On a Perplexing Polynomial Puzzle

Bettina Richmond

Bettina Zoeller Richmond received her vordiplom from Würzburg, Germany and her Ph.D. from Florida State University. The Nichols-Zoeller theorem, a type of Lagrange theorem for Hopf algebras, is celebrated as a central contribution to the field. Besides Hopf algebras, she wrote on semigroups and ring theory, as well as a textbook in discrete mathematics and several articles for MAA journals. On November 22, 2009, she died unexpectedly at the age of 51 .

It seems rather surprising that any given polynomial $p(x)$ with nonnegative integer coefficients can be determined by just the two values $p(1)$ and $p(a)$, where a is any integer greater than $p(1)$. This result has become known as a "perplexing polynomial puzzle" in $[2,3]$. Here, we address the natural question of what might be required to determine a polynomial with integer coefficients, if the condition that the coefficients be nonnegative is removed.

Let us analyze the original puzzle. Requiring that $p(x)=c_{0}+c_{1} x+$ $\cdots+c_{n} x^{n}$ has nonnegative integer coefficients gives zero as a lower bound and $p(1)=c_{0}+c_{1}+\ldots+c_{n}$ as an upper bound for the coefficients. Then if $a>p(1)$, writing $p(a)$ as $c_{0}+c_{1} a+\ldots+c_{n} a^{n}$ gives the unique base a representation of $p(a)$, so the nonnegative integer coefficients $c_{0}, c_{1}, \ldots, c_{n}$ of $p(x)$ are completely determined by $p(a)$. The coefficients of $p(x)$, which serve as the base a digits, must fall in the appropriate set $\{0,1, \ldots, a-1\}$, so we must choose a to be an upper bound of the coefficients.

If we allow negative coefficients and find a bound b on the coefficients so that $-b \leq c_{i} \leq b$ for all i, then we wonder whether the coefficients are uniquely determined by the value of $p(a)=c_{0}+c_{1} a+\cdots+c_{n} a^{n}$ for a suitable choice of a. Theorem 3 answers this question affirmatively, giv-
ing $a=2 b+1$ as a suitable choice. In effect, we ask whether $p(a)$ has a unique base a representation if the digits c_{i} assume values from the set $\{-b,-b+1, \ldots, 0, \ldots, b-1, b\}$. Theorem 2 confirms the existence of such a representation.

Nonstandard radix representations.

First we start with the uniqueness of the base a representation with a possibly nonstandard set of digits.

Theorem 1 Let a be a natural number and $R=\left\{r_{i} \mid i=0,1, \ldots, n\right\}$ be a set of integers such that $r_{i} \not \equiv r_{j} \bmod a$ if $i \neq j$. If an integer z has a representation as a sum of powers of a with coefficients from R, then that representation is unique.

Proof: Let $z=\sum_{i=0}^{m} \lambda_{i} a^{i}=\sum_{j=0}^{m^{\prime}} \mu_{j} a^{j}$ where all λ_{i} and all μ_{j} are elements of R, and without loss of generality, $m \leq m^{\prime}$. If $\lambda_{i}=\mu_{i}$ for $i=0,1, \ldots, m$, then clearly $m=m^{\prime}$ and we are done. Otherwise, assume s is the smallest index such that $\lambda_{s} \neq \mu_{s}$, and thus $\lambda_{i}=\mu_{i}$ for $i=0,1, \ldots, s-1$. Consider the number u defined by

$$
u=\frac{z-\sum_{i=0}^{s-1} \lambda_{i} a^{i}}{a^{s}}=\frac{z-\sum_{i=0}^{s-1} \mu_{i} a^{i}}{a^{s}}=\sum_{i=s}^{m} \lambda_{i} a^{i-s}=\sum_{j=s}^{m^{\prime}} \mu_{j} a^{j-s} .
$$

Now $u \equiv \lambda_{s} \equiv \mu_{s} \bmod a$. By assumption there exists at most one element in R, say r_{s}, such that $r_{s} \equiv \lambda_{s} \bmod a$ and hence $r_{s}=\mu_{s}=\lambda_{s}$. So, there exists no smallest index s with $\lambda_{s} \neq \mu_{s}$, and the representation of z as a sum of powers of a with coefficients from R is unique.

Any integer z can be uniquely represented in base a as a sum of powers of a using coefficients from $\{0,1, \ldots, a-1\}$. Next we show that unique representation as a sum of powers of a remains if we specify a different set of permissible coefficients, centered around 0 .

Theorem 2 Let b be a natural number and let $a=2 b+1$. Then every integer z can be uniquely written as $z=\sum_{i=0}^{m} \lambda_{i} a^{i}$ where $m \in \mathbb{N}, \lambda_{i} \in \mathbb{Z}$, and $\left|\lambda_{i}\right| \leq b$ for each $i=0, \ldots, m$.

Proof: If $\sum_{i=0}^{m} \lambda_{i} a^{i}$ is the required representation of a nonnegative integer z, then $\sum_{i=0}^{m}\left(-\lambda_{i}\right) a^{i}$ is the required representation of $-z$, so without loss of generality, we assume z is a nonnegative integer. Now z has a unique representation in base a as $z=\sum_{i=0}^{m} \mu_{i} a^{i}$ where the integers μ_{i} satisfy $0 \leq$ $\mu_{i} \leq 2 b=a-1$ for all $i=0, \ldots, m$. To shift the base a digits of z down by b, we add to z the base a number of equal length, all of whose digits are b, find the base a representation for this sum, then subtract the number to recover z. Specifically, consider $z+\sum_{i=0}^{m} b a^{i}$, which in base a is

$$
z+\sum_{i=0}^{m} b a^{i}=\sum_{k=0}^{m^{\prime}} \mu_{k}^{\prime} a^{k}
$$

where $0 \leq \mu_{k}^{\prime} \leq 2 b$ for each k. Observe that $m^{\prime}=m$ or $m^{\prime}=m+1$ and $\mu_{m^{\prime}}^{\prime}=1$. Hence

$$
z=\sum_{k=0}^{m^{\prime}} \mu_{k}^{\prime} a^{k}-\sum_{i=0}^{m} b a^{i}= \begin{cases}\sum_{k=0}^{m^{\prime}}\left(\mu_{k}^{\prime}-b\right) a^{k} & \text { if } m^{\prime}=m \\ a^{m^{\prime}}+\sum_{k=0}^{m^{\prime}-1}\left(\mu_{k}^{\prime}-b\right) a^{k} & \text { if } m^{\prime}=m+1\end{cases}
$$

Letting λ_{k} be the coefficient of a^{k}, the leading coefficient $\lambda_{m^{\prime}}$ is either $\mu_{m}^{\prime}-b$ or 1 , and the trailing coefficients are $\lambda_{k}=\mu_{k}^{\prime}-b$. Since $0 \leq \mu_{k}^{\prime} \leq 2 b$, we have $\left|\mu_{k}^{\prime}-b\right| \leq b$ and thus $\left|\lambda_{k}\right| \leq b$ for all $k=0,1, \ldots, m^{\prime}$, as required. The uniqueness of the representation follows from Theorem 1. -

We next see that, with a bound on the integer coefficients of a polynomial, the polynomial is uniquely determined by its value at one appropriately chosen input.

Theorem 3 Let $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}=\sum_{i=0}^{n} c_{i} x^{i}$ be a polynomial with integer coefficients $c_{0}, c_{1}, \ldots, c_{n}$. Assume b is a natural number such that $\left|c_{i}\right| \leq b$ for all $i=0,1, \ldots, n$. Let $a=2 b+1$. Then the value $p(a)$ uniquely determines the polynomial $p(x)$.

Proof: Let $p(x), a$, and b be as in the statement of the theorem. By Theorem $2, p(a)=\sum_{i=0}^{m} c_{i} a^{i}$ can be uniquely written as $\sum_{i=0}^{m} \lambda_{i} a^{i}$, so $p(a)$ uniquely determines the values of the coefficients c_{i} and thus of $p(x)$.

Example: Ask a friend to think of a polynomial $p(x)$ with integer coefficients c_{i} satisfying $\left|c_{i}\right| \leq 10$ for all i. We want to determine $p(x)$ from just one value of $p(x)$. Applying Theorem 3, the bound on the coefficients is $b=10$, so $a=2 b+1=21$ and we ask for the value $p(21)$. Suppose your friend's concealed polynomial was $p(x)=3 x^{4}-5 x^{3}+10 x-6$. She would report $p(21)=537342$.

Following the idea of the proof of Theorem 1 and using the Euclidean algorithm, we find the unique representation of $p(21)$ as a linear combination $\sum_{i=0}^{m} c_{i} 21^{i}$ of powers of 21 using integer coefficients c_{i} with $\left|c_{i}\right| \leq 10$. Since $p(21)=537342=25587(21)+15=25588(21)-6$, we know $c_{0}=-6$ is the constant term of $p(x)$. We move to the next higher power of 21 and note that, besides the -6 units, $p(21)$ includes 25588(21), or 25588 in the 21's place. Now $25588=1218(21)+10$, and since the remainder is between ± 10 inclusive, this remainder 10 must be c_{1}. Continuing in this manner, $1218=58(21)+0$, and $|0| \leq 10$, so $c_{2}=0 ; 58=2(21)+16=3(21)-5$, and $|-5| \leq 10$, so $c_{3}=-5$; and finally, $3=0(21)+3$ so $c_{4}=3$. We have now recovered the polynomial $p(x)=\sum_{i=0}^{m} c_{i} x^{i}=3 x^{4}-5 x^{3}+0 x^{2}+10 x-6$.

Refinements.

To apply Theorem 3, we need upper and lower bounds on the coefficients of the polynomial, which we then use to find a single bound b with $\left|c_{i}\right| \leq b$ for each coefficient c_{i}. In the original puzzle, the requirement that the coefficients be nonnegative gave the lower bound on the coefficients as zero, while the upper bound could be subsequently deduced from $p(1)$. If we are only given a negative lower bound $-b \in \mathbb{Z}$ for the integer coefficients of a polynomial $p(x)$, what else would be needed to deduce an upper bound for the coefficients? Giving one additional value of $p(x)$ will no longer suffice: If $p(a)=v$ is given
for $a \neq 0$, the possibilities for p include all polynomials

$$
q(x)=v+\left(a^{2}+a^{4}+a^{6}+\cdots+a^{2 n}\right)-\left(x^{2}+x^{4}+x^{6}+\cdots+x^{2 n}\right)
$$

and since the constant terms of these become arbitrarily large as n increases, no upper bound for the coefficients can be determined from only this information. If $p(a)=v$ is given for $a=0$, the possibilities for p include all polynomials $q(x)=v+n x$, and again the coefficients are unbounded. In the present case, assuming that a negative lower bound $-b$ for the coefficients has been given, let us additionally assume that the leading coefficient is positive. Then, for $a=2 b+1, a$ is positive, and, if n is the degree of p,
$p(a) \geq a^{n}+\sum_{i=0}^{n-1}(-b) a^{i}=a^{n}-b \sum_{i=0}^{n-1} a^{i}=a^{n}-b \frac{1-a^{n}}{1-a}=a^{n}+\frac{1}{2}\left(1-a^{n}\right)=\frac{1}{2}\left(a^{n}+1\right)$.
So, given $p(a)=p(2 b+1)$, the largest possible n satisfying $\left(a^{n}+1\right) / 2 \leq p(a)$ is an upper bound on the degree of $p(x)$. This, in turn, can be used to find an upper bound for the coefficients c_{i} of $p(x)$. If $p(x)$ has degree n, less than or equal to n_{0}, then $p(a)=\sum_{i=0}^{n} c_{i} a^{i}$ and thus for $0 \leq j \leq n$, we have

$$
c_{j} \leq c_{j} a^{j}=p(a)-\sum_{\substack{i=0 \\ i \neq j}}^{n} c_{i} a^{i} \leq p(a)+\sum_{\substack{i=0 \\ i \neq j}}^{n} b a^{i} \leq p(a)+\sum_{i=0}^{n_{0}} b a^{i},
$$

and the coefficients of $p(x)$ have an upper bound. Now, as before, one more value of $p(x)$, chosen according to Theorem 3, will determine the whole polynomial. Thus, a lower bound on the integer coefficients, assuming the leading coefficient is positive, allows a polynomial to be determined by just two values at appropriate integers.

In [1] it was shown that a polynomial $p(x)$ with nonnegative integer coefficients can actually be determined from sufficiently many digits of the value $p(\pi)$. Analogously, given a polynomial $p(x)$ with integer coefficients bounded below by $-b(b \in \mathbb{N})$ and with positive leading coefficient, $p(x)$ can be determined from sufficiently many digits of $p(t)$ for any transcendental number
$t>a=2 b+1$: If $p(x)$ has degree n, we see that

$$
\begin{aligned}
p(t) & \geq t^{n}-b \sum_{k=0}^{n-1} t^{k}=t^{n}-b \frac{1-t^{n}}{1-t} \\
& \geq t^{n}-b \frac{1-t^{n}}{1-(2 b+1)}=\frac{1}{2}\left(t^{n}+1\right)
\end{aligned}
$$

As before, the largest possible n with $\left(t^{n}+1\right) / 2 \leq p(t)$ gives the maximal possible degree of $p(x)$ and, as before, an upper bound on the coefficients of $p(x)$. Since the bound on the degree and the bounds on the integer coefficients of the polynomial in question narrow the possibilities to a finite number of polynomials, a sufficiently large finite number of digits of the value $p(t)$ will determine the given polynomial.

It is easy to verify that an upper bound on the integer coefficients of a polynomial with negative leading coefficient can analogously be determined by either two of its values at appropriate integers or by one value at an appropriate transcendental number.

References

[1] F. Bornemann and S. Wagon, A perplexing polynomial puzzle revisited, College Math. J. 36 (2005) 288.
[2] D. Kalman, Uncommon Mathematical Excursions: Polynomia and Related Realms, Dolciani Mathematical Expositions 35, MAA, Washington DC, 2009.
[3] I. B. Keene, A perplexing polynomial puzzle, College Math. J. 36 (2005) 100, solution p. 159.

