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Introduction

Review

Last time we defined what it means for a scheme to be connected,
irreducible, reduced and integral. We saw that a scheme is integral if and
only if it is both reduced and irreducible.

Next, we defined locally noetherian schemes to be those which can be
covered by open affine subsets Spec Ai with each ring Ai noetherian. We
called a scheme noetherian if it is locally noetherian and quasi-compact
(every open cover has a finite subcover).

We then discussed morphisms of locally finite type, finite type, and finite
morphisms, finally moving on to define immersions and subschemes.

Eeshan didn’t quite finish on Thursday, so I’ll pick up where he left off.
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Noetherian schemes

Characterisation of locally noetherian schemes

We will now prove a proposition which was stated without proof last time.

Proposition 3.2

A scheme X is locally noetherian if and only if for every open affine subset
U = Spec A, A is a noetherian ring. In particular, an affine scheme
X = Spec A is a noetherian scheme if and only if the ring A is a
noetherian ring.

First, we need the following lemma.

Lemma

Let A be a ring, and f1, . . . , fr ∈ A generate the unit ideal (i.e. A). Let
a ⊆ A be an ideal, and let ϕi : A→ Afi be the localisation map,
i = 1, . . . , r . Then

a =
⋂

ϕ−1
i (ϕi (a) · Afi ).
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Noetherian schemes

Proof of Lemma

The inclusion ⊆ is obvious. We prove ⊇. Given an element b ∈ A
contained in this intersection, we can write ϕi (b) = ai/f

ni
i in Afi for each

i , where ai ∈ a and ni > 0. Increasing the ni if necessary, we can make
them all equal to a fixed n. This means that in A we have

f mi
i (f ni b − ai ) = 0

for some mi . As before, we can make all the mi = m. Thus f m+n
i b ∈ a for

each i . Since f1, . . . , fr generate the unit ideal, the same is true of their
Nth powers for any N. Take N = n + m. Then we have 1 =

∑
ci f

N
i for

suitable ci ∈ A. Hence
b =

∑
ci f

N
i b ∈ a

as required.

We now proceed to the proof of the proposition.
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Noetherian schemes

Proof of Proposition

The “if” direction is clear. We must show that if X is locally noetherian,
and if U = Spec A is an open affine subset, then A is a noetherian ring.

First, note that if B is a noetherian ring, so is any localisation Bf . The
open subsets D(f ) ∼= Spec Bf form a base for the topology of Spec B.
Hence on a locally noetherian scheme X there is a base for the topology
consisting of the spectra of noetherian rings. In particular, our open set U
can be covered by spectra of noetherian rings.

So we have reduced to proving the following: let X = Spec A be an affine
scheme, which can be covered by open subsets which are spectra of
noetherian rings. Then A is noetherian. Let U = Spec B be an open
subset of X , with B noetherian. Then for some f ∈ A, D(f ) ⊆ U. Let f
be the image of f in B. Then Af

∼= Bf , hence Af is noetherian. So we can
cover X by open subsets D(f ) ∼= Spec Af with Af noetherian. Since X is
quasi-compact, a finite number will do.
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Noetherian schemes

Proof of Proposition

So now we have reduced to a purely algebraic problem: A is a ring,
f1, . . . , fr are a finite number of elements of A, which generate the unit
ideal, and each localisation Afi is noetherian. We have to show A is
noetherian. Let a1 ⊆ a2 ⊆ . . . be an ascending chain of ideals in A. Then
for each i ,

ϕi (a1) · Afi ⊆ ϕi (a2) · Afi ⊆ . . .

is an ascending chain of ideals in Afi , which stabilises since Afi is
noetherian. There are only finitely many Afi , so from the lemma we
conclude the original chain is eventually stationary, so A is noetherian.
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Dimension and fibred products

Dimension of a scheme

Definition

The dimension of a scheme X , denoted dimX , is its dimension as a
topological space: the supremum of all integers n such that there exists a
chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of distinct irreducible closed subsets of X .

If Z is an irreducible closed subset of X , then the codimension of Z in X ,
denoted codim(Z ,X ), is the supremum of integers n such that there exists
a chain

Z = Z0 < Z1 < . . . < Zn

of distinct closed irreducible subsets of X , beginning with Z . If Y is any
closed subset of X , we define

codim(Y ,X ) = inf{codim(Z ,X ) : Z ⊆ Y closed irreducible}.
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Dimension and fibred products

Example

If X = Spec A is an affine scheme, then the dimension of X is the same as
the Krull dimension of A.

Warning

The concepts of dimension and codimension may not behave so well over
arbitrary schemes. Our intuition is derived from working with schemes of
finite type over a field, where these notions are well-behaved. For example,
if X is an affine integral scheme of finite type over a field k , and if Y ⊆ X
is any closed irreducible subset, then by a result in Chapter 1,
dim Y + codim(Y ,X ) = dim X . But on arbitrary (even noetherian)
schemes, funny things can happen.
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Dimension and fibred products

Fibred product

Definition

Let S be a scheme, and let X ,Y be schemes over S (i.e. schemes with
morphisms to S). We define the fibred product of X and Y over S ,
denoted X ×S Y , to be a scheme, together with morphisms p1 and p2 to
X and Y respectively, which make the obvious diagram commute, such
that X ×S Y is terminal among all such cones.
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Dimension and fibred products

Proposition

For any two schemes X and Y over a scheme S , the fibred product
X ×S Y exists, and is unique up to unique isomorphism.

Uniqueness is a consequence of abstract nonsense, so we need only
show existence.

If all the schemes are affine, say X = Spec A, Y = Spec B, and
S = Spec R, then Spec A⊗R B will serve as X ×S Y . This is not
hard to see: a morphism Z → Spec A⊗R B is the same as a ring map
A⊗R B → Γ(Z ,OZ ), which is the same as giving ring maps
A,B → Γ(Z ,OZ ) which induce the same map on R. This in turn is
the same as giving maps Z → X ,Y which cause the obvious diagram
to commute.

If X and Y are schemes, X open-covered by {Ui}, then giving a map
f : X → Y is the same thing as giving a compatible family of maps
fi : Ui → Y .
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Dimension and fibred products

If X ,Y are schemes over S , and U ⊆ X is an open subset, and if
X ×S Y exists, then p−1

1 (U) ⊆ X ×S Y is a product for U with Y
over S .

Hard part: if X ,Y are schemes over S , {Xi} is an open covering of
X , and for each i , Xi ×S Y exists, then X ×S Y exists.

We know from the beginning that if X ,Y , S are all affine then
X ×S Y exists. Thus we conclude that for any X , but Y ,S affine, the
product X ×S Y exists. Doing the same thing again but
interchanging X and Y tells us that X ×S Y exists for any X and Y
over an affine S .

Final step: for arbitrary X ,Y ,S , let q : X → S and r : Y → S be the
given morphisms, and {Si} be an open affine cover of S . Put
Xi = q−1(Si ) and Yi = r−1(Si ). Then by the previous step Xi ×Si Yi

exists. One can show this same scheme is a product for Xi and Y
over S . But then X ×S Y exists, completing the proof.

Michael L. Baker (Pure Mathematics) Properties of Schemes II June 25, 2013 12 / 13



Dimension and fibred products

Fibres of a morphism

Here is a use of fibred products.

Definition

Let f : X → Y be a morphism of schemes and let y ∈ Y be a point. Let
k(y) be the residue field of y and let Spec k(y)→ Y be the natural
morphism. Then we define the fibre of the morphism f over the point y
to be the scheme

Xy = X ×Y Spec k(y).

The fibre Xy is a scheme over k(y), and one can show that its underlying
topological space is homeomorphic to the subset f −1(y) of X .

So we can regard a morphism as a “family of schemes” (i.e. its fibres)
parametrized by the points of the image scheme.
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