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Here we briefly discuss how negative numbers, or “negative probabilities”, can naturally arise
in probabilistic expressions and be given an operational interpretation. Like the use of negative
numbers in arithmetical expressions, the use of negative probabilities can have substantial practical
value. Indeed, some of the ideas discussed here have led to stochastic simulation algorithms that
require much less memory than the best classical algorithms known to date [arXiv:1906.00263].

The idea of negative numbers in probabilistic ex-
pressions, or “negative probabilities”, arose in quan-
tum physics [1–3]. More recently, some authors [4, 5]
have explored the formalization of negative probabil-
ities in a classical context by adding a bit of infor-
mation, τ = ±1, that essentially attach a type to each
sample generated, qualifying it as an actual sample
(τ = +1) or an anti-sample (τ = −1). Anti-samples
can be represented, for instance, by the same type
of object representing the stochastic variable under
consideration, e.g. a coin, but with a different color.
The key point is that samples and anti-samples in the
same state anihilate each other, i.e. they are both re-
moved from the ensemble simultaneously.

Here we briefly discuss how negative probabilities
could be understood as probabilistic expressions rel-
ative to another reference probabilistic expression.
Moreover, we argue that it is not always necessary to
work with a duplicated sample space as in Refs. [4, 5].
Rather, negative probabilities can in some cases be
interpreted as corrections that need to be applied to
a reference ensemble to transform it into a target en-
semble. Or, equivalently, as corrections that need to
be applied to a single sample, generated according to
a reference probability distribution, to transform it
into a sample generated according to a target proba-
bility distribution.

Unnormalized probabilistic expressions could also
be given a simple operational interpretation as refer-
ring to intermediate ensembles with a number of sam-
ples different from that of a target ensemble. Such a
different number of samples can be associated to the
replication or removal of samples. At some point we
have to add or remove further samples (equivalently,
add anti-samples) to recover the actual number of
samples of the target ensemble.

Aiming at practical applications, here we try to
discuss these ideas in a hopefully intuitive way, us-
ing examples as simple as possible, without worrying
about the abstract formalism underneath. We do not
claim any mathematical rigor. Indeed, in some of
the sampling methods we discuss there may be errors
that happen with a small probability as long as the
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number of samples generated is large enough. Our
main purpose is to bring awareness of the potential
benefits of working with negative probabilities. We
leave a more rigorous presentation for future work.

Essentially, signed and unnormalized probability
distributions allow for an operational interpretation
of linear algebra manipulations on probability distri-
butions, without imposing the usual constrains that
all the numbers involved should be in the interval
[0,1] nor that all expressions need be normalized.
Feynman [3] had some early intuition on this possi-
bility, building on a comparison to the standard use
of negative numbers in arithmetical expressions. In-
deed, negative numbers in arithmetical expressions
remind us of our “deterministic” debts, i.e., fixed
debts without stochastic variations. Similarly, neg-
ative probabilities can remind us of our “statistical
debts”.

Let us first discuss the case where signed proba-
bility distributions can be considered as relative to a
reference probability distribution. Consider a biased
coin which, when tossed, lands heads or tails with
probability 1 − p and p, respectively. So, the coin is
described by the probability vector

Pcoin = (1 − p
p

) =Rcoin +Ncoin, (1)

where

Rcoin = 1

2
(1
1
) , (2)

Ncoin = 1 − 2p

2
( 1
−1

) , (3)

and the first and second entries of the vectors involved
refer to heads and tails, respectively. The right hand
side can be formally understood as an abstract change
of basis. We have introduced this change of basis to
show that it can also be interpreted in probabilistic
terms, even though there are negative numbers in-
volved.

Indeed if we multiply Eq. (1) by a large natural
number M , we can interpret each of its terms as an
ensemble of M coins. The vector MPcoin would de-
scribe the original ensemble ofM biased coins. We re-
fer to this as the target ensemble. The vector MRcoin

would describe a flat ensemble of M unbiased coins,
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i.e., distributed uniformly at random. We would refer
to this as the reference ensemble. The vector MNcoin,
which has negative numbers, can be interpreted [6] as
corrections that should be applied to the flat reference
ensemble of unbiased coins, MReff , to recover the
original ensemble of biased coins, MPcoin. The nega-
tive numbers can be interpreted as referring to anti-
samples instead of samples, as done in Refs. [4, 5].
Alternatively, we can give an interpretation as tran-
sitions that samples from the reference ensemble un-
dergo from states associated to negative entries in
Ncoin, here tails, into states associated with positive
entries in Ncoin, here heads. A detailed example of
this alternative approach can be found in Ref. [6].

For concreteness, let us assume that 1 − 2p > 0. To
generate an ensemble of M biased coins, described
by MPcoin, we can first generate an ensemble of M
unbiased coins, described by MRcoin. Afterwards we
need to generate on average M(1−2p)/2 new coins in
state heads and remove the same number of coins in
state tails, so the ensemble remains with M coins—
this is manifested in that the sum of the entries of the
vector Ncoin is zero. We can implement this process
via transitions that samples undergo from states as-
sociated to negative entries in Ncoin, here tails, into
states associated with positive entries in Ncoin, here
heads. More precisely, by fliping coins in state tails
with probability 1−2p, we can transform MRcoin into
MPcoin [6] (cf. Fig. 4 and Sec. III B 1 therein). Since,
on average half of the coins in the reference ensem-
ble, MRcoin, are in state tails, this process flips on
average M(1 − 2p)/2 coins as expected.

We can interpret signed probability distributions
like Ncoin = Pcoin −Rcoin as probabilistic expressions
encoding the stochastic behavior of the original sys-
tem, described by Pcoin, relative to a reference proba-
bility distribution, Rcoin. In other words, the signed
probability distribution Ncoin describes a stochastic
dynamics of samples that are added to and removed
from the reference ensemble MRcoin. In this sense,
MRcoin could be considered analogous to the Dirac
sea [7] in relativistic quantum mechanics, which al-
lows anti-particles to be interpreted as holes in it. If
M is large enough, the probability to remove all sam-
ples from the reference ensemble is very small. Alter-
natively, such dynamics can be described as transi-
tions of the samples in MRcoin from a given state,
associated to negative numbers in Ncoin to another
state, associated with positive numbers in Ncoin as
we discussed above (see also Ref. [6]). In this case
the number of samples remains constant.

These ideas can in principle be generalized to any
probability distribution, P, and any reference prob-
ability distribution, R or conditional probability dis-
tributions. In the latter case we apply the same tools
to each probability distribution that arises from fix-
ing the conditioned variable to a given value [6] (see
Sec. III C 2 and Appendix A therein).

Let us now discuss the case where the signed
probability distribution can be considered as relative
to a reference unnormalized probability distribution.
Equation (1) can also be written as

Pcoin = R̃coin + Ñcoin, (4)

where

R̃coin = 1 − f
7

(4
3
) , (5)

Ñcoin = f (−3
4
) , (6)

and f = (7p − 3)/25. Equation (4) can also be for-
mally interpreted as an abstract change of basis dif-
ferent from that in Eq. (1). We introduce this new
change of basis to show that it can also be inter-
preted probabilistically, even though the reference ex-
pression, R̃coin, is not normalized in this case, unless
f = 0.

Indeed, although the vector R̃coin contains only
positive entries, their sum is 1 − f = 1 + (3 − 7p)/25,
which is equal to one only when p = 3/7. However,
if we multiply Eq. (4) by a large natural number M ,

we can still interpret R̃coin as a reference ensemble
of (1 − f)M coins distributed according to probabil-

ity vector (4/7,3/7). The entries of the vector Ñcoin

add up to f , so it compensates for the different num-
ber of samples in the reference ensemble, MR̃coin, by
adding (if f > 0) or removing (if f < 0) a number
∣fM ∣ of coins.

For concreteness, let us assume p < 3/7, so f < 0.
To generate an ensemble with an average number of
M coins distributed according to Pcoin we can first
generate a reference ensemble with (1 − f)M > M
coins, distributed according to the probability vector
R̃coin/(1 − f) = (4/7,3/7). The vector Ñcoin can be
interpreted as removing on average −4fM > 0 coins
in state tails (assuming there are enough), associated

to a negative entry of Ñcoin, and adding on average
−3fM > 0 coins in state heads, associated to a pos-
tivie entry of Ñcoin. Besides recovering the original
bias of the probability vector Pcoin, this would remove
an average number of −fM coins from the reference
ensemble, MR̃coin, leaving on average only M coins
as expected. In case, of an extremely large devia-
tion of the ensemble MR̃coin such that there are no
enough coins in state tails to remove, we can remove
those available and afterwards remove coins at ran-
dom until we get down to M coins. This is a rare
event with a very small probability as long as M is
large enough.

Although our focus has been on the ensemble level,
these ideas can also be applied iteratively, sample by
sample. An example is the general memory-enhanced
stochastic algorithm recently introduced in Ref. [6]
(see Fig.5, Sec. III C 2, and Appendix A therein).
This example deals with the case where the target
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and the reference probabilistic expressions are condi-
tional probability distributions. The case where the
reference expression is an unnormalized probability
distirbution requires that we introduce a probability
of replication and removal of samples. This makes the
use of the sample/anti-sample formalism [4, 5] more
convenient in this case, at the expense of duplicating
the sample space.

For instance, to generate a sample from Pcoin based
on Eq. (4) we can first generate a sample according

to the probability vector R̃coin/(1 − f) = (4/7,3/7).
Afterwards, with probability ∣f ∣ < 1 we can replicate
the sample (if f < 0) or remove it (if f > 0). Were we
to repeat this process M times we would obtain an
ensemble of (1−f)M samples, on average, distributed

according to R̃coin/(1 − f). However, this is not our
aim as we still need to take into account the vector
Ñcoin. So, with probability ∣3f ∣ < 1 we add (if f < 0)
or remove (if f > 0) a sample in state heads. Similarly,
with probability ∣4f ∣ < 1 we remove (if f < 0) or add
(if f > 0) a sample in state tails. If at some point in
this process there are no samples to remove, we create
an anti-sample in the corresponding state This anti-
sample will anihilate along with a new sample in the
same state as soon as the latter appears. In principle,
we can also deal with this case without the need of
anti-samples along the lines of Ref. [6]. It is not clear,
though, this would be the case when ∣f ∣ > 1, where
we would need to replicate or remove samples, or add
anti-samples, more than once at each step.

More generally, given a generic probability distri-
bution P, we can define a signed probability distri-
bution Ñ = P −R̃ relative to a non-negative reference
vector or function R̃. This reference function may or
may not be a probability distribution depending on
whether it is normalized or not.

Finally, let us discuss the more general case where
the signed probability distribution need not necessar-
ily be relative to a reference probabilistic expression.
Equation (1) can also be written as

Pcoin = Ñ (1)coin + Ñ
(2)
coin, (7)

where

Ñ (1)coin = ( 2
−p) , (8)

Ñ (2)coin = (−1 − p
2p

) . (9)

Here there is no non-negative expression that like
Rcoin in Eq. (1) or R̃coin in Eq. (4), respectively, can
be interpreted as a normalized or unnormalized ref-
erence probability distribution. However, Eq. (7) can
still be given a probabilistic interpretation.

Indeed, by multiplying Eq. (7) by a large natural
number M we can interpret each term as a general-
ized ensemble made up of samples and anti-samples.
The vector MPcoin would represent the original en-

semble of biased coins. The vector MÑ (1)coin would

represent an ensemble containing on average 2M sam-
ples in state heads and Mp anti-samples in state tails.

Similarly, the vector MÑ (2)coin would represent an en-
semble with, on average, M(1 + p) anti-samples in
state heads and 2Mp samples in state tails. The sum
of these two vectors in Eq. (7) anihilates pairs of sam-
ples and anti-samples in the same state, leading to the
original ensemble MPcoin.

To apply these ideas iteratively, sample by sam-
ple, we can take the absolute value of all entries in
each expression Ñ (1) and Ñ (2) [4, 5]. The sign tells
us whether the corresponding entry corresponds to a
sample or an anti-sample. In this way, Eqs. (8) and
(9) become

∣Ñ (1)coin∣ = (1 + 2f1) [
1

2 + p (2
p
)] , (10)

∣Ñ (2)coin∣ = (1 + 3f2) [
1

1 + 3p
(1 + p

2p
)] , (11)

where 0 ≤ f1 = (1 + p)/2 ≤ 1 and 0 ≤ f2 = p ≤ 1.

To generate a sample or anti-sample from Ñ (1)coin, we
first generate a sample from the probability vector in-

side square brackets in Eq. (10), i.e., ∣Ñ (1)coin∣ /(1+2f1).
If we get heads or tails we save the sample generated
as a sample or anti-sample, respectively. Further-
more, with probability f1 we generate two replicas of
the sample or anti-sample saved. Were we to repeat
this process M times we would get an ensemble with,
on average, M(1 + 2f1) =M(2 + p) generalized sam-
ples, i.e. an average of 2M samples in state heads
and Mp anti-samples in state tails. This is precisely

the ensemble described by MÑ (1)coin.
However, this is not our aim as we still need to take

into account vector Ñ (2)coin. Instead we now generate
a sample from the probability vector inside square

brackets in Eq. (11), i.e., ∣Ñ (2)coin∣ /(1 + 3f2). If we

get tails or heads we save the sample generated as a
sample or an anti-sample, respectively. Furthermore,
with probability f2 we generate three replicas of the
sample or anti-sample saved. Were we to repeat this
process alone M times, we would get an ensemble
with, on average, M(1 + 3f2) = M(1 + 3p) general-
ized samples, i.e. an average of 2Mp samples in state
tails and (1 + p)M anti-samples in state heads. The
sum in Eq. (7) implies that, taking into account the
two processes above, samples and anti-samples in the
same state anihilate each other.

Now, any signed expression, i.e., vector or func-
tion, can be written as the substraction of two

non-negative expressions. So, terms like Ñ (1)coin

and Ñ (2)coin in Eq. (7) could be interpreted as
(un)normalized probability distributions relative to
other (un)normalized reference probability distribu-
tions.

In principle, we can extend these ideas to gen-
eral probabilities P and multiple expressions Ñ (α),
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where α is a suitable index. A common example,
pointed out by Feynman [3] (see Eqs. (4)-(6) therein),
is the solution, p(x, t), to the one-dimensional diffu-
sion equation with absorbing boundary conditions.
Indeed, if p(x, t) = 0 at x = 0 and x = π the solution
to the diffusion equation can be written as

p(x, t) =
∞

∑
k=1

Pk sin(kx)e−k
2t, (12)

where Pk are suitable coefficients and we are assum-
ing the diffusion coefficient is D = 1. Here we can
take

Ñ (k)(x) = Pk sin(kx)e−k
2t. (13)

The expressions Ñ (k) are interesting in that they
have a relatively simple dynamics, i.e., their spatial
shape remains constant except for their amplitude,
which decay exponentially fast. By associating the
negative values of Ñ (k)(x) with anti-samples and as-
sociating its lack of normalization with replication or
removal of samples, we can in principle give a proba-
bilistic interpretation to this quantity along the lines
discussed here.

There may be situations where it is convenient to
work with approximations to a probability distribu-
tion. For instance, we could truncate the series in
Eq. (12) or neglect Rcoin in Eq. (1). As suggested by
Eq. (1), this situation can lead to signed probability
distributions like Ncoin = Pcoin −Rcoin. A situation of

this kind arises in quantum mechanics, for instance,
in the so-called two-level atom approximation. In-
deed, a non-relativistic atom interacting with a radi-
ation field can be described in terms of a non-negative
transition kernel [8, 9] associated to a so-called sto-
quastic Hamiltonian. Such an infinite-dimensional
kernel can be written in terms of the countably infi-
nite eigenfunctions of the associated Hamiltonian op-
erator. However, truncating the Hamiltonian opera-
tor to only two eigenfunctions, i.e., two energy levels,
leads to an effective two-dimensional transition kernel
with some negative entries, which is associated to a
so-called non-stoquastic Hamiltonian [8, 9] (see, e.g.,
Appendix E in Ref. [8]).

As suggested by the memory-enhanced stochastic
algorithm introduced in Ref. [6], the use of nega-
tive probabilities can have substantial practical value.
This algorithm is based on the case where the signed
probabilities can be interpreted as relative to a prop-
erly normalized probabilistic expression, i.e., the sta-
tionary state of a Markov chain. This is the case
associated to Eq. (1). It is not clear to us what could
be the value of the more general cases illustrated with
Eqs. (4) and (7). Computing normalization constants
is one of the bottlenecks in sampling, e.g., in unsuper-
vised machine learning applications [10]. We wonder
if allowing for signed and unnormalized probability
distributions could lead to more efficient (even if ap-
proximated) sampling algorithms in those cases.
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