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1. Motivation

Class field theory is the study of finite abelian extensions of global and local fields. In particular, it seeks to
characterize these abelian extensions in terms of arithmetic data attached to the base field. Probably the
most basic example of this is the Kronecker-Weber theorem, described below. One thing provided by class
field theory is a bijective correspondence between abelian extensions and certain classes of ideals; this can
also be formulated in the language of “idèles”.

The law of quadratic reciprocity, of which Gauss famously gave 8 proofs, states that(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/2

where the Legendre symbol is defined by

(
a

p

)
=


0 if a ≡ 0 mod p
+1 if a 6≡ 0 mod p and for some integer x, a ≡ x2 mod p
−1 otherwise.

This can actually be viewed as one of the first theorems of class field theory. Although it looks like a
harmless curiosity, it is in fact closely related to the splitting of primes in cyclotomic fields. We have the
following result.

Theorem 1. Let n =
∏
p p
vp be the prime factorization of n, and for every prime number p, let fp be the smallest

positive integer such that pfp ≡ 1 mod n/pvp . Then in Q(ζn) one has the factorization

p = (p1 · · · pr)ϕ(pvp)

where p1, . . . , pr are distinct prime ideals, all of degree fp.

The search for “higher reciprocity laws” dominated number theory for a long time. At the heart of class
field theory lies a result known as Artin reciprocity, which subsumes all of these laws.

Given a number field K (that is, a finite-degree field extension of Q), the elements α ∈ K for which there
exist a monic polynomial f ∈ Z[x] such that f(α) = 0 are known as algebraic integers; they form a subring of
K denoted by OK. In fact, OK is a Dedekind domain: an integral domain in which every proper nonzero
ideal factors as a product of prime ideals.

If L ⊃ K is an extension of number fields, then every prime ideal p of OK generates an ideal pOL of OL,
which in general is no longer prime. However, it can of course be factorized into primes (that is, prime
ideals) in OL. One of the central goals of algebraic number theory is to understand the splitting behaviour
of primes when lifted in this sense.

Here is another angle. Suppose we are given a monic irreducible polynomial f ∈ Z[x] of degree n.
Then for any prime number p, we can reduce all of the coefficients of f modulo p to obtain a polynomial
f ∈ Fp[x], and factorize f into irreducibles, say f = f1 · · · fr, with λi := deg(fi), numbered in such a way that
λ1 > λ2 > . . . > λr. Then we have λ1 + . . .+ λr = n, so λ is a partition of n. It seems fairly natural to ask
whether, given f and λ, we can describe the set of prime numbers p for which the reduction of f mod p has
“factorization pattern” λ, in this sense. In particular, for which primes p does f split completely into linear
factors over Fp?

This innocent question remains to this day only partially understood. The polynomial f gives rise to a
finite Galois extension K of Q, namely the one obtained by adjoining all of its roots α1, . . . ,αn to Q. This is
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called the splitting field of f, and we can consider its Galois group G = Gal(K|F). If G is abelian, then we call
K an abelian extension of Q, and the famous Kronecker-Weber theorem then tells us that K is contained in
some sufficiently large cyclotomic extension, that is, K ⊂ Q(ζN) for some sufficiently large integer N; here
ζN is a primitive Nth root of unity. What is the significance of the least such N? It turns out that the set of
primes p for which f splits completely admits a very nice characterization in terms of congruences modulo
N. This is really what class field theory is all about. Assuming the Galois group is abelian is hardly a mild
hypothesis, however, and getting a satisfying answer to the question in general is one of the main goals of
the Langlands program! Whoa, how did we go from a simple question about reducing polynomials mod p
to automorphic representations, L-functions, harmonic analysis, and all that crazy stuff?

Here are some other considerations which motivated class field theory. Given a number field F, can we
find a finite extension K | F of class number one? Shafarevich and Golod showed, in the early 1960s, that
this is not always possible. However, it was conjectured by Hilbert that there is always an extension K | F

such that any non-principal ideal in OF becomes principal in OK. This turned out to be true, due to a result
called the Principal Ideal Theorem, which was proved in the 1930s by Furtwängler.

2. Review : global theory of number fields

We now quickly review the global theory of number fields, as is presented in Chapter I of Neukirch’s
Algebraic Number Theory. Even if you cannot recall the proofs of some of these facts, the point is to establish
a common abstraction layer (and, less importantly, notation) which we will later build upon.

2.1. Number fields and integrality. The starting point is the concept of an (algebraic) number field, that is
to say, a finite field extension K of Q. Note that many fields of interest, such as Q( 3

√
2), are not Galois

extensions of Q, since they are not normal1. Separability, on the other hand, is automatic in characteristic 0.
We say α ∈ K is integral if it satisfies f(α) = 0 for some monic f ∈ Z[x]. More generally, if A ⊂ B is an

extension of rings, we say α ∈ B is integral over A if f(α) = 0 for some monic f ∈ A[x]. B itself is called
integral over A if all its elements are so. The following fact is crucial: the set

A = {b ∈ B | b integral over A}

is a ring, called the integral closure of A in B. Indeed, recall that b1, . . . ,bn ∈ B are all integral over A if and
only if A[b1, . . . ,bn] is finitely generated as an A-module.

We say A is integrally closed in B if A = A. Of special interest is the case when A is an integral domain
with field of fractions K; we call A simply integrally closed if it is integrally closed in K.

We have the following transitivity property: if C ⊃ B is integral, and B ⊃ A is integral, then C ⊃ A is
integral.

We will now consider the following situation: A is an integral domain, integrally closed in its field of
fractions K, and B is the integral closure of A in a finite extension L of K.

2.2. Trace and norm. We isolate two quantities of interest attached to an element x of L, namely, its
norm and trace. The former often yields useful information about units and prime elements. Define an
endomorphism Tx of the K-vector space L by α 7→ xα. Its trace and determinant are called the trace TrL|K(x)
and norm NL|K(x) of x ∈ L. We obtain in this way homomorphisms

TrL|K : L→ K, NL|K : L∗ → K∗.

In the case when L | K is separable, we have the following convenient Galois-theoretic interpretation: if
σ : L→ K runs over the K-embeddings of L into an algebraic closure K of K, then we have:

TrL|K(x) =
∑
σ

σx, NL|K(x) =
∏
σ

σx.

Another useful fact is that

TrL|K ◦ TrM|L = TrM|K, NL|K ◦NM|L = NM|K.

1This is unfortunate terminology. An extension K | F is called normal if it is obtained by adjoining to F all the roots of some
collection S ⊂ F[x] of polynomials.
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2.3. Discriminant of a basis. The discriminant of a basis α1, . . . ,αn of a separable extension L | K is defined
by

d(α1, . . . ,αn) = det((σiαj))2

where σi run over the K-embeddings L→ K. [Alternative definition of the discriminant.] If L | K is separable
and α1, . . . ,αn is a basis, then d(α1, . . . ,αn) 6= 0, and (x,y) := TrL|K(xy) is a nondegenerate bilinear form on
the K-vector space L.

2.4. Integral bases. An integral basis for B over A (or simply an A-basis for B) is a collection of elements
ω1, . . . ,ωn ∈ B such that any b ∈ B can be expressed uniquely as

b = a1ω1 + . . .+ anωn, a1, . . . ,an ∈ A.

Since any integral basis is clearly a basis for L | K, we have n = [L : K], the degree of the extension. The
existence of an integral basis implies B is free as an A-module; it is therefore not surprising that in general
they do not exist. However, if A is a PID, and L | K is separable, then every finitely generated B-submodule
M 6= 0 of L is free of rank n = [L : K]. In particular, B admits an integral basis over A.

By looking at simple examples like quadratic fields, one might expect that an integral basis of the form
1, θ, . . . , θn−1, where θ ∈ K, always exists. This is called a power basis, and the discriminant of such a basis is
simply ∏

i<j

(θi − θj)
2, θi = σiθ.

Unfortunately, power bases do not always exist.

2.5. Ring of integers. Of primary importance is the integral closure of Z ⊂ Q in a number field K, which
we denote OK. This is called the ring of integers of K. By our previous remarks, any finitely generated
OK-submodule a of K admits a Z-basis α1, . . . ,αn. However, the discriminant d(α1, . . . ,αn) is actually
independent of the choice of basis, so we simply denote it d(a).

Applying this to the special case of an integral basis ω1, . . . ,ωn of K, we obtain a fundamental invariant
of the number field K:

dK = d(OK)

which we call the discriminant of K.
If a ⊂ a ′ are two nonzero finitely generated OK-submodules of K, then the index (a ′ : a) is finite, and

d(a) = (a ′ : a)2 · d(a ′).

2.6. Dedekind domains and unique factorization. In general, although elements of OK always admit
factorizations into irreducibles, we do not in general have uniqueness. To salvage this situation we turn to
the ideals of OK. Examination of the properties of OK leads us to the general concept of a Dedekind domain:
a Noetherian integral domain, integrally closed, such that every nonzero prime ideal is maximal. In these
rings, every proper nonzero ideal a ⊂ OK can be written (essentially) uniquely as a product of prime ideals:

a = pv11 · · · p
vr
r , vi > 0.

You should think of Dedekind domains as “generalized PIDs”: if we start with a PID and consider its
integral closure in some finite extension of its field of fractions, this will not generally remain a PID, but it
will be a Dedekind domain. We also have a kind of generalized Chinese remainder theorem.

2.7. Fractional ideals and the class group. If O is a Dedekind domain, we want every nonzero ideal a to
have an “inverse”. For this reason, writing K for the field of fractions of O, we introduce the notion of a
fractional ideal: a nonzero finitely generated O-submodule of K.

Of course, any a ∈ K∗ gives rise to a fractional ideal, namely the principal ideal (a) = aO. In particular,
any ideal of O is certainly a fractional ideal; we call these integral ideals.

The fractional ideals form an abelian group JK, which we call the ideal group of K. As mentioned before,
we have the subgroup PK of principal ideals. The quotient JK/PK is the all-important ideal class group
ClK = JK/PK of K. It fits into the exact sequence

1→ O∗ → K∗ → JK → ClK → 1.
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One way to read this is as follows: the class group measures the expansion that takes place in passing from
numbers to ideals, whereas the unit group O∗ measures the contraction in this same process.

For a general Dedekind domain, this group could be horrible, but for the ring of integers of a number
field K, it is finite. This is one consequence of Minkowski’s theory of lattices (“geometry of numbers”). Its
order is called the class number of K and is denoted hK.

There are several interesting open problems related to class numbers. A long standing conjecture says
that there are infinitely many real quadratic fields with class number 1, but in fact it is not even known
whether there are infinitely many algebraic number fields with class number 1! On the other hand, we
now know (conjectured by Gauss and proven in the 1950s) that the only imaginary quadratic fields Q(

√
d),

d < 0 squarefree, with class number 1, are those with

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

These are called Heegner numbers.

2.8. Lattices. A lattice in an n-dimensional R-vector space is a subgroup of the form

Γ = Zv1 + · · ·+ Zvm

with v1, . . . , vm ∈ V linearly independent; we say they form a basis of Γ . The set

Φ = {x1v1 + . . .+ xmvm | xi ∈ R, 0 6 xi < 1}

is called a fundamental mesh of the lattice. A lattice is called complete if m = n.
More intrinsically, a lattice is a discrete subgroup of V . Now, suppose V is an euclidean vector space: an n-

dimensional real vector space equipped with a symmetric, positive definite bilinear form 〈−,−〉 : V ×V → R.
Then on V we have a notion of volume (Haar measure); the form 〈−,−〉 fixes the scaling factor. The cube
spanned by an orthonormal basis e1, . . . , en has volume 1, and more generally, the parallelepiped spanned
by n linearly independent vectors v1, . . . , vn,

Φ = {x1v1 + . . .+ xnvn | 0 6 xi < 1}

has volume vol(Φ) = |detA| where A is the change of basis e v. As (〈vi, vj〉) = AAt, we can also write
vol(Φ) = |det(〈vi, vj〉)|1/2.

If Γ = Zv1 + . . .+ Zvn, then Φ is a fundamental mesh for Γ and we simply write vol(Γ) = vol(Φ). This is
independent of choice of basis, as the transition matrix passing to a different basis, and its inverse, both
have integer coefficients, thus have determinant ±1.

We say X ⊂ V is centrally symmetric if x ∈ X implies −x ∈ X. It is convex if given x,y ∈ X, the line segment
joining them is fully contained in X. With this, we have the following result, known as Minkowski’s Lattice
Point Theorem: Let Γ be a complete lattice in the euclidean space V and X a centrally symmetric, convex
subset of V . Suppose vol(X) > 2n · vol(Γ). Then X contains at least one nonzero γ ∈ Γ . This result cannot be
improved (the > cannot be replaced with >).

2.9. Minkowski theory. Given an algebraic number field K | Q, the idea is to interpret its numbers as
points in n-dimensional space. Consider the map

j : K→ KC :=
∏
τ

C, a 7→ j(a) = (τa)

arising from the n complex embeddings τ : K→ C. We equip KC with the natural hermitian scalar product,

〈x,y〉 =
∑
τ

xτyτ.

The Galois group G(C | R) is cyclic of order 2, generated by complex conjugation F : z 7→ z. Since this acts
both on the factors of the product KC and on the indexing set of τ (to each embedding τ corresponds its
conjugate τ : K→ C). In this way we obtain an involution F : KC → KC given by (Fz)τ = zτ. We note

〈Fx, Fy〉 =
∑
τ

(Fx)τ(Fy)τ =
∑
τ

xτyτ =
∑
τ

xτyτ =
∑
τ

xτyτ = F〈x,y〉,

that is, 〈−,−〉 is equivariant under F.
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2.10. Dirichlet’s unit theorem. We now examine the second main problem posed by the ring of integers
OK, namely, its unit group. The main result here is as follows: O∗K is the direct product of the finite cyclic
group µ(K) (the group of roots of unity in K) and a free abelian group of rank r+ s− 1, where r is the
number of real embeddings K → R and s is the number of pairs of conjugate embeddings σ,σ : K → C.
Another way to formulate it: there exist units ε1, . . . , εt, with t = r+ s− 1, called the fundamental units, such
that any other unit ε can be written uniquely as a product

ε = ζεv11 · · · ε
vt
t

with a root of unity ζ and integers vi.
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