolute address .

I ncorporated in the operating system, there is a machine language
subroutine that wi l l PR INT a character to the screen. The CBM ASCI I
code o f the character should be in the accumulator before cal l ing the
subroutine . The address of this subroutine i s $ FFD2.

Therefore, to print "H I " to the screen, the fol lowing program should
be entered:

.A 1 400 LOA . #$48

.A 1 402 JSR $FF02

.A 1 405 LOA #$49

.A 1 407 JSR $FF02

.A 1 40A LOA #$00

.A 1 40C JSR $FF02

.A 1 40F BRK

.G 1 400

- load the CBM ASCI I code of "H"
- print it
- load the C BM ASC I I code of " I"
- print that too
- print a carriage return as wel l

- return to 64MON
- wi l l print "HI" and return to 64MON

The "PR INT a character" routine we have just used is part of the
KERNAL jump ta ble . The instruction s imi lar to GOTO in BAS IC is JMP,
which means JuMP to the specified a bsolute address . The KERNAL is a
long l ist of "standard ized" subroutines that control ALL input and output
of the Commodore 64 . Each entry in the KERNAL JMPs to a subroutine in
the operating system . This " jump table" is found between memory loca­
tions $FF84 to $FFF5 in the operating system . A ful l explanation of the
KERNAL is avai lable in the "KERNAL Reference Section" of this manua l .
However, certa in routines a re used here to show how easy and effective
the KERNAL i s .

Let's now use the new principles you've just learned in another pro­
g ram . It wi l l help you to put the instructions into context:

228 BASIC TO MAC H I N E LANGUAGE

This prog ram wil l display the a lphabet using a KERNAL routine . The
on ly new instruction introduced here is TXA Transfer the contents of the X
i ndex reg i ster, into the Acc u m u la tor .

. A 1 400 LOX #$4 1

.A 1 402 TXA
.A 1 403 JSR $FF02
.A 1 406 INX
.A 1 407 CPX #$5B
.A 1 409 BNE $ 1 402
.A 1 40B BRK

- X = CBM ASCI I of "A"
- A = X
- print character
- bump count
- have we gone past "Z" ?
- no, go back and do more
- yes, return to 64MON

To see the Commodore 64 print the a lphabet, type the fami l iar com­
mand :

. G 1 400

The comments that are beside the prog ram, explain the prog ram flow
and logic . If you a re writ ing a prog ram , write it on paper fi rst, and then
test it i n sma l l parts if poss ib le .

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language i s to look a t other
peoples' machine language programs . These a re pub l ished all the time
in magazines and newsletters . Look at them even if the a rticle is for a
d ifferent computer, which a lso uses the 65 1 0 (or 6502) microprocessor .
You should make sure that you thoroughly understa nd the code that you
look at. This will require perseverence, especial ly when you see a new
techn ique that you have never come across before . This can be infu riat­
ing , but if patience prevai l s , you will be the victor .

Having looked at other machine language prog rams, you MUST write
your own . These may be utilities for your BAS IC prog rams, or they may
be an a l l machine language program .

BASIC TO MAC H I N E LANGUAGE 229

You should a lso use the utilities that a re avai lab le, either I N your
computer, or in a prog ra m , that aid you in writing , editing, or tracking
down e rrors in a machine language prog ram . An example would be the
KERNAL, which a l lows you to check the keyboard , print text, control
peripheral devices l ike d isk d rives, printers , modems, etc . , manage
memory and the screen . It i s extremely powerful and i t i s advised
strongly that it is used (refer to KERNAL section , Page 268).

Advantages of writing prog rams in machine language:

1 . Speed - Mach ine l a nguage is h u ndreds , and in some cases
thousands of t imes faster than a h igh level language such as
BAS IC .

2 . Tightness -A machine language program can be made tota l ly
"watertight," i . e . , the user can be made to do ONLY what the
program a l lows, and no more . With a high level language, you
a re relying on the user not "crashing" the BAS IC interpreter by
ente ring , for example, a zero which later causes a :

?DIVISION BY ZERO ERROR IN LIN E 830

READY .

•

In essence, the computer can only be maximized by the machine lan­
guage prog ra m mer .

APPROACHING A LARGE TASK

When a pproach ing a la rge ta sk in mach ine language, a certa in
amount of subconscious thought has usual ly taken place. You think
about how certa in processes a re carried out in machine language .
When the task is started, i t is usua l ly a good idea to write i t out on
paper . Use block d iagrams of memory usage, functiona l modules of
code required , and a program flow. Let's say that you wanted to write a
roulette game in machine language . You could outl ine it someth ing l ike
this :

230 BASIC TO MAC H I N E LANGUAGE

• Display title
• Ask if player requ i res instructions
• YES-display them-Go to START
• NO-Go to START
• START I nitia l ize everyth ing
• MAI N display roulette table
• Take in bets
• Spin wheel
• Slow wheel to stop
• Check bets with resu lt
• I nform player
• Player any money left?
• YES-Go to MAIN
• NO- Inform user ! , a nd go t o START

This is the main outl ine . As each modu le is approached, you can
break i t down further . If you look at a la rge indigestable problem as
someth ing that can be broken down into sma l l enough pieces to be
eaten , then you'l l be able to approach someth ing that seems impossible,
and have it a l l fa l l into place.

This process only improves with practice , so KEEP TRY ING.

BASIC T O MACH I N E LANGUAGE 2 3 1

ADC

AN D

ASL

sec
BCS

BEQ

BIT

BM I

BNE

BP L

B R K

BVC

BVS

CLC

CLD

C L I

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

I NC

I NX

I N Y

JMP

MCS65 1 0 MICROPROCESSOR

Add Memory to Accumulator with Carry

"AN D" Memory with Accumulator

Shift Left O ne Bit (Memory or Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator

Branch on R esult M inus

Branch on Result not Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry F lag

Clear Decimal M ode

Clear I nterrupt D isable B i t

Clear Overflow F lag

Compare Memory and Accumu lator

Compare Memory and I ndex X
Compare Memory and I ndex Y

Decrement Memory by One

Decrement I ndex X by One

Decrement I ndex Y by One

" E xclusive-Or" Memory with Accumu lator

I ncrement Memory by One

I ncrement I ndex X by O ne

I ncrement I ndex Y by O ne

Jump to New Location

232 BASIC TO MACH I N E LANGUAGE

INSTRUCTION SET-ALPHABETIC SEQUENCE

JSR

LOA

LOX

LOY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBe

SEe

SEO

SE I

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Jump to New Location Saving R eturn Address

Load Accumulator with Memory

Load I ndex X with Memory

Load I ndex Y with Memory

Shift R ight One Bit (Memory or Accumulator)

No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack

Pul l Accumulator from Stack

Pul l Processor Status from Stack

Rotate One Bit Left (Memory or Accumu lator)

R otate One Bit R ight (Memory or Accumulator)

Return from I nterrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow

Set Carry F lag

Set Decimal Mode

Set I nterrupt D isable Status

Store Accumulator in Memory

Store I ndex X i n Memory

Store I ndex Y in Memory

Transfer Accumulator to I ndex X
Transfer Accumulator to I ndex Y
Transfer Stack Pointer to I ndex X
Transfer I ndex X to Accumulator

Transfer I ndex X to Stack Pointer

Transfer I ndex Y to Accumulator

BASIC TO MACHINE LANGUAGE 233

The f o l l ow i n g n o t a t i o n app l i es t o t h i s s ummary :

A Accumu l a t o r

X , y Index Re g i s t e r s

M Memo r y

P P r o c e s s o r S t a t us Reg i s t e r

S S t ack P o i n t e r

I Change

No Change

+ Add

f\ Log i c a l AND

S ub t r a c t

V- Log i c a l Exc l u s ive O r

t T r an s f e r f r om S t a c k

.. T rans f e r t o S t a c k

-+ Trans f e r t o

+ Transfer from
V Lo g i c a l O R

P C P r o g r am Coun t e r

P CH P r ogram Coun t e r H i gh

P C L P r o g r am Coun t e r Low

OPER OP E RAND

II I MME D I ATE ADDRE S S I N G MODE

N o t e : At the t o p of e a c h t ab l e is l o c a t e d in p a r e n t h e s e s a

re f e rence numb e r (R e f : XX) wh i ch d i r e c t s t h e us e r t o

t h a t S e c t i on in t h e MC S 6 5 00 M i c r o c omp u t e r Fam i l y

P r o g r amm i n g Man ua l in wh i ch t h e ins t r u c t ion i s d e f ined

and d i s c us s e d .

234 BASIC TO MACH I N E LANGUAGE

ADC
Ope r a t i on :

Add memory to acrumulator with carry

A + M + C � A , C

(R e f : 2 . 2 . 1)

Ad d re s s i ng Assemb l y Language OP
Mode Form CODE

1 1Tl!!le d i a t e ADC II Ope r 69

Ze ro Page ADC Op e r 6 5

Z e r o Page , X ADC Ope r , X 7 5

Ab s o l u t e ADC Oper 6D

Ab s o l u t e , X ADC Ope r , X 7 0

Ab s o l u t e , Y ADC Ope r , Y 7 9

(I n d i r e c t , X) ADC (Ope r , X) 6 1

(I nd i r e c t) , y ADC (Op e r) , Y 7 1

Add 1 i f page b o undary 1 s c ro s s e d .

AND "AND " memory with accumulator

Lo g i c a l AND t o t h e a c c umu l a t o r

Ope ra t i on : A A M � A

(R e f : 2 . 2 . 4 . 1)

Add r e s s i ng Assemb l y Language
Mode Form

I mmed i a t e AND II Op e r

Z e ro Page AND Ope r

Z e r o Page , X AND Ope r , X

Ab s o l u t e AND Ope r

Ab s o l u t e , X AND Ope r , X

Ab s o l u t e , Y AND Ope r , Y
(Ind i re c t , X) AND (Op e r , X)
(I nd i r e c t) , y AND (Ope r) , Y

• Add 1 i f page boundary is c ro s s e d .

OP
CODE

2 9

2 5

3 5

2 D

3 D

39

2 1

3 1

ADC
N i!- C I D V

1 1 1 - - 1

N o . N o .
By t e s C y c l e s

2 2

2 3

2 4

3 4

3 4 *

3 4 *

2 6

2 5 *

AND

N Z C I D V

1 1 - - - -

N o . N o .
By t e s C y c l e s

2 2

2 3

2 4

3 4

3 4 *

3 4 *

2 6

2 5

BASIC TO MAC H I N E LANGUAGE 235

ASL ASL Shifr Lefr One Bir (Memory or A ccumu/aror)

(Re f : 10 . 2)

Add re s s in g As semb l y Language
Mode Form

Ac cumu l a t o r ASL A

Z e r o Page ASL Ope r

Z e r o Page , X AS L Ope r , X

Ab so lute ASL Ope r

Ab s o l u t e , X ASL (lpe r , X

Bee
Ope rat ion :

Bee Brallch Oil Carry Clear
B ranch on C = 0

(Re f : 4 . 1 . 2 . 3)

Add re s s ing Assemb ly Language
Mode Form

Re l a t i ve BCC Ope r

* Add

* Add

if b ranch o c c u r s to s ame page .

i f b ranch occurs to d i f fe rent page .

Bes Bes Branch all carry ser

Ope ra t i on : Branch on C = I

(Ref : 4 . 1 . 2 . 4)

Addre s s ing Assemb ly Language

Mode Form

Re lat ive BCS Ope r

* Add i f b ranch occurs to same page .

* Add 2 i f b ranch occurs to next page .

236 BASIC TO MAC H I N E LANGUAGE

N .., C I D V

1 1 1 - - -

OP :-Jo .

CODE B y t e s

0A I

0 6 2

1 6 2

0E 3

IE 3

N iO C I D V

OP N o .

CODE B y t e s

90 2

N ;; C I D V

OP N O .

CODE B y t e s

B� 2

ASL

N o .

Cy c les

2

5
6

6

7

Bee

N o .

Cy c les

2 *

Bes

No .

Cy c l es

2*

BEQ BEQ Branch on result zero

Ope rat ion : B ranch on � N � C I D V

(Re f : 4 . 1 . 2 . 5)
Addr e s s ing As semb ly Language

Mode Form

Re lat i ve BEQ Oper

* Add 1 if b ran ch occurs t o same page .

* Add 2 i f b ranch occurs to n e x t page .

OP

CODE

F\1

BIT BIT Test bits in memory with accumulator

Ope rat ion : A A M, M7 � N , M6 � V

B i t 6 and 7 are t rans f e r re d to the s t atus reg i s t e r .

I f t h e result o f A f\ M i s z e ro t hen Z = 1 , o th e rvise

Z = \1

Addre s s i n g

Mode

Z e r o Page

Abs o l u t e

BMI

(Re f : 4 . 2 . 2 . 1)

As semb ly Language

Fo rm

B I T Ope r

B I T Oper

BMI Branch on result minus

OP

CODE

2 4

2 C

N o .

B y t e s

2

N o .

B y t e s

2

3

Ope rat ion : Branch on N = N � C I D V

(Re f : 4 . 1 . 2 . 1)

Add re s s ing Assemb ly Language OP No .

Mode Form CODE B y t e s

Relat i ve BMI Ope r 30 2

* Add i f b ranch occurs to s ame page .

* Add 2 i f b ranch occurs to d i ff e rent page .

BEQ

N o .

Cy c l e s

2 *

B IT

N o .

Cyc les

3

4

BMI

No .

Cyc le s

2 *

BASIC T O MAC H I N E LANGUAGE 237

BHE BNE Bran,.h UII resull nol :em

Ope r a t i on : B ranch on Z - 0

Add r e s s i ng
Mode

Re l a t ive

(Re f : 4 . 1 . 2 . 6)

As semb l y Language
Form

BNE Ope r

* Add

* Add

i f branch occurs to same page .

i f b ranch o c c u r s to d i f f erent page .

BPL BPL Branch 011 resull plus

O p e r a t i o n : B ranch on N - 0

(Re f : 4 . 1 . 2 . 2)

Add r e s s i n g Ass emb l y Language

Mode Form

Re l a t ive BPL Upe r

* Add

* Add

i f b ranch occurs to s ame page .

i f b ranch o c c u r s to d i f f e re n t page .

BRK BRK FurN Break

Op e r a t i on : F o r c e d I n t e r r u p t rc + 2 I r

(Re f : 9 . 1 1)

Address ing As sembly Language

Mode F o rm

Imp l i ed BRI<

N e C J 0 V

or N o .

CODE By t es

00 2

N e C I D V

or N o .

CODE By tes

10 2

N ;0; C o V

or No .

CODE By t e s

00 1

1 . A BRI< command c annot be masked hy se t t j ng l .

238 BASIC TO MAC H I N E LANGUAGE

BHE

No .

Cyc l e s

2 *

BPL

No .

Cyc l e s

2 *

BRK

No .

Cycles

7

Bve BVC Branch on overflow clear

Ope r a t ion : B ranch on V = 0

(Re f : 4 . 1 . 2 . 8)

Add r e s s ing As semb ly Language

Mode Form

Re l a t i ve BVC Oper

* Add if b r anch occurs to same p a g e .

* A d d 2 i f b ranch occurs t o d i f ferent p age .

BVS BVS Branch on overflow sel

Ope r a t ion : B ranch on V = 1

(Re f : 4 . 1 . 2 . 7)

Add r e s s ing Assemb ly Language
Mode Form

Re l a t i ve BVS Ope r

* Add

* Add

i f b r anch occurs to same p a g e .

i f b ran c h o c cu rs t o d i f f e rent page .

CLC CLC Clear carry flag

Ope r a t i on : 0 � C

Add r e s s ing

Mode

Imp l i e d

(Re f : J . 0 . 2)

Ass emb ly Language

Form

CLC

BVC
N l! C I D V

OP No . N o .

CODE Bytes C y c l e s

50 2 2*

BVS
N l! C I D V

OP No . N o .

CODE Bytes Cycles

7 0 2 2 *

CLC
N � C I D V

0 - - -

OP No . N o .
CODE By t e s Cyc les

1 8 1 2

BASIC TO MAC H I N E LANGUAGE 239

eLD
Operati on : 0 � D

Addressing
.Mode

Imp l ied

eLi
Operation : 0 � I

Addressing
Mode

Implied

eLV
Ope ration : 0 � V

Addressing
Mode

Imp l ied

CLD Clear decimal mode

(Ref : 3 . 3 . 2)

Assemb ly Language
Form

CLD

CLI Clear interrupt disable bit

(Re f : 3 . 2 . 2)

Assembly Language
Form

CLl

CL V Clear over/low /lag

(Re f : 3 . 6 . 1)

Assemb ly Language
Form

CLV

240 BASIC TO MAC H I N E LANGUAGE

N r C I D V

- - - - 0 -

OP N o .
CODE Bytes

D8 1

N l! C I D V

- - - 0

OP No .
CODE Bytes

58 1

N r C I D V

- - - - - 0

OP No .
CODE Bytes

B8 1

eLD

N o .
Cycles

2

eLi

N o .
Cycles

2

eLV

N o .
Cyc les

2

(MP CMP Compare memory and accumulator (MP
Ope rat ion : A - M

(Re f : 4 . 2 . 1)

Address ing Assembly Language
Mode Form

Immed iate CMP #Oper

Zero Page CMP Oper

Zero Page , X CMP Ope r , X

Absolute CMP Oper

Absolute , X CMP Ope r , X

Absolut e , Y CMP Ope r , Y

(Indirec t , X) CMP (Ope r , X)

(Indirec t) , Y CMP (Oper) , y

N i': C I D V

1 1 1 - - -

OP N o .
CODE Bytes

C9 2
C5 2
D5 2
CD 3

DD 3

D9 3

C l 2
Dl 2

N o .
Cycles

2
3

4
4
4*
4*
6

5*

* Add 1 i f page boundary is crossed .

(PX

Operat ion, X - M

Addre s s ing
Mode

Immediate

Zero Page

Absolute

(py
Operation : Y - M

Address ing
Mode

Immediate

Zero Page

Absolute

CPX Compare Memory and Index X

(Re f : 7 . 8)

Assembly Language
Form

CPX # Oper

CPX Ope r

CPX Oper

Cpy Compare memory and index Y

(Re f : 7 . 9)

Assembly Language
Form

CPY # Oper

CPY Oper

CPY Oper

N � C I D V

1 1 1 - - -

OP N o .
CODE Bytes

E0 2

E4 2

EC 3

N � C I D V

1 1 1 - - -

OP N o .
CODE Bytes

c0 2

C4 2

CC 3

(PX

N o .
Cyc les

2

3

4

(py

No .
Cycles

2

3

4

BASIC TO MAC H I N E LANGUAGE 241

DEC DEC Decrement memory by one

Ope r a t i on : M - 1 � M

(Re f : 1 0 . 8)

Add re s s i n g Assemb l y Language
Mode Form

Zero Page DEC Ope r

Zero Page , X DEC Ope r , X

Abs o l u t e DEC Ope r

Abs o lut e , X DEC Ope r , X

DEl DEX Decrement index X b y one

Ope ra t i on : X - 1 � X

(Re f : 7 . 6)

Addres s ing Assemb l y Language
Mode Form

Imp l ied DEX

DEY DEY Decrement index Y by olle

Ope ra t i on : Y - 1 � Y

(Re f : 7 . 7)

Addres s ing Assemb ly Language
Mode Form

Imp l ied DEY

242 BASIC TO MACH I N E LANGUAGE

N e C I D V

1 1 - - - -

OP No .
CODE Bytes

C6 2
D6 2
CE 3

DE 3

N ;; C I D V

1 1 - - - -

OP N o .
CODE B y t e s

CA 1

N e C I D V

1 1 - - - -

OP No .
CODE Bytes

88 1

DEC

N o .
Cycles

5

6

6

7

DEI

N o .
Cyc les

2

DEY

N o .
Cyc l es

2

tOR EOR "Exclusive - Or " memory with accumulator

Operat ion : A ¥ M � A

(Re f : 2 . 2 . 4 . 3)

Addre s s ing As semb l y Language
Mode Form

Innnediate EOR # Oper

Zero Page EOR Oper

Zero Page , X EOR Ope r , X

Ab solute EOR Ope r

Absolute , X EOR Ope r , X

Absolute , Y EOR Ope r , Y

(Indirec t , X) EOR (Ope r , X)

(In d i re c t) ,Y EOR (Ope r) , Y

* Add 1 i f page boundary is crossed .

INC INC Increment memory by one

Ope rat ion : M + 1 � M

(Re f : 10 . 7)

Addres s ing Assemb l y Language
Mode Form

Zero P age INC Oper

Zero Page , X INC Ope r , X

Abs o l u t e I N C Oper

Ab solut e , X INC Ope r , X

INX INX Increment Index X by one

Ope r a t ion : X + 1 � X

(Ref : 7 . 4)

Address ing Assemb l y Language
Mode Form

I mp lied INX

N ;; C I D V

1 1

OP No .
CODE B y t e s

4 9 2

4 5 2

5 5 2

4D 3

5 D 3

5 9 3

4 1 2

5 1 2

N l C I D V

1 1 - - - -

CP No .
CODE By t es

E6 2

F6 2

EE 3

FE 3

N il C I D V

1 1 - - - -

OP N o .
CODE Bytes

E 8 1

tOR

No .
Cyc les

2

3

4

4

4 *

4 *

6

5 *

INC

N o .
Cycles

5

6

6

7

INX

No .
Cycles

2

BASIC TO MAC H I N E LANGUAGE 243

INY INY Increment Index -Y by one

Ope ra t ion : Y + 1 � Y

(Re f : 7 . 5)

Addressing Assembly Language
Mode Form '

I mp l ied INY

JMP JMP Jump to new location

Opprat ion : (PC + 1) � PCL

(PC + 2) � PCH (Ref :
(Re f :

4 . O . 2)
9 . 8 . 1)

Address ing Assembly Language
Mode Form

Absolute JMP Oper

I nd irec t JMP (Oper)

N tl C I D V

1 1 - - - -

OP No .
CODE Bytes

C8 1

N tI C I D V

OP No .
CODE By tes

4C 3

6C 3

INY

No .
Cycles

2

JMP

No.
Cyc les

3

5

JSR JSR Jump t o new location sGving return address JSR
Operat ion : PC + 2 + , (PC + 1) � PCL N tI C I D V

Address ing
Mode

Absolute

(PC + 2) � PCH
(Re f : 8 . 1)

Ass emb ly Language
Form

J S R Ope r

244 BASIC TO MACHI N E LANGUAGE

OP N o .
CODE Byt es

20 3

No .
Cycles

6

LDA LOA Load accumulator with memory

Operat ion : M � A

(Re f : 2 . 1 . 1)

Address ing As semb ly Language
Mode Form

I mmediate LDA # Ope r

Z e r o Page LDA Oper

Zero Page , X LDA Ope r , X

Absolute LOA Ope r

Absolute , X LDA Ope r , X

Abs olute , Y LDA Ope r , Y

(In d i r ec t , X) LDA (Ope r , X)

(Ind i r ec t) , Y LOA (Op e r) , Y

* Add 1 i f page b oundary is c rosse d .

LDX LOX L oad index X with memory

Ope r at i on : M + X

(Re f : 7 . 0)

Addressing Assembly Language
Mode Form

Immediate LDX /I Ope r

Zero Page LDX Ope r

Z e r o Page , Y LDX Ope r , Y
Abs o lute LDX Oper

Ab solute , Y LDX Ope r , Y

* Add 1 when page boundary is crossed .

N ;! C I D V

/ / - - - -

OP No .
CODE Bytes

A9 2

A5 2

B5 2

AD 3

8D 3

B9 3

Al 2

Bl 2

N .. C I 0 V

/ / - - - -

OP No .
CODE By tes

A2 2

A6 2

B6 2

AE 3

BE 3

LDA

N o .
Cyc les

2

3

4

4

4*

4 *

6

5 *

LDX

No .
Cycles

2

3

4

4

4*

BASIC TO MAC H I N E LANGUAGE 245

LDY LDY Load index Y with memory

Operat ion : M � Y

(Re f : 7 . 1)

Addressing Assemb l y Language
Mode Form

Immediate LDY # Oper

Zero Page LDY Oper

Zero Page , X LDY Ope r , X

Absolute LDY Oper

Abs o lu t e , X LDY Ope r , X

• Add 1 when page boundary is crossed .

N e C I D V

1 1 - - -- -

OP No .
CODE Bytes

A0 2

A4 2

B4 2

AC 3

BC 3

LSR LSR Shift righ t one bit (memory or accumulator)

(Re f : 10 . 1)

Address ing As semb ly Language
Mode Form

Ac.:.umulator L S R A

Ze ro Page LSR Ope r

Z e ro Page , X LSR Ope r , X

Abs o l u t e LSR Ope r

Abso l u t e , X LSR Ope r , X

NOP NOP No operation

Ope ration : No Ope rat ion (2 cycles)

Addressing Assemb ly Language
Mode Form

Imp l ied NOP

246 BASIC TO MAC H I N E LANGUAGE

N e C I D V

0 1 1 - - -

OP N o .
CODE Bytes

4A 1

46 2

56 2

4E 3

51:: J

N e C I D V

OP No .
CODE Bytes

EA 1

LDY

No .
Cycles

2

3

4

4

4*

LSR

No .
Cyc les

2

5

6

6

7

NOP

No .
Cycles

2

ORA ORA "OR " memory with accumulator ORA
Ope ration : A V M � A N i! C I D V

1 1 - - - -

Address ing
Mode

Innnediate

Zero P age

Zero P age , X

Abs o l u t e

Absol u t e , X

Ab s o l ut e , Y

(In d i re c t , X)

(Ind irec t) , y

(Re f : 2 . 2 . 3 . 1)

Assemb ly Language
Form

ORA # Oper

ORA Oper

ORA Ope r , X

ORA Ope r

ORA Ope r , X

ORA Ope r , Y

ORA (Ope r , X)

ORA (Op e r) , Y

OP No . No .
CODE By t e s Cycles

09 2 2

0 5 2 3

1 5 2 4

0D 3 4

ID 3 4 *

1 9 3 4 *

0 1 2 6

1 1 2 5

* Add 1 on page c ross i n g

PHA
Ope rat ion : A ..

Address ing
Mode

Imp l ied

PHP
Ope rat ion : P '

Add ressing
Mode

Imp l i e d

PHA Push accumulator Ull stack PHA
N l C I D V

(Re f : 8 . 5)

Assemb ly Language OP No . No .
Fo rm CODE By tes Cycles

PHA 4 8 1 3

PHP Push processor status on stack PHP
N i! C I D V

(Ref : 8 . 1 1)

Assemb ly Language OP No . N o .
Form CODE By t e s Cycles

PHP \18 1 3

BASIC TO MACH I N E LANGUAGE 247

PLA PLA Pull accumulator from stack

Ope ration : A t N il C I D V

(Re f : 8 . 6)
/ / - - - -

Add ressing Assembly Languag" OP No .
Mode Form CODE Bytes

I mp l ied PLA 6 8 1

PLP PLP Pull processor status from stack

Operat i on : P t N il C I D V

(Re f : 8 . 12)
From S tack

Addressing Assembly Language OP No .
Mode Form CODE Bytes

Imp l ied PLP 28 1

ROL ROL Rotate one hit left (memory or accumulator)

Ope rat ion :

(Re f : 10 . 3)

Address ing Assembl y Language
Mode Form

Accumulator ROL A

Zero Page ROL Ope r

Z e ro Page , X ROL Ope r , X

Absolute ROL Ope r

Absolute , X ROL Oper , X

248 BASIC TO MAC H I N E LANGUAGE

N 1! C I D V

/ / / - - -

OP N o .
CODE Byt es

2A 1

26 2

36 2

2 E 3

3 E 3

PLA

N o .
Cycles

4

PLP

N o .
Cycles

4

ROL

N o .
Cycles

2

5

6

6

7

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operat ion : N � C I D V

I I 1 -

Address ing Assembly Language OP No .
Mode Form CODE Bytes

Accumu l a t o r ROR A 6A 1

Zero Page ROR Oper 66 2

Zero Page , X ROR Oper , X 7 6 2

Ab s o l u t e ROR Oper 6E 3

Abso l u t e , X ROR Oper , X 7 E 3

Not e : ROR instruct ion i s ava i l ab l e on MCS650X micro­
processors after June , 1 9 7 6 .

RTI RTI R eturn from interrupt

Operat ion : Pt PCt N � C I D V

(Re f : 9 . 6)
From S t ack

Addre s s i n g Ass emb l y Language OP No .
Morle Form CODE By t e s

Imp l i e d RTI 40 1

RTS RTS Return from subroutine

Operat ion : PCt , PC + 1 --+ PC N i! C I D V

(Re f : 8 . 2)

Addre ss ing Assembly Language OP No .
Mode Form CODE Bytes

Imp l i e d RTS 60 1

No .
Cycles

2

5

6

6

7

RTI

No .
Cy c les

6

RTS

N o .
Cyc les

6

BASIC TO MAC H I N E LANGUAGE 249

sac SBC Sublracl memory {rom accumulalor wilh borrow

Ope rat ion : A - M - C 4 A

N o t e : C = Borrow

Address ing
Mode

Immediate

Zero Page

Zero Page , X

Absolute

Abs o l ut e , X

Abs o l ut e , Y

(I n d i rec t , X)
(Indirect) , Y

(Re f : 2 . 2 . 2)

Ass emb ly Language
Form

SBC # Oper

SBe Oper

SBe Ope r , X

SBe Ope r

SBe Ope r , X

S B C 0pe r , Y

S B C (Ope r , X)

SBe (Ope r) , Y

* Add 1 when page boundary is c ros s e d .

SEC SEC S e I carry {lag

Ope rat ion : 1 4 C

(Re f : 3 . 0 . 1)

Addre s s ing Ass emb l y Language
Mode Form

Imp l ied SEC

SED SED Sel decimal mode

Ope r a t ion : 1 4 D

(Re f : 3 . 3 . 1)

Address ing Assemb ly Language
Mode Form

Imp l i ed S ED

250 BASIC TO MAC H I N E LANGUAGE

N >! C I D V

/ / / - - /

OP No .
CODE Bytes

E9 2

E 5 2

F5 2

ED 3

FD 3

F9 3

E l 2

Fl 2

N >! C I D V

1 - - -

OP N o .
CODE B y t e s

38 1

N >! C I D V

1 -

OP N o .
CODE By tes

F8 I 1

sac

No .
Cycles

2

3

4

4

4 *

4 *

6

5*

SEC

No .
Cycles

2

SED

N o .
Cycles

2

SEI
Operat ion : 1 �

Add ressing
Mode

Imp l ied

ST1
Ope ra t i on :

Addressing
Mode

Zero P age

Zero Page , X

Ab solute

Absolute , X

Abs o lute , Y
(Indirec t , X)

(Indirec t) , Y

STX
Operat ion : X � M

Address ing
Mode

Z e ro Page

Zero Page , Y
Absolute

SEI Set interrupt disable status SEI
N iI C D V

(Re f : 3 . 2 . 1)

Assembly Language OP No . No .
Form CODE B y t es Cycles

SEI 7 8 1 2

STA Store accumulator in memory ST1
N il C I D V

(Re f : 2 . 1 . 2)

Assemb ly Language OP No . No .
Form CODE Bytes Cycles

STA Oper 85 2 3

STA Ope r , X 9 5 2 4

STA Oper 8D 3 4

STA Ope r , X 9D 3 5

STA Ope r , Y 99 3 5

STA (Oper , X) 81 2 6

STA (Op er) , Y 9 1 2 6

STX Store index X in memory STX
N iI C I D V

(Re f : 7 . 2)

Assemb ly Language OP No . N o .
Form CODE By t es Cycles

STX Ope r 86 2 3

STX Oper , Y 96 2 4

STX Ope r 8E 3 4

BASIC TO MAC H I N E LANGUAGE 251

STY STY Store index Y in memory
Operat ion : Y ... M N i! C I D V

(Re f : 7 . 3)

Addressing Assembly Language OP No .
Mode Form CODE Bytes

Zero Page STY Oper 84 2

Zero Page , X STY Oper , X 94 2

Absolute STY Oper 8C 3

TAX TAX Transfer accumulator to index X
Operation : A '" X N i! C I D V

1 1 - - - -
(Ref : 7 . 11)

Addressing Assembly Lanfuage OP No .
Mode Form CODE By tes

Implied TAX AA 1

lAY T A Y Transfer accumulator to index Y
Ope ration : A '" Y

(Re f : 7 . 13)

Address ing Assembly Language
Mode Form

I mplied TAY

252 BASIC TO MACHI N E LANGUAGE

N >! C I D V

1 1 - - - -

OP No .
CODE Bytes

A8 1

S T Y

No .
Cycles

3

4

4

TAX

No .
Cycles

2

lAY

No .
Cycles

2

TSX TSX Transfer slack poinler 10 index X TSX
Operat i on : S � X N � C I D V

(Re f : 8 . 9)

Addr e s s i n g Assemb ly Language

Mode F o rm

Imp l ie d TSX

TXA TXA Transfer index X la accumulalOr

Ope r a t i on : X � A

(Re f : 7 . 1 2)

Add r e s s i n g As s emb ly Language

Mode Form

Imp l ied TXA

/ / - - - -

OP N o .

CODE Bytes

B A 1

N il C I D V

/ / - - - -

OP No .

CODE B y t e s

8A 1

No .

Cycles

2

TXA

N o .

Cycles

2

TXS TXS Transfer index X 10 slack painler TXS
Ope rat ion : X � S N � C I D V

(Re f : 8 . 8)

Addr e s s i n g As semb ly Language OP N o .

Mode Form CODE B y t es

Imp l i e d TXS 9A 1

N o .

Cycles

2

TY A TY A Transfer index Y 10 accumulalOr TV A
Ope rat ion : Y � A N � C I D V

/ / - - - -
(Re f : 7 . 14)

Add r e s s i n g Assemb l y Language OP No .

Mode Form CODE B y t es

Imp l ied TYA 98 1

N o .

C y c l e s

2

BASIC TO MAC H I N E LANGUAGE 253

254

I NSTR UCT ION ADDR ESSI NG MOD ES AND

.. x >
0 .. GI & • t .!! .. . ! ::::I ..,
E i a. a. a.
::::I E 0 0 0 u .. � ..
U E GI GI c(N N N

ADC 2 3 4
AND 2 3 4
ASl 2 5 6
BCC
BCS
BEQ
BIT 3
BM I
BN E
BPl
BR K
BVC
BVS
ClC
ClD
Cli
ClV
CMP 2 3 4
CPX 2 3
CPY 2 3
DEC 5 6
DEX
DEY
EO R 2 3 4
I NC 5 6
I N X
INY
JMP

x >
GI GI" GI 1 ::::I ::::I ::::I
'0 '0 '0 Q. 1/1 1/1 1/1

� � � E c(

4 4 - 4 *
4 4 * 4 *
6 7

4

2
2
2
2

4 4 * 4 *
4
4
6 7

2
2

4 4 * 4 *
6 7

2
2

3

..
� ..

�
x > c:

" - GI GI � W .. > ::::I
.� .. .� 0 ..,
"ii] � 1/1

= � a: --

6 5 -
6 5 *

2* * .
2* * .
2* * .

2* · .
2** .
2* * .

2* * .
2* * .

6 5*

6 5 ·

5
. Add one cycle if i n de xing across page boundary
• • Add one cycle if branch is taken . Add one additi onal

BASIC TO MAC H I N E LANGUAGE

R E LATED EXECUT ION T I M ES (in clock cycles)
..
u CI ..

.. x > �
0 x > - > C .. CI CI' X ftS CI 8, , .. 01 01 , -
"S . !! ftS ftS ftS CI CI CI Q) CI " U U ..
E i Q. Q. Q. :::l :::l :::l > CI CI :::l

'0 '0 '0 .! .;; .. .� 0 ::I E 0 0 0 Q. ftS :s u ell ell ell a; l ell U E CI CI CI .l2 .l2 � E c ::: � « N N N « « a: --

J S R 6
LOA 2 3 4 4 4 * 4 * 6 5 *
LOX 2 3 4 4 4 ·
LOY 2 3 4 4 4 * .
LSR 2 5 6 6 7
NO P 2
O RA 2 3 4 4 4 * 4 * . 6 5 *
PHA 3
PHP 3
PLA 4
PLP 4
ROL 2 5 6 6 7
ROR 2 5 6 6 7
R T I 6
R TS 6
SBC 2 3 4 4 4 * 4 * . 6 5 ·
SEC 2
SED 2
S E I 2
STA 3 4 4 5 5 6 6
STX 3 4 4
STY 3 4 4
TAX 2
TAY 2
TSX 2
TXA 2
TXS 2
TYA 2

if branching operation crosses page boundary

BASIC TO MACH I N E LANGUAGE 255

00 - BRK

0 1 - ORA - (In d i r e c t , X)

0 2 - Future Expan s ion

0 3 - Future Expans ion

04 - Future Expan s i on

05 - ORA - Zero Page

0 6 - ASL - Zero Page

0 7 - Future Exp ans i on

08 - PHP

09 - ORA - Imme d i a t e

0 A - ASL - Accumu l a t o r

0 B - F u t u r e Expan s i on

0c - Future Exp ans i on

0D - ORA - Ab s o l u t e

0E - A S L - Ab s o lu t e

0F - Future Expans i on

10 - BPL

11 - ORA - (Ind i r ec t) , Y

1 2 - Future Exp ans ion

1 3 - Future Expan s ion

1 4 - Future Expan s ion

1 5 - ORA - Zero Page , X

1 6 - ASL - Ze ro Page , X

1 7 - Future Expans ion

1 8 - CLC

19 - ORA - Ab s o lu t e , Y

lA - Future Exp ans i on

IB - F u t ure Expan s ion

l C - Futur e Expan s i on

ID - ORA - Ab s o l u t e , X

IE - ASL - Ab s o l u t e , X

IF - Future Expan s ion

256 BASIC TO MAC H I N E LANGUAGE

20 - J SR

2 1 - AND - (Ind i r e c t , X)

2 2 - Future Expan s i on

2 3 - Future Expans ion

2 4 - B I T - Zero Page

25 - AND - Zero Page

26 - ROL - Zero Page

2 7 - F u t ur e Expans ion

2 8 - PLP

2 9 - AND - Imme d i a t e

2 A - ROL - Accumu l a t o r

2 B - Future Expans i on

2C - B I T - Ab s o l u t e

2 D - AND - Ab s o l u t e

2 E - ROL - Ab s o l u t e

2 F - Future Expans ion

30 - BMl

31 - AND - (In d i r ec t) , Y

3 2 - F u t u r e Expans ion

33 - Future Expans ion

34 - Futur e Expans ion

35 - AND - Zero Page , X

3 6 - ROL - Zero Page , X

3 7 - Future Expans i on

38 - SEC

39 - AND - Ab s o l ut e , Y

3A - Futur e Expans ion

3 B - Future Exp ans ion

3C - Futur e Expans ion

3D - AND - Ab s o l ut e , X

3 E - ROL - Ab s o lut e , X

3F - Fu ture Expan s ion

40 - RTI 60 - RTS

4 1 - EOR - (Indirec t , X) 61 - ADC - (Indirec t , X)

42 - Future Expans ion 62 - Future Expansion

43 - Future Expansion 63 - Future Expansion

44 - Future Expans i on 64 - Future Expansion

4 5 - EOR - Zero Page 6 5 - ADC - Zero Page

46 - LSR - Zero Page 66 - ROR - Zero Page

4 7 - Future Expans ion 67 - Future Expans ion

48 - PHA 68 - PLA

49 - EOR - Immediate 69 - ADC - Immediate

4A - LSR - Accumulator 6A - ROR - Accumu lator

4B - Future Expans ion 6B - Future Expans ion

4C - JMP - Ab solute 6C - JMP - Ind irect

4D - EOR - Ab solute 6D - ADC - Ab so lute

4E - LSR - Abs o lu t e 6E - ROR - Abs o lute

4F - Future Expans ion 6F - Future Expansion

50 - BVC 70 - BVS

51 - EOR - (Ind irec t) , Y 7 1 - ADC - (Indirec t) , Y

5 2 - Future Expans ion 7 2 - Future Expans ion

53 - Future Expansion 7 3 - Future Expans ion

54 - Future Expansion 7 4 - Future Expans ion

5 5 - EOR - Zero Page , X 7 5 - ADC - Zero Page , X

5 6 - LSR - Zero Page , X 7 6 - ROR - Zero Page , X

5 7 - Future Expansion 7 7 - Future Expans ion

58 - eLI 78 - SEI

59 - EOR - Absolut e , Y 79 - ADC - Ab solute , Y

SA - Future Expansion 7A - Future Expans ion

5B - Future Expansion 7B - Future Expansion

5C - Future Expans ion 7C - Future Expansion

5D - EOR - Abs o lu t e , X 7D - ADC - Absolute , X

5E - LSR - Absolut e , X 7 E - ROR - Abs o lute , X

S F - Future Expansion 7F - Future Expansion

BASIC TO MAC H I N E LANGUAGE 257

80 - Future Expans ion

8 1 - STA - (In d i r ec t , X)

8 2 - Future Expan s i on

8 3 - Future Expans i o n

34 - STY - Zero Page

85 - STA - Zero Page

8 6 - STX - Zero Page

8 7 - Fut u r e Expans ion

88 - DEY

89 - Future Expans i on

8A - TXA

8 B - Future Expan s i on

8C - STY - Ab s o l u t e

8D - S T A - Ab s o l u t e

8E - S T X - Ab s o l u t e

8 F - Future Exp ans i on

90 - BCC

91 - STA - (In d i r ec t) , Y

9 2 - Future Expan s i o n

9 3 - Future Expan s i on

9 4 - STY - Zero Page , X

9 5 - STA - Zero Page , X

9 6 - STX - Zero Page , Y

9 7 - Future Expans i on

9 8 - TYA

9 9 - STA - Ab s o l u t e , Y

9 A - TXS

9B - Future Expans ion

9C - Fu ture Expan s i on

9D - STA - Ab s o l u t e , X

9 E - Future Expans ion

9F - Future Expans ion

258 BASIC TO MAC H I N E LANGUAGE

A0 - LDY - Immed i a t e

A l - LDA - (In d i r e c t , X)

A2 - LDX - Imme d i a t e

A 3 - Future Expans ion

A4 - LDY - Zero Page

AS - LDA - Zero Page

A6 - LDX - Zero Page

A7 - Future Expans i on

A8 - TAY

A9 - LDA - Immed i a t e

AA - TAX

AB - Future Expan s i on

AC - LDY - Ab s o lute

AD - LDA - Ab so l u t e

AE - LDX - Ab s o l u t e

A F - Fu ture Expan s i on

B0 - B C S

B l - LDA - (In d i r e c t) , Y

B 2 - Fu ture Expans ion

B 3 - Fu ture Expan s i on

B 4 - LDY - Zero Page , X

B 5 - LDA - Zero Page , X

B 6 - LDX - Zero Page , Y

B 7 Future Expans ion

B8 - CLV

B9 LDA - Ab s o l u t e , Y

BA TSX

BB Fu ture Expan s i on

BC LDY Ab s o l u t e , X

BD LDA Ab s o l u te , X

BE LDX - Ab so l u t e , Y

B F Future Expan s i on

c0 - CPY - Immed ia t e

C l - CMP - (In d i r ec t , X)

C 2 - Future Expans ion

C 3 - Future Expans ion

C4 - CPY - Zero Page

C5 - CMF - Zero Page

C 6 - D E C - Zero Page

C 7 - Fut u r e Expan s ion

C 8 - INY

C9 - CMP - Immediate

CA - DEX

CB - Future Exp ans ion

CC - CPY - Ab s o l u t e

CD - C MP - Ab s o l ut e

CE - DEC - Ab s o l u t e

C F - F u t u r e Expans ion

D� - BNE

D l - CMF - (In d i r e c t)- , Y

D 2 - Future Expan s i on

D 3 - Future Expans ion

D4 - Future Expan s i on

D5 - CMP - Zero Page , X

D6 - DEC - Zero Page , X

D7 - Future Expans ion

D8 - CLD

D9 - CMP - Ab s o l u t e , Y

DA - Future Expan s ion

D B - Future Expans ion

DC - Future Expans ion

DD - CMP - Abs o lu t e , X

DE - DEC - Ab s o l ut e , X

D F - Future Expans ion

E� - CPX - Imme d i a t e

El - SBC - (In d i r ec t , X)

E2 - Future Expans ion

E3 - Future Exp ans ion

E4 - CPX - Zero Page

E 5 - SBC - Zero Page

E6 - INC - Zero Page

E 7 - Futur e Expansion

E8 - INX

E 9' - SBC - Imme d i a t e

E A - NOP

EB - Future Expansion

EC - CPX - Ab s o lu t e

E D - S BC - Ab s o lu t e

EE - I N C - Ab s o lu t e

EF - Future Expans ion

F0 - BEQ

Fl - SBC - (In d i r ec t) , Y

F 2 - Future Expan s i o n

F 3 - Futur e Expans i o n

F4 - Futur e Exp ans ion

F5 - SBC - Zero Page , X

F 6 - INC - Zero Page , X

F 7 - Future Expans ion

F8 - SED

F9 - SBC - Ab s o l ut e , Y

FA - Future Expans ion

FB - Future Exp ans ion

FC - Future Expans ion

FD - S B C - Ab s o l u te , X

FE - INC - Ab s o lu t e , X

F F - Future Expan s i on

BASIC TO MACH I N E LANGUAGE 259

MEMORY MANAGEMENT ON THE
COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of
ROM, contain ing BASIC, the operating system, and the standard char­
acter set. It a l so accesses input/output devices as a 4K chunk of mem­
ory. How is this a l l possible on a computer with a 1 6-bit address bus,
that is normal ly only capable of addressing 64K?

The secret is in the 65 1 0 p rocessor chip itself. On the chip is an input/
output port. This port is used to control whether RAM or ROM or I/O wil l
appear in certain portions of the system's memory . The port is a lso used
to control the Datassette T M , so it is important to affect on ly the proper
bits .

The 65 1 0 input/output port appears at location 1 . The data d i rection
register for this port appears at location O. The port is control led l ike any
of the othe r input/output ports in the system . . . the data d irection
controls whether a g iven bit will be an input or an output, and the actual
data transfer occurs th rough the port itself.

The l ines in the 65 1 0 control port a re defined as follows:

NAME BIT DIRECTION DESCRIPTION

LORAM 0 OUTPUT Control for RAM/ROM at
$AOOO-$BFFF (BAS IC)

HIRAM 1 OUTPUT Control for RAM/ROM at
$EOOO- $FFFF (KERNAL)

CHAREN 2 OUTPUT Control for I/O/ROM at
$DOOO-$DFFF

3 OUTPUT Cassette write l ine
4 I N PUT Cassette switch sense
5 OUTPUT Cassette motor control

The proper va lue for the data direction register is as follows:

BITS 5 4 3 2 0

o

(where 1 is an output, and 0 is an input).

260 BASIC TO MAC H I N E LANGUAGE

This g ives a va lue of 47 decima l . The Commodore 64 automatical ly
sets the data di rection register to this va lue .

The control l ines, in genera l , perform the function given in their de­
scriptions . However, a combination of control lines a re occasional ly used
to get a pa rticu la r memory configuration .

LORAM (bit 0) can general ly be thought o f as a control l i ne which
banks the 8K byte BAS IC ROM in and out of the mic roprocessor address
space. Normal ly, this l ine is H IGH for BAS IC operation . If this l ine is
programmed LOW, the BAS IC ROM wil l d isappear from the memory
map and be replaced by 8K bytes of RAM from $AOOO- $BFFF .

HIRAM (bit 1) can genera l ly be thought of as a control l i ne which
banks the 8K byte KERNAL ROM in and out of the microprocessor ad­
d ress space. Norma l ly, this l ine is HIGH for BAS IC operation . If th is l ine
is prog rammed LOW, the KERNAL ROM wil l disappea r from the memory
map and be replaced by 8K bytes of RAM from $EOOO- $FFFF .

NOTE: F o r more detoils on LORAM ond H I RAM see the memory mops on pages

262-267.

CHAREN (bit 2) is used only to bank the 4K byte cha racter generator
ROM in or out of the mic roprocessor address space. From the processor
point of view, the character ROM occupies the same address space as
the 1/0 devices ($DOOO- $DFFF) . When the CHAREN l ine is set to 1 (as is
normal) , the 1/0 devices appear in the microprocessor address 'space,
and the character ROM is not accessable . When the CHAREN bit is
c leared to 0, the cha racter ROM a ppea rs in the processor address
space, and the 1/0 devices a re not accessab le . (The mic roprocessor only
needs to access the cha racter ROM when down loading the cha racter set
from ROM to RAM. Special care is needed for this . . . see the section
on PROGRAMMABLE CHARACTERS in the GRAPH ICS chapter). CHAREN
c a n be ove r r i d d e n by o th e r c o n t r o l l i n e s in c e rta i n m e m o ry
c o n fi g u ra t i o n s . C H A R E N w i l l h a ve n o effect o n a ny m e m o ry
configuration without 1/0 devices . RAM wil l appear from $DOOO-$DFFF
instead .

NOTE: I n any memory map conta ining ROM, a WRITE (a POKE) to a ROM location wil l

store data in the RAM " under" the ROM. Writing to a ROM location stores data in the

"hidden" RAM . For exam ple, this a l lows a hi-resolution screen to be kept underneath

a ROM, and be changed without having to bank the screen back into the processor

address space. Of course a READ of a ROM location will return the contents of the

ROM, not the "hidden" RAM .

BASIC TO MAC H I N E LANGUAGE 261

COMMODORE 64 FUNDAMENTAL MEMORY MAP

EOOO-FFFF

DOOO-DFFF

COOO-C F F F

AOOO-BFFF

BOOO-9FFF

4000-7FFF

0000-3FFF

1/0 BREAKDOWN

DOOO-D3FF VIC (Video Contro l l er)
D400-D7FF S ID (Sound Synthesizer)
DSOO-DBFF Color RAM
DCOO-DCFF CIA 1 (Keyboard)

BK K E R N A L R O M
OR

RAM

4K If 0 O R RAM O R
CHARACTER R O M

4 K RAM

BK BASIC ROM
O R

RAM
OR

ROM PLUG-IN

BK RAM
O R

ROM PLUG- I N

1 6 K R A M

1 6 K RAM

DOOO-DDFF CIA2 (Seria l Bus, U ser Port/RS-232)
DEOO-DEFF Open 1/0 s lot #1 (C P/M Enab le)
DFOO-DFFF Open 1/0 s lot #2 (Disk)

262 BASIC TO MAC H I N E LANGUAGE

1 K Bytes
1 K Bytes

l K Nybbles
256 Bytes
256 Bytes
256 Bytes
256 Bytes

The two open I/O s lots a re for general purpose user I/O, special pur­
pose I/O cartridges (such as I EEE), and have been tentatively designated
for enabl ing the Z-80 cartridge (CP/M option) and for interfacing to a
low-cost high-speed disk system .

The system provides for "auto-sta rt" of the prog ram i n a Commodore
64 Expansion Cartridge . The cartridge prog ram is started if the fi rst nine
bytes of the cartridge ROM starting at location 32768 ($8000) contain
specific data . The first two bytes must hold the Cold Start vector to be
used by the cartridge program . The next two bytes at 32770 ($8002)
must be the Warm Start vector u sed by the cartridge program . The next
th ree bytes must be the letters, CBM, with bit 7 set in each letter . The
last two bytes must be the digits "80" in PET ASC I I .

COMMODORE 64 MEMORY MAPS

The following tables list the various memory configurations avai lable
on the COMMODORE 64, the states of the control l ines which select each
memory map, and the intended use of each map.

EOOO

0000

COOO

AOOO

8000

4000

0000

8K KERNAL ROM

4K I/O

4K RAM (BUFFER)

8K BASIC ROM

8K RAM

16K RAM

1 6 K RAM

x = D O N 'T CARE
o = LOIN

1 = HIGH

LORAM
H I RAM
G A M E
E X R O M

T h i s is I h e delau l t BASIC memory
map which provides BASIC 2.0 and 38K contiguous bytes of user RAM.

BASIC TO MAC H I N E LANGUAGE 263

EOOO

0000

COOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

0000

8K RAM

4 K 1/0
4K RAM

1 6 K RAM

1 6K RAM

1 6K RAM

8K KERNAL ROM

4 K 1/0
4 K RAM

16K RAM

16K RAM

1 6K RAM

264 BASIC TO MAC H I N E LANGUAGE

x = DON'T C A R E

0 = L O W

1 = H I G H

LORAM 1
H I RA M 0
GAME 1
EXROM X
OR

LORAM 1
H I RAM 0
G A M E 0
(THE C HARACTER ROM
I S NOT ACCESS I B L E BY
THE CPU IN THIS MAP)

EX ROM = 0

T h i s map provides 60K bytes of
RAM and 1/0 devices, The user
m ust write his own 1/0 driver
routines.

x = DON'T CARE

0 = LOW
1 = H I G H

LORAM
H I RAM
G A M E
EXROM

o
1
1
X

T h i s map is i n tended for use w i t h
soft load languages (i n c l u d i n g
CP/M), prov i d i n g 52K contiguous
bytes of user RAM, 1/0 devices,
and 110 driver routines.

COOO

8000

4000

0000

EOOO

0000

COOO

AOOO

8000

4000

0000

1 6K RAM

1 6 K RAM

1 6K RAM

16K RAM

8K KERNAL ROM

4K I/O

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRI DG E
(BASIC EXP)

16K RAM

1 6 K RAM

x = DO N'T CARE

0 = LOW

1 = H I G H

LORAM
H I RAM
G A M E
EXROM
O R

LORAM
HIRAM
G A M E
EXROM

a
a
1
X

a
a
X
a

This map gives access to all 64K
bytes of RAM. The 110 devices
must be banked back i n to the
processor's address space for any 110 operation,

x = DON'T CARE

0 = LOW
1 = H I G H

LORAM
H I RAM
GAM E
EXROM

1
a
o

ThiS is the standard conf iguration
lor a BASIC system with a BASIC
expansion R O M . This map provides
32K contiguous byles of user RAM
and u p to 8K bytes 01 BASIC

" enhancement. "

BASIC TO MAC H I N E LANGUAGE 265

EOOO

0000

COOO

AOOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

0000

8K KERNAL ROM

4K 110
4 K RAM (BUFFER)

8K ROM (CART R I D G E)

8K RAM

1 6 K RAM

16K RAM

8K KERNAL ROM

4K 110
4K RAM (BUFFER)

1 6 K ROM (CARTRIDGE)

1 6 K RAM

16K RAM

266 BASIC TO MAC H I N E LANGUAGE

x = DON'T C A R E

0 = LOW
1 = H I G H

LORAM
HIRAM
G A M E
EXROM

o
1
o
o

T h i s map provides 40K conliguous
bytes of user RAM and u p to 8K
byles of p l ug-in ROM for special
ROM-based appl ical ions w h i c h d o n ' l
require BASIC_

x = DON'T CARE

0 = LOW

1 = H I G H

LORAM
H I RA M
GAME
EXROM

1
1
o
o

T h i s map provides 32K contiguous
byles of user RAM and u p 10 1 6 K
byles of p l ug- in ROM f o r special
ROM-based applications w h i c h don't
require BASIC (word processors.
other languages, etc.).

EOOO

0000

COOO

AOOO

8000

4000

1 000

0000

8K CARTRI DG E ROM

4 K 1/0
4K OPEN

8K OPEN

8K CARTRIDG E ROM

1 6 K OPEN

1 2K OPEN

4 K RAM

x = DON'T CARE

0 = LOW

, = H I G H

LORAM
HIRAM
GAME
EXROM

x
X
o
1

This is t he ULTI MAX video game
memory map. Note that the 2K
byte "expansion RAM" for the
ULTIMAX, if required, i s accessed
out of the COMM ODORE 64 and any
RAM i n the cartridge is ignored.

BASIC TO MAC H I N E LANGUAGE 267

THE KERNAL

One of the problems fac ing programmers in the microcomputer field
is the q uestion of what to do when changes a re made to the operating
system of the computer by the company. Machine language prog rams
which took much time to develop might no longer work, forc ing major
revisions in the program . To a l leviate this problem, Commodore has
developed a method of protecting software writers ca l led the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the input,
output, and memory management routines in the operating system . The
locations of each routine in ROM may change as the system is up­
g raded . But the KERNAL jump table wil l always be changed to matc h . If
your m achine language routines on ly use the system ROM routines
through the KERNAL, i t wi l l take much less work to modify them, should
that need ever a rise .

The KERNAL is the operating system of the Commodore 64 computer .
A l l i n put , o utput , and memory m a nagement i s contro l l ed by the
KERNAL.

To s impl ify the machine language programs you write, and to make
sure that future versions of the Commodore 64 operating system don't
make your machine language programs obsolete, the KERNAL conta ins
a jump table for you to use. By taking advantage of the 39 input/output
routines and other utilities avai lable to you from the table, not only do
you save time, you a lso make it easier to translate your programs from
one Commodore computer to another .

The jump table is located on the last page of memory, in read-only
memory (ROM).

To use the KERNAL jump table, first you set up the pa rameters that the
KERNAL routine needs to work. Then JSR (Jump to SubRoutine) to the
proper place in the KERNAL jump table . After performing its function ,
the KERNAL transfers control back to your machine language program .
Depending o n which KERNAL routine you are using , certain reg isters
may pass parameters back to your program . The particu lar reg isters for
each KERNAL routine may be found in the individua l descriptions of the
KERNAL subroutines.

268 BASIC TO MAC H I N E LANGUAGE

A good question at this point is why use the jump table at a l l ? Why
not just JSR directly to the KERNAL subroutine involved? The jump table
is used so that if the KERNAL or BAS IC is changed, your machine lan­
guage prog rams wi l l sti l l work. I n future operating systems the routines
may have thei r memory locations moved a round to a different position
in the memory map . . . but the jump table will sti l l work correctly !

KERNAL POWER-UP ACTIVITIES

1) O n power-up, the KERNAL first resets the stack pointer, and clears
decimal mode.

2) The KERNAL then checks for the presence of an autostart ROM car­
tridge at location $8000 HEX (32768 decima l) . If this is present, nor­
mal in itia l ization is suspended, and control is tra nsferred to the car­
tridge code. If an autostart ROM is not present, normal system ini­
t ial ization continues .

3) Next, the KERNAL in itia l izes a l l IN PUT/OUTPUT devices. The seria l bus
is in it ial ized . Both 6526 CIA ch ips are set to the proper va lues for
keyboard scann ing, and the 60-Hz timer is activated . The S ID chip is
c leared . The BAS IC memory map is se lected and the cassette motor
is switched off. (See page 263 for more information .)

4) Next, the KERNAL performs a RAM test, setting the top and bottom of
memory pointers . Also, page zero is in itia l ized , and the tape buffer
is set up .

The RAM TEST routine i s a nondestructive test sta rti ng at location
$0300 and working upwa rd . Once the test has found the first non­
RAM location, the top of RAM has its pointer set. The bottom of
memory is a lways set to $0800, and the sc reen setup is a lways set at
$0400 .

5) F ina l ly, the KERNAL performs these other activities . I/O vectors are
set to default va lues . The ind i rect jump table in low memory is estab­
l ished . The sc reen is then c leared, and all screen editor va riab les
reset. Then the ind irect at $AOOO is used to sta rt BAS IC .

BASIC T O MAC H I N E LANGUAGE 269

HOW TO USE THE KERNAL

When writing machine language prog rams it is often convenient to
use the routines which a re a l ready part of the operating system for
input/output, access to the system clock, memory management, and
other s imi lar operations. It is an unnecessary dupl ication of effort to
write these routines over and over aga in , so easy access to the operat­
ing system helps speed machine language prog ramming .

As mentioned before, the KERNAL is a jump table . This is just a col­
lection of JMP instructions to many operating system routines.

To use a KERNAL routine you must fi rst make a l l of the prepa rations that
the routine demands . If one routine says that you must ca l l another
KERNAL routine first, then that routine must be cal led . If the routine
expects you to put a number in the accumu lator, then that number must
be there . Otherwise your routines have l ittle chance of working the way
you expect them to work.

After al l preparations a re made, you must call the routine by means
of the JSR instruction . Al l KERNAL routines you can access a re structured
as SUBROUT INES , and must end with an RTS instruction . When the
KERNAL routine has fin ished its task, control is returned to your program
at the instruction after the JSR .

Many of the KERNAL routines return error codes in the status word or
the accumu lator if you have problems in the routine. Good programming
practice and the success of your machine language programs demand
that you handle this properly. I f you ignore an error return , the rest of
your program might "bomb."

That's a l l there is to do when you're us ing the KERNAL. Just these
th ree s imple steps:

1) Set up
2) Ca l l the routine
3) Error handl ing

270 BASIC TO MACH I N E LANGUAGE

The fol lowing conventions a re used in describ ing the KERNAL routines :

-FUNCTION NAME: Name of the KERNAL routine .

-CALL ADDRESS: This i s the cal l address of the KERNAL routine, g iven
in hexadec ima l .

-COMMUNICATION REGISTERS: Registers l isted under th i s heading
a re used to pass parameters to and from the KERNAL routines.

-PREPARATORY ROUTINES: Certa in KERNAL routines requ i re that data
be set up before they can operate . The routines needed a re l i sted
here.

-ERROR RETURNS: A return from a KERNAL routine with the CARRY set
i nd icates that an e rror was encountered in p rocess i ng . The ac­
cumu lator wi l l conta in the num ber of the error.

-STACK REQUIREMENTS: This i s the actual number of stack bytes used
by the KERNAL routine .

-REGISTERS AFFECTED: Al l reg isters used by the KERNAL routine are
l i sted here .

-DESCRIPTION: A short tutor ial on the function of the KERNAL routine
is g iven here .

The l ist of the KERNAL routines follows .

BASIC TO MAC H I N E LANGUAGE 2 7 1

USER CALLABLE KERNAL ROUTINES
ADDRESS

NAME
HEX DECIMAL

ACPTR $FFA5 65445

CHK IN $FFC6 65478
CHKOUT $FFC9 6548 1
CHR IN $FFCF 65487

CHROUT $FFD2 65490

ClOUT $FFA8 65448
CINT $FF81 65409
CLALL $FFE7 655 1 1

CLOSE $FFC3 65475

CLRCHN $FFCC 65484

GETIN $FFE4 65508

10BASE $FFF3 65523

lOIN IT $FF84 654 1 2

LISTEN $FFB1 65457

LOAD $FFD5 65493
MEMBOT $FF9C 65436

MEMTOP $FF99 65433

OPEN $FFCO 65472

272 BASIC TO MAC H I N E LANGUAGE

FUNCTION

I nput byte from seria l
port.

Open channel for i nput
Open channe l for output
I nput cha racter from

cha n ne l
Output character to chan-

nel

Output byte to seria l port
I n itia l i ze screen ed itor
C lose a l l channels and

fi les
C lose a specified logical

fi le
C lose i nput and output

channels
Get cha racter from

keyboard queue
(keyboa rd buffer)

Returns base address of
I/O devices

I n itia l i ze input/output
Comma nd devices on the

seria l bus to LISTEN

Load RAM from a device
Read/set the bottom of

memory
Read/set the top of mem-

ory
Open a logical fi le

ADDRESS
NAME

HEX DECIMAL
PLOT $FFFO 65520

RAMTAS $FFS7 654 1 5

RDTIM $FFDE 65502
READST $FFB7 65463
RESTOR $FFSA 654 1 S
SAVE $FFDS 65496
SCN KEY $FF9F 65439
SCREEN $FFED 655 1 7

SECOND $FF93 65427

SETLFS $FFBA 65466

SETMSG $FF90 65424
SETNAM $FFBD 65469
SETTIM $FFDB 65499
SETTMO $FFA2 65442
STOP $FFE 1 65505
TALK $FFB4 65460

TKSA $FF96 65430

U DTIM $FFEA 655 1 4
U N LSN $FFAE 65454

U NTLK $FFAB 6545 1

VECTOR $FFSD 6542 1

FUNCTION

Read/set X, Y cursor posi-
tion

I n itia l ize RAM, a l locate
ta pe buffer, set screen
$0400

Read rea l time c lock
Read I/O status word
Restore defau lt I/O vectors
Save RAM to device
Sca n keyboard
Return X, Y organ ization

of screen
Send secondary address

after LISTEN
Set log ica l , fi rst, and sec-

ond add resses
Control KERNAL messages
Set fi le name
Set rea l time c lock
Set timeout on seria l bus
Scan stop key
Command seria l bus de-

vice to TALK
Send secondary address

after TALK
I ncrement rea l time c lock
Command seria l bus to

UNL ISTEN
Command seria l bus to

U NTALK
Read/set vectored I/O

BASIC TO MACH I N E LANGUAGE 273

8- 1 . Function Name: ACPTR

Purpose: Get data from the serial bus
Cal l address: $FFA5 (hex) 65445 (decimal)
Communication registers: .A
Preparatory routines: TALK, TKSA
Error returns: See R EADST
Stack requirements: 1 3
Registers affected : .A, . X

Description: This is the routine to use when you want to get i nforma­
tion from a device on the serial bus, l ike a disk. This routine gets a byte
of data off the serial bus using ful l handshaking . The data is returned in
the accumu lator. To prepare for this routine the TALK routine must be
cal led f irst to command the device on the ser ia l bus to send data
through the bus . If the input device needs a secondary command, it
m ust be sent by us ing the TKSA KERNAL routine before ca l l ing this
routine . Errors are returned in the status word . The READST routine is
used to read the status word .

How to Use:

0) Command a device on the serial bus to prepare to send data to
the Commodore 64 . (Use the TALK and TKSA KERNAL routines .)

1) Ca l l th is routine (us ing JSR) .
2) Store or otherwise use the data .

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR
STA DATA

274 BASIC TO MAC H I N E LANGUAGE

8-2 . Function Name: CHKIN

Purpose : Open a channel for i nput
Call address: $FFC6 (hex) 65478 (decimal)
Commun ication reg isters: . X
Preparatory routines: (OPEN)
Error returns: 3 ,5 ,6
Stack requ irements: None
Registers affected : .A, .X

Description: Any logical fi le that has a l ready been opened by the
KERNAL OPEN routine can be defined as an input channe l by th is
routine . Natural ly, the device on the channel must be an input device .
Otherwise an error wi l l occur , and the routine wil l abort .

I f you are getting data from anywhere other than the keyboa rd , this
routine must be cal led before using either the CHR IN or the GET IN KER­
NAL routines for data input. If you want to use the input from the
keyboard , and no other i nput channels are opened , then the calls to this
routine, and to the OPEN routine are not needed .

When this routine is used with a device on the serial bus, it a uto­
matically sends the talk address (and the secondary address if one was
specified by the OPEN routine) over the bus .

How to Use:

O} OPEN the logical fi le (if necessary; see description above).
1) Load the .X reg ister with number of the logical fi le to be used .
2} Cal l this routine (us ing a JSR command) .

Possib le errors are:

#3: Fi le not open
5: Device not present
#6: Fi le not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL F I LE 2
LOX #2
JSR CHKIN

BASIC TO MACH I N E LANGUAGE 275

8-3. Function Name: CHKOUT

Purpose: Open a channel for output
Call address: $ FFC9 (hex) 6548 1 (dec imal)
Communication reg isters: . X
Prepa ratory routines: (OPEN)
E rror returns: 0 ,3 ,5 ,7 (See READST)
Stack requ irements: 4 +
Reg isters affected: .A, . X

Description: Any logical fi le number that has been created by the
KERNAL routine OPEN can be defined as an output channe l . Of course,
the device you intend opening a channel to must be an output device .
Otherwise an e rror wi l l occur , and the routine wil l be a borted .

This routine must be cal led before any data is sent to any output
device un less you want to use the Commodore 64 screen as your output
device . If screen output is desired , and there a re no other output chan­
nels a l ready defined, then cal ls to this routine, and to the OPEN routine
a re not needed .

When used to open a channel to a device on the serial bus, this
routine wi l l a utomatica l ly send the L ISTEN address specified by the OPEN
routine (and a secondary address if there was one) .

How to Use:

REMEMBER: this routine is NOT NEEDED to send data to the scree n .

0) Use the KERNAL OPEN routine to specify a logical fi le number, a
L ISTEN address, and a secondary add ress (if needed) .

1) Load the . X reg ister with the logical fi le number used in the open
statement.

2) Call this routine (by using the JSR instruction) .

EXAMPLE:

LOX #3 ;OEF INE LOGICAL F i lE 3 AS AN OUTPUT CHAN NEL
JSR CHKOUT

Possible errors a re :

#3 : F i le not open
#5: Device not present
#7: Not an output fi le

276 BASIC TO MAC H I N E LANGUAGE

8-4. Function Name: CHRIN

Purpose: Get a character from the input channe l
Cal l address : $ FFCF (hex) 65487 (dec imal)
Communication reg isters : .A
Preparatory routines : (OPEN , CHK IN)
Error returns : 0 (See READST)
Stack requirements : 7+
Registers affected: .A , .X

Description: This routine gets a byte of data from a channel a l ready
set up as the input channel by the KERNAL routine CHK IN . I f the CHK IN
has NOT been used to define another in put channe l , then a l l your data
is expected from the keyboa rd . The data byte is returned in the ac­
cumu lator . The channel remains open after the ca l l .

I nput from the keyboa rd is hand led in a special way. F i rst, the cursor
is turned on, and bl inks unti l a carriage return is typed on the keyboard .
Al l characters on the logical sc reen l ine (up to 80 characters) can be
retrieved one at a time by ca l l ing this routine . When the carriage return
is retrieved , the entire l ine has been processed . The next time this
routine is ca l led, the whole process beg ins aga in , i . e . , by flash ing the
cursor.

How to Use:

FROM THE KEYBOARD
1) Retrieve a byte of data by cal l ing this routine .
2) Store the data byte .
3) Check if it is the last data byte (is it a CR ?) .
4) If not, go to step 1 .

EXAMPLE:

LOY $#00
RD JSR CHRIN

STA DATA,Y

INY
CMP #CR
BNE RD

;PREPARE THE .Y REGISTER TO STORE THE DATA

;STORE THE YTH DATA BYTE IN THE YTH
;LOCATION I N THE DATA AREA.

; IS IT A CARRIAGE RETURN?
;NO, GET ANOTHER DATA BYTE

BASIC TO MACH I N E LANGUAGE 277

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES
O} Use the KERNAl OPEN and CHK IN routines .
I } Cal l this routine (us ing a JSR instruction) .
2} Store the data .

EXAMPLE:

JSR CHRIN
STA DATA

B-S. Function Name: CHROUT

Purpose: Output a character
Call address: $FFD2 (hex) 65490 (dec imal)
Communication registers: .A
Preparatory routines : (CHKOUT,OPEN)
Error returns : 0 (See READST)
Stack requ i rements : 8 +

Registers affected: .A

Description: This routine outputs a cha racter to an a l ready opened
c hanne l . Use the KERNAl OPEN and CHKOUT routines to set up the
output channel before ca l l i ng this routine . If th is cal l is omitted , data is
sent to the default output device (number 3 , the screen) . The data byte
to be output is loaded into the accumu lator, and this routine is ca l led .
The data is then sent to the specified output device . The channel is left
open after the ca l l .

NOTE: Core must b e token when using this routine to send data to a specific serial

device since data will be sent to al l open output channels on the bus. Unless this is

desired, al l open output channels on the serial bus other than the intended destination

channel must be closed by a call to the KERNAL CLRCHN routine.

278 BASIC TO MACH I N E LANGUAGE

How to Use:

O} Use the C H KOUT KERNAL ro utin e if needed (see descr iption
above) .

1) Load the data to be output into the accumulator .
2} Ca l l this routine .

EXAMPLE:

;DU PLICATE TH E BASIC INSTRUCTION CMD 4,"A";
LOX #4 ;LOGICAL F I LE #4
JSR CHKOUT
LDA # 'A
JSR C H ROUT

8-6. Function Name: ClOUT

Purpose: Transmit a byte over the serial bus
Cal l address: $ FFA8 (hex) 65448 (dec ima l)
Communication reg isters: .A
Prepa ratory routines: L ISTEN, [SECON D]
E rror returns: See READST
Stack requ i rements: 5
Registers affected: None

;OPEN CHANNEL OUT

;SEND CHARACTER

Description: This routine is used to send information to devices on the
serial bus . A ca l l to this routine will put a data byte onto the serial bus
us ing fu l l serial handshaking . Before this routine is cal led, the L ISTEN
KERNAL routine must be used to command a device on the serial bus to
get ready to receive data . (I f a device needs a secondary address, it
must a l so be sent by us ing the SECON D KERNAL routine .) The ac­
cumu lator is loaded with a byte to handshake as data on the serial bus.
A device must be listening o r the status word wil l return a timeout. This
routine a lways buffers one character. (The routine holds the previous
character to be sent back.) So when a cal l to the KERNAL UNLSN routine
is made to end the data transmiss ion, the buffered character is sent
with an End Or Identify (EOI) set. Then the UNLSN command is sent to
the device .

BASIC T O MAC H I N E LANGUAGE 279

How to Use:

0) Use the L I STEN K ERNAL rout in e (and the S ECOND routine if
needed) .

1) Load the accumulator with a byte of data .
2) Cal l this routine to send the data byte.

EXAMPLE:

LDA #'X
JSR ClOUT

;SEND AN X TO THE SERIAL BUS

8-7. Function Name: CINT

Purpose: I n itial ize screen editor & 6567 video ch ip
Cal l address : $FF8 1 (hex) 65409 (dec imal)
Communication reg isters : None
Preparatory routines : None
Error returns : None
Stack requi rements: 4
Reg isters affected : .A, .X , . Y

Description: This routine sets up the 6567 video control ler ch ip i n the
Commodore 64 for normal operation . The KERNAL screen ed itor is also
in itia l ized . This routine should be ca l led by a Commodore 64 program
cartridge.

How to Use:

1) Cal l this routine .

EXAMPLE:

JSR CINT
JMP RUN

280 BASIC TO MAC H I N E LANGUAGE

;BEGIN EXECUTION

8-8. Function Name: CLALL

Purpose: Close a l l files
Cal l address : $ FFE7 (hex) 655 1 1 (decimal)
Commun ication registers: None
Prepa ratory routines : None
Error returns: None
Stack requirements : 1 1
Registers affected : .A, . X

Description: This routine closes a l l open fi les. When this routine i s
cal led, the pointers i nto the open fi le table a re reset, c los ing a l l fi les .
Also, the CLRCHN routine i s automatical ly cal led to reset the I/O chan­
nels .

How to Use:

1) Ca l l th is routi ne .

EXAMPLE:

JSR CLALL ;CLOSE ALL F I LES AND SELECT DEFAULT I/O CHANNElS
JMP RUN ;BEGIN EXECUTION

8-9. Function Name: CLOSE

Purpose: Close a logical fi le
Call address : $ FFC3 (hex) 65475 (dec imal)
Communication registers: .A
Prepa ratory routines : None
Error returns : 0,240 (See READST)
Stack requi rements: 2 +
Registers affected : .A, . X , . Y

Description: This routine i s used to c lose a logical file after al l I/O
operations have been completed on that fi le . This routine is cal led after
the accumu lator is loaded with the logical fi le number to be closed (the
same number used when the fi le was opened us ing the OPEN routine) .

BASIC T O MAC H I N E LANGUAGE 2 8 1

How to Use:

1) Load the accumulator with the number of the logical fi le to be
c losed .

2) Cal l th i s routine .

EXAMPLE:

;CLOSE 1 5
LOA # 1 5
JSR CLOSE

B- l 0. Function Name: CLRCHN

Purpose: Clea r I/O channels
Cal l address : $FFCC (hex) 65484 (dec imal)
Commun ication reg isters : None
Preparatory routines: None
Error returns : None
Stack requ irements: 9
Reg isters affected : .A, . X

Description: This routine is ca l led to c lear a l l open channels a nd re­
store the I/O channels to their or ig inal defau lt va lues . It is usua l ly ca l led
after opening other I/O channels (l ike a tape or disk d rive) and using
them for i n put/output ope rat io n s . The defa u l t i n pu t device i s 0
(keyboa rd) . The default output device is 3 (the Commodore 64 screen) .

If one of the channels to be c losed is to the seria l port, an UNTALK
s ignal is sent fi rst to clear the input channel or an UNLISTEN is sent to
clear the output channe l . By not cal l ing this routine (and leaving l is­
tener(s) active on the serial bus) severa l devices can receive the same
data from the Commodore 64 at the same t ime. One way to take ad­
vantage of th is would be to command the printer to TALK and the disk to
L ISTEN . This would a l low d i rect printing of a disk fi le .

Th i s routine is automatica lly ca l led when the KERNAL CLALL routine i s
executed .

How to Use:

1) Cal l th is routine us ing the JSR instruction .

EXAMPLE:

JSR CLRCHN

282 BASIC TO MACHINE LANGUAGE

B- l l . Function Name: GETIN

Purpose: Get a cha racter
Cal l add ress: $ FFE4 (hex) 65508 (decimal)
Commun ication reg isters: .A
Preparatory routines: CHKI N , OPEN
Error returns: See READST
Stack requ i rements : 7+
Registers a ffected: .A (.X , . Y)

Description: I f the channel is the keyboard, this subroutine removes
one character from the keyboard queue ond returns it as an ASC I I value
in the accumulator . If the queue is empty, the value returned in the
accumu lator wil l be zero. Characters a re put i nto the q ueue auto­
matica l ly by an interrupt d riven keyboard scan routine which cal ls the
SCNKEY routine . The keyboard buffer can hold up to ten characters .
After the buffer is fi l led, additional characters a re ignored unt i l at least
one cha racter has been removed from the queue . If the channel is RS-
232, then only the .A reg ister is used and a single character is returned .
See R EADST to c heck va l id ity . I f the channel is seria l , cassette, or
screen , ca l l CHR IN routine .

How to Use:

1) Call this routine us ing a JSR instruction .
2) Check for a zero in the accumu lator (empty buffer) .
3) Process the data .

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN
CMP #0
BEQ WAIT

BASIC TO MACH I N E LANGUAGE 283

B- 1 2 . Function Name: IOBASE

Purpose: Define I/O memory page
Cal l address : $ FFF3 (hex) 65523 (dec imal)
Communication reg isters : .X , . Y
Prepa ratory routines : None

Error returns : None
Stack requ i rements : 2
Reg isters affected : . X , . Y

Description: This routine sets the X and Y registers to the address of
the memory section where the memory mapped I/O devices are located .
This address can then be used with an offset to access the memory
mapped I/O devices in the Commodore 64. The offset is the number of
locations from the beginn ing of the page on which the I/O register you
want is located . The .X reg ister contains the low order address byte,
whi le the .Y register contains the h igh order address byte .

This routine exists to provide compatibi l ity between the Commodore
64 , V IC-20, and future models of the Commodore 64 . If the I/O locations
for a machine language program are set by a cal l to this routine, they
should sti l l remain compatible with future versions of the Commodore
64, the KERNAL and BAS IC .

How to Use:

1) Cal l this routine by us ing the JSR instruction .
2) Store the . X and the . Y reg isters in consecutive locations .
3) Load the . Y register with the offset.
4) Access that I/O location .

EXAMPLE:

; SET THE DATA DI RECTION REGISTER OF THE USER PORT TO 0 (IN PUT)
JSR 10BASE
STX POINT ;SET BASE REGISTERS
STY POINT+ 1
LOY #2
LOA #0 ;OFFSET FOR DDR OF THE USER PORT
STA (POI NT), Y ;SET DDR TO °

284 BASIC TO MAC H I N E LANGUAGE

8- 1 3 . Function Name: IOINIT

Purpose: I n itial ize I/O devices
Call Address: $FF84 (hex) 654 1 2 (dec imal)
Communication registers : None
Prepa ratory routines : None
E rror retu rns : None
Stack requ i rements: None
Registers affected: . A, .X, .Y

Descript ion: Th i s routine i n itia l izes al l i n put/output devices a n d
routines . I t i s normal ly ca l led as part o f the in itia l ization procedu re o f a
Commodore 64 program cartridge.

EXAMPLE:

JSR 10lNIT

8- 1 4. Function Name: LISTEN

Purpose: Command a device on the serial bus to l i sten
Cal l Address: $FFB 1 (hex) 65457 (decimal)
Communication registers: . A
Preparatory routines : None
Error returns: See READST
Stack requ i rements : None
Registers affected: .A

Description: This routine wil l command a device on the serial bus to
receive data . The accumu lator m ust be loaded with a device number
between 0 and 31 before ca l l ing the routine . L ISTEN wi l l OR the number
b it by b it to convert to a l i sten address, then transmits th is data as a
command on the serial bus . The specified device wi l l then go into l isten
mode, and be ready to accept information .

How to Use:

1) Load the accumu lator with the number of the device to command
to L ISTEN .

2) Ca l l this routine us ing the JSR instruction .

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN
LOA #8
JSR LISTEN

BASIC TO MAC H I N E LANGUAGE 285

8- 1 5. Function Name: LOAD

Purpose : Load RAM from device
Cal l address : $ FFD5 (hex) 65493 (decima l)
Communication registers : .A, . X , . Y
Preparatory routines : SETLFS, SETNAM
Error returns : 0 ,4 ,5 ,8 ,9, READST
Stack requ i rements: None
Reg isters affected: . A, .X, . Y

Description : This routine LOADs data bytes from any input device d i­
rectly into the memory of the Commodore 64. It can a lso be used for a
verify operation , comparing data from a device with the data a l ready in
memory, while leaving the data stored in RAM unchanged .

The accumu lator (.A) must be set to 0 for a LOAD operation, or 1 for a
verify. If the input device is OPENed with a secondary address (SA) of 0
the header i nformation from the device is ignored . I n this case, the . X
and . Y registers must contain the sta rting address for the load . I f the
device is addressed with a secondary address of 1 , then the data is
loaded into memory sta rting at the location specified by the header. This
routine returns the address of the h ighest RAM location loaded .

Before this routine can be cal led, the KERNAL SETLFS, and SETNAM
routines must be ca l led .

NOTE: You can NOT LOAD from the keyboard (0), RS-232 (2), or the screen (3).

How to Use:

0) Call the SETLFS, and SETNAM routines . If a relocated load is de­
s i red , u se the SETLFS routine to send a secondary add ress of O.

1) Set the .A register to 0 for load, 1 for verify.
2) I f a relocated load is desi red , the .X and . Y registers must be set

to the start address for the load .
3) Ca l l t he routine using t he JSR instruction .

286 BASIC TO MACHINE LANGUAGE

EXAMPLE:

;LOAD A F ILE FROM TAPE
LDA #DEVICE 1 ;SET DEVICE N UMBER
LDX #FILENO ;SET LOGICAL F I LE N UMBER
LOY CMD 1 ;SET SECON DARY ADDRESS
JSR SETLFS
LDA #NAME 1 -NAME ;LOAD .A WITH N UMBER OF

;CHARACTERS IN F I LE NAME
LDX #< NAME ;LOAD .X AND . Y WITH

;ADDRESS OF
LDY #> NAME ;F I LE NAME
JSR SETNAM
LDA #0 ;SET FLAG FOR A LOAD
LDX #$FF ;ALTERNATE START
LDY #$FF
JSR LOAD
STX VA RTA B ; END OF LOAD
STY VA RTA B + 1
JMP START

NAME . BYT 'F I LE NAME'
NAME

B- 1 6. Function Name: MEMBOT

Purpose: Set bottom of memory
Cal l address: $ FF9C (hex) 65436 (decimal)
Communication registers : . X , . Y
Preparatory routines : None
E rror returns : None
Stock requirements: None
Registers affected : . X , .Y

Description: This routine is u sed to set the bottom of the memory. If
the accumulator co rry bit is set when this routine is cal led , a pointer to
the lowest byte of RAM is returned in the .X and . Y registers. On the
unexpanded Commodore 64 the initial va lue of this pointer is $0800
(2048 in decimal) . If the accumu lator corry bit is c lear (= O) when this
routine is ca l led , the va lues of the .X and .Y registers a re transferred to
the low and high bytes , respectively, of the pointer to the beg inning of
RAM.

BASIC TO MAC H I N E LANGUAGE 287

How to Use:

TO READ THE BOTTOM OF RAM
1) Set the carry.
2) Cal l this routine.

TO SET THE BOTTOM OF MEMORY
1) Clear the carry.
2) Cal l this routine .

EXAMPLE:

; MOVE BOTTOM OF MEMORY U P 1 PAGE
SEC ;READ MEMORY BOTTOM
JSR MEMBOT
INY
CLC ;SET MEMORY BOTTOM TO N EW VALUE
JSR MEMBOT

B- 1 7. Function Name: MEMTOP

Purpose: Set the top of RAM
Call add ress : $FF99 (hex) 65433 (dec imal)
Communication registers : . X, . Y
Prepa ratory routines: None
Error returns: None
Stack requirements: 2
Reg isters affected: .X , . Y

Description: This routine is used to set the top o f RAM. When this
routine i s called with the carry bit of the accumu lator set, the pointer to
the top of RAM will be loaded i nto the .X and . Y reg isters . When this
routine i s called with the accumu lator carry bit clear, the contents of the
.X and . Y reg isters a re loaded in the top of memory pointer, changing
the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER
SEC
JSR MEMTOP ;READ TOP OF MEMORY
DEX
CLC
JSR MEMTOP ;SET N EW TOP OF MEMORY

288 BASIC TO MAC H I N E LANGUAGE

B- 1 8. Function Name: OPEN

Purpose: Open a logical fi le
Call address : $ FFCO (hex) 65472 (decimal)
Communication reg isters : None
Preparatory routines : SETLFS, SETNAM
Error returns : 1 , 2 ,4 ,5,6,240, READST
Stack req uirements: None
Reg isters affected: .A, .X, .Y

Description: This routine i s used to OPEN a logical fi le . Once the logi­
ca l fi le is set up, it can be used for input/output operations . Most of the
I/O KERNAL routines ca l i on this routine to c reate the logical fi les to
operate on . No arguments need to be set up to use this routine, but both
the SETLFS and SETNAM KERNAL routines must be ca l led before using
this routine.

How to Use:

O} Use the SETLFS routine.
1) Use the SETNAM routine .
2} Cal l th i s routine.

EXAMPLE:

This is an implementation of the BAS IC statement: OPEN 1 5,8, 1 5 ," 1/ 0"

LDA #NAME2-NAME ;LENGTH OF F I LE NAME FOR SETlFS
LOY # >NAME ;AOORESS OF F I LE NAME
LOX # <NAME
JSR SETNAM
LOA # 1 5
LOX #8
LOY # 1 5
JSR SETlFS
JSR OPEN

NAME . BYT ' I/O'
NAME2

BASIC TO MAC H I N E LANGUAGE 2B9

8- 1 9. Function Name: PLOT

Purpose: Set cursor location
Call address: $FFFO (hex) 65520 (decimal)
Commun ication registers : .A, .X, .Y
Prepa ratory routines : None
Error returns : None
Stack requirements : 2
Reg isters affected : .A, .X , . Y

Description: A ca l l to this routine with the accumulator carry flag set
loads the current position of the cursor on the screen (in X, Y coordinates)
into the .Y and .X reg isters . Y is the column number of the cursor location
(0-39), and X is the row number of the location of the cursor (0-24). A
ca l l with the carry bit c lear moves the cursor to X, Y as determined by
the . Y and .X registers .

How to Use:

READING CURSOR LOCAT ION
1) Set the carry flag .
2) Cal l th i s routine .
3) Get the X and Y position from the . Y ond . X reg isters, respectively.

SETTI NG CURSOR LOCAT ION
1) Clear carry flag .
2) Set the . Y and .X registers t o the desired cursor location .
3) Cal l this routine.

EXAMPLE:

; MOVE THE C U RSOR TO ROW 1 0, COLUMN 5 (5, 1 0)
LOX # 1 0
LOY #5
CLC
JSR PLOT

290 BASIC TO MAC H INE LANGUAGE

8-20. Function Name: RAMTAS

Purpose : Perform RAM test
Ca l l address : $FF87 (hex) 654 1 5 (dec imal)
Communication reg isters : .A, .X , . Y
Preparatory routines : None
Error returns : None
Stack requ i rements : 2
Registers affected: .A, .X , . Y

Description: This routine i s u sed to test RAM a n d set the top and
bottom of memory pointers accord ing ly . It a l so c lears locations $0000 to
$01 0 1 and $0200 to $03FF . It a l so a l locates the cassette buffer, and sets
the screen base to $0400. Normal ly , this routine is cal led as part of the
i nitial ization process of a Commodore 64 program cartridge.

EXAMPLE:

JSR RAMTAS

8-2 1 . Function Name: RDTIM

Purpose: Read system clock
Cal l address: $FFDE (hex) 65502 (dec imal)
Communication reg isters : .A, .X , . Y
Prepa ratory routines : None
Error returns : None
Stack requirements: 2
Reg isters affected : .A, .X , . Y

Description: This routine i s used to read the system clock. The clock's
resolution is a 60th of a second . Three bytes a re returned by the routine.
The accumu lator conta ins the most s ignificant byte, the X index register
contains the next most s ignificant byte, and the Y index reg ister contains
the least s ign ificant byte.

EXAMPLE:

JSR RDTIM
STY TIME
STX TIME + 1
STA TIME + 2

TIME * = * +3

BASIC TO MAC H I N E LANGUAGE 291

B-22. Function Name: READST

Purpose: Read status word
Ca l l address: $FFB7 (hex) 65463 (decima l)
Communication reg isters : .A
Prepa ratory routines : None
Error returns : None
Stack requi rements: 2
Reg isters affected: .A

Description : Th i s routine returns the current status o f the I/O devices i n
the accumulator . The routine i s usual ly cal led after new communication
to an I/O device. The routine g ives you information a bout device status,
or errors that have occurred du ring the I/O operation .

The bits returned in the accumulator conta in the fol lowing information :
(see table below)

ST ST
BIT NUMERIC CASSETTE

POSITION VALUE READ

0 1

1 2

2 4 Short block
3 8 Long block
4 1 6 Unrecoverable

read error
5 32 Checksum

e rror
6 64 End of fi le
7 - 1 28 End of tape

292 BASIC TO MAC H I N E LANGUAGE

TAPE
SERIALlRW VERIFY

+ LOAD

Time out
write
Time out
read

Short block
Long block
Any
mismatch
Checksum
e rror

EOI l ine
Device not End of
present tape

How to Use:

1) Cal l this routine .
2) Decode the information i n the .A register a s i t refers to you r pro­

g ra m .

EXAMPLE:

;CHECK FOR END OF F ILE D U RING READ
JSR READST
AND #64
BNE EOF

8-23. Function Name: RESTOR

;CHECK EOF BIT (EOF = E N D OF FI LE)
;BRANCH ON EOF

Purpose: Restore default system and interrupt vectors
Cal l address: $ FF8A (hex) 654 1 8 (dec imal)
Prepa ratory routines: None
Error returns: None
Stack requ irements: 2
Registers affected : .A, .X , . Y

Description: This routine restores the defau lt values of a l l system vec­
tors used in KERNAL and BAS IC routines and interrupts . The KERNAL
VECTOR routine i s used to read and a lter individual system vectors .

How to Use:

1) Cal l this routine .

EXAMPLE:

JSR RESTOR

8-24. Function Name: SAVE

Purpose: Save memory to a device
Call address: $FFD8 (hex) 65496 (decimal)
Commun ication reg isters : .A, . X , . Y
Prepa ratory routines: SETLFS, SETNAM
Error retu rns: 5 ,8 ,9 , READST
Stack requ irements : None
Registers affected : .A, . X, . Y

BASIC TO MAC H I N E LANGUAGE 293

Description: This routine saves a section of memory. Memory is saved
from an indirect address on page 0 specified by the accumu lator to the
address stored in the .X and . Y reg i sters . It is then sent to a logical file
on an input/output device . The SETLFS and SETNAM routines must be
used before cal l ing this routine. However, a fi le name is not requ i red to
SAVE to device 1 (the Datassette ™ recorder). Any attempt to save to
other devices without us ing a file name results in an e rror.

NOTE : Device 0 (the keyboard>. device 2 (RS-232), and device 3 (the screen) cannot

be SAVEd to . If the attempt is mode, on error occurs, and the SAVE i s stopped .

How to Use:

0) Use the SETLFS routine and the SETNAM routine (un less a SAVE with
no fi le name is desired on "a save to the tape recorder").

1) Load two consecutive locations on page 0 with a pointer to the
start of your save (in standard 6502 low byte first, high byte next
format).

2) Load the accumu lator with the s ing le byte page zero offset to the
pointer.

3) Load the .X and . Y registers with the low byte and high byte re­
spectively of the location of the end of the save.

4) Call this routine .

EXAMPLE:

LOA # 1
J S R SETLFS
LDA #0
JSR S ETNAM
LDA PROG
STA TXTTAB
LOA PROG + l
STA TXTTAB + 1
LDX VARTAB
LOY VA RTA B + 1
LDA #<TXTTAB
JSR SAVE

;DEVICE = 1 :CASSETTE

;NO F I LE NAME

; LOAD START ADDRESS OF SAVE
; (LOW BYTE)

; (H IGH BYTE)
; LOAD . X WITH LOW BYTE OF END OF SAVE
; LOAD .Y WITH H IGH BYTE
; LOAD ACCUMULATOR WITH PAGE 0 OFFSET

294 BASIC TO MAC H I N E LANGUAGE

8-25. Function Name: SCNKEY

Pu rpose: Scan the keyboard
Cal l address: $ FF9F (hex) 65439 (dec imal)
Communication reg isters: None
Prepa ratory routines : IO IN IT
E rror returns: None
Stack requ irements : 5
Registers affected: .A, . X , . Y

Description : This routine scans the Commodore 64 keyboard and
checks for pressed keys . It is the same routine ca l led by the interrupt
handler . If a key is down, its ASCI I va lue is placed in the keyboard
queue. This routine is cal led only if the normal I RQ interrupt is bypassed .

How to Use:

I } Call this routine .

EXAMPLE:

GET JSR SCN KEY
JSR GETIN
CMP #0
BEQ GET
JSR CHROUT

;SCAN KEYBOARD
;GET CHARACTER
; IS IT N U LL?
;YES . . . SCAN AGAIN
;PRINT IT

8-26. Function Name: SCREEN

Purpose: Return sc reen format
Call address : $FFED (hex) 655 1 7 (dec imal)
Communication registers : . X , . Y
Prepa ratory routines: None
Stack requirements : 2
Registers affected: . X , . Y

Description: This routine returns the format o f the screen, e . g . , 40
co lumns in .X and 25 lines in . Y . The routine can be used to determine
what machine a program is running on . This function has been im­
plemented on the Commodore 64 to help upward compatibi l ity of your
programs .

BASIC T O MAC H I N E LANGUAGE 295

How to Use:

1) Cal l this routine .

EXAMPLE:

JSR SCREEN
STX MAXCOL
STY MAX ROW

8-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Cal l address : $FF93 (hex) 65427 (dec imal)
Communication registers : .A
Preparatory routines : L ISTEN
Error returns : See READST
Stack requ irements: 8

Registers affected : . A

Description : This routine i s used to send a secondary address to a n
I/O device after a cal l to the L ISTEN routine i s made, and the device is
commanded to L ISTEN . The routine canNOT be u sed to send a second­
a ry address after a call to the TALK routine .

A secondary address is usua l ly used to g ive setup information to a
device before I/O operations beg i n .

When a secondary address is to be sent to a device on the se ria l bus,
the address must fi rst be ORed with $60.

How to Use:

1) Load the accumulator with the secondary address to be sent.
2) Call this routine .

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) # 1 5
LOA #8
JSR LISTEN

LOA #$60+ 1 5
JSR SECOND

296 BASIC TO MAC H I N E LANGUAGE

8-28. Function Name: SETLFS

Purpose: Set up a logical fi le
Call address: $ FFBA (hex) 65466 (decimal)
Communication reg isters: .A, .X, . Y
Preparatory routines: None
Error returns : None
Stack requirements: 2
Registers affected : None

Description : This routine sets the logical file number, device address,
and secondary address (command number) for other KERNAL routines .

The logical file number is used by the system as a key to the fi le table
created by the OPEN fi le routine . Device addresses can range from 0 to
3 1 . The following codes are used by the Commodore 64 to stand for the
CBM devices l isted below:

ADDRESS DEVICE

o Keyboard
1 Datassette™ # 1
2 RS-232C device
3 CRT d isplay
4 Serial bus printer
8 CBM serial bus disk drive

Device numbers 4 or g reater automatica lly refer to devices on the
serial bus .

A command to the device is sent as a secondary add ress on the serial
bus after the device number is sent du ring the serial attention handshak­
ing sequence. If no secondary address is to be sent, the . Y index regis­
ter should be set to 255.

How to Use:

1) Load the accumu lator with the logical file number.
2) Load the .X index register with the device number.
3) Load the . Y index register with the command.

EXAMPLE:

FOR LOGICAL F I LE 32, DEVICE #4, AND NO COMMAND:
LOA #32
LOX #4

BASIC TO MAC H I N E LANGUAGE 297

LOY #255
JSR SETLFS

8-29. Function Name: SETMSG

Purpose: Control system message output
Call address : $ FF90 (hex) 65424 (decimal)
Communication reg isters: .A
Preparatory routines: None
Error returns : None
Stack req uirements: 2
Reg isters affected : .A

Description: This routine controls the printing of e rror and control mes­
sages by the KERNAL. Either print error messages or print control mes­
sages can be selected by setting the accumu lator when the routine is
cal led. F I LE NOT FOU N D is an example of an error message. PRESS
PLAY ON CASSETTE is an example of a control message .

Bits 6 and 7 of this value determine where the message wi l l come
from . If bit 7 is 1 , one of the error messages from the KERNAL is printed .
If bit 6 is set, control messages are printed .

How to Use:

1) Set accumu lator to desired va lue.
2) Cal l th is routine .

EXAMPLE:

LDA #$40
JSR SETMSG
LOA #$80
JSR SETMSG
LOA #0
JSR SETMSG

8-30. Function Name: SETNAM

Purpose: Set up fi le name

;TURN ON CONTROL MESSAGES

;TU RN ON ERROR MESSAGES

;TU RN OFF ALL KE RNAL MESSAGES

Cal l address: $FFBD (hex) 65469 (decimal)
Commun ication registers: .A, .X, . Y
Prepa ratory routines: None
Stack requirements : None
Registers affected : None

298 BASIC TO MACH I N E LANGUAGE

Description: This routine is used to set up the fi le name for the OPEN,
SAVE, or LOAD routines. The accumulator must be loaded with the
length of the file name. The .X and . Y registers must be loaded with the
address of the fi le name, in standard 6502 low-byte/high-byte format.
The address can be any valid memory address in the system where a
string of characters for the file name is stored . If no file name is desired,
the accumulator must be set to 0, representing a zero fi le length . The .X
and . Y registers can be set to any memory address i n that case .

How to Use:

1) Load the accumu lator with the length of the fi le name.
2) Load the .X index register with the low o rder add ress of the fi le

name.
3) Load the . Y index register with the high order address.
4) Cal l this routine .

EXAMPLE:

LDA #NAME2-NAME
LDX #<NAME
LDY #>NAME
JSR SETNAM

;LOAD LENGTH OF F I LE NAME
;LOAD ADDRESS OF F I LE NAME

B-3 1 . Function Name: SEnlM

Purpose: Set the system c lock
Cal l address: $FFDB (hex) 65499 (decimal)
Communication registers: .A, .X , . Y
Prepa ratory routines: None
Error retu rns: None
Stack requirements: 2
Reg isters affected : None

Description: A system c lock is mainta ined by an interrupt routine that
updates the clock every 1 /60th of a second (one "jiffy") . The clock is
three bytes long, which gives it the capabi l ity to count up to 5, 1 84,000
jiffies (24 hours). At that point the clock resets to zero . Before cal l ing this
routi ne to set the c lock , the acc u m u lator m u st conta in the most
significant byte, the .X index register the next most significant byte, and
the . Y index register the least significant byte of the initial t ime setting
(in jiffies) .

How to Use:

1) Load the accumu lator with the MSB of the 3-byte number to set the
clock.

BASIC TO MAC H I N E LANGUAGE 299

2) Load the .X reg ister with the next byte .
3) Load the . Y reg ister with the LSB .
4) Cal l this routine .

EXAMPLE:

;SET TH E CLOCK TO 1 0 MIN UTES = 3600 J IFF IES
LDA #0 ; MOST S IGNIFICANT
LDX # >3600
LDY #<3600 ; LEAST SIGN IFICANT
JSR SETTIM

B-32 . Function Name: SETTMO

Purpose: Set I EEE bus card timeout flag
Cal l address: $FFA2 (hex) 65442 (decimal)
Commun ication reg isters: .A
Preparatory routines: None
Error returns : None
Stack requ i rements: 2
Reg isters affected : None

NOTE: Th is routine is used O N LY with an I EEE add-on card !

Description: This routine sets t he timeout flag for the I EEE bus . When
the timeout flag is set, the Commodore 64 wi l l wait for a device on the
I EEE port for 64 m i l l iseconds . If the device does not respond to the
Commodore 64's Data Address Va l id (DAV) signal with in that time the
Commodore 64 will recognize an error cond ition and leave the hand­
shake sequence. When this routine is cal led when the accumulator con­
tains a 0 in bit 7 , timeouts are enabled . A 1 in bit 7 wi l l disable the
timeouts.

NOTE: The Commodore 64/Executive 64 uses the timeout feature to communicate that
a disk file is not found on an attempt to OPEN a file only with an IEEE card .

How to Use:

TO SET THE TIMEOUT FLAG
1) Set bit 7 of the accumu lator to O.
2) Cal l this routine .

TO RESET THE T IMEOUT FLAG
1) Set bit 7 of the accumulator to 1 .
2) Cal l this routine .

300 BASIC TO MACH I N E LANGUAGE

EXAMPLE:

;DISABLE TIMEOUT
LOA #0
JSR SElTMO

B-33. Function Name: STOP

Purpose: Check if iii key is pressed
Call address : $ FFE l (hex) 65505 (dec imal)
Communication registers : .A
Prepa ratory routines: None
E rror returns: None
Stock requirements : None
Reg isters affected: .A, .X

Description: I f the &mil key on the keyboard was pressed during
a U DT lM ca l l , th i s ca l l returns the Z flog set . I n addition , the channels
wi l l be reset to default va lues . Al l other flogs remain unchanged . If
the _ key is not pressed then the accumu lator wil l conta in a byte
representing the lost row of the keyboard scan . The user can a l so check
for certain other keys this way.

How to Use:

0) UDTlM shou ld be ca l led before this routine .
1) Ca l l this routine .
2) Test for the zero flog .

EXAMPLE :

JSR U DTIM ;SCAN FOR STOP
JSR STOP
BNE * +5 ;KEY NOT DOWN
JMP READY ;= . . . STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Cal l address : $ FFB4 (hex) 65460 (dec imal)
Communication registers: .A
Preparatory routines : None
Error returns: See READST
Stock requirements : 8
Reg isters affected: .A

BASIC TO MACH I N E LANGUAGE 301

Description: To use this routine the accumu lator must fi rst be loaded
with a device number between 0 and 3 1 . When cal led, this routine then
ORs bit by bit to convert this device number to a ta lk address. Then this
data is transmitted a s a command on the serial bus .

How to Use:

1) Load the accumulator with the device number .
2) Cal l th is routine .

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LOA #4
JSR TALK

8-35. Function Name: TKSA

Purpose: Send a secondary address to a device commanded to TALK
Call address : $ FF96 (hex) 65430 (decimal)
Communication registers: .A
Prepa ratory routines : TALK
Error returns : See READST
Stack requi rements : 8
Reg isters affected : . A

Description: This routine tra nsmits a secondary address on the seria l
bus for a TALK device . This routine must be ca l led with a number be­
tween 0 and 31 in the accumulator. The routine sends this number as a
secondary address command over the seria l bus . This routine can only
be ca l led after a ca l l to the TALK routine. It wil l not work after a L ISTEN .

How to Use:

0) Use the TALK routine.
1) Load the accumu lator with the secondary address .
2) Cal l this routine .

EXAMPLE:

;TELL DEVICE #4 TO TALK WITH COMMAND #7
LOA #4
JSR TALK
LOA #7
JSR TALKSA

302 BASIC TO MAC H I N E LANGUAGE

8-36. Function Name: UDTIM

Purpose: Update the system clock
Cal l address : $FFEA (hex) 655 1 4 (decimal)
Communication registers : None
Prepa ratory routines : None
E rror returns: None
Stack requi rements: 2
Registers affected : .A, . X

Description: This routine updates the system c lock . Norma l ly this
routine is ca l led by the normal KERNAL interrupt routine every 1 /60th of
a second . If the user program processes its own interrupts this routine
must be ca l led to update the time . In addition, the am key routine
must be ca l led, if the _ key is to remain functiona l .

How to Use:

1) Ca l l this routine .

EXAMPLE:

JSR U DTIM

8-37. Function Name: UNLSN

Purpose: Send an UNLISTEN command
Cal l address: $FFAE (hex) 65454 (dec imal)
Communication registers : None
Preparatory routines : None
Error returns : See READST
Stack requirements: 8

Reg isters affected : .A

Description: This routine commands a l l devices on the seria l bus to
stop receiving data from the Commodore 64 (i . e . , UNLI STEN) . Cal l ing
th is routine resu lts in an UNL ISTEN command being transmitted on the
serial bus . Only devices previously commanded to l isten a re affected .
This routine is normal ly used after the Commodore 64 is fin ished sending
data to external devices . Sending the UNL ISTEN commands the l istening
devices to get off the serial bus so it can be used for other purposes .

How to Use:

1) Cal l this routine .

BASIC T O MAC H I N E LANGUAGE 303

EXAMPLE:

JSR U N LSN

8-38. Function Name: UNTLK

Purpose: Send an UNTALK command
Cal l address: $ FFAB (hex) 6545 1 (decimal)
Commun ication registers: None
Preparato ry routines: None
E rror returns : See READST
Stack requ i rements: 8
Registers affected: .A

Description: This routine transmits an UNTALK command on the serial
bus. Al l devices previously set to TALK wi l l stop sending data when this
command is received .

How to Use:

1) Cal l this routine .

EXAMPLE:

JSR U NTALK

8-39. Function Name: VECTOR

Purpose: Manage RAM vectors
Cal l address: $ FF8D (hex) 6542 1 (decimal)
Communication reg isters: . X , . Y
Preparatory routines: None
E rror returns : None
Stack requirements: 2
Registers affected: .A, .X , . Y

Description: This routine manages a l l system vector j ump addresses
stored in RAM. Cal l ing this routine with the the accumu lator carry bit set
stores the current contents of the RAM vectors in a l ist pointed to by the
.X and .Y registers . When this routine is ca l led with the ca rry clear, the
user l ist pointed to by the . X and . Y registers is tra nsferred to the system
RAM vectors. The RAM vectors are listed in the memory map .

304 BASIC TO MAC H I N E LANGUAGE

SYSTEM RAM VECTORS LISTING

RETURNED LOCATION [LOW BYTE] VECTOR [H IGH BYTEJ

.X + 256 * . Y + 0 C INV + 1
+ 2 CB INV + 3
+ 4 NMINV + 5
+ 6 IOPEN + 7
+ 8 ICLOSE + 9
+ 1 0 ICHK IN + 1 1
+ 1 2 ICHOUT + 1 3
+ 1 4 ICLRCH + 1 5
+ 1 6 I BASIN + 1 7
+ 1 8 I BSOUT + 1 9
+ 20 ISTOP + 2 1
+ 22 IGET IN + 23
+ 24 ICLALL +25
+ 26 USRCMD + 27
+ 28 I LOAD + 29
+ 30 I SAVE + 3 1

TOTAL BYTES: 32

(for exp landation of individua l vectors, see page 3 1 9)

NOTE: This routine requires ca ution in its use . The best way to use it is to first read the
entire vector contents into the user area, alter the desired vectors, and then copy the

contents bock to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS
1) Set the carry.
2) Set the .X and .y registers to the address to put the vectors.
3) Cal l this routine .

LOAD THE SYSTEM RAM VECTORS
1) C lear the ca rry bit .
2) Set the .X and . Y registers to the add ress of the vector l ist in RAM

that must be loaded .
3) Ca l l this routine .

BASIC T O MAC H I N E LANGUAGE 305

EXAMPLE :

;CHANGE THE IN PUT ROUTI NES TO NEW SYSTEM
LOX #< USER
LOY #> USER
SEC
JSR VECTOR
LOA #<MYI NP

;REAO OLO VECTORS
;CHANGE CHK IN VECTOR

STA USER--:- 1 0
LOA #>MYIN P
STA USER + l l
LOX #< USER
LOY #> USER
CLC
JSR VECTOR

USER * = * +32

ERROR CODES

;ALTER SYSTEM

The fol lowing is a l ist of error messages which can occur when using
the KERNAL routines. If an error occurs during a KERNAL routine, the
carry bit of the accumu lator is set, and the number of the error message
is returned in the accumu lator.

NOTE : Some KERNAL I/O routines do not use these codes for error messages. I nstea d ,
errors a re identified using the KERNAL READST routine.

NUMBER
1--

0
1
2
3
4
5
6
7
8
9

240

MEANING

Routine terminated by the _ key
Too many open files
File a l ready open
File not open
Fi le not found
Device not present
File is not an input file
File is not an output file
File name is missing
I l legal device number
Top-of-memory change RS-232 buffer a l location/deal location

306 BASIC TO MAC H I N E LANGUAGE

USING MACHINE LANGUAGE FROM BASIC

There a re several methods of using BAS IC and machine language on
the Commodore 64, inc l uding spec ia l statements a s part o f CBM BASIC
as well as key location s i n the mach ine . There a re five main ways to use
machine language routines from BASIC on the Commodore 64 . They
a re :

1) The BAS IC S YS statement
2) The BASIC USR function
3) Changing one of the RAM I/O vectors
4) Changing one of the RAM interrupt vectors
5) Changing the CH RGET routine

1) The BAS IC statement SYS X causes a JUMP to a machine language
subroutine located at address X . The routine must end with an RTS
(ReTurn from Subroutine) instruction . This wil l transfer control back
to BAS IC .

Parameters are genera l ly pa ssed between the machine lan­
guage routine and the BAS IC program us ing the BAS IC PEEK and
POKE statements, and the i r mach ine language equivalents.

The SYS command i s the most useful method of combin ing
BAS IC with machine language . PEEKs and POKEs make mu lt iple
parameter pass ing easy. There can be many SYS statements in a
prog ram, each to a d ifferent (or even the same) machine lan­
guage routine.

2) The BAS IC function USR(X) tra nsfers control to the machine lan­
guage subroutine located at the address stored in locations 785
and 786. (The address is stored in standard low-byte/high-byte
format .) The va l ue X is eva luated and passed to the machine lan­
guage subroutine through floating poi nt accumulator # 1 , located
beginning at address $61 (see memory map for more detai l s) . A
va lue may be returned back to the BASIC program by placing it in
the floating point accumulator. The machine language routine must
end with an RTS instruction to return to BAS IC .

Th i s statement is d ifferent from the SYS, because you have to set
up an ind i rect vector . Also d ifferent is the format through which
the variable is passed (floating point format) . The indirect vector
must be changed if more than one machine language routine is
u sed .

BASIC TO MAC H I N E LANGUAGE 307

3) Any of the input/output or BAS IC internal routines accessed through
the vector table located on page 3 can be replaced , or amended
by user code. Each 2-byte vector consists of a low byte and a h igh
byte address which is used by the operating system .

The KERNAL VECTOR routine i s the most rel iable way to change
any of the vectors, but a sing le vector can be changed by POKEs .
A new vector wil l point to a user prepa red routine which is meant
to replace or aug ment the standard system routine . When the ap­
propriate BAS IC command is executed, the user routine wil l be
executed . If after executing the user routine, it is necessa ry to exe­
cute the normal system routine , the user prog ram must JMP (J uMP)
to the address formerly conta ined in the vector . If not, the routine
must end with a RTS to transfer control back to BAS IC .

4) The HARDWARE INTERRUPT (IRQ) VECTOR can be changed . Every
1 /60th of a second , the operating system transfers control to the
routine specified by this vector . The KERNAL norma lly uses this for
tim ing , keyboard scann ing , etc . If this tech n ique is used , you
should a lways transfer control to the normal IRQ handl ing routine,
un less the replacement routine is prepared to handle the CIA ch ip .
(REMEMBER to end the routine with an RTI (ReTurn from Interrupt).

This method is useful for tasks which must happen concurrently
with a BAS IC prog ram , but has the d rawback of being more
difficult .

NOTE: ALWAYS D ISABLE INTERRUPTS BEFORE CHANGING T H I S VECTOR !

5) The CHRGET routine is used by BASIC to get each characterltoken .
Th i s makes i t s imple to add new BASIC commands . Natural ly,
each new command must be executed by a user written machine
language subroutine . A common way to use this method is to
specify a cha racter (@ for example) which wi l l occu r before any of
the new commands . The new CHRGET routine will sea rc h for the
spec ia l characte r . If none is present, control is passed to the nor­
ma l BAS IC CHRGET routine . If the special character is present, the
new command is interpreted and executed by your machine lan­
guage program . This min imizes the extra execution time added by
the need to search for add it ional commands . This techniq ue is
often ca l led a wedge .

308 BASIC TO MAC H I N E LANGUAGE

WHERE TO PUT MACHINE LANGUAGE ROUTINES

The best place for mach ine language routines on the Commodore 64

is from $COOO-$CFFF, assuming the routines a re smal ler than 4K bytes
long . This section of memory is not d istu rbed by BAS IC .

I f for some reason it's no t possible or desirable to pu t the mach ine
language routine at $COOO, for instance if the routine is larger than 4K
bytes, i t then becomes necessa ry to reserve an area at the top of mem­
ory from BASIC for the routine . The top of memory is normal ly $9FFF.
The top of memory can be changed through the KERNAL routine
MEMTOP, or by the fol lowing BASIC statements:

10 POKE5 1 , L: POKE52 ,H : POKE55,L: POKE56, H :CLR

Where H and L a re the high and low portions, respectively, of the new
top of memory. For example, to reserve the area from $9000 to $9FFF
for machine language, use the fol lowing :

10 POKE5 1 ,0 :POKE52, 1 44 :POKE55,0: POKE56, 1 44:CLR

HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language pro­
g rams to a BASIC program . They are:

1) DATA STATEMENTS:

By READing DATA statements, and POKEing the values into memory at
the start of the prog ram , machine language routines can be added . This
is the easiest method . No special methods are needed to save the two
parts of the program , and it is fai rly easy to debug. The drawbacks
include taking up more memory space, and the wait whi le the program
is POKEd in. Therefore, this method is better for smal ler routines.

EXAMPLE:

1 0 RESTORE:FORX = l T09: READA: POKE I 2* 4096+X,A: NEXT

BASIC PROGRAM

1 000 DATA 1 6 1 , 1 ,204,204,204,204, 204,204,96

BASIC TO MAC H I N E LANGUAGE 309

2) MACHINE LANGUAGE MONITOR (64MON):

This prog ram a l lows you to enter a program in e ither H EX or SYM­
BOLIC codes, and save the portion of memory the program i s in. Advan­
tages of this method inc l ude easier entry of the mach ine language
routines, debugging a ids , and a much faster means of saving and load­
ing. The drawback to th is method is that i t genera lly requires the BASIC
program t o load the machine language routine from tape or disk when
it is started . (For more deta i ls on 64MON see the machine language
section .)

EXAMPLE:

The following is an example of a BAS IC program using a machine
language routine prepared by 64MO N . The routine is stored on tape:

1 0 l F F LAG = 1 THEN 20
15 FLAG = l : LOAD "MACH INE LAN GUAGE ROUT INE NAME", l , l
20

REST OF BASIC PROGRAM

3) EDITOR/ASSEMBLER PACKAGE:

Advantages are s imi lar to us ing a machine language monitor, but
programs a re even easier to enter . Disadvantages a re also s imi lar to the
use of a machine language monitor.

COMMODORE 64 MEMORY MAP

LABEL
HEX DECIMAL

ADDRESS LOCATION

065 1 0 0000 0

R65 1 0 0001 1

0002 2
ADRAY 1 0003-0004 3-4

3 1 0 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

65 1 0 On-Ch ip Data-
Direction Reg ister

65 1 0 On-Ch ip a-Bit
I nput/Output Register

U nused
Jump Vector: Convert

F loati ng - I nteger

LABEL
HEX

ADDRESS

ADRAY2 0005-0006

CHARAC 0007
ENDCHR 0008

TRMPOS 0009

VERCK OOOA

COUNT OOOB

DIMFLG OOOC

VAlTYP 0000

INTFlG OOOE

GARBFl OOOF

S U BFlG 00 1 0

IN PFlG 001 1

TANSGN 001 2

001 3
lIN N UM 001 4- 00 1 5
TEMPPT 001 6

LASTPT 001 7-001 8
TEMPST 00 1 9- 002 1

INDEX 0022-0025
RESHO 0026-002A

TXTTAB 002B-002C

DECIMAL
DESCRIPTION LOCATION

5-6 Jump Vector: Convert
I nteger- Floati ng

7 Sea rch Cha racter

8 F lag : Sca n for Quote at
End of String

9 Screen Co lumn From Last
TAB

1 0 F lag : 0 = Load , 1 = Ver-
ify

1 1 I nput Buffer Pointer / No.
of Subscripts

1 2 F lag : Defau l t Array DI-
Mension

1 3 Data Type: $FF = String ,
$00 = Numeric

1 4 Data Type: $80 = I nteger,
$00 = F l oating

1 5 F lag : DATA scan/LIST
quote/Garbage Col i

1 6 F lag : Su bscr ipt Ref / User
Function Ca l l

1 7 F lag : $00 = I N PUT, $40
= GET, $98 = READ

1 8 F lag : TAN s ign / Compari-
son Result

1 9 F lag : IN PUT Prompt

20- 2 1 Temp: I nteger Va lue
22 Pointer: Temporary String

Stack

23-24 last Temp String Address

25-33 Stack for Temporary
Strings

34-37 Uti l ity Poi nter Area

38-42 F loating-Point Product of
Mult iply

43-44 Poi nter: Start of BASIC
Text

BASIC TO MAC H I N E LANGUAGE 3 1 1

LABEL
HEX DECIMAL

ADDRESS LOCATION

VA RTA B 002D-002E 45-46

ARYTAB 002F-0030 47-48

STREN D 003 1 -0032 49-50

FRETOP 0033-0034 5 1 -52

FRESPC 0035-0036 53-54
MEMSIZ 0037-0038 55-56

C U RLIN 0039-003A 57-58

OLDLIN 003B-003C 59-60

OLDTXT 003D-003E 6 1 -62

DATLIN 003F-0040 63 -64

DATPTR 004 1 -0042 65-66

I N PPTR 0043-0044 67-68
VARNAM 0045 -0046 69- 70

VARPNT 0047-0048 7 1 - 72

FORPNT 0049-004A 73- 74

004B-0060 75-96
FACEXP 0061 97

FACHO 0062-0065 98- 1 01

FACSGN 0066 1 02
SGNFLG 0067 1 03

3 1 2 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

Poi nter: Start of BASIC
Variables

Poi nter : Start of BASIC
Arrays

Pointer: End of BASIC Ar-
rays (+ 1)

Pointer: Bottom of Str ing
Storage

Ut i l ity Stri ng Pointer
Pointer: H ighest Address

Used by BASIC

Current BASIC Line
N umber

Previous BASIC Li ne
N umber

Pointer: BASIC Statement
for CONT

Current DATA Line
N umber

Pointer: Current DATA
Item Address

Vector: IN PUT Routine
Current BASIC Variable

Name
Poi nter: Current BASIC

Varia b le Data
Pointer: I ndex Va riable

for FOR/NEXT

Temp Pointer / Data Area
F loating-Point Accumu-

lator # 1 : Exponent
F loating Accum. # 1 :

Ma ntissa
F loating Accum. # 1 : S ign
Poi nter: Series Eva l uation

Constant

LABEL
H EX

ADDRESS

BITS 0068

ARGEXP 0069

ARGHO 006A-006D

ARGSGN 006E
ARISGN 006F

FACOV 0070

FBUFPT 007 1 - 0072
CHRGET 0073 -008A

CH RGOT 0079

TXTPTR 007A-007B

RNDX 008B-008F

STATUS 0090

STKEY 0091
SVXT 0092
VERCK 0093

C3PO 0094

BSOUR 0095

SYNO 0096
0097

LDTND 0098

DFLTN 0099
DFLTO 009A

DECIMAL
DESCRIPTION LOCATION

1 04 F loating Accum. # 1 :
Overflow Digit

1 05 F loating-Po int Accumu-
lator #2: Exponent

1 06- 1 09 Floating Accum. #2:
Ma ntissa

1 1 0 F loati ng Accum. #2: S ign
1 1 1 S ign Compa rison Resu lt:

Accum. #1 vs #2

1 1 2 F loating Accum. # 1 .
Low-Order (Roundi ng)

1 1 3 - 1 1 4 Poi nter: Cassette Buffer
1 1 5- 1 38 Subrouti ne: Get Next Byte

of BASIC Text
1 2 1 Entry to Get Same Byte of

Text Again

1 22- 1 23 Pointer: Current Byte of
BASIC Text

1 39- 1 43 F loati ng RND Function
Seed Va lue

1 44 Kerna l I/O Status
Word: ST

1 45 F lag : STOP key / RVS key
1 46 Timing Consta nt for Tape
1 47 F lag : 0 = Load, 1 = Ver-

ify

1 48 F lag : Seria l Bus-Output
Char. Buffered

1 49 Buffered Character for
Seria l Bus

1 50 Cassette Sync No.
1 5 1 Temp Data Area
1 52 No. of Open F i l es / I ndex

to File Table

1 53 Defau l t I nput Device (0)
1 54 Defa u lt Output (CMD)

Device (3)

BASIC TO MAC H I N E LANGUAGE 3 1 3

LABEL
HEX DECIMAL

ADDRESS LOCATION

PRTY 009B 1 55
DPSW 009C 1 56
MSGFLG 0090 1 57

PTR I 009E 1 58
PTR2 009F 1 59
TIME 00AO-00A2 1 60- 1 62

00A3 -00A4 1 63 - 1 64
CNTDN 00A5 1 65
BUFPNT 00A6 1 66
I N BIT 00A7 1 67

BITCI 00A8 1 68

RINON E 00A9 1 69

RI DATA OOAA 1 70

RIPRTY OOAB 1 7 1

SAL OOAC -OOAD 1 72- 1 73

EAL OOAE-OOAF 1 74- 1 75

CMPO OOBO- OOBI 1 76-- 1 77
TAPE I 00B2-00B3 1 78- 1 79

BITTS 00B4 1 80

NXTBIT 00B5 1 8 1

RODATA 00B6 1 82
FNLEN 00B7 1 83

LA 00B8 1 84

3 1 4 BASIC T O MAC H I N E LANGUAGE

DESCRIPTION

Tape Character Parity
F lag : Ta pe Byte-Received
F lag : $80 = Direct Mode,

$00 = Prog ram
Tape Pass 1 Error Log
Ta pe Pass 2 Error Log
Rea l-Time J iffy C lock

(approx) 1 /60 Sec

Temp Data Area
Cassette Sync Countdown
Poi nter: Ta pe I/O Buffer
RS-232 I nput Bits / Cas-

sette Temp
RS-232 I nput Bit Count /

Cassette Temp

RS-232 F lag : Check for
Sta rt Bit

RS-232 I nput Byte
Buffer/Cassette Temp

RS-232 I nput Pa rity / Cas-
sette Short Cnt

Pointer: Ta pe Buffer/
Screen Scro l l ing

Ta pe E nd Add resses/End
of Program

Ta pe Timing Constants
Poi nter: Start of Ta pe Buf-

fer
RS-232 Out Bit Count /

Cassette Temp

RS-232 Next B i t to Send/
Ta pe EOT F lag

RS-232 Out Byte Buffer
Length of Cu rrent F i l e

Name

Current Log ica l F i l e
Number

LABEL

SA

FA
FNADR

ROPRTY

FSBLK

MYCH
CAS 1
STAL
MEMUSS
LSTX

N DX

RVS

INOX

LXSP

SFOX
BLNSW

BLNCT

GOBLN
BLNON

CRSW

PNT

HEX
ADDRESS

00B9

OOBA I

OOBB- OOBC

OOBO

OOBE

OOBF
OOCO
00C 1 - 00C2
00C3-00C4
00C5

00C6

OOC?

I

DECIMAL
LOCATION

1 85

1 86
1 87- 1 88

1 89

1 90

1 9 1
1 92
1 93 - 1 94
1 95 - 1 96
1 97

1 98

1 99

00C8 200

00C9- 00CA 20 1 - 202

OOCB
OOCC

OOCO

OOCE
OOCF

0000

000 1 -0002

203
204

205

1 206
207

208

209-2 1 0

DESCRIPTION

Current Secondary Ad­
d ress

Current Device Number
Pointer: Current F i l e

Name

RS-232 Out Parity / Cas­
sette Temp

Cassette Read/Write B lock
Count

Ser ia l Word Buffer
Ta pe Motor I nter lock
I/O Start Address
Ta pe Load Temps
Current Key Pressed:

64 = No Key
No. of Chars. i n

Keyboard Buffer
(Queue)

F lag : Print Reverse
Chars. - 1 =Yes, O = No
Used

Poi nter: End of Log ica l
L ine for INPUT

Cursor X-V Pos. at Start of
I N PUT

64 = No Key
Cursor B l i nk enable : 0 =

Flash Cursor

Timer: Cou ntdown to
Togg le Cursor

Character U nder Cursor
F lag : Last Cursor B l i n k

On/Off
F lag : I N PUT or GET from

Keyboa rd
Poi nter: Current Screen

L ine Address

BASIC TO MAC H I N E LANGUAGE 3 1 5

HEX DECIMAL
LABEL ADDRESS LOCATION

PNTR 0003 2 1 1

QTSW 0004 2 1 2

LNMX 0005 2 1 3

TBLX 0006 2 1 4

0007 2 1 5
INSRT 0008 2 1 6

LDTB I 00D9-00F2 2 1 7-242

USER 00F3-00F4 243 -244

KEYTAB 00F5-00F6 245- 246

RI BUF 00F7-00F8 247- 248

ROBUF 00F9-00FA 249-250

FREKZ P OOFB-OOFE 25 1 - 254

BASZPT OOFF 255
0 1 00-01 FF 256- 5 1 1

0 1 00-0 1 0A 256- 266

BAD O l OO-Ol3E 256-3 1 8
BUF 0200-0258 5 1 2 -600
LAT 0259-0262 601 - 6 1 0

FAT 0263 -026C 61 1 -620

SAT 0260-0276 62 1 -630

KEYD 0277-0280 63 1 -640

3 1 6 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

Cursor Co lumn on Current
Li ne

F lag : Ed itor i n Quote
Mode, $00 = NO

Physical Screen Line
Length

Current Cursor Physica l
Line Number

Temp Data Area
F lag : I nsert Mode, >0 =

I NSTs
Screen Line L ink Ta ble /

Ed itor Temps

Poi nter: Current Screen
Color RAM loc.

Vector: Keyboard Decode
Tab le

RS-232 I nput Buffer
Pointer

RS-232 Output Buffer
Pointer

Free O-Page Space for
U ser Prog rams

BASIC Temp Data Area
Micro-Processor System

Stack Area

F loating to Str ing Work
Area

Ta pe I nput E rror Log
System I N PUT Buffer
KERNAL Ta ble : Active Log-

ica l F i le No's.
KERNAL Table : Device No.

for Each F i le

KERNAL Table : Second
Address Each F i le

Keyboard Buffer Queue
(F I FO)

LABEL
HEX

ADDRESS

MEMSTR 028 1 -0282

MEMSIZ 0283- 0284

TlMOUT 0285

COLOR 0286

GDCOL 0287

H IBASE 0288

XMAX 0289
RPTFLG 028A

KOUNT 028B
DELAY 028C
SHFLAG 028D

LSTSH F 028E

KEYLOG 028F-0290

MODE 0291

AUTODN 0292

M5 1 CTR 0293

M5 1 CDR 0294

M5 1 AJ B 0295-0296

RSSTAT 0297

BITNUM 0298

DECIMAL
DESCRIPTION LOCATION

64 1 -642 Poin ter: Bottom of Memory
for 0.5.

643-644 Pointer: Top of Memory for
0.5.

645 F lag : Kerna l Varia b le for
I E E E Timeout

646 Current Character Color
Code

647 Background Color U nder
Cursor

648 Top of Screen Memory
(Page)

649 Size of Keyboard Buffer

650 F lag : REPEAT Key Used,
$80 = Repeat

65 1 Repeat Speed Counter

652 Repeat Delay Cou nter

653 F lag : Keyb'rd SH I FT Key/
CTRL Key/C = Key

654 Last Keyboard Shift Pat-
tern

655-656 Vector: Keyboard Tab le
Setup

657 F lag : $OO = Disab le SH I FT
Keys, $80 = Enab le
SH I FT Keys

658 F lag : Auto Scro l l Down, 0
= ON

659 RS-232: 655 1 Control
Reg ister Image

660 RS-232: 655 1 Command
Reg ister Image

66 1 -662 RS-232 Non-Sta ndard BPS
(Ti me/2- 1 00) USA

663 RS-232: 655 1 Status Reg is-
ter Image

664 RS-232 Number of B its
Left to Send

BASIC TO MAC H I N E LANGUAGE 3 1 7

LABEL
HEX DECIMAL

ADDRESS LOCATION

BAU DOF 0299-029A 665-666

R IDBE 029B 667

R IDBS 029C 668

RODBS 0290 669

RODBE 029E 670

I RQTMP 029F -02AO 671 -672

ENABL 02A 1 673
02A2 674

02A3 675

02A4 676

02A5 677
02A6 678

02A7-02FF 679- 767
I E RROR 0300-0301 768- 769

IMAIN 0302-0303 770-771
ICRNCH 0304-0305 772 -773

IQPLOP 0306-0307 774-775
IGONE 0308-0309 776-777

I EVAL 030A-030B 778- 779

SAREG 030C 780

SXREG 0300 78 1

3 1 8 BASIC TO MACH I N E LANGUAGE

DESCRIPTION

RS-232 Baud Rate: F u l l Bit
Time (f.Ls)

RS-232 I ndex to End of
I nput Buffer

RS-232 Start of I nput Buf-
fer (Page)

RS-232 Start of Output
Buffer (Page)

RS-232 I ndex to End of
Output Buffer

I Holds I RQ Vector During
To pe I/O

RS-232 Ena bles
TOO Sense During Cos-

sette I/O
Temp Storage For Cossette

Read
Temp D 1 1 RQ Ind icator For

Cossette Read
Temp For Line I ndex
PAUNTSC Flog, 0=

NTSC, 1 = PAL
Unused
Vector: Print BASIC Error

Message
Vector: BASIC Worm Sta rt
Vector: Token i ze BASIC

Text
Vector: BASIC Text L IST
Vector: BASIC Char . Dis-

patch

Vector: BASIC Token
Eva l uation

Storage for 6502 .A Reg-
ister

Storage for 6502 .X Reg is-
ter

I

LABEL
HEX

ADDRESS

SYREG 030E

SPREG 030F

USRPOK 03 1 0

USRADD 03 1 1 -03 1 2

03 1 3
CINV 03 1 4-03 1 5

CB INV 03 1 6-03 1 7
NMINV 03 1 8-03 1 9

IOPEN 03 1 A-03 1 B

ICLOSE 03 1 C -03 1 D

ICHKIN 03 1 E -03 1 F

ICKOUT 0320- 032 1

ICLRCH 0322-0323

IBASIN 0324-0325

IBSOUT 0326-0327

ISTOP 0328-0329

IGETIN 032A-032B

ICLALL 032C-032D

U SRCMD 032E -032F
I LOAD 0330-033 1

DECIMAL
DESCRIPTION LOCATION

782 Storage for 6502 . Y Regis-
ter

783 Storage for 6502 .SP
Register

784 USR Function Jump I nstr
(4C)

785- 786 USR Address Low Byte/
H igh Byte

787 U nused
788- 789 Vector: Hardware I RQ

I nterru pt
790-79 1 Vector: B R K I nstr. Interrupt
792 - 793 Vector: Non-Maskab le

I nterru pt

794- 795 KERNAL OPEN Routine
Vector

796-797 KE RNAL CLOSE Routi ne
Vector

798- 799 KERNAL CHKIN Routi ne
Vector

800-801 KE RNAL CHKOUT Routine
Vector

802- 803 KERNAL CLRCHN Routine
Vector

804- 805 KERNAL CHRIN Routi ne
Vector

806- 807 KERNAL CHROUT Routine
Vector

808- 809 KERNAL STOP Routine
Vector

8 1 0-8 1 1 KERNAL GETIN Routine
Vector

8 1 2- 8 1 3 KERNAL CLALL Routine
Vector

8 1 4 - 8 1 5 User-Defined Vector
8 1 6- 8 1 7 KE RNAL LOAD Routine

Vector

BASIC TO MAC H I N E LANGUAGE 3 1 9

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

I SAVE 0332-0333 8 1 8- 8 1 9 KERNAL SAVE Routi ne Vec-
tor

0334-033B 820-827 U nused

TBUFFR 033C-03FB 828- 1 0 1 9 Tape I/O Buffer

03FC-03FF 1 020- 1 023 U nused

VICSCN 0400-07FF 1 024- 2047 1 024 Byte Screen Memory
Area

0400-07E7 1 024- 2023 Video Matrix: 25 Lines X
40 Columns

07F8-07FF 2040-2047 Sprite Data Pointers

0800-9FFF 2048-40959 Norma l BASIC Program
Space

8000-9FFF 32768-40959 VSP Cartridge ROM-
8 1 92 Bytes

AOOO- BFFF 40960-49 1 5 1 BASIC ROM- 8 1 92 Bytes
(or 8K RAM)

COOO-CFFF 491 52-53247 RAM-4096 Bytes

DOOO- DFFF 53248-57343 Input/Output Devices and
Color RAM

or Character Generator
ROM

or RAM-4096 Bytes

EOOO-FFFF 57344-65535 KERNAL ROM- 8 1 92
Bytes (or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

HEX DECIMAL BITS

0000 0 7-0

000 1 1

0

320 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

MOS 65 1 0 Data Di rection
Reg i ster (xx l 0 l l l l)
Bit= 1 : Output, Bit =O:
Input, x = Don't Care

MOS 65 1 0 Micro-Processor
On-Ch ip I/O Port

/LORAM Signa l (O= Switch
BASIC ROM Out)

HEX DECIMAL

1

2

3
4

5

6-7
0000- 002E 53248-5427 1

0000 53248
000 1 53249
0002 53250
0003 5325 1
0004 53252
0005 53253
0006 53254
0007 53255
0008 53256
0009 53257
OOOA 53258
OOOB 53259
OOOC 53260
0000 5326 1
OOOE 53262
OOOF 53263
00 1 0 53264

001 1 53265

7

6

BITS DESCRIPTION

/H I RAM S igna l (O=Switch
Kerna l ROM Out)

/CHAREN S igna l
(O =Switch Char . ROM
I n)

Cassette Data Output Line
Cassette Switch Sense
1 = Switch C losed
Cassette Motor Control
0 = ON, 1 = OFF
Undefined
MOS 6566 VIDEO INTER-

FACE CONTROLLER
(VIC)

Sprite 0 X Pos
Sprite 0 Y Pos
Sprite 1 X Pos
Sprite 1 Y Pos
Sprite 2 X Pos
Sprite 2 Y Pos
Sprite 3 X Pos
Sprite 3 Y Pos
Sprite 4 X Pos
Sprite 4 Y Pos
Sprite 5 X Pos
Sprite 5 Y Pos
Sprite 6 X Pos
Sprite 6 Y Pos
Sprite 7 X Pos
Sprite 7 Y Pos
Sprites 0- 7 X Pos (msb of

X coord .)
V IC Control Reg ister
Raster Compare: (Bit 8)

See 53266
Extended Color Text

Mode: 1 = Enab le

BASIC T O MAC H I N E LANGUAGE 3 2 1

HEX DECIMAL BITS

5

4

3

2-0

00 1 2 53266

001 3 53267
001 4 53268
00 1 5 53269

001 6 53270
7-6
5

4

3

2-0
001 7 53271

001 8 53272

7-4

3 - 1

001 9 53273

7

3

322 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

Bit-Map Mode: 1 = E n-
ab le

B lank Screen to Border
Color : 0 = Blank

Select 24/25 Row Text
Display: 1 = 25 Rows

Smooth Scrol l to Y Dot-
Position (0-7)

Read Raster / Write Raster
Va lue for Compa re I RQ

I
Lig ht-Pen Latch X Pos

I Light-Pen Latch Y Pos
Sprite Display E nab le :
1 = E nable
V IC Control Register
U nused
ALWAYS SET THIS BIT TO

O!
Multi-Color Mode: 1 =

Enable (Text or Bit-
Ma p)

' Select 38/40 Column Text
Display: 1 = 40 Cols

Smooth Scro l l to X Pos

I

Sprites 0-7 Expo nd 2 X
Vertica l (Y)

VIC Memory Control Reg-
ister

Video Matrix Base Ad-
dress (inside VIC)

Cha racter Dot-Data Base
Address (ins ide VIC)

VIC I nterrupt F lag Reg i s-
ter (Bit = 1 : I RQ Oc-
curred)

Set on Any Enab led VIC
I RQ Condit ion

Lig ht-Pen Triggered I RQ
F lag

HEX DECIMAL

2

1
I I i 0 i

DO I A 53274

DO I B 53275

DO I C 53276

00 1 0 53277

DOl E 53278

001 F 53279

0020 53280
002 1 5328 1
0022 53282
0023 53283
0024 53284
0025 53285

0026 53286

0027 53287
0028 53288
0029 53289
002A 53290
002 B 5329 1
002C 53292
002 0 53293
002E 53294
0400 - 07FF �4272 - 55295

BITS DESCRIPTION

S prite to Sprite Col l is ion
I RQ F l a g

Sprite t o Background
Col l is ion I RQ F l a g

Raster Compa re I RQ F lag
IRQ Mask Reg ister: 1 =

I nterrupt E n a bled
Sprite to Backg rou nd

Display Priority: 1 =
S prite

Sprites 0- 7 Multi-Color
Mode Select: 1 =
M . C . M.

Sprites 0-7 Expand 2 X
Horizonta l (X)

Sprite to Sprite Col l ision
Detect

Sprite to Background
Col l ision Detect

Border Color
Backg round Color 0
Backg rou nd C?lor 1
Background Color 2
Background Color 3
Sprite Mu lti-Color Reg is-

ter 0
Sprite Multi-Color Regis-

ter 1
Sprite 0 Color
Sprite 1 Color
Sprite 2 Color
S prite 3 Color
Sprite 4 Color
Sprite 5 Color
Sprite 6 Color
Sprite 7 Color

MOS 658 1 SOU N D
INTE RFAC E DEVICE
(SID)

BASIC TO MAC H I N E LANGUAGE 323

HEX DECIMAL

0400 54272

040 1 54273

0402 54274

0403 54275

0404 54276

0405 54277

0406 54278

BITS

7-4
3-0

7

6

5

4

3

2

o

7-4

3-0

324 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

Voice 1 : Frequency
Control - Low-Byte

Voice 1 : Frequency
Control - Hig h-Byte

Voice 1 : Pu lse Waveform
Width - Low-Byte

U nused
Voice 1 : Pu l se Waveform

Width - High-Nybble

Voice 1 : Control Reg ister
Select Random Noise

Waveform, 1 = On
Select Pu l se Waveform,
1 = On
Select Sawtooth

Waveform , 1 = On
Select Tria ng le Waveform,

1 = On

Test Bit: 1 = Disab le Os­
c i l lator 1

Ring Mod u late Osc . 1 with
Osc . 3 Output, 1 = On

Synchronize Osc . 1 with
Osc . 3 Frequency, 1 =

On
Gate Bit: 1 = Start Att/

Dec/Sus, 0 = Start Re­
l ease

Enve lope Generator 1 : At­
tack / Decay Cycle
Control

Se lect Attack Cycle Dura­
tion: 0- 1 5

Select Decay Cyc le Dura­
tion : 0- 1 5

Enve lope Generator 1 :
Susta i n / Re lease Cyc le
Control

HEX DECIMAL

D407 54279

D408 54280

D409 54281

D40A 54282

D40B 54283

D40C 54284

BITS

7-4

3-0

7-4
3-0

7

6

5

4

3

2

o

7-4

DESCRIPTION

Select Susta i n Cyc le Du­
ration : 0- 1 5

Select Release Cycle Du­
ration : 0- 1 5

Voice 2 : Frequency
Control - Low-Byte

Voice 2: Frequency
Contro l - H ig h-Byte

Voice 2 : Pu lse Waveform
Width - Low-Byte

U nused
Voice 2 : Pu l se Waveform

Width - H ig h-Nybble

Voice 2 : Control Reg ister
Select Random Noise

Waveform, 1 = On
Select Pu lse Waveform,
1 = On
Select Sawtooth

Waveform, 1 = On
Select Triang le

Waveform, '1 = On
Test Bit : 1 = Disa ble Os­

c i l lator 2

R ing Modu late Osc . 2 with
Osc. 1 Output, 1 = On

Synchronize Osc. 2 with
Osc. 1 Frequency, 1 =
On

Gate Bit: 1 = Start Att/
Dec/Sus, 0 = Sta rt Re­
lease

Envelope Generator 2: At­
tack / Decay Cycle
Control

Select Attack Cycle Dura­
tion: 0- 1 5

BASIC TO MACH I N E LANGUAGE 325

HEX

D40D

D40E

D40F

D4 1 0

D4 1 1

D4 1 2

DECIMAL

54285

54286

54287

54288

54289

I 54290

BITS

3-0

7-4

3-0

7-4
3-0

7

6

5

3

2

o

326 BASIC TO MAC H I N E LANGUAGE

DESCRIPTION

Select Decay Cyc le Dura­
tion : 0- 1 5

E nvelope Generator 2 :
Susta i n / Release Cycl e
Control

Select Susta i n Cycle Du­
ratio n : 0- 1 5

Select Release Cyc le Du­
ration : 0- 1 5

Voice 3 : F requency
Control - Low-Byte

Voice 3: F requency
Control - High-Byte

Voice 3 : Pu l se Waveform
Width - Low-Byte

U nused
Voice 3: Pu l se Waveform

Width - H ig h-Nybble
Voice 3 : Control Reg ister
Select Random Noise

Waveform, 1 = On
Select Pu l se Waveform, 1

= On
Select Sawtooth

Waveform, 1 = On
Select Triang le Waveform,

1 = On
Test Bit: 1 = Disab le Os­

c i l lator 3

Ring Mod u late Osc . 3 with
Osc . 2 Output, 1 = On

Synchron ize Osc . 3 with
Osc . 2 F requency, 1 =

On
Gate Bit: 1 = Start Att/

Dec/Sus, 0 = Start Re­
lease

HEX DECIMAL

D4 1 3 54291

7-4

3-0

D4 1 4 54292

7-4

3-0

D4 1 5 54293

D4 1 6 54294

D4 1 7 54295

7-4

3

2

o

D4 1 8 54296

7

6

5

BITS DESCRIPTION

Envelope Generator 3 : At­
tack / Decay Cyc le
Control

Select Attack Cyc le Dura­
t ion: 0- 1 5

Select Decay Cycle Dura­
tion: 0- 1 5

Envelope Generator 3 :
Susta i n / Release Cycle
Control

Select Susta i n Cycl e Du­
ration: 0- 1 5

Select Release Cycle Du­
ration : 0- 1 5

F i lter Cutoff Frequency:
Low-Nybble (Bits 2 - 0)

Fi lter Cutoff Frequency:
H igh-Byte

Fi lter Resona nce Control /
Voice I nput Control

Select F i l ter Resonance:
0- 1 5

Fi lter External I nput: 1 =
Yes, 0 = No

F i lter Voice 3 Output: 1 =

Yes, 0 = No
F i lter Voice 2 Output: 1 =

Yes, 0 = No

I F i lter Voice 1 Output: 1 =

Yes, 0 = No
Select F i l ter Mode and

Vol ume
Cut-Off Voice 3 Output: 1

= Off, 0 = On
Select F i lter H igh-Pass

Mode : 1 = On
Select F i lter Ba nd-Pass

Mode: 1 = On

BASIC TO MAC H I N E LANGUAGE 327

HEX DECIMAL BITS

4

3-0

04 1 9 54297

D4 1 A 54298

D4 1 B 54299

D4 1 C 54230

D500- D7FF 54528- 55295
D800- DBFF 55296-563 1 9
DCOO- DCFF 56320-56575

DCOO 56320

7-0

7-6

4

3 - 2
3-0

DCOl 5632 1

328 BASIC TO MACHINE LANGUAGE

DESCRIPTION

Select F i lter Low-Pass
Mode: 1 = On

Select Output Vol ume:
0- 1 5

Analog/Digita l Converter:
Game Paddle 1 (0-
255)

Analog/Digita l Converter:
Game Paddle 2 (0-
255)

Osc i l lator 3 Random
N umber Generator

Enve lope Generator 3
Output

SID IMAGES
Color RAM (Nybbles)
MOS 6526 Complex

Interface Adapter (C IA)
1

Data Port A (Keyboard,
Joystick, Paddles,
Light-Pen)

Write Keyboard Column
Va lues for Keyboard
Sca n

Read Paddles on Port A /
B (0 1 = Port A, 1 0 =
Port B)

Joystick A F i re Button : 1 =

F i re
Paddle Fire Buttons
Joystick A Direction

(0- 1 5)
Data Port B (Keyboa rd,

Joystick, Padd les):
Game Port 1

HEX DECIMAL

DC02 56322

DC03 56323

DC04 56324
DC05 56325
DC06 56326
DC07 56327
DC08 56328

DC09 56329

DCOA 56330

DCOB 5633 1

DCOC 56332

DCOD 56333

BITS DESCRIPTION

7-0

7

6

4

3-2
3-0

7

4

Read Keyboard Row
Va l ues for Keyboard
Sca n

Timer B: Togg l e/Pu l se
Output

Timer A: Togg le/Pu l se
Output

Joystick 1 F i re Button : 1 =

F i re

Padd le F i re Buttons
Joystick 1 Direction
Data Di rection

Reg ister- Port A
(56320)

Data Di rection
Reg ister- Port B
(5632 1)

Timer A : low-Byte
Timer A: H igh-Byte
Timer B: low-Byte
Timer B: H igh-Byte
Time-of-Day C lock: 1 / 1 0

Seconds

Time-of-Day C lock: Sec-
onds

Time-of-Day C lock: Min-
utes

Time-of-Day C lock: Hours
+ AM/PM F lag (Bit 7)

Synchronous Seria I I/O
Data Buffer

CIA I nterrupt Control
Reg ister (Read I RQs/
Write Mask)

I RQ F lag (1 = I RQ Oc-
cu rred) / Set-Clear F lag

FLAG 1 I RQ (Cassette Read
/ Seria l Bus SRQ I nput)

BASIC TO MAC H I N E LANGUAGE 329

HEX DECIMAL

3
2

1
0

DCOE 56334
7

6

5

4

3

2

1

0

DC OF 56335
7

330 BASIC TO MAC H I N E LANGUAGE

BITS DESCRIPTION

Seria l Port I nterrupt
Time-of-Day C lock Alarm

I nterrupt
Timer B I nterrupt
Timer A I nterrupt
CIA Control Register A
Time-of-Day C lock F re-

q uency: 1 = 50 Hz, 0
= 60 Hz

Ser ia l Port I/O Mode: 1 =

Output, 0 = I nput
Timer A Counts : 1 = CNT

Sig na l s, 0 = System 02
Clock

Force Load Timer A: 1 =
Yes

Timer A Run Mode: 1 =

One-Shot, 0 = Con-
tinuous

Timer A Output Mode to
PB6: 1 = Togg le , 0 =
Pu l se

Timer A Output on PB6: 1
= Yes, 0 = No

Start/Stop Timer A: 1 =

Start, 0 = Stop
CIA Control Reg ister B

Set Alarm/TOO-Clock: 1 =

Alarm, 0 = Clock

HEX DECIMAL

DDOO- DDFF 56576-5683 1

0000 56576

0001 56577

BITS DESCRIPTION

6-5

4-0

7
6

5
4

3

2

1 -0

7

Timer B Mode Select:
00 = Count System 02

Clock Pu lses
0 1 = Count Positive

CNT Tra nsitions
10 = Count Timer A

U nderf low Pu lses
1 1 = Count Timer A

U nderflows Whi le
CNT Positive

Same as CIA Control Reg .
A-for Timer B

MOS 6526 Complex Inter-
face Adapter (CIA) #2

Data Port A (Ser ia l Bus,
RS-232, VIC Memory
Control)

Serial Bus Data I nput
Seria l Bus C lock Pu lse

I nput
Seria l Bus Data Output
Seria l Bus C lock Pulse

Output
Ser ia l Bus ATN Signa l

Output
RS-232 Data Output (User

Port)
VIC Ch ip System Memory

Ba nk Select (Defau l t =

I I)
Data Port B (User Port,

R
'
S-232)

User / RS-232 Data Set
Ready

BASIC TO MAC H I N E LANGUAGE 3 3 1

HEX DECIMAL

6

5
4

3

2

1

0

0002 56578

0003 56579

0004 56580
0005 56581
0006 56582
0007 56583
0008 56584

0009 56585

DDOA 56586

DDOB 56587

DDOC 56588

0000 56589

332 BASIC TO MACH I N E LANGUAGE

BITS DESCRIPTION

User / RS-232 Clear to
Send

User
User / RS-232 Carrier De-

tect
User / RS-232 Ring I ndi-

cator
User / RS-232 Data Termi-

nal Ready

User / RS-232 Request to
Send

User / RS-232 Received
Data

Data Di rection
Reg ister- Port A

Data Di rection
Reg ister- Port B

Timer A: Low-Byte
Timer A: H ig h-Byte
Timer B: Low-Byte
Timer B: H igh-Byte
Time-of-Day C lock: 1 / 1 0

Seconds
Ti me-of-Day C lock: Sec-

onds

Time-of-Day C lock: Min-
utes

Time-of-Day C lock: Hours
+ AM/PM F lag (Bit 7)

Synchronous Serio I I/O
Data Buffer

CIA I nterrupt Control
Reg ister (Read NMls/
Write Mask)

HEX DECIMAL

DDOE 56590

DDOF 56591

7

4

3
1
o

7

6

5

4

3

2

o

7

BITS DESCRIPTION

NMI F lag (1 = NMI Oc­
curred) / Set-Clear F lag

f lAG 1 NMI (User/RS-232
Received Data I nput)

Seria l Port I nterrupt
Timer B I nterru pt
Timer A I nterrupt
CIA Control Reg ister A
Time-of-Day C lock Fre-

quency: 1 = 50 Hz, 0
= 60 Hz

Seria l Port I/O Mode: 1 =

Output, 0 = I nput

Timer A Counts: 1 = CNT
Signa ls, 0 = System 02
C lock

Force Load Timer A: 1 =

Yes
Timer A Run Mode: 1 =

One-Shot, 0 = Con­
t inuous

T imer A Output Mode to
PB6: 1 = Togg le, 0 =

Pu lse
Timer A Output on PB6: 1

= Yes, 0 = No
Start/Stop Timer A: 1 =

Start, 0 = Stop
CIA Control Reg ister B
Set Alarm/TOD-C lock: 1 =

Alarm, 0 = C lock

BASIC TO MAC H I N E LANGUAGE 333

HEX DECIMAL

6-5

4-0
OEOO- OEFF 56832-5708)
OFOO- OFFF 1 57088-57343

334 BASIC TO MAC H I N E LANGUAGE

BITS DESCRIPTION

Timer B Mode Select: 00 = Count System 02
C lock Pulses 01 = Count Positive
CNT Transitions 1 0 = Count Timer A
Underf low Pu l ses 1 1 = Count Timer A
U nderflows Whi le
CNT Positive

Same as CIA Control Reg .
A-for Timer B

Reserved for Future 1/0

Expansion
Reserved for Future 1/0

Expa nsion

CHAPTER 6

INPUT/OUTPUT
GUIDE

• I ntrod uct ion

• Output to the TV

• Output to Other Devices

• The Game Ports

• RS-232 I nterface Descri pti o n

• The U ser Port

• The Seri a l Bus

• The Expa nsion Port

• Z-SO Microprocessor C a rtr idge

335

INTRODUCTION

Computers have th ree ba sic a bi l ities : they can ca lcu late , make deci­
sions, and communicate . Ca lcu lation is probably the ea siest to progra m .
Most o f the ru les o f mathematics a re fami l iar to us . Decision making is
not too d ifficu lt , since the rules of logic a re relatively few, even if you
don't know them too wel l yet.

Communication is the most complex, because it involves the least
exacting set of ru les . This is not an oversight in the design of computers .
The rules a l low enough flexibi l ity to communicate virtua l ly anyth ing , and
in many possib le ways . The on ly rea l ru le is th i s : whatever sends infor­
mation must present the information so that it can be understood by the
receiver .

NOTE: The tables and device numbers in t h i s section refer t o Commodore's 1 5 1 5

and 1 525 printers o r the 1 540 and 1 54 1 disk drives. For equivalent information on

Commodore's newest l ine of peripherals, l i ke the 1 520 plotter or the 1 526 and

MPP-801 pr inters see the User's Guide that comes with that part icu lar h a rdware.

OUTPUT TO THE TV

The simplest form of output in BAS IC is the PR INT statement. PR INT
uses the TV screen a s the output device, and your eyes a re the input
device because they use the information on the screen .

When PR INTing on the screen , your main objective is to format the
information on the screen so it's easy to read . You shou ld try to think l ike
a graphic a rtist, us ing colors , placement of letters, capita l and lower
case letters, as well as g raphics to best commun icate the information .
Remember, no matter how smart your prog ram , you want to be a ble to
understand what the resu lts mean to you .

The PR INT statement uses certa in cha racter codes as "commands" to
the cursor. The IIDimiI key doesn't actual ly d isplay anything , it just
makes the cursor change pos ition . Other commands change colors ,
c lear the screen , and insert or delete spaces. The li)iii@1 key has a
character code number (CH R$) of 1 3 . A complete table of these codes is
conta ined in Appendix C .

There a re two functions in the BAS IC language that work with the
PR INT statement. TAB positions the cursor on the given position from the
left edge of the screen , SPC moves the cursor right a g iven number of
spaces from the current position .

3 3 6 I N PUT/OUTPUT GUIDE

Punctuation marks in the PR INT statement serve to separate and for­
mat information . The semicolon (;) separates 2 items without any spaces
i n between. If it is the last thing on a l ine, the cu rsor remains after the
last thing PR INTed instead of going down to the next l ine. It suppresses
(replaces) the R ETURN character that is norma lly PR INTed at the end of
the l ine .

The comma (,) sepa rates items into columns . The Commo�ore 64 has
4 co lumns of 1 0 characters each on the screen . When the computer
PR INTs a comma, it moves the cursor right to the sta rt of the next col­
umn . If it is past the last co lumn of the line, it moves the cursor down to
the next l i ne . Like the semicolon, if it is the last item on a line the
RETURN is suppressed .

The quote marks (" ") sepa rate literal text from variables . The fi rst
quote mark on the l ine starts the l ite ral a rea , and the next q uote mark
ends it. By the way, you don't have to have a final quote mark at the
end of the l ine.

Tbe RETU RN code (CH R$ code of 1 3) makes the cursor .go to the next
log ica l l ine on the screen . This is not a lways the very next l ine . When
you type past the end of a l ine, that l ine is l inked to the next l ine. The
computer knows that both l ines are rea l ly one long l ine . The links a re
held in the l ine l ink table (see the memory map for how this is set up) .

A logica l l ine can be 1 or 2 screen l ines long, depending on what was
typed or PR INTed. The logica l l ine the cursor is on determines where
the 1;1#111;11+ key sends it. The logical l ine at the top of the sc reen
determines if the screen scro l l s 1 or 2 l ines at a t ime.

There are other ways to use the TV as an output device. The chapter
on g raphics describes the commands to c reate objects that move across
the sc reen . The VIC ch ip section tel l s how the screen and border colors
and sizes a re changed . And the sound chapter tel ls how the TV speaker
creates music and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen ,
l ike a cassette deck, printer, d i sk d rive, or modem. The OPEN statement
in BASIC creates a "channel" to talk to one of these devices. Once the
channel i s OPEN, the PR INT# statement wil l send characters to that
device.

I N PUT/OUTPUT GU I DE 337

EXAMPLE of OPEN and PRINT# Statements:

1 00 OPEN 4, 4: PRINT# 4, "WRITI NG ON PRI NTER"
1 1 0 OPEN 3, 8, 3, "O: DISK-F ILE ,S ,W": PRINT# 3, "SE ND TO DISK"
1 20 OPEN 1 , 1 , 1 , "TAPE-FI LE": PRINT# 1 , "WRITE ON TAPE"
1 30 OPEN 2, 2 , 0, CHR$(1 0): PRINT# 2, "SEND TO MODEM"

The OPEN statement is somewhat different for each device. The pa­
rameters in the OPEN statement are shown in the table below for each
device.

TABLE of OPEN Statement Parameters:

FORMAT: OPEN fi le#, device#, number, str ing

DEVICE DEVICE# NUMBER STRING

CASSETTE 1 0 = I nput Fi le Name

MODEM

SCREE N

PRINTER

DISK

1 = Output
2 = Output with

EOT
2 0 Control Reg isters

3 0, 1
4 or 5 0 = Upper/Graphics Text Is PR INTed

7 = Upper/Lower Case
8 to 1 1 0 = Program Fi le Drive #: Program

LOAD File Name
1 = Program Fi le Drive #: Prog ram

SAVE Fi le Name
2- 1 4 = Data Channel Drive #, Fi le Name,

Fi le Type, Read/Write
1 5 = Command Command

Channel

OUTPUT TO PRINTER

The printer is an output device s imi lar to the screen . Your main con­
cern when sending output to the printer is to c reate a format that is easy
on the eyes . Your too ls here include reversed, double-width, capital and
lower case letters, as wel l as dot-prog rammable g raphics .

The SPC function works for the printer in the same way it works for the
screen . However, the TAB function does not work correctly on the print-

338 IN PUT/OUTPUT G U I DE

er, because it ca lcu lates the current position on the l ine based on the
cursor's position on the screen, not on the paper .

The OPEN statement for the printer c reates the channel for commun i­
cation . It a lso spec ifies which cha racter set wi l l be used, either upper
case with graph ics or upper and lower case .

EXAMPLES of OPEN Statement for Printer:

OPEN 1 , 4: REM U PPER CASE/GRAPHICS
OPEN 1 , 4, 7: REM U PPER AND LOWER CASE

When working with one character set, individual l ines can be PR I NTed
in the opposite character set. When in upper case with graphics, the
cursor down character (CH R$ (1 7)) switches the characters to the upper
and lower case set. When in upper and lower case, the cu rsor up char­
acter (CHR$(1 45)) a l lows upper case and graph ics cha racters to be
PR INTed .

Other special functions in the printer a re control led through character
codes . All these codes are s imply PR INTed iust l i ke any other character .

TABLE of Printer Control Character Codes:

CHR$ CODE PU RPOSE

1 0 Line feed

1 3 RETURN (a utomatic l i ne feed on CBM pri nters)

1 4 Beg in doub le-width character mode

1 5 End doub le-width cha racter mode

1 8 Beg in reverse character mode

1 46 End reverse cha racter mode

1 7 Switch to upper/lower case character set

1 45 Switch to upper case/g ra phics character set

1 6 Ta b to position i n next 2 cha racters

27 Move to specified dot position

8 Beg in dot-prog rammable g raph ic mode

26 Repeat g raph ics data

See your Commodore printer's manua l for deta i ls on using the com­
mand codes.

OUTPUT TO MODEM

The modem is a s imple device that can translate cha racter codes into
audio pu lses and vice-versa, so that computers can communicate over

IN PUT/OUTPUT GUIDE 339

telephone l ines . The OPEN statement for the modem sets up the pa­
rameters to match the speed and format of the other computer you are
communicating with . Two characters can be sent in the string at the end
of the OPEN statement.

The bit positions of the first character code determine the baud rate ,
number of data bits, and number of stop bits . The second code is op­
tiona l , and its bits specify the pa rity and duplex of the transmission . See
the RS-232 section or your VICMODEM manual for specific detai l s on this
device.

EXAMPLE of OPEN Statement for Modem:

OPEN 1 , 2, 0, CH R$(6): REM 300 BAU D
1 00 OPEN 2, 2 , 0 , CHR$(1 63) CHR$(1 1 2): REM 1 1 0 BAUD, ETC.

Most computers use the American Standard Code for Information In­
terchange, known as ASC I I (pronounced ASK-KEY). Th i s standard set of
character codes is somewhat d ifferent from the codes used in the Com­
modore 64 . When commun icating with other computers , the Commo­
dore character codes must be translated into their ASC I I counterparts . A
table of standard ASC I I codes is inc luded in this book in Appendix C .

Output t o the modem i s a fairly uncompl icated task, aside from the
need for character translation . However, you must know the receiving
device fai rly wel l , espec ia l l y when writ i ng prog rams where your
computer "ta lks" to another computer without human intervention . An
example of this would be a termina l prog ram that automatical ly types in
your account number and secret password . To do this successful ly, you
must careful ly count the number of characters and RETURN characters.
Otherwise, the computer receiving the cha racters won't know what to do
with them .

WORKING WITH CASSETTE TAPE

Cassette ta pes have an a lmost un l imited capacity for data . The
longer the tape, the more information it can store. However, tapes are
l im ited in time. The more data on the tape , the longer the time it takes
to find the information .

The prog rammer must try to min imize the time factor when working
with tape storage . One common practice is to read the entire cassette
data fi le into RAM, then process it, and then re-write a l l the data on the
tape. This a l lows you to sort, edit, and examine your data . However,
this l imits the size of your fi les to the amount of avai lable RAM .

340 IN PUT/OUTPUT GUIDE

If your data file is larger than the avai lab le RAM, it is probably time
to switch to using the floppy disk . The disk can read data at any position
on the disk, without need ing to read through all the other data . You can
write data over o ld data without d isturbing the rest of the fi l e . That's
why the disk is used for a l l business applications l ike ledgers and mai l ­
ing l ists .

The PRI NT# statement formats data just l ike the PR INT statement
does . All punctuation works the same. But remember, you're not work­
ing with the screen now . The formatting must be done with the I NPUT#
statement constantly in mind .

Consider the statement PRI NT# 1 , A$, B$, C$. When used with the
screen, the commas between the variables provide enough b lank space
between items to format them into columns ten characters wide. On
cassette, anywhere from 1 to 1 0 spaces wil l be added, depending on
the length of the strings . This wastes space on your tape.

Even worse is what happens when the INPUT# statement tries to read
these strings . The statement INPUT# 1 , A$, B$, C$ wi l l discover no data
for B$ and C$. A$ wil l contain a l l th ree variables, p lus the spaces be­
tween them . What happens? Here's a look at the tape fi le :

A$ ="OOG" B$ = "CAT" C$ ="TREE"
PR INT# 1 , A$, B$, C$

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 2 1 2 2 23 2 4 25
D O G C A T T R E E R E T U R N

The IN PUT# statement works l ike the regu lar I N PUT statement. When
typing data into the I NPUT statement, the data items are sepa rated,
either by hitting the 'U'Ii;!!1 key or us ing commas to sepa rate them .
The PR INT# statement puts a RETURN a t the end of a l ine j ust l ike the
PR INT statement. A$ fi l l s up with a l l th ree va l ues because there's no
separator on the tape between them, only after a l l th ree .

A proper sepa rator would be a comma (,) or a RETURN on the tape.
The RETU RN code is automatica l ly put at the end of a PRINT or PRINT #
statement. One way to put the RETURN code between each item is to
use only one item per PR INT# statement. A better way is to set a vari­
ab le to the RETURN CHR$ code, which is CHR$(1 3), or use a comma .
The statement for this i s R$= "," : PR INT# 1 , A$ R$ B$ R$ C$. Don't use
commas or any other punctuation between the variable names, since
the Commodore 64 can tel l them apart and they' l l on ly use up space in
your progra m .

I N PUT/OUTPUT GUIDE 341

A proper tape file looks l ike this :

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
D O G , C A T , T R E E RETU RN

The GET# statement wi l l p ick data from the tape one cha racter at a
t ime. It wil l receive each character, including the RETURN code and
other punctuation. The CHR$(O) code i s received as an empty string , not
as a one character string with a code of o. If you try to use the ASC
function on an em pty str i n g , you get the e r ror message I LLEGAL
QUANTITY ERROR.

The line GET# 1 , A$: A= ASC(A$) is commonly used in programs to
examine tape data . To avoid error messages, the l ine should be mod­
ified to GET# l , A$: A= ASC(A$ + CHR$(O)). The CHR$(O) at the end
acts as insurance aga inst empty strings , but doesn't affect the ASC
function when there a re other characters in A$.

DATA STORAGE ON FLOPPY DISKETTES

Diskettes a l low 3 different forms of data storage. Sequential files a re
s imi lar to those on tape, but severa l can can be used at the same time .
Relative fi les let you organize the data into records , and then read and
replace individual records within the file. Random files let you work with
data anywhere on the disk. They a re organ ized into 256 byte sections
cal led blocks.

The PR INT# statement's l imitations a re d iscussed in the section on
cassette ta pe . The same l im itations to fo rmat app ly on the d i sk .
RETURNs or commas a re needed to separate your data . The CHR$(O) i s
sti l l read by the GET# statement a s an empty string .

Re lative and random fi les both make use of separate data and com­
mand "channels ." Data written to the disk goes through the data chan­
ne l , where i t is stored in a temporary buffer in the disk's RAM. When the
record or block is complete, a command is sent through the command
channel that te l l s the d rive where to put the data , and the entire buffer
is written .

Applications that require large amounts of data to be processed a re
best stored in relative disk fi les . These wi l l use the least a mount of t ime
and provide the best flexibi l ity for the programmer. Your disk drive
manua l g ives a complete programming guide to u se of disk fi les.

342 INPUT/OUTPUT GUIDE

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which al low the use of
joysticks, paddles, or a light pen . Each port wil l accept either one joy­
stick or one paddle pair . A l ight pen can be p lugged into Port A (only) for
spec ia l g raphic contro l , etc . This section g ives you examples of how to use
the joysticks and paddles from both BAS IC and machine language.

The dig ital joystick is connected to C IA #1 (MaS 6526 Complex I nter­
face Adapter). This input/output device also hand les the paddle fi re but­
tons and keyboard scann ing . The 6526 CIA ch ip has 1 6 reg isters which
a re in memory locations 56320 through 56335 inc lus ive ($DCOO to
$DCOF) . Port 2 data appears at location 56320 (DCOO) and Port 1 data is
found at location 5632 1 ($DC0 1) .

A dig ital joystick has five distinct switches, four of the switches a re
used for d irection and one of the switches is used for the fire button . The
joystick switches are arranged as shown :

FIRE
(Switch 4)

(Top)

UP
(Switch 0)

LEFT RIGHT
- - - - - - - - - - - - -,- - - - - - - - - - - - -

(Switch 2) (Switch 3)

DOWN
(Switch 1)

These switches correspond to the lower 5 bits of the data in location
56320 or 5632 1 . Normal ly the bit is set to a one if a d i rection is NOT
chosen or the fire button i s NOT pressed . When the fi re button is

IN PUT/OUTPUT GUIDE 343

pressed , the bit (bit 4 in this case) changes to a O. To read the joystick
from BASIC, the fol lowing subroutine should be used :

1 0 FORK=OT0 1 0 REM SET UP D I RECT I ON STR I NG
20 READDR$ (K) : NEXT
3�:1 D�1T14 I I I]

"
II t .. ! II .' II �:; 11 .' II It

"
1 I 1 .. � 1 1

.1 1 1 1" H,J I I
4121 DI:::rn:::t II �:; I.'.I I I

.'
1 1 1 1 .' II [I I .

' 1 1 1" �E II " I I SE 1 1

�:;O F'P II··IT " 00 HH3 . " • " .:
60 GOSUB 1 00 : REM READ THE J OYST I CK
6�:; I FDF.: :$: (J'.,.') = " " THEI··l::::!21 : REt'1 CHECI< I F 1'1 II I F:E(:T I CII··l l,.II'1::::
C HO:::EH
70 PP I t·HDF::f ' J ',,.') .: " " ., : 1':0'1 DUTF'UT 1.,lH I CH II I F.:ECT I CI I··l
60 I FFR= 1 6THEH60 : PEM CHECK I F F I RE BUTTDH WAS
F

'
U::::HED

90 PF.: :r I···IT " ·· · _· _ _ ·· ··- -· F ··_ ·_·_··-···-· I -_ _ .. _ .. _p .. _ _ .. _ . . _[------_._- I ! I " : OOr060
1 00 JV=PEEK (56320) : PEM GET JOYST I CK VALUE
1 1 0 FR=JVAHD 1 S : RE M FORM F I PE BUTTON STATUS
1 20 JV= 1 5- (JVAHD 1 5) REM FOPM D I RECT I ON VALUE
1 30 R[TUF: !···I

NOTE: For the second joystick, set JV = PEEK (5632 1) .

The va lues for JV correspond to these di rections :

JV EQUAL TO

0
1
2
3
4
5
6
7
8
9

1 0

344 IN PUT/OUTPUT GUIDE

DIRECTION

NONE
U P

DOWN
-

LEFT
U P & LEFT

DOWN & LEFT
-

RIGHT
U P & RIGHT

DOWN & RIGHT

A smal l mach ine code routine which accompl ishes the same task is as
fol lows:

1 12108 . PAGE (JOYST I CK . 8/S) JOYS T I CK - BUTTON READ

ROU T I t··IE

1 0 1 121

1 82121 ; AUTHOR - B I LL H I NDORFF

1 0:;:0

:t 04 (;1 m<:=:$C 1 1 121

1 0 5121 D'T" =':tC 1 1 1

1 12160 '+;=:$C2121121

1 0 7 0 DJRR LDA .DCBO (GET I NPUT FROM PORT

1=1 Ot·�L. 'T')

1 1218121 DJRRB LDY #0

D[CODE�::: THE

; TH I S ROUT I NE READS AND

1 09 0 LDX # 121 ; JOYST I CK/F I REBUTTON

I HPUT DAWi I t·j

1 1 00 LSR A ; THE ACCUMULATOR . TH I S
LEAST S I GH I F I CANT

1 1 1 0 BCS DJR0 ; 5 B I TS CONTA I N T H E

m,j I TCH CLG::::UF.:E

1 1 20 DEY ; I NFORMAT I ON . IF A SN I TCH

IS CLOSED THEN I T

1 1 30 DJRO LSR A ; PRODUCES A ZERO B I T . I F

A SW I TCH I S OPEN T H E N

1 1 4121 BCS DJR 1 ; I T PRODUCES A ONE B I T .
THE JOYST I CK D I R-

1 1 50 I NY ; ECT I ONS ARE R I GHT . LEFT .

FORWARD . BACKWARD

1 1 60 D J R l LSR A ; B I T3=R I GHT . B I T2=LEFT .
B I T 1 =PI'10G,jARD .,
1 1 70 BCS DJR2 ; B I T0=FORWARD AHD

B I T4=F I RE BUTTON .

1 1 80 DEX ; AT RTS T I ME DX AND DY

CONT A I N 2 ' S COMPL I MENT

1 1 90 DJR2 LSR A ; D I RECT I OH NUMBERS I . E .

tFF=- I . $00 = 0 . $0 1 = 1 .

1 200 BCS DJR3 ; D X = l (MOVE R I GHT) . DX=- 1

0: t'IO 'E LEFT :; .,

1 2 1 121 I t··I>< : D» ' 121 0: t·w >': CHAt·H"'E ::O .

DY=- l (MOVE UP SCREEH) .

1 2 20 DJR3 LSR A ; DY = 1 (MOVE DOWN SCREEN) ,

DY=0 (NO Y CHANGE) .

1 23121 STX DX ; THE FORWARD JOYST I CK

POS I T I ON CORRESPOHDS
1 2 40 STY DY ; TO MOVE UP THE SCREEN

m-m T HE I:f:n:: n,HiRD

1 250 RTS ; POS I T I ON TO MOVE DOWN

�:::CREEI ··I .

1 :?6121 .:

1 :?7121 ; AT RTS T I ME THE CARRY FLAG CONT A I NS T H E F I RE

BUTTOt·1 ::::TI'1TE .

1 28121 ; I F C = l THEH BUTTON HOT PRESSED . I F C=0 THEN

PPE::: :,:;E D .

1 ;:;:: 90

1 JDO " DlD
I NPUT/OUTPUT GUIDE 345

PADDLES

A paddle is connected to both CIA # 1 and the S I D chip (MOS 658 1
Sound I nterface Device) th rough a game port. The paddle va lue is read
via the S I D reg isters 54297 ($D4 1 9) and 54298 ($D4 1 A). PADDLES ARE
NOT RELIABLE WHEN READ FROM BAS IC ALONE ! ! ! ! The best way to use
paddles , from BAS IC or machine code, is to use the fol lowing machine
language routine (SYS to i t from BAS IC then PEEK the memory
locations used by the subroutine) .

1 121 121 121

; **tt**t**

1 121 1 121 ; # FOUR PADDLE READ ROUT I N E (CAN A L S O BE USED

F O r;: nw >

1 0 ::::121

; t**

1 12138 ; AU T H O R - B I LL H I NDORFF

1 1214 121 PORTA=$DC00

1 12150 C I DDRA=$DC82

1 . 06121 ::: I D "-4D4(3EI

1 121 70 ,+;=:t:C 1 1210

1 12180 BUFFER *=*+ 1

1 0 9 0 f" DL.>< '�;"')1;.t·2
1 1 1210 F'DL. 'r' :�; "" H<::

1 1 1 0 BTI"�A :�",:+,+ 1

1 1 :::0 I:1lfr:: :+;''''H· l

1 1 3121 '+" :: :*:C0I210
1 1 4121 PIILRIt

1 1 5 0 L. D >: Wl
OR TWO ANALOG J O Y S T I C K S

1 1 60 F'ItLF.:DO
ONE P A I R (C O ND I T I O N X 1 S T)

1 1 '?121 ::::[, I

1 1 8 0 LDA C I DDRA

OF DDR

1 1 9 0

1 2 0121

1 ::':: 1 121

I I· ·IPUT

:::::Tf: BUFFer;:

1 ... D01 #lCO
:::;T I 'I C I D Df�:n

1 ::::2121 I... III"I

1 :2 3 0 PDL.PIt 1

1 24121 ::::TI"I

P!=IDDL .. E::::

1 :260 P D l..F: D:::

1 ::::70 t l O P

1 :::::::0 DE'r'

1 29 121 I:PL PDLRD2
1 3 0 0 L. D A S I D+25

1 3 1 121 STA P D L. X , X

1 3 20 LDA S I D + 2 6
1 3 3121 STA P D I... Y , X

346 IN PUT/OUTPUT G U I DE

; F OR FOUR PADDLES

; E NTRY PO I N T F O R

, G ET CURRENT V A L U E

; nDDRESS n PA I R O F

; I.,WI I T A I.,j H I I E

1 3 4 0 L D A P O R T A

P A D D L E F I RE BUTTONS

1 ::�5 121 ORf'1 t�:t::::O

fl :::: 0 T I-I E:: I? r:' I"1 I I,:
1 36 0 ::;T fl FH· IFI
I: I T ::: E; FDL_ 'r'
1 :::: ';"12: LDI"! ·t) :t 4 0
1 :�: :0: 0 D C<
1 390 BPI. P D L RD 1
1 408 L D fl BUFFER

1 4 1 0 STI"! C I D D Rfl

',,I i'lL Ii 1':: OF DDP

1 4 2 0 L D I"! PORTA+ l
1 4:;::1::'1 ::;;T I"i BTllL:
[: I T 3 1:::; P D L 'r'
1 4 4121 CL I
1 4 5 D FT,,;
1 4 ,:;0 " D·H)

T I r'1E TO r::r::rm

; MflKE I T THE SA�E

; flLL PA I RS D O N E ?

., 1' ·1 0

; PESTORE PREV I O U S

. ' r ' 0 F : �:ll D r" l: 1 I I;:: --
.: Ii I T �: I :::; r:'DL_ >': .,

The paddles can be read by using the fol lowing BAS IC program :

1 0 C = 1 2 * 4 096 REM SET P fl D D L E ROUT I NE STflRT

1 1 PEM POKE I N THE PflDDLE R E flD I N G POUT I N E

1 5 FOR I = O T063 R E flDA P O K E C + I , fl : NEXT

2 0 SYSC : RE M CflLL T H E P fl D D L E ROUT I NE

30 P l =PEEK (C +257) : REM SET PADDLE ONE Vfl L U E

4 0 P2=PEE K (C+258) : R EM TWO

5 0 P3=PEEK (C +259) REM THREE

60 P4=PEEK (C +260) : PEM F O UR

61 REM READ F I R E BUTTON STflTUS

62 S l =PEEK (C+ 26 1) : S2=PEEK (C+ 2 6 2)

70 PR I N T P 1 , P 2 , P 3 , P4 : PEM P R I N T P A D D L E VALUES

7 2 R E M P R I NT F I RE BUTTON STATUS
7 5 F'P [I·n : PP I NT " F I FE fl " ; :::; 1 , "F If::: E B " ; ::;�!.
80 FORW= I T058 NEXT REM WA I T A WH I LE

�tm!m
'-' 1-1 IC'P I 1" IT " ::1 " : F 'P I t·n : OOTO 2 0 : f;:D'1 c:u::nF: :3 CPE EI·l I�H·m DO
flOi"i I 1' ·1

95 REM D A T A FOR MACH I N E CODE ROUT I NE

1 00 DATA 1 6 2 , 1 , 1 20 , 1 7 3 , 2 , 220 , 1 4 1 , O , 1 9 3 , 1 69 , 1 9 2 , 1 4 1 .

�! . ;::::::::121 , :i 69

1 1 0 DATA 1 28 , 1 4 1 , 8 , 220 , 1 6 0 , 1 28 , 23 4 , 1 3 6 . 1 6 , 252 , 1 73 .

���3 ., 2 1 :? . 1 5 7

1 2 0 D AT A 1 , 1 9 3 , 1 7 3 , 2 6 , 2 1 2 , 1 5 7 , 3 . 1 9 3 , 1 7 3 , 0 . 2 20 . 9 . 1 28 ,

1 4 1 , 5 ., 1 9 3

1 30 D A T8 1 69 , 6 4 , 20 2 , 1 6 , 2 2 2 , 1 7 3 , 0 , 1 9 3 , 1 4 1 . 2 , 22 0 , 1 7 3 ,

I , �::2:121 ., 1 4 1

1 4 121 DATA 6 . 1 9 3 , 88 , 96

I NPUT/OUTPUT GUIDE 347

LIGHT PEN

The l ight pen input latches the current screen position i nto a pair of
reg isters (LPX, LPY) on a low-going edge. The X position reg ister 1 9
($ 1 3) wi l l conta in the 8 MSB of the X position at the t ime of transition .
Since t he X position is defined by a 5 1 2-state counter (9 bits), resolution
to 2 horizontal dots is provided . S imi larly, the Y position is latched in its
reg ister 20 ($ 1 4) , but here 8 bits provide s ing le raster resolution with in
the visible display. The l ight pen latch may be triggered only once per
frame, and subsequent tr iggers with in the same frame wi l l have no
effect. Therefore, you must take several samples before turning the pen
to the screen (3 or more samples average), depend ing upon the char­
acteristics of your l ight pen .

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a bui lt- in RS-232 interface for connection to
any RS-232 modem, printer, or other device . To connect a device to the
Commodore 64, a l l you need is a cable and a l ittle bit of programming .

RS-232 on the Commodore 64 is set-up in the standard RS-232 for­
mat, but the voltages a re TTL levels (0 to 5V) rather than the normal
RS-232 - 1 2 to 1 2 volt ra nge . The cable between the Commodore 64
and the RS-232 device shou ld take care of the necessary voltage con­
versions . The Commodore RS-232 interface cartridge hand les this prop­
erly.

The RS-232 interface software can be accessed from BAS IC or from
the KERNAL for machine language prog ramming .

RS-232 on the BAS IC level uses the normal BAS IC commands: OPEN,
CLOSE, CMD, I N PUT#, GET#, PRINT#, and the reserved variable ST.
IN PUT# and GET# fetch data from the receiving buffer , whi le PR INT#
and CMD place data into the transmitting buffer . The use of these com­
mands (and examples) wi l l be described in more detai l later in this
chapter .

The RS-232 KERNAL byte and b it level hand lers run under the control
of the 6526 CIA #2 device t imers and interrupts . The 6526 ch ip gener-

348 IN PUT/OUTPUT G U I DE

ates NMI (Non-Maskable I nterrupt) requests for RS-232 processing . This
a l lows backg round RS-232 processing to take place during BAS IC and
mach ine language prog rams . There a re bui lt-in hold-offs in the KERNAL,
cassette, and serial bus routines to prevent the disruption of data stor­
age or transmission by the NMls that a re generated by the RS-232
routines . During cassette or serial bus activities, data can NOT be re­
ceived from RS-232 devices. But because these hold-offs are only local
(assuming you ' re ca reful about your prog ramming) no inte rfe rence
should result .

There are two buffers in the Commodore 64 RS-232 interface to he lp
prevent the loss of data when transmitting or receiving RS-232 informa­
tion .

The Commodore 64 RS-232 KERNAL buffers consist of two flrst-in/
fi rst-out (F I FO) buffers, each 256 bytes long, at the top of memory. The
OPENing of an RS-232 channel automatica l ly a l locates 5 1 2 bytes of
merr.ory for these buffers . If there is not enough free space beyond the
end of your BAS IC prog ram no error message will be printed, and the
end of your program will be destroyed . SO BE CAREFUl!

These buffers a re automatical ly removed by using the CLOSE com­
mand .

OPENING AN RS-232 CHANNEL

Only one RS-232 channel shou ld be open at any time; a second OPEN
statement wil l cause the buffer pointers to be reset. Any cha racters in
either the tra nsmit buffer or the receive buffer wil l be lost.

Up to 4 characters can be sent in the fi lename field . The first two a re
the control and command register cha racters; the other two a re re­
served for future system options . Baud rate, pa rity, and other options
can be selected through this feature .

No error-c hecking is done on the control word to detect a non­
implemented baud rate . Any i l lega l control word wi l l cause the system
output to operate at a very slow rate (be low 50 baud) .

BASIC SYNTAX:

OPEN Ifn , 2 ,0,"<control reg ister><command reg ister> <opt baud
low><opt baud high>"

Ifn - The logical file number (Ifn) then can be any number from 1
through 255. But be aware of the fact that if you choose a logical fi le
number that is greater than 1 27, then a l ine feed wil l fol low al l ca rriage
returns .

I NPUT/OUTPUT GUIDE 349

1 28 64 32 1 6

STOP B ITS

0-1 STOP BIT
1 -2 STOP BITS

WOR D LENGTH

BIT DATA
6 5 WOR D LENGTH

0 0 8 BITS

0 7 B I TS

0 6 B ITS

5 BITS

U N USED

4
8 4 2 0
3 2 1 0

BAUD RATE

0 0 0 0 USER RATE

0 0 0 1 50 BAU D

0 0 1 0 75

0 0 1 1 1 1 0

0 1 0 0 1 34 .5

0 1 0 1 1 50

0 1 1 0 300

0 1 1 1 600

1 0 0 0 1 200

1 0 0 1 1 800

1 0 1 0 2400

1 0 1 1 3600

1 1 0 0 4800

1 1 0 1 7200
�

1 1 1 0 9600

1 1 1 1 1 9200

Figure 6- 1 . Control Register Map.

[N I]

[N I]

[N i l

[N i l

[N i l

[N i l

[N i l

<control register> -Is a single byte character (see Figu re 6- 1 , Con­
trol Register Map) req uired to specify the baud rates . If the lower 4 bits
of the baud rate is equal to zero (0), the <opt baud low><opt baud
high> characters give you a rate based on the fol lowing :

< o pt baud low> = < system f requency/rate/2 - 1 00- <opt baud
high>* 256
<opt baud high> = INT((system frequency/rate/2- 1 00)/256

350 INPUT/OUTPUT GUIDE

7 6 5

PARITY O PTIONS H A N DSHAKE
BIT B IT B IT

O PERATIONS 7 6

0 0

0 1

1 0

1 1

5

0 PARITY D ISA B LED, N O N E
G E N ERATED/REC EIVED

1 ODD PARITY
RECEIVER/TRANSM ITIER

1
EVEN PARITY
RECEIVER/TRANS M ITIER

1 MARK TRANSM ITIED
PARITY CH ECK D I SABLED

1 S PACE TRANSM ITIED
PARITY CH ECK D ISABLED

DU PLEX ----------------�

O-F U LL DUPLEX

1 -HALF DU PLEX

UN USED ----------�

UN USED ------------�

U N USED --------------�

Figure 6-2. Command Register Map.

0-3 LI N E
1 -X LI N E

The formulas above are based o n the fact that:

system frequency = 1 . 02273E6 NTSC (North American TV stan­
dard)
O . 98525E6 PAL (U . K . and most European TV
standard)

<command register> -Is a s ingle byte character (see Figu re 6-2,
Command Reg ister Map) that defines other termina l parameters . This
cha racter is NOT required .

INPUT/OUTPUT GUIDE 3 5 1

KERNAL ENTRY:

OPEN ($FFCO) (See KERNAL specifications for more information on
entry conditions and instruction s .)

IMPORTANT NOTE: I n a BASIC program, the RS-232 OPEN command should b e per­
formed before creating any variables or a rrays because an automatic CLR is per­
formed when an RS-232 channel is OPENed (This is due to the al location of 5 1 2 bytes
at the top of memory.) Also remember that your program will be destroyed if 5 1 2

bytes of space are not available a t the time of the OPEN statement.

GETTING DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel , the Commodore 64 re­
ceiver buffer wi l l hold up to 255 characters before the buffer overflows .
This is ind icated in the RS-232 status word (ST in BAS IC , or RSSTAT in
machine language) . If an overflow occurs, then a l l characters received
du ring a ful l buffer cond ition , from that point on , are lost. Obviously, it
pays to keep the buffer as clea r as possib le .

If you wish to receive RS-232 data at high speeds (BASIC can only go
so fast, especial ly considering garbage col lects. This can cause the re­
ceiver buffer to overfl ow), you wil l have to use machine language
routines to hand le this type of data burst.

BASIC SYNTAX:

Recommended: GET#lfn , <string variable>
NOT Recommended: I N PUT#lfn , <variable list>

KERNAL ENTRIES:

CHK IN ($FFC6)-See Memory Map for more information on entry and
exit cond itions .

GET IN ($FFE4)-See Memory Map for more information on entry and
exit conditions .

CHR IN ($FFCF)-See Memory Map for more information on entry and
exit conditions .

352 IN PUT/OUTPUT GUIDE

NOTES:

If the word length is less than 8 bits, al l unused bit(s} wil l be assigned a value of

zero.
I f a GET# does not find any data in the buffer, the c h a racter "" (a null) is returned .
If I N PUT# is used , then the system wil l hang in a waiting condition until a non-null

character and a fol lowing carriage return is received . Therefore, if the Clear To Send
(CTS) or DataSsette Ready (DSR) l ine(s} disappear during character I N PUT#, the sys­

tem wil l hang in a RESTORE-only state. This is why the I NPUT# and C H R I N routines

a re NOT recommended.
The routine CHK IN handles the x-l ine handshake which follows the E IA standard

(August 1 979) for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Re­
ceived line signal (DCD) l ines are i m plemented with the Commodore 64 computer

defined a s ' the Data Terminal device .)

SENDING DATA TO AN RS-232 CHANNEL

When sending data , the output buffer can ho ld 255 characters before
a ful l buffer hold-off occurs. The system will wait in the CHROUT routine
until transmission is a l lowed or the 'jllilNOiitl' and 'WWI!jI' keys
a re used to recover the system through a WARM START.

BASIC SYNTAX:

CMD Ifn-acts same as in the BAS IC specifications .
PR INT#lfn , <variable l ist>

KERNAL ENTRIES:

CHKOUT ($FFC9)- See Memory Map
and exit cond itions .

CHROUT ($FFD2)-See Memory Map
cond itions .

for

for

more information on entry

more information on entry

INPUT/OUTPUT GUIDE 353

IMPORTANT NOTES: There is no carriage-return delay b uilt into the output channel .

This means that a normal RS-232 printer cannot correctly pr int , un less some form of
hold-off (asking the Commodore 64 to wait) or internal buffering is implemented by
the printer. The hold-off can easily be implemented in your program . If a CTS (x-line)

handshake is implemented , the Commodore 64 buffer will fi l l , a nd then hold-off more

output until transmission is a l lowed by the RS-232 device. X-line handshaking is a
handshake routine that uses multi- l ines for receiving and transmitting data .

The routine CHKOUT handles the x-line handshake, which follows the E IA standard

(August 1 979) for RS-232-C interfaces. The RTS, CTS, and DCD l ines a re implemented
with the Commodore 64 defined os the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-232 fi le discards a l l data in the buffers at the t ime of
execution (whether or not it had been tra nsmitted or printed out), stops
all RS-232 tra nsmitting and receiving, sets the RTS and tra nsmitted data
(SOU!) l ines high , and removes both RS-232 buffers .

BASIC SYNTAX:

CLOSE Ifn

KERNAL ENTRY:

CLOSE ($FFC3)-See Memory Map for more information on entry and
exit conditions .

NOTE: Care should be taken to ensure a l l data i s transmitted before closing the
channel . A way to check this from BAS I C is ,

1 00 5S =5T: I F(SS =O OR S5 = 8) THEN 1 00
1 1 0 CLOSE Ifn

354 I N PUT/OUTPUT G U I DE

Table 6-1 . User-Port Lines

(6526 DEVICE #2 lac . $DDOO-$DDOF)

PIN 6526
DESCR IPTION EIA ABV

I N/
MODES

ID 1 0 OUT

C PBO RECE IVED DATA (BB) S in I N
D PB l REQUEST TO SEND (CA) RTS OUT
E PB2 DATA TERMINAL READY (CD) DTR OUT
F PB3 R ING IND ICATOR (CE) RI I N
H PB4 RECE IVED L INE S IGNAL (CF) DCD IN
J PB5 UNASS IGNED () XXX IN
K PB6 CLEAR TO SEND (CB) CTS I N
L PB7 DATA SET READY (CC) DSR I N

B FLAG2 RECE IVED DATA (BB) S in IN
M PA2 TRANSMITTED DATA (BA) Sout OUT

A GND PROTECTIVE GROUND (AA) GND
N GND SIGNAL GROUN D (AB) GND

MODES:
1) 3-L1 N E I NTERFACE (Sin ,Sout ,GN D)
2) X-LI N E I NTERFACE
3) USER AVAILABLE ONLY (Unused/unimplemented in code .)
* These l ines a re held h igh during 3-U N E mode.

[7] [6] [5] [4] [3] [2] [1] [0] (Machine Long . - RSSTAT
:_PAR ITY ERROR B IT

: __ FRAMING ERROR BIT

1 2
1 * 2
1 * 2
3
2
3
2
2

1 2
1 2

1 2
1 2 3

: ___ RECE IVER BUFFER OVERRUN B IT
_____ RECE IVER BUFFER - EMPTY

(USE TO TEST AFTER A GET#)
_______ CTS S IGNAL MISS ING B IT

UNUSED B IT _I
__________ DSR S IGNAL MISS ING B IT
____________ BREAK DETECTED B IT

Figure 6-3 . RS-232 Status Register.

INPUT/OUTPUT GUIDE 355

NOTES:

If the B IT=O, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST .

If ST is read by BASIC or by using the KERNAL READST routine the RS-232 status
word is cleared when you exit. If multiple uses of the STATUS word are necessary the
ST should be assigned to another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last

external I/O used .

SAMPLE BASIC PROGRAMS

1 0 REM TH I S PROGRAM SENDS AND RECE I VES DATA

TO/FROM A S I LENT 700

1 1 REM TER M I NAL MOD I F I ED FOR PET ASC I I

20 REM T I S I LENT 700 SET-UP : 300 BAUD , 7-B I T ASC I I ,

r'lARI< P A R I Pr' .,
2 1 REM FULL DUPLEX

30 REM SAME SET-UP AT COMPUTER US I NG 3-L I NE

I tnERFACE

1 00 OPEN 2 . 2 , 3 , C H R $ (6+32) +CHR$ (32+ 1 28) : REM OPEN

THE CHAt·1NEL

1 1 0 GET#2 . AS : RE M TURN ON THE RECE I VE R CHANNEL

(TOSS A t·IULL)

200 REM MA I N LOOP

2 1 0 GET B$: R E M GET FROM COMPUTER KEYBOARD

22�1 IF B$() " " THEt·j P R l tn#2 ., BI ; : FE'l IF R KE'T'

PRESSE D . SEND T O TERM I NAL

230 GET#2 . C$: REM GET R KEY FROM THE TERM I NAL

240 P R I NT BI ; C$; : REM P R I NT RLL I NPUTS T O COMPUTER

SCREEN

250 SR=ST : I F SR=0 OR SR=8 THEN 200 : REM CHECK

STRTUS , I F GOOD THEN CONT I NUE

300 REM ERROR REPORT I NG

3 1 0 PR I tH " ERROR : " ;

320 I F SR A t·m 1 THEt-1 PP I t-n " PA R I T 'T' "

3 3(1 I F SR AND 2 THEt·1 PR I tn " FR Rr'lE "

340 I F SR Rt·m 4 THEN PR ItH " RECE I VEP BUFFER FUL L "

350 I F SR At·m 1 2:::: THEt-l F'R I t·iT " BPEAK "

360 I F (PEEK (67 3) AND 1) THEN 360 : REM WA I T UNT I L

RLL CHAPS TRRNSM I TTED

370 CLOSE 2 : END

356 IN PUT/OUTPUT GUIDE

1 121 REM T H I S PROGRAM SENDS AND REC E I VES TRUE ASC I I
DATA
1 0121 OPEN S . 2 . 3 . CHRS (6)
1 1 0 D I M F % (255) , T% (255)
200 FOR J=32 TO 64 : T% (J) =J : NEXT
2 1 0 T % (1 3) = 1 3 : T % (20) =8 RV= 1 8 : CT=0
220 FOR J=65 TO 90 : K=J+32 : T% (J) =K : NEXT
230 FOR J = 9 1 TO 9S : T% (J) =J : NEXT
240 FOR J= 1 93 T O 2 1 8 : K=J - 1 28 : T% (J) =K : NEXT
250 T % (1 46) = 1 6 : T% (1 33) = 1 6
260 FOR J=B T O 255
27�3 K=T:-; (.n
28121 I F K()0THEN F % (K) =J : F % (K+ 1 28) =J
29121 t·lEl<:T
30121 P R I N T " " CHRS (1 47)
3 1 13 GET # S ., AS

3211 I F AS: " " OR !::T<)O THEt-l 360
33121 F'P I tH " " CHR$ (1 �37) .: CHR$ (F:'; (AS C (A S ») .:
34121 I F F % (ASC C AS » =34 THEN POKE2 1 2 . 0
350 GO TO 3 1 �:1
360 P R I tHCHR;� C RV) " " CHR;t (1 57) .: CH R$ (1 46) .: : GET AS
370 I F AS':::) " " THEt·jPR I tH#5 ., CHF.:$ (T:'J A�:;C (A:f .») ;

3:3(1 CT=CT + 1
390 I F C T = 8 THENCT=0 : RV= 1 64-RV
4 1 �1 GOT03 1 l1

RECEIVER/TRANSMITTER BUFFER BASE LOCATION
POINTERS

$OOF7- RIBUF-A two-byte pointer to the Receiver Buffer base loca­
tion .

$OOF9-ROBUF-A two-byte pointer to the Transmitter Buffer base
location .

The two locations above are set up by the OPEN KERNAL routine, each
pointing to a different 256-byte buffer. They o re de-a l located by writing
a zero into the high order bytes ($OOF8 and $OOFA), which is done by the
C LOSE KERNAL entry. They may also be a l located/de-al located by the
machine language prog rammer for his/her own purposes, removing/
creating only the buffer(s) required . When using a machine language
prog ram that a l locates these buffers, core must be taken to make sure
that the top of memory pointers stay correct, espec ial ly if BAS IC pro­
grams a re expected to run at the same time .

INPUT/OUTPUT GUIDE 357

Z E RO-PAGE MEMORY LOCAT I O N S AN D USAGE F O R
RS-232 SYSTEM INTERFACE

$00A7 - INBIT - Receiver i nput bit temp storage.
$00A8- BITCI- Receiver b i t count in .
$00A9-RINONE- Receiver flag Sta rt b i t check.
$OOAA- RIDATA- Receiver byte buffer/assembly location .
$OOAB- RIPRTY- Receiver parity bit storage.
$00B4- BITTS-Transmitter bit count out .
$00B5-NXTBIT -Transmitter next bit to be sent.
$00B6-RODATA-Transmitter byte buffer/d isassembly location .

A l l the above zero-page location s a re used local ly and a re only g iven
as a guide to understand the associated routines. These cannot be used
directly by the BAS IC or KERNAL level prog rammer to do RS-232 type
things . The system RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

Genera l RS-232 storage:

$0293-M5 1 CTR- Pseudo 655 1 control register (see Fig ure 6- 1) .
$0294-M5 1 COR- Pseudo 655 1 command register (see Figure 6-2) .
$0295-M5 1 AJB-Two bytes fol lowing the control and command

registers i n the frle name freld . These locations contain the
baud rate for the sta rt of the bit test du ring the interface
activity, which , in turn, is used to calculate baud rate .

$0297 - RSSTAT -The RS-232 status reg ister (see Figu re 6-3) .
$0298- BITNUM-The number of bits to be sent/received.
$0299-BAUDOF-Two bytes that are equal to the t ime of one bit

ce l l . (Based on system c lock/baud rate .)

358 I N PUT/OUTPUT GUIDE

$029B- RIDBE-The byte i ndex to the end of the receiver F I FO
buffer .

$029C- RIDBS-The byte index to the start of the receiver F I FO
buffer .

$029D- RODBS-The byte index to the start o f the transmitter F I FO
buffer .

$029E- RODBE-The byte index to the end of the transmitter F I FO
buffer .

$02A l -ENABL- Holds current active interrupts in the CIA #2 I CR .
When bit 4 i s turned on means that the system i s waiting for
the Receiver Edge. When bit 1 is turned on then the system is
receiving data . When bit 0 is turned on then the system is
transmitting data .

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside
world . By using the lines avai lable at this port, you can connect the
Commodore 64 to a printer, a Votrax Type and Ta lk, a MODEM, even
another computer.

The port on the Commodore 64 is d irectly connected to one of the
6526 CIA chips . By programming, the CIA wil l connect to many other
devices .

PORT PIN DESCRIPTION

1 2 3 4 5 6 7 8 9 10 11 12

::::::::::::
A B C D E F H J K L M N

IN PUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

PIN
TOP SIDE

DESCR IPTION

1 GROUND
2 +5V
3 RESET

4 CNTl

5 SP I

6 CNT2

7 SP2

8 PC2

9 SER IAL
ATN

1 0 9 VAC + phase
1 1 9 VAC - phase

1 2 GND

BOTTOM SIDE

A GND
B FLAG2
C PBO
D PBl
E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
M PA2
N GND

360 I N PUT/OUTPUT GUIDE

NOTES

(1 00 mA MAX .)
By g rounding this p in , the Commodore
64 wi l l do a COLD START, resetting
completely. The pointers to a BAS IC
p rogram wi l l be reset, and memory
will be clea red . This is a l so a RESET
output for the external devices .
Serial port counter from CIA # 1 (SEE
C IA SPECS) .
Serial port from CIA # 1 (SEE 6526 CIA
SPECS) .
Serial port counter from C IA #2 (SEE
CIA SPECS).
Serial port from C IA # 1 (SEE 6526 CIA
SPECS).
Handshaking l ine from CIA #2 (SEE
C IA SPECS) .
This pin is connected to the ATN line of
the serial bus .
Connected d i rectly to the Commodore
64 transformer (50 mA MAX .) .

The Commodore 64 gives you control
over PORT B on C IA ch ip # 1 . E ight
l ines for input or output a re avai lab le ,
as wel l as 2 l ines for handshaking with
an outside device . The I/O l ines for
PORT B a re control led by two loca-
tions . One is the PORT itself, and is 10-
cated at 56577 ($DDOI HEX). Natural ly
you PEEK it to read an INPUT, or POKE
it to set an OUTPUT. Each of the e ight
I/O l ines can be set up as either an
I N PUT or an OUTPUT by sett ing the
DATA D I RECTION REGISTER properly.

The DATA DIRECTION REGISTER has its location at 56579 ($DD03
hex). Each of the eight l ines in the PORT has a BIT in the eight-bit DATA
DI RECT ION REGISTER (DDR) which controls whether that l ine wi l l be an
input o r an output. I f a bit i n the DDR i s a ONE , the corresponding l ine
of the PORT wi l l be an OUTPUT. I f a bit in the DDR is a ZERO, the
corresponding l ine of the PORT wi l l be an I NPUT. For example, if bit 3 of
the DDR is set to 1 , then l ine 3 of the PORT wi l l be an output. A further
example:

If the DDR is set l ike this:

B IT # : 7 6 5 4 3 2 1 0
VALUE: 0 0 1 1 1 0 0 0

You can see that l ines 5 ,4 , and 3 wi l l be outputs since those b its are
ones. The rest of the l ines wi l l be inputs, since those l ines a re zeros .

To PEEK or POKE the USER port, i t is necessary to use both the DDR
and the PORT itself .

Remember that the PEEK and POKE statements want a number from
0-255. The numbers g iven in the example must be trans lated into dec­
ima l before they can be used. The value would be:

25 + 24 + 23 = 32 + 1 6 + 8 = 56

Notice that the bit # for the DDR is the same number that = 2 ra ised to
a power to turn the bit value on .

(1 6 = 2j4 =2 X 2 X 2 X 2, 8 = 2j3= 2 x 2 X 2)

The two other l ines, FLAG 1 and PA2 a re d ifferent from the rest of the
USER PORT. These two lines are mainly for HANDSHAKING, and a re
programmed d ifferently from port B .

Handshaking is needed when two devices communicate . Since one
device may run at a different speed than anothe r device it i s necessary
to g ive the devices some way of knowing what the other device is doing .
Even when the devices a re operating at the same speed , handshaking is
necessary to let the other know when data is to be sent, and if it has
been received. The FLAG1 l ine has special characteristics which make it
well suited for handshaking .

FLAG 1 is a negative edge sensitive input which can be used as a
general purpose interrupt input. Any negative transition on the FLAG l ine
wil l set the FLAG interrupt bit . I f the FLAG interrupt is enabled, this wil l

INPUT/OUTPUT G U I DE 361

cause an INTERRUPT REQUEST. If the FLAG bit is not enabled, it can be
pol led from the interrupt reg ister under prog ram contro l .

PA2 is bit 2 o f PORT A of the C IA . It i s controlled l ike any other bit in
the port. The port is located at 56576 ($0000) . The data direction regis­
ter is located at 56578 ($ 0002 .)

FOR MORE I N FORMATION O N T H E 6526 SEE T H E CH I P SPEC I F ICA­
T IONS I N APPEN DIX M .

THE SERIAL BUS

The seria l b u s i s a da isy chain arrangement desig ned to let the Com­
modore 64 communicate with devices such as the V IC- 1 54 1 DISK DR IVE
and the V IC- 1 525 GRAPH ICS PR INTER . The advantage of the serial bus
is that more than one device can be connected to the port. Up to 5
devices can be connected to the seria l bus at one time .

There are th ree types of operation over a serial bus-CONTROL,
TALK, and LISTEN . A CONTROLLER device is one which controls operation
of the serial bus . A TALKER transmits data onto the bus . A LISTENER
receives data from the bus .

The Commodore 64 is the control ler of the bus . It a l so acts as a
TALKER (when sending data to the printer, for example) and as a L IS­
TENER (when loading a prog ram from the disk d rive , for example) .
Other devices may be either LISTENERS (the printer), TALKERS, or both
(the disk d rive) . Only the Commodore 64 can act as the contro l ler .

Al l devices con nected on the serial bus wi l l receive a l l the data
transmitted over the bus . To a l low the Commodore 64 to route data to its
intended destination , each device has a bus ADDRESS. By using this
device address, the Commodore 64 can control access to the bus. Ad­
dresses on the serial bus range from 4 to 3 1 .

The Commodore 64 can COMMAN D a particu lar device to TALK or
L ISTEN . When the Commodore 64 commands a device to TALK, the de­
vice will begin putting data onto the serial bus . When the Commodore
64 commands a device to L ISTEN , the device add ressed wil l get ready to
receive data (from the Commodore 64 or from another device on the
bus) . Only one device can TALK on the bus at a time; otherwise , the data
will col l ide and the system will crash in confusion . However , any number
of devices can L ISTEN at the same t ime to one TALKER .

362 INPUT/OUTPUT GUIDE

COMMON SERIAL BUS ADDRESSES

N UMBER DEVICE
I

4 or 5 V IC- 1 525 GRAPH IC PR INTER
8 V IC- 1 54 1 D ISK DR IVE

Other device addresses are possib le . Each device has its own ad­
d ress. Certa in devices (l ike the Commodore 64 printer) provide a choice
between two addresses for the convenience of the user.

The SECON DARY ADDRESS is to let the Commodore 64 transmit setup
information to a device. For example, to OPEN a connection on the bus
to the printer, and have it pr int in UPPERILoWER case, use the fol lowing :

OPEN 1 , 4 ,7

where,
is the logical fi le number (the number you PRI NT# to) ,

4 i s the ADDRESS of the printer, and
7 i s the SECONDARY ADDRESS that tel ls the printer to go into UPPER/

lOWER case mode.

There are 6 l ines used in ser ia l bus operation -3 input and 3 output.
The 3 input l ines bring data , contro l , and timing s ignals into the Com­
modore 64. The 3 output l ines send data , contro l , and t iming s ignals
from the Commodore 64 to external devices on the ser ia l bus .

SERIAL BUS PINOUTS

PIN DESCR IPTION

1 SER IAL SRQ I N
2 GND
3 SER IAL ATN I N/OUT
4 SER IAL ClK I N/OUT
5 SER IAL DATA I N/OUT
6 NO CONNECTION '- --

I N PUT/OUTPUT GUIDE 363

SERIAL SRQ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus can br ing th is s ignal LOW when it re­
qu i res attention from the Commodore 64. The Commodore 64 wil l then
take care of the device. (See Figu re 6-4) .

A T N

CLOCK

NORMAL
BYTE SENT UNDER ATTENTION (TO DEVICES) ---I r- DATA BYTES

I

��------------------�I

I TS I
�TAT :1 1 I TNEt l+Tv

�\\\\ I lhlGJliJliJGJli1W[iJ L- __ _ ...J L LSB MSB I TH • �TF-1 DATA VALID !
LISTENER READY·FOR·DATA LISTENER DATA·ACCEPTED

END·OR·IDENTI FY HANDSHAKE (LAST BYTE IN MESSAGE)

TALKER READY·TO·SEND
\

TALKER SENDING
I

I-L
I

TSS Ts + 1 +TV I I

�W�WW�6 W�US-U�I �----J�LC
MSB

JTH LTYEJTEIL..LTRY TF L .. JTFR 1 1 �ISTENER READY·FOR·DATA 1
EOI·T IMEOUT HANDSHAKE SYSTEM L INE

LISTENER READY·FOR·DATA RELEASE

TALK·ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

DEVICE ACKNOWLEDGES IT IS NOW TALKER j T
.
ALKER READY·TO·SEND

TNE
I -I T R r /1 T DC I T DA r b, I + Tv 1

"'TW-r4 -r-W""W"""6 -r-liJ�1
T TK I I I T 5 W W w liJ W WW liJ L

MSB I 1 I L LSB MSB L I TF - TH -l TF t
READY FOR DATA

BECOMES LISTENER, CLOCK = HIGH, DATA LOW

Figure 6-4. Serial

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this sig na l to sta rt a command sequence for
a device on the seria l bus . When the Commodore 64 brings this sig na l
LOW, a l l other devices on the bus start l istening for the Commodore 64
to tra nsmit an address . The device add ressed must respond in a preset
period of time; otherwise, the Commodore 64 will assume that the de­
vice add ressed is not on the bus, and will return an error in the STATUS
WORD . (See Fig ure 6-4) .

TALKER R EADY·TO·S E N D

l TALKER S E N D I N G I

I TS T N E

I TNE'F I +TV I -!TSSII�� H-I \ I I +-TV
__ ..;......JI lhl GJ W Ii] liJ W W liJ LLJ T S

-'--'-
--

I L LSB MSB I I I - T H bATA VALI D -I T F __ T H ' -t t
LISTENER READY·FOR·DATA LISTENER DATA·ACCEPTED

SERIAL BUS T I M I N G

Description Symbol Min. Typ. Max.

ATN R ES P O N S E (R E Q U I R E D) 1 TAT - - 1 0001'
L I ST E N E R H O LD·OFF T H 0 - 00
N O N · E O I R E S P O N S E TO R F D 2 TN E - 40115 200115
BIT SET· U P T A L K E R 4 Ts 201(5 701(5 -
DATA V A L I D Tv 20115 201'5 -
F R A M E H A N D S H A K E3 T F 0 20 1 000,(5
F R A M E T O R E LEASE OF A TN TR 20lJS - -
B ET W E E N BYTES T I M E Tss 1 OOI(S - -
EOI R E S P O N S E T I M E TYE 2OOI(S 2501'S -
EOI R E S P O N S E H O L D T I M E5 TEl 6OI's - -
T A L K E R R E S P O N S E L I M I T TRY 0 301" 5 601'5
BYT E·AC K N O W L E D G E4 TpR 201'5 301'5 -
T A L K·ATT E N T I O N R E L E A S E TTK 20lJS 3OI(S 1 001'S
T A L K·ATT E N T I O N A C K N O W L E D G E T DC 0 - -
T A L K ·ATT E N T I O N A C K . H O L D TDA BOi'S - -
EOI A C K N O W L E D G E TF R 6OI(S - -

N otes:
1 . I f m a x i m u m t i me exceeded, device not present error .
2 . I f m a x i m u m t i me exceeded, E O I response req u i re d .
3 . I f m a x i m u m t i me exceeded, f r a m e error.
4 . Tv and T PR m i n i m u m must be 601'5 for external device t o be a ta l ker.
5. T E l m i n i m u m must be BOlts for ex ternal device t o be a l i stener.

Bus Timing_

IN PUT/OUTPUT G U I DE 365

SERIAL ClK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for t iming the data sent on the serial bus . (See
Figure 6-4) .

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this l ine . (See
Figu re 6-4 .)

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on
the back of the Commodore 64 . With the Commodore 64 facing you , the
expansion connector is on the fo r right of the back of the computer . To
use the connector, a 44-pin (22/22) male edge connector is requ i red .

This port is used for expansions of the Commodore 64 system which
require access to the address bus or the data bus of the computer.
Caution is necessary when using the expansion bus, because it's possi­
ble to damage the Commodore 64 by a ma lfunction of you r equipment.

The expansion bus is a rranged as fol lows:
22 21 20 19 18 1 7 16 1 5 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1

I :::::::::::::::::::::: I
z y x w v U T S R P N M L K J H F E D C B A

The s ignals ava i lab le on the connector a re as follows:

NAME PIN DESCRIPTION

GNO
+5 VOC
+ 5 VOC
I RQ
R/w
DOT
CLOCK
1/0 1
GAME
EXROM
1/02

System g round

2 (Tota l USER PORT and CARTRI DGE devices can
3 draw no more than 450 mA.)
4 I nterrupt Request l ine to 6502 (active low)
5 Read/Write

6 8 . 1 8 MHz video dot clock
7 I/O block 1 @ $DEOO-$DEFF (active low) unbuffered I/O
8 active low Is ttl input
9 active low Is ttl input

10 I/O block 2 @ $DFOO-$DFFF (active low) buff 'ed Is ttl
output

366 INPUT/OUTPUT GUIDE

NAME PIN DESCRIPTION

ROML 1 1 8K decoded RAM/ROM block @ $8000 (active low)
buffered Is ttl output

BA 1 2 Bus avai lab le s ignal from the V IC- I I ch ip
unbuffered 1 I s load max.

OMA 1 3 Di rect memory access req uest l ine (active low input)
Is ttl i n put

07 14 Data bus bit 7 '

06 1 5 Data bus bit 6
05 1 6 Oata bus bit 5
04 1 7 Data bus bit 4
03 1 8 Data bus bit 3

02 1 9 Data bus bit 2
0 1 20 Data bu s bit 1
00 2 1 Oata bus bit 0 J
GNO 22 System g round
GNO A

unbuffered , 1 Is ttl load max

ROMH
RESET

B 8K decoded RAM/ROM block @ $EOOO buffered
C 6502 RESET p in (active low) buff 'ed ttl out/unbuff 'ed in

NMI D 6502 Non Maskable I nterrupt (active low) buff 'ed ttl out,
unbuff 'ed in

CP2 E Phase 2 system c lock
A 1 5 F Address bus bit l 5 ""
A 1 4 H Add ress bus bit 1 4
A 1 3 J Add ress bus bit 1 3
A 1 2 K Address bus bit 1 2
Al l L Add ress bus bit 1 1

A l 0 M Add ress bus bit 1 0
A9 N Add ress bus bit 9
AS P Add ress bus bit 8
A7 R Add ress bus bit 7
A6 S Address bus bit 6
A5 T Address bus b it 5
A4 U Address bus bit 4
A3 V Add ress bus bit 3
A2 W Address bus bit 2
A 1 X Address bus bit 1

AO Y Address bus bit 0 ..J
GNO Z System g round
Overbar means active low

unbuffered , 1 I s ttl load max

INPUT/OUTPUT G U I DE 367

Following is a description of some important l ines on the expansion
port:

Pins 1 ,22,A,Z are connected to the system g round.
Pin 6 is the OOT CLOCK. This is the 8 . 1 8-MHz video dot c lock . A l l

system t iming is derived from th is clock.
Pin 1 2 is the BA (BUS AVAI LABLE) s ignal from the VIC-I I chip. This l ine

wil l go low 3 cyc les before the V IC- I I takes over the system busses, and
remains low until the V IC- I I is finished fetching display information .

P in 13 is the OMA (01 RECT MEMORY ACCESS) l i ne . When this l i ne i s
pul led low, the address bus , the data bus , and the Read/Write l i ne of
the 65 1 0 processor ch ip enter high-impedance state mode. This a l lows
an external processor to take control of the system busses. This l ine
should only be pul led low when the cp2 clock is low. Also, since the
VIC-I I chip wil l continue to perform display OMA, the external device
must conform to the V IC- I I timing . (See V IC-I I t iming diagram .) This l ine
is pul led up on the Commodore 64 .

Z-SO MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how
versati le your Commodore 64 rea l ly is. But what makes this machine
even more capable of meeting your needs is the addition of peripheral
eq u ipment . Per iphera l s a re things l i ke Oatassette™ recorders , disk
drives , printers, and modems . Al l these items can be added to your
Commodore 64 through the va rious ports and sockets on the back of
your machine. The thing that makes Commodore peripherals so good is
the fact that our peripherals a re "inte l l igent." That means that they don't
take up va luable Random Access Memory space when they're in use.
You're free to use a l l 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most prog rams
you write on your Commodore 64 today wi l l be upwardly compatible
with any new Commodore computer you buy in the future . This is par­
tial ly because of the qua lities of the computer's Operating System (OS).

However, there is one thing that the Commodore OS can't do: make
your programs compatible with a computer made by another company.

368 I N PUT/OUTPUT G U I DE

Most of the time you won't even have to think about using another com­
pany's computer, because you r Commodore 64 is so easy to use. But for
the occasional user who wants to take advantage of software that may
not be avai lab le in Commodore 64 format we have created a Commo­
dore Cp/M@ cartridge .

Cp/M@ is not a "computer dependent" operating system . I n stead it
uses some of the memory space normal ly avai lab le for programming to
run its own operating system . There are advantages and disadvantages
to this . The disadvantages a re that the prog rams you write wi l l have to
be shorter than the programs you can write using the Commodore 64's
bu ilt-in operating system . In addition , you can NOT use the Commodore
64's powerfu l screen editing capabi l ities . The advantages a re that you
can now use a large amount of software that has been specifica l ly de­
sig ned for CP/M@ and the Z-SO microprocessor, and the prog rams that
you write using the Cp/M@ operating system can be tra nsported and run
on a ny other computer that has Cp/M@ and a Z-SO card .

By the way, most computers that have a Z-SO mic roprocessor req u ire
that you go inside the computer to actua l ly insta l l a Z-SO card . With this
method you have to be very careful not to disturb the del icate circu itry
that runs the rest of the computer. The Commodore Cp/M@ cartridge
el iminates this hass le because our Z-SO cartridge plugs into the back of
your Commodore 64 qu ickly and easi ly, without a ny messy wires that
can cause problems later .

USING COMMODORE CP/M@

The Commodore Z-SO cartridge let's you run prog rams designed for a
Z-SO microprocessor on your Commodore 64 . The cartridge is provided
with a diskette contain ing the Commodore Cp/M@ operating system .

RUNNING COMMODORE CP/M@

To run Cp/M@:

1) LOAD the Cp/M@ program from your disk d rive.
2) Type RUN .
3) Hit the l@iWI key .

I N PUT/OUTPUT GUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessi­
ble by the bui lt-in 65 1 0 central processor, OR 48K bytes of RAM are
avai lable for the Z-80 centra l processor. You can shift back and forth
between these two processors, but you can NOT use them at the same
t ime in a s ingle program . Th is is possible because of your Commodore
64's sophisticated t iming mechanism .

Below is the memory address translation that i s performed on the
Z-80 cartridge. You should notice that by adding 4096 bytes to the
memory locations used in CP/M® $ 1 000 (hex) you equal the memory
addresses of the normal Commodore 64 operating system . The corre­
spondence between Z-80 and 65 1 0 memory addresses is as fol lows:

Z-SO ADDRESSES

DECIMAL H EX

0000-4095 OOOO-OFFF
4096-8 1 9 1 I 1 000- 1 FFF
8 1 92- 1 2287 2000-2FFF

1 2288- 1 6383 3000- 3FFF
1 6384- 20479 4000-4FFF
20480-24575 5000-5FFF
24576-2867 1 6000-6FFF
28672-32767 7000-7FFF
32768- 36863 8000-8FFF
36864-40959 9000-9FFF
40960-45055 AOOO-AFFF
45056-49 1 5 1 BOOO- BFFF
49 1 52- 53247 COOO-CFFF
53248-57343 DOOO- DFFF
57344-61 439 EOOO-EFFF
6 1 440-65535 FOOO- FFFF

370 INPUT/OUTPUT G U I DE

65 1 0 ADDRESSES

DECIMAL HEX

4096- 8 1 9 1 1 000- 1 FFF
8 1 92 - 1 2287 2000-2FFF

1 2288- 1 6383 3000-3FFF
1 6384-20479 4000-4FFF
20480- 24575 5000- 5FFF
24576-2867 1 6000-6FFF
28672-32767 7000- 7FFF
32768-36863 8000-8FFF
36864-40959 9000-9FFF

I
40960-45055 AOOO-AFFF
45056-49 1 5 1 BOOO- BFFF

I 49 1 52-53247 COOO-CFFF
53248-57343 DOOO-DFFF
57344-6 1 439 EOOO-EFFF
6 1 440-65535 FOOO-FFFF

0000- 4095 OOOO-OFFF

To TURN ON the Z-80 and TURN OFF the 65 1 0 chip, type in the fol low­
ing program:

1 0 R E M TH I S PROGRAM I S TO BE USED W I TH THE 280 CARD
20 REM I T F I RS T STOPES Z80 DATA AT $ 1 000

(=::!Ia ",:r012l0 0 ::-

30 REM T H E N I T TURNS OFF THE 65 1 0 I RQ ' S AND ENABLES

40 REM T H E 280 CARD . THE Z8G CARD MUST BE T URNED

OFT
50 REM T O REENABLE THE 65 1 8 SYSTEM .

1 00 REM STORE zeo DATA

1 1 0 READ B : REM GET S I ZE OF Z80 COnE T O BE MOVED

1 20 FOR 1 =4096 TO 4 0 9 6 + B- l " REM MOVE CODE

1 30 READ A : POKE I , A

1 4(1 r"�Dn I

200 REM RUN Z80 C O D E

2 1 0 POKE 56333 , 1 27

220 POKE 56832 , 00

23121 POKE 56333 , 1 29

2:::0 DONE

240 El-ID

REM TURN OF 65 1 121 I RQ ' S
REM TURN ON 2 8 0 CAPn
REM TURN O N 65 1 0 I RQ ' S WHEN

1 000 REM Z80 MACH I NE LANGUAGE CODE DATA SECT I ON

1 0 1 0 DATA 1 8 REM S I ZE OF DATA TO BE PASSED

1 1 00 REM 280 TURN ON C O D E

1 1 1 0 D A T A 1210 , 00 , 00 REM OUR Z80 CAPD REQU I RES

TURN ON T I ME AT $01210121

1 20 0 REM 280 TASK D A T A HERE

1 2 1 121 D A T A 3 3 , 02 , 245 REM LD H L , NN (LOCAT I ON ON
::::C I?EEH)

1 220 DATA 52 REM I NC HL (I NCREMENT T H A T LOCAT I ON)

1 300 REM Z80 SELF-TURN OFF DATA HERE

1 3 1 0 DATA 6 2 , 0 1 REM LD A , N

1 320 D A T A 50 , OO , 206 REM LD (N N) , A I /O LOCAT I ON

1 330 DATA 0 0 , 00 , 00 R E M NOp : NOP NOP

1 340 DATA 1 95 , 0 0 , 0121 REM JMP 50000

For more detai ls about Commodore CP/M® and the Z-80 microproces­
sor look for the cartridge and the Z-80 Reference Guide at your local
Commodore computer dealer.

IN PUT/OUTPUT GUIDE 371

APPENDICES

373

APPENDIX A

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo­
dore 64 BAS IC a l lows the user to abbreviate most keywords. The ab­
breviation for PR INT is a question mark. The abbreviations for other
words are made by typing the fi rst one or two letters of the word , fol­
lowed by the SH I FTed next letter of the word . If the abbreviations a re
used i n a prog ram l ine, the keyword wi l l L IST in the fu l l form .

Looks l ike Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand gtion screen mand at ion screen

ABS A Emil B A [] END E Emil N E 0
AND A Emil N A 0 EXP E Emil X E �
ASC A mil s A [!] FN NONE FN
ATN A Emil T A [] FOR F mil O F 0
CHR$ C mil H c [] FRE F mil R F �
CLOSE ClBllil o ClO GET G mil E G El
CLR C BIIiI L C D GET# NONE GET#
CMD C BIIiI M C IS] GOSUB GO Bllil S GO[!]
CONT C BIIiI 0 c O GOTO G BIIiI O G 0
COS NONE COS I F NONE IF
DATA D BIIiI A D [!J INPUT NONE I NPUT
DEF D BIIiI E D El INPUT# I Emil N 0
DIM D BIIiI I D b] INT NONE INT

374 APPENDIX A

Looks like

Com- Abbrevi- this on
mand ation screen

LEFT$ LE IIDIiI F LE g
LEN NONE LEN
LET L IIDIiI E L U
LIST L IIDIiI I L &"J
LOAD L IIDIiI 0 L O
LOG NONE LOG
MID$ MIIDIiI I M EJ
NEW NONE N EW
NEXT N IIDIiI E N U
NOT N BID 0 N O
ON NONE ON
OPEN OEml P 0 0
OR NONE OR
PEEK P la E P EJ
POKE P la o p O
POS NONE POS
PR INT ? ?

PRI NT# P BllD R P bJ
READ R Eml E R EJ
REM NONE REM
RESTORE RE BIIiI S RE �
RETURN RE BIIiI T RE []

Com-
mand

R IGHT$
RND
RUN
SAVE
SGN
S IN
SPC(
SQR
STATUS
STEP
STOP
STR$
SYS
TAB(
TAN
THEN
TIME
TIME$
USR
VAL
VER I FY
WAIT

Looks l ike

Abbrevi- this on

ation screen

R IIDIiI I R r;J
R la N R 0
R ia U R [Lj
S IIDIiI A S �
S la G S []
S IIDIiI I S EJ
s BllD p s O
S la Q S .
ST ST
STIIDIiI E STEj
S la T S []
ST BllD R ST g
s la Y S []
T EmI A T �
NONE TAN
T BllD H T []
TI TI
T I$ TI$
u la s U �
V la A V �
V IIDIiI E v El
W la A W �

APPENDIX A 375

APPENDIX B

SCREEN DISPLAY CODES

The following chart l ists all of the cha racters bu ilt into the Commodore
64 cha racter sets . It shows which n umbers should be POKEd into screen
memory { locations 1 024-2023) to get a desired character. Also shown is
which cha racter corresponds to a number PEEKed from the screen .

Two character sets a re avai lable, but only one set at a time . This
means that you cannot have cha racters from one set on the screen at
the same time you have cha racters from the other set displayed . The
sets a re switched by holding down the BIIiI and � keys s imul­
taneously.

From BAS IC, POKE 53272 , 2 1 wil l switch to upper case mode and
POKE 53272 ,23 switches to lower case.

Any number on the chart may a l so be displayed in REVERSE. The
reverse character code may be obta ined by adding 1 28 to the values
shown .

If you want to display a sol id circle at location 1 504, POKE the code
for the circle (8 1) into location 1 504: POKE 1 504 , 8 ! .

There is a corresponding memory location to control the color of each
cha racter displayed on the screen (locations 55296-56295) . To change
the co lor of the circle to yellow (color code 7) you would POKE the corre­
spond ing memory location (55776) with the cha racter co lor : POKE
55776 ,1 .

Refer to Appendix D for the complete screen and color memory maps,
a long with co lor codes .

NOTE: The following POKEs disp loy the same symbol in set 1 and 2 : 1 , 27-64,

9 1 -93, 96- 1 04 , 1 06 - 1 2 1 , 1 23- 1 27 .

SCREEN CODES
SET 1 SET 2 POKE

@

A a
B b

376 APPENDIX B

0

2

SET 1
C

D

E

SET 2 POKE SET 1 SET 2 POKE
c 3 F 6
d 4 G 9 7

e 5 H h 8

]

SET 1 SET 2 POKE SET 1 SET 2 POKE

9 0/0 37
J 1 0 & 38
K k 1 1 39
L 1 2 40
M m 1 3 41
N n 1 4 42
0 0 1 5 + 43
P P 1 6 44
Q q 1 7 45

R 1 8 46

S s 1 9 47

T 20 0 48

U u 21 49

V v 22 2 50

W w 23 3 51

X x 24 4 52

Y Y 25 5 53

Z z 26 6 54

27 7 55

£ 28 8 56

1 29 9 57

i 30 58

+- 31 59

li�311 32 < 60

33 61

34 > 62

35 ? 63

$ 36 El 64

SET 1

[!]
OJ
El
EJ
D
bl
[I]
OJ
EJ
�
�
0
�
0
D
0
•
bl
�
0
eLl
�
C
�
[]
rIl
EE
�

SET 2 POKE

A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72

73
J 74
K 75
L 76
M 77
N 78

0 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W 87
X 88
Y 89
Z 90

91
92

APPENDIX B 377

lET 1 lET 2 POKE lET 1 lET 2 POKE lET 1 lET 2 POKE

[] 93 � Jj 1 05 IJ 1 1 7

mJ 61 94 0 1 06 [] 1 1 8

� � 95 rn 1 07 U 1 1 9
96 [ij 1 08 � 1 20

IJ 97 [g 1 09 � 1 21

.- 98 6J 1 1 0 D 0 1 22

0 99 � 1 1 1 � 1 23

D 1 00 ca 1 1 2 � 1 24

0 1 01 t::l 1 1 3 � 1 25

III 1 02 53 1 1 4 � 1 26

D 1 03 EIJ 1 1 5 � 1 27

� 1 04 D 1 1 6

Codes from 1 28-255 are reversed Images of codes 0-1 27.

378 APPENDIX B

APPENDIX C

ASCI I AND CHR$ CODES

This appendix shows you what characters will appear if you PR INT
CH R$(X), for a l l possible values of X . It wil l also show the values ob­
tained by typing PRINT ASC("x"), where x is any character you can type.
This is useful in eva luating the character received in a GET statement,
converting upper/lower case, and printing character based commands
(l ike switch to upper/lower case) that cou ld not be enclosed in quotes .

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
0

"
1 7 34 3 51

• 1 8 # 35 4 52
2

II 1 9 $ 36 5 53
3

II 20 % 37 6 54
4 21 & 38 7 55

- 5 22 39 8 56
6 23 40 9 57
7 24 41 58

OISABLES"�8 25 42 59
EHABLES "�9 26 + 43 C 60

1 0 27 44 61
1 1 - 28 45 => 62
1 2

II
29 46 ? 63

... 1 3 • 30 47 @ 64

i; 1 4 - 31 0 48 A 65
1 5 lIB 32 49 B 66
1 6 33 2 50 C 67

APPENDIX C 379

PRINTS CHRS
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
L 76
M 77
N 78
0 79
P 80
Q 81
R 82

S 83
T 84
U 85
V 86
W 87
X 88
Y 89
Z 90

[91
£ 92

1 93

i 94
<- 95

B 96

380 APPENDIX C

PRINTS CHRS

� 97

rn 98

B 99

El 1 00

U 1 01
g 1 02

D 1 03

[] 1 04

EJ 1 05

� 1 06
� 1 07
0 1 08

� 1 09

0 1 1 0

0 1 1 1

0 1 1 2

II 1 1 3

0 1 1 4

[!] 1 1 5

0 1 1 6
Q 1 1 7
� 1 1 8
C 1 1 9
� 1 20
OJ 1 21
[l] 1 22
EB 1 23

IJ 1 24
rn 1 25

PRINTS CHRS PRINTS CHRS

[iJ 1 26 Grey 3 1 55

L!II 1 27 - 1 56
1 28 II 1 57

Orange 1 29 - 1 58
1 30 • 1 59
1 31 lID 1 60
1 32 IJ 1 61

f 1 1 33 .- 1 62
f3 1 34 0 1 63
f5 1 35 0 1 64
f7 1 36 0 1 65
f2 1 37 II 1 66
f4 1 38 0 1 67
f6 1 39 � 1 68
f8 1 40 � 1 69

" .1 41 0 1 70
" 1 42 rn 1 71

1 43 C. 1 72

• 1 44 [g 1 73

II 1 45 6J 1 74

.. 1 46 � 1 75

11 1 47 CD 1 76

II 1 48 � 1 77
Brown 1 49 Ed 1 78
Lt. Red 1 50 [] 1 79
Grey 1 1 51 D 1 80
Grey 2 1 52 (] 1 81
Lt. Green 1 53 [) 1 82
Lt. Blue 1 54 I U 1 83

PRINTS

�
�

CODES
CODES
CODE

CHR$

1 84
1 85

PRINTS

0
.:J

1 92-223
224-254
255

CHR$

1 86
1 87

PRINTS

�
�

SAME AS
SAME AS
SAME AS

CHR$

1 88
1 89

PRINTS

�
�

96-1 27
1 60-190
1 26

CHR$

1 90
1 91

APPENDIX C 3 8 1

APPENDIX D

SCREEN AND COLOR MEMORY MAPS

The fol lowing charts l ist which memory locations control placing char­
acters on the screen, and the locations used to change individual char­
acter colors, as well as showing cha racter color codes.

SCREEN MEMORY MAP

10
COLUMN

20 30 39

1063
�

1024 _ ".-"-,--"..-".-,.,.-.,,,-,--,.-,-.,..-,,,.-,,-,--,,-,,.-,-.-,,.-,.,.-,,,-,--ri'l
1064
1 104
1 1 44
1 1 84
1224
1264
1 304
1 344
1 384
1424
1464
1 504
1544
1 584
1624
1664
1 704
1 744
1 784
1 824
1864
1 904
1944
1984

382 APPENDIX D

i I

t
2023

""
10 �

20

24

The actual values to POKE into a color memory location to change a
character's color are:

¢ BLACK 8 ORANGE
1 WHITE 9 BROWN

2 RED 1 ¢ Light RED

3 CYAN 1 1 GRAY 1

4 PURPLE 1 2 GRAY 2

5 GREEN 1 3 Light GREEN
6 BLUE 1 4 light BLUE
7 YELLOW 1 5 GRAY 3

For example, to change the color of a character located at the upper
left-hand corner of the screen to red , type: POKE 55296 , 2 .

10

COLOR MEMORY MAP
COLUMN

20 30 39

55335
t

55296-H+4++-++4++++4++++4++++4++++f-++-++H-+-++++
55336
55376
554 1 6
55456
55496
55536
55576
556 1 6
55656
55696
55736
55776
558 1 6
55856
55896
55936
55976
560 1 6
56056
56096
56136
561 76
56216
56256

t
56295

10 �

20

24

APPENDIX D 383

APPENDIX E

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note , and the
values to be POKEd into the H I FREQ and LOW FREQ registers of the
sound chip to produce the indicated note .

MUSICAL NOTE

NOTE OCTAVE

0 C-O
1 C#-O
2 0-0
3 0#-0
4 E-O
5 F-O
6 F#-O
7 G-O
8 G#-O
9 A-O

1 0 A#-O
1 1 B-O
1 6 C- 1
1 7 C#- l
1 8 0- 1
1 9 0#- 1
20 E- 1
2 1 F- 1
22 F#- l
23 G- 1
24 G#- l
25 A- 1
26 A#- l
27 B- 1
32 C-2

384 APPENDIX E

OSCILLATOR FREQ

DECIMAL H I LOW

268 1 1 2
284 1 28
301 1 45
3 1 8 1 62
337 1 8 1
358 1 1 02
379 1 1 23
401 1 1 45
425 1 1 69
45 1 1 1 95
477 1 2 2 1
506 1 250
536 2 24
568 2 56
602 2 90
637 2 1 25
675 2 1 63
7 1 6 2 204
758 2 246
803 3 35
85 1 3 83
902 3 1 34
955 3 1 87

1 0 1 2 3 244
1 072 4 48

MUSICAL NOTE

NOTE OCTAVE DECIMAL

33 C#-2 1 1 36
34 D-2 1 204
35 D#-2 1 275
36 E-2 1 35 1
37 F-2 1 432
38 F#-2 1 5 1 7
39 G-2 1 607
40 G#-2 1 703
4 1 A- 2 1 804
42 A#-2 1 9 1 1
43 8-2 2025
48 C-3 2 1 45
49 C#-3 2273
50 D-3 2408
5 1 D#-3 255 1
52 E-3 2703
53 F-3 2864
54 F#-3 3034
55 G-3 32 1 5
56 G#- 3 3406
57 A- 3 3608
58 A#-3 3823
59 B-3 4050
64 C-4 429 1
65 C#-4 4547
66 D-4 48 1 7
67 D#-4 5 1 03
68 E-4 5407
69 F-4 5728
70 F#-4 6069
7 1 G-4 6430
72 G#-4 68 1 2
73 A-4 72 1 7
74 A#-4 7647
75 8-4 8 1 0 1
80 C-5 8583
8 1 C#-5 9094

OSCILLATOR FREQ

H I

4
4
4
5
5
5
6
6
7
7
7
8
8
9
9

1 0
1 1
1 1
1 2
1 3
1 4
1 4
1 5
1 6
1 7
1 8
1 9
2 1
22
23
25
26
28
29
3 1
33
35

LOW

1 1 2
1 80
25 1

7 1
1 52
237

7 1
1 67
1 2

1 1 9
233
97

225
1 04
247
1 43
48

2 1 8
1 43
78
24

239
2 1 0
1 95
1 95
209
239
3 1
96

1 8 1
30

1 56
49

223
1 65
1 35
1 34

APPENDIX E 385

MUSICAL NOTE

NOTE OCTAVE

82 0-5
83 0 # - 5
84 E - 5
85 F - 5
86 F#-5
87 G-5
88 G # - 5
89 A-5
90 A# - 5
9 1 B - 5
96 C-6
97 C # - 6
98 0 - 6
99 0# - 6

1 00 E-6
1 0 1 F-6
1 02 F#-6
1 03 G-6
1 04 G#-6
1 05 A-6
1 06 A# - 6
1 07 B - 6
1 1 2 C - 7
1 1 3 C # - 7
1 1 4 0-7
1 1 5 0#- 7
1 1 6 E - 7
1 1 7 F - 7
1 1 8 F # - 7
1 1 9 G - 7
1 20 G#-7
1 2 1 A-7
1 22 A# - 7
1 23 B-7

386 APPENDIX E

DECIMAL

9634
1 0207
1 08 1 4
1 1 457
1 2 1 39
1 2860
1 3625
1 4435
1 5294
1 6203
1 7 1 67
1 8 1 88
1 9269
204 1 5
2 1 629
229 1 5
24278
2572 1
2725 1
28871
30588
32407
34334
36376
38539
40830
43258
45830
48556
5 1 443
54502
57743
6 1 1 76
648 1 4

OSCILLATOR FREQ

H I LOW

37 1 62
39 223
42 62
44 1 93
47 1 07
50 60
53 57
56 99
59 1 90
63 75
67 1 5
7 1 1 2
75 69

I
79 1 9 1
84 1 25
89 1 3 1
94 2 1 4

1 00 1 2 1
1 06 1 1 5
1 1 2 1 99
1 1 9 1 24
1 26 1 5 1
1 34 30
1 42 24
1 50 1 39
1 59 1 26
1 68 250
1 79 6
1 89 1 72
200 243
2 1 2 230
225 1 43
238 248
253 46

location

54293

54294

54295

54296

FILTER SETTINGS

Contents

Low cutoff frequency (0- 7)

High cutoff frequency (0- 255)

Resonance (bits 4 - 7)
Fi lter voice 3 (bit 2)
F i lte r voice 2 (b it 1)
F i lte r voice 1 (b it 0)
High pass (b it 6)
Bandpass (bit 5)
low pass (bit 4)
Volume (bits 0- 3)

APPENDIX E 387

i I
i

APPENDIX F

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowbay Computing

Creative Computing

Di l ith ium Press

"BASIC and the Persona l Computer" , Dwyer
and Critchfie ld

"Compute's Fi rst Book of PET/cBM"

"Feed Me, I'm You r PET Computer", Carol Al­
exander

"Looking Good with Your PET" , Carol Alexan­
der

"Teache r' s PET- Pla n s , Qu izzes , and An­
swers"

"Getti n g Acq u a i nted With Yo u r V I C 2 0" ,
T . Hartnel l

" BASIC Basic-Engl ish Dictionary for the PET",
Larry Noonan

"PET BAS IC" , Tom Rugg and Phi l Fe ldman

Faulk Baker Associates "MOS Prog ramming Manual" , MOS Technol­
ogy

Hayden Book Co.

388 APPENDIX F

"BASIC From the Ground Up" , David E. Simon

" I Speak BAS IC to My PET" , Aubrey Jones, J r .

" Lib rary of PET Subroutines", N ick Hampsh i re

" PET Graphics", N ick Hampsh i re

"BAS IC Conversions Handbook, Apple, TRS-
80 , a n d PET" , Dav id A . B ra i n , P h i l l i p R .
Oviatt, Paul J . Paqu i n , and Chandler P. Stone

Howard W. Sams

Little, Brown & Co.

McGraw-Hi l i

Osborne/McGraw-Hi l i

P. C . Publ ications

"The Howard W. Sams Crash Course in Mi­
c rocomputers", Louis E . Frenzel, J r .

"Mostly BAS IC : App l ications fo r You r PET" ,
Howard Berenbon

"PET I nterfacing", James M. Downey and Ste­
ven M. Rogers

"VIC 20 Programmer's Reference Guide", A.
F inke l , P. Higginbottom , N. Ha rris, and M.
Tomczyk

" Com puter Games for Businesses, Schoo ls ,
and Homes", J . Victor Nagig ian, and Wi l l iam
S . Hodges

"The Computer Tutor: Lea rning Activities for
Homes and Schools", Ga ry W. Orwig, Un iver­
sity of Central Florida, and Wi l l iam S. Hodges

"Hands-On BAS IC With a PET" , Herbert D.
Peckman

" H o m e a n d Offi c e U s e of V i s i Ca l c " , D .
Castlewitz , and L . Chisauki

"PET/CBM Personal Computer Guide", Ca rro l l
S . Donahue

"PET Fun and Games", R. Jeffries and G.
Fisher

"P ET a n d the I E E E" , A. Osbo rne a n d C .
Donahue

"Some Common BAS IC Programs for the PET" ,
L. Poole, M. Borchers, and C . Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Guide"

"The 8086 Book", Russe l l Rector and George
Alexy

"Beginning Self-Teaching Computer Lessons"

APPENDIX F 389

Prentice-Hal l

Reston Publ ish ing Co.

"The PET Personal Computer for Beginners" ,
S . Dunn and V. Morgan

"PET and the I EEE 488 Bus (GPI B}", Eugene
Fisher and C . W. Jensen

" PET BAS IC-Train ing You r PET Computer",
R a m o n Z a m o r a , Wm . F . Ca r r i e , a n d B .
Al lbrecht

" PET Games and Recreation" , M. Ogelsby, L .
L indsey, and D . Kunkin

" PET BASIC", Richard H uskell

"VIC Games and Recreation"

Te l m a s C o u r s e w a r e " BASIC and the Persona l Computer" , T. A.
Ratings Dwyer, and M. Critchfield

Tota l I nformation Ser- "Understanding You r PET/cBM, Vol . 1 , BAS IC
vices Programming"

"Understand ing You r VIC", David Schultz

Commodore Magazines p rovide you with the most up-to-date info r­
mation for your Commodore 64. Two of the most popu lar publ ications
that you should seriously consider subscribing to are:

COMMODORE -The Microcomputer Magazine i s publ ished bi-monthly
and is avai lable by subscription ($ 1 5 . 00 per year, U . S . , and $25.00 per
yea r, worldwide).

POWER/PLAY-The Home Computer Magazine i s publ ished quarterly
and is avai lable by subscr iption ($ 1 0 .00 per year , U . S . , and $ 1 5 .00 per
year worldwide) .

390 APPENDIX F

APPENDIX G

VIC CHIP REGISTER MAP

53248 ($0000) Starting (Base) Address

Register # pB7 Dec Hex DB6 DB5 DB4 DB3 DB2

0 0 SOX7

1 1 SOY7

2 2 S 1 X7 I
3 3 S 1 Y7 I

4 4 S2X7

5 5 S2Y7

6 6 !S3X7

7 7 bY7

B B S4X7

9 9 S4Y7

1 0 A S5X7

1 1 B S5Y7

1 2 C S6X7

1 3 D S6Y7

1 4 E S7X7

1 5 F S7Y7

1 6 1 0 S7XB S6X8 S5X8 S4XB S3X8 S2XB

1 7 1 1 RCB ECM BMM BLNK RSEL YSCL2

l B 1 2 RC7 RC6 RC5 RC4 RC3 RC2

1 9 1 3 PX7

20 1 4 PY7

OB I

S I XB

YSCLI

R C I

DBO

SOXO SPRITE 0 X

Component

SOYO SPRITE 0 Y
Component

S I XO SPRITE 1 X

S I YO SPRITE 1 Y

S2XO SPRITE 2 X

S2YO SPRITE 2 Y

S3XO SPRITE 3 X

S3YO SPRITE 3 Y

S4XO SPRITE 4 X

S4YO SPRITE 4 Y

S5XO SPRITE 5 X

S5YO SPR ITE 5 Y

S6XO SPRITE 6 X

S6YO SPRITE 6 Y

S7XO SPRITE 7 X

Component

S7YO SPRITE 7 Y

Component

SOX8 MSB of X

COOR D .

YSCLO Y SCROLL
MODE

RCO RASTER

LPXO LIGHT PEN X

LPYO LIGHT PEN Y

APPENDIX G 391

I

Register #
Dec Hex DB7
2 1 I S SE7

22 1 6 N . C .

23 1 7 SEXY7

24 1 8 VS I 3

25 1 9 IRQ

26 I A N . C .

27 I B BSP7

28 I C SCM7

29 I D SEXX7

30 I E SSCl

3 1 I F SBC7

392 APP E N DIX G

DB6 DB5 DB4

N . C . RST MCM

VS I 2 VSI I VS I O

N . C . N . C . N . C .

N . C . N . C . N . C .

DB3 DB2 OB I DBO
SE� SPR ITE

ENABLE
(ON/OFF)

CSEL XSCL2 XSCLI XSCLO
X SCROLL
MODE

SEXYO SPRITE

I EXPAND Y

C B I 3 CB I 2 C B I I N . C . SCREEN and

Character
Memory Base
Address

LP IRQ I SSC I SBC R I RQ I nterrupt

Request's

MLPI I MISSC MISBC MRIRQ I nterrupt
Request
MASKS

BSPO Background-
Sprite
PR IORITY

SCMO MULTICOlOR
SPR ITE

SELECT

SEXXO SPRITE
E X PAND X

SSCO Sprite-Sprite

COlL IS ION

SBCO Sprite-

Background
COLLISION

Reg ister # Color Dec Hex
Reg ister #

Dec Hex

32 20 B O R D E R COLOR 39 27

33 21
BACKG ROU N D

COLOR 0
40 28

34 22
BACKG R O U N D

COLOR 1 41 29

35 23
BACKG R O U N D

C O L O R 2
42 2A

36 24
BACKG ROU N D

COLOR 3
43 2B

37 25
SPRITE

MUL TICOLOR 0
44 2C

38 26
SPRITE

M U LTICOLOR 1
45 2D

46 2E

COLOR CODES

Dec Hex Color Dec H e x

0 0 BLACK 8 8

1 1 W H I T E 9 9

2 2 RED 10 A

3 3 CYAN 1 1 B

4 4 PURPLE 12 C

5 5 G R E E N 1 3 D

6 6 BLUE 1 4 E

7 7 YELLOW 15 F

L E G E N D :

O N LY COLORS 0 - 7 MAY B E USED I N M U LTICOLOR CHARACTER M O D E

C ol o r

SPRITE 0 COLOR

SPRITE 1 COLOR

SPRITE 2 COLOR

SPRITE 3 COLOR

SPRITE 4 COLOR

SPRITE 5 COLOR

SPRITE 6 COLOR

SPRITE 7 COLOR

Co l o r

O R A N G E

BROWN

LT RED

GRAY 1

G R.�Y 2

LT G R E E N

L T BLUE

GRAY 3

APPENDIX G 393

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BAS IC may be calcu­
lated as follows:

FUNCTION

SECANT

COSECANT
COTANGENT
INVERSE S I N E
INVERSE COSINE

I NVERSE SECANT

I NVERSE COSECANT

I NVERSE COTANGENT
HYPERBOLIC S I N E
HYPERBOLIC COS I N E

HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC S I N E
I NVERSE HYPERBOLIC COSI N E

I NVERSE HYPERBOLIC TANGENT
I NVERSE HYPERBOLIC SECANT

I NVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTAN-
GENT

394 APPENDIX H

BASIC EQUIVALENT

SEC(X)= 1 iCOS(X)
CSC(X)= 1 iS IN(X)
COT(X)= 1 iTAN (X)

ARCSI N(X)= ATN(XiSQR(- X * X + 1))
ARCCOS(X)= - ATN(XiSQR

(- X * X + I)) + rri2

ARCSEC(X)= ATN(XiSQR(X * X - 1))

ARCCSC(X) = AT N(XiSQR(X * X - 1))
+ (SGN(X) - 1 *rri2

ARCOT(X)= AT N(X)+ rri2
S I N H(X)= (EXP(X) - EX P(- X))i2
COSH(X)= (EX P(X)+ EX P(- X))i2

TAN H(X)= E X P(- X)i(EXP(x)+ E X P
I

I (- X))* 2 + 1
I SECH(X)= 2i(EXP(X)+ E X P(- X))

CSCH(X)= 2i(EX P(X)- EXP(- X))
COTH(X)= EXP(- X)i(EXP(X)

- E X P(- X))* 2+ 1

ARCSINH(X)= lOG(X + SQR(X* X + 1))
ARCCOSH(X)= lOG(X + SQR(X * X - 1))

ARCTANH(X)= lOG((1 + X)i(1 - X))i2

ARCSECH(X)= lOG((SQR
(- X* X + 1) + 1 iX)

ARCCSCH(X)= lOG((SGN(X)* SQR
(X* X + l /x)

I ARCCOTH (X)= lOG((X + 1)i(X - 1))i2

APPENDIX I

PINOUTS FOR INP UT/OUTPUT DEVICES

This appendix is des igned to show you what connections may be
made to the Commodore 64 .

1) Game I/O
2) Cartridge Slot
3) Aud iolVideo

Control Port 1
Pin Type

1 JOYAO

2 JOYAl

3 JOYA2

4 JOYA3

5 POT AY

6 B UTTON AiLP

7 + 5V

8 GND

9 POT AX

Control Port 2
Pin Type

1 JOYBO

2 JOYB l

3 JOYB2

4 JOYB3

5 POT BY

6 BUTTON B

7 + 5V

8 GND

9 POT BX

Note

MAX. 50mA

Note

MAX. 50mA

4) Serial I/O (Disk/Pri nter)
5) Modu lator Output
6) Cassette
7) User Port

o

o

6

2

o

o

7

3

o

o

8

4

o

o

9

5

o

APPENDIX I 395

Cartridge Expansion Slot Pin
I

2

3

4

S

6

7

8

9

1 0

I I Pin
- ----

A

B

C

D

E

H

j
K

l
M

Type
GND

+SV

+SV

IRQ

R/W
Dot Clock

I/O I
GAME

EX ROM

I/o 2

ROMl

-�-� GND

ROMH ,

RESET

NMI

S 02

A I S

A I 4

A I 3

A I 2

A l l

A I O

22 2 1 20 1 9 1 8 1 7 1 6 1 5 , . 1 3 1 2 1 1 1 0 9 8 7 8 5 • 3 2 1

I :::::::::::::::::::::: I
Z Y X W V U T S R P N M L K J H F E D C B A

AudiolVideo

Type I
l U M I NANCE I GND

AUDIO OUT

I

V I DEO OUT

AUDIO I N - --

Serial I/O

FP'Hn Type
-
I

,
SER IAL SRQIN

2 : GND

I
3 I SER IAL ATN I N/OUT

I 4 SER IAL C l K I N/OUT

I S SERIAL DATA I N/OUT
R ESET

396 APPENDIX I

Note

Pin Type
1 2 BA

1 3 DMA

1 4 D7

I S D6

1 6 DS

1 7 D4

1 8 D3

1 9 D2

20

I
D I

2 1 DO

22 GND �

Pin Type
N A9

P A8

R A7

S A6

T AS

U A4

V A3

W A2

X A l

Y AO

Z GND

Cassette

Pin Type - .
A- I GND

B-2 + SV

C-3 CASSETTE MOTOR

0-4 CASSETTE READ

E-S CASSETTE WRITE

F-6 CASSETTE SENSE

User I/O

Pin Type Note
1 GND

2 + SV MAX . 1 00 mA

3 RESET

I 4 C N T I

S S P I

6 CNT2

7 SP2 --
8 PC2

9 S E R . ATN I N

1 0 9 VAC MAX. 1 00 mA

1 1 9 VAC MAX. 1 00 mA

1 2 GND

Pin Type Note
A GND --
B FLAG2

C PBO

D PB l

E PB2

F PB3

H PB4

J PBS

K PB6

L PB7

M PA2

N G N D

2 3 .. 5 6 7 B 9 10 1 1 1 2

::::::::::::
A B C 0 E F H J K L M N

1 2 3 4 5 6

::::::
A B C 0 E F

APPENDIX 1 397

APPENDIX J

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

I f you have prog rams written I n a BAS IC other than Commodore
BAS IC , some minor ad justments may be necessary before running them
on the Commodore-64. We've included some h ints to make the conver­
sion easier .

String Dimensions
Delete all statements that are used to declare the length of strings . A

statement such as D IM A$(I ,J) , which dimensions a stri ng a rray for J
elements of length I , should be converted to the Commodore BAS IC
statement D IM A$(J) .

Some BAS ICs use a comma or an ampersand for stri ng concatenation .
Each o f these must be changed to a plus sign , which i s the Commodore
BAS IC operator for string concatenation .

I n Commodore-64 BAS IC , the MID$, R IGHT$, and LEFT$ functions are
used to take substr ings of stri ngs . Forms such as A$(I) to access the Ith
character in A$, or A$(I , J) to take a substring of A$ from position I to J ,
must b e changed as follows:

Other BASIC
A$(I) = X$
A$(I , J) = X$

Commodore 64 BASIC
A$ LEFT$(A$, I - 1)+ X$+MID$(A$, I + 1)
A$ = LEFT$(A$, I - 1)+ X$+MI D$(A$, J+ 1)

Multiple Assignments
To set B and C equal to zero, some BASICs a l low statements of the

form:

1 ¢ LET B = C = ¢

398 APPENDIX J

Commodore 64 BASIC would i nterpret the second equal s ign as a
logical operator and set B = - 1 if C = O. I nstead , convert this state­
ment to:

1(IJ C = 0 : B=¢

Multiple Statements
Some BAS ICs use a backslash (\) to separate mu ltiple statements on

a l ine . With Commodore 64 BASIC, separate a l l statements by a colon
(:) .
MAT Functions

Programs using the MAT functions available on some BASICs must be
rewritten using FOR . . . NEXT loops to execute properly.

APPENDIX J 399

APPENDIX K

ERROR MESSAGES

This appendix contains a complete l ist of the error messages gener­
ated by the Commodore-64 , with a description of causes.

BAD DATA String data was received from an open file, but the pro­
g ram was expecting numeric data .
BAD SUBSCRIPT The prog ram was trying to reference an element of
an a rray whose number is outside of the range specified in the D IM
statement.

BREAK Program execution was stopped because you hit the EBI key.

CAN'T CONTINUE The CONT command wil l not work, either because
the program was never RUN , there has been an error, or a l ine has
been edited .
DEVICE NOT PRESENT The requ i red I/O device was not avai lable for
an OPEN, CLOSE, CMD, PR INT#, I N PUT#, or GET#.
DIVISION BY ZERO Division by zero i s a mathematical odd ity and not
a l lowed .
EXTRA IGNORED Too many items of data were typed in response to
an I N PUT statement. Only the fi rst few items were accepted .
FILE NOT FOUND If you were looking for a fi le on tape, and END-OF­
TAPE marker was found . If you were looking on disk, no file with that
name exists .
FILE NOT OPEN The fi le specified in a CLOSE, CMD, PR INT#, INPUT#,
or GET#, must fi rst be OPENed .
FILE OPEN An attempt was made to open a file using the number of
an a l ready open fi le .
FORMULA TOO COMPLEX The stri ng expression being eva l uated
should be split into at least two parts for the system to work with , or a
formula has too many parentheses .
ILLEGAL DIRECT The I N PUT statement can only be used within a pro­
gram, and not in direct mode.
ILLEGAL QUANTITY A number used as the argument of a function or
statement is out of the a l lowable range.

400 APPENDIX K

LOAD There is a problem with the p rogram on tape.
NEXT WITHOUT FOR This is caused by either incorrectly nesting loops
or having a variable name in a NEXT statement that doesn't correspond
with one in a FOR statement.
NOT INPUT FILE An attempt was made to INPUT or GET data from a
fi le which was specified to be for output on ly .
NOT OUTPUT FILE An attempt was made to PR INT data to a fi le which
was specified as input only.
OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATA statement.
OUT OF MEMORY There is no more RAM avai lable for program or
variables. Th is may also occu r when too many FOR loops have been
nested, o r when there are too many GOSU Bs in effect.
OVERFLOW The result of a computation is la rger than the la rgest
number a l lowed, which is 1 . 70 1 4 1 884E+ 38 .
REDIM'D ARRAY An a rray may on ly be D IMensioned once. If an a rray
variable is used before that a rray is D IM'd, an automatic DIM operation
is performed on that a rray setting the number of elements to ten , and
any subsequent DIMs wil l cause this error.
REDO FROM START Cha racter data was typed in du ring an I N PUT
statement when numeric data was expected . J ust re-type the entry so
that it is correct, and the program will continue by itself.
RETURN WITHOUT GOSUB A RETURN statement was encountered,
and no GOSUB command has been issued .
STRING TOO LONG A string can conta in up to 255 characters .
?SYNTAX ERROR A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, m isspel led keywords, etc .
TYPE MISMATCH This error occurs when a number is used in place of a
stri ng , or vice-versa .
UNDEF'D FUNCTION A user defined function was referenced , but it
has never been defined us ing the DEF FN statement .
UNDEF'D STATEMENT An attempt was made to GO TO or GOSUB or
RUN a l ine number that doesn't exist.
VERIFY The program on tape or disk does not match the program cur­
rently in memory.

APPENDIX K 401

APPENDIX L

65 1 0 MICROPROCESSOR CHIP
SPECIFICATIONS

DESCRIPTION

The 65 1 0 is a low-cost mic rocomputer system capab le of solving a
b road range of sma l l- systems and per iphera l-control prob lems at
minimum cost to the user.

An 8-bit Bi-D i rectional I/O Port is located on-chip with the Output Reg­
ister at Add ress 0000 and the Data-Direction Register at Add ress 000 1 .
The I/O Port is bit-by-b it prog rammable .

The Three-State sixteen-bit Add ress Bus a l lows Direct Memory Access­
ing (DMA) and multiprocessor systems shar ing a common memory.

The internal processor a rch itecture is identical to the MOS Technology
6502 to provide software compatib i l ity.

FEATURES OF THE 6S 1 0

• Eight-Bit Bi-Di rectional I/O Port
• Single +5-volt supply
• N-channel , si l icon gate , depletion load technology
• Eight-bit paral le l processing
• 56 Instructions
• Dec imal and binary a rithmetic
• Thi rteen addressing modes
• True indexing capabi l ity
• Prog rammable stack pointer
• Variable length stack
• I nterrupt capabil ity
• Eight-Bit Bi-Directional Data Bus
• Addressable memory range of up to 65K bytes
• Direct memory access capabi l ity
• Bus compatible with M6800
• Pipeline architecture
• I -MHz and 2-MHz operation
• Use with any type or speed memory

402 APPENDIX L

4>, I N

RDY

IRQ

N M I

AEC

Vee

Ao

A,

A2

A3

A4

As

A6

A7

As

Ag

AlO

A"

A' 2

A' 3

P I N CON F I G U RATION

651 0

RES

4>2 I N

R/W

DBO

DB,

DB2

DB3

DB4

DBs

DB6

DB7

Po

P,

P2

P3

P4

Ps

A, s

A' 4

G N D

APPENDIX L 403

AEC

II: UJ U. u. :J al
� UJ II: o o c(UJ
� W UJ II: I �

.. .

LEGEND

D = 6 BIT UNE

I == 1 BIT LINE

404 APPENDIX l

ffi iFio NM'i

<'2 OUT

L... __ .. . rw

D']
L=======tt:J::===: �: �:�A D,

I '""=======:t====� D, L-- D,

851 0 BLOCK DIAGRAM

65 1 0 CHARACTERISTICS

MAXIMUM RATINGS

RATING SYMBOL VALUE U N IT

SUPPLY VOLTAGE Vee -0.3 to + 7 .0 VDe

I N PUT VOLTAGE V in -0.3 to + 7 . 0 VDe

OPERATING TEMPERATURE TA o to + 70 °c
STORAGE TEMPERATURE TSTG -55 to + 1 50 °c

NOTE: This device contains input protection against damage due to high static volt­
ages or electric fields; however, precautions should be taken to avoid a pplication of
voltages higher than the maximum rating .

ELECTRICAL CHARACTERISTICS
(V C C = 5 .0 V ± 5%, V S S = 0, TA = 00 to + 70°C)

CHARACTERISTIC

In put H igh Volta ge

1>" 1>2Un)
I nput H i g h Voltage - -

RES, PO-P7 I RQ , Data

I nput Low Voltage

1>, , 1>2Un) - -
RES, PO-P7 I RQ , Data

I np ut Leakage Cu rrent

(V i n = 0 to 5 . 25V, Vee = 5 . 25V)

Logic

1>" 1>2(;n)
Th ree State (Off State) I n put Cu rrent

(Vin = 0 . 4 to 2 . 4V, Vee = 5. 25V)

Data Lines

Output High Voltage

(IOH = - 1 00J.LAoe , Vee = 4 . 75V)

Data , AO-A 1 5, R/w, Po-P7

�YM-
BOl

V,H

V,L

I i n

ITS1

VOH

MIN . TYP.

Vee - 0 . 2 -

Vss + 2 . 0 -

Vss - 0 . 3 -
- -

- -
- -

- -

Vss + 2 . 4 -

MAX. U NIT

Vee + 1 . 0V Voe

- Voe

Vss + 0 . 2 Voe

Vss + 0 . 8 Voe

2 . 5 J.LA

1 00 J.LA

1 0 J.LA

- Voc

APPENDIX l 405

C HARACTERISTIC

Out Low Voltage

(lOL = 1 . 6rnAoc , vcc = 4 . 75V)

Data , AO-A 1 5, R/w, PO-P7

Power Supply C urrent

Capacitance

Vin = 0, TA = 25°C, f = 1 MHz)

Logic, PO-P7

Data

AO-A I 5, R/w

c/J,
c/J2

ci>2 IN

R/W

ADDRESS ------+------�
FROM

MPU

DATA
FROM

MEMORY

PERIPH ERAL
DATA

SYM
BOl

VOL
I cc

C

Cin

Cout
Cc/J,
Cc/J2

ADDRESS Vee - O.2V

MIN . TYP. MAX. UNIT

I
- - Vss + 0 . 4 Voc

- 1 25 rnA

p F

- - 1 0
- - 1 5
- - 1 2
- 30 50
- 50 80

�T.,...,..---AES _

ENABLE --------
CONTROL TI M I N G FOR R EA D I N G DATA FROM

406 APPENDIX l

M EMORY OR P E R I P H E RALS

<p1 1 N

R/W

651 0 SYSTEM T I M I N G

TCYC
PWH<t>, ��- - ---1

Vcc - O.2V Vcc - O.2V

ADD RESS ---+----,.
FROM
MPU

DATA
FROM

MEMORY

PERIPHERAL
DATA

ADDRESS
ENABLE

CONTROL _______ -J

TOSU

T I M I N G FOR WRITING DATA TO
M EMORY OR PERI P H E RALS

APPENDIX l 407

AC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS
(VCC = SV ± 5%, VSS = OV, TA = 0° - 70°C)

CLOCK TIMING

CHARACTERISTIC

Cycle Time

Clock Pulse Width cp 1
(Measured at VCC-O . 2V) cp2

Fal l Time , Rise Time
(Measured from 0 . 2V to VCC-0. 2V)

Delay Time between Clocks
(Measured from 0.2V

408 APPENDIX l

SYMBOl MIN .

TCYC 1 000

PWHcpl 430
PWHcp2 470

T F , TR -

TD 0

TYP. MAX.

- -

- -

- -

- 25

- -

READ/WRITE TIMING (LOAD = 1 TTL)

CHARACTERISTIC

Read/Write Setup Time

Add ress Setup Time

Memory Read Access Time

Data Stabil ity Time Period

Data Hold Time-Read

Data Hold Time-Write

Data Setup Time

Add ress Hold Time

R/W Hold Time

Delay Time, 1>2 negative transition
to Peripheral Data val id

Periphera l Data Setup Time

Add ress Enab le Setup Time

Address Disable * See Note

Data Enable Setup Time

Data Disable * See Note 1

• Note 1 - l TTL Load
CL = 30 pf

1

SYMBOL

TRws

TAOS

TACC

Tosu
THR

THw

TMos
THA

THRw

Tpow
Tposu
TAES

TAEO

TOES

TOED

MIN .

-

-

-

60

1 0

1 0

-

1 0

1 0

-

1 50

TYP. MAX.

1 00 1 50

1 00 1 50

- 300

- -

- -

30 -

- 1 00

30 -

30 -

- 300

- -

75

1 20

1 20

1 30

APPENDIX l 409

SIGNAL DESCRIPTION

The 65 1 0 requ i res a two-phase non-overlapping c lock that runs at the
Vee voltage leve l .

Address Bus (Ao-Als)

These outputs are TTL compatib le, capable of driving one standard
TTL load and 1 30 pf.

Eight pins are used for the data bus. This is a Bi-Directional bus ,
transferring data to and from the device and periphera l s . The outputs are
tri-state buffers capable of d riving one standard TTL load and 1 30 pf.

Reset

This input is used to reset or start the m icroprocessor from a power
down condition . Dur ing the time that this line is held low, writing to or
from the microprocessor is i nh ibited . When a positive edge is detected
on the i nput, the m ic roprocessor wi l l immed iately beg in the reset
sequence .

After a system in itial ization time of six c lock cycles, the mask interrupt
flag wi l l be set and the microprocessor wi l l load the prog ram counter
from the memory vector locations FFFC and FFFD. This is the sta rt loca­
tion for prog ram contro l .

After Vee reaches 4 . 75 volts in a power-up routine, reset must be held
low for at least two clock cycles. At this t ime the R/w s ignal wi l l become
va l id .

When the reset s ignal goes h igh fol lowing these two clock cycles, the
microprocessor will proceed with the normal reset procedure detailed
above .

Interrupt Request (IRQ)

This TTL level i nput requests that an interrupt sequence begin with in
the microprocessor. The microprocessor wil l complete the current in­
struction being executed before recognizing the req uest. At that time,
the interrupt mask bit i n the Status Code Register wil l be examined. I f
the interrupt mask flag is not set, the microprocessor wi l l beg in an inter­
rupt sequence . The Program Counter and Processor Status Register are
stored in the stack. The microprocessor wi l l then set the interrupt mask

4 1 0 APPENDIX L

flag h igh so that no further interrupts may occur . At the end of this
cycle, the program counter low wi l l be loaded from add ress FFFE, and
program counter high from location FFFF, therefore tra nsferring p ro­
gram control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Add ress Bus is valid only when the Address Enable Control line is
high . When low, the Address Bus is in a high- impedance state. This
feature al lows easy DMA and mu ltiprocessor systems .

S ix p in s are used for the peripheral port, which can transfer data to
or from peripheral devices. The Output Reg ister is located in RAM at
Address 000 1 , and the Data Direction Register is at Address 0000 . The
outputs a re capable at d riving one standard TTL load and 1 30 pf.

NOTE: P6 is used for NMI (non-moskable interrupt).
P7 is used for R DY (ready).

Read/Write (R/W)

This s ignal is generated by the microprocessor to control the direction
of data transfers on the Data Bus. This l ine is h igh except when the
microprocessor is writing to memory or a peripheral device .

ADDRESSING MODES

ACCUMULATOR ADDRESSING- This form of addressing is represented
with a one byte instruction, implying an operation on the accumu lator.

IMMEDIATE ADDRESSING- In immediate addressing, the operand is
conta ined in the second byte of the instruction, with no further memory
addressing required .

ABSOLUTE ADDRESSING - In a bsolute addressing , the second byte of
the instruction specifies the e ight low order bits of the effective address
while the th ird byte specifies the eight h igh order bits . Thus, the absolute
addressing mode a l lows access to the entire 65K bytes of addressable
memory.

APPENDIX L 4 1 1

ZERO PAGE ADDRESSING-The zero page instructions a llow for shorter
code and execution times by only fetch ing the second byte of the in­
struction and assuming a zero h igh address byte. Careful use of the
zero page can resu lt i n s ign ificant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING-(X, Y indexing)-This form of
addressing is used in conjunction with the index reg ister and is referred
to as "Zero Page, X" or "Zero Page, Y ." The effective address is calcu­
lated by adding the second byte to the contents of the index register.
Since this is a form of "Zero Page" addressing , the content of the sec­
ond byte references a location in page zero. Additona lly, d ue to the
"Zero Page" addressing nature of this mode, no carry is added to the
h igh order 8 bits of memory and crossing of page boundaries does not
occur.

INDEXED ABSOLUTE ADDRESSING-(X, Y indexing)-This form of
addressing is used in conjunction with X and Y index reg ister and is
referred to as "Absolute, X ," and "Absolute, Y ." The effective address is
formed by adding the contents of X and Y to the address conta ined in
the second and third bytes of the instruction . Th i s mode a l lows the index
register to conta in the index or count value and the instruction to conta in
the base address. This type of i ndexing al lows any location referencing
and the index to mod ify mu ltiple fie lds resulting i n reduced coding and
execution time.

IMPLIED ADDRESSING-In the impl ied addressing mode, the address
conta in ing the operand is impl ic itly stated in the operation code of the
instruction .

RELATIVE ADDRESSING-Relative addressing is used only with branch
instructions and establ ishes a destination for the conditiona l branch .

The second byte of the instruction becomes the operand wh ich is an
"Offset" added to the contents of the lower e ight bits of the program
counter when the counter is set at the next instruction . The range of the
offset is - 1 28 to + 1 27 bytes from the next instruction .

INDEXED INDIRECT ADDRESSING-In indexed ind irect addressing (re­
ferred to as [I ndi rect, X)), the second byte of the instruction is added to
the contents of the X index register, d iscarding the carry. The resu lt of
this addition points to a memory location on page zero whose contents is
the low order eight bits of the effective address. The next memory loca­
tion i n page zero conta ins the h igh order e ight bits of the effective ad­
dress. Both memory locations specifying the high and low order bytes of
the effective address must be in page zero.

4 1 2 APPENDIX l

INDIRECT INDEXED ADDRESSING- In ind i rect i ndexed addressing (re­
ferred to as [Ind i rect] , V), the second byte of the instruction points to a
memory location in page zero . The contents of this memory location is
added to the contents of the Y index register, the result being the low
order e ight bits of the effective address. The carry from this addition is
added to the contents of the next page zero memory location , the result
being the h igh o rder eight bits of the effective address.

ABSOLUTE INDIRECT- The second byte of the instruction contains the
low order eight bits of a memory location. The h igh order eight bits of
that memory location is conta ined in the third byte of the instruction . The
contents of the fully specified memory location is the low order byte of
the effective address. The next memory location contains the h igh order
byte of the effective address which is loaded into the sixteen bits of the
prog ram counter .

INSTRUCTION SET-ALPHABETIC
SEQUENCE

ADC Add Memory to Accumu lator with Carry
AN D "AN D" Memory with Accumu lator
ASL Shift Left One Bit (Memory or Accumu lator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Resu lt Zero
BIT Test Bits in Memory with Accumu lator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear I nterrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumu lator
CPX Compare Memory and I ndex X
CPY Compare Memory and I ndex Y

APPENDIX L 4 1 3

DEC Decrement Memory by One
DEX Decrement I ndex X by One
DEY Decrement I ndex Y by One

EOR "Exc lus ive-OR" Memory with Accumulator

INC I ncrement Memory by One
INX I nc rement I ndex X by One
INY I nc rement I ndex Y by One

JMP Jump to New location
JSR J ump to New location Saving Return Address

lOA load Accumulator with Memory
lOX load I ndex X with Memory
LOY load I ndex Y with Memory
lSR Shift One Bit R ight (Memory o r Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PlA Pull Accumulator from Stack
PlP Pull Processor Status from Stack

ROl Rotate One Bit left (Memory or Accumulator)
ROR Rotate One Bit R ight (Memory o r Accumu lator)
RTI Return from Interrupt
RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag
SED Set Dec imal Mode
SE I Set I nterrupt Disable Status
STA Store Accumulator i n Memory
STX Store I ndex X in Memory
STY Store I ndex Y in Memory

4 1 4 APPENDIX L

TAX Transfer Accumu lator to I ndex X
TAY Transfer Accumulator to I ndex Y
TSX Transfer Stack Pointer to I ndex X
TXA Transfer I ndex X to Accumulator
TXS Transfer I ndex X to Stack Reg ister
TYA Transfer I ndex Y to Accumulator

PROGRAMMING MODEL

7

I
7 r=
L

15 7

L PCH I
__ . ___ -.1 __ .

8 7

i , 1
• I

7
N

0

A

0

y

X

0

PCL
0

·S

I
I

I
I

ACCUMULATOR A

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER "PC"

STACK POINTER "S"

PROCESSOR STATUS REG "P"

l§ �::y
: : =�LT ZERO

IRQ DISABLE 1 = DISABLE

DECIMAL MODE 1 = TRUE

"------. BRK COMMAND

'---------i .. � OVERFLOW
'---------i .. � NEGATIVE

, = TRUE

1 = NEG

APPEN DIX L 4 1 5

•

0- >

M
n

e
m

o
n

ic

."

."

A O
C

m
 Z

A
ND

0

AS
l

X
BC

C
BC

S
BE

D
BI

T
BM

I
BN

E
BP

l
BR

K
BV

C
BV

S
Cl

C
Cl

O
CL

I
Cl

V
C

M
P

CP
X

CP
Y

DE
C

OE
X

DE
Y

EO
R

IN
C

IN

X
IN

Y
JM

P
JS

R
lO

A

IN
S

T
R

U
C

T
IO

N
S

Im

m
e

d
ia

te
l A

b
s

o
lu

te
 I Z

e
ro

 P
a

g
e

 I
A

c
c

u
m

.
I

Im
p

lie
d

I

(I
n

d
.)

 X

I
(In

d
.)

 Y

I Z,
 Pa

g
e

,
X I

A

b
s

.
X

lA
b

s
.
Y

R
e

la
ti

ve

I

In
d

ir
e

c
t

I Z
,

P
a

g
e

,
V I

 C
O

N
D

IT
IO

N
 C

O
O

E
S

O
p

e
ra

ti
o

n

opl
 N

I •
lop

l N
I •

lop
l N

I •
lop

l N
I •

lop
l N

I •
lop

 I N
 I

•
lop

l N
I •

 lo
pl N

 I
•

10
PI

N
I •

 10
PI N

lo

pj N
 I •

 lo
pl N

 I

l op
l N

I It
 I

N
Z

C
I

0
V

A
+

M
+

C
_

A

(4
)

(1)
16

9
60

1 4

6 5

AA
M

-
A

(1)
12

9 1
 2

2 0

1 4

25
1 3

1 2

C
-r

r::::::::::::0
OE

06

1 5
 I

2
10

A
I 2

 I 1

BR
AN

C
H
 O

N
C::;:

 0
(2)

BR

AN
C
H

O
N

C
=:

1
(2)

BR
AN

C
H

O
N

Z =
 1

(2
)

AA
M

2C
I 4

 I 3
 12

41
 3

 I
2

BR
AN

C
H

O
N

N
::;:

 1
(2)

BR
AN

C
H

ON
 Z

::;: 0
 (2

)
BR

AN
C
H

ON
 N

::;:
 0

(2)
(S

ee
 F

ig
.
1)

00

1 7
1

1
BR

AN
C
H

O
N

V =
 0

(2)
BR

AN
C
H

ON
 V

::;: 1
 (2

)
O-

C
18

1 2
 I 1

0-

0
08

1 2
 I

1
0-

1
58

1
2

I 1

I
-

I
J .

 I .
I I

. I
1_ J

 . 1
.1

I I

IB8
1 2

 I
1

O-
V

C9
 2

2
�O

 4 1
 :iTC

51
3

I 2

A
-

M

(1)

X
-

M

EO
 2

2

EC
 4

 I 3
1E

4
Y

-
M

CO

 2

2
CC

 4

3
C4

M

-
l-

M

C
E

6 I 3
1C

6
X

-
1 __

 X
Y

-
l-

Y
AV

M
_

A
(1)

 1
49
12 1

2 1:�1
: 1 �

 1 ::15
12

M

+
l_

M
X

+
 l_

X
Y+

 l-
Y

JU
M

P
TO

 N
EW

 l
O

C
I

I
1 4

c
I 3

(S

ee
 F

ig
. 2

1
JU

M
P

SU
B
I I

12

01
 6

M

-
A

(11
 I

A9
1 2

 I
2

IA
OI

 4

A 5
1

3

!C
Al

 2
1

1

B8
1 2

 I
1

E8
1 2

 I 1

C8
12

 1
1

61

71
15

12
17

51
4

12
17

01
4

79
1 4

21

1 6

31
15

1
2

13
51

4
12

13
01

4
39

1 4
 I

3
16

16
1

2
11

EI
7

13

90
1

2
1

2
BO

I 2
1 2

FO

I 2
1

2
M

,
�

M
6

30
1 2

1
2

00
1 2

1 2

10
1

2
I 2

1

-

50

70

0
-

-
-

-
-

-
-

0
-

-
-

-
0

-
-

-
-

-
-

0
C

l 1
6

12
10

1 1
51

2
10

51
4

12
10

0 1
4

13
10

9 1
4

13

�
�

�
06

1 6
 I 2

 10
EI

 7
 I 3

41
1 6

 I
2

15
11

 5
 I 2

15
51

 4
 I 2

 15
0

59
1 4

 I 3

F6
1 6

 I
2

1F
E

6C
I 5

1 3

A
l 1

6
12

1B
l 1

5
12

1B
51

4
12

1B
O l

4
13

1B
91

4
13

Z

II
I

-4

;III c:

n

-4
 o Z

II
I

m

-4
 I o

"

n

o

o

m

,II
I

m

>< m

n

c:

-4
 o Z

IN
S

T
R

U
C

T
IO

N
S

Imm

ed
iat

e
Ab

sol
ute

 Z
ero

 Pa
ge

Ac

cu
m.

Im
pl

ied

(I
n

d
.)

 X
(I

n
d

.)
 Y

Z,

P
a

g
e

,
X

Ab
s. X

Ab

s. Y

R,
t.U

".
In

d
ir

e
c

t
Z,

Pa
g.

, Y
 C

O
N

D
IT

IO
N

 C
O

D
e

» ."

."

m
 Z o X

M
n

e
m

o
n

ic

O
p

e
ra

ti
o

n

O
P

N

•

O
P

N

•

O
P

N

It

O
P

N

•

O
P

N

•

O
P

N

It

O
P

N

/I

O
P

N

lO
X

M

-
X

III

 A
2

2

2
A

E
4

3
A

6

3
2

L
O

Y

M
-

Y

III
 A

O

2
2

A
C

4

3
A

4

3
2

B
4

4

L
S

R

o -rc=
=J!I-C

4E

6

3
4

6

5
2

4
A

2

,
56

6

N
O

P

N
O

 O
P

E
R

A
T

IO
N

E

A

2
,

O
R

A

A
V

M
-

A

09

2
2

0
0

4

3
0

5
3

2
0

1
6

2
11

5

2
'5

4

P
H

A

A
-

M
S

S

-
'-

S

48

3
,

P
H

P

P
-

M
s

S

'-

S

0
8

3

,

P
LA

S

+
 1-

5
M

s
-

A

68

4
,

P
lP

S

+
 1-

5

M
s

-
P

28

4

,
R

O
L

2
E

6

3
26

5

2
2A

2

,
36

6

R
O

R

Cm-<1

ojJ

6
E

6

3
66

5

2
6A

2

,
76

6

R
T

I
(S

e
e

Fi
g.

 1
)

R
T

R
N

 I
N

T

40

6
1

R
T

S

(S
e

e
 F

ig
.

2)

A
T

R
N

 S
U

B

60

6
,

S
B

C

A
-

M
-

C
-

A

"'
E

9

2
2

E
D

 4

3
E5

3

2
El

6

2
F

'
5

2
F

5
4

S
E

C

'-
C

38

2

,

S
E

D

'-
0

F

8
2

,

S
E

I
'-

I
78

2

,
S

T
A

A

-
M

8

0

4
3

8
5

3
2

8
'

6
2

9
'

6
2

9
5

4

S
T

X

X
-

M

8
E

4

3
86

3

2

S
T

Y

Y
_

M

8
C

4

3
8

4
3

2
94

4

T
A

X

A
-

X

A
A

2

,
T

A
Y

A

_
Y

A

8
2

,
T

S
X

S

-
X

B

A

2
,

T
X

A

X
-

A

8
A

2

,
T

X
S

X

-
S

9

A

2
,

T
Y

A

V
-

A

98

2
,

(1
)

A
D

D
 1

TO
 "N

" IF
 PA

G
E

 B
O

U
N

D
A

R
Y

 I
S

 C
R

O
S

S
E

D

X

IN
D

E
X

 X

121
A

D
D

 1
TO

 "W
 IF

 B
R

A
N

C
H

 O
C

C
U

R
S

 T
O

 S
A

M
E

 P
A

G
E

Y

IN

D
E

X
 y

A
D

O
 2

TO
 "N

"
IF

B
R

A
N

C
H

 O
C

C
U

R
S

 T
O

 D
IF

F
E

R
E

N
T

 P
A

G
E

A

A

C
C

U
M

U
L

A
T

O
R

(3

)
C

A
R

R
Y

 N
O

T
 ::

: B
O

R
R

O
W

.
M

M

E
M

O
R

Y
 P

E
R

 E
F

F
E

C
T

Iv
E

 A
D

D
R

E
S

S

(4)
 IF

 IN
 D

E
C

IM
A

L
 M

O
D

E
 Z

F
LA

G
 I

S
 I

N
V

A
L

ID

M
s

 M
E

M
O

R
Y

 P
E

A
 S

T
A

C
K

 P
O

IN
T

E
R

A

C
C

U
M

U
L

A
T

O
R

 M
U

S
T

 B
E

 C
H

E
C

K
E

D
 F

O
R

 Z
E

R
O

 R
E

S
U

LT
.

•
O

P

N

•
O

P

N

•
O

P

N

•
O

P

N

"

O
P

N

B
E

4

3
B

6
•

2
B

C

4
3

2
5

E

7
3

2
10

4

3
'9

4

3

2
3

E

7
3

2
7

E

7
3

2
F

D

4
3

F
9

4

3

2
90

5

3
99

5

3

96

4

2 +
A

D
O

""

M

O
D

if
iE

D

-
S

U
B

T
R

A
C

T

-
N

O
T

 M
O

D
IF

IE
D

1\

A
N

D

1.1
1

M
E

M
O

R
Y

 B
IT

 7
v

 O
R

1.1

6
M

E
M

O
R

Y
 B

IT
 6

"t
E

X
C

L
U

S
IV

E
 O

R

N

N
O

. C
Y

C
L

E
S

•

N
O

.
B

Y
T

E
S

--

_
._

-
--_._-

�
N

O
T

E
:

C
O

MM
O

D
O

R
E

S

E
M

IC
O

N
D

U
C

T
O

R
 G

R
O

U
P

 c
a

nn
ot

 a
ss

um
e

 l
ia

b
ili

ty
 f

o
r

th
e

us
e

of
 u

nd
ef

in
ed

 O
P

C
O

D
ES

 .
..

...

•
N

Z

C

I
o

V

2
",.

-

-
-

-

..
..

.,.
.

-
-

-
-

o
....

....
-

-
-

-
-

-
-

-
-

v

v

-
-

-
-

-
-

....
..

..
-

-
-

-

(R
E

S
T

O
R

E
D

)
v

v

v

v

v

v

(R
E

S
T

O
R

E
D

)

-
-

-
-

-
-

-
.....

...
. (

3)

v

1
-

-
-

,
-

-
-

1
-

-

-
-

-
-

-

2
-

-
-

-
-

-

-
-

..
..

..
.

-
-

-
-

....
...

.
-

-
-

-

..
..

..
..

-
-

-
-

..
.

..
.. -

-
-

-
-

-
-

-
-

-

v

v

-4
 i .m

 � m

�

;10

-<

;10

m

o
 S ;10

m
 � m

Z

-4

11'1

65 1 0 MEMORY MAP

FFFF

1
-(

0200
01FF

t
1

0100
OOFF

I

;'

!

ADDRESSABLE
EXTERNAL
MEMORY

STACK

Page 1

Page 0

OUTPUT REGISTER

�

0000 DATA DIRECTION REGISTER

APPLICATIONS NOTES

,-

STACK

01 F F ___ POINTER

0001
0000

I N ITIALIZED

Used For
Internal
I/O Port

locating the Output Reg ister at the internal I/O Port in Page Zero
enhances the powerful Zero Page Add ressing instructions of the 65 1 0 .

By assign ing the I/O Pins as inputs (us ing the Data Di rection Reg ister)
the user has the abi l ity to change the contents of address 000 1 (the
Output Reg ister) using peripheral devices. The abi l ity to change . these
contents us ing peripheral i nputs, together with Zero Page I nd i rect Ad­
d ressing instructions , a l lows novel and versati le p rog ramming tech­
niques not possible earl ier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any

products herein to improve rel iabi l ity, function or design . COMMODORE SEMICON­

DUCTOR GROUP does not assume any l iabi l ity a rising out of the a ppl ication or use of
any product or circuit described herein; neither does it convey any license under its
potent rights nor the rights of others.

4' 8 APPENDIX l

APPENDIX M

6526 COMPLEX INTERFACE ADAPTER
(CIA) CHIP SPECIFICATIONS

DESCRIPTION

The 6526 Complex Interface Adapter (C IA) is a 65XX bus compatible
per iphera l i nterface device with extremely flex ib le t iming and I/O
capabi lities .

FEATURES

• 16 I ndividual ly prog rammable I/O l ines
• 8 or 1 6-Bit handshaking on read o r write
• 2 independent, l inkable 1 6-Bit i nterval t imers
• 24-hour (AM/PM) time of day clock with programmable a larm
• 8-Bit shift register for ser ia l I/O
• 2TTL load capabi l ity
• CMOS compatible I/O l ines
• 1 or 2 MHz operation avai lable

APPENDIX M 4 1 9

Vss

PAo

PAl

PA2

PA3

PA4

PA5

PA6

PAl

PBo

PBI

PB2

PB3

PB4

PB5

PB6

PBl

PC

TOD

Vee

420 APPENDIX M

P I N C O N F I G U RATION

CNT

SP

RSO

RSI

RS2

RS3

RES

DBO

DBI

6526 DB2

DB3

DB4

DB5

DB6

DBl

cJ>2

FLAG

CS

R/W

IRQ

SP

CNT ---1 CNT
BUFFER

TOO

- � FLAG �
I

IRQ

6526
BLOCK DIAGRAM

PA PAO·PA7 PRA BUFFERS

DORA

PC

PBO·PB7

OORB

CRA

R/W 132 CS RS3 RS2 RS1 RSO RES

APPENDIX M 42 1

MAXIMUM RATINGS

Supply Voltage, Vee
Input/Output Voltage, VIN
Operating Temperature, Top
Storage Temperature, TSTG

-0 .3V to +7 .0V
-0. 3V to +7 .0V

0° C to 70° C
-55° C to 1 50° C

All i nputs conta in protection circuitry to p revent damage due to h igh
static discharges. Care should be exercised to prevent unnecessary ap­
pl ication of voltages in excess of the a l lowable l im its .

COMMENT

Stresses above those l isted under "Absolute Maximum Ratings" may
cause permanent damage to the device. These a re stress ratings only.
Functional operation of th is device at these or a ny other conditions
above those indicated i n the operational sections of this specification i s
not impl ied and exposure to absolute maximum rating cond itions for
extended periods may affect device rel iabi lity.

ELECTRICAL CHARACTERISTICS (Vee + 5%, Vss
= 0- 70°C)

CHARACTER ISTIC

I n put High Voltage

I nput low Voltage

I nput leakage Current;
VIN=VSS +5V
(TOD, R/W, FlAG,<p2,
RES, RSO-RS3, CS)

422 APPENDIX M

SYMBOL

VIH

VIL

l i N

M IN . TYP.

+ 2 . 4 -

-0.3 -

- 1 .0

MAX. U N IT

Vee V

- V

2 . 5 fJ.A

- -

C HARACTERISTIC SYMBOL

Port I nput Pul l-up Resistance Rpi

Output leakage Current for I TSI
H igh I m pedance State (Three
State); VIN = 4V to 2 .4V;
(DBO- DB7, SP, CNT, I RQ)

Output H igh Voltage VOH
Vee=M IN , I LOAD <

-
-200J-l.·A (PAO- PA7, PC
PBO- PB7, DBO- DB7)

Output low Voltage VOL
Vee= M IN , I LOAD < 3 . 2 mA

Output H igh Current (Sourcing); IOH
VOH > 2 . 4V (PAO- PA7,
PBO- PB7, PC, DBO- DB7

Output low Current (Sinking); IOL
VOL < . 4V (PAO- PA7, PC,
PBO- PB7, DBO- DB7)

I n put Capacitance CIN

Output Capacitance COUT

Power Supply Current I cc

MIN .

3 . 1

-

+ 2 . 4

-

- 200

3 . 2

-

-

-

TYP . MAX. U N IT

5 .0 - K!1

± 1 .0 ± 1 0 .0 J-I.A

- Vee V

- +0 .40 V

f- l 000 - J-I.A

- - mA

7 1 0 pf

7 1 0 pf

70 1 00 mA

APPENDIX M 423

�

t.)

�

>

."

."

m
 Z o X �

02
 IN

P
U

T

P
ER

IP
H

E
R

A
L

D
A

TA
 O

U
T

C
S

R
S

3-
R

S
O

R/
W

D
A

TA
 IN

O

B
7-

0
B

O

�

R

+- 1

1 !iF

--
-'

\
3

 T A
O

S

65
26

 W
RI

TE
 T

IM
IN

G
DI

AG
RA

M

T C
Y

C

T C
H

W

�

f4-
- T F

T C

LW

r

Tp
O

X

�

I
T W

C
S

11
1111111//////////

14-
T A

O
H

-
J+-](

f-

-T R
W

S
TR

W
H

 --.
.

T
O

H

)(

](
T O

S
--"-

>
 ..
.,

..
.,

m
 Z o X � ,.

to)

lit

02
 IN

PU
T

PO
RT
 IN

cs

R
S

3·
R

S
O

R
/V

V

D
A

TA
 O
UT

D
B

7·
D

B
O

65
26

 R
EA

D
TI

M
IN

G
DI

AG
RA

M

y

1\
T p
S

l+-
I

TW
CS

•
 V

/
TA
DS

TA
DH

)
X I

4
�

TC
O
_

TR
W

H
.J\

TR

W
S

" I

f,

'?

V.

'f
r

T A
CC

�

 T D
R

 ..
..

6526 INTERFACE SIGNALS

<1>2-Clock Input

The <1>2 clock is a TTL compatible i nput used for i nterna l device opera­
tion and as a t iming reference for commun icating with the system data
bus .

CS -Chip Select Input

The CS input controls the activity of the 6526. A low level on CS whi le
<1>2 is high causes the device fo respond to signals on the R/W and ad­
dress (RS) l ines. A h igh on CS prevents these l ines from contro l l ing the
6526. The CS l ine is norma lly activated (low) at <1>2 by the appropriate
address combination .

Rlw - Read/Write Input

The R/W s ignal is norma lly suppl ied by the microprocessor and con­
trols the d i rection of data transfers of the 6526. A h igh on R/W indicates
a read (data transfer out of the 6526), whi le a low indicates a write
(data transfer i nto the 6526).

RS3- RSO-Address Inputs

The address i nputs select the internal reg isters as described by the
Register Map.

DB7- BDO- Data Bus Inputs/Outputs

The eig ht data bus pins transfer information between the 6526 and
the system data bus . These pins are h igh impedance inputs un less CS is
low and R/W and <1>2 are high to read the device. Dur ing this read, the
data bus output buffers are enabled, driving the data from the selected
reg ister onto the system data bus .

IRQ-Interrupt Request Output

I RQ is an open dra in output norma lly connected to the processor i nter­
rupt i nput. An external pu l lup resistor holds the s ignal h igh , a l lowing
multiple I RQ outputs to be connected together. The I RQ output is nor­
ma l ly off (h igh impedance) and is activated low as ind icated in the
functional description .

426 APPENDIX M

RES - Reset Input

A low on the RES pin resets all i nternal reg isters . The port pins a re set
as inputs and port registers to zero (although a read of the ports wi l l
return a l l h ighs because of passive pu l lups) . The timer control reg isters
a re set to zero and the timer latches to all ones. All othe r reg isters a re
reset to ze ro .

Symbol

Tcyc
T R, T F

TcHw

TcLw

Tpo

Twcs

TAOS
TAOH
TRws
TRwH
T os

T OH

Tps
Twcs(2)

TAOS
TAOH
TRws
TRwH
Tco

6526 SYSTEM TIMING CHARACTERISTICS

Character i stic

cp2 Clock
Cycle Time
Rise and Fal l T ime
Clock Pulse Width

(H igh)
Clock Pulse Width
(Low) .

Write Cycle
Output Delay
�om cp2
CS low
whi le cp2 h igh

Address Setup Time
Address Hold T ime
R/w Setup Time
R/w Hold Time
Data Bus Setup
Time

Data Bus Hold Time

Read Cycle
Port Setup Time
CS low
whi le cp2 h igh

Add ress Setup Time
Add ress Hold Time
R/w Setup Time
R/w Hold Time
-
CS to val id

Data Out

l MHz
M IN MAX

1 000 20,000
- 25

440 1 0,000

420 1 0, 000

- 960

280 -

58 -

1 0 -

1 5 -

1 5 -

200 -

25 -

300 -

280 -

58 -
1 0 -

1 5 -
1 5 -

240

2MHz
M IN

500
-

255

200

-

255
20
1 0
1 5
1 5

75
1 5

1 50

255
20
1 0
1 5
1 5

1 50

MAX U n it

20,000 ns
25 ns

1 0,000 ns

1 0,000 ns

460 ns

- ns
- ns
- ns
- ns
- ns

- ns
- ns

- ns

- ns
- ns
- ns
- ns
- ns

APPENDIX M 427

l MHz 2MHz
Symbol Character istic MIN MAX MIN MAX U n it
TAcc Data Access from

RS3-RSO - 550 - 275 n s
Tco(3) .Data Access from -

CS - 320 - 1 50 ns
TOR Data Release Time 50 - 25 - ns

NOTES: 1 -A l l timings are referenced from V,L max and V,H min on inputs and VOL
max and VOH min on outputs.

RS3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2 -Twcs is measured from the later of cf>2 high or CS low. CS must be low at
least until the end of cf>2 high.

~ 3 -Tco is measured from the later of cf>2 high or CS low.

RS2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

Valid data is available only after the later of TACC or Tco.

REGISTER MAP

RS I RSO REG NAME

0 0 0 PRA PERI PHERAL DATA R EG A

0 1 1 PRB PER IPHERAL DATA REG B

1 0 2 DORA DATA D IRECTION REG A

1 1 3 DDRB DATA D IRECTION REG B

0 0 4 TA LO T IMER A LOW REGISTER

0 1 5 TA H I T IMER A H I G H REGISTER

1 0 6 TB LO TIMER B LOW REGISTER

1 1 7 TB H I T IMER B H I G H REGISTER

0 0 8 TOO l OTHS 1 0THS OF SECON DS REGISTER

0 1 9 TOO SEC SECONDS REGISTER

1 0 A TOO MIN MINUTES REGISTER

1 1 B TOO H R HOURS-AM/PM REGISTER

0 0 C SDR SERIAL DATA R EGISTER

0 1 0 I CR I NTERRUPT CONTROL ,REGISTER

1 0 E CRA CONTROL REG A

1 1 F CRB CONTROL REG B

428 APPENDIX M

6526 FUNCTIONAL DESCRIPTION

I/O Ports (PRA, PRB, DDRA, DDRB).

Ports A and B each consist of an 8-bit Peripheral Data Reg ister (PR)
and an a-bit Data Direction Register (DDR) . I f a bit in the DDR is set to a
one, the corresponding bit in the PR is an output; if a DDR bit is set to a
zero, the corresponding PR bit is defined as an input. On a READ, the PR
reflects the information p resent on the actual port pins (PAO- PA7,
PBO- PB7) for both i nput and output bits . Port A and Port B have passive
pul l-up devices as well as active pul l-ups, provid ing both CMOS and TTl
compatibi l ity. Both ports have two TTl load d rive capabi l ity . I n add ition
to normal I/O operation , PB6 and PB7 also provide t imer output func­
tions .

Handshaking

Handshaking on data transfers can be accomplished using the PC -- -
output pin and the FLAG input pin . PC wi l l go low for one cycle fol lowing
a read or write of PORT B . This s ignal can be used to indicate "data
ready" at PORT B or "data accepted" from PORT B. Handshaking on
1 6-bit data transfers (using both PORT A and PORT B) is possible by
always reading or writing PORT A first. FLAG is a negative edge sensi­
tive input which can be used for receiving the PC output from another
6526, or as a general purpose interrupt input. Any negative transition of
FLAG will set the FLAG interrupt bit.

REG NAME D7 D6 Os D4 03 D2 D1 Do

0 PRA PA7 PA6 PAs PA4 PA3 PA2 , PA1 PAo

1 PRB PB7 PB6 PBs PB4 PB3 PB2 PB1 PBo

2 DDRA DPA7 DPA6 OPAs DP� DPA3 DPA2 DPA1 DPAo

3 DDRB DPB7 DPB6 DPBs DPB4 DPB3 DPB2 DPB1 DPBo

Interval Timers (Timer A, Timer B)

Each i nterval t imer consists of a 1 6-bit read-only Timer Counter and a
1 6-bit write-only Timer Latch . Data written to the timer a re latched in the
Timer Latch , while data read from the timer are the present contents of
the Time Counter . The t imers can be used independently o r l inked for
extended operations. The various timer modes a l low generation of long
t ime delays, variable width pulses, pulse trains and variable frequency

APPENDIX M 429

waveforms. Uti l iz ing the CNT input, the timers can count external pulses
or measure frequency, pu lse width and delay times of external s igna ls .
Each timer has an associated control reg ister, provid ing independent
control of the fol lowing functions:

Start/Stop

A control b it a l lows the timer to be started or stopped by the micro­
processor at any time .

PB On/Off:

A control bit a l lows the timer output to appear on a PORT B output
l ine (PB6 for T IMER A and PB7 for T IMER B). This function overrides the
DDRB control bit and forces the appropriate PB l ine to an output.

Toggle/Pulse

A control bit selects the output appl ied to PORT B. On every t imer
underflow the output can either toggle or generate a s ing le positive
pulse of one cycle duration . The Toggle output is set h igh whenever the
timer is started and is set low by RES.

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer
wil l count down from the latched va lue to zero, generate an interrupt,
reload the latched va lue, then stop . In continuous mode, the timer wi l l
count from the latched va lue to zero, generate an interrupt, reload the
latched va lue and repeat the procedure contin uously.

Force Load

A strobe bit a l lows the t imer latch to be loaded into the t imer counter
at a ny time, whether the timer is running or not.

I nput Mode:

Control bits a l low selection of the clock used to decrement the t imer.
T IMER A can count cp2 clock pu lses or external pulses appl ied to the CNT
pin . TIMER B can count cp2 pulses, external CNT pu lses , TIMER A under­
flow pulses or T IMER A underflow pu lses whi le the CNT pin is held h igh .

The timer latch is loaded into the timer on any timer underflow, on a
force load or fol lowing a write to the h igh byte of the prescaler whi le the
timer is stopped. If the t imer is runn ing , a write to the high byte wi l l load
the t imer latch, but not reload the counter.

430 APPENDIX M

READ (TIMER)
REG NAME

4 TA LO

5 TA H I

6 TB LO

7 TB H I

WRITE (PRESCALER)
REG NAME

4 TA LO

5 TA H I

6 TB LO

7 TB H I

TAL7

TAH7

TBL7

TBH7

PAL7

PAH7

PBL7

PBH7

Time of Day Clock (TOD)

TA� TALs

TAH6 TAHs

TB� TBLs

TBH6 TBHs

PA� PALs

PAH6 PAHs

PB� PBLs

PBH6 PBHs

TAL4 TAL3 TAL2 TAL1 TALo

TAH4 TAH3 TAH2 TAH1 TAHo

TBL4 TBL3 TBL2 TBL1 TBLo

TBH4 TBH3 TBH2 TBH1 TBHo

PAL4 PAL3 PAL2 PAL1 PAlo

PAH4 PAH3 PAH2 PAH1 PAHo

PB4 PBL3 PBL2 PBL1 PBLo

PBH4 PBH3 PBH2 PBH1 PBHo

The TOD clock is a special purpose timer for real-time applications .
TOO consists of a 24-hour (AM/PM) clock with l / l Oth second resolution . It
is organized into 4 registers: 1 0ths of seconds , Seconds, Minutes and
Hours . The AM/PM flag is in the MSB of the Hours register for easy bit
testing . Each register reads out in BCD format to s impl ify conversion for
driving d isplays, etc . The clock req uires an external 60 Hz or 50 Hz
(programmable) TTL level i n put on the TOO pin for accu rate time­
keeping . In addition to t ime-keeping, a programmable ALARM is pro­
vided for generating an interrupt at a desired time. The ALARM registers
are located a�.the same addresses as the corresponding TOO registers.
Access to the ALARM is governed by a Control Register bit. The ALARM
is write-on ly; any read of a TOO address will read time regardless of the
state of the ALARM access bit.

A specific sequence of events must be fol lowed for proper setting and
reading of TOO. TOO is automatical ly stopped whenever a write to the
Hours reg ister occurs . The clock wil l not start again until after a write to
the 1 0ths of seconds reg ister . This assures TOO will a lways sta rt at thE
desired time. Since a carry from one stage to the next can occur at a ny
time with respect to a read operation , a latch ing function is included to
keep a l l Time Of Day information constant during a read sequence. Al l
four TOO reg isters latch on a read of Hours and remain latched until
after a read of 1 0ths of seconds . The TOO clock continues to count when

APPENDIX M 43 1

the output reg isters are latched . If on ly one register is to be read, there
is no carry problem and the reg ister can be read "on the fly," provided
that any read of Hours is fol lowed by a read of l Oths of seconds to
d isable the latch ing .

READ

REG NAME
8 TOO l OTHS
9 TOO SEC
A TOO MIN
B TOO H R

WRITE

CRB7 = O TOO
C R B7 = 1 ALARM

0 0
0 SH4
0 MH4
PM 0

(SAME FORMAT AS READ)

Serial Port (SDR)

0
SH2
MH2
0

0 Ta T4 T2 T,
SH, SLa S4 SL2 SL,
MH, MLa ML4 ML2 ML,
H H H La H L4 H L2 H L,

The serial port is a buffered , 8-bit synchronous shift reg ister system . A
control bit selects i nput or output mode. I n input mode, data on the SP
pin i s shifted into the shift regi ster on the r is ing edge of the s ignal
appl ied to the CNT pin . After 8 CNT pulses, the data i n the shift register
is d umped into the Serial Data Register and an interrupt is generated . I n
the output mode, T IMER A i s used for the baud rate generator. Data is
shifted out on the SP p in at 1/2 the underflow rate of TIMER A. The
maximum baud rate possible i s cP2 d ivided by 4, but the maximum use­
able baud rate will be determined by line loading and the speed at
which the receiver responds to i nput data . Transmission will start fol low­
ing a write to the Serial Data Regi ster (provided T IMER A is running and
in continuous mode) . The c lock s ignal derived from T IMER A appears as
an output on the CNT pin. The data in the Serial Data Reg ister wil l be
loaded into the shift register then shift out to the SP pin when a CNT
pulse occurs . Data shifted out becomes val id on the fa l l ing edge of CNT
and remains val id unti l the next fa l l i ng edge. After 8 CNT pulses, an
interrupt is generated to ind icate more data can be sent. I f the Serial
Data Register was loaded with new information prior to this i nterrupt,
the new data will a utomatical ly be loaded into the sh ift reg ister and
transmission wi l l continue . If the microprocessor stays one byte ahead of
the shift register, transmission wi l l be continuous . I f no further data i s to
be transmitted, after the 8th CNT pulse, CNT wi l l return h igh and SP wil l

432 APPENDIX M

remain at the level of the last data bit transmitted . SDR data is shifted
out MSB fi rst and serial input data should a l so appear in this format.

The bidirectional capabi lity of the Serial Port and CNT clock al lows
many 6526 devices to be connected to a common serial commun ication
bus on which one 6526 acts as a master, sourcing data and shift clock,
whi le a l l other 6526 ch ips act as slaves . Both CNT and SP outputs are
open d rain to a l low such a common bus . Protocol for master/slave
selection can be transmitted over the serial bus, or via dedicated hand­
shaking l ines.

REG NAME

SDR

Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from T IMER
A, unde rflow from T IMER B , TOD ALARM, Serial Port ful l/empty and
FLAG. A s ing le reg ister p rovides masking and interrupt information . The
interrupt Control Reg ister consists of a write-only MASK reg ister and a
read-on ly DATA register . Any interrupt wi l l set the corresponding b it in
the DATA reg ister . Any interrupt which is enabled by the MASK reg ister
will set the IR bit (MSB) of the DATA register and br ing the I RQ pin low.
In a mu lti-ch ip system , the I R bit can be pol led to detect which ch ip has
generated an interrupt request. The interrupt DATA register is c leared
and the I RQ l ine returns h igh fol lowing a read of the DATA reg ister .
Since each interrupt sets a n interrupt bit regardless of the MASK, and
each interrupt b it can be selectively masked to prevent the generation of
a processor i nterrupt, it is possible to i ntermix pol led interrupts with true
interrupts. However , pol l ing the I R bit will cause the DATA register to
clear, therefore, it is up to the user to preserve the information con­
ta ined in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of i nd ividual mask bits .
When writing to the MASK register , if bit 7 (SET/CLEAR) of the data
written is a ZERO, any mask bit written with a one will be cleared, whi le
those mask bits written with a zero wi l l be unaffected . If bit 7 of the
data written is a ONE, a ny mask bit w ritten with a one wi l l be set, whi le
those mask bits written with a zero wil l be unaffected . I n o rder for an
i nterrupt flag to set IR and generate an I nterrupt Request, the corre­
sponding MASK bit must be set.

APPENDIX M 433

READ (INT DATA)

REG NAME

D I I CR I R 0 0 FLG I SP I ALRM·I TB I TA

WRITE (INT MASK)

REG NAME

D ICR SiC X X FLG I SP I ALRM I TB I TA

CONTROL REGISTERS

There a re two control registers in the 6526, CRA and CRB . CRA i s
associated with T IMER A and CRB i s associated with T IMER B . The regis­
ter format is as follows:

eRA:

Bit Name
0 START

PBON

2 OUTMODE
3 RUNMODE
4 LOAD

5 INMODE

6 SPMODE

7 TODIN

434 APPENDIX M

Function
I = START T IMER A, O=STOP T IMER A. This bit is
automatical ly reset when underflow occurs du ring
one-shot mode.
I = T IMER A output appears on PB6, 0= PB6 normal
operation .
I =TOGGLE, O= PULSE
I =ONE-SHOT, O=CONTINUOUS
I = FORCE LOAD (th is is a STROBE input, there is no
data storage, bit 4 wi l l a lways read back a zero
and writing a zero has no effect).
I =T IMER A counts positive CNT tran sitions , 0 =
T IMER A counts c/>2 pulses .
I = SER IAL PORT output (CNT sources shift c lock),
O=SER IAL PORT input (external shift c lock requ i red) .
I = 50 Hz clock required on TOD pin for accurate
t ime, 0=60 Hz clock requ ired on TOD pin for accu­
rate time .

CRB:

Bit Name Function
(Bits C RBO-CRB4 a re identical to CRAO-CRA4 for
T IMER B with the exception that bit 1 controls the
output of T IMER B on PB7) .

5 ,6 INMODE Bits CRB5 and CRB6 select one of four input modes
for T IMER B as :

7 ALARM

TOD

REG NAME IN

REG NAME ALARM

CRB O=TOD

1 =

ALARM

CRB6 CRB5
o
o

o

o

TIMER B counts </>2 pu lses .
T IMER B counts positive CNT
transistions .
T IMER B counts T IMER A
underflow pulses.
T IMER B counts T IMER A
underflow pulses while CNT is
hig h .

1 =writi ng to TOO registers sets ALARM, O=writ ing
to TOO registers sets TOO clock.

SP IN RUN OUT

MODE MODE LOAD MODE MODE PB ON START

O = STOP

1 = START

TA

RUN OUT

IN MODE LOAD MODE MODE PB ON START

0 =</>2 1 =FORCE O=CONT. O = PULSE O = PB, OFF O = STOP

I =CNT LOAD

O = TA

1 = CNT ' TA (STROBE) 1 = O . S . 1 = TOGGLE 1 =PBy ON 1 = START

TB

All unused reg ister bits a re unaffected by a write and are forced to zero
on a read .

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any

products herein to improve reliability, function or design. COMMODORE SEMICON·

DUCTOR GROUP does not assume any l iabil ity arising out of the a p plication or use of

a ny product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others.

APPENDIX M 43S

APPENDIX N

6566/6567 (VIC- I I) CHI P
SPECIFICATIONS

The 6566/6567 a re multi-purpose color video control ler devices for use
in both computer video terminals and video game appl ications . Both
devices conta in 47 control registers which a re accessed via a standard
8-bit microprocessor bus (65XX) and wil l access up to 1 6K of memory
for d isplay information . The various operating modes and options with in
each mode are described .

CHARACTER DISPLAY MODE

I n the character d isplay mode, the 6566/6567 fetches CHARACTER
POI NTERs from the VI DEO MATR IX a rea of memory and translates the
pointers to character dot location addresses i n the 2048 byte CHAR­
ACTER BASE a rea of memory. The video matrix is comprised of 1 000
consecutive locations in memory which each conta in an e ight-bit char­
acter pointer . The location of the video matrix within memory is defined
by VM 1 3-VM 1 0 in reg ister 24 ($ 1 8) which a re used as the 4 MSB of the
video matrix address. The lower o rder 1 0 bits a re provided by an inter­
na l counter (VC3-VCO) which steps through the 1 000 character loca­
tions . Note that the 6566/6567 p rovides 1 4 address outputs; therefore,
add it iona l system ha rdware may be requ i red for complete system
memory decodes.

CHARACTER POINTER ADDRESS

A 1 3 AOO

VM1 3 veo

436 APPENDIX N

The e ight-bit character pointer permits up to 256 d ifferent character
defin itions to be avai lable s imu ltaneously. Each character is an 8 X 8 dot
matrix stored in the character base as e ight consecutive bytes . The loca­
tion of the character base is defined by CB 1 3-CB 1 1 a lso i n register 24
($ 1 8) which a re used for the 3 most s ign ificant bits (MSB) of the char­
acter base address. The 1 1 lower order addresses are formed by the
8-bit character pointer from the video matrix (07- 00) which selects a
particu lar character, and a 3-bit raster counter (RC2- RCO) which selects
one of the eight character bytes . The resulting characters a re formatted
as 25 rows of 40 characters each . I n addition to the 8-bit character
pointer, a 4-bit COLOR NYBBLE is associated with each video matrix
location (the video matrix memory must be 1 2 bits wide) which defines
one of sixteen colors for each character.

CHARACTER DATA ADDRESS

AOO
Reo

STANDARD CHARACTER MODE (MCM = BMM = ECM = 0)

I n the standard character mode, the 8 sequentia l bytes from the
character base a re displayed d irectly on the 8 l ines in each character
region . A "0" bit causes the background #0 color (from register 33
($2 1 » to be d isplayed whi le the color selected by the color nybble
(foreground) i s d isplayed for a " 1 " bit (see Color Code Table).

FUNCTION

Background

Foreground

CHARACTER
BIT

o

COLOR OISPLA YEO

Background #0 color
(register 33 ($2 1 »
Color selected by 4-bit color nybble

Therefore, each character has a un ique color determined by the 4-bit
color nybble (1 of 1 6) and all characters share the common backg round
color .

APPENDIX N 437

MULTI-COLOR CHARACTER MODE (MCM - 1 , BMM = ECM
= 0

Multi-color mode provides additional color flexibi l ity a l lowing up to
four co lors with in each cha racter but w ith reduced resol utio n . The
mu lti-color mode is selected by setting the MCM bit in register 22 ($ 1 6)
to " 1 ," which causes the dot data stored in the character base to be
interpreted in a different manner . If the MSB of the color nybble is a
"0," the character wil l be displayed as described in standard cha racter
mode, a l lowing the two modes to be inter-mixed (however, only the
lower order 8 colors are avai lable) . When the MSB of the color nybble is
a " 1 " (if MCM:MSB(CM) = 1) the cha racter bits a re interpreted in the
mu lti-color mode:

F UNCTION

Backg round

Backg round

Foreground

Foreground

C HARACTE R
BIT PAI R

00

0 1

1 0

1 1

COLOR DISPLAYED

Background #0 Color
(register 33 ($2 1))
Backg round # 1 Color
(register 34 ($22))
Backg round #2 Color
(reg ister 35 ($23})
Color specified by 3 LSB
of color nybble

Since two bits a re requ i red to specify one dot color, the character is now
displayed as a 4 X 8 matrix with each dot twice the horizontal size as in
standard mode. Note , however, that each character region can now
contain 4 different colors, two as foreground and two as backg round
(see MOB priority).

EXTENDED COLOR MODE (ECM = 1 , BMM = MCM = O)
The extended color mode a l lows the selection of indiv idual back­

g round colors for each character region with the normal 8 X 8 character
resolution . This mode is selected by sett ing the ECM bit of reg ister 1 7
($ 1 1) to " 1 . " The character dot data is displayed as in the standard
mode (foreground color determined by the color nybble is displayed for

438 APPENDIX N

a ''] '' data bit), but the 2 MSB of the character pointer a re used to select
the backg round color for each cha racter region as follows:

CHAR. POI NTER
MS B IT PAIR

00
0 1
1 0
1 1

BACKGROUND COLOR DISPLAYED FOR 0 BIT

Background #0 color (register 33 ($2 1))
Background # 1 color (register 34 ($22»
Background #2 color (register 35 ($23))
Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color informa­
tion , only 64 d ifferent character defin itions are avai lab le . The 6566/6567
wi l l force CB 1 0 and CB9 to "0" regard less of the or ig inal pointer values,
so that only the first 64 character defin it ions wi l l be accessed . With ex­
tended color mode each character has one of sixteen ind ividual ly de­
fined foreground colors and one of the four ava i lab le background
colors .

NOTE: Extended color mode a n d multi-color mode should not be enabled

s imultaneously.

BIT MAP MODE

I n b i t map mode, the 6566/6567 fetches data from memory in a d if­
ferent fashion, so that a one-to-one correspondence exists between
each displayed dot and a memory bit. The bit map mode provides a
screen resolution of 320H X 200V ind ividual ly control led d isplay dots .
Bit map mode is selected by setting the BMM bit in reg ister 1 7 ($ 1 1) to a
" 1 . " The VI DEO MATR IX is sti l l accessed as in character mode, but the
video matrix data is no longer i nterpreted as character pointers, but
rather as color data . The V I DEO MATR IX COUNTER is then also used as
an address to fetch the dot data for d isplay from the aOOO-byte D ISPLAY
BASE . The display base address is formed as fol lows:

AOO
RCO

APPENDIX N 439

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit
raster l ine counter and CB 1 3 is from register 24 ($ 1 8). The video matrix
counter steps through the same 40 locations for e ight raster l ines, con­
tin uing to the next 40 locations every e ighth l ine, whi le the raster counter
increments once for each hor izontal video line (raster l ine) . This address­
ing results in each e ight sequential memory locations being formatted as
an 8 X 8 dot block on the video d isplay.

STANDARD BIT MAP MODE (BMM = 1 , MCM = 0)

When standard bit map mode i s i n use, the color information is de­
rived on ly from the data stored i n the video matrix (the color nybble is
d isregarded). The 8 bits a re d ivided into two 4-bit nybbles which a l low
two colors to be independently selected in each 8 X 8 dot block. When
a bit i n the display memory is a "0" the color of the output dot is set by
the least s ign ificant (lower) nybble (LSN) . S imi larly, a d isplay memory bit
of " 1 " selects the output color determined by the MSN (upper nybble).

BIT

o
DISPLAY COLOR

Lower nybble of video matrix pointer
Upper nybble of video matrix pointer

MULTI-COLOR BIT MAP MODE (BMM = MCM = 1)

Multi-colored bit map mode is selected by sett ing the MCM bit i n
regi ster 22 ($ 1 6) to a ''] '' i n conjunction with the BMM bit. Multi-color
mode uses the same memory access sequences as standard bit map
mode, but i nterprets the dot data as follows:

BIT PAI R

00
0 1
1 0
1 1

DISPLAY COLOR

Background #0 color (reg ister 33 ($2 1))
Upper nybble of video matrix pointer
Lower nybble of video matrix pointer
Video matrix color nybble

Note that the color nybble (DB 1 1 -DB8) IS used for the mu lti-color bit
map mode. Aga in , as two bits a re used to select one dot color, the

440 APPENDIX N

horizontal dot size is doubled , resulting in a screen resolution of 1 60H X
200V. Uti l iz ing mu lti-color bit map mode, three independently selected
colors can be d isplayed in each 8 X 8 block in addition to the back­
ground color.

MOVABLE OBJECT BLOCKS

The movable object block (MOB) is a spec ia l type of character which
can be d isp layed at any one position on the screen without the block
constraints inherent i n character and bit map mode. Up to 8 un iq ue
MOBs can be displayed s imu ltaneously, each defined by 63 bytes i n
memory wh ich are d i splayed as a 24X 2 1 dot a rray (shown below). A
number of special features make MOBs espec ia l ly su ited for video
graphics and game appl ications .

MOB DISPLAY BLOCK

BYTE BYTE BYTE

00 0 1 02
03 04 05

57 58 59
60 6 1 62

ENABLE

Each MOB can be selectively enabled for display by seHing its corre­
sponding enable bit (MnE) to " 1 " in register 2 1 ($ 1 5) . If the MnE bit is
"0," no MOB operations wi l l occur involving the d isabled MOB .

POSITION

Each MOB i s positioned via its X and Y position regi ster (see regi ster
map) with a resolution of 5 1 2 horizontal and 256 vertica l positions . The

APPENDIX N 44 1

position of a MOB is determined by the upper-left corner of the a rray. X
locations 23 to 347 ($ 1 7- $ 1 57) and Y locations 50 to 249 ($32-$F9) a re
vis ib le . Since not a l l avai lable MOB positions a re entirely visible on the
screen , MOBs may be moved smoothly on and off the d isplay screen .

COLOR

Each MOB has a separate 4-bit register to determine the MOB color .
The two MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data a l lows any backg round
data to show through (transparent) and a " 1 " bit is displayed as the
MOB color determined by the corresponding MOB Color register .

MUlJI-COLOR MOB (MnMC = 1)

Each MOB can be individ ual ly selected a s a mu lti-co lor MOB via
MnMC bits in the MOB Multi-color register 28 ($ 1 C). When the MnMC bit
is " 1 ," the corresponding MOB is displayed in the multi-color mode. I n
the mu lti-color mode , the MOB data i s interpreted in pairs (s imi lar to the
other mu lti-co lor modes) as follows:

BIT PAI R COLOR DISPLAYED

00 Transpa rent
0 1 MOB Mu lti-color # 0 (reg ister 37 ($25))
1 0 MOB Color (reg isters 39-46 ($27-$2E))
1 1 MOB Multi-color # 1 (reg ister 38 ($26))

Since two bits of data a re required for each color, the resolution of the
MOB is reduced to 1 2 X 2 1 , with each horizontal dot expanded to twice
standard size so that the overal l MOB size does not change . Note that
up to 3 colors can be displayed in each MOB (in addition to transparent)
but that two of the colors a re shared among all the MOBs in the mu lti­
color mode.

442 APPENDIX N

MAGNIFICATION

Each MOB can be selectively expanded (2 X) in both the horizonta l
a n d ve rt i c a l d i rec t io n s . Two r eg i s te r s co nta i n t he con t r o l b i t s
(MnXE,MnYE) fo r the magnification contro l :

REGISTER FUNCTION

23 ($ 1 7) Horizonta l expand MnXE-" l " = expand; "O" = normal
29 ($ l D) Vertical expand MnYE-" l " = expand; "O" = normal

When MOBs are expanded, no increase in resolution is real ized . The
same 24 X 2 1 a rray (1 2 X 2 1 if mu lti-colored) is displayed , but the overal l
MOB d imension is doubled in the desired d irection (the smal lest MOB
dot may be up to 4X standard dot d imension if a MOB is both mu lti­
colored and expanded) .

PRIORITY

The priority of each MOB may be ind ividua l ly control led with respect
to the other displayed information from cha racter or b it map modes.
The priority of each MOB is set by the corresponding bit (MnDP) of regis­
ter 27 ($ 1 B) as follows:

REG BIT PRIORITY TO CHARACTER OR BIT MAP DATA

o Non-transparent MOB data wil l be displayed (MOB in front)
Non-transparent MOB data will be displayed only instead of
Bkgd #0 or mu lti-color bit pair 01 (MOB behind)

MOB-DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0

MOBn Foreground
Foreground MOBn
Background Background

APPEN DIX N 443

MOB data bits of "0" ("00" in mu lti-color mode) are transparent, a lways
permitting any other i nformation to be displayed .

The MOBs have a fixed priority with respect to each other, with MOB
o having the h ighest priority and MOB 7 the lowest. When MOB data
(except transparent data) of two MOBs are coincident, the data from
the lower n um ber MOB wi l l be d i sp layed . MOB vs. MOB data is
prioritized before priority resolution with character or bit map data .

COLLISION DETECTION

Two types of MOB col l is ion (coincidence) are detected, MOB to MOB
coll is ion and MOB to display data col l ision :

1) A col l ision between two MOBs occurs when non-transparent output
data of two MOBs are coincident. Coincidence of MOB transparent
a reas will not generate a col l is ion . When a col l is ion occurs, the
MOB bits (MnM) in the MOB-MOB COLLIS ION reg ister 30 ($ 1 E) wi l l
be set to " 1 " for both col l id ing MOBs . As a col l is ion between two
(or more) MOBs occurs, the MOB-MOB col l is ion bit for each col­
l ided MOB will be set. The col l is ion bits remain set until a read of
the col l i s ion reg ister, when all bits a re automatica l ly c leared .
MOBs col l isions a re detected even if positioned off-screen.

2) The second type of col l i s ion is a MOB- DATA col l is ion between a
MOB and foreground display data from the character or bit map
modes . The MOB-DATA COLL IS ION reg ister 3 1 ($ 1 F) has a bit
(MnD) for each MOB which is set to " 1 " when both the MOB and
non-background d isplay data are coincident. Again , the coinci­
dence of on ly transparent data does not generate a col l i s ion. For
special appl ications , the display data from the 0- 1 mu lticolor bit
pair also does not cause a col l is ion . This feature permits their use
as background d isp lay data without i nterfering with true MOB col­
l is ions . A MOB- DATA col l is ion can occur off-screen in the horizon­
ta l d i rection if actual d isplay data has been scrol led to an off­
screen position (see scro l l i ng) . The MOB- DATA COLLIS ION register
also automatical ly clears when read .

444 APPENDIX N

The col l is ion i nterrupt latches are set whenever the first bit of either
register is set to " 1 ." Once any col l is ion bit within a reg ister is set h igh ,
subsequent col l is ions wi l l not set the i nterrupt latch until that coll is ion
register has been c leared to a l l "Os" by a read .

MOB MEMORY ACCESS

The data for each MOB is stored in 63 consecutive bytes of memory.
Each block of MOB data is defined by a MOB pointer, located at the
end of the VIDEO MATR IX . Only 1 000 bytes of the video matrix are used
in the norma l d isp lay modes , a l lowing the video matrix locat ions
1 0 1 6- 1 023 (VM base + $3 F8 to VM base +$3FF) to be used for MOB
pointers 0-7, respectively. The eight-bit MOB pointer from the video
matrix together with the s ix bits from the MOB byte counter (to address
63 bytes) define the entire 1 4 - bit address fie ld:

A 1 3 A 1 2 A l l A 1 0 A09 A08 A07 A06 A05 A04 A03 A02 A01 AOO

MP7 MP6 MPS MP4 MP3 MP2 MP 1 MPO MCS MC4 MC3 MC2 MC 1 MCO

Where MPx are the MOB pointer bits from the video matrix and MCx a re
the internal ly generated MOB counter bits . The MOB pointers are read
from the video matrix at the end of every raster l ine. When the Y posi­
tion reg ister of a MOB matches the current raster line count, the actual
fetches of MOB data beg i n . I nternal counters automatica lly step through
the 63 bytes of MOB data, displaying th ree bytes on each raster l ine.

OTHER FEATURES

SCREEN BLANKING

The display screen may be b lanked by setting the DEN bit in register
1 7 ($ 1 1) to a "0." When the screen is blanked, the entire screen will be
fi l led with the exterior color as set in register 32 ($20) . When blanking is
active, on ly transparent (Phase 1) memory accesses a re requ ired , per­
mitting ful l p rocessor uti l ization of the system bus. MOB data , however,
will be accessed if the MOBs are not also disabled. The DEN bit must be
set to " 1 " for normal video display.

APPENDIX N 445

ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 cha racters (or character
regions) per row. For special d isplay purposes, the display window may
be reduced to 24 rows and 38 cha racters . There is no change in the
format of the displayed information , except that characters (bits) adja­
cent to the exterior border a rea wi l l now be covered by the border . The
select bits operate as fol lows :

RSEL

o

N UMBER OF ROWS

24 rows
25 rows

CSEL

o

N UMBER OF COLUMNS

38 columns
40 columns

The RSEL bit is in reg ister 1 7 ($ 1 1) and the CSEL bit is i n register 22 ($ 1 6) .
For standard display the larger display window i s normally used, while
the smal ler d isplay window is normally used in conjunction with scrol l in g .

SCROLLING

The d isp lay data may be scrolled up to one enti re cha racter space in
both the horizontal and vertical d i rection . When used in conjunction with
the smal ler d isplay window (above), scrol l ing can be used to c reate a
smooth pann ing motion of d isplay data whi le updating the system
memory only when a new character row (or co lumn) is required . Scrol l­
ing is also used to center a fixed d isplay within the display window.

BITS

X2,X 1 ,XO
Y2,Y1 ,YO

LIGHT PEN

REGISTER

22 ($ 1 6)
1 7 ($ 1 1)

FUNCTION

Horizontal Position
Vertical Position

The l ight pen input latches the current sc reen position into a pair of
registers (LPX, LPY) on a low-going edge. The X position register 1 9 ($ 1 3)
wi l l contain the 8 MSB of the X position at the time of transition . Since
the X position is defined by a 5 1 2-state counter (9 bits) resolution to 2
horizonta l dots is provided. Simi larly, the Y position is latched to its reg-

446 APPEN DIX N

ister 20 ($ 1 4) but here a bits p rovide s ing le raster resolution within the
vis ib le display. The l ight pen latch may be triggered only once per
frame, and subsequent triggers within the same frame wil l have no
effect. Therefore , you must take several samples before turning the l ight
pen to the screen (3 or more samples, average), depending upon the
characteristics of your l ight pen.

RASTER REGISTER

The raster register is a dua l-function reg ister . A read of the raster
register 1 a ($ 1 2) returns the lower a bits of the current raster position
(the MSB- Rca is located in reg ister 1 7 ($ 1 1)) . The raster register can be
interrogated to implement display changes outside the visible a rea to
prevent display fl icker. The vis ible d isplay window is from raster 5 1
through raster 25 1 ($033-$OFB) . A write to the raster bits (including
RCa) i s latched for use in an internal raster compare. When the current
raster matches the written va lue, the raster interrupt latch is set.

INTERRUPT REGISTER

The interrupt register shows the status of the fou r sources of interrupt.
An interrupt latch in reg ister 25 ($ 1 9) is set to " 1 " when an interrupt
source has generated an interrupt request. The four sources of interrupt
are:

LATCH
BIT

I RST
IMDC
IMMC
I LP
I RQ

ENABLE
BIT

ERST
EMDC
EMMC
ELP

WHEN SET
Set when (raster count) = (stored raster count)
Set by MOB- DATA col l is ion register (first col l ision on ly)
Set by MOB-MOB col l is ion reg ister (first col l is ion on ly)
Set by negative trans ition of LP i nput (once per frame)
Set high by latch set and enabled (invert of I RQ/ output)

To enable an interrupt request to set the I RQ/ output to "0," the corre­
sponding interrupt enable bit in register 26 ($ 1 A) must be set to " 1 ."
Once an interrupt latch has been set, the latch may be cleared only by
writing a " 1 " to the desired latch in the interrupt register. This feature
al lows selective handl ing of video interrupts without software requ i red to
"remember" active inte rrupts .

APPEN DIX N 447

DYNAMIC RAM REFRESH

A dynamic ram refresh control ler is bui lt in to the 6566/6567 devices .
F ive 8-b it row addresses a re refreshed every raster l i ne . Th is rate
g uarantees a maximum delay of 2 . 02 ms between the refresh of any
single row address in a 1 28 refresh scheme. {The maximum delay is
3 . 66 ms in a 256 address refresh scheme . } This refresh is tota lly trans­
parent to the system , since the refresh occurs d ur ing Phase 1 of the
system clock. The 6567 generates both RAS/ and CASt which are nor­
mal ly connected directly to the dynamic rams . RAS/ and CASt are gen­
erated for every Phase 2 and every video data access {includ ing refresh}
so that external c lock generation is not requ i red .

THEORY OF OPERATION

SYSTEM INTERFACE

The 6566/6567 video contro l ler devices interact with the system data
bus i n a specia l way. A 65XX system requ ires the system buses only
during the Phase 2 {clock high} portion of the cyc le . The 6566/6567 de­
vices take advantage of th is featu re by normal ly accessing system
memory during the Phase 1 {clock low} portion of the c lock cyc le . There­
fore, operations such as cha racter data fetches and memory refresh are
tota l ly transparent to the processor and do not reduce the processor
throughput . The video chips provide the interface control signals re­
qu i red to maintain this bus sharing .

The video devices provide the signa l AEC {address enable control}
which is used to disable the processor address bus d rivers a l lowing the
video device to access the address bus . AEC is active low which permits
d i rect connection to the AEC input of the 65XX family. The AEC signal is
normal ly activated du ring Phase 1 so that processor operation is not
affected . Because of this bus "sharing ," a l l memory accesses must be
completed in 1 /2 cyc le . Since the video chips provide a I -MHz clock
(which must be used as system Phase 2), a memory cycle is 500 ns
inc luding address setup, data access and, data setup to the reading
device .

Certa in operations of the 6566/6567 require data at a faster rate than
avai lable by reading only during the Phase 1 t ime; specifical ly, the ac­
cess of character pointers from the video matrix and the fetch of MOB
data . Therefore, the processor must be disabled and the data accessed

448 APPENDIX N

during the Phase 2 clock. This is accomplished via the BA (bus avai lable)
s igna l . The BA l ine is norma lly high but is brought low during Phase 1 to
ind icate that the video chip wi l l requ i re a Phase 2 data access . Three
Phase-2 times a re a l lowed after BA low for the processor to complete
any current memory accesses . On the fourth Phase 2 after BA low, the
AEC s ignal wi l l remain low during Phase 2 as the video chip fetches
data . The BA l ine is norma l ly connected to the RDY input of a 65XX
processor . The cha racter pointer fetches occur every eighth raster l ine
during the display window and requ i re 40 consecutive Phase 2 accesses
to fetch the video matrix pointers . The MOB data fetches requi re 4
memory accesses as fol lows:

PHASE DATA CONDITION

1 MOB Pointer Every raster
2 MOB Byte 1 Each raster while MOB is displayed
1 MOB Byte 2 Each raster while MOB is displayed
2 MOB Byte 3 Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each
raster l ine. As required, the additional cycles a re used for MOB data
fetches. Again, a l l necessa ry bus control is provided by the 6566/6567
devices.

MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in
address output configurations . The 6566 has thirteen ful ly decoded ad­
dresses for direct connection to the system address bus. The 6567 has
mu ltiplexed addresses for direct connection to 64K dynamic RAMs. T�e
least s ignificant add ress bits , A06-AOO, are present on A06-AOO while
RAS/ is brought low, while the most sign ificant bits , A 1 3-A08, are pres­
ent on A05-AOO whi le CAS/ is brought low. The pins A l l -A07 on the
6567 a re static address outputs to a l low di rect connection of these bits
to a conventional 1 6K (2K X 8) ROM. (The lower order addresses require
external latching .)

PROCESSOR INTERFACE

Aside from the special memory accesses described above, the 6566/
6567 registers can be accessed simi lar to any other peripheral device.

APPENDIX N 449

The following processor interface s ignals are provided:

DATA BUS (DB7- DBO)

The eight data bus pins are the bi-directional data port, control led by cst, RW, and Phase 0. The data bus can only be accessed while AEC
and Phase ° are high and cst is low.

CHIP SELECT (CS/)

The chip select pin, cst, is brought low to enable access to the device
registers in conjunction with the address and RW pin s . cst low is recog­
nized only while AEC and Phase ° are hig h .

READ/WRITE (R/W)

The read/write input, R/W, is used to determine the direction of data
transfer on the data bus , in conjunction with cst. When R/W is high (" 1 ")
data is transferred from the selected register to the data bus output.
When R/W is low ("0") data presented on the data bus pins is loaded
into the selected register .

ADDRESS BUS (AOS-AOO)

The lower six address pins, A5-AO, a re bi-d irectiona l . During a pro­
cessor read or write of the video device, these address pins are inputs.
The data on the address inputs selects the register for read or write as
defined in the register map .

CLOCK OUT (PHO)

The clock output, Phase 0, is the I -MHz clock used as the 65XX pro­
cessor Phase ° in. Al l system bus activity is referenced to this c lock. The
clock frequency is generated by dividing the a-MHz video input clock by
eight.

INTERRUPTS (IRQ/)

The interrupt output, I RQ/, is brought low when an enabled source of
interrupt occurs with in the device. The I RQ/ output is open d ra in , requir­
ing an external pu l l-up resistor .

VIDEO INTERFACE

The video output s ignal from the 6566/6567 consists of two signals
which must be external ly mixed together . SYNCILUM output contains al i

450 APPENDIX N

the video data , inc lud ing horizontal and vertical syncs, as well as the
luminance information of the video display. SYNCILUM is open d rain,
requ i ring an external pu l l -up of 500 ohms. The COLOR output contains
a l l the chrominance information, including the color reference burst and
the co lor of a l l d isp lay data . The COLOR output is open source and
shou ld be terminated with 1 000 ohms to g round . After appropriate mix­
ing of these two s ignals , the resu lting signal can d i rectly d rive a video
monitor or be fed to a modulator for use with a standard television .

AEC

0
0
1
1
1
1

D4

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

SUMMARY OF 6566/6567 BUS ACTIVITY

PHO CSI

0 X
1 X
0 X
1 0
1 0
1 1

D3 0 1

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

R/w ACTION

X PHASE 1 FETCH , REFRESH
X PHASE 2 FETCH (PROCESSOR OFF)
X NO ACTION
0 WR ITE TO SELECTED REGISTER
1 READ FROM SELECTED REGISTER
X NO ACTION

COLOR CODES

DO H EX

0 0
1 1
0 2
1 3
0 4
1 5
0 6
1 7
0 8

1 9
0 A
1 B
0 C
1 D
0 E
1 F

DEC

0
1
2
3
4
5
6
7
8

9
1 0
1 1
1 2
1 3
1 4
1 5

COLOR

BLACK
WHITE
RED
CYAN
PURPLE
GREEN
BLUE
YELLOW
ORANGE
BROWN
LT RED
DARK GREY
MED GREY
LT GREEN
LT BLUE
LT GREY

APPENDIX N 45 1

P I N C O N F I G U RATIO N

DB6 Vee

DB5 DB7

DB4 DBa

DB3 DBg

DB2 DBl O

DB, DB"

DBo Al O

I RQI Ag

LP Aa

CSI 6567 A7

R/W A6 (" 1 ")

BA A5(Ad

VDD A4(A, 2)

COLOR A3(A, ,)

S/LUM A2(A lO)

AEC A , (Ag)

PHo Ao(Aa)

RASI A"

CASI P H I N

Vss PHCL

(Mult iplexed addresses in parentheses)

452 APPENDIX N

DB6

DB5

DB4

DB3

DB2

DBl

DBa

IRQI

LP

CSI

R/W

BA

Voo

COLOR

S/LUM

AEC

PHo

P H I N

PHCOL

Vss

P I N C O N F I G U RATION

6566

Vee

DB?

DBa

DBg

DBl O

DBl l

A13

A1 2

Al l

Al O

Ag

Aa

A?

A6

A5

A4

A3

A2

A l

Ao

APPENDIX N 453

..

'"

..

:I­ "V

"V

m
 Z o X z

A
D

D
R

ES
S

00

($
00

)
0

1
($

0
1)

02

($

02
)

03

($
03

)
04

($

04
)

05

($
05

)
06

($

06
)

07

($
07

)
08

($

08
)

09

($
09

)
10

($

OA
)

11

($
OB

)
12

($

OC
)

13

($
OD

)
14

($

OE
)

15

($
OF

)
16

($

10
)

17

($
11

)
18

($

12
)

19

($
13

)
20

($

14
)

2
1

($
15

)
22

($

16
)

23

($
17

)

D
B

7

M
OX

7
M

OY
7

M
1X

7
M

1Y
7

M
2X

7
M

2Y
7

M
3X

7
M

3Y
7

M
4X

7
M

4Y
7

M
5X

7
M

5Y
7

M
6X

7
M

6Y
7

M
7X

7
M

7Y
7

M
7X

8
RC

8
RC

7
LP

X
8

LP
Y

7
M

7E

M
7Y

E

D
B

6

D
B

S

D
B

4

M
OX

6
M

OX
5

M
OX

4
M

OY
6

M
OY

5
M

OY
4

M
1X

6
M

1X
5

M
1X

4
M

1Y
6

M
1Y

5
M

1Y
4

M
2X

6
M

2X
5

M
2X

4
M

2Y
6

M
2Y

5
M

2Y
4

M
3X

6
M

3X
5

M
3X

4
M

3Y
6

M
3Y

5
M

3Y
4

M
4X

6
M

4X
5

M
4X

4
M

4Y
6

M
4Y

5
M

4Y
4

M
5X

6
M

5X
5

M
5X

4
M

5Y
6

M
5Y

5
M

5Y
4

M
6X

6
M

6X
5

M
6X

4
M

6Y
6

M
6Y

5
M

6Y
4

M
7X

6
M

7X
5

M
7X

4
M

7Y
6

M
7Y

5
M

7Y
4

M
6X

8
M

5X
8

M
4X

8
EC

M

BM
M

D

EN

RC
6

RC
5

RC
4

LP
X

7
LP

X
6

LP
X

5
LP

Y
6

LP
Y

5
LP

Y
4

M
6E

M

5E

M
4E

RE

S
M

C
M

M

6Y
E

M
5Y

E
M

4Y
E

R
EG

IS
T

ER
 MA

P

D
B

3
D

B
2

D

B
I

D
B

O

D
ES

C
R

IP
T

IO
N

M
OX

3
M

OX
2

M
OX

I
M

OX
O

M
O

B
0

X
-p

os
it

io
n

M
OY

3
M

OY
2

M
OY

I
M

OY
O

M
O

B
0

V
-p

os
it

io
n

M
1X

3
M

1X
2

M
1X

l
M

IX
O

M
O

B
1

X
-p

os
it

io
n

M
1Y

3
M

1Y
2

M
1Y

l
M

IY
O

M
O

B
1

V
-p

os
iti

on

M
2X

3
M

2X
2

M
2X

I
M

2X
O

M
O

B
2

X
-p

os
iti

on

M
2Y

3
M

2Y
2

M
2Y

l
M

2Y
O

M
O

B
2

V-
po

si
tio

n
M

3X
3

M
3X

2
M

3X
l

M
3X

O
M

O
B

3
X

-p
os

iti
on

M

3Y
3

M
3Y

2
M

3Y
l

M
3Y

O
M

O
B

3
V

-p
os

iti
on

M

4X
3

M
4X

2
M

4X
l

M
4X

O
M

O
B

4
X

-p
os

iti
on

M

4Y
3

M
4Y

2
M

4Y
l

M
4Y

O
M

O
B

4
V

-p
os

it
io

n
M

5X
3

M
5X

2
M

5X
l

M
5X

O
M

O
B

5
X

-p
os

iti
on

M

5Y
3

M
5Y

2
M

5Y
l

M
5Y

O
M

O
B

5
V

-p
os

iti
on

M

6X
3

M
6X

2
M

6X
l

M
6X

O
M

O
B

6
X

-p
os

iti
on

M

6Y
3

M
6Y

2
M

6Y
l

M
6Y

O
M

O
B

6
V

-p
os

iti
on

M

7X
3

M
7X

2
M

7X
l

M
7X

O
M

O
B

7
X

-p
os

iti
on

M

7Y
3

M
7Y

2
M

7Y
l

M
6Y

O
M

O
B

7
V

-p
os

it
io

n
M

3X
8

M
2X

8
M

1X
8

M
OX

8
M

SB
 o

f
X

-p
os

iti
on

RS

EL

Y2

Y
l

Y
O

Se
e

te
xt

RC

3
RC

2
R

C
I

RC
O

Ra
st

e
r

re
gi

st
er

LP

X
4

LP
X

3
LP

X
2

LP
X

l
Li

g
ht

 P
en

 X

LP
Y

3
LP

Y
2

LP
Y

I
LP

Y
O

Li
g

ht
 P

en
 Y

M

3E

M
2E

M

IE

M
OE

M

O
B

En
a

b
le

C

SE
L

X
2

X
l

X
O

Se
e

te
xt

M

3Y
E

M
2Y

E
M

IY
E

M
OY

E
M

O
B

V
-e

xp
a

nd

24

($
18

)
V

M
13

V

M
12

V

M
ll

V

M
10

C

B
13

C

B
12

C

B
ll

M

em
or

y
Po

in
te

rs

25

($
19

)
IR

Q

IL
P

IM
M

C

IM
BC

IR

ST

In
te

rr
up

t
Re

g
is

te
r

26

($
lA

)
EL

P
EM

M
C

EM

BC

ER
ST

En

a
b

le
 I

nt
er

ru
pt

27

($

lB
)

M
7D

P
M

6D
P

M
5D

P
M

4
D

P
M

3D
P

M
2D

P
M

lD
P

M
OD

P
M

O
B-

DA
TA

 P
rio

rit
y

28

($
lC

)
M

7M
C

M

6M
C

M

5M
C

M

4M
C

M

3M
C

M

2M
C

M

1M
C

M

OM
C

M

O
B

M
ul

ti
co

lo
r

Se
l

29

($
lD

)
M

7X
E

M
6X

E
M

5X
E

M
4X

E
M

3X
E

M
2X

E
M

1X
E

M
OX

E
M

O
B

X
-e

xp
a

nd

30

($
lE

)
M

7M

M
6M

M

5M

M
4M

M

3M

M
2M

M

1M

M
OM

M

O
B-

M
O

B
C

ol
lis

io
n

3
1

($
1 F

)
M

7D

M
6D

M

5D

M
4D

M

3D

M
2D

M

lD

M
OD

M

O
B-

D
AT

A
 C

ol
lis

io
n

32

($
20

)
EC

3
EC

2
EC

l
EC

O
Ex

te
ri

or
 C

ol
or

33

($

2
1)

BO

C
3

BO
C

2
BO

C
l

BO
C

O
Bk

gd
 #

0
C

ol
or

34

($

22
)

B
1C

3
B

1C
2

B
1C

l
B

1C
O

Bk
gd

 #
1

C
ol

or

35

($
23

)
B2

C
3

B2
C

2
B2

C
l

B2
C

O
Bk

gd
 #

2
C

ol
or

36

($

24
)

B3
C

3
B3

C
2

B3
C

l
B3

C
O

Bk
gd

 #
3

C
ol

or

37

($
25

)
M

M
03

M

M
02

M

M
O

l
M

M
OO

M

O
B

M
ul

ti
co

lo
r

#
0

38

($
26

)
M

M
13

M

M
12

M

M
ll

M

M
10

M

O
B

M
ul

ti
co

lo
r

#
 1

39

($
27

)
M

OC
3

M
OC

2
M

OC
l

M
OC

O
M

O
B

0
C

ol
or

40

($

28
)

M
1C

3
M

1C
2

M
1C

l
M

1C
O

M
O

B
1

C
ol

or

4
1

($
29

)
M

2C
3

M
2C

2
M

2C
l

M
2C

O
M

O
B

2
C

ol
or

42

($

2A
)

M
3C

3
M

3C
2

M
3C

l
M

3C
O

M
O

B
3

C
ol

or

»
[

12
81

M

4C
3

M
4C

2
M

4C
l

M
4C

O
M

O
B

4
C

ol
or

..,

..,

44

($

2C
)

M
5C

3
M

5C
2

M
5C

l
M

5C
O

M
O

B
5

C
ol

or

m
 z 0

45

($
2D

)
M

6C
3

M
6C

2
M

6C
l

M
6C

O
M

O
B

6
C

ol
or

x z

46

($
2E

)
M

7C
3

M
7C

2
M

7C
l

M
7C

O
M

O
B

7
C

ol
or

,.

I NO
T

E
:

A
 d

a
sh

 i
nd

ic
a

te
s

a
no

 c
o

nn
e

ct
.

A
ll

 n
o

 c
o

nn
e

ct
s

ar
e

re
ad

as

 a
 "

1."

II
I

II
I

SPEC

Clock out hi
Clock out 10
Clock to RAS 10

Clock to RAS hi

Ras 10 to CAS 10

Clock to CAS hi

Clock to AEC hi/lo

Data out from CAS
Data re i from PhO
Add-in to RAS setup
Add-in to RAS hold
Add-out/RAS setup
Add-out/RAS hold
Add-out from PhO
Add-out/CASt h id
BA from PhO
Data in setup/PhO
Data in hold/PhO
Color data setup
Color data hold

Ph in + pulse
Ph in - pulse

Vii
Vih
Vol
Voh

456 APPENDIX N

6567 TIMING LIMITS

SPEC SPEC
MIN TYP MAX

465 484 500
475 494 5 1 0
1 50 1 7 1 1 90

20 35 50

25 46 65

1 5 25 35

1 5 33 50

1 84 220
80 1 1 3 1 35
25 1 4
0 - 1 5

35 48
30 36 45
85 97
20 37 50

1 00 230 300
60 42
45 24
45 30

0 - 1 7

50 43
65 58

1 . 23 0 .80
2 . 20 1 . 9 1

0 . 52 0 .55
2 . 40 3 .03

APPENDIX 0

658 1 SOUND INTERFACE DEVICE (SI D)
CHIP SPECIFICATIONS

CONCEPT

The 658 1 Sound I nterface Device (S I D) is a sing le-chip, 3-voice elec­
tronic music synthesizer/sound effects generator compatible with the
65XX and s imi lar mic roprocessor fami l ies . S I D provides wide-range,
high-resolution control of pitch (frequency), tone co lor (harmonic con­
tent), and dynamics (vo lume) . Specia l ized control c i rcuitry minim izes
software overhead, faci l itating use in arcade/home video games and
low-cost musical instruments.

FEATURES

• 3 TONE OSCI LLATORS
Range: 0-4 kHz

• 4 WAVEFORMS PER OSCI LLATOR
Triangle, Sawtooth,
Va riable Pulse, Noise

• 3 AMPLITUDE MODULATORS
Range: 48 dB

• 3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2 ms-8 s
Decay Rate: 6 ms-24 s
Susta in Leve l : O-peak volume
Release Rate: 6 ms-24 s

• OSC I LLATOR SYNCHRON I ZAT ION
• RING MODULATION

APPE N DIX 0 457

• PROGRAMMABLE F ILTER
Cutoff range: 30 Hz- 12 kHz
1 2 d B/octave Rol /off
Low pass, Bandpass,
High pass, Notch outputs
Va riable Resonance

• MASTER VOLUME CONTROL
• 2 AID POT I NTERFACES
• RANDOM NUMBER/MODULAT ION GENERATOR
• EXTERNAL AUDIO I N PUT

CAP' A

CAP'8

CAP2A

CAP28

RES

<1>2

R/Vii

CS

Ao

A,

A2

A3

A4

G N D

458 APPENDI X 0

P I N CO N FI G U RATION

6581
S I D

VDD

AUDIO OUT

EXT I N

Vee

POT X

POT Y

D7

D6

D5

D4

D3

D2

D,

Do

:I>­ "

"

m
 Z 1:1 X o ""

'"

oQ

RE
S °
2

RIW

CS

A
O

A
,

A
2

A
3

A
4 D o

0

,

O
2

0
3

0
4

0
5

0
6

0
7

..
.J o a: >­ z o <..l (J) (J) UJ <..l <..l ..: 0.. I <..l (J) a: UJ u. u. => III ..: >­ ..: Cl

65
81

 B
LO

CK
 D

IA
G

RA
M

-­ ..
.....,......,

n.
.n..

NO
ISE

�

R

P
O

T
 Y

AM
PL

ITU
DE

 I
�

MO

DU
LA

TO
R

�
 �

�
 F

IL
T

 2

�
 F

IL
T

E
X

PO
T X

FIL
TE

R L
P

B

P

H
P

C
A

P
28

C
A

P
2A

C
A

P
'8

C
A

P
' A

A
U

D
IO

 O
U

T

EX
TI

N

DESCRIPTION

The 658 1 consists of th ree synthesizer "voices" which can be used
independently or in con junction with each other (or external a ud io
sou rces) to c reate complex sounds . Each voice cons ists of a Tone
Osc i l l a to r/Waveform Gene rato r , a n Enve lope Generator a n d a n
Amplitude Modulator . The Tone Osci l lator controls the pitch of the voice
over a wide range. The Osci l lator p roduces fou r waveforms at the
selected frequency, with the unique harmonic content of each waveform
providing s imple control of tone color . The volume dynamics of the oscil­
lator a re control led by the Ampl itude Modulator under the d i rection of
the Enve lope Gene rato r . When tr igge red , the Envelope Gene rator
c reates an ampl itude envelope with programmable rates of increasing
and decreas ing volume . I n addition to the three voices, a programm­
able Filter is provided for generating complex, dynamic tone colors via
subtractive synthesis.

S I D a l lows the microprocessor to read the changing output of the third
Osc i l lator and third Envelope Generator . These outputs can be used as a
source of modulation information for c reating vibrato, frequencylftlter
sweeps and simi lar effects. The third osci l lator can also act as a random
number generator for games . Two AID converters are provided for inter­
facing S ID with potentiometers. These can be used for "padd les" in a
game environment or as front panel controls in a music synthesizer . SI D
can process external audio s ignals , a l lowing mu ltiple S I D chips to be
da isy-chained or mixed in complex polyphonic systems .

SID CONTROL REGISTERS

There a re 29 eig ht-bit registers in S ID which control the generation of
sound . These registers are either WRITE-only or READ-on ly and are l isted
below in Table 1 .

460 APPENDIX 0

A
D

D
R

E
S

S

R
E

G
 It

D
A

T
A

R

E
G

 N
A

M
E

R

E
G

A

,
A

3
A

,
A

,
A

O
(H

EX
)

0
,

0
,

O s

0
,

0
3

0
,

0
,

D
O

V
o

ic
e

 1

T
Y

P
E

0
0

0
0

0
00

F

,
F,

F

s
F

,
F3

F

,
F

,
Fo

FR

EO
 L

O

W
R

IT
E

-O
N

L
Y

01

F
1 5

F
"

F

"

F
"

F

"

F l
O

Fg

F.

FR
EO

 H
I

W
R

IT
E

-O
N

L
Y

02

P
W

,
PW

6
PW

s
PW

,
PW

3
PW

,
PW

,
PW

O
P

W
 L

O

W
R

IT
E

-O
N

L
Y

03

-
-

-
-

P
W

"
PW

lO

P
W

g
PW

.
PW

 H
I

W
R

IT
E

-O
N

L
Y

04

N
O

IS
E

ruL

..

....-t.-4
/V'.

.
T

E
S

T

MO�

S
Y

N
C

G

A
T

E

C
O

N
T

R
O

L
 R

E
G

W

R
IT

E
-O

N
L

Y

05

A
T

K
3

A
TK

2
A

T
K

,
A

T
K

a
D

e
Y

3
D

C
Y

2
D

e
Y

,
D

C
Y

o
A

 T
T

 A
C

K
/D

E
C

A
 Y

W

R
IT

E
-O

N
L

Y

06

S
T

N
3

S
TN

2
S

TN
,

S
TN

o
R

LS
3

R
LS

2
A

LS
,

R
LS

o
S

U
S

T
A

IN
/R

E
L

E
A

S
E

W

R
IT

E
-O

N
L

Y

V
o

ic
e

 2
07

08

F

,
F 6

F

s
F

,
F

3
F,

F

,
F o

F

15

F"

F"

F
"

F

"

F
lO

F

g
F

.

F
R

E
O

 L
O

W

R
IT

E
-O

N
L

Y

0'
FR

EO
 H

I
W

R
IT

E
-O

N
L

Y

IT

09

P
W

,
PW

6
P

W
,

PW
,

PW
3

P
W

,
P

W
,

P
W

o
PW

 L
O

W

R
IT

E
-O

N
L

Y

iD

10
OA

-

-
-

-
P

W
, 1

P

W
,o

P

W
g

PW
.

PW
 H

I
W

R
IT

E
-O

N
L

Y

11

D
B

N
O

IS
E

ruL

..

....-t.-4
/V'.

.
T

E
S

T

��g

S
Y

N
C

G

A
T

E

C
O

N
T

R
O

L
 R

E
G

W

R
IT

E
-O

N
L

Y

1 2
DC

13

00

A
TK

3
A

T
K

2
A

T
K

,
A

T
K

a
D

C
Y

3
D

C
Y

,
D

e
Y

,
D

C
Y

o

S
T

N
3

S
TN

,
S

T
N

,
S

T
N

o
R

LS
3

R
LS

2
A

LS
,

A
LS

o

A
TT

A
C

K
/D

E
C

A
Y

W

R
IT

E
-O

N
L

Y

II
I

S
U

S
T

A
IN

/R
E

L
E

A
S

E

W
R

IT
E

-O
N

L
Y

6

V
o

ic
e

 3
'"

14

DE

F
,

F 6

F
,

F,

F
3

F
,

F
,

Fo

FR
EO

 L
O

W

R
IT

E
-O

N
L

Y

" CCI

15

O
F

16

10

F
15

F

"

F
'3

F

"

F
"

F

lO
Fg

F.

P
W

,
PW

6
PW

,
PW

,
PW

3
PW

,
PW

,
PW

o

F
R

E
O

 H
I

W
R

IT
E-

O
N

L
Y

!.

PW

LO

W
R

IT
E

-O
N

L
Y

"

17

11

-
-

-
-

P
W

, 1

�W
lO

PW

g
PW

.
PW

 H
I

W
R

IT
E

-O
N

L
Y

..

'8

12
1 9

13

20

14

N
O

IS
E

ruL

..

....-t.-4
/V'.

.
T

E
S

T

��g

S
Y

N
C

G

A
T

E

A
T

K
3

A
T

K
2

A
T

K
,

A
TK

a
D

e
Y

3
D

C
Y

,
D

e
y

,
D

C
Y

o

S
T

N
3

S
T

N
2

S
T

N
,

S
T

N
o

R
LS

3
R

LS
2

R
LS

,
R

LS
o

C
O

N
TR

O
L

R
E

G

W
R

IT
E

-O
N

L
Y

f

A
 T

T
 A

C
K

ID
E

C
A

Y

W
R

IT
E

-O
N

L
Y

S
U

S
T

A
IN

/R
E

L
E

A
S

E

W
R

IT
E

-O
N

L
Y

"CI

F
il

te
r

21

15

-
-

-
-

-
FC

,
FC

,
FC

o
F

C
 L

O

W
R

IT
E

-O
N

L
Y

»

22

16

... ...
23

17

m

F

e
1 Q

FC

g
FC

.
FC

,
F

C
6

FC
,

FC
,

FC
3

R
E

S
3

R
E

S
,

R
E

S
,

R
E

S
o

F
IL

T
E

X

F
IL

T
 3

F
IL

T
 2

Fi

ll

1

F
C

 H
I

W
R

IT
E

-O
N

L
Y

R
E

S
/F

il
l

W

R
IT

E
-O

N
L

Y

Z
24

18

3
O

F
F

H

P

BP

LP

V
O

L3

V
O

L2

V
O

L
,

V
O

L
o

M
O

D
E

IV
O

L

W
R

IT
E

-O
N

L
Y

0 X

25

19

0

26

1A

P
X

,
P

X
6

P
X

,
P

X
,

P
X

3
P

X
,

P
X

,
P

X
o

P
Y

,
P

Y
6

P
Y

,
P

Y
,

P
Y

3
P

Y
,

P
Y

,
P

Y
o

M
is

c
.

P
O

T
X

R
E

A
D

-O
N

L
Y

P
O

T
Y

R

E
A

D
-O

N
L

Y

27

1B

0
,

0
6

O
s

0
,

03

0
,

0
,

0 0

O
S

C
3I

R
A

N
D

O
M

R

E
A

D
-O

N
L

Y

�

28

1C

C)o

E
,

E 6

E
,

E
,

E
3

E
,

E
,

Eo

E
N

V
3

R
E

A
D

-O
N

L
Y

-

SID REGISTER DESCRIPTION

VOICE 1

FREQ LO/FREQ HI (Registers 00,01)

Together these registers form a 1 6-bit number which l inearly controls
the frequency of Osci l lator 1 . The frequency is determined by the fol low­
ing equation :

Foul = (Fn X Fc 1k/ 1 67772 1 6) Hz

Where Fn is the 1 6-bit number in the Frequency registers and Fc l k is the
system clock appl ied to the 1>2 input (pin 6) . For a standard 1 .0-MHz
clock, the frequency i s g iven by:

Foul = (Fn X 0. 059604645) Hz

A complete table of values for generating 8 octaves of the equal ly
tempered musical scale with concert A (440 Hz) tuning is provided in
Appendix E . It should be noted that the frequency resol ution of SID is
sufficient for any tun ing scale and a l lows sweeping from note to note
(portamento) with no discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a 1 2-bit number (bits 4-7 of PW HI a re
not used) which l inearly controls the Pulse Width (duty cycle) of the Pulse
waveform on Osci l lator 1 . The pulse width is determined by the fol low­
ing equation :

PWoul = (PWn /40. 95) %

Where PWn is the 1 2-bit number in the Pulse Width registers .
The pulse width resolution a l lows the width to be smooth ly swept with

no discernable steppi ng . Note that the Pulse waveform on Osci l lator 1
must be selected in order for the Pulse Width registers to have any au­
dible effect. A value of 0 or 4095 ($FF) in the Pulse Width registers wi l l
produce a constant DC output, whi le a value of 2048 ($800) wil l produce
a square wave .

462 APPENDIX 0

CONTROL REGISTER (Register 04)

This register conta ins eight control bits which select various options on
Osci l lator 1 .

GATE (Bit 0); The GATE bit controls the Envelope Generator for Voice
1 . When this bit i s set to a one, the Envelope Generator is Gated
(triggered) and the ATTACK/DECAY/SUSTA IN cycle is in itiated . When the
bit is reset to a zero, the RELEASE cycle beg ins . The Envelope Generator
controls the amplitude of Osci l lator 1 appearing at the audio output,
therefore, the GATE bit must be set (along with suitable envelope pa­
rameters) for the selected output of Oscil lator 1 to be audib le . A de­
ta i led d iscussion of the Envelope Generator can be found at the end of
this Appendix.

SYNC (Bit 1) ; The SYNC bit, when set to a one, synchron izes the
fundamenta l frequency of Oscil lator 1 with the fundamental frequency
of Osci l lator 3 , producing "Hard Sync" effects .

Varying the frequency of Oscil lator 1 with respect to Osci l lator 3 pro­
duces a wide range of complex harmonic structures from Voice 1 at the
frequency of Oscil lator 3. In order for sync to occur, Oscil lator 3 must be
set to some frequency other than zero but preferably lower than the
frequency of Oscil lator 1 . No other parameters of Voice 3 have any
effect on sync .

RING MOD (Bit 2): The R ING MOD bit, when set to a one , replaces
the Triangle waveform output of Osci l lator 1 with a "R ing Modu lated"
combination of Oscil lators 1 and 3. Varying the frequency of Oscil lator 1
with respect to Osci l lator 3 produces a wide range of non-harmonic
overtone structures for creating bel l or gong sounds and for special ef­
fects . I n order for ring modulation to be audible, the Triangle waveform
of Osci l lator 1 must be se lected and Oscil lator 3 must be set to some
frequency other than zero . No other parameters of Voice 3 have any
effect on ring modu lation .

TEST (Bit 3) : The TEST bit, when set to a one , resets and locks Oscil­
lator 1 at zero until the TEST bit i s clea red . The Noise waveform output
of Oscil lator 1 is also reset and the Pulse waveform output is held at a
DC leve l . Normal ly this bit is used for testing purposes, however, it can
be used to synchron ize Oscil lator 1 to external events , a l lowing the
generation of high ly complex waveforms under real-time software con­
tro l .

APPE NDIX 0 463

(Bit 4): When set to a one, the Triangle waveform output of Osci l lator
is selected . The Triangle waveform is low in harmonics and has a

mellow, flute-like qua lity.
(Bit 5): When set to a one, the Sawtooth waveform output of Oscil­

lator 1 is selected . The Sawtooth waveform is rich in even and odd
harmonics and has a brig ht, brassy qua l ity.

(Bit 6): When set to a one, the Pulse waveform output of Osci l lator 1
is selected . The harmonic content of this waveform can be adjusted by
the Pulse Width reg isters, producing tone qua l ities rang ing from a
bright, hol low square wave to a nasa l , reedy pulse. Sweeping the pu lse
width in real-time produces a dynamic "phasing" effect which adds a
sense of motion to the sound. Rapidly jumping between different pulse
widths can produce interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of
Osci l lator 1 is selected . This output is a random signal which changes at
the frequency of Osci l lator 1 . The sound qua lity can be varied from a
low rumbling to hissing white noise via the Oscil lator 1 Frequency regis­
ters . Noise is useful in creating explosions , gunshots, jet engines, wind ,
surf and other unpitched sounds, as we l l as snare d rums and cymbals .
Sweeping the oscil lator frequency with Noise selected produces a dra­
matic rushing effect.

One of the output waveforms must be selected for Oscil lator 1 to be
audible, however, it is NOT necessa ry to de-select waveforms to si lence
the output of Voice 1 . The amplitude of Voice 1 at the final output is a
function of the Envelope Generator only.

NOTE: The oscillator output waveforms a re NOT additive. If more than one output
waveform is selected s imultaneously, the result will be a logical A N Ding of the

waveforms. Although this techn ique can be used to generate additional waveforms
beyond the four l isted above, it must be used with care. If any other waveform is

selected while Noise is on, the Noise output can "lock up." If this occurs, the Noise
output wil l remain silent until reset by the TEST bit or by bringing RES (pin 5) low.

464 APPENDIX 0

ATTACK/DECAY (Register OS)

Bits 4-7 of this register (ATKO-ATK3) select 1 of 1 6 ATTACK rates for
the Voice 1 Envelope Generato r . The ATTACK rate determines how
rapidly the output of Voice 1 rises from zero to peak ampl itude when the
Envelope Generator is Gated . The 1 6 ATTACK rates are listed in Table 2 .

Bits 0-3 (DCYO- DCY3) select 1 of 16 DECAY rates for the Envelope
Generator . The DECAY cyc le fol lows the ATTACK cyc le and the DECAY
rate determines how rapid ly the output fa l l s from the peak amplitude to
the selected SUSTA IN leve l . The 1 6 DECAY rates a re l isted in Table 2 .

SUSTAIN/RELEASE (Register 06)

Bits 4-7 of this register (STNO-STN3) select 1 of 1 6 SUSTAIN leve ls for
the Envelope Generator . The SUSTA IN cycle fol lows the DECAY cyc le and
the output of Voice 1 wi l l remain at the selected SUSTAIN amplitude as
long as the Gate bit remains set . The SUSTAIN levels range from zero to
peak ampl itude in 1 6 l inear steps , with a SUSTA IN va lue of 0 selecting
zero amplitude and a SUSTA IN value of 1 5 ($F) selecting the peak
amplitude . A SUSTA IN va lue of 8 would cause Voice 1 to SUSTAIN at an
ampl itude one-half the peak ampl itude reached by the ATTACK cyc le .

Bits 0- 3 (RLSO- RLS3) select 1 of 16 RELEASE rates for the Envelope
Generator . The RELEASE cyc le fo l lows the SUSTA IN cycle when the Gate
bit is reset to zero . At this time, the output of Voice 1 will fa l l from the
SUSTA IN amplitude to zero amplitude at the selected RELEASE rate . The
1 6 RELEASE rates are identica l to the DECAY rates .

NOTE: The cycling o f the Envelope Generator c a n b e oltered a t a n y point via the Gate
bit. The Envelope Generator can be Gated and Released without restriction. For

example, if the Gate bit is reset before the envelope has finished the ATTACK cycle,
the RELEASE cycle will immediately begin , starting from whatever a mplitude hod

been reached. If the envelope is then Gated again (befare the RELEASE cycle has
reached zero amplitude), another ATTACK cycle wi l l begin , starting from whatever

amplitude had been reached. This techn ique can be used to generate complex
ampl itude envelopes via real-time software control.

APPENDIX 0 465

Table 2. Envelope Rates

VALUE ATTACK RATE DECAY/RE LEASE RATE

DEC (HEX) (T i me/Cycle) (Time/Cycle)

0 (0) 2 ms 6 ms
1 (1) 8 ms 24 ms
2 (2) 1 6 ms 48 ms
3 (3) I 24 ms 72 ms
4 (4) I 38 ms 1 1 4 ms
5 (5) 56 ms 1 68 ms
6 (6) 68 ms 204 ms
7 (7) 80 ms 240 ms
8 (8) 1 00 ms 300 ms
9 (9) 250 ms 750 ms

1 0 (A) 500 ms 1 . 5 s
1 1 (B) 800 ms 2 . 4 s
1 2 (C) 1 s 3 s
1 3 (D) 3 s

I

9 s
1 4 (E) 5 s 1 5 s
1 5 (F) 8 s 24 s

NOTE: Envelope rates a re based on a 1 .O-MHz </>2 clock. For other </>2 frequencies,
multiply the given rate by 1 MHzJ</>2 . The rotes refer to the amount of time per cycle.
For example, given on ATTACK value of 2, the ATTACK cycle would toke 16 ms to rise
from zero to peak amplitude. The DECAY/RELEASE rotes refer to the amount of time
these cycles would toke to fall from peak a mpl itude to zero.

VOICE 2

Reg isters 07-$00 control Voice 2 and a re functional ly identical to reg­
isters 00-06 with these exceptions :

1) When selected , SYNC synchronizes Oscil lator 2 with Oscil lator 1 .
2) When selected, R ING MOD replaces the Triang le output of Oscil­

lator 2 with the ring modulated combination of Oscillators 2 and 1 .

466 APPENDIX 0

VOICE 3

Registers $OE-$ 1 4 control Voice 3 and are functiona l ly identical to
registers 00-06 with these exceptions :

1) When selected, SYNC synchron izes Osci l lator 3 with Osci l lator 2 .
2) When selected , R ING MOD replaces the Triang le output of Oscil­

lator 3 with the r ing modulated combination of Osci l lators 3 and 2 .

Typical operation o f a voice consists o f selecting the desi red parame­
ters: frequency, waveform, effects (SYNC, R ING MOD) and envelope
rates, then gating the voice whenever the sound is desired . The sound
can be susta ined for any length of t ime and terminated by clearing the
Gate bit. Each voice can be u sed separately, with i ndependent parame­
ters and gating , or in un ison to c reate a s ingle, powerful voice. When
u sed in un ison, a s l ight detun ing of each osci l lator or tun ing to musical
i nterva ls creates a rich , an imated sound .

FILTER

FC LO/FC HI (Registers $ 1 5,$ 1 6)

Together these registers form an I I -bit number (bits 3-7 of FC LO are
not used) which l inearly controls the Cutoff (or Center) Frequency of the
programmable Fi lter . The approximate Cutoff Frequency ranges from 30
Hz to 1 2 KHz .

RES/Fill (Register $ 1 7)

Bits 4 - 7 of this register (RESO- RES3) control the resonance of the
filter . Resonance is a peaking effect which emphas izes frequency com­
ponents at the Cutoff Frequency of the Fi lter, causing a sharper sound .
There are 16 resonance settings ranging l inearly from no resonance (0)
to maximum resonance (1 5 or $ F) . Bits 0-3 determine which s ignals wi l l
be routed through the Fi lter :

Fill 1 (Bit 0): When set to a zero, Voice I appears directly at the
audio output and the Fi lter has no effect on it . When set to a one, Voice
I wi l l be processed through the Filter and the harmonic content of Voice

will be a ltered accord ing to the selected Fi lter parameters .
Fill 2 (Bit 1): Same as bit 0 for Voice 2.
Fill 3 (Bit 2) : Same as bit 0 for Voice 3.
FILlEX (Bit 3): Same as bit 0 for External audio input (pin 26) .

APPENDIX 0 467

MODE/VOL (Register $ 1 8)

Bits 4 - 7 of this register select various Filter mode and output options :
LP (B i t 4): When set to a one , the Low-Pass output of the Filter i s

selected and sent to the audio output. For a g iven Filter input signa l , a l l
frequency components below the Filter Cutoff Frequency are passed
una ltered , whi le al l frequency components above the Cutoff a re at­
tenuated at a rate of 1 2 d B/Octave . The Low-Pass mode produces ful l­
bodied sounds .

BP (Bit 5) : Same as bit 4 for the Bandpass output. A l l frequency
components above and below the Cutoff a re attenuated at a rate of 6
d B/Octave. The Bandpass mode produces th in , open sounds .

HP (Bit 6) : Same as bit 4 for the Hig h-Pass output. Al l frequency
components above the Cutoff a re passed una ltered , whi le a l l frequency
components below the Cutoff a re attenuated at a rate of 1 2 d B/Octave .
The High-Pass mode produces tinny, buzzy sounds .

3 OFF (Bit 7): When set to a one , the output of Voice 3 i s d isconnected
from the direct audio path . Setting Voice 3 to bypass the Filter (F I LT 3 =

0) and setting 3 OFF to a one prevents Vo ice 3 from reaching the aud io
output. This a l lows Voice 3 to be used for modulation purposes without
any undesirable output.

NOTE: The Filter o utput modes ARE additive a n d multiple Filter modes may be

selected simultaneously. For exa mple, both lP and H P modes can be selected to

produce a Notch (or Band Reject) Filter response. In order for the Filter to have any
audible effect, at least one Filter output must be selected and at least one Voice must

be routed throug h the Filter. The Filter is, perhaps, the most important element in S I D
as i t a l lows the generation of complex tone colors via subtractive synthesis (the Filter

is used to el iminate specific frequency components from a harmonical ly rich input

signal) . The best results are ach ieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOLO-VOL3) select 1 of 1 6 overal l Volume levels for the
fina l composite audio output. The output volume leve ls range from no
output (0) to maximum volume (1 5 or $F) in 1 6 l inear steps. This control
can be used as a static volume control for balancing levels in mu lti-ch ip
systems o r for creating dynamic volume effects, such as Tremolo . Some
Volume level other than zero must be selected in order for S ID to pro­
duce any sound .

468 APPEN DIX 0

MISCELLANEOUS

POTX (Register $ 1 9)

This register a l lows the microprocessor to read the position of the
potentiometer tied to POTX (pin 24), with va lues ranging from 0 at
min imum resistance, to 255 ($FF) at maximum resistance. The va lue is
a lways valid and is updated every 5 1 2 c/>2 clock cycles. See the Pin
Description section for information on pot and capacitor va lues.

POTY (Register $1 A)

Same as POT X for the pot tied to POTY (pin 23) .

OSC 3/RANDOM (Register $ 1 B)

This register a l lows the microprocessor to read the upper 8 output bits
of Osci l lator 3. The character of the numbers generated is d i rectly re­
lated to the waveform selected . If the Sawtooth waveform of Oscil lator
3 is selected , this register wil l present a series of numbers incrementing
from 0 to 255 ($FF) at a rate determined by the frequency of Osci l lator
3 . If the Triang le waveform is selected, the output wil l increment from 0
up to 255, then decrement down to O. If the Pulse waveform is selected,
the output wi l l j ump between 0 and 255. Selecting the Noise waveform
will produce a series of random numbers, therefore, this register can be
used as a random number generator for games. There are numerous
timing and sequencing appl ications for the OSC 3 reg ister, however, the
chief function is probably that of a modulation generator . The numbers
generated by this register can be added, via software, to the Osci l lator
or F i lter Frequency registers or the Pulse Width reg isters in real-time .
Many dynamic effects can be generated in th i s manner . Siren-l ike
sounds can be created by adding the OSC 3 Sawtooth output to the
frequency control of another oscil lator . Synthesizer "Sample and Hold"
effects can be produced by adding the OSC 3 Noise output to the Filter
Frequency control registers. Vibrato can be produced by setting Oscil­
lator 3 to a frequency around 7 Hz and adding the OSC 3 Triang le
output (with proper scal ing) to the Frequency control of another oscil­
lator . An un l imited range of effects a re avai lable by a ltering the fre­
quency of Oscil lator 3 and scaling the OSC 3 output. Normal ly, when
Osci l lator 3 is used for modu lation , the audio output of Voice 3 should
be e l im inated (3 OFF = 1) .

APPEN DIX 0 469

ENV 3 (Register $ 1 C)

Same as OSC 3, but this register a l lows the microprocessor to read
the output of the Voice 3 Envelope Generator . This output can be added
to the Fi lter Frequency to produce ha rmonic envelopes, WAH-WAH, and
s imi lar effects . " Phase r" sounds can be created by adding th is output to
the frequency control registers of an oscil lator . The Voice 3 Envelope
Generator must be Gated in order to produce any output from this regis­
ter . The OSC 3 register, however, a lways reflects the changing output of
the oscil lator and is not affected in any way by the Envelope Generator .

SID PIN DESCRIPTION
CAP1 A,CAP1 B , (Pins 1 ,2)/ CAP2A,CAP2B (Pins 3,4)

These pins a re used to connect the two integrating capacitors re­
quired by the prog rammable Filte r . C l connects between pins 1 and 2,
C2 between pins 3 and 4. Both capacitors should be the same va lue .
Normal operation of the Filter over the audio range (approximately 30
Hz- 1 2 kHz) is accompl ished with a va lue of 2200 pF for Cl and C2 .
Polystyrene capacitors a re preferred and in complex polyphonic sys­
tems , where many SI D chips must track each other, matched capacitors
are recommended.

The frequency range of the Filter can be tailored to specific applica­
tions by the choice of capacitor va lues . For example, a low-cost game
may not require fu l l high-frequency response . I n th is case, larger values
for C 1 and C2 could be chosen to provide more control over the bass
frequencies of the Filte r . The maximum Cutoff Frequency of the Fi lter is
g iven by:

FCmax = 2 .6E - 5/C

Where C is the capacitor va lue . The range of the Filte r extends 9 octaves
below the maximum Cutoff Frequency.

RES (Pin 5)

This TTL-level input is the reset control for S ID . When brought low for
at least ten cP2 cycles, al l internal registers a re reset to zero and the
audio output is si lenced . This pin is normal ly connected to the reset l ine
of the microprocessor or a power-on-clear circuit .

470 APPENDIX 0

cp2 (Pin 6)

This TTL-level input is the master c lock for S ID . Al l osci l lator frequen­
cies and envelope rates a re referenced to this c lock. cp2 also contro ls
data transfers between S I D and the microprocessor. Data can only be
transferred when cp2 is hig h . Essentia l ly, cp2 acts as a h igh-active ch ip
select a s far as data transfers are concerned . Th is pin is normal ly con­
nected to the system clock, with a nominal operating frequency of 1 . 0
MHz.

R/W (Pin 7)

This TTL-level input controls the direction of data transfers between
S ID and the microprocessor . If the chip select condit ions have been met,
a high on this l ine a l lows the microprocessor to Read data from the
selected S I D register and a low al lows the microprocessor to Write data
into the selected S I D register . This pin is normal ly connected to the sys­
tem Read/Write l ine .

CS (Pin 8)

This TTL-level i nput is a low active ch ip select which contro ls data
transfers between SI D and the microprocessor . CS must be low for any
transfer. A Read from the selected SID register can only occur if CS is
low, cp2 is high and R/W is hig h . A Write to the selected S ID register can
only occur if CS is low, cp2 is high and R/W is low. This pin is normal ly
connected to address decoding circu itry, a l lowing S ID to reside in the
memory map of a system .

AO-A4 (Pins 9- 1 3)

These TTL-level inputs are used to select one of the 29 S I D registers .
Although enough addresses are provided to select 1 o f 3 2 registers, the
remain ing th ree reg ister locations a re not used. A Write to any of these
th ree locations i s ignored and a Read returns inval id data . These pins
are normal ly connected to the corresponding address l ines of the mi­
croprocessor so that SID may be add ressed in the same manner as
memory.

GND (Pin 1 4)

For best resu lts, the ground l ine between S I D and the power supply
should be sepa rate from g round l ines to other d ig ital ci rcuitry. This wil l
min imize dig ita l noise at the aud io output.

APPENDIX 0 471

00-07 (Pins 1 5-22)

These bid i rectional l ines a re used to transfer data between S I D and
the microprocessor . They a re TTL compatible in the input mode and ca­
pable of driving 2 TTL loads in the output mode. The data buffers a re
usual ly in the h ig h-impedance off state. During a Write operation , the
data buffers remain i n the off (input) state and the m ic roprocessor
suppl ies data to S ID over these l ines. During a Read operation , the data
buffers turn on and SI D supplies data to the microprocessor over these
l ines . The pins are normal ly connected to the corresponding data l ines of
the microprocessor .

POTX,POTY (Pins 24,23)

These pins are inputs to the AID converters used to digitize the posi­
tion of potentiometers. The conversion process is based on the time con­
stant of a capacitor tied from the POT pin to g round, charged by a
potentiometer tied from the POT pin to + 5 volts . The component values
a re determined by:

RC = 4 . 7E - 4

Where R is the maximum resistance of the pot a n d C i s the capacitor.
The larger the capacitor, the smal ler the POT va lue jitter . The recom­

mended values for R and C are 470 kil and 1 000 pF. Note that a
separate pot and cap are requ i red for each POT pin .

Vee (Pin 25)

As with the GN D l ine, a separate +5 VDC l ine should be run between
S ID Vee and the power supply in order to minimize noise. A bypass
capacitor should be located close to the pin .

EXT IN (Pin 26)

This ana log input a l lows external audio signals to be mixed with the
audio output of S I D or processed through the Filter. Typical sources in­
clude voice, guitar, and organ . The input impedance of this pin is on the
order of 1 00 kil. Any signal applied directly to the pin should ride at a
DC level of 6 volts and should not exceed 3 volts p-p . I n order to pre-

472 APPENDIX 0

vent any interference caused by DC level differences, external s ignals
should be AC-coupled to EXT IN by an electrolytic capacitor in the 1 - 1 0
J.L F range. As the d i rect audio path (F I LTEX=O) has un ity gain , EXT I N
can be used to mix outputs of many S I D ch ips by da isy-chaining . The
number of chips that can be chained in this manner is determined by the
amount of noise and distortion a l lowable at the fina l output. Note that
the output Vo lume control wil l affect not only the th ree SID voices, but
also any external inputs .

AUDIO OUT (Pin 27)

This open-source buffer is the final aud io output of S ID , comprised of
the th ree S ID voices, the Filter and any external input. The output level is
set by the output Volume control and reaches a maximum of 2 volts p-p
at a DC level of 6 volts . A source resistor from AUDIO OUT to g round is
required for proper operation . The recommended resista nce is 1 kD for
a standard output impedance.

As the output of S ID rides at a 6-volt DC leve l , i t should be AC­
coupled to any audio amplifie r with an electrolytic capacitor in the 1 - 1 0
J.LF range.

Voo (Pin 28)

As with Vee , a separate + 1 2 VDC l ine should be run to S ID Voo and a
bypass capacitor should be used .

658 1 S ID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

RATING SYMBOL VALUE

Supply Voltage Voo -0 . 3 to + 1 7
Supply Voltage Vee -0 . 3 to + 7
Input Voltage (analog) Vina -0 . 3 to + 1 7
I nput Voltage (d ig ital) Vind -0 . 3 to + 7
Operating Temperature TA o to + 70
Storage Temperature TSTG - 55 to + 1 50

U N ITS

VDC
VDC
VDC
VDC °c °c

APPENDIX 0 473

..
.

..
...

..
.

»

"V

"V

m
 Z o X o

E
LE

C
T

R
IC

A
L

C
H

A
RA

C
T

E
R

IS
T

IC
S

 (
V

oo
=

12
 V

D
C

±
5

%
,

V
cc

=
5

V
D

C
±

5
%

,
TA

=
O

 t
o

7
0

°
C

)

C
H

A
RA

C
TE

R
IS

T
IC

SY

M
B

O
L

M
IN

TY

P
M

A
X

In
pu

t
H

ig
h

Vo
lta

g
e

(R
ES

,
cp

2,
 R

/w
,

C
S,

V

1H

2
-

V
ee

In

pu
t

Lo
w

 V
ol

ta
g

e
A

O-
A

4,
 0

0-
0

7)

V
1L

-
0

.3

-
0

.8

In
pu

t
Le

a
ka

ge
 C

ur
re

nt

(R
ES

,
cp

2,
 R

/w
,

C
S,

l in

-

-
2

.5

A
O-

A
4;

 V
in

=
0

-
5

 V
O

C
)

Th
re

e-
St

at
e

(O
ff

)
(0

0-
0

7;
 V

ee
=

m
ax

)
I r

sl

-
-

10

In
pu

t
Le

a
ka

ge
 C

ur
re

nt

V
in

=
0

.4
-

2
.4

 V
O

C

O
ut

pu
t

H
ig

h
Vo

lta
g

e
(0

0
-

0
7;

 V
ee

=
m

in
,

V
OH

2

.4

-
V

ee
-

0
.7

I

lo
ad

 =
 2

00
 /-t

A
)

O
ut

pu
t

Lo
w

 V
ol

ta
g

e
(0

0
-

0
7;

 V
ee

=
m

ax
,

V
OL

G

N
O

-
0

.4

I
lo

ad
=

3.
2

 m
A

l

O
ut

pu
t

H
ig

h
C

ur
re

nt

(0
0-

0
7;

 S
ou

rc
in

g
,

I O
H

20
0

-
-

V
OH

=
2

.4
 V

O
C

)

'U
N

IT
S

V
O

C

V
O

C

/-t
A

/-t
A

V
O

C

V
O

C

/-t
A

:l>

"'"

"'"

m
 Z o X o ..

'I

..
..

O
ut

pu
t

Lo
w

 C
ur

re
nt

In
pu

t
C

a
pa

ci
ta

nc
e

Po
t

Tr
ig

ge
r

Vo
lta

ge

Po
t

Si
nk

 C
ur

re
nt

In
pu

t
Im

pe
da

nc
e

A
ud

io
 I

np
ut

 V
ol

ta
ge

A
ud

io
 O

ut
pu

t
Vo

lta
g

e

Po
w

er
 S

up
pl

y
C

ur
re

nt

Po
w

er
 S

up
pl

y
C

ur
re

nt

Po
w

er
 D

is
si

pa
tio

n

(D
O-

D
7;

 S
in

ki
ng

,
V

OL
 =

0
.4

 V
D

C
)

(R
ES

,
cp

2,
 R

/w
,

C
S,

A

O-
A

4,
 D

O-
D

7)

(P
O

TX
,

PO
TY

)

(P
O

TX
,

PO
TY

)

(E
X

T
IN

)

(E
X

T
IN

)

(A
U

D
IO

 O
U

T;

1
kil

lo

a
d

,
vo

lu
m

e
=

m
a

x)

O
ne

 V
oi

ce
 o

n:

A
ll

Vo
ic

es
 o

n:

(V
oo

)

(V
ee

!

(T
ot

al
)

I O
L

3
.2

C
in

-

V
po

t
-

I p
ot

50

0

R i
n

10
0

V
in

5
.7

-

V
ou

t
5

.7

0
.4

1.

0

1 00

-

l e
e

-

P o

-

-
-

m
A

-
10

p

F

v
ee

/2

-
V

D
C

-
-

/-t
A

15
0

-
kil

6
6

.3

V
D

C

0
.5

3

VA
C

6
6

.3

V
D

C

0
.5

0

.6

VA
C

1.

5
2

.0

VA
C

20

25

m
A

70

10
0

m
A

60
0

10
00

m

W

658 1 (S ID) TIMING

1 MHz Timing Set: The 1 MHz timing set contains the spec . t iming for
the 658 1 .

READ/WRITE CYCLE

SYMBOL NAME

Cycle Time
TcHw Clock High Pu lse Width

Twcs Chip Select Setup

TcsH Chip Select Hold
TAOS Add ress Setup
TAOH Address Hold
TAWS Read/Write Setup
T AWH Read/Write Hold
T os Data Setup Write
TOH Data Hold Read
Tco Chip Select To Data
TOA Data Hold Time
TACC Access Time

476 APPENDIX 0

And Read Data

DU RATION

1 000ns
450 ns
375 ns

1 5 ns
45 n s
1 0 ns
45 ns
1 5 ns

1 25 ns
25 ns

350 ns
50 ns

350 ns

PHASE
1

CS

ADDR

DATA
IN

DATA
OUT

r;:;
)
r;;;

)

TCHW

--- TwCS --�,
�

VALID ADDRESS

�
VALID R/W X

I TOS TOH

VALID DATA �
-I Teo i Ir;-

VALID DATA X
NOTE lAce IS the lime from the latest occurrence oiCS. RrW Of AODR until valid data Qulputfrom the OUT

WRITE CYCLE

SYMBOL NAME MIN TYP MAX U NITS

APPENDIX 0 477

EQUAL-TEMPERED MUSICAL SCALE VALUES

The table in Appendix E l i sts the numerical values which must be
stored in the S I D Oscil lator frequency control registers to produce the
notes of the equal-tempered musical sca le . The equa l-tempered scale
consists of an octave conta in ing 1 2 semitones (notes): C , D, E , F ,G,A, B
and C#, D#, F#,G#,A# . The frequency of each semitone is exactly the
1 2th root of 2 (�2) times the frequency of the previous semitone . The
table is based on a 1>2 clock of 1 . 02 MHz. Refer to the equation g iven in
the Reg ister Description for use of other master clock frequencies . The
scale selected is concert pitch , i n which A-4 = 440 Hz. Transpositions of
this scale and scales other than the equal-tempered scale a re also pos­
s ib le .

Although the table in Appendix E provides a simple and q uick method
for generating the equal-tempered scale, it is very memory ineffic ient as
it requ i res 1 92 bytes for the table alone. Memory efficiency can be im­
proved by determin ing the note value a lgorithmical ly. Using the fact that
each note in an octave is exactly half the frequency of that note in the
next octave, the note look-up table can be reduced from 96 entries to 1 2
entries, as there a re 1 2 notes per octave. If the 1 2 entries (24 bytes)
consist of the 1 6-bit values for the eighth octave (C-7 through B-7) , then
notes in lower octaves can be derived by choosing the appropriate note
in the eig hth octave and divid ing the 1 6-bit value by two for each octave
of difference. As d ivision by two is noth ing more than a right-shift of the
va lue, the calcu lation can easily be accomplished by a simple software
routine . Although note B-7 is beyond the range of the osci l lators, this
value should sti l l be inc luded in the table for calculation purposes (the
MSB of B-7 would requ i re a special software case, such as generating
this bit in the CARRY before shifting) . Each note must be specified in a
form which indicates which of the 1 2 semitones is desired , and which of
the e ight octaves the semitone is i n . Since four bits a re necessary to
select 1 of 1 2 semitones and th ree bits a re necessary to select 1 of 8
octaves, the information can fit in one byte, with the lower nybble select­
ing the semitone (by addressing the look-up table) and the upper nybble
being used by the d ivision routine to determine how many times the
table va lue must be right-shifted .

478 APPENDIX 0

S ID ENVELOPE GENERATORS

The fou r-pa rt ADSR (ATTACK, DECAY, SUSTA IN , RELEASE) envelope
generator has been proven in e lectronic music to provide the optimum
trade-off between flexibi l ity and ease of ampl itude contro l . Appropriate
selection of envelope parameters a l lows the s imulation of a wide range
of percussion and sustained instruments . The violin i s a good example of
a sustained instrument. The violi nist controls the volume by bowing the
instrument. Typically, the volume builds s lowly, reaches a peak, then
d rops to an intermed iate leve l . The viol in ist can maintain this level for as
long as desi red , then the volume is al lowed to s lowly die away. A
"snapshot" of this envelope is shown below:

PEAK AM PLITUDE ---1---�A

ZERO AMPLITUDE

I NTERMEDIATE
LEVEL

This volume envelope can be easi ly reproduced by the ADSR as shown
below, with typical envelope rates :

ArrACK: 1 0 ($A) 500 ms � DECAY: 8 300 ms
SUSTAIN: 1 0 ($A)
RELEASE: 9 750 ms G�

Note that the tone can be held at the intermed iate SUSTAIN level for
as long as desired . The tone will not begin to die away unti l GATE is
c leared . With m inor a lterations, this basic envelope can be used for
brass and woodwinds as well as strings .

An enti rely d ifferent form of envelope is produced by percussion in ­
struments such a s drums , cymba l s and gongs , a s wel l a s certa in
keyboards such as pianos and harpsichords . The percussion envelope i s
characterized by a nearly i nstantaneous attack, immediately fol lowed
by a decay to zero volume. Percussion instruments cannot be sustained

APPENDIX 0 479

at a constant amplitude . For example, the instant a d rum is struck, the
sound reaches full volume and decays rapidly rega rd less of how it was
struck. A typica l cymbal envelope is shown below:

ATTACK: 0 2ms � DECAY: 9 750ms
SUSTAIN: 0
RELEASE: 9 750ms GATE

--=:r-----

Note that the tone immediately beg ins to decay to zero a mplitude
after the peak is reached, regard less of when GATE is c lea red . The
a mpl itude envelope of pia nos and ha rps ichords is somewhat more
complicated, but can be generated quite easily with the ADSR . These
instruments reach ful l volume when a key is fi rst struck. The amplitude
immediately begins to die away slowly as long as the key remains de­
pressed . If the key is released before the sound has ful ly d ied away, the
a mplitude wi l l immediately d rop to zero . This envelope is shown below:

ATTACK: 0 2 ms � DECAY: 9 750 ms
SUSTAIN: 0
RELEASE: 0 6 ms

Note that t he tone decays s lowly until GATE is c leared, at which point
the amp l itude d rops rapidly to zero .

The most s imp le envelope is that of the organ , When a key i s pressed,
the tone immed iately reaches ful l volume and remains there. When the
key is relea sed , the tone d rops immed iately to zero vo l ume . Th i s
envelope is shown below:

ATTACK: 0 2 ms J l DECAY: 0 6 ms
SUSTAIN: 1 5 ($F)
RELEASE: 0 6 ms c=J

L

The real power of S I D lies in the abi l ity to c reate or iginal sounds
rather than s imu lations of acoustic instruments . The ADSR is capable of
c reating envelopes which do not correspond to any " real" instruments . A
good example would be the "backwards" envelope. This envelope is
characterized by a s low attack and rapid decay which sounds very

480 APPENDIX 0

much l ike an instrument that has been recorded on tape then played
backwards . This envelope is shown below:

s

ATTACK: 1 0 ($A) 500 ms � DECAY: 0 6 ms
SUSTAIN: 1 5 ($F)
RELEASE: 3 72 ms G�

L

Many un ique sounds can be c reated by app ly ing the a m pl itude
enve lope of one instrument to the harmonic structure of another . This
produces sounds s imi lar to fami l iar acoustic instruments, yet notably d if­
ferent. I n general , sound is qu ite subjective and experimentation with
various envelope rates and harmonic contents will be necessa ry in order
to ach ieve the desired sound .

650X MPV

I------------j RIIN

ADDRESS DECODING
OR ADDRESS LINE

CS

1-------------1 A, 1-------------I A3 1-------------1 A, I-------------l A, I---------� Ao
GND

+ 1 2 V � 5 V

ELECTROLYTIC

AUDIO

OUT

AUDIO OUT I----.------,lif----.U ®

6581
SID

1 0 JtF
l k\!

AUDIO

ELECTRDl VTle IN

EXT I N �-------;jl'----rO) .U l O I, F ,+
. 5 V

POT X �---.---�Nr-��

PADDLES

. 5 V

TYPICAL 6581/510 APPLICATION

APPEN DIX 0 48 1

APPENDIX P

GLOSSARY

ADSR
attack

binary
Boolean operators
byte
CHROMA noise
CIA
DDR
decay

decimal
e
envelope
FIFO
hexadecimal
integer
j iffy clock
NMI
octal
operand
OS
pixel
queue
register
release

ROM
SID
signed numbers
subscript
susta in
syntax
truncated
VIC-II
video screen

482 APPENDIX P

AttackiDecay/Susta in/Release envelope.
Rate at which musical note reaches peak
volume.
Base-2 number system .
Log ical operators .
Memory location .
Color d istortion .
Complex Interface Adapter.
Data Direction Reg ister .
Rate at which mus ical note fal ls from peak
volume to sustain volume.
Base- 1 0 number system .
Mathematical constant (approx. 2 . 7 1 828 1 83) .
Shape of the volume of a note over time .
First- l n/First-Out.
Base- 1 6 number system .
Whole number (without decimal point) .
Ha rdware interval timer .
Non-Maskable I nterrupt.
Base-8 number system .
Parameter.
Operating System .
Dot o f resolution o n the screen .
S ing le-file l ine .
Special memory storage location .
Rate at which a musical note fal ls from
susta in volume to no vo lume.
Read-Only Memory .
Sound Interface Device .
P lus or minus numbers .
I ndex variab le .
Volume level for sustain of musical note .
Programming sentence structure .
Cut off, e l iminated (not rounded) .
Video I nterface Ch ip .
Televis ion set.

INDEX
Abbreviation s , BAS I C Commands , State­

m e n t s , a n d F u nct io n s , x, 29, 3 1 - 3 4 ,
374-375

ABS function , 3 1 , 35, 3 74
Accessories, 335- 3 7 1
Accumu lator , 2 1 3
ACPTR, 272- 274
ADC, 232, 235, 254
Addition, 3, 9- 1 1 , 1 6
Add ressing, 2 1 1 , 2 1 5-2 1 7 , 4 1 1 -4 1 3
AiD/S/R , 1 83 - 1 85, 1 89 , 1 96- 1 99
AND, 232, 235, 254
AND operator, 1 3- 1 6 , 3 1 , 35-36, 3 74
Animation, x i i i , 1 53 , 1 66
Applications , x i i i-xvi
Arithmetic expressions, 1 0- 1 2
Arithmetic operators, 1 0- 1 2 , 1 6
Arrays, 1 0- 1 2 , 44-45
ASC functio n , 3 1 , 37, 374
ASCI I c h aracter codes, 3 1 , 38, 340, 374
ASL, 232, 236, 254
Assembler, 2 1 5 , 2 1 8 , 227, 3 1 0
ArcTaNgent function , 3 1 , 38, 374
Attack, (see AiD/S/R)

Bank selection, 1 0 1 - 1 02 , 1 33
BASIC abbreviations, 29, 3 1 -34, 374-375
BASIC commands, 3 1 -34 , 4 1 , 58-60, 62,

8 1 -82, 9 1
B A S I C m i s c e l l a n e o u s f u n c t i o n s , 3 1 - 3 4 ,

43-44, 4 9 , 56-57, 6 1 , 69, 70, 8 0 , 83-85,
89

BAS I C numeric functions, 3 1 -35, 37-38, 42,
46-47, 49, 83-84, 88-89

BASI C operators, 3, 9- 1 5 , 3 1 -36, 63-64,
68, 92

BASIC statements, 1 8-26, 3 1 -34 , 39-55, 57,
62-67, 69-79, 86-87, 92

BAS I C string functions, 3 1 -34, 38, 56, 6 1 ,
79, 87, 89

BASIC variables, 7-26
BCC, 232, 236, 254
BCS, 232, 236, 254
BEQ, 226-227, 232 , 237, 254
Bibl iography, 388-390
Binary, 69, 92, 1 08 , 1 1 2 , 2 1 6-2 1 7
Bit, 99- 1 49, 290, 298, 300-30 1 , 305, 343-

357, 359
BIT , 232, 237, 254
Bit map mode, 1 2 1 - 1 30
Bit mop mode, m ulticolor, 1 27- 1 30
Bit mapping, 1 2 1 - 1 30
BMI, 232 , 237, 254
BNE, 226-227, 232, 238, 254
Boolean arithmetic, 1 4
BPL, 232 , 238, 254
Branches and testing , 226-227
B R K , 232, 238, 254
Buffer, keyboa rd , 93

Bus iness a ids , x i i i-xvi
BVC, 232, 239, 254
BVS, 232, 239, 254
Byte, 9, 1 04 , 1 08 , 1 1 7- 1 1 9, 1 24- 1 27, 1 96,

2 1 3 , 2 1 8-220, 222-227, 260-263, 274,
278-279, 286, 292-293, 299, 307, 349,
357-359

Cassette port, 337, 340-342
Cassette, tape recorder, xii i , 39-4 1 , 65-67,

8 1 -82, 9 1 , 1 87, 1 92, 283, 293-294, 297,
320-32 1 , 337-338, 340-342

C h a racter P E E K s and PO K E s , 1 04 , 1 06 ,
1 09- 1 1 1 , 1 1 5 , 1 1 8 , 1 20- 1 22 , 1 27- 1 30,
1 34- 1 37, 1 50 , 1 54- 1 55, 1 59- 1 6 1 , 1 65-
1 66

CHAREN, 260-26 1
C H K I N , 272-273, 275
C H KOUT, 272-273, 276
C H RGET, 272-273, 307-308
C H R I N , 272-273, 277-278
C H ROUT, 272-273, 278-279
C H R$ function, 24, 3 1 , 37-38, 45, 50, 55,

75-76, 93-94, 97, 1 20 , 1 56 , 336-342 ,
374, 379- 3 8 1

C I N T , 272-273, 280
C lOUT, 272-273 , 279-280
CLALL, 272-273, 2 8 1
C LC , 2 3 2 , 239, 254
CLD, 232, 240, 254
C L I , 232, 240, 254
Clock, 80, 89, 3 1 4 , 329-322, 366, 406-408,

42 1 -427, 43 1 , 450
Clock timing d iagram, 406-408
C LOSE, 272-273 , 2 8 1 -282
CLOSE statement, 3 1 , 39-4 1 , 348, 354, 374
CLR statement, 3 1 , 39-40, 8 1 , 1 09 , 374
C L R C H N , 272-273, 282
CLR/HOME key, 220
CLV, 232, 240, 254
CMD statement, 3 1 , 40-4 1 , 374
CMP, 232, 24 1 , 254
Collision detect, 1 44- 1 45, 1 80
Color adjustment, 1 1 3
Color combinations chart, 1 52
Color memory, 1 03
Color register , 1 1 7 , 1 20, 1 28 , 1 35- 1 36, 1 79
Color screen , background , bord e r , 1 1 5-

1 1 9 , 1 28 , 1 35- 1 37, 1 76, 1 79- 1 80
Commands, BASIC, 3 1 -92
Commodore magazine, xvii-xv i i i , 390
Commodore 64 memory m a p , 3 1 0
Complement, twos, 63-64
Constants, float ing-point , i ntege r , strin g ,

5-7, 4 6 , 77-78
CONTinue command, 3 1 , 4 1 -42 , 46, 8 1 ,

86, 374
ConTRoL key, 58, 72, 93-97, 1 7 1
COSine function, 3 1 -34, 42, 374

I N DEX 483

C P/M, x, x iv, 368-371
CPX, 227, 232 , 24 1 , 254
CPY, 227, 232 , 24 1 , 254
Crunch ing BASIC programs, 24-27 , 1 56
C u RSoR keys , 93-97, 336

DATA S S E T T E ™ r e c o r d e r , (see c o ssette ,
tope recorder)

DATA state m e n t , 2 6 , 3 1 , 4 2 - 4 3 , 76-77,
1 1 1 - 1 1 4 , 1 64, 1 69, 1 74 , 374

DEC, 232 , 242, 254
Decoy, (see AiD/S/R)
DEF ine FuNction statement, 3 1 , 43-44 , 374
DELete key, 7 1 -72, 95-96
DEX, 226, 2 3 2 , 242, 254
DEY, 226, 232, 242, 254
DIMension statement, 9, 3 1 , 44-45, 374
Direct mode, 3
Divisio n , 3 , 1 0- I I

Edit mode, 93-97
Editor, screen, 93-97
END statement, 32, 46, 79, 93, 374
Envelope generator , (see AiD/S/R)
EOR, 2 3 2 , 243, 254
Equa l , not-equa l-to signs, 3 , 9- 1 2
E r ror messages, 306, 400-401
Expans ion port (s) , (a l so user port, ser ia l

port, RS-232 port), 335-37 1
E X Ponent funct ion, 32 , 46, 374
Exponentiatio n , 5-6, 1 0 , 1 2 , 1 6

Files (cossette), 40, 50, 55, 59-60, 65-66,
75, 84-85, 9 1 , 337-338, 340-342

Fi les (disk), 40, 50, 55, 59-60, 65-66, 75,
84-85, 9 1 , 337-338, 342

F i ltering , 1 83 , 1 89 , 1 99-202
F i re button , joystickipadd le/l ightpe n , 328-

329, 343-348
FOR state m e n t , 20-2 1 , 3 2 , 39, 4 7 - 4 8 ,

6 2 - 6 3 , 77-78, 8 6 , 1 1 0 , 1 55 - 1 56, 1 65-
1 66, 1 69- 1 7 1 , 1 98- 1 99, 309, 374

Footb a l l , 45
FREe functio n , 3 2 , 49, 1 09, 374
FuNction functio n , 32, 47, 374
Function keys, 22-24
Funct ions, 3 1 -34, 35, 37-38, 42 , 46-47, 49,

56-57, 6 1 , 69-70, 79-80, 83-85, 87-90,
374-375

Game controls and ports, 343-348
GET statement, 22-24, 32 , 37, 49-50, 93,

374-375
GET I N , 272-273, 283
GET# statement, 32 , 37, 50, 55, 65, 3 4 1 -

342, 348, 374
GOSU B statement, 32, 39, 5 1 -52, 77, 79,

85, 374
GOTO (GO TO) statement , 3 2 , 37, 48,

52-53, 64, 77, 8 1 , 86, 374
Graphics keys, xiv-xv, 70-74, 95-96, 1 08-

1 1 4

484 I N DEX

Graphics mode, xiv-xv, 99- 1 83
Graphics mode, bit mopped, 1 2 1 - 1 30
Graphics symbols, (see graphics keys)
Greater than, equal to or, 3, 1 2- 1 3 , 1 6

Hexadecimal notation , 1 0 1 , 209, 2 1 5-2 1 8
H ierarchy of operations, 1 6

IEEE-488 interface, (see ser ia l port)
IF T H E N statement, 32, 46-47, 49,

52-53, 64, 70, 86, 1 72- 1 73 , 1 80, 374
I N C , 232, 243, 254
I ncome/expense prog ram, 20- 2 1
I ndexed ind i rect, 224-225
I ndexin g , 223-225
I nd i rect i ndexed , 223-224
I N PUT statement, 1 8-22 , 32 , 45, 53-55, 93,

374
I N PUT# statement, 3 2 , 55, 75, 86, 88, 90,

374
I N SerT key, 72, 95-96
I NTeger funct ion, 32, 56, 80, 374
I n teger, a rrays, constants, var iables, S ,

7-9
I N X , 226-227, 232, 243, 254
I N Y , 226-227, 232 , 244, 254
10BASE, 272-273, 284
I/O Guide, 335-375
1 0 1 N I T , 272-273, 285
1/0 Pinouts, 395-397
I/O Ports, 2 1 4 , 260, 335-375
I/O Registers , 1 04- 1 06, 2 1 2-2 1 4
I/O Statements, 39, 50, 54-55, 65-67, 75
IRQ, 308

Joysticks , 343-345
JMP, 228-230, 232, 244, 254, 270, 308
J S R , 228-230, 233 , 244, 255, 268, 270

KERNAL, 2, 94, 209, 228-230, 308, 268-
306, 348-358

Keyboard , 93-98
Keywords, BAS I C , 29-92

LDA, 2 1 8-220, 233, 245, 255
LDX, 233 , 245, 255
LDY, 233, 246, 255
LEFT$ functio n , 32 , 56, 375
LENgth function, 32 , 57, 375
Less than , equal to or , 3 , 1 2- 1 3 , 1 6
LET statement, 3 2 , 57, 375
L I ST command, 32, 58, 375
L I STEN , 272-273 , 285
LOAD, 272-273, 286
LOAD command , 32, 59-60, 370, 375
Loading programs from tape, d isk, 59-60,

337-338, 340-342
LOGarithm functio n , 32, 6 1 , 375
Lower case cha racters, 72-74, 1 05
LPX (L PY) , 348
LSR, 233, 246, 255

Mac hine language, 209-334, 4 1 1 -4 1 3
Mask, 92
Mathematics formu las , 394
Mathematical sym bols , 3 , 6- 1 7 , 394
MEMBOT, 272-273, 287
Memory m a p s , 2 1 2 , 262-267, 2 7 2 - 2 7 3 ,

3 1 0-334
Memory map, abbreviate d , 2 1 2
Memory reallocatio n , 1 0 1 - 1 03
MEMTOP, 272-273, 288
MID$ function , 33 , 6 1 , 375
Modem, x i i i-xvi i i , 339-340
Mod ulatio n , 1 83 , 207-208
Mult ipl icat io n , 3 , 1 0- 1 1
Mus ic , 1 83-208

NEW command , 1 8 , 3 3 , 62, 1 1 1 , 1 1 7 , 1 85,
1 87, 375

N E X T c o m m a n d , 20-2 1 , 3 3 , 39 , 47-48,
62-63, 77-78, 86, 1 1 0 , 1 55 - 1 56, 1 65-
1 66, 1 69- 1 7 1 , 1 98- 1 99 , 309, 375

NOP, 233 , 246, 255
NOT operator, 1 3- 1 6 , 3 3 , 63-64, 375
Note types, 1 90
N umeric variables, 7-8, 26

ON (ON . . GOTO/GOSUB) statement, 3 3 ,
6 4 , 375

OPEN, 272-273 , 289
OPEN statement, 33, 4 1 , 65-67, 75-76, 85,

94, 337-339, 349-352, 375
Operating system, 2 1 0-2 1 1
Operators, arithmetic, 3, 1 0- 1 2 , 1 6
Operato r s , logic a l , 1 3- 1 6 , 3 1 -3 3 , 35-37,

63-64, 68, 374-375
Operators, relational , 3 , 1 2- 1 3 , 1 6
O R operator, 1 3-26, 3 3 , 68, 1 0 1 - 1 02 , 1 04 ,

1 06, 1 1 5 , 1 1 8 , 1 20, 1 22 , 1 26- 1 27, 1 29,
1 34 , 1 36- 1 37, 375

ORA, 2 3 3 , 247, 255

Parentheses, 3 , 8 , 30, 33, 83-84, 88, 375
PEEK functio n , 33, 69, 93, 1 0 1 - 1 02 , 1 04 ,

1 06 , 1 08- 1 1 1 , 1 1 5 , 1 1 8 , 1 20- 1 2 2 , 1 26-
1 30, 1 34- 1 37, 1 45 , 1 50 , 1 59- 1 60, 1 76-
1 77, 1 80, 1 85 , 2 1 1 , 36 1 , 375

Peripherals , (see I /O Guide)
PHA, 233, 247, 255
PHP, 233, 247, 255
Pinouts, (a lso see I/O Pinouts)' 363, 395-

397
PLA, 233, 248, 255
PLOT, 273, 290
PLP, 233 , 248, 255
POKE statement, 25, 33 , 69-70, 94, 1 0 1 -

1 02 , 1 04 , 1 06, 1 09- 1 1 1 , 1 1 5- 1 1 6 1 1 8 ,
1 20- 1 23 , 1 26- 1 30, 1 34- 1 37 , 1 50 , 1 53-
1 6 1 , 1 65- 1 66 , 1 68- 1 70 , 1 72 - 1 73, 1 77-
1 78 , 1 80, 1 84- 1 86, 1 94 , 1 98- 1 99, 204-
205, 2 1 1 , 220, 309, 361 , 375-376

Ports, I/O, 2 1 4 , 335-375, 395-397

POSition functio n , 33, 70, 375
Power/Play, xvi , 390
P R I NT statement, 1 3- 1 5 , 1 8-22, 2 5 , 33-54,

56-6 1 , 63 , 68-75, 79-80, 83-84, 87-89,
94-96, 1 09 , 1 68, 1 7 1 , 2 1 0 , 2 1 3 , 220,
3 75

P R I NT# statement, 3 3 , 40-4 1 , 75-76, 85,
94, 337, 340-34 1 , 348, 353, 375

Printer, xv, 338-339
Program counte r . 2 1 4
Program mode, 3
Prom pt, 45

Quotation marks, x i , 3 , 2 3 , ' 72 , 95, 337
Quote mode, 72-73, 95-96

RAM, 49, 1 00- 1 0 1 , 1 04- 1 05 , 1 07- 1 0 8 ,
1 1 0- 1 1 1 , 1 1 7, 1 22 , 260-262, 269, 340

RAMTAS, 273, 291
Random n umbers, 53 , 80
R a N Dom functio n , 3 3 , 4 3 , 53, 80, 375
Raster interrupt, 1 3 1 , 1 50- 1 52
RDTlM, 273, 291
READST, 273, 292
READ statement, 33, 42, 76-77, 1 1 1 , 1 70,

309, 375
Release, (see AID/SiR)
Register m a p , CIA c h i p , 428
Register m a p , S I D ch ip , 461
Register map, V I C ch ip , 454-455
R E M a rk s t a t e m e n t , 2 5 - 2 6 , 3 3 , 3 7- 3 8 ,

4 1 - 4 2 , 45-46, 50, 77-78, 93-95, 1 0 1 ,
1 1 8 , 1 98- 1 99 , 338, 340, 356, 375

Reserved words , (see Keywords, BAS IC)
RESTOR, 273, 293
RESTORE key, 22, 92, 1 26, 353
RESTORE statement, 33, 78, 375
R E T U R N key, 3, 1 8 , 2 2 , 4 1 , 50-5 1 , 74 ,

93-97, 1 54- 1 55 , 1 66 , 2 1 7, 220, 336-337,
370

RETURN statement, 3 3 , 5 1 -5 2 , 79, 85, 1 75 ,
375

ReVerSe O N , OFF keys , 97
R IGHT$ funcTion , 33 , 79, 375
ROL, 233, 248, 255
ROM, 261 , 268-269
ROM, character generator, 1 03 - 1 1 1 , 1 34
ROR, 233 , 249, 255
RS-232C, 335, 348-359
R T I , 2 3 3 , 249, 255, 308
RTS, 233 , 249, 255
RUN command , 33, 40, 59, 8 1 , 1 1 3 , 1 54 ,

375
R U N/STOP key, 22, 4 1 -42, 52 , 58, 86, 92,

1 26 , 220, 353

SAVE, 273, 293-294
SAVE command , 34, 8 1 -82, 375
SBC, 233, 250, 255
SCNKEY, 273, 295
SCREEN , 273, 295-296

I N DEX 485

Screen editor , 2, 94-97, 2 1 1
Screen memory, 1 02- 1 03
Scro l l ing , 1 28- 1 30, 1 66
SEC, 233 , 250, 255
SECOND, 273, 296
SED, 2 3 3 , 250, 255
SEI, 233, 25 1 , 255
Serial port (I E E E-488), 262, 33 1 , 333 , 362-

366, 432-433
SETLFS, 273, 297
SETMSG, 273, 298
SETNAM, 273, 298-299
SETT lM, 2 7 3 , 299-300
SETTMO, 273 , 300-30 1
SGN function , 34, 83 , 1 09, 3 75
SH I FT key, 4, 30, 72 , 74, 94, 96-97, 1 68 ,

220
S ID ch ip prog ramming, xiv, 1 83-208
SID chip specifications , 457-48 1
S I D ch ip memory map, 223-328
S INe function, 34, 83 , 375
Sound waves , 1 86- 1 87, 1 92- 1 96
SPaCe function, 27, 34, 83-84, 336, 375
Spr ites, x , xiv, 99- 1 00, 1 3 1 - 1 49, 1 53- 1 82
Sprite d i splay priorities, 1 44, 1 6 1 , 1 79
Sprite positioning , 1 37- 1 43 , 1 57- 1 6 1 , 1 77
Squa re Root function , 34, 84, 375
STA, 22 1 , 233, 25 1 , 255
Stack pointer , 2 1 4 , 222
STATUS function , 34, 84-85, 354, 375
Status register , 2 1 4 , 354
STEP keyword, (see FOR TO), 34, 86
STOP, 273, 3 0 1
STOP command, 3 4 , 4 1 , 8 6 , 3 7 5
STOP key, (see RUN/STOP key)
String arrays, constants, variables , 5 , 7-9
String expressions, 1 0, 1 7
String operators, 1 0 , 1 7
STR$ function , 34, 87, 375
STX, 233 , 25 1 , 255
STY, 233, 252, 255
Subroutines, 222, 228-229, 270, 307

486 I N DEX

Subtraction , 3, 1 0- 1 1 , 1 6
Susta in , (see AiD/S/R)
SYS statement, 34, 87, 1 2 1 , 307, 375

TAB function , 27, 34, 45, 88, 336, 375
TANgent function, 34, 88, 375
TALK, 273, 301 -302
TAX, 233, 252, 255
TAY, 233, 252, 255
THEN keyword, (see I F THEN), 34
TIME functio n , 34, 89, 375
TlME$ function, 34, 89, 375
TKSA, 273, 30?-303
TO keyword, (see FOR TO), 34
TSX, 233 , 253, 255
TXA, 229, 233, 253, 255
TXS, 233, 253, 255
TYA, 229, 233, 253, 255

UDT I M , 273, 303
U N LSN , 273, 303-304
U NTLK, 273, 304
User port, 355, 359-362
USR functio n , 34, 90, �07, 375

VALue function , 34, 90, 375
VECTOR , 273, 304-306
V E R I F Y command, 34, 9 1 , 3 75
Vibrato , 203
Voices, 1 87- 1 9 1
Volume control, S I D, 1 86

WAI T statement, 1 3- 1 4 , 34, 92, 375

XOR , (see WAIT statement), 1 3- 1 4
X index register, 2 1 3 , 223-224

Y index register , 2 1 4 , 223-224

Z-80, (see CP/M)
Zero page, 2 2 1 -222, 358-359

COMMODORE 64 QUICK REFERENCE CARD

$lMfU VA.IASI.fS

Type Nome Range

Real XY :!: 1 .701041 18JE+38

:!: 2.93873588E- 39

Integer XY% :!: 32767

String XY$ 0 to 255 characters

X is a lener (A-Z), Y is a lener or number (0-9). Variable names

can be more than 2 characters, but only the first two are recog­

nized.

A.RAY IASI.fS

Type

Single Dimension

Two-Dimension

Three-Dimension

Nome

XY(5)

XY(5,5)

XY(5,5,5)

Arrays of up to eleven elements (subscripts 0-10) con be used

where needed. Arrays wi,h more than eleven elements need 10
be DIMensioned.

ALGEBRAIC OPERATO.S

= Assigns value to variable

- �egation t bponentiotion

• Multiplication

I Division

+ Addilion

- Subtraction

RElAItONAL AND LOGICAL OPERATORS

Equal

< > Not Equal To

Less Than

Greater Thon

< = Len Than or Equal To

> = Greater Than or Equal To

NOT logical "No'"

AND logical "And"

OR logical "Or"

bpressian equals I if Irue, 0 if false.

SYSTEM COMMANDS

LOAD "NAME" loads a program from 'ope

SAlE "NAME" Saves a program on tope

LOAD "NAME" ,8 loads a program from disk

SAlE "NAME" ,8 Saves a program to disk

VERIFY "NAME" Verifies that program was SAVEd

.UN

RUN xu

STOP

END

CONT

PEEK(X)

POKE X,Y

SYS IOOlXX

WAIT X,Y,Z

UsR(X)

without errors

Executes a program

ElI:ecutes program starting at line

Holts executian

Ends execution

Continues program ell:ecution from

line where program was halted

Returns contents of memory

location X

Changes contents of location X

to value Y

Jumps to e"ecute a machine Idnguage

program, storting at �
Progrom waits until contents of

location X, when EORed with Z and

ANDed with Y, is nonzero.

Pones value of X to a machine

language subroutine

EDITING AND FOIMRTlNO COMMANDS

LIST

LIST A-B

REM Menage

lA&(X)

Lists enlir. program

Listl from line A to lin. B

Comm.nt m ... og. can be lilt.d bvt

il ignor.d during program cution

U .. d in PRINT stot.m.nll. Spac •• X

polnionl on scr_n

SPCIX)

POS(X)

PRINTs X blanks on line

Relutnl current cursor polition

CLR/HOME Positions curK)r to left corner of

screen

SHIFT CLR/HOME Clears screen and places cursor in

"Home" position

SHIFT INsT/DEL Inlerts space at currenl cursor

position

INsT/DEL Deletel chorOCler at currenl cur.or

position

CTRL When uled with numeric color key,

selects text color. May be u.ed in

CRSR Keys Moves cursor up, down, left, right

Commodore Key When used with SHIFT ,elec15

between upperl.lower case and

graphic display mode.

When used with numeric color key,

selects optional text color

ARRAYS AND STRINGS

DIM A(X,Y,Z)

LEN (XS)

sTRS(X)

�l(X$)

CHR$(X)

AsC(X$)

lEFTS(AS,X)

RIGHT$(A$,X)

MID$(A$,X, V)

Sets mOll:imum sub.cripts for A;

reserves space for (X+ l)·(V+ I)·(Z+ 1)

elements starting at A(O,O,O)

Returns number of characters in X$

Returns numeric value of X,

converted 1 0 a string

Returns numeric value of AS,. up to

first nonnumeric character

Returns ASCII chorocler whose code

is X

Returns ASCII code for f"st

character of XS

ReTurns tehmoS! X characters of AS

Returns rightmou X characters

of A$

ReTurns Y characters of A$

Slorting aT character X

INPUT/OUTPUT COMMANDS

INPUT A$ OR A PRINTs '?' on .creen and woits for

user '0 enter a string or value

INPUT "ABC";A PRINTs message and waits for user

GET A$ or A

DATA A,"8" ,C

to enter value. Can also INPUT A$

\,\bits for user fa type one­

character value; no RETURN needed

Initializes a set of values Ihol

can be used by READ Slotement

READ A$ or A Assigns nell:t DATA value to A$ or A

RESTORE Reset.s data poil'ller 10 .tort

READing the DATA lisl again

PRINT "A: ";A PRINh SIring 'A= ' and value of A

PROGRAM ROW

suppresses spaces - ',' lobs dOlO

to nell:t field,

GOTO X Branches 10 line X

If A=3 THEN 10 If assertion is true THEN ell:ecute

following port of statement. If

false, ell:ecute nexl line number

FOR A= I TO 10 heculel all ,tatemenls between fOR

STEP 2 : NEXT and correlponding NEXT, with A

NEXT A

GOsUB 2000

RETURN

going from I 10 10 by 2 , Slep size

is I unless specified

Defines end of loop. A is optional

Bronchel to lubroutine Ilorting at

line 2000

Marks end of subroutine. Returns to

stolemenl following mas' recent

GOSUB

ON X GOTO A,B Branches 10 Xth line number on

li1l. If X - I branches 10 A, etc.

ON X GOSUB A,B Bronch.s to subroutine ot Xth lin.

number in lill

Commodore's user magazi nes

Fun, Games and Beyond with Commodore
Home Computers
Published quarterly i n March, lune, September and December, POWER/
PLAY is devoted solely to the exciting and rapidly expanding world ut
Commodore home computing. I t provide, valuable intormatiun un new
products, applications, games, programming techniques, learning·at·
home, telecommunications and just about anything else Commodore hume
computer users need to know to get maximum enjoyment out oi their
home computing experience. Subscription price: $10.00lyear.

FILL OUT AND MAIL TODAY

Name Phone __________ _

Address __________________ _

City State Zip ___ _

Computer mode l : _________________ __

o Address Change. Enter new address above & enclose
present mai l ing label

o Renewal subscription

o New subscription

The Microcomputer Magazine

Widely read by educators, businessmen, students and home computeris!>,
this bi·monthly publication provides a vehicle for sharing exclusive product
information on Commodore systems, programming techniques, hardware
interfacing, and applications for the wide range of Commodore's products.
Each issue cuntains features of interest to anyune that uses, or is thinking
about purchasing Commodore equipment. Get the must uut of your micro·
computer with Commodore Magazine. Subscription price: $lSJlO/year.

GET MORE I NFORMATION FOR YOUR MONEY
Please sign me up for :

_year(s) o f POWER/PLAY at $10.00/year

_year(s) of COMMODORE at $15.00/year

Canadian and Foreign : POWER/PLAY $15.00/year ; COM­
MODORE $25.00/year

o Enclosed is my check or money order for $ _____ _
(Make payable to COMMODORE BUSINESS MACHINES, INC.)

o Bil l me
o Charge my VISA or MasterCard (circle one)

Card number I I I I I I I I I I I I I I I I I I
Expiration date ________________ _

Mail to: Commodore Business Machines, Inc .
Magazine Subscription Department
100 Pine Street Holmes, PA 1 9043

	img000
	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312
	img313
	img314
	img315
	img316
	img317
	img318
	img319
	img320
	img321
	img322
	img323
	img324
	img325
	img326
	img327
	img328
	img329
	img330
	img331
	img332
	img333
	img334
	img335
	img336
	img337
	img338
	img339
	img340
	img341
	img342
	img343
	img344
	img345
	img346
	img347
	img348
	img349
	img350
	img351
	img352
	img353
	img354
	img355
	img356
	img357
	img358
	img359
	img360
	img361
	img362
	img363
	img364
	img365
	img366
	img367
	img368
	img369
	img370
	img371
	img372
	img373
	img374
	img375
	img376
	img377
	img378
	img379
	img380
	img381
	img382
	img383
	img384
	img385
	img386
	img387
	img388
	img389
	img390
	img391
	img392
	img393
	img394
	img395
	img396
	img397
	img398
	img399
	img400
	img401
	img402
	img403
	img404
	img405
	img406
	img407
	img408
	img409
	img410
	img411
	img412
	img413
	img414
	img415
	img416
	img417
	img418
	img419
	img420
	img421
	img422
	img423
	img424
	img425
	img426
	img427
	img428
	img429
	img430
	img431
	img432
	img433
	img434
	img435
	img436
	img437
	img438
	img439
	img440
	img441
	img442
	img443
	img444
	img445
	img446
	img447
	img448
	img449
	img450
	img451
	img452
	img453
	img454
	img455
	img456
	img457
	img458
	img459
	img460
	img461
	img462
	img463
	img464
	img465
	img466
	img467
	img468
	img469
	img470
	img471
	img472
	img473
	img474
	img475
	img476
	img477
	img478
	img479
	img480
	img481
	img482
	img483
	img484
	img485
	img486
	img487
	img488
	img489
	img490
	img491
	img492
	img493
	img494
	img495
	img496
	img497
	img498
	img499
	img500
	img501
	img502
	img503
	img504
	img505
	img506
	img999

