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3. Review : local theory of number fields

We now turn to the local theory of number fields, as is presented in Chapter II of Neukirch’s Algebraic
Number Theory. The treatment here will be at a slightly less breakneck pace, since this material is disjoint
from PMATH 441. Grossly put, the local aspects of algebraic number theory introduce analytic ideas into
algebraic problems. This is achieved by introducing valuations and absolute values, which can be thought
of as algebraically-flavoured metrics.

3.1. Intuition. What we want to understand is the concept of a local field. A local field is a field K along
with a nontrivial absolute value | · | : K → R such that (K,d) is a complete metric space and has a finite
residue class field, where d is the metric induced by the absolute value. We will see later that these
conditions are equivalent to asking for (K,d) to be a locally compact metric space.

Before going on to precisely define absolute values and develop the basic theory of local fields, let us
consider why we might be interested in local fields. Intuitively speaking, local fields are algebraic objects in
which we can talk about infinitesimal behaviour. An important manifestation of this is that we are able to
solve polynomial equations via approximations in local fields. Moreover, by studying objects of interest
locally, we are able to understand the local subtle structure of algebraic objects. As an analogy, think about
studying each curve Cn : y = xn at the origin. For each n, Cn vanishes at the origin. But each are different
in the sense that the Cn are “flatter” as n gets larger. This is made precise by noting that the first nonzero
derivative of xn comes later and later as n increases, which geometrically means that Cn moves away from
0 slower and slower (because x < 1 near 0). The differences between the Cn at the origin, then, come from
differences in infinitesimal behaviour near 0.

Even more specifically, the local fields we will mostly be concerned with will be completions of fields
with respect to a given absolute value. These are to be thought of as giving a power series expansion of an
algebraic object, through which we can understand higher order behaviour of the object in question.

Not only do local fields carry rich local information, but when put together, they say much more.
Pushing the analogy between power series and local fields a bit more, when the power series from all
different points in the domain are put together, we essentially know the function in question. Analogously,
when the local fields coming from all the places—which will come to have a precise meaning later!—are put
together, information about the global field under study will emerge.

3.2. Absolute Values. Before we can dream of introducing analytic techniques into algebraic number
theory, we need a notion that serves as the analogue of a norm in an arbitrary field K. This is the role of
absolute values. An absolute value on K is a map | · | : K→ R satisfying the following:
(a) |x| > 0 for all x ∈ K×;
(b) |xy| = |x||y| for all x,y ∈ K;
(c) |x+ y| 6 |x|+ |y|.
Note that absolute values are also referred to as (multiplicative) valuations, but this terminology conflicts
with another notion of valuation which we will need later. The use of “absolute values” here follows
Bourbaki, Lang and Milne.

The first example of an absolute value is the trivial absolute value: for any field K, let | · | : K → R be
defined by |0| = 0 and |a| = 1 for all a ∈ K×. It is obvious that this is an absolute value. Unless otherwise
specified, however, whenever we talk about absolute values in these notes, we mean a nontrivial absolute
value.
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For a marginally more interesting class of absolute values, we consider those which arise from em-
beddings of number fields into the complex numbers. Let K be a number field and let σ : K ↪→ C be any
embedding of K into C. Define | · |σ : K→ R by

|a|σ ··= |σ(a)|,

for all a ∈ K, where the absolute value on the right is the usual one on C: |x+ iy| =
√
x2 + y2. One easily

checks that | · |σ is indeed an absolute value on K.

3.3. Topology from Absolute Values. One main purpose of introducing absolute values into the study of
algebraic number theory is to allow us to say when algebraic objects are close to one another. Thus one
very important aspect of absolute values on fields is the topology they induce. Specifically, let | · | : K→ R be
an absolute value on a field K. Define d : K×K→ R by

d(x,y) ··= |x− y|.

The nondegeneracy and triangle inequality conditions in the definition of an absolute value make clear
that d is a metric on K. Thus (K,d) is a metric space and hence a topological space once endowed with the
metric topology. As in the case of norms, two absolute values | · |1, | · |2 : K→ R are said to be equivalent if
they give rise to the same topology. By doing a little analysis, one can show that absolute values | · |1 and
| · |2 are equivalent if and only if there exists s ∈ R>0 such that

|x|1 = |x|s2

for all x ∈ K. Another characterization of when | · |1 and | · |2 are equivalent is the property that whenever
|x|1 < 1, |x|2 < 1 as well.

3.4. Completions of Fields. Let K be a field with an absolute value | · | and view it as a metric space with
the metric induced from | · |. As mentioned in the introduction, one purpose of introducing absolute values
into algebraic number theory is to allow us to solve polynomial equations via approximation techniques.
This suggests that we wish to consider fields which are complete with respect to the equipped metric. Recall
from real analysis that given a metric space, we can form its completion by taking the set of all Cauchy
sequences in the metric space modulo the null sequences—those Cauchy sequences going to 0. Specializing
this result to our situation, we have the following

Theorem 1. Let (K, | · |) be a field equipped with an absolute value. Then there exists a complete field (K̂, | · |) and a
homomorphism K→ K̂ preserving the absolute value which satisfies the following universal property: every absolute
value preserving homomorphism K→ L into a complete field (L, | · | ′) extends uniquely to a homomorphism K̂→ L.
Moreover, K can be identified with a dense subset of K̂; in the case that | · | is nonarchimedean, K is actually open in K̂.

We will talk about nonarchimedean absolute values in the following subsection. For us, completions will
be the manner in which local fields come about. Specifically, let K be a global field, | · | an absolute value on
K and K̂ be the completion of K with respect to the given absolute value. Then K̂ will typically be a local
field. For reasons I explain below, we wish to classify the local fields that arise in this way. We shall do this
for number fields. Since number fields are finite extensions of Q, this can be done by first classifying all the
absolute values of Q and then examining how absolute values extend in finite field extensions. Before we
go about classifying the absolute values of Q, let us look at how the theory of absolute values on arbitrary
fields consists of more than the familiar absolute values on R and C.

3.5. Nonarchimedean Absolute Values. So far, the examples of absolute values on fields seem to echo
only the familiar examples on R and C. It turns out that the theory is far richer. Recall from a first course
in analysis that the standard absolute values on R and C satisfy the so-called archimedean property:

For any x,y ∈ R (or C), with |x| < |y|, there exists positive n ∈ Z such that |y| < |nx| = n|x|.
This rather reasonable looking property, however, does not hold for arbitrary absolute values. The

archimedean property can be alternatively formulated as saying that the set |Z| = {|n| : n ∈ Z} ⊂ R is an
unbounded set, where we view Z as a subring of R or C.
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An absolute value | · | : K→ R is a nonarchimedean absolute value if |n| remains bounded as n ranges
over α(Z) ⊂ K, where α : Z→ K is the unique ring homomorphism from Z to K. Nonarchimedean absolute
values can be characterized in terms of a stronger triangle inequality condition.

Proposition 2. Let K be a field. An absolute value | · | : K→ R is nonarchimedean if and only if it satisfies the strong
triangle inequality or ultrametric inequality: for all x,y ∈ K, |x+ y| 6max{|x|, |y|}.

Proof. If the strong inequality holds, then for n ∈ α(Z),

|n| = |1+ · · ·+ 1| 6 1

and so |α(Z)| ⊂ R is clearly bounded. Conversely, suppose that | · | is nonarchimedean; then there is a
positive integer N such that |n| 6 N for all n ∈ α(Z). Let a,b ∈ K with |a| 6 |b|. Then for each n ∈ Z>0,

|a+ b|n 6
n∑
k=0

∣∣∣∣(nk
)∣∣∣∣|a|k|b|n−k 6 N(n+ 1)|b|n.

Taking nth roots,

|a+ b| 6 N1/n(n+ 1)1/n|b|.

Since this holds for all n ∈ Z>0, taking n→∞ gives |a+ b| 6 |b| = max{|a|, |b|}. �

Either with the characterization in terms of the strong triangle inequality, or really, straight from the
definition, we notice that any absolute value on any field K with positive characteristic is nonarchimedean:
the set { |n| : n ∈ α(Z) } is a set with size at most charK <∞.

Unfortunately for us, Q possesses quite a few nonarchimedean absolute values, complicating slightly
the task of classifying all completions of Q. To talk about these nonarchimedean absolute values, it will be
convenient to pass from absolute values, which are multiplicative, to valuations, which are “logarithmic” in
nature.

3.6. Valuations. Valuations should be thought of as a degree measurement on elements of a field. Even
more vaguely, valuations can be thought of as a way of telling how “separated” objects are, how much
objects are “folded” upon themselves, the “order of growth” of elements, etc. These vague statements will
hopefully be clearer by the end of this section.

For us, valuations are primarily interesting because they give an alternate perspective on nonarchimedean
absolute values. Let | · | : K → R be a nonarchimedean absolute value on a field K and define a function
ν : K→ R∪ {∞ } by ν(0) ··=∞ and for all x ∈ K×,

ν(x) ··= − log|x|.

The function ν satisfies the following properties, which are essentially consequences of the multiplicative
properties enjoyed by absolute values, due to the application of the logarithm:

(a) ν(x) =∞ if and only if x = 0;
(b) ν(xy) = ν(x) + ν(y) for all x,y ∈ K;
(c) ν(x+ y) >min {ν(x),ν(y) } for all x,y ∈ K.

More generally, any function ν : K→ G∪ {∞ } from K into a totally ordered group G is called a valuation
on K; if G ∼= Z, then ν is called a discrete valuation. Notice that we can go the other way, from a valuation
back to a nonarchimedean absolute value: given a valuation ν : K → R ∪ {∞ }, define | · |ν : K → R>0 by
|0|v = 0 and for all x ∈ K×,

|x|ν ··= e
−ν(x)

for some e > 1. The choice of e is arbitrary, but there are some natural choices of e in the valuations we will
soon encounter.
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A valuation knows about the internal arithmetic of K: let ν be a valuation on K, | · | be the corresponding
absolute value, and let

A ··= { x ∈ K | ν(x) > 0 } = { x ∈ K | |x| 6 1 } ,

A× ··= { x ∈ K | ν(x) = 0 } = { x ∈ K | |x| = 1 } ,

m ··= { x ∈ K | ν(x) > 0 } = { x ∈ K | |x| < 1 } .

Then A is a ring with group of units A× and unique maximal ideal m. Moreover, it is not too hard to see
that K is the field of fractions of A. Any ring A that arises as a subring of a field K satisfying inequalities
from a valuation defined on K is called a valuation ring; in the case that the valuation is discrete, A is
called a discrete valuation ring.

Using the property (b) of valuations, we also see that for every x ∈ K, either x ∈ A or else x−1 ∈ A. This
property allows one to see that valuation rings are integrally closed: suppose that x ∈ K−A satisfies the
equation

xn + an−1x
n−1 + · · ·+ a0 = 0,

where ai ∈ A. Multiplying through by x−(n−1) and rearranging, it follows that

x = −(an−1 + an−2x
−1 + · · ·+ a0x1−n).

But the right hand side is in A since x−1 ∈ A, so x ∈ A, which is a contradiction.

3.7. Discrete Valuations. Understanding discrete valuations will help us obtain a more concrete under-
standing of nonarchimedean completions. There is a rather useful characterization of discrete valuation
rings. The proof of this characterization can be found in most references for commutative algebra.

Theorem 3. Let A be a commutative ring. Then A is a discrete valuation ring if and only if A is a local noetherian
ring whose maximal ideal is generated by a non-nilpotent element.

By the characterization above, if A is a discrete valuation ring and m is its unique maximal ideal, then
m = (π) for some non-nilpotent π ∈ A. In other words, every element x ∈ A can be written as x = πmu for
some u ∈ A×, with (u,π) = A, and positive integer m; notice that since either x ∈ A or x−1 ∈ A for every
x ∈ K, this shows that every x ∈ K can be written as x = πmu for some u ∈ A× and m ∈ Z. The element π is
variously called a (local) uniformizing parameter or prime element of A. The valuation defining A in its
field of fractions can be recovered by defining ν : K× → Z by setting ν(x) = m, where x = πmu. The integer
m is called the order of π in x.

In the context of discrete valuation rings, there is a natural choice of normalization when passing between
absolute values and valuations. Let π be a local uniformizing parameter for (K, | · |) and let e ∈ R>1 be such
that − loge|π| = 1. The valuation constructed with this choice of e is often called the normalized discrete
valuation associated with | · | and is often denoted ord : K→ Z∪ {∞ }. Put more abstractly, any valuation
ν associated with a discrete absolute value—this is an absolute value for which |K×| ⊆ R>0 is a discrete
set, which can be shown to be equivalent to saying that the associated valuation is discrete—has image
ν(K×) = cZ for some constant c; when c = 1, then ν is a normalized discrete valuation.

An example should give some geometric and algebraic intuition to the whole ordeal. Let k be a field
and let B ··= k[t] be a polynomial ring over k and let A ··= B(t) be the localization of B with respect to the
principal ideal generated by t, that is,

B(t) =

{
p(t)

q(t)

∣∣∣∣ p,q ∈ B, q(0) 6= 0
}

.

Then A is a noetherian local ring whose maximal ideal is generated by t and thus is a discrete valuation
ring. The discrete valuation ν : A→ Z is defined on 0 6= p(t) ∈ A by factoring p(t) = tmq(t) for q ∈ A such
that (q, t) = A and setting ν(p) = m. More concretely, this means that m is the largest power of t dividing
all the terms of p; put yet a different way, ν(p) is the order of vanishing of p at t = 0.
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3.8. Completions of Q. Finally, we come back to look at the absolute values of Q and their completions.
There is one very obvious archimedean absolute value: view Q as a subfield of R and let | · |∞ : Q→ R>0 be
the restriction of the standard absolute value | · | : R→ R>0.

More interesting absolute values arise by considering the various discrete valuation rings contained in Q.
Fix a prime p ∈ Z and note that the noetherian local ring

Z(p) =
{ a
b

∣∣∣ a,b ∈ Z,p - b
}

has maximal ideal generated by p. By the classification of discrete valuation rings above, we see that Z(p) is
a discrete valuation ring; let νp : Q→ Z be the corresponding discrete valuation extended to Q. Then we
obtain an absolute value | · |p : Q→ R>0 defined by

|x|p ··=
(
1

e

)νp(x)
,

where e > 1. In this case, there is a rather natural choice for e: set e = p. The resulting absolute value is
called the (normalized) p-adic absolute value and the associated discrete valuation is called the p-adic
valuation. Let Qp be the completion of Q with respect to the p-adic absolute value and call it the p-adic
number field. The elements of the ring of integers Zp in Qp are called p-adic integers.

It turns out that we have now seen all absolute values of Q. Recall that equivalent absolute values define
the same topology and hence have the same completion.

Theorem 4 (Ostrowski). Let | · | be a nontrivial absolute value on Q.

(1) If | · | is archimedean, then it is equivalent to | · |∞;
(2) If | · | is nonarchimedean, then it is equivalent to | · |p for exactly one prime p ∈ Z.

As a consequence of Ostrowski’s Theorem, the fields which can be obtained as completions of Q are R
and the p-adic number fields Qp, p ∈ Z prime. The real numbers R is a field we (should) understand well
at this point, but the p-adic number fields might be a tad more mysterious. To gain a better understanding
of the Qp, and to lay algebraic foundations for understanding completions of other number fields, let
us take a closer look at what is going on when we take a completion with respect to a nonarchimedean
absolute value. We will return to classifying completions of other number fields soon.

3.9. Nonarchimedean Completions: Analytic Perspective. Completions of fields, as we have seen, can be
described in analytic terms with the help of an absolute value and a corresponding topology. However,
completions can also be constructed in a purely algebraic manner. We shall discuss how completions are
treated algebraically after looking at some properties of the analytic completion procedure.

Throughout this subsection, let K be a field with nonarchimedean discrete absolute value | · | and denote
by K̂ the completion of K with respect to | · |. Recall that K̂ is constructed as the set of all Cauchy sequences
of K modulo the null sequences. In other words, an element of K̂ is represented by a Cauchy sequence
{an } for an ∈ K. Since |K×| ⊂ R is discrete, the absolute value of a convergent sequence must be eventually
constant. In particular, this means that | · | extends uniquely to K̂: set |{an }| to be the value it is eventually
constant at. It follows that |K×| = |K̂×|. If ord : K× → Z is a normalized discrete valuation for | · |, it also
follows that it extends uniquely to a normalized discrete valuation ord : K̂× → Z.

This observation makes it clear that the ring

Â = { x ∈ K̂ | |x| 6 1 }

is the closure of the ring A ⊂ K in K̂. The maximal ideal

m̂ = { x ∈ K̂ | |x| < 1 }

is the closure of m /A in Â. If π ∈ K is such that ord(π) = 1, then π generates m in A and by the same
reasons, generates m̂ in Â. In similar spirit, the powers m̂n, n ∈ Z>0, of m̂ are the closures of mn in Â and
m̂n is generated in Â by πn.
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Notice that since mn ⊆ m̂n and A ⊆ Â, via the identification of A with the equivalence class of Cauchy
sequences in Â represented by constant sequences, we have an induced map

A/mn → Â/m̂n

for each n ∈ Z>0.

Lemma 5. The map A/mn → Â/m̂n is an isomorphism for each positive integer n.

Proof. The maximal ideals can be described via inequalities which show it to be both open and closed:

mn = { x ∈ A | |x| 6 |π|n } = { x ∈ A | |x| < |π|n−1 } ,

where the second equality is due to the discreteness of | · |. Now suppose a ∈ A is in the kernel of the above
map. By definition, this means that the constant sequence consisting of all a converges to an element of m̂n.
Since each element of the sequence is found in A the closedness of mn in A implies a ∈ mn, i.e. a = 0 in
A/mn. Now, the map is surjective since A ↪→ Â has a dense image and m̂ is open. �

This lemma allows us to forget trying to work with Cauchy sequences for the most part and just use
regular elements of A when working with the quotient rings. To describe all the new elements added in the
completion, we can use power series.

Lemma 6. Let S be a system of representatives for A/m. Then for any positive integer n, the series

a−nπ
−n + · · ·+ a0 + a1π+ · · · , ai ∈ S

is a Cauchy series in K̂, and every Cauchy series in K̂ is equivalent to exactly one series of this form. In particular,
every element of K̂ has a unique representative of this form.

Proof. Let sM ··=
∑M
i=−n aiπ

i denote the Mth partial sum and note that since | · | is nonarchimedean, we
have

|sM − sN| 6 |πM+1|, M < N,
which shows that the series is Cauchy.

For the second statement, begin with α ∈ K̂ and write α = πnα0 for some n ∈ Z and α0 ∈ Â×. Since
A/m ∼= Â/m̂, the definition of S shows that there exists a0 ∈ S such that α0 − a0 ∈ m̂. Let α1 ··= α0−a0

π ,
then α1 ∈ Â—and may already be in m̂—so we may yet again find a1 ∈ S such that α1 − a1 ∈ m̂. Let
α2 ··= α1−a1

π ∈ A and let a2 ∈ S be such that α2 − a2 ∈ m̂. Continuing in this fashion, we have

α0 = a0 + a1π+ a2π
2 + · · · , α = πnα0.

This shows existence of the power series representation. For uniqueness, it suffices to show that there is a
unique representative for 0. Since the absolute value is nonarchimedean∣∣∣∣∣∑

i

aiπ
i

∣∣∣∣∣ = |πm|

where am is the first nonzero coefficient in the series. From this, it easily follows that the series represents
0 if and only if every coefficient is 0. �

3.10. Interlude on Inverse Limits. To discuss algebraic completions, we need a purely algebraic way of
constructing limits. This construction is useful for completing fields, but also for understanding the Galois
theory of infinite extensions. We shall therefore take some time and develop the algebra behind inverse
limits and look at a few important instances of this construction.

An inverse limit (or sometimes projective limit or simply limit) is to be thought of as the result of zooming
closer and closer to an object: we start with a sequence of “magnifications” of this algebraic entity and then
we take this sequence to the limit.

The “sequence of magnifications” idea is made precise by the notion of an inverse system. Let I be
a nonempty poset and let (Ai)i∈I be a collection of objects of a category C indexed by I, i.e. view I

as a diagram in C. Assume that for each i 6 j ∈ I there is a morphism ϕij : Aj → Ai. The collection
(Ai,ϕij : Aj → Ai) is then called an inverse system if
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(1) ϕii = idAi for all i ∈ I; and
(2) ϕik = ϕij ◦ϕjk for all i 6 j 6 k ∈ I.

Note for the cognoscente: An inverse system can be defined more generally as a functor from a cofiltered category, but
for our purposes, the notion of an inverse directed set is more than sufficient.

Most often, I will be a linearly ordered set, so the diagram given by I in C will have the shape

· · · Aα Aβ Aγ · · ·

and the inverse system axioms merely say that the composite morphisms above behave as expected.
Intuitively, this diagram describes the situation where you are able to obtain information at arbitrarily fine
resolutions, but you do not have the ability to zoom in to improve coarse information to a finer resolution;
the morphisms present only allow you to “zoom out” (think, for example, of truncating terms of a power
series).

The inverse limit of the inverse system (Ai,ϕij) is then the limit over the diagram I. More concretely,
this consists of an object A in C and morphisms πi : A→ Ai for each i ∈ I such that ϕij ◦ πj = πi for each
i 6 j ∈ I, i.e. each of the following triangles commute:

A

Ai Aj;
πi πj

ϕij

and such that A is “final” with this property: for any object B in C with morphisms τi : B→ Ai satisfying
ϕij ◦ τj = τi, each instance (i 6 j) of the diagram below commutes:

B

A

Ai Aj.

τi τj

πi πj

ϕij

Back to the magnification metaphor, the inverse limit is an object that holds the finest image possible; the
resolution of the limit is so high that any other picture B which can zoom out to the constituent pictures Ai
must be contained in A.

The description of the inverse limit immediately tells us that A is obtained as a subobject of the product
of the Ai. This is because the product is final for a more general class of “cones” than is the inverse limit
(namely, one omits the “satisfying ϕij ◦ τj = τi” coherence condition). Indeed, if C is a concrete category in
which the product of the Ai exists, A can be taken as

lim←−
i

Ai ··= A =

{
(ai)i ∈

∏
i∈I

Ai

∣∣∣∣∣ ϕij(aj) = ai ∀ i 6 j ∈ I

}
.

An important instance of inverse limits which we will encounter soon enough is that of profinite groups.
A profinite group is a topological group which is isomorphic to the inverse limit of an inverse system of
discrete finite groups. Profinite groups are important for us for two reasons. First, the Galois groups of
infinite Galois extensions are profinite groups obtained as inverse limits indexed by the finite subextensions
of the big extension. Second, the p-adic integers Zp, p ∈ Z prime, are profinite groups. We will explore the
p-adic numbers soon enough and we will also discuss infinite Galois theory at some point in the future.

3.11. Nonarchimedean Completions: Algebraic Perspective. Back to talking about completions. The
inverse limit operation is the algebraic formalism required to construct completions of rings in a purely
algebraic manner. First let us describe how inverse limits are usually used in this context. Let A be a ring
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and let m be an ideal (not necessarily maximal) of A. Then we have an inverse system obtained by setting
A0 ··= A, and for i > 1, Ai ··= A/mi and the maps Aj → Ai, where i 6 j, are the natural quotient maps:

A/m← A/m2 ← A/m3 ← · · · .

The descending sequence A ··= m0 ⊇ m1 ⊇ m2 ⊇ · · · is called the m-adic filtration of A and the inverse limit
of the corresponding sequence of quotient rings, as above, is called the completion of A with respect to m,
and will be denoted Âm or simply Â when m is understood.

We can describe the completion Â explicitly as follows:

Â =
{
(a1,a2, . . .) ∈

∏
A/mi

∣∣∣ aj ≡ ai (mod mi)
}

.

First notice that this completion is isomorphic to the analytic one: this follows from the lemma that
A/mn → Â/m̂n is an isomorphism for all n and the universal property of Â.

3.12. p-adic Numbers. Having looked at the general theory of completions, let us consider the example
of the p-adic numbers Qp, p ∈ Z prime. Recall first that Qp is the completion of Q with respect to the
absolute value associated to the prime ideal pZ of Z. Alternatively, Qp can be constructed as the field of
fractions of the completion Zp of Z with respect to the pZ-adic filtration. The analytic perspective suggests
that elements of Qp are equivalence classes of Cauchy sequences of Q with respect to | · |p. But we also
have shown that we can represent each equivalence class uniquely in the form of a Laurent series in p,∑

i>n

aip
i

for some n ∈ Z and with each ai ∈ { 0, . . . ,p− 1 }. It’s not too difficult to see that elements of Zp can be
represented as power series in p, i.e. the index of the first nonzero coefficient is nonnegative.

From the algebraic perspective, elements of Zp are tuples (A1,A2, . . .) in
∏
i Z/piZ for which Aj ≡ Ai

(mod pi) for all i 6 j. A moment’s thought should allow one to see that the Ai are the partial sums of the
power series representation. A similar representation for Qp can be described, where the tuple now is
doubly infinite with support bounded below.

Let’s work out an example. Let p be any prime and consider the sum

1+ p+ p2 + · · ·+ pn + · · · ∈ Qp.

The nth partial sum of this series is

1+ p+ · · ·+ pn−1 =
pn − 1

p− 1
.

Taking n→∞, we have that ∑
k>0

pk =
1

1− p
.

Especially cute are when p = 2 and p = 3, where one obtains −1 and −1/2, respectively.

3.13. Polynomials in Complete Fields. One more piece of algebra before we get back to looking at number
fields. Our objects of study are field extensions, where the fields are eventually assumed to be complete.
Completeness, as we mentioned in the beginning, allows us to find roots of polynomials via approximation
techniques. That is what we will look at presently. Note that these results can be cast in a more general
setting; consult just about any algebra book. There are several ways to state the following result; we shall
phrase it in terms of factoring polynomials since splitting of primes is what we are primarily interested in.

For this section, let A be a complete discrete valuation ring, let π be a generator for the maximal ideal m
of A and let k be the residue field of A. For f(x) ∈ A[x], write f̄(x) for the image of f(x) in k[x] under the
quotient map (that is, reduce the coefficients modulo m). We use these notations unless otherwise stated.

Theorem 7 (Hensel’s Lemma). Let f(x) ∈ A[x] be a monic polynomial. If f̄(x) factors as f̄ = g0h0 with g0 and h0
monic and relatively prime, then f itself factors as f = gh with g and h monic and such that ḡ = g0 and h̄ = h0.
Moreover, g and h are uniquely determined, and (g,h) = A[x].

8



The existence proof will make clear why this result should be thought of solving the polynomial f via
approximations.

Proof of Hensel’s Lemma. Notice that the hypotheses of the theorem are equivalent to saying that

f− g0h0 ∈ π ·A[x].

Completeness of A along with this view of the hypotheses suggests that we should look for g and h by
looking for power series in π. The power series will be constructed inductively. Suppose that gn and hn
are found such that

f ≡ gnhn mod πn+1 ·A[x]
and such that gn ≡ g0 and hn ≡ h0 in πA[x]. The next approximation will be obtained by adding a πn+1

term, which means that we want to find u, v ∈ A[x] such that

f− (gn + πn+1u)(hn + πn+1v) ≡ 0 mod πn+2A[x].

We want the approximate factors to reduce to g0 and h0 so we should have the degree of u and v less
than g0 and h0, respectively; however, since we can add terms with coefficient divisible by π, which will
disappear during the reduction, we need to impose this condition explicitly in order for gn+1 and hn+1 to
be uniquely specified. Rearranging the above equation, we are looking for u, v ∈ A[x] with degu < degg0
and deg v < degh0 and

uhn + vgn ≡
f− gnhn
πn+1

mod πA[x].

Since g0 and h0 are relatively prime, the following lemma will show that u and v exists. �

Lemma 8. If g,h ∈ A[x] are such that ḡ and h̄ are relatively prime, and g is monic, then there exists u, v ∈ A[x]
with degu < degg and deg v < degh such that uh+ vg = 1.

Proof. Let M ··= A[x]/(g,h). Since g is monic, M is a finitely generated A-module. Since (ḡ, h̄) = k[x], we
have (g,h) + mA[x] = A[x], from which dividing out by (g,h) shows that mM = M. Nakayama’s Lemma
then implies M = 0.

Let u, v ∈ A[x] be such that uh+ vg = 1 and suppose that deg v > degh. Write v = hq+ r for deg r < degh,
then

(u+ gq)h+ rg = 1

and note that the equality above immediately implies deg(u+ gq) < degg. �

3.14. Extending Absolute Values from Complete Base Fields. Back to absolute values. Recall that our
purpose was to classify the absolute values of number fields and we intended to do this by figuring out
how absolute values of Q extend up. Well, let us worry about the nonarchimedean absolute values first.
Let K be a finite extension of Q and let | · | be a nonarchimedean absolute value on Q. From our discussions
before, we know that each nonarchimedean absolute value on Q arises from the valuation associated to
some prime number p ∈ Z. Let A be the integral closure of Z in K; then A is a Dedekind domain and the
ideal pA ⊆ A factors uniquely into a product of prime ideals

pA = Pe11 · · ·P
eg
g .

Each of the primes P1, . . . ,Pg give rise to a valuation on K and hence an absolute value. How might these
be related to the absolute value we started with? This question can be answered in a rather nice way in the
case the underlying field is complete with respect to the absolute value we started with.

Theorem 9. Let K be a field complete with respect to an absolute value | · |K and let L be an algebraic extension of K
of degree n. Then | · |K extends uniquely to an absolute value | · |L on L and L is complete with respect to this absolute
value. Moreover, when [L : K] = n <∞, this extension is given by, for all β ∈ L,

|β|L = |NL|K β|
1/n
K

Proof. Note that since algebraic extensions are given by the union of all finite subextensions, it suffices to
prove the uniqueness for finite extensions L of K. For complete proofs, see Milne ANT Theorem 7.38 and
Neukirch Chapter 2 Theorem 4.8. �
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There is an important technical consequence of this theorem. The uniqueness of the extension implies
that there is a unique valuation which extends the valuation associated to p. But each unique prime in OL
over p would give a distinct valuation extending p. So in fact, the uniqueness tells us that pOL = Pe for a
unique prime P of OL and for some positive integer e. Recall that e is called the ramification degree of P
over p; there is also an integer f ··= [OL/P : OK/p] called the inertia degree (or residue class degree) of P over p.
Since in general, [L : K] =

∑
eifi where the sum is taken over all primes lying over p, we have the following

Corollary 10. Let K and L be as above. Then n = ef, where n = [L : K], e is the ramification index of P over p, and
f is the degree of the residue field extension.

I should say a word about what normalizations are typically chosen for the absolute values associated to
primes p in the ring of integers OK of a number field K. As before, localize OK with respect to p and let νp
be the discrete valuation defined on (OK)p which sends a local uniformizing parameter of (OK)p to 1. Let
Np denote the cardinality of the residue field of (OK)p—recall that this is finite since the residue field is
a finite extension of Z/pZ, where pZ = p∩Z, and the degree of the field extension is bounded by [K : Q].
Then set, for x ∈ K,

|x|p ··=
(
1

Np

)νp(x)

.

3.15. Extending Absolute Values in General. With an understanding of how absolute values extend when
the base field is complete, we can look at what happens when the base field is not necessarily complete.
Let K be a field with absolute value | · | and let L be a finite separable extension of K. By the Theorem of
Primitive Elements, we can write L = K[α] for some α ∈ L. Let f(x) ∈ K[x] be the minimal polynomial of α.
Let | · | ′ be any extension of | · | to L. Forming the completion L̂ of L with respect to | · | ′ gives the diagram:

L L̂

K K̂

where the absolute values on each of the fields are extensions of one another. Notice that K̂[α] is a finite
extension of K̂ and K̂ is complete with respect to the absolute value | · | inherited from K. By the theorem,
K̂[α] itself is complete. But notice that L = K[α] ⊆ K̂[α]. The facts that L is contained in K̂[α] and that K̂[α] is
complete implies that L̂ ⊆ K̂[α]; the other inclusion is easily obtained by viewing L̂ as the completion of the
ring K[α] = L.

Now let g(x) ∈ K̂[x] be the minimal polynomial of α over K̂. We can view f(x) as a polynomial in K̂[x]
and note that since f(α) = 0, g must divide f. In this way, we can associate an irreducible factor g of f in
K̂[x] to the extension | · | ′.

Conversely, let g(x) ∈ K̂[x] be a monic irreducible factor of f(x) in K̂[x] and let K̂[α] ··= K̂[x]/(g). This gives
us a diagram

L K̂[α]

K K̂.

But note that K̂ is complete, so by the previous theorem, the absolute value on K̂ extends to a unique
absolute value on K̂[α]. This, in turn, restricts to an absolute value on L which extends | · |. Observe that
these operations are inverse to one another, hence we have shown the following.

Proposition 11. Let L = K[α] be a finite separable extension of a field K, and let f(x) ∈ K[x] be the minimal polynomial
of α. Then there is a natural one-to-one correspondence between the extensions of | · | to L and the irreducible factors of
f(x) in K̂[x].

What does this really mean in our context of interest? Well let K be a number field, L a finite extension
of K. Write OK for the ring of integers of K and let OL = OK[α] for some α ∈ L and let f(x) ∈ K[x] be the
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minimal polynomial. Suppose that our absolute value | · | on K comes from the valuation associated to a
prime p of OK. Now let

f(x) = f1(x) · · · fg(x).

for f1, . . . , fg ∈ K̂[x] irreducible. Since the fi are irreducible in K̂[x] and K̂ is complete, Hensel’s Lemma
implies that the fi, modulo p̂, are powers of irreducible polynomials hi(x),

f̄i(x) = hi(x)
ei mod p̂.

Then reducing f by p̂, we have the factorization

f̄(x) = h1(x)
e1 · · ·hg(x)eg mod p̂.

This is useful in view of the following result about factorization of ideals in extensions of Dedekind
domains.

Theorem 12. Let A be a Dedekind domain with field of fractions K. Let L be a finite separable extension of K and let
B be the integral closure of A in L. Suppose B = A[α] and let f(x) ∈ A[x] be the minimal polynomial of α. Let p be a
prime ideal of A. Suppose

f(x) ≡
∏

hi(x)
ei mod p

for some distinct irreducible polynomials hi ∈ A[x]/p and positive integers ei. Then

pB =
∏

(p,hi(α))ei

is the factorization of the ideal generated by p in B into product of powers of distinct prime ideals.

Proof. See Milne ANT Theorem 3.41. �

Applying this theorem in our situation, we find that

pOL =
∏

Peii , Pi = (p,gi(α))

From here, we see that the absolute values extending | · |p—that is, which are equivalent to | · |p when
restricted from L to K—are precisely those that correspond to the Pi. The content of the previous
proposition says that these are all.

3.16. Aside: Local-to-Global Principle. Let me take a moment to point out an important idea lurking in
the previous section. We wanted to understand how the field extension L | K behaves, where the fields K
and L are number fields of sorts. To do this, we passed to completions of either field with respect to some
valuation (or absolute value). In a sense, what we have done to understand L | K is to pass from the global
objects K and L to the local objects manifested by their completions.

To enlighten the terminology a bit more, suppose instead that K and L are function fields: for instance,
take K to be C(t) and L a finite extension of K. Then K could be thought of the regular functions on a
Riemann surface and L is some field of algebraic functions, both of which are objects of global nature—they
are defined on the whole Riemann surface. Now, passing to the completion corresponds to passing to the
fields of power series expansions. Geometrically, this corresponds to focussing our attention on some local
part of the Riemann surface. From this local study, we are somehow able to obtain information about the
original global objects.

But why do we bother to pass to the local objects in both cases? Well, this is because the local objects are
usually easier to handle in some way. In both cases, this at least partially manifests in how it is easier to
solve equations with local objects than global objects: as we saw with Hensel’s Lemma, equations can be
solved via approximation methods. In the context of number theory, we pass to completions with respect
to valuations because the arithmetic of complete fields, meaning the ideal structure of the ring of integers,
is significantly simpler than that of arbitrary number fields.

11



3.17. Classifying Completions of Global Fields. Finally, the extension theorem above allows us to classify
all the completions of number fields. Let K be a number field and let | · | be a nonarchimedean absolute
value on K. Restricting this to Q, we clearly obtain a nonarchimedean absolute value on Q. By Ostrowski’s
Theorem, we know that this comes from a prime p ∈ Z. If OK is the ring of integers of K and pOK = pe11 · · · p

eg
g ,

then the results of the previous section imply that | · | must be equivalent to the absolute value induced by
one of the pi. This shows that all nonarchimedean absolute values of number fields correspond to a unique
prime ideal in the ring of integers.

What about the archimedean absolute values on K? Let | · | be one such absolute value. Restricting to
Q, we obtain an archimedean absolute value, from which Ostrowski’s Theorem implies it is equivalent to
embedding Q into C and taking the usual absolute value there. Going back to the extension arguments of
the previous section, we see that K̂ must be a finite extension of C (there is an error here; what if K = Q?).
Since C is algebraically closed, K̂ = C. This tells us that | · | coincides with the absolute value obtained from
an embedding σ : K ↪→ C. There are now two cases to consider, depending on whether or not the complex
conjugate σ̄ coincides with σ. If σ̄ = σ, then σ(K) ⊆ R, in which case we have an absolute value that is
distinct from that obtained from other embeddings; if σ̄ 6= σ, on the other hand, σ(K) is not contained in
R and also the absolute values | · |σ and | · |σ̄ are easily seen to be equivalent. The theorem of the previous
section shows that these are all the archimedean absolute values.

These results will be summarized with the help of some terminology. Let K be a number field. An
equivalence class of absolute values on K is called a prime or place of K.

Theorem 13. Let K be a number field. Then there exists exactly one prime of K

(1) for each prime ideal p ⊂ OK;
(2) for each real embedding σ : K ↪→ R ⊂ C;
(3) for each conjugate pair of complex embeddings σ̄,σ : K ↪→ C.

Because primes of K refer to equivalence classes of absolute values, there will be a choice of normalization
for each class of primes above. Typical normalizations that we will follow for each class of primes are as
follows:

(1) For | · |p, p an ideal of OK, set |x|p ··= (Np)−ordp x;
(2) For | · |σ, σ : K ↪→ R, set |x|σ ··= |σ(x)|;
(3) For | · |σ̄, σ̄ 6= σ : K ↪→ C, set |x|σ̄ ··= |σ(x)||σ̄(x)| = |σ(x)|2.

Note that the complex case is not technically an absolute value—if you try proving the triangle inequality,
you will fail miserably—but this form is convenient for statements of theorems.

3.18. Local Fields. Remember that our whole purpose in all the preceding algebra was to understand a
bit more about so-called local fields. Recall that we said a field (K, | · |) is a local field if K is complete with
respect to the absolute value and has a finite residue field. In case the absolute value is nonarchimedean,
this can be characterized by compactness of the ring of integers.

Proposition 14. Let K be complete with respect to a nonarchimedean absolute value | · | and let A be the ring of
integers of K with maximal ideal m. Then the residue field k = A/m is finite if and only if A is compact.

Proof. Let S be a system of representatives for A/m, then our goal is to show that S is finite if and only if A
is compact. First suppose that A is compact. Since

m = { x ∈ A | |x| < 1 } ,

we see that m is open. Then the sets s+m as s ranges over the elements of S form a disjoint open covering
of A. Since A is compact, there can only be finitely many sets in this covering, meaning that S is finite.

Conversely, assume that S is finite. Then every element of A can be written as a power series s0 + s1π+
s2π

2 + · · · , where π is a generator for m and si ∈ S for all i. Now, for each positive integer n, there are only
finitely many distinct elements of the form

s0 + s1π+ · · ·+ snπn.
12



Since | · | is nonarchimedean, every element of A is within |πn+1| of this element—i.e. the collection of open
balls

{B(|πn+1|, s0 + s1π+ · · ·+ snπn) | si ∈ S }
will be a finite cover of A. Recall from real analysis that this means that A is a totally bounded metric space.
Since it is complete with respect to the absolute value, A is also compact. �

Recall that a closed subspace of a compact space is itself compact. A nice consequence of this elementary
topological fact along with the above characterization is that we obtain some very useful compact subspaces
of local fields.

Corollary 15. Let K be a nonarchimedean local field. Then pn, 1+ pn and A× are all compact.

Let me remind you that p here refers to the prime which the nonarchimedean absolute value on K

corresponds to, viewed as the maximal ideal of the corresponding discrete valuation ring. Since a discrete
valuation ring is local, p is also the Jacobson radical of the ring. Thus 1+ pn ⊆ 1+ p consists of units for all
positive integers n.

Recall from our discussion of nonarchimedean absolute values that every element of K can be written in
the form aπn for some a ∈ A× and n ∈ Z. It is then easy to see that every element of K admits a compact
neighbourhood: just take a translation of A×. This means that nonarchimedean local fields can also be
characterized as locally compact fields.

Some authors define local fields as fields which are locally compact. The advantage of this is that
completions of number fields with respect to archimedean absolute values are also considered local fields.
By Ostrowski’s Theorem, this is saying that we might want to consider R and C as local fields. Besides
R and C, local fields are either finite extensions of the p-adic numbers Qp for some prime p or else finite
extensions of the field of Laurent series k((t)) for some finite field k. The former will be of interest for our
study of number theory, whereas the latter will come up when we begin looking at some geometry.

3.19. Unramified Extensions. In the study of field extensions, a particularly nice class of extensions are
unramified extensions. Roughly speaking, these are field extensions in which the ring of integers of the
extension field does not “fold over” anywhere. The point of studying unramified field extensions is that
their arithmetic is simpler than general field extensions: somehow, these extensions behave a lot like
extensions of finite fields, which are well understood. For reasons such as these, our study of class field
theory will begin with unramified field extensions.

For this subsection, let K be a complete field with respect to a discrete absolute value | · |. Write k for the
residue field of K and let A be the corresponding discrete valuation ring. For an extension field L of K,
write l for the residue field and B the corresponding discrete valuation ring.

A finite extension L | K is called unramified if the extension l | k of the residue fields is separable
and [L : K] = [l : k]. An arbitrary extension is called unramified if it is the union of finite unramified
subextensions. Note that when L is a possibly infinite extension of K, we define

B ··= { x ∈ L | |x| 6 1 } , P ··= { x ∈ B | |x| < 1 }

and define the quotient B/P to be the residue field of L. This definition will coincide with taking B as the
integral closure of A in L when the extension is finite.

The following result makes precise some of the statements made in the first paragraph.

Proposition 16. Let L be an algebraic extension of K. The map K ′ 7→ k ′ sending an unramified extension L | K ′ | K
to its residue field k ′ is a one-to-one correspondence between the sets

{K ′ ⊆ L, finite and unramified over K }↔ {k ′ ⊆ l, finite over k } .

Moreover, if K ′ ↔ k ′ and K ′′ ↔ k ′′, then:
(1) K ′ ⊆ K ′′ if and only if k ′ ⊆ k ′′;
(2) K ′ is Galois over K if and only if k ′ is Galois over k, in which case there is a canonical isomorphism

Gal(K ′ | K)→ Gal(k ′ | k).
13



Proof. See Milne ANT Proposition 7.50. �

An important step in the proof of this proposition is to show that the compositum of two unramified
extensions is itself unramified.

Lemma 17. Suppose K ′ | K and K ′′ | K are two unramified extensions of K contained in L. Then the compositum
K ′K ′′ | K is an unramified extension of K in L.

Proof. From global theory, we know that a prime ramifies in an extension if and only if the prime divides
the discriminant of the extension (cf. Milne ANT Theorem 3.20). Since K ′ | K and K ′′ | K, the prime p of K
does not divide the discriminants ∆K ′ and ∆K ′′ . But we also have

∆K ′K ′′ = ∆
[K ′:K]
K ′ ∆

[K ′′:K]
K ′′ ,

(cf. Milne ANT Remark 6.6c). Since p does not divide the right hand side, p cannot divide ∆K ′K ′′ , implying
that K ′K ′′ is an unramified extension of K. Since the elements of K ′K ′′ are linear combinations of all
products of elements in K ′ and K ′′, it is clear that K ′K ′′ ⊆ L. �

This lemma allows us to apply Zorn’s Lemma to find that there is always a largest unramified extension
K0 of K contained in L, which contains all other unramified extensions of K. In fact, more can be said when
k is finite. All finite extensions of a finite field can be obtained by adjoining roots of unity prime with
degree prime to the characteristic of k. Thus, in case that k is finite, K0 is obtained by adjoining all such
roots of unity contained in l.

Not surprisingly, the most important choice for L is the algebraic closure Kal of K.

Corollary 18. Assume both K and k are perfect. The residue field of Kal is kal; there is a subfield Kun of Kal such that
a subfield L of Kal, finite over K, is unramified if and only if L ⊆ Kun.

Proof. Let f0(x) ∈ k[x] be any polynomial and let f(x) ∈ A[x] be any lift of f0(x). Then Kal contains all the
roots of f and hence the residue field k ′ of Kal contains all the roots of f0(x). Thus k ′ is algebraic over k
and every polynomial over k splits in k ′, so k ′ = kal. The field Kun is the largest unramified extension of K
contained in Kal. �

Since all finite extensions of K will be contained in the algebraic closure of K, the above result gives a sort
of absolute property to the correspondence between finite, unramified extensions of K and finite extensions
of k. More precisely, we have:

Corollary 19. Assume K and k are perfect fields. Then there is an equivalence of categories between the category of
finite, unramified extensions of K and the finite extensions of k.

As mentioned in the opening of this section, this equivalence of categories will be important for us
because it relates the extensions of our local fields with extensions of finite fields. One particularly useful
property is that this gives the existence of an element analogous to the Frobenius element in the Galois
group of finite extensions of local fields.

More precisely, let K be a local field and let q be the order of the residue field k of K. For each positive
integer n, there is a unique, up to k-isomorphism, field extension kn | k of degree n. Recall that the Galois
group Gal(kn | k) is cyclic of order n and has a canonical generator x 7→ xq called the Frobenius element.
By the above equivalence of categories and the relation between the Galois groups, we see that for each
positive integer n, there is an unramified extension Kn | K of degree n which unique up to K-isomorphism.
Moreover, the Galois group Gal(Kn | K) is cyclic of order n and has a canonical generator, which is also
known as the Frobenius element, characterized by the property

σ(β) = βq (mod p)

for all β ∈ B, where B is the discrete valuation ring of Kn and p is the prime of K.
14



3.20. Two More Local Results. There are two more theorems that are typically covered in the local theory.
Unfortunately, these results seem very unmotivated at first. This is because the power of these theorems
only comes about when trying to go from the local objects to the global objects. Specifically, the forthcoming
theorems become important when we discuss idèles.

The first of these results is the so-called Weak Approximation Theorem. Roughly it says that different
absolute values are essentially independent. When looking at the statement, keep the Chinese Remainder
Theorem in mind: think of absolute values in terms of their valuations and thus in connection with primes
and think of the approximations as finding an element in some power of the ideal.

Theorem 20 (Weak Approximation Theorem). Let | · |1, . . . , | · |n be nontrivial inequivalent absolute values on
a field K, and let a1, . . . ,an ∈ K. For every ε > 0, there is an element a ∈ K such that |a− ai|i < ε for each
i = 1, . . . ,n.

Proof. See Milne ANT Theorem 7.20 and Neukirch Chapter II Theorem 3.4. �

The Weak Approximation Theorem will help us show that a certain map defined from the idèle class
group is surjective.

If we think of the Weak Approximation Theorem as stating some independence condition on any finite
set of inequivalent absolute values, the Product Formula can be thought of as saying there is a nontrivial
relation when all the absolute values are considered together. We shall state this in two parts: first we state
it for Q and then for an arbitrary number field.

Theorem 21 (Product Formula). For p = 2, 3, 5, 7, 11, 13, . . . ,∞ let | · |p denote the corresponding normalized
absolute value on Q. Then for any 0 6= x ∈ Q, ∏

p

|x|p = 1.

Proof. Let x = a
b for a,b ∈ Q. Now recall the definition of |α|p: this will be p−n, where n is the order αp to

which p divides a minus the order βp to which p divides b. Thus |x|p = 1 unless p | a or p | b. Note this
shows that the product is finite and thus makes sense. Now we compute:

∏
p

|x| =

∏
p|a

1

pαp

∏
q|b

qβp

∣∣∣a
b

∣∣∣∞ =
1

a
· b · a

b
= 1. �

An analogous result holds for general number fields. The proof of the general case is done by using the
formula for extensions of absolute values and the product formula for Q.

Theorem 22 (Product Formula). For each prime ν, let | · |ν be the normalized absolute value corresponding to ν.
Then for every 0 6= x ∈ K, ∏

ν

|x|ν = 1.

Before leaving off, let me mention that the product formula may be used as an axiom for global fields.
This axiomatization was achieved by Artin and Whaples in 1945. Let K be a field with a set of primes V

satisfying the following two axioms:
(1) There is a set of representatives | · |ν for the primes such that, for any nonzero x ∈ K, |x|ν 6= 1 for only

finitely many ν ∈ V and ∏
ν∈V

|x|ν = 1.

(2) There exists at least one prime ν ∈ V for which Kν is a local field.
Then K is a global field and V consists of all primes of K.
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