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Derived functor cheat sheet

If A is a “nice” abelian category, F : A → B a left exact functor, then there exists a
sequence

RiF, i ≥ 0

of functors such that:

• R0F ∼= F

• If 0→ A→ B → C → 0 is exact, then there is a long exact sequence

0→ F (A)︸ ︷︷ ︸
=R0F (A)

→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ . . .

• If F is exact, then RiF = 0 for i ≥ 1.

Namely, if A ∈ Ob(A), pick an injective resolution

0→ A→ I0 → I1 → . . .

and define RiF by RiF (A) = Hi(F (I•)). Note that if I is injective then RiF (I) = 0 for
all i > 0. Also, these are well-defined additive functors for all i .

Here, having enough injectives is good enough to be “nice” (however “nice” is actually
weaker).

If we fix some nice category of sheaves on X i.e. Ab(X), R-Mod(X), O(X)-Mod etc,
then:

Proposition. These all have enough injectives.
∗Synthesized from Erik’s notes and the notes I (mlbaker) took.
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Sheaf cohomology

Definition. The functor of “global sections”

F 7→ F (X) : Ab(X)→ Ab

will be denoted Γ(X,−).

Definition (attempt). The ith cohomology functor

Hi : Ab(X)→ Ab

is RiΓ(X,−).

Proposition. Γ(X,−) is left exact.

Proof. Suppose
0→ F

ϕ−→ G
ψ−→ H → 0

is exact. We need to show that

0→ F (X)
ϕX−→ G(X)

ψX−→ H(X)

is exact. Note that
ker(ϕX) = (kerϕ)X = (0)X = 0.

Also,
im(ϕX) ⊆ ker(ψX) since ψ ◦ ϕ = 0

so that ψX ◦ ϕX = 0. Suppose s ∈ ker(ψX) = (kerψ)X = (imϕ)X. The rest of the
proof works out by arguing that things can be glued together: recall

imϕ := (impsh ϕ)+ (where + denotes sheafification)

so s is locally a section of impsh ϕ, so it’s locally the image of a section of F . Since
sections of ϕ are injective, we get uniqueness, so we can glue to get a section of F .

Remark. This fails to prove right exactness since we need injectivity to lift sections of
epic sheaf maps, otherwise local sections might not agree on overlaps.

The global sections functor for presheaves turns out to be exact, so you can’t get an
interesting cohomology theory in that setting.

Cohomology is all about measuring “failures of right-exactness”, i.e. “obstructions to
lifting global sections”; since local lifts are always fine, this basically amounts to “ob-
structions to gluing local constructions together”.

Example. If X ⊆ C is connected and open (or X is a Riemann surface), we have a short
exact sequence

0→ 2πiZ inclusion−−−−→ O exp−−→ O∗ → 1

where 2πiZ is the constant sheaf Z, O is the sheaf of holomorphic functions, and O∗
is the sheaf of nonzero holomorphic functions. Also, 1 is the same sheaf as 0, except
written multiplicatively.
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If we have a nonzero holomorphic function on some open set, then given any point in that
set, we can obtain a logarithm for the function on some sufficiently small neighbourhood.

Now consider global sections:

0→ 2πiZ→ O(X)
exp−−→ O∗(X)→ 1

where the map O(X) → O∗(X) is not necessarily surjective (on C \ {0}, the map
(z 7→ z) ∈ O∗(X) has no global lift), so the sequence is not in general exact.

We saw before that if 0→ F → G → H → 0 is exact, we get

0→ Γ(X, F )→ Γ(X,G)→ Γ(X,H)→ H1(X, F )→ H1(X,G)→ H1(X,H)→ . . .

This is the fundamental property of sheaf cohomology from an algebraic point of view.
If G is acyclic then this characterizes Hi(X,H).

If we replace the 1 above with the first cohomology groups, then we get the following
exact sequence:

0→ 2πiZ→ O(X)
exp−−→ O∗(X)→ H1(X, 2πiZ)→ H1(X,O)→ . . .

with

H1(X, 2πiZ) =
O∗(X)

im(exp)X
, H1(X,O) = 0︸ ︷︷ ︸

if X=C\{x1,...,xn}

.

Now set X = C \ {x1, . . . , xn}. We ask the question: what is im(expX)? Just use
complex analysis. Locally, we can always find a logarithm for a nonvanishing holomorphic
function: suppose f ∈ O∗(X). Then log f exists locally, and

d

dz
log f =

f ′(z)

f (z)

so locally

log f =

∫ z

z0

f ′(w) dw

f (w)
.

When is this integral single-valued? Well, this will happen if and only if each residue of
f /f ′ is 0. Near z0, write

f (z) = (z − z0)n · g(z), g(z) 6= 0

so that
f ′(z) = n(z − z0)n−1 · g(z) + (z − z0)n · g′(z)

hence
f ′(z)

f (z)
=

n

z − z0
+

g′(z)

g(z)︸ ︷︷ ︸
analytic in a nhd of z0

and therefore we have that the residue is simply

Resz0

(
f ′

f

)
= n.
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This is 0 if z0 ∈ X. It could only be nonzero if z0 is one of our “removed points” xi . So
f ∈ im expX if and only if Resxi (f

′/f ) = 0.

Note that f 7→ Resxi (f
′/f ) : O∗(X)→ Z is a group homomorphism. Assume xi = 0 to

make the calculation easier; then we have

(f g)′

f g
=
f ′g + f g′

f g
=
f ′

f
+
g′

g
.

This is exactly the same situation that happens in algebraic curves: if you have a smooth
curve at a point, then the local ring there is a DVR (discrete valuation ring).

ϕ : f 7→
(

Resxi
f ′

f

)n
i=1

: O∗(X)→ Zn

so im exp = kerϕ. So

H1(X, 2πiZ) =
O∗(X)

im exp
=
O∗(X)

kerϕ
= Zn

and here n is the number of holes we’ve punctured. We might hope sheaf cohomology
is some kind of generalisation of “hole counting” (which we already saw how to do last
time with algebraic topology).

Example (de Rham cohomology). Let X be a smooth manifold, Ωk the sheaf of k-forms,
then

0→ R→ C∞ = Ω0
d−→ Ω1 → . . .

is exact (by Poincaré) and forms an “acyclic resolution” for the constant sheaf R. Thus

. . .→ Ωk(X)
d−→ Ωk+1(X)→ . . .

and

Hk(X,R) =
ker dk

im dk−1
= Hkde Rham(X)

Remark. This is essentially a lifting obstruction problem.

Theorem. If X is “nice” (e.g. a manifold), then

Hi(X,Z) ∼= HiC̆ech(X),

and generally,
Hi(X,A) ∼= HiC̆ech(X)⊗ A.

Proof. We’ll see something more general later.

C̆ech it again

Take an open cover; assume it’s locally finite. Construct the nerve N(U) ∈ ∆Set by
putting in a 0-simplex for U ∈ U , a 1-simplex for U ∩ V 6= ∅ (U 6= V ), and in general, a
k-simplex for every U0 ∩ . . . ∩ Uk 6= ∅ with the Ui distinct in U (∗).
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From N(U), construct a cochain complex

. . .→ Ck−1
d−→ Ck

d−→ Ck+1 → . . .

and
Ck ∼=

⊕
i0<...<ik
(*) holds

Z(Ui0 ∩ . . . ∩ Uik )︸ ︷︷ ︸
sections of const. sheaf Z

over Ui0∩...∩Uik

.

To go from Ck−1 → Ck we need to get maps

Z(Ui0 ∩ . . . ∩ Ûis ∩ . . . ∩ Uik )→ Z(Ui0 ∩ . . . ∩ Uik )

where the hat denotes omission. Just take these maps to be multiplication by (−1)s . If
we assume all the intersections are connected then we simply have

Z(Ui0 ∩ . . . ∩ Uik ) ∼= Z

and
Z(Ui0 ∩ . . . ∩ Ûis ∩ . . . ∩ Uik )→ Z(Ui0 ∩ . . . ∩ Uik )

is just the sheaf restriction map.

This motivates a definition.

Definition. If U is a finite open cover of X, F is an abelian sheaf on X, define

Ck(U , F ) =
⊕

i0<...<ik
Ui0∩...∩Uik 6=∅

F (Ui0 ∩ . . . ∩ Uik )

and also define Ck−1 d−→ Ck by

(−1)s · res
Ui0∩...∩Ûis∩...∩Uik
Ui0∩...∩Uik

(F ) : F (Ui0 ∩ . . . ∩ Ûis ∩ . . . ∩ Uik )→ F (Ui0 ∩ . . . Uik )

glue these together to get Ck−1 → Ck as desired.

If you hate yourself, check that d2 = 0 so we indeed obtain a cochain complex.

Now define

HkC̆ech(U , F ) =
ker dk

im dk−1

and then finally, as before, we defined the C̆ech cohomology of X by taking a colimit
over all such open covers U :

HkC̆ech(X, F ) = colim
U

HkC̆ech(U , F )

When X is “nice”, these things agree with the derived functor cohomology. However we
can actually compute them!

Directions from here

• Do the calculation for affine schemes and projective schemes.

• Serre’s criterion for affineness.

5


