(7))
L
| .

o
—_—
((v]
c
:fU
St
Qo
L C
o

Similarity transformed equation-of-motion
coupled-cluster theory: Details, examples,
and comparisons

Cite as: J. Chem. Phys. 107, 6812 (1997); https://doi.org/10.1063/1.474922
Submitted: 15 May 1997 . Accepted: 28 July 1997 . Published Online: 31 August 1998

Marcel Nooijen, and Rodney J. Bartlett

MY

View Online Export Citation

ARTICLES YOU MAY BE INTERESTED IN

The equation of motion coupled-cluster method. A systematic biorthogonal approach to
molecular excitation energies, transition probabilities, and excited state properties

The Journal of Chemical Physics 98, 7029 (1993); https://doi.org/10.1063/1.464746

A new method for excited states: Similarity transformed equation-of-motion coupled-cluster
theory

The Journal of Chemical Physics 106, 6441 (1997); https://doi.org/10.1063/1.474000

Equation of motion coupled cluster method for electron attachment
The Journal of Chemical Physics 102, 3629 (1995); https://doi.org/10.1063/1.468592

of chemical physics 2018 EDITORS’CHOICE - /Eammowy

J. Chem. Phys. 107, 6812 (1997); https://doi.org/10.1063/1.474922 107, 6812

© 1997 American Institute of Physics.


http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/340425340/x01/AIP/HA_JCP_PDF_EditorsChoice_2019/JCP_18Banners_Digital_728x90.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.474922
https://doi.org/10.1063/1.474922
https://aip.scitation.org/author/Nooijen%2C+Marcel
https://aip.scitation.org/author/Bartlett%2C+Rodney+J
https://doi.org/10.1063/1.474922
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.474922
https://aip.scitation.org/doi/10.1063/1.464746
https://aip.scitation.org/doi/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://aip.scitation.org/doi/10.1063/1.474000
https://aip.scitation.org/doi/10.1063/1.474000
https://doi.org/10.1063/1.474000
https://aip.scitation.org/doi/10.1063/1.468592
https://doi.org/10.1063/1.468592

Similarity transformed equation-of-motion coupled-cluster theory: Details,
examples, and comparisons

Marcel Nooijen and Rodney J. Bartlett
Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435

(Received 15 May 1997; accepted 28 July 1097

The similarity transformed equation-of-motion coupled-clu$&FEOM-CQ method is presented

in full detail. Comparisons are made with the Fock space coupled-cl{iE82Q method and the
equation-of-motion coupled-clustdEOM-CC) scheme. The role of implicit triple excitations and,
relatedly, charge transfer separability in STEOM is discussed. The dependence on the choice of
active space in STEOM is addressed and criteria for the selection of the active space are given. The
evaluation of properties within STEOM is outlined and a large number of illustrative examples of
STEOM is presented. €997 American Institute of Physids$s0021-9607)02841-9

I. INTRODUCTION a STEOM calculation for excitation energies amounts to a Cl

. . singles calculation with modified matrix elements. This step
Recently we developed an alternative strategy to obtain & almost trivial and gives the scheme enormous computa-

manifold of electronig eigenstates f"‘t a given nuclear 9€0Mgonal and conceptual appeal: A large number of electronic
etry that proved particularly effective, yet accurafeThe states can be calculated at virtually no cost.
idea behind the approach is rather different from the conven- Moreover, since the transformed Hamiltonian is given in

tional wave function optimization approaches. In the Slmllar'second guantization the convenient block form holds for all

ity _ transformed gquatlon—of—motmn coupled-cluster go < in Fock space, correspondindNtoN+ 1, N=2 par-
(STEOM-CQ method? a sequence of two similarity trans- . T . .
ticles and so forth. Principal ionization energies are obtained

formations of the second quantized Hamiltonian is PEhy diagonalizing over the one hole configurations, electron
formed, such that the one- arntd selection of most impor- y diag 9 g ’

L affinities derive from diagonalization over the one particle

tant) two-body components of the new Hamiltonian that net : : : L .
. L _ configurations, while double ionization potentidfer ex-
increase the excitation level are transformed to zero. The firs . . .
- : ample to interpret Auger specjrare obtained by diagonal-
transformation in STEOM uses the singles and doubles con-. !

- ~ 2 - . . Izing over two hole determinants and so forth.
nected excitation operatdr=T,+ T, that is obtained from a

standard CCSD calculatichThe transformed Hamiltonian ".‘ the first appll'catllons of the STEOM'C.C. scheme we
considered the excitation spectra of the pyridine molécule

G =e*%|:|e%, 1) and free base porphinThe accuracy of the STEOM results
were found to be comparable to state-of-the-art methods like

is familiar from equation-of-motion coupled-clustEOM-  MRCI,%° CASPT23132 EOM-CC® and SAC-CIE435 while
CC) theory™" [or coupled-cluster linear response the computational requirements are much reduced compared
(CCLR®*% and has the property that one- and two-particleto the above methods. We also introduced the so-called
pure excitation operatorghe 1hip—2h2p operatorsin H ~ STEOM-PT method in which the CCSD coefficients were
vanish. In the second transformation we use a normal orreplaced by their first-order analogs, and which yielded very
dered exponential operato|{es}11 as introduced by satisfactory results for the pyridine molecule. The results for
Lindgren!? and which is familiar from Fock space coupled- free base porphin were less accurate, due to higher order
cluster theory>=2° The operatoS is determined such that a correlation effects needed for the description of the ground
selection of the most important remaining excitation operastate. In STEOM-PT the most expensive CCSD step is elimi-
tors ofhhhpandhppp form that net increase the excitation nated, which scales with the sixth power of the basis set. The
level by one, but which give a vanishing result when actingcalculation ofH matrix-elements also scales with the sixth
on the reference determinant, are transformed to zero. In thigower of the basis set, but contrary to CCSD, this step is
step we introduce a set of active orbitals. Only integrals thahoniterative. The formation ofl for larger systems is the
have an active quasi-particle annihilation operator are trangmost expensive step in a STEOM-PT calculation. The calcu-
formed to zero. lation of the S-amplitudes and the second similarity trans-

To a good approximation the final transformed Hamil-form scale with the fifth power of the basis set and this step
tonian G attains a block form that makes it very easy toscales linearly with the size of the active space. The final
extract a subset of its eigenvalues: Each subblock of theiagonalization step in STEOM scales with only the fourth
transformed Hamiltonian corresponding to a definite excitapower of the basis set. This favorable scaling was demon-
tion level can be diagonalized separately. It follows that ex-strated in our calculations on pyridine and free base porphin.
citation energies corresponding to dominantly singly excited  In STEOM many elements are combined that have their
states can be obtained by diagonaliziagver the subspace roots in various developments in open-shell coupled-cluster
of singly excited determinants. Operationally the final step intheory. The concept of many-body similarity transformations
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and a subsequent diagonalization of the transformed Hamito describe systems that have two electrons in two active
tonian over small subspaces goes back to Stolarczyk angpatial orbitals, or four electrons in three orbitals, i.e., two
Monkhorst?*=?* In a recent paper the use of many-bodyholes in a closed-shell configuration. Similarly the DEA
similarity transformations were revived and a number ofmethod can be used to describe systems that have two elec-
problems with the original formulation of Stolarczyk and trons on top of a closed shell. This includes a surprising
Monkhorst were resolvett. Specifically, it was shown that number of difficult transition states, bi-radicals etc. As an
the transformed Hamiltonian could be obtained without ex-example we will discuss the vibrational frequencies of
plicit use of the cumbersome inverse of the transformatiorozone, a notorious multireference problé‘r’r‘f.2

operator{eS}. In addition we allowed for the use of a subset  In Sec. IV we further discuss the relation of FSCC and
of active orbitals which is necessary to make the approac®TEOM with particular emphasis on theleoof the active
practical. Furthermore, the intimate relation between thepace. If the active space is exhaustive the two methods will
Stolarczyk—Monkhorst approach and the Fock spacdive identical results, although the numerical convergence
coupled—cluster method developed by Lindgren, Mukherjeehehavior of the two schemes will be different. We provide a
and other¥14151923y35 demonstratelt. The idea of many- direct comparison of the two methods by considering the
body similarity transformations has also been the basis for &-tetrazine molecule using the same computational param-
simple and general formulation of spin-adapted open-shekters as in an earlier FSCC calculatiBrthe dependence of
coupled-cluster theorf, which is yet to be implemented. STEOM results on the size and character of the active space
Another important aspect of STEOM derives from theis illustrated with a calculation of the excitation spectrum of
relations between STEOM and FSCC on the one hand, aridhe CO molecule.
EOM-CC theory for the IP- and EA-sectors on the otfet In Sec. V we compare the STEOM-CC and EOM-CC
This allows us to formulate all steps in a STEOM calcula-methods for excitation energies. In STEOM there is an im-
tion, except for the initial solution of the CCSD equations, asplicit contribution from “disconnected” triple excitations if
eigenvalue problems. This is stable numerically and has imwe transform back to the EOM picture. This triple contribu-
portant advantages over the solution of nonlinear equationon has been considered by Meissner and Balfiétt a
as in FSCC. comparison of FSCC and EOM-CC, and they suggested a
In this paper we give a detailed exposition of the dressing of the EOM-CC method to incorporate this efféct.
STEOM method for excitation energies, doubly ionized andnterestingly, STEOM and EOM-CC can be viewed as dif-
doubly attached states. A number of subtleties in the formuferent approximations to this dressed EOM-CC method. An
lation of STEOM will be addressed. The relationship with important motivation to consider the triples correction was
other developments in open-shell coupled-cluster theory wilthat FSCC(and also STEOM eigenvalues and right-hand
be clarified and illustrated with numerical results. The out-eigenvectors satisfy the proper separability conditions, since
line of this paper is as follows. they are fully linked, extension theories, EOM-GG6r its
In Sec. Il A we present a derivation of the amplitude CCLR twin) does not. In particular the excitation energies in
equations. We start from the point of view of the many-bodyFSCC/STEOM are charge transfer separable. By this we
similarity transformation, and provide the connection with mean that in the limit of a system consisting of two nonin-
amplitude equations in FSCC and the eigenvalue problemteracting closed shell subsystems, the excitation energy of a
of the IP-EOM-CC and EA-EOM-CC methods. We also dis-charge transfer excitatioffrom one subsystem to the other
cuss the Tte of active orbitals in this section. In Sec. Il B we is precisely equal to the sum of the relevant electro-affinity
present detailed formulas for the matrix elements of theon one subsystem and the ionization potential on the other.
transformed Hamiltonian at the orbital level. Due to the truncated CI structure this charge transfer separa-
In Sec. Il we present the first applications of STEOM to bility is not satisfied in EOM-CC. We illustrate these con-
doubly ionized and doubly attached states. The DIP-STEOMepts by considering the charge transfer excitation from Be
scheme can straightforwardly be used to interpret Augeto C, at large separation of the Be ang @oieties. Triple
spectra, and we discuss an elementary application to the HEorrections to EOM-C&~>!have been shown to be impor-
molecule. DIP-STEOM also provides a means to obtain théant also for less exotic systems, in particular, for valence
ionized states of doublet radicals. In this case we start fronexcited states. To gauge the effect of triples we make a com-
the closed shell anion and delete two electrons to arrive gtarison between STEOM and EOM-CC for the, NH,O,
the cation states. As an example we discuss the ionized stataad G molecules for which full Cl results have recently
of the F-atom which are obtained as the doubly ionized statelseen presentett.We also discard the triples correction from
of the closed shell F anion. The double attachment schemeSTEOM and compare results from the resulting “STEOM-
can be used to calculate excitation spectra of open-shell syso-T” model to EOM-CCSD results.
tems like oxygen or the carbon atom, which in their ground In Sec. VI we discuss the evaluation of properties and
state have two open-shell electrons out of a closed shell cortransition moments in the STEOM framework, using the
figuration. convenient biorthogonal expectation value approach that has
Both the DIP- and DEA-STEOM method show greatbeen used in the equation-of-motion coupled-cluster
promise to be applicable to systems that require a traditionahethod® We compare STEOM results with EOM-CC results
multireference descriptioft:*° The DIP method can be used for the CO molecule, and also consider excited-state proper-
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ties calculated as energy derivatives through finite differencene- and two-body pure excitation operatorslflnto zero,
techniques. and this leads to the familiar CCSD equations

Our findings are summarized in the final section. hai:<q)ia|H|q)0>:<q)?|e7THeT|q)o>:Oy -
hapij=(P5"|H|®o)=(DF"e THe |dg)=0.

1. SIMILARITY TRANSFORMED

EQUATION-OF-MOTION COUPLED-CLUSTER
THEORY (STEOM-CC)

The constant terrh, in the normal ordered representation of
H equals the coupled-cluster energy

In this section we will discuss and derive the STEOM o= {PolH|®0)=(®ole” THe|dg)=Ecc. ©)
equations at various levels. In the first subsection we willln equation-of-motion coupled-cluster theory the trans-
discuss the ideas behind the approach and the amplitudermed Hamiltonian is diagonalized over a suitable set of
equations in general terms. We will also show how the ameonfigurations to obtain ionized;®® attached? or excited
plitudes for the second transformation can be obtained fronstate$. The transformation serves two purposes. First the
IP-EOM-CC and EA-EOM-CC eigenvalue problems and adiagonalization space can be more compact than in a corre-
suitable normalization. In the second subsection we provideponding CI calculation: Only one excitation level beyond
detailed equations for the transformed matrix elements at ththe states of interest needs to be included in the diagonaliza-
orbital level. tion space. Second the method yields size-intensive results

Some remarks about notation are in order. The orbital$or energy differences like excitation energies and ionization
are partitioned into occupied orbitals, j, k, |, unoccupied potentials. Both properties ultimately derive from the fact
orbitalsa, b, ¢, d, while general orbitals are denoted g, that A
r, s. In addition active occupied orbitals will be labeled (H—Ec0§®0)=[H,3™]|0), (7)

n, while active virtual orbitals are indicated ley f. Finally
we will use a prime to indicate orbitals that are explicitly
inactive, i.e.,i’, j’ anda’, b’.

which in turn can be attributed to the vanishing pure excita-
tion parts inH. The commutator form provides the relation

with propagator and equation-of-motion formulations, and a
A. Amplitude equations possible representation of the theory in terms of connected

In STEOM-CCSD theory we perform a sequence of twodiagrams=>*® This statement refers to the one- and two-
many-body similarity transformations, such that the most imParticle Green’s functions or propagators associated with
portant one- and two-body net-excitation operators in the€OM-CC, not to the perturbation series for the excitation

resulting transformed Hamiltonia@ vanish. The first trans- energies AEEemselves, Wh'Ch do contain d|_sconnected
formation is familiar from equation-of-motion coupled- diagrams’*“® The latter, unlinked, terms do not violate the

cluster theory and is given by e>_<te_nsivity of second-or(_jer properties for extendgd systems
A T within EOM-CC theory in the so-called quadratic motfel,
H=e THe . (29  or CCLRT, but do violate charge-transfer superability for
excited state’

In similarity transformed equation-of-motion coupled-
cluster theory(STEOM-CQ we perform a second similarity

T=T,+T,=2 ta'l}+; X t"ahn’), (@ wansform
i,a i,j,a,b

- | G={e% 'H{eY, ®
where the brackets indicate normal order with respect to a _ _ -
predetermined reference determinhp). Given the ampli- where the transformation operator consists of two p8rts

tudes of the operatdF the transformed Hamiltonian can be =S +S~

Xpr in normal ordered, second quantized form using : 2 - P onTin Al 4n
e matti clements | i I S-gE -3 e 3 snahl),
new matrix elements = able

The operatoFAI' consists of single and double pure excitation
operators

2 T ata T ataata 9
H=ho+ 2> hpolp'al+5 X hporl P78}
p.q p.q.r,s and
— o tmngntn S =S/+S;=> SMHmy+1} SHETUTS
+% hpqrstu{pTSthrTU}‘l““ . (4) 1S, ;:‘n ! { e i,mE,b,j g { Ji
p,q,r,s,t,u ’ (10)

The matrix elements dfi consist of products of amplitudes As mentioned before the indices ande denote active in-

of the operatofl and matrix-elements of the original Hamil- djces of the hole and particle type respectively, while a prime
tonian H. The so-called EOM Hamiltoniai®°% contains  denotes a restriction to orbitals that are not active. The cor-
three- and higher-body operatdts to six-body components responding operaton®’ andé give zero when acting upon

in the singles and doubles approximatioand the one- and the reference determinafthey are called quasipartici®r
two-particle components gﬂ are well documented in the g-) annihilation operatods The presence of-annihilation
literature®>>* The operatoiT is determined by equating the operators irSs implies that different components 8fin gen-
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obtained by solving EA-EOM-C® eigenvalue problems

¢ s D T Q (corresponding to states Wit + 1 electrongy while simi-
‘S) ’; X i . larly, the amplitudes that defin® are obtained by solving
b | o X x  x for ‘a number of -eigenstates of the IP-EOM-CC
- - - x x Hamiltonian®®®* corresponding to states witN—1 elec-
O trons.

Rather than using the invergeS} ' the transformed

FIG. 1. STEOM-CC: Diagonalize doubly similarity transformed Hamil- HamiltonianG is solved from the linear equations

tonianG over excited determinants. X’s indicate matrix-elements of normal
magnitude, while the blocks indicated by~ acorrespond to small three- A 2

. . . A . . {es}G—H{eS} (13)
particle interactions irG, or “inactive” two-body operators. - ,

which has been showhto be equivalent to

eral do not commute, and for this reason we use a normal ({eé}é)c=(|f|{eé})c (14)
ordered exponential, in which ajtannihilation operators by

definition are moved to the right. The basic bookkeepingor

mechanism in many-body theory amounts to writing prod- o A R

ucts of operators in normal order and starting from normal ~ G=(H{e%).— ({e5-1}G)c, (15)
ordered operators therefore generally simplifies equations.

Once the amplitudes of the operatBrare determined one where the subscrigl denotes a restriction to connected con-

can obtain the transformed Hamiltoni&nin second quanti-  tributions. The components @ that are required to vanish

zation (and as always, normal order can be extracted by projecting against a suitable set of Slater
determinants
G=qgn+ gL+ L pirgtal+--- | -
Qo+ 2 Gpel P03 2 Gpar(PTTES) Gonr = (D1, G| =0,
11

~ .= b A~ =
where now the matrix-elements & are (congectehj prod- Ymbij <®J'|G|q)m> 0.

ucts of matrix elements df and amplitudes o§. The trans-

formation with the operatofeS} preserves the zeros for the
pure excitation componentg,;=gapi;=0, independent of 9 <(I)ba|G|(De> 0,
the coefficients 08.*! In additiongo=ho=Ecc. abel™

The equations that determine the amplitudesSoére  where in defining the two-particle components we used that
obtained by equating the corresponding element$sofo  contributions from the pure creation parts@fvanish, due to
zero, hence the solution of the CCSD equations. The first two equations

involve projecting onto a space of inactivéh land Zhl

Omi =Gare=0,  Gabe;=Gmbij=0- (12 configurgtiojns or?the left anF()j activéh eterminants on E[)he
Obviously, the number of coefficients to be determinedright. The third and fourth equation involve the and 201h
equals the number of equations. The vanishing of the twospaces. These equations can be summarized as
particle components dB, having ongactive g-annihilation .
operator is very useful, as thereby the coupling of an excited (Q*|G|P*)=0, (17)

determinant to more highly excited determinants is strongly

reduced. The transformed Hamiltonian assumes a block forfyhere the projection manifolds are implicitly defined. Let us
as indicated in Fig. 1. emphasize that due to then/lp character of the manifold

The transformed Hamiltonian is evidently non- P* only (normal ordereficomponents ofc contribute that
Hermitean, and simplifications only occur in the lower trian- have precisely ong-annihilation operator of hole or particle
gular block of the Hamiltonian matrix. Neglecting the type respectively. Substituting ELS) for G, the right-hand
matrix-elements in the lower triangle allows us to extract aexponential H{eS})c can immediately be linearized, and
subset of the eigenvalues & to good approximation by split according to components.
diagonalizing over a subspace corresponding to one particu- . N R
lar excitation level. (QF|H+(HS")c— ({e5-1}G)|P*)=0. (18)

The vanishing of the one-particle components in Eqg.

(12) is of no particular relevance, since they do not provide arhe left-hand exponenual{(eS 1}G)C|P ) requires some
coupling to more highly excited determinants anyway. Thefurther manipulation. We know that only componentsGof
reason for the inclusion of the one-particle operatoBjris  can contribute that have one actigeannihilation operator.
that the nonlinear Eq(12) can then be cast into an eigen- But all of these operator components are equated to zero,
value problem, which tends to be more stable numericallyexcept those that excite within tHe-space. Hence we can
We will show below that the amplitudes that defié are  write

(16
=(®%|G|®%)=0,

J. Chem. Phys., Vol. 107, No. 17, 1 November 1997



6816 M. Nooijen and R. J. Bartlett: Equation-of-motion coupled-cluster theory

({e°-1}G)clP*)={e~ 1}[P*)(P*|G—golP*) Up=(®5 R |P0) =1 @)
=§t|pt><pt|é_ EcdP™) The amplitudes of the 0perat0§f are then obtained as
=S7[P*)(PT|H+(HS™)—EcdP7). <c1>ki|é1|c1>g>=; (DR [ @YU 2. (28)

19

Writing explicit equations for the IP and EA amplitudes we

The constantyy,=Ecc has to be subtracted to ensure thefind

connectivity of the expression. In the final line we use that
(P*|({e5-1}G)c|P*)=0, (20 Si==2 1 Mrm T2 0n (29

since S always excites out of the active space. Collectingan d
terms we find

(Q|A+(HS%)o|P*)—(Q*|S*|P*) s2'=§ 2 (D, s?:=§ rP3O0r g (30)

X(PZ|(H+(HS")c—Eco)|P™)=0. @D The extra minus sign for the IP-coefficients derives from the
The above equation is identical to the Fock Space coupledextra contraction over the hole line in evaluating the left-
cluster (FSCQ equations for the IP- and EA-sectors that hand side of Eq(28). The matricesr;p1 are to be interpreted
have been derived by Mukherjee and Lindgegral1214151°  as the coefficients of the inverse of the matrix constructed
The relation between the many-body similarity transforma-from the principal, active components of the eigenvectors
tions and FSCC theory has been addressed in general inrg(\).
previous papet! Sinhaet al®’ on the other hand, showed The question arises to what extent the approach depends
the relation between FSCC for the IP and EA sectors an@n the choice of active orbitals, and to what extent the ap-
coupled-cluster linear response thedGCLRT) or equiva-  proach is unique. In the above derivation we showed that the
lently equation-of-motion coupled-clustglEOM-CC) for  transformation operatoB that satisfies Eqs(15) and (16)
these sectors. This relation is most easily obtained by multiean be obtained by solving for a number of eigenvectors of
plying Eq.(21) on the right with a matrixJ “ in the P-space  the IP- and EA-EOM-CC problems and a normalization con-
that diagonalizes the effective Hamiltonian dition. Surprisingly, any selection of eigenvectors is pos-

A N sible. They do not need even correspond to principal IP’s and

Herr=(P~|G—EcdP™) EA's. This arbitrariness is directly related to the nonlinearity

=(P*| g+ (ﬁét)c_ EcdPY). (22) of the defining Eq(16), which allows for multiple solutions.
This issue has been discussed in detail by Meis$nidnw-
Hence ever, for the STEOM approach to be useful the three-particle
<Pi||f|+(|f|éi)c_ECC|Pt>Ut components ofs should be small, and therefore so should
L the amplitudesS,. This implies that we will want to use
=U*E*(Q*|H+(HS*)c|PH)U* eigenvectors of the EOM-CC eigenvalue problems that cor-
N respond to principal IP’'s and EA’s. The notion of principal
=(Q7|S*|PT)UTE™. (23)  eigenvectors is related to the validity of Koopmans’ theorem.
Defining If the MO picture of ionization or attachment breaks down,

R R we expect also a breakdown of the STEOM concepts. In
[PSYUx 4+ ST |PH)UL =R, | Dg). (24)  practice the selection of a definite set of principal EOM-CC
eigenvectors is fairly straightforward, and we note that the

We obtain the EOM-CC eigenvalue equations EOM-CC results onlyslightly) depend on the choice of ref-

<q),f|(|f“if)c|®o>: (‘Dﬂ&ﬂ‘bo)Ef (25)  erence state. They are invariant under a rotation of vifiral
occupied orbitals among each other.
or The second freedom in the definition of the transforma-
(fb,ﬂ[ﬁﬁf]@o):(@ﬂ&ﬂ@o)lff (26) tion concerns the normalization condition and this depends

on the selected active space. Let us emphasize that this
The energy eigenvalues in these equations correspond dihoice is independent of the selection of EOM-CC eigenvec-
rectly to the energy differences, i.e., ionization potentials andors. The choice of active orbitals is a delicate subject. They
electron affinities. The EOM-CC eigenvalue equations fordetermine the matrix inverse in Eq9) and (30) and in
the EA and IP sectors are well documenté®>"*'To ob-  order to minimize the magnitude &, it is advantageous to
tain the amplitudes of the operatSrwe solve for a number select a space of active orbitals that has maximum overlap
of principal ionization potentials and electron affinities andwith the selected EOM-CC eigenvectors. Canonical Hartree—
the corresponding eigenvectoRs . The matricesU™ are  Fock (HF) orbitals are an excellent choice in this respect. On
defined as the model componelit®rresponding to the ac- the other hand the active orbitals, or better, the active space,
tive orbital9 of the vectorsR; , hence determines precisely which transformed two-electron matrix

J. Chem. Phys., Vol. 107, No. 17, 1 November 1997
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elements are transformed to zero. This determif®@some e will work with the transformation generated @éz}_

exten) the remaining coupling that is not taken into accountthe transformed Hamiltonian will henceforth simply be
when diagonalizings over a small subspace. In this context cajled G.

one would like to define an active space such that the final The matrix-elements that are needed in STEOM only
STEOM eigenvectors can be well represented within the aCGrequire one and two-body componentsGf having at most
tive space and contain only a very small component outsidgyq Jines at the top. This further simplifies our equations
the active space. In this sense canonical Hartree—Fock virtu@|nce there are no contributions from the second, so-called

orbitals are often a poor choice to describe excited states, asormalization term in Eq.15). The equationgexcept the
the Hartree—Fock virtual orbitals are often too diffuse. <

. ) ) amplitude equations fo®, included below are based upon

It is clear that there is some tension between the two- ar 5

requirements, and we have not found a convenient solutioﬁ’_’( I{e })C', detailed . for th q

for this potential problem yet. Presently, we usually define  B€/OW We give detailed expressions for the second quan-
the active space as a selection of canonical Hartree—Fodi¢ed matrix-elements o6. Because the reference determi-
orbitals. The computational expense of STEOM depend§ant is assumed to be closed shell, the labels in these equa-
only slightly on the magnitude of the active space, and thig_ions correspond to spatial orbitals, and the_ spin-integration
allows us to use rather extensive active spaces, such that tiealready carried out. All two-electron matrix-elements are

active component of the STEOM eigenvectors usually exdiven in 1212’ notation. One and two-particle matrix ele-
ceeds 95%. In Sec. IV we will return to the issue of active™ents of the EOM-Hamiltonian are denotedwsand the

orbitals and present numerical examples. expression for the matrix-element depends on the particle-
To summarize this section treamplitudes can be ob- hole character of the labels. The matrix elements in spin free
tained from the EOM-CC eigenvectors for the IP and EAformat, precisely as they are used here, are documented in
sectors corresponding to principal ionization potentials andRef- 54. Occasionally also the bare Hamiltonian matrix ele-
electron affinities. TheéS~ components can be obtained by Mentsv are used. Matrix-elements @, denotedg, are
writing the IP-EOM-CC eigenvectors in anti-intermediate defined over the complete set of orbitals. In addition we de-

normalization w.r.t. to the active space, while & ampli-  fine intermediates: that will always contain one or more
tudes are obtained by writing the EA-EOM-CC eigenvectorsactive labels. The matrix-elements Gfare most easily con-
in intermediate normalization. structed in terms of these intermediates. In addition to the

s-amplitudes defined before in terms of the EOM-CC eigen-

. o vectors we use symmetrizesdcoefficients.
B. Matrix elements of the transformed Hamiltonian

. . . _ 3 Mb=pgMb_gMb = g ab_pgab_gha, 33
We will show first that we will not need to consider the 4 R €l el el (339
one-particle components & To this end we note that The equations below were obtained using diagrammatic
. . technigues based on the Goldstone convention.
{e%2}{e%}={e%"%}. (31) One-particle elements:

This follows from Wick's theorem which states that the hh elements

product of two normal ordered operators is the normal or-

dered product of the two operators plus all possible contrac-  u,;= >, WS M~ >, Wigs M9, (34)
tions. It is impossible to contra®, to S, , since the lines at ke kl.d

the bottom ofS, correspond to active orbitals, while the lines

at the top ofS; correspond to inactive labels. Therefore only gki=Wki+§ SkmUmi » (39
the uncontracted term in Wick's theorem remains, which is

the content of Eq(31). It follows that the total similarity PP €lements

transform can be written as a sequence of two similarity

transforms Uae= X WicS okt > Waieds a (36)
-~ - PN R R R . k,c c,d,l
Ge={e%) e} MFife) ) = {e%) 1Gle’).
(32 gac:Wac+§ Scelae, (37)

Of courseét and éz have the same eigenvalue spectrum.

Moreover the transformation witheSt} cannot change the NP elements
particle-rank of an operator. This follows immediately be- — md
cause contracting,; to any operator does not change the uma:—kZd WiiadS ki (39
particle rank. It does change the matrix elements, of course. v
The conclusion of the above is, however, that diagonalizing

~ . = . < Cd
G; or G, over a subspace that contains all excitatiGne- Uie c,sz WilcdS el » (39
spective of active or inactive labglsp to a certain excitation
level will lead to identical rgsults._ It is easier to calculétg, Gia=Wiat D Simlmat > UieBens (40)
and also subsequent manipulations are easier, and therefore m e
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ph elements
ga|:Wa|:O(CCSD qu (41)
Two-particle matrix elements:
hhhp elements
umlid:% (VjindS "= VijpaSi ). (42
ukmid:_% VjidbS]| (43
uklie:;) VkiabSie - (44)

Oklid = Wiiig T % (SkmUmiid T SimUkmia) T g Uklie Sed:

(45)

phpp elements
ualed:% (WjipgS Zjb_wjldbS:Jb)a (46)
Uaice= _% lecbsg?a (47)
Uamcd:%: WijcaSi o (48)

Galcd=Waicat z (UaiceSedT Ualeddec) + % SimUamcds

(49
hhhh elements
Umm:z SinWIb_l'E WieiS ik
b k,c
—kEC (WiqjcSik + WidicSk} ) (50)
b b ~
umnij:§b: Sir}] unb+§b: Sjni umb"'% UkncjS {EC
_% (UknjcsinllC_F uknicskmjc)a (51)
gklij:Winj"'% (SkmUmiij T SimUmkji)
+2 é\kmglnumnij- (52)
m,n
pppp elements
b —~
Uabed™ —El WipSe| +% WhkdcSak
b
_k (kacdsgﬁ"_wakcdsgk)v (53)

,C
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_ ab ba =< ac
uabef__El U|f5e|_§|: UjeSy) +% UpkfcS ek

- % (ubkcfsgﬁ'i_ uakcngE): (54)
Jabcd= Wapcdt 29: (Scelabedt dgeUpaed
+ ; 5ec5dfuabefv (55)

phph elements

_ ma ~ md md
uamci__zk Wi cSik +|§;4 WajcdS i —IZ; WajdcSi|

+; WiiciSIk s (56)
_ ~ad d
uakei__Ek: chSZiCJFIE;J WikdiS ai _IE(; WikidSe|
d
+E Wakcdsgi (57)
c,d
_ ~ ad
uamei_g um(.sgf_Ek ukesinlza"'% UimdiS 2I
d
_% UimidSa| +§4 UkleiSik s (58)
gakci:Wakci'l'Ze 5ceuakei+§ Omilamci
+Z 5e05kmuamei- (59)
em
phhp elements
_ b b d
ubmjc__Zk WSy ] +§ WiicjSki _% WibedSk|
(60)

_ db d db
ubkje_g Wkdsej+§ kad(,sgj_% WikjaSer »  (61)

— db mb mb
ubmje_E umdsej_Zk UkeSk;j +§ UkiejSki

d

—% ulmdegIb! (62)
gbkjc:kajc+§e: Ubkje5ce+§n: OkmUbmic

+;n 5km5ceubmje- (63)

J. Chem. Phys., Vol. 107, No. 17, 1 November 1997



M. Nooijen and R. J. Bartlett: Equation-of-motion coupled-cluster theory

6819

The following elements can be used to define the ampliTABLE I. Auger spectrum of the HF molecule.

tude equations foB. These equations are equivalent to the

IP-EOM-CC and EA-EOM-CC equations, respectively.
hhph elements

_ = md ch < md
gjidm—WjibmJF% WipdjS ki _g ti] kZd WiicdS ki
md md mb
- WipjdSi| - WibiaSkj +> Wiiij Ski
d kd ki
mb mb md
—% Wi Skj —El W Sj) +§ WpdS;j

_Z gmnsir}d- (64)

In terms of the transformed matrix elementsgofthe ampli-
tude equationgwhich involve the transformation witl$;)
read

gmw—Z Wk’i’skmf+2
K’ n

m n
gmn_z Wk/nSk,)Si,:O,
k/
(65
m nd m _
gjidm_E Wjidk’Skr_z Sij Wk'nSyr =0,
Kk’ n,k’

pphp elements
_ = ad ab < cd
gbaje_WbajeJ"E WibdjS el -> ty; > WiedS of
Id K ¢,d,l
ad ch cd
_% WibjdSe| _% WalcjSel +§ WabcdSel

ch ad ab
+ Wacsej+§ Wbdsej_El WS
C

+ Z sire. (66)

State DIP Excitation energy w.ris -

Sym Char. TDA STEOM TDA STEOM  MRCI
8% 172 55.72  47.82

IA 172 58.07  51.00 2.35 3.18 3.0
I 307771 5767 5127 1.95 3.46 3.4
s+ 172 59.30 52.44 3.58 4.62 4.6
1 30 YMa ! 5992 5430 4.20 6.48 6.3
D 3072 63.33  59.08 7.71 11.26 11.2
S 20 M7 ' 7964 7001 23.92 22.19 22.1
53t 207'307! 8155 73.38 25.83 25.56 25.5
I 207%7t 8855 79.72 32.84 31.90 31.4

3From Ref. 68.

ourselves to the calculation of energies of the doubly ionized
states but we note that in assignments of Auger spectra the
intensities of the transitions play a cruciale@nd depend on
the particular site where the core-ionization takes place. This
provides very useful information and Tarantedtial #4°in-
troduced the concept of foreign imaging to explain these
phenomena. To illustrate the DIP-STEOM-CC method we
consider the HF molecule. In the calculations we used a
TZ2P basis sét%” and the HF internuclear distance is taken
to be 1.7329 a.u. To make the second transformation in
STEOM-CC we first calculate the ionization potentials cor-
responding to the @ (39.14 eV}, 30 (19.82 eV}, and It
(15.84 eV states. In Table | we show the results of a DIP-
TDA calculation using the bare Hamiltonian matrix elements
and STEOM-CCSD results using the doubly transformed
Hamiltonian. It is seen that STEOM and TDA results differ
by 4—10 eV. In a recent papg&rthe Auger spectrum of HF
was obtained at the MRCI level. The energies of the doubly
ionized states were given with respect to the core-hole, as
actually measured when taking the Auger spectrum. To make
the comparison we report the excitation energies w.r.t. to the
3%~ ground state of the doubly ionized states. Our results
compare nicely to the MRCI results. Let us note that the final

Amplitude equations that are equivalent to the EA-EOM-ccdiagonalization in STEOM is over theh2configurations in

equations

r b! ’
ga'e"'z Wa’c’sg _Ef: (gfe+Wfb’Se )S? :Ov
¢ (67)

c’ ab, c _
gbaje+2 Whajc’ Se _E Stj Wicr Se =0.
c’ f,c’

Finally thepphhelements of5 vanish due to satisfaction of

the CCSD equations

Jaaii = Waaii= 0. (68)

This concludes the list of transformed one- and two-particl

matrix elements of5.

IIl. EXAMPLES OF DOUBLE IONIZATION AND
DOUBLE ATTACHMENT CALCULATIONS

HF, and this leads to diagonalization problems of very small
dimensions of the order of 1-10 determinants, for example.
Another possible application of DIP-STEOM-CC is the
calculation of ionization spectra of doublet radicals. In this
case we start from the closed-shell anion. The ground state of
the radical corresponds to the first ionized state of the anion,
of course, and from the double ionization potentials of the
anion we can obtain the ionization potentials of the neutral
radical. Doubly ionized states with at least one vacancy in
the HOMO correspond to principal ionized states of the neu-
tral, which can be either singlet or triplet states. As an ex-

g@mple we consider the F atom, using again the TZ2P basis

set. The 3 and 2 orbitals were taken to be active. Results
are collected in Table Il. The ionization potential of For
electron affinity of B is calculated to be 2.53 eV, compared
to the experimental value of 3.40 eV. The electron affinity of
the F atom is notoriously difficult to calculat®put we do

Calculations of double ionization potentials are immedi-not expect that this influences very much the calculation of

ately useful to interpret Auger specffaCurrently we limit

the ionization potentials of the F atom. As seen from Table Il
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TABLE Il. Photo-electron spectrum of the fluorine atom. TABLE V. Vibrational frequencies for ozone.
DIP-STEOM Harmonic Vibrational frequencies
o _— Geometry (cm™)
Excitation DIP-TDA PT CcC Expt.

2s22p* D 23.41 17.62 17.55 174 Method Basis rfe 9 @(a) @:(a) a3(b)
2s?2p* D 25.57 20.64 20.58 20°0 ccsp DzZP 1.263 117.4 1256 748 1240
splitting 2.16 3.02 3.03 2% 2R-MRCP DzZP 1.261 1165 1235 761 1338
2s?2p* 1S 27.61 23.34 23.27 230 2R-AQCC DzP 1.292 116.1 1070 694 1070
2s2p°® °P 46.34 37.81 37.78 379 CCSDT DZP 1.286 116.7 1141 705 1077
2s2p® P 55.25 47.95 47.92 471 DIP-STEOM DzZP 1.286 1159 1108 718 932
splitting 8.91 10.14 10.14 &2 CCSDT cc-PVTZ 1.274 116.8 1163 717 1117
s22p° 2P (EA) 4.19 2.46 2.53 3.40 DIP-STEOM cc-PVTZ 1.274 116.0 1135 715 1013

Exptd 1.272 116.8 1135 716 1089

aReference 74.
bExtracted from data in Refs. 68 and 74. “Reference 41.

bReference 42.
‘Reference 75.

STEOM-PT and STEOM-CC results are found to be in ex- References 76 and 77.
cellent agreement, while agreement with experiment appears
better for the triplet states than the singlet states. The im-
provement of DIP-STEOM over DIP-TDA results, which are ground state of the doubly charged cation contains signifi-
consistently too high is significant. Let us emphasize hereant double excitation character. At the CCSD level we find
that the ionized states of the F atom are described in the coefficient of—0.156 for the 2%— 2p? excitation while at
current scheme using orbitals for the closed-shellafom.  the MBPT level this coefficient has the value0.079. Re-
This means that large relaxation effects will be present thakatedly, the CCSD correlation energy-+s0.08639 a.u. while
have to be described by correlation. This in general is not &he second-order correlation energy-9.053 74. This be-
very efficient strategy. Taking into account the very smallhavior seems to be typical of doubly charged cations. The
configuration space in the final diagonalization step we exempty valence orbitals are low in energy and quite compact.
pect the results to be rather sensitive to the choice of referFhis leads to large correlation effects, and second-order per-
ence state. turbation theory is certainly not adequate to describe the dou-
Double electron attachment calculations can be used tbly charged cation, while CCSD seems questionable. On the
conveniently calculate excitation spectra of open-shell molother hand in the low-lying excited states th@rbitals will
ecules like oxygen, or atomic excitation spectra of, for ex-be doubly occupied and the troublesome excitation is absent
ample, carbon or silicon which have two electrons out of afrom the neutral states. It seems, therefore, that our scheme
closed shell structure. Adding two electrons to the Be conintroduces some artificial correlation in the treatment of the
figuration of C2* yields all low-lying excited states of car- excited states, making the problem harder than it needs to be.
bon as illustrated in Table Ill. Let us emphasize that incor-In addition, as in the DIP scheme we use orbitals that are
poration of both spin and spatial symmetry is trivial in this optimized for a state that differs by two electrons from the
scheme starting from a closed-shell parent state. In thetate we are interested in.
STEOM calculations we used Sadlej's POL1 basis'%and Both the DIP- and DEA-STEOM methods can be used
the 2p, 3s, 3p, 3d, 4s, and 4 orbitals were selected as to obtain very economical descriptions of traditional multi-
active orbitals. From Table Il we find a significant differ- reference situations. In the DIP scheme the parent state is a
ence between STEOM-CC and STEOM-PT results. Theelosed-shell determinant, but the acutal states of interest con-
tain two fewer electrons. This allows one to study cases that
qualitatively require a linear combination of determinants in
which in addition to a closed-shell “core” one has two elec-
tron in two spatial orbitals, or four electrons in three orbitals,
etc. At first, the partially occupied orbitals are filled com-
pletely, creating a di-anigh and the dynamical correlation

TABLE lll. Carbon excitation spectrum.

Double attachment schemes

Excitation TDA STEOM-PT STEOM-CC Expt?

2p? 3p 0.0 0.0 0.0 0.0 contributions are evaluated. In the final step an effective
2p? 1D 1.35 1.35 1.34 1.26  Hamiltonian is diagonalized over the two-hole configurations
2p? 153 . 2.81 3.36 2.77 2.68  with respect to the di-anion to obtain a qualitatively and
gggz 1; g'ig ;;Z ;32 ;'g’g quantitatively correct nondynamical correlated description of
2p3p 1P 757 8.60 8.40 gsa the neutral system. The DEA method can similarly be used
2p3p D 7.69 8.86 8.66 8.64 for cases that require distributing two-electrons on top of a
2p3p %S 7.88 9.08 8.86 8.77  closed-shell, hence two electrons in two spatial orbitals, or
2p3p °P 8.18 9.12 8.88 8.85  two electrons in three orbitals, etc. This in principle allows
2p3p D 8.46 9.46 9.23 9.00

the description of bi-radicalésinglets and triplets in a bal-
anced wayand a surprising number of chemical systems and
4Reference 74. transition states.

2p3p !s 8.88 9.86 9.55 9.17
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In Table IV the results are presented of the calculation of UF=GU:;
vibrational frequencies of ozone, a notorious and well stud- (69)
ied multireference probleft:*> The CCSD calculation is QFP=0—-U(Q+P)FP=UPFP=GUP.
based on the di-anion, a nonexistant species. This illustrateghe equations that determine the transformatiofor X) are
the mathematical nature of the procedure. The essence is th&juivalent to the so-called Bloch equation
one can access all important configurations by deleting two
orbitals from the di-anion determinant, and one can base the UHetP=GUP;  Heg=PGUP. (70)

definition of “excitations” and normal ordering on any state, In many-body language the transformation operator for

physical or artificial. the excitation energy sector can be defined eé‘(l'1 to
The definition of the orbitals that define the di-anion be preciseX — —<QF§{(1‘1)|P> because there iass{a con?rz(iction
determinant requires special attention since di-anion orbital P '

are too diffuse to be useful for the neutral. Here we usecﬁs)ver a hole fine, see Sec)lwhere
neutral Hartree—Fock orbitals, and defined the extra virtual -~
' == (L) — amy 3t Te
orbital that defines the di-anion using\d'~* potential’* S Z’ g«n Sei1a'em'i}. (71)
Results do not depend too critically on the precise scheme, L i i i
As seen from Table IV the DIP-STEOM frequencies and 1he restriction in the summation excludes cases in which

geometry compare very nicely to other highly correlatedbc’th a andi are active. In this alternative Bloch-equation
methods. The troublesome assymetric stretch frequency strategy to STEOM the total transformation for the excitation

is very sensitive to the basis set and improvement of théector can thefefore be represented as a sequence of similar-
basis set leads to higher frequencies. All quoted methods willY transformations

eventual'ly pvershoot, but the highly ef'fici.ent DIP-STEOM e%{eé(o,l)Jr“S<1,0)}{eé(1,1)}_ (72)
method is likely to be very close in the limit of a large basis
set. This presentation allows a direct comparison to FSCC. In

To summarize, relaxation effects will be important in FSCC the so-called wave operator is represented, not as a
DEA-STEOM and DIP-STEOM calculations, and it is prob- Sequence of normal ordered exponentials, but as one single
ably better to use a set of orbitals that is optimized in soméormal ordered operator
way for the states of interest. DEA-STEOM in addition ap- oA A S A A
pears to include some artificial correlation effects. We think {eT+80V+ SV} =eT{e*0V+ 810+ S, (73
that both methods can be improved by optimizing the parenand the amplitudes are determined from the Bloch equation
state (or closed-shell cluster coefficients explicitly for the as above, while eigenvalues are obtained by subsequent di-
state of interest. The theory behind such an open-shell C@gonalization of the effective Hamiltonian. If all orbitals are
scheme has been outlined in a previous pﬁ?)er. active results will be identical, since in both FSCC and

STEOM one simply diagonalizes the full effective Hamil-
IV. THE RELATION BETWEEN STEOM-CC AND FScc:  tonian. Likewise, if the active space is large enough STEOM
THE ROLE OF THE ACTIVE SPACE and FSCQ result_s will be wrtually identical, since we might

as well diagonalize over the active part of the transformed

As shown in Sec. Il thes-amplitudes in STEOM that Hamiltonian. However, we note that in practice it may be
define the second similarity transformation are identical tadifficult to solve the final Bloch equation in FSCC, since it
the FSCC amplitudes for the E@r (1,0 sectoy, and the IP requires a complete decoupling of the active and comple-
[or (0,1) sectol. Here we wish to establish the relation be- mentary spaces. Some of the higher lyifand noninterest-
tween STEOM and FSCC for the subsequent calculation oihg) states may well be near-degenerate with states in the
excitation energies, double ionization potentials or doublecomplementary space, leading to the so-called intruder state
electron affinities, corresponding to ttie 1), (0,2, and(2,00  problem. In STEOM we do not proceed via the Bloch equa-
sectors in Fock space, respectively. Let us focus on the exion but solve for the eigenvectors of interest directly. This is
citation energy sector, to facilitate the discussion. In STEOMnumerically a more stable procedure. Let us note here that
the procedure is straightforward. We simply diagonalize thaecently Meissnéf has shown that the intruder state problem
transformed Hamiltoniai® over the space of mono-excited in FSCC can be avoided by reformulating the final step as a
states(or 1lhlp configurations To make the connection similarity transformation in Hilbert space, and using the for-
with FSCC we view this diagonalization process in twomalism of intermediate Hamiltonians. STEOM and FSCC
steps’2 We partition the diagonalization space into an activecan also be compared for higher sectors in Fock space. In
space(determined by all excitations among active orbitalsthis case these methods differ more significantly, and the
only), denotedP, and the orthogonal complement within the STEOM procedure using a sequence of similarity transforms
restricted diagonalization spa€g Define a transformation can be expected to converge more quicKly.
matrix U=e*=1+ X, whereX=QXP. This defines a once From the above discussion it is clear that FSCC and
more transformed Hamiltoniaf,=U 1GU say, and we re- STEOM are very closely related methods, but we wish to
quire theQFP components to vanish, such that eigenvaluesemphasize that they are conceptually different. In the deriva-
can be extracted by diagonalizifgFP=Hg;. Hence we tion of FSCC, one imposes the so-called subsystem embed-
have ding conditions. Hence to calculate an excited state, one has
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TABLE V. Excitation spectrum ob-tetrazine: Comparison between FSCC than the triplet state@verage deviation 0.09 gVvand this is

and STEOM-CC. roughly reflected by the magnitude of the active component,
State FSCe STEOM-CC % active Exgf. which tends to be less in the triplet states. However, we note
there is no clear correlation between the magnitude of the

1
1/?3“ 2'421?1 g'ig gg?gﬁ; 225 active component and the deviation of the FSCC and
1By, 5.25 5.22 98.3% 4.43-5.40 To investigate further the te of the active orbitals in
1829 5.77 5.83 97.2% 3.88/4.06 STEOM we consider the CO molecule using Sadlej's POL1
P 583 5.90 97.9% basis séf at an internuclear distance of 1.1282 A. The
Bay 1.48 1.62 97.3% 1.69 hoi ¢ act iod orbitals i I ity clear f
i, 314 392 97.9% choice of active occupied orbitals is usually pretty clear from
3B, 3.97 4.02 92.6% the excitations under consideration. For CO theoBbital (at
3By, 3.99 4.10 91.5% 14.00 eV} and the Ir orbitals (at 16.84 eV are obviously
zgzu g-g? g-?g gg-igﬁ) needed in the active space. However, also therbital (at

2g . . 1% . . . .
N = 30 = a1 96.4% 19.63 eV plays a part in the dynamical correlation for in

particular the excited states bf symmetry. The numbers in
Reference 43. parentheses are ionization potentials at the IP-EOM-CC
level. The choice of active virtual orbitals is less clear cut.
Canonical Hartree—Fock orbitals make excellent approxima-
to solve for the ground state and several ionized and attacheghns for electron-attached states, but they are often too dif-
states to determine all the amplitudes. This procedure ifse for a compact description of excited states. This means
more or less imposed in order to have the same number @hat in terms of canonical Hartree—Fock orbitals often many
equations and parameters. However, the physics or the idefterminants are required to describe excited states, and con-
behind this approach has never been very clear in our opirsequently a large active space is needed in the STEOM cal-
ion. In STEOM, second quantized matrix elements of thegyjation. This can be seen in Table VI, where we gradually

transformed Hamiltonian are equated to zero, and this venpcrease the active space from 0 to 1 to 2 to 3 virtual orbitals
clearly reduces the coupling between determinants of differys poth o and # symmetry. In the final, almost saturated

ent excitation level, and allows one to diagonalize over small;culation the active space consists of six orbitale siym-
subspaces. The idea behind STEOM is transparent and goﬁ?etry, four pairs of orbitals ofr symmetry and one pair of

back to papers on Fock space coupled cluster theory by StQgitals of 5 symmetry. The effect of correlation and choice

1-24
Iarz;yk and Monléhogsgt. h i lavéla i th of active space on valence excitations, in general, is larger
S ment|C)fn|:eS£Cove dtSﬁ'ECOt:\\//Ie épcacle plays al "?ht € than on Rydberg excited states. In addition, excitations into
comparison o an —LL. In general, IN€ Mady, o \a1encer* orbitals only slowly saturate with increase of

ngiutge _of;he(z):é:tlvsacon;p% net;:; n tahl_e f'gﬁlhizE?'\g eX;'t:dg]Ee active space. It seems that an active component of over
siatesisag measure for quality CUVE SPaCe. Yoy is required in order to be converged within 0.05-0.1

most calculations we would like an active component of over_,, . . :
eV, in particular for valence excited states.

98%. This indicates that enlargement of the active space is . : . . . .
- . : An alternative to increasing the active space is a rotation
not significantly going to change the result. Let us emphasize

that the transformations in STEOM account primarily forOf the'vi.rtual orbitgls, such that they provide a more compact
) . . description of excited states. In the last two columns of Table
dynamical correlation. If the active component drops below TN_1. - e :
threshold it means, therefore, that dynamical correlation is’! W& US€ so-called/™" = virtual orbitals:” They are defined
missing. The T of the active space in STEOM is different by dlagona!lzmg the virtual-virtual blOCk.Of a Fqck-matnx
than in CASPT2 or MCSCF calculations where one often ic0"responding to thenHarFree—Fock density matrix scaled by
satisfied with an active character that is constant over th@ factor Ne;—1)/Ng. ™ This generates a more attractive po-
states of interest, but which can be as low as 70% or evelgntial and less diffuse virtual orbitals. The details of this
50%. potential do not seem very important, and we made the
To draw a numerical comparison between the STEONRbOVe simple choice because the new Fock matrix automati-
and FSCC methods we consider tuetrazine molecule at  cally has the same symmetry as the old one. Let us note that
the same geometry and using the same DZP basis set as{f}s definition of the virtual orbitals does not influence the
the earlier FSCC stud The active space, consisting of the CCSD, IP-EOM-CC, and EA-EOM-CC calculations, as long
six highest occupied and two lowest virtual orbitals, is also®s the same final states are considered. The precise definition
chosen to be identical. The ionization spectrum and electroff the virtuals determines which transformed two-electron
affinities of s-tetrazine is reproduced exactly in the current€lementsg,ye; are transformed to zero, and hence it deter-
STEOM-CC calculation, as should be the case. In Table \mines part of the remaining coupling to the doubly excited
we show the low-lying singlet and triplet states. The averag&onfigurations, which is not included in STEOM. The other
deviation between the two methods over 14 states is 0.07 e\part stems from three-particle interactions in the transformed
The STEOM-CC results fairly consistently fall a little above Hamiltonian which are neglected. Operationally the choice
the FSCC resultgthe 1B, state is the sole exceptipriThe  of orbitals only influences the normalization condition in the
singlet states agree a little bettaverage deviation 0.04 @V  determination ofS (see Sec. )l From Table VI we find that
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TABLE VI. Excitation energiegeV) for CO: Comparison of active spaces.

Active space

State Exc. 0 1° 2 3 FinaP 1 2

A MI(V) 5027 9.78 9.33 8.82 8.61 8.59 8.56 8.64

% active 0% 63% 92% 98.7% 99.1% 93.1% 95.0%
1E7(V) lm—2m 11.43 11.04 10.33 10.08 10.06 9.87 10.08
% active 0% 47% 86% 98.7% 99.1% 97.8% 98.2%
D 'A(V) lm—2m 11.57 11.19 10.47 10.24 10.21 10.00 10.22
% active 0% 48% 87% 98.8% 99.2% 97.3% 97.7%
B'=*(R) 5060 11.41 11.20 11.10 11.08 11.06 11.01 11.06
% active 0% 89% 94% 97.2% 99.6% 83.3% 97.3%
C'=*(R) 5070 11.79 11.77 11.61 11.62 11.56 11.71 11.60
% active 0% 1% 94% 97.4% 99.9% 21.4% 94.5%
E (R 50— 37 12.11 12.19 11.88 11.87 11.81 11.99 11.85
% active 0% 55% 94% 95.6% 99.2% 2.6% 96.6%
a 31(V) 502 7.32 7.06 6.57 6.37 6.36 6.34 6.41

% active 0% 35% 86% 97.5% 98.1% 96.4% 96.4%
a’ 33H(V) lr—2m 9.52 9.23 8.68 8.42 8.43 8.27 8.44

% active 0% 35% 78% 97.0% 97.6% 98.3% 98.9%
d 3A(V) lr—2m 10.50 10.18 9.58 9.34 9.33 9.18 9.35

% active 0% 40% 82% 97.7% 98.4% 98.1% 98.4%
e’37(V) lr—2m 11.23 10.86 10.22 9.97 9.96 9.80 9.98

% active 0% 45% 85% 98.6% 99.0% 97.8% 98.4%

#: No active virtual space.

b1a: Active virtual space: & 27 ; Canonical HF orbitals.

2a: Active virtual space: 6 tod? 2 to 3m; Canonical HF orbitals.

d3a: Active virtual space: 6-§ 2—4; Canonical HF orbitals.

°Final a: Active virtual space: 6-b1 25, 15; Canonical HF orbitals.

f1b: Active virtual space: & 2m; VN~! orbitals.
92b: Active virtual space: 6 tod, 2 to 3r; VN~ orbitals.

the active component usil’@\‘*1 virtual orbitals is increased If we substitute this parameterization into the Sclinger

appreciably for small active spaces. With two active virtualequation, multiply bye™ T and project on the space of singly

orbitals of o and = symmetry[column 2b)] the valence and doubly excited determinants we find
excited states are close to convergence, and this is reflected

by the active space component, which is well over 95%. E L S a
Interestingly, the excitation energies in columgb)lusually & (@y[H{eF} Pr] ()\):% (O{eHPHIFNE, .
lie below the converged energies. This is a little peculiar (75)
because it implies that the total energy of the excited state is

lower for the less accurate scherftiee ground state is unaf- Due to the satisfaction of the CCSD equatiasdoes not
fected. Evidently STEOM does not adhere even approxi-enter these equations. Expanding the normal ordered expo-
mately to a variational principle. In addition the active spacenential

component in column (b) is usually only slightly smaller

than in column ), while the difference in excitation en- 2 o a

ergy can be as large as 0.2 eV. Whereas the behavior usiré (Pr[HA+[PPHrIMN)

Hartree—Fock orbitals is very smooth, but rather slowly con-

vergent, the behavior using" ! appears more erratic, and A A

the active space component appears not to be a good mea- + 2, (®y|H{3S%}|OHr3(\)

sure for convergence. Evidently, more work needs to be done b

to select the active space in STEOM. For now we recom-

mend using Hartree—Fock orbitals and the active-space diag- =" (d,|1+ AS|<I>?)r?()\)EA _ (76)
nostic. ia
V. THE RELATION BETWEEN STEOM-CC AND EOM- If we define
CC: THE ROLE OF IMPLICIT TRIPLE
EXCITATIONS “
. . . 2 (@FfISIef O =riion, 77
The final wave function in STEOM can be written ia
P A= eTeSUD3 ra )+ eT|dVra(\). 74 and introduce a short-hand notation(\) for the combined
Y % (SO +ellg)rgn) (74 expansion coefficients the equation reads
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TABLE VII. Behavior of charge transfer excitation in BeC, with increasing interunit distance.

EEAIP+EA) (in eV)

R (A) —€?/R (eV) cis STEOM-CCSD EOM-CCSD A
5.0 —2.880 —2.868 —-2.931 -2.937 —0.006
8.0 —1.800 —1.793 —-1.797 -1.736 0.061
10.0 —1.440 —1.436 —1.438 —-1.375 0.063
100.0 —-0.1440 -0.1440 —-0.1440 —0.0799 0.064
1.000.0 —0.01 440 —0.014 40 —0.014 40 0.0496 0.064
10 000.0 —0.001 440 —0.001 440 —0.001 440 0.0626 0.064

zero. Excitations intgyg then correspond to ionizations, and

EL: (CDK||:||q)L>rL()\)+% (P[H{FSPHra(N) separate off from the eigenvalue problem. Similarly, to cal-
’ culate EA’s using an excitation energy code one adds one
=rx(N)E, . (78  occupied MO that is identically zero. Excitations from this

If we now assume that the coefficiemig\) are independent .MO into the V|rt.ual space amount to electron attachmgnt._ It
S clear that this scheme can be used for most excitation

parameters, to be determined, this equation is equivalent f
the EE-EOM-CCSD equations except for a triples correctionege\r/gy trrTi]eIihO(ijSI.d In Cras? olf trt]ﬁ EFP?EOOI\I/\IACCCC mentgocliz At\he
given by the second term. This triples correction leads to OoMeCCCr ylte SEEpISSI?Aeé/CSS ) -CCS[;LEHn a Cr :
modification (or dressing of the EOM-CCSD matrix- i esults. k- . 0 car re-
sponse theory does not satisfy charge transfer separability

elements and was proposed by Meissner and Baffiétt. h due to the ab ¢ trip| The d .
STEOM and EOM can both be related to the above dressed ' o Gu€ t0 the absence of triples. ihe dressing pro-

EOM equation. In EOM-CCSD the triple correction is ab- posed by Meissner and Bartf¥f° restores charge transfer

sent, in STEOM the doubles part of the eigenvector is opSeparability. The dressed EOM method reduces to the

tained from Eq(77), whereS is obtained from the [P-EOM STEOM method for the charge transfer excitations in the

: . . __case of large separation and STEOM is charge transfer sepa-
anq EA-EOM equations, .and the _elglenvalue problem is rCtable. Interestingly CIS is also charge transfer separable. The
stricted to the space of single excitations.

The relevance of the triple excitations becomes most evi[elevant IP's and EA's in this case are the Koopmans'’ val-
P ues, obtained by diagonalizing the Fock-matrix.

dent if one considers a model charge transfer excitation be- Let us consider an example of a charge transfer excita-

tween two separated fragments. In the limit that the frag"[ion for which the effect of triples can be expected to be

ments are at infinite separation the excitation energy reduceﬁ1 : :
NN . important. We consider the BeC, system inC,, symmetr
to the sum of the ionization potential GFEN"—EN) on b 2 3Y 20 5Y y

e where the Gunit is placed perpendicular to the axis connect-
one subsystem and the electron affinity (EEN*1—EN) at ¢ p berp

the other. The wave function becomes thatisymmetrizeg ;Z%Czﬁsagsp:r;&;;i?ol'gé gfa% dTvr\]/(Z l%én;e\r/nsjzcllf %%g'ss_

product .Of the fragment wave funcyons. If the ionized Stateboth C and Be. The ionization potential of Be is calculated as
's described by h and 2h1p determinants and the attached g 579 413 97 v at the IP-EOM-CC level, while the electron

state is described bypland 2o1h determinants it follows ffinity of C, is —2.752 260 97 eV at the EA-EOM-CC
that the analogous description of the charge transfer eXCite%vel In Tabzle VI We present the results from STEOM-

state requires up tolBp or triple excitations. We wiII'r.efer CCSD and EE-EOM-CCSD calculations for a variety of dis-
to the above property as charge transfer separability. Th'l;sancesR= BeX. The quantity of interest is the difference

property is assured by the fully linked nature of the diagrams
representing the excitation energy. Operationally it requires

that excited states, ionized states and electron attached states

are all calculated by precisely the same method. The charg'BLE VIl Excitation energieseV) for CO.

transfer excitation energy should satisfy STEOM
2
€ Stat Exc. PT CC CCnoT EOMCC Expt
EE=IP+EA- o, (79) e x¢ no P
AMI(V) 50—27 855 859 8.71 8.76 8.51

for large separatioR. The correction term accounts for the ! ?A’((V)) lg—27 991 1006  10.24 10.19 9.88
- : D A(V 17—27 10.05 1021  10.34 10.31  10.23

long range Coulombic interaction between two charged frag-
9 Ig o difficul lcul 9 I Ig BS*(R) 50—6c 11.01 11.06 11.13 11.16  10.78
ments. In practice it may seem difficult to calculate all rel- - IS*(R) 50—70 1155 1156 11.58 1164 1140

evant quantities at precisely the same level of approximation.g 1j(R) 5037 11.78 1181  11.82 11.84 1153

However for methods based on second quantization, IP’s anch *I1(V) 50—2m 627 6.36 6.55 6.41 6.32
EA’s can be calculated using a program to calculate excita—g’:E(*gv) 1m—27 845 843 8.61 8.47 8.51
; ; ) ; AV lm—27 925 9.33 9.52 9.46 9.36
tion energies. To calculate IP’s using t& code, one adds 3 (V) 1mo2r 984 996 1000 088

one “virtual molecular orbital” xo, which is identically
zero. So all transformed integrals involving this orbital are3As reported in Ref. 7.
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TABLE IX. Excitation energiegin eV) for H,O. Comparison with full Cl.

STEOM
EOM-
State EOM CCSDT- CCSD no
Sym. Char. CCsD 3 cca PT CCsD T FCP
21, 2al—3al 9.806 9.855 9.855 9.645 9.772 9.821 9.874
11B, 1b,—3at 7.375 7.426 7.427 7.243 7.343 7.391 7.447
11B, 2al—2p? 11.525 11.587 11591  11.400 11.520 11.546 11.612
11A, 1b;—2b? 9.122 9.185 9.187 9.036 9.132 9.164 9.211
Average error 0.081 0.023 0.021 0.179 0.097 0.056

3From Ref. 51.

between the excitation energy and the sum of the IP and thieiples is of the same order of magnitude as the replacement
EA. It is seen that the STEOM-CCSD result attains the lim-of CCSD coefficients with their first-order analogs. For
iting —1/R behavior very quickly. The same is true for Rydberg states the effect of triples is much less, and this can
EOM-CCSD, except that the asymptotic EOM-CCSD exci-be attributed to the fact that the EA-EOM-CC amplitudes for
tation energy lies about 0.064 eV above thethe corresponding attached orbitals have very littjglR
STEOM-CCSD=IP+EA limit. This is the charge transfer character. This immediately reduces the effect of triple exci-
separability error of EOM-CCSD in this particular case. Wetations for Rydberg states.
also included the CIS results, which show similar behavior ~ Above we addressed théleoof implicit triple excita-
as STEOM-CC. tions in STEOM-CC and this appears to be a nice feature that
In order to obtain a further estimate on the effect ofis important for the description of, in particular, valence ex-
implicit triple excitations in STEOM for “normal” excita- cited state$*®Let us note that in comparison to EOM-CC
tions we can discard the relevant terfgsadratic inS) from  or dressed EOM-CC other important effects are not consid-
the matrix elements oB. We label these results “STEOM- ered in STEOM-CC. As mentioned before we neglect the
CC-no-T”. One would expect the results from this approxi- three-body terms in the transformed Hamiltoni@nthat is
mate STEOM treatment to be closer to EOM-CC results thamesponsible for a remaining coupling between the singly ex-
STEOM results themselvef_et us note that discarding the cited determinants and double excitations. In the EOM-
triples does not have an effect on charge transfer separabilitpjcture this means that certain interactions in the doubles-
because in STEOM-CC-no-T we are still diagonalizing adoubles block that “couple the hole and particle” are absent.
connected Hamiltoniac over the space of single excita- In STEOM one might say the hole is correlated separately,
tions. Only the one-particle operators@contribute to the and the particle is correlated separately. Interactions between
asymptotic limit, and these are not affected by the approxithe two are absent in the doubles—doubles block of the ma-
mation) trix. Full coupling is present in the other blocks. This will of
As an example we consider again the CO molecule usingourse have an effect on the accuracy of STEOM-CC results.
Sadlej's polarized basis $8tat an internuclear distance of An estimate of the importance of full particle-hole coupling
1.1282 A. In Table VIl we compare STEOM-CC, STEOM- can be obtained from results from the dressed EOM scheme
CC-no-T, and EOM-CC results. It is seen that for the valences proposed by Meissner and Bartlett, but is not considered
excited states the inclusion of triples reduces the excitatiohere.
energy by 0.1 to 0.2 eV. For the singlet states the STEOM- It is interesting to compare the relative accuracy of the
CC-no-T results are consistently closer to EOM-CC, and weEOM-CC and STEOM-CC methods. At first glance EOM-
think this very clearly shows the effect of implicit triples in CCSD appears to be the more complete treatment, but the
the STEOM-CC method. For comparison we have also inimplicit inclusion of triples favors the STEOM approach. In
cluded STEOM-PT results, and it is seen that the effect obrder to eliminate basis set effects, experimental uncertain-

TABLE X. Excitation energiegin eV) for N,. Comparison with full CI.

STEOM
EOM-
State EOM CCSDT- CCSD no
Sym. Char. CCsD 3 ccs® PT CCsD T FCP
1Hg 30q— 17y 9.665 9.624 9.618 9.544 9.446 9.596 9.584
s 1m—1m, 10.465 10.345 10.336 10.373 10.368 10.581 10.329
1A, 1lm—1lmg 10.898 10.752 10.727 10.839 10.833 11.008 10.718
1, 20,— 1wy 14.009 13.826 13.786 14.026 13.981 14.083 13.608
Average error 0.200 0.077 0.057 0.156 0.166 0.232

% rom Ref. 51.
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ties and the issue of nuclear vibrations it is best to comparagree a little better with experiment. For Rydberg states the
with full CI calculations. We consider the,B, N,, and G  STEOM-CCSD and EOM-CCSD methods are usually very
molecules for which full Cl results for the excited states haveclose and triple excitation effects are less important. These
recently been reportett.In this paper Christianseat al®*  conclusions are in agreement with work that has been done
compared the CC3 method that includes a triple correction t¢o include triple excitation effects in EOM-CC and CCLR
CCLR (or EOM-CCSD excitation energies to FCI results methods, e.g., EOM-CCSDT| studie4® and CC3%%!
and these provide very useful benchmark results for our
present purpose. Here we include EOM-CCSDY+@sults
as well. Of course, precisely th_e same geometry and basis 3\9} THE CALCULATION OF PROPERTIES AND
is used and results for .the excitation energies are reported PR ANSITION MOMENTS IN STEOM
Tables IX—XI. The excited states for the water molecule are
all Rydberg like, and as before there is relatively little dif- The transformed Hamiltonian in STEOM is nonsymmet-
ference between EOM-CCSD and STEOM-CC while alsoric, as in EOM-CC, and therefore properties and transition
the effect of triples is moderate&compare CC3 or EOM- moments require both the leftt and right-hand
CCSDT-3 results and STEOM-CC-no-TReplacing the eigenstatés>°® Alternatively properties may be calculated
CCSD coefficients with their first-order MBPT analogs tendsas energy derivatives. The latter is more complicated com-
to lower the excitation energy by 0.1 eV. putationally, however, and demanding, if a large set of ex-
The excited states in Nare all valence like and conse- cited states is considered. Here we will limit ourselves to a
quently inclusion of triples lowers the STEOM excitation biorthogonal expectation value approach. Due to (he-
energies considerably. This is also true for CC3 or EOM-proximate blockform of G the right-hand eigenstates and
CCSDT-3 compared to EOM-CCSD. The description of theenergies can be extracted easily. However, this is not true for
ground state has only a minor effect on the excitation enerthe left-hand eigenstates. These states can be obtained ap-
gies. The'll, state of N has substantial double excitation proximately as follows. If we neglect three-body operators in
charactet" and is not very well described by either method. G, the matrix representation @& over the space containing

Even CC3 has an error of 0.18 eV. A little surprisingly, the reference determinant and single and double excitations
STEOM-CC and EOM-CC are in close agreement, implyingtgkes the block form

some kind of cancellation between the extra terms included A B
in EOM-CCSD and the missing triples correction. Gz( 0 D)'
The ground state of the dnolecule suffers from near
degeneracy problems and is difficult to describe. NevertheThe partitioning is assumed to be into a primary space
less excitation energies for both EOM-CCSD and STEOM- =reference determinant plus single excitatjoand a sec-
CCSD are in fair agreement with the full Cl results. ondary space that consists of doubly excited determinants. It
STEOM-PT fails completely due to its erroneous descriptioris easily seen that the right-hand vectors corresponding to the
of the ground state. Again triple excitation effects are con-primary space can be obtained as the right hand vectoks of
siderable. Let us note that in Ref. 51 in addition two doubly(this is the reason to do the transformajiofhe left-hand
excited states are described which cannot be obtained igsigenvectors satisfy
STEOM which is restricted to predominantly singly excited [LA=El,,

(80)

states. Triple excitation EOM-methods were developed ini- 1 (81)
tially to describe precisely such doubly excited st4fesnd 11B+1,D=El;—l,=(E-D) *(1,B).
provide dramatically improved results. We make the additional approximation that the doubles—

0.14 eV for EOM-CCSD, 0.19 eV for STEOM-PT, 0.12 eV Hartree—Fock orbital energies, as in second-order perturba-

for STEOM-CC, and 0.40 eV for STEOM-CC-no-T. InClu- +jon theory. In this way we obtain an approximation for the
sion of triples on top of EOM-CCSD as in the EOM- |eft hand STEOM states. Explicitly the left-hand doubles co-
CCSDT-3 method reduces the average error substantially tgficients for statex are given by

0.049 eV, while the average error for CC3 is 0.043 eV. From 1+P(a,i<b,j)
these comparisons a coherent picture emerges. The implicit If}b()\)=
triple correction in STEOM-CC is quite important for va-

lence excited states. Compared to our model STEOM-CC-

no-T approach excitation energies are often lowered by 0.1— - ; ROV Gijen + 17 (M) gjp
0.2 eV. Relatedly, for valence states EOM-CCSD excitation

energies are often a little higher than STEOM-CCSD enertet us mention here that due to the last term in 82) the
gies. In fact they are often quite close to the STEOM-CCHeft-hand STEOM vectors are not explicitly connected. As a
no-T results which tend to lie a little higher still. Compared consequence STEOM properties calculated as biorthogonal
to experiment, excitation energies in EOM-CC&ihd even  expectation values are not fully connected either.

full Cl) are often a little high, and this is partly due to basis  The matrix A has a further bIockforrrAz(gg). The

sets that are usually optimized for the ground state. STEOMSsingle excitation component of the left-hand excited-state
CCSD excitation energies for valence states therefore tend ®igenvectors therefore can be written as

2 Iico\)gcjab

ei+ej—ea— €p

. (82
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TABLE XI. Excitation energiegin eV) for C,. Comparison with full ClI.

STEOM
EOM-

State EOM CCSDT- CCSD no

Sym. Char. CCSsD 3 cca PT CCSD T FCP

I, 1m,— 30, 1.474 1.338 1.316  1.079 1.422 1.596 1.385

s 20,—30y 5.799 5.650 5.555 5.312 5.726 5.817 5.602

Average error 0.143 .048 0.058 0.298 0.081 0.213
3 rom Ref. 51.
0 b eAS2 C =6 eé2
NI d) ~(0 )= (0Ely, @  (HQTOET
A eSS A . 2O+ Nl a2y ...
and contain no component along the reference determinant. Q=0{e%}-S,Q =0+05,+0{; S;}+
The left-hand STEOM ground state is obtained from o AL AL
9 —S5,(0+0S,)—-++ . (90)

0 b Here we restricted ourselves explicitly to those contributions
(1,|1)( 0 d) =(0,b+1,d)=(0,0—I;=—bd™%, (84  toQ that enter the matrix elemefit|Q|R). Let us note that
althoughQ as expressed above is not explicitly a connected
while the doubles component of the left-hand ground state isperator, all disconnected contributions cancel precisely. If
given by Eq.(82) in addition to the standard first-order con- we write

tribution _ .
(L[=(L[(1-Sy),
gy TEP@IZBD (1 oo D
ij (0)= cite—caep |2 Vabij ™ £ i (0)Qcjan |§>=(1+ASZ+{%AS§})|R>.
The property can be evaluated as
= 13(0)Gijkp+12(0)gjp | - (89 ~
K (L|O|R). (92)
The right-hand vectors satisfy This formulation allows us to obtain properties as in the
Cl-like approximation to EE-EOM-CCSP,except for a
0 b\(rg br, ro triples correction given by
0 d =lgr. | E. (86) .
fof Afh/ Ah (Lol O[3S3}IRy). (93)

The singles component and the excitation energy are dete[( 5 note that the above analysis is strictly valid for one-
mined from the eigenvalue problem in the singles spaceyarticle operators only. Explicitly the equations for the

while the right-hand reference component is subsequentlgim‘:ﬂes and doubles amplitudes in the EOM picture read
determined asy=br,/E, or explicitly (for singlet states

Ta=rg,
ro:2% giarai/E- (87) ’Fﬁb:(1+ P(a|<—>bj)) ze riesg]b_% I'?nSin ’ (94)
Expectation value$(5> are determined in the STEOM pic- _ _ _
ture as P=12- 2 1550+ > 158, =13, (95)
c,j,b k,j,b
(L|{e§2}*1e*%6e%{e:°’2}| R):<L|{e:°’2}*10£{eA32}|R>. The triple correction may be evaluated through similar inter-
( mediates that are used to calculate the effective interactions

(see Sec. Il B Hence in the equations that determine the
In Ref. 11 a general prescription was given to calculate thegntributions to thephph and phhp integrals with two ac-
similarity transform of an arbitrary operator. Here we will tjve indices(u,me; and Um0 and the intermediates therein
make a connection with biorthogonal expectation values ifye replacew;j,p with |ﬁb to define two-particle quantities

the EOM picture. To this end we define damei @and dypmje and evaluate the triples contribution to the
o property as
Q={e%}'0{e™} (89) B
or <O>t:e,m2,a,i rﬁwoia(“'damie_ 2damed- (96)
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TABLE XII. Transition momentgin a.u) of allowed singlet excited states of CO.

STEOM
State PT ce ce CCnoT CCno T EOMCC
A1 0.0867 0.0863 0.0898 0.0861 0.0886 0.0867
Bt 0.0761 0.0436 0.0381 0.0436 0.0124 0.0059
cist 0.1928 0.2230 0.2483 0.2237 0.2404 0.2069
E I 0.0458 0.0532 0.0623 0.0534 0.0504 0.0494

aStandard approximation: The right-hand ground state is obtained from CCSD. The left-hand ground state is
obtained from EOMLambda equations STEOM left- and right-hand vectors. Triples correction included in
evaluation of transition moment.

PAs 2 except left hand ground state is obtained from STEOM.

As ? triplets correction to transition moment is not included.

9As © but triples contribution tdG is not included— different STEOM eigenstates.

Unless explicitly stated we do not include the triples correcing the EOM ground state with the more approximate
tion to excited state expectation values, since it is ratheBTEOM ground state has some effect, but overall the results
costly, while it cannot be expected to add much to the accuare fairly close. Comparing the results with EOM-CC transi-
racy considering our rather crude treatment of the left-handion moments we find fair agreement except for the first
eigenstates. Rydberg state of* symmetry. The precise nature of the
The evaluation of transition moments follows similar single excitation components depends strongly on the ap-
lines. We can define a STEOM left- and right-hand groundproximations used and this has a large influence on the tran-
state. The right-hand ground state is simply the referencsition moment.
determinant, while the STEOM left-hand ground state is dis-  In Table XIIl we present the dipole moments along the
cussed above. These states can be transformed to the EORolecular axis for the excited states of CO. In general, dipole
picture and transition moments are calculated as immoments are very sensitive to the degree of correlation and
EOM-CC. Preferably, however, we describe the left-handhis is reflected in Table Xlll. The column labeled €T
ground state at the full EOM-CCSD level, and in our stan-includes the triples correction to the dipole moment. As ex-
dard approximation we solve for the so-called Lambda $tate pected this contribution is negligible, and therefore, we do
In addition we add the triples correction to the transitionnot consider this computationally expensive contribution in
moments, since the intermediates only have to be calculatenur standard approximation. Excluding the triples correction
once. from the similarity transformation modifies the STEOM
The CO molecule discussed before is taken as an illuseigenvectors and the dipole moments of the Rydberg states
tration of the calculation of properties and transition mo-appear to be very sensitive to this inclusion of triples. Inter-
ments in the STEOM framework. To estimate the effect ofestingly, the dipole moments in the CC-no-T approximation
the various approximations we consider the followingagree very well with the EOM-CCSD dipole moments.
schemes for transition moments. The ground-state ampliSTEOM-PT dipole moments are in good agreement with
tudes that enter the transformation can be obtained by firsSTEOM-CC results except for the Rydberg states>of
order perturbation theory or by solving the CCSD equationssymmetry.
The excited states are obtained by solving the respective In order to gain a better insight in the validity of the
STEOM equations for the left- and right-hand side. The leftapproximations made, we compare the dipole moments ob-
hand ground state is either the EOM ground stasmbda
(@) or it is the approximated STEOM ground stat®. Fi-
nally we estimate the effect of triples. In CC no(d) we TABLE XIlII. Dipole moments of singlet excited states of CO.
exclude the triples contribution to the transition moment.

S . ) . STEOM
This is the direct effect from triples. In CC no (8) we in

addition discard the triple contributions from the transforma- State Exc. PT CC  CC+T° CCnoT EOMCC
tion (as in Sec. V. This changes the STEOM eigenvectors 1y + 0.048 —0071

and has an indirect effect on the transition moment. Thea Ti(v) 5s—2# 0155 0.079 0.078  0.070 0.059
results are collected in Table Xl and a comparison is madel ' (V) 17x—27 -0.793 -0.810 —-0.805 -0.821 -0.727

. . 1
with the EOM-CC transition moments. From Table XII we glgg\(/g{) é”ﬁgﬁ _8'(7);2 _06741‘1551 _067231 —0-152421 —0-615326

H H o— 00 . . . . .

conclude tha_t STEOM_PT_and STEOM-CC are in fg!r agr€e L 1SRy 5y .70 —0799 ~1302 —1301 -1.900 —1.938
ment. The direct contribution of triples to the transition mo- ¢ I(R)
ment is negligiblelcompare(c) and (a)]. There may be an
appreciable indirect effect from triple@) if the STEOM aStandard approximation: STEOM left- and right-hand vectors. Triples cor-
eigenvectors change appreciably if triples contributions arg€tion not included in evaluation of transition moment.

. T . L 'As footnote a triples correction to expectation value is included.
discarded from the S'm'la”ty transformation. This is MOSteas footnote a but triples contribution t6& is not included— different

noticeable for the Rydberg states Bf symmetry. Replac- STEOM eigenstates.

50—37 0269 0.271 0.270 0.379 0.398
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TABLE XIV. Dipole moments(in a.u) of singlet excited states of CO: the left-hand excited states are evaluated perturbatively. To
Comparison of biorthogonal expectation values with finite field derivatives.cak:u|ate transition moments we include the triples compo-

STEOM EOMCC nent of th_e right-hand statém _the EOM picture, hov_vevgr
in evaluating diagonal properties this triples correction is ne-

State Exc. Expectation Derivative Expectation Derivative glected. In STEOM-PT the ground-state amplitudeight
AYl  S50—27 0.079 0.036 0.059 0.038 and lef) are defined by first-order Mier—Plesset perturba-
I~ 17—27 —-0810 -0670 —0.727  —0.679 tion theory. All else is the same as in STEOM-CCSD.
DA 1m—2m —0745 —-058  —0.658  —0.607
B!S* 50—60 0.451 0.385 1.226 1.165
C®* 50-7¢ —1302 -1286 —1.938  —1.996
EYMI 50—37 0.271 0.165 0.398 0.341  VII. SUMMARY

We have presented a detailed exposition of the similarity
transformed equation-of-motion coupled-cluster method for
excited, doubly ionized, and doubly attached electronic
states, relative to a closed-shell parent state. In STEOM-CC
Re achieve an approximate decoupling of the relevant eigen-
value problems by performing many-body similarity trans-
Yormations of the Hamiltonian. The first transformation re-
quires the solution of the CCSD equations and results in

tained in the biorthogonal expectation value framework with
finite field derivatives. The field in these calculations was
added after the SCF calculations, so the orbital response
the field is not included. From Table XIV we find that
EOM-CC dipole moments in the derivative and expectatio
forms agree somewhat bett@verage absolute deviation is

0.05 a.u thap .in the STEOM'QC. approximatioaverage vanishing pure excitatioiph and 202h) operators of the
absolute deviation is 0.09 aJuThis is presumably due to the o, 4164 EOM Hamiltonian. The second transformation re-
perturbative approximation made for the doubles Componerauires selected solutions of the IP-EOM-CC and EA-
of the STEOM left-hand eigenvector. The significant differ- EOM-CC eigenvalue problems, and results in selected van-

ence for the dipole moments of the Rydberg states iq : : :
) I shinghhhpandh components in the final transformed
STEOM and EOM persists also at the derivative level, how- g P . ppg P _—
. s STEOM HamiltonianG. Due to the vanishing of the most
ever. From the previous table it is clear that effects from

riple excitations must be held responsible, indicating th relevant net excitation operators the transformed Hamil-

sensitivity of dipole moments, especially in view of the relaz%rgggaggg subsequently be diagonalized over very small

tive |nsen5|t|\{|ty of .the exc.|tat|on energies of the Rydberg STEOM is closely related to Fock space coupled-cluster
states to the inclusion of triple excitation effe¢t®ee Table : . . .
theory. From a practical point of view the most important

Vi - ifference is that in the final step in STEOM we solve an
Second moments are much less sensitive. In Table XV S . L
eigenvalue problem, which is stable numerically, while in

H 2 2 2
we report the average extensigf(x”) +(y >+<Z.>) for the FfSCC one needs to solve a set of nonlinear equations which
excited states of CO. The results are almost independent o . . .
is prone to the infamous intruder state problem. In addition

the approximations made. In fact neglecting the double . . L .
component of the STEOM left-hand eigenvectors Ieavesstb’TEOM is conceptually straightforward and this is a major

: : .advantage over the FSCC framework. We view STEOM as a
these results largely unchanged. The spatial extent is an im-

portant characteristic of the Rydberg character of the exciteatartlng point for further developments in open-shel
?oupled-cluster theory.

state, and |t_|s useful that this is not sensitive to the details o We also compared the STEOM approach with EOM-CC.
the calculation. A . . - .
. ue to the implicit inclusion of triple excitation effects in
Let us summarize here, for future reference, the standar . .
- .. STEOM the method is fully linked and charge transfer sepa-
approach to STEOM transition moments and properties in

excited states. In STEOM-CCSD the ground state is evalur—able’ contrary to EOM-CC/CCLR. Discarding the triples

ated as in EOM-CCSD, requiring the solution of the CCSDcontnbunon from STEOM was shown to have a large effect

and so-called Lambda equations. The doubles components fqr valence excited states, and often brings the results closer
q ' P £ results from EOM-CC calculations. Comparison of

STEOM and EOM-CC results with FCI slightly favored the
TABLE XV. 1/3({x?)+{y?)+(z?)) in a.u. for ground and excited states of more economical STEOM method.
co. The calculation of properties and transition moments in
STEOM requires some additional approximations, but results

STEOM : : )

agree fairly well with results from EOM-CC calculations and
State Exc. PT ¢cC CCnoT EOMCC also with finite difference derivative results, which are for-
Ground state 13.4 13.4 mally more satisfactory. _ o
A 50—2 14.1 14.1 14.2 14.0 We have also established some limitations of the
I 157 1m—2m 14.4 14.4 14.4 14.2 STEOM method.

1 . .
31§+ é”ﬂgﬂ ;g-g ;g-j ;g-‘l‘ ;g-g (1) Not all states can be obtained in the STEOM scheme.
og— 00 . . . . . .

Cis+ fr 7o 242 245 4.9 24.9 For example we are pnly able 'to obtain 'EX(.:Ited states that are
E I 50— 37 23.4 23.4 23.3 23.1 predominantly described as single excitations from a closed

shell reference determinant.
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(2) The scheme is built upon a closed shell referenceé®y. F. Stanton, R. J. Bartlett, and C. M. L. Rittby, J. Chem. PBys5560
determinant, that needs to be reasonably described at thg1992.
Hartree—Fock level. Let us note, however, that coupled- Eggamamom’ T. Noro, and K. Ohno, Int. J. Quantum Chei®. 1563
cluster theory is quite capable of stretching the notion ofug o, Roos, M. Fischer, P. Malmavist, M. Merchm and L. Serrano-
“reasonable” as demonstrated on a calculation on the ex- Andres, Quantum Chemical Calculations with Chemical Accurdiju-
cited states oC,. wer, Dordrecht, 1994

. . 32M. Merchan, E. Orti, and B. O. Roos, Chem. Phys. L&P6, 27 (1994.

_ 3 _STEOM results are sensitive tq the selection of ac %3, E. Del Bene, J. D. Watts, and R. J. Bartlett, J. Chem. P13@.6051
tive orbitals. The magnitude of the active component of the (1997,
final STEOM eigenvector appears to be a reliable criteriunf*0. Kitao and H. Nakatsuji, J. Chem. Ph@8, 4913(1988.
that allows us to judge the quality of the active space. Howfsa-gg'gkatsulh J. Hasegawa, and M. Hada, J. Chem. Phgg, 2321
ever, particularly if the pa5|s set contalqs many diffuse OrbltgeM. Nooijen and R. J. Bartlett, J. Chem. Phy€4, 2652(1996.
als,_ 't_ may be hard to improve the active space for the desip_ ginna, s. K. Mukhopadhyay, R. Chaudhuri, and D. Mukherjee, Chem.
scription of valence excited states. For the sake of Phys. Lett.154 544 (1989.

convergence of the attached states described by the EAZD. Mukhopadhyay, S. Mukhopadhyay, R. Chaudhuri, and D. Mukherjee,

EOM-CC equations one would like to use canonical

Theor. Chim. Acta80, 483(1991).
39A. A. Korkin, M. Nooijen, R. J. Bartlett, and K. O. Christe, J. Phys. Chem.

Hartree—Fock orbitals, while a compact description of the (sypmitted.
excited state requires a different type of orbital, e.g., naturai®A. A. Korkin, M. Nooijen, and R. J. Bartlettto be publishel

orbitals averaged over a number of excited state¥/"r!

41). D. Watts, J. F. Stanton, and R. J. Bartlett, Chem. Phys. 188.471
(1992.

orbitals. In th|§ latter case the active-space d|agnqst|c P2p G, Szalay and R. J. Bartlett, Chem. Phys. L21#}, 481 (1993.
pears less reliable. The dependence on active orbitals masc. L. m. Rittby and R. J. Bartlett, Theor. Chim. AcgD, 469 (1997).
also lead to complications when investigating potential en‘L. Meissner and R. J. Bartlett, J. Chem. Ph§4, 6670(1992.

ergy surfaces for excited states.
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