This document contains some of the details from 2.1-2.5 of Hartshorne - I've filled in a lot of
the details that I've been curious. The word 'ring’ means commutative unitary.

Let F be a presheaf of abelian groups (it could just as well be rings - from here on in, I just say
a sheaf) over a topological space X.

THEOREM 1. There exists a sheaf F* on X and a morphism ¢ : F — F which satisfies the
following unwversal property for all sheaves H and morphisms X : F — H.
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Proof. Let U C X be open. Define F(U) to be the group (ring, module, ...) of functions s: U —
Upeu Fp which satisfy two requirements. The first requirement is that the functions be ’sections’,
ie we require that s(q) € F, for all ¢ € U. The second requirement is that s is modelled, at least
locally, on an element of F(U). More precisely, for any p € U, we require that there exists an open
subset p € V C U and a section t € F(V') so that for all ¢ € @) we have 's = t’, ie that s(q) equals
the image of ¢ inside F,. We use the obvious restriction maps to make F7 into a presheaf.

Now, this gives a sheaf on X: let U be a fixed open subset and let {W,} ., be a fixed open
cover of U. Suppose I give you a section s € F+(U) which satisfies sy, = 0 € FF(W,) for all a:
then it is immediate that s = 0. Now suppose I give you sections s, € F(W,) for all & € A which
agree on all double intersections. Then you define s : U — UpeyF, by q — s4(q) for ¢ € W,. We
must show that s € F"(U). The first condition is obviously satisfied, so we verify the second: fix
p € U: for some o we have p € W,,. Pick an open neighbourhood p € W C W,, so that there exists
t € F(W) which satisfies t = s, on W. Then t|yry € F(W NU) does the trick for our s.

So it is indeed a sheaf. Now we describe the morphism ¢ : F — F*. Fix an open subset U of
X. Let t € F(U). We define ¢y (t) : U = UpeyFp, by q — t, € F, - here, t, means the image of ¢
under the natural map F(U) — F,. You may check for yourself that {¢y },;cy is a morphism - the
only thing to check is that the squares induced by a nest of open sets W C U commute.

Now we verify the universal property. Fix a sheaf H and a morphism A : F — H. Fix an open
subset U of X. Consider the diagram (now of groups)

FU) -2 Fru)

N

H(U)

Define ¢y : FH(U) — H(U) as follows. Fix an element s € F*(U). By definition of F*, for each
p € U we may find an open neighbourhood p € W, C X so that there exists t» € F(W,) which
satisty (t), = s(q) for all ¢ € W,. Consider the elements

Aw, (t7) € H(Wp)

I claim that these elements agree on all double intersections W, N W,. Since A is a morphism, it
suffices to prove that t*|w ~w, = t9|w,nw,, and this is true because (1), = s(x) for all x € W,
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Since H is a sheaf, the collection {/\Wp (tp)}peU glue to give a unique section r € H(U). Define
Yy (s) = r - it may be verified that this r does not depend on our choice of W, and of ¢*.

First, we check that the diagram commutes: let ¢t € F(U). Then ¢y (t) is the map U — Uyep Fy
defined by p — t,. We calculate ¢y of this element. For an arbitrary element of F*(U), we must
pick an open neighbourhood of each point to calculate ;. For this element however, we may
pick the single element ¢t € F(U). Following through the definition of 1y, we must glue the 'data’
Au(t) € H(U) to obtain an element of H(U) - but the glueing is already done for us because we
worked with a single element of F(U)! So the diagram commutes.

Next, note that {¢y/},;cy is indeed a sheaf map - we must verify for an open nest V' C U the
commutativity of the diagram

But this is easy to see - if the data t? € F(W),) works for ¢y, then the data tp|mev works for iy.

We now note that for all ¢ € X we have that F, = }"(;r , and this isomorphism is canonical
via ¢g @ [((W,a)] — [(W, ¢w(a))]. It is injective: suppose that [W, ¢w (a)] = [V, ¢y (b)]. Then there
exists an open subset U C V N W so that ¢w(a)|y = év(b)|y. Since ¢ is a morphism, this means
that ¢y (aly) = ¢u(bly). Each of the elements of F(U) are functions U — U,epF + p; saying that
they are equal means they agree at every point. Their evaluation at a point r € X is defined by
¢u(aly)(r) = a, - in our current notation we might also write this as [U, a] € F,.. This immediately
implies that [U, a| = [U,b] € F,, ie that [W,a] = [V, }].

Also, the map surjects: let [W,s] € .7-"q+ - this means that W C X is open and that ¢ € W and
that s € F+(W). By definition of F*, there exists an open subset p € V C W and an element
a € F(V) so that for all p € V' we have that s(p) = a,. It is immediate that [W,s] = [V, s|y] =
[V, 6y (@)] = 6,(V:a]).

From this we now verify the uniqueness of the universal property. For a fixed morphism A :
F — H, suppose ¥ : F* — H were another solution (besides our solution v) to the diagram. At a
point p € X we have the following group diagram

bp =
_l’_
Fp —— F

X llw

Hy

Since ¢, is an isomorphism, it follows that we have ¢, = ¥,,. Since F*, H are sheaves and morphisms
are determined by their behaviour at stalks, we immediately obtain that ¢ = .

O
Call F* the sheafification of F, or the sheaf associated to the presheaf F.
COROLLARY 1. The pair (F*,¢) is unique up to unique isomorphism.
Proof. 1t satisfies the universal property. n



Let f: X — Y be a map of topological spaces, and let G be a sheaf on Y. We define the inverse
image sheaf to be the sheaf on X associated to the presheaf

U — lim Gg(v)
— fu)cv
Here, the limit is taken over open subsets V' of Y which approximate (ie contain) f(U); a smaller
open subset better approximates f(U). Denote this sheaf by f~!'G. In particular, for an open
subset U C X and any morphism from the inverse image presheaf to a sheaf H we have the
following universal property.

lim G(V) —— f1g(U)

— )V \
H

LEMMA 2. Let F be a sheaf on X and let H be a sheaf on'Y . Let f : X — Y be a map of topological
spaces. Then there are canonical maps H — f.f*H and f~1f,.F — F.
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Proof. This is just unwinding the definitions. We first construct H — f.f'H. Let U C Y be open;
we are looking for a map

HU) = fuof HU) = fH(FU))

It suffices to exhibit a map to the presheaf that f~'H comes from; for we simply compose this map
with ¢y. Our map
H(U) — lim H(V)
— f(HUCV

just comes from the basic inclusion f(f~1(U)) C U: we simply map a + [(U,a)]. These maps
obviously communte with restrictions along an open nest.

Next we exhibit the map f~'f,F — F. By the universal property of f~*(f.F), it suffices to
(for an open subset U C X)) to exhibit a map

lim £FV) = FU)
— F)cV

The domain is lim F(f~H(V)). An element of this is a class [(W,a)] with W C Y open
v

and f(U) C W and a € F(f*(W)). Thus we have that U C f~!(W); this means our map is
(W, a)] = a|]y. Again, this gives a sheaf map. O

We say that f~! is the left adjoint of f, and that f, is the right adjoint of f~!. This is
justified by the following result.

THEOREM 3. Let f : X — Y be a map and let F be a sheaf on X and let H be a sheaf on Y.
There is a canonical bijection (of sets)

Homy (f'H,F) = Homy (H, f.F)

Proof. To a X-map T : f~'H — F we associate the Y-map H — f.f 'H &L f.F where the
first map comes from the lemma. It is obvious what the map f,T is: for U C Y open, we assign

(fT)o = Ty w).
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To the Y-map R : H — f.F we associate the X-map f~'H IR Y f.F) — F - here the

second map comes from the lemma, and f~!R is as follows. Let U C X be open. By the universal
property, it suffices to exhibit a map

lim HV) — fFHAFWU)

— )V

and via the sheafification map, it suffices to exhibit a map

lim H(V) — lim fF (V) = lim F(f(v)
—fU)ev —fUcv —fU)cv
The natural map is [(W,a)] — [(W, Rw(a))]. It remains to verify that these constructions are

inverses - I don’t have the heart to do this.
]

Fix a ring A, and let X = Spec(A) be the set of prime ideals. Define a topology on X by saying
that the closed subsets of X are precisely the sets {p € X : I C p}, where I C A; call this set V'(I).
Since V(I) = V((I)a), we may assume that [ is an ideal.

LEMMA 4. Defining the closed sets to be of the form V(I) as above forms a topology on X, which
we call the Zariski Topology. Furthermore, for two ideals I,J we have that V(I) C V(J) if and

only if VJ CVI.

Proof. 1t is easy to verify that V(I.J) = V(I) UV(J) and that V (>, I;) = N;V(I;) for an arbitrary
family of ideals {I;}. Furthermore, ) = V(A) and X = V(0). The second statement boils down to
the fact from commutative algebra that for any ideal J C A we have that v/.J equals the intersection
of all prime ideals which contain .J. For completeness we prove this.

One direction is trivial. Conversely, suppose that z ¢ v/J. Let S = {z" : n > 0}. Since
JNS =0, the ideal JAg of Ag is proper, and is therefore contained inside a maximal ideal M
of Ag. The pullback m of M to A is thus a prime of A which contains J. It is easy to see that
x ¢ m. O

LEMMA 5. A basis for the topology on X = Spec A are the sets D(f) ={p € X : f ¢ p} as f
ranges over A.

Proof. Let U C X be open, and let q € U. Since U is open, it is equal to X — V(1) for some ideal
I of A. Thus [ is not a subset of q; so we may pick a € I with a ¢ g. I claim that D(a) C U: if
p € D(a), then a ¢ p, which means [ is not a subset of p, which means p € U. Since q € D(a), we
are done. ]

LEMMA 6. Let X = Spec A, and let f, be a collection of elements of A. Let X = U,D(f) if and
only if (fo)a = A. In particular, X is quasicompact.

Proof. Suppose 1 =" aqfo. Let p € X; if each f, lives in p, then so does 1 which is impossible.
Does fs ¢ p for some §. Thus p € D(fs). Conversely, suppose (f,) is proper; then pick a prime
ideal P containing (f,). Since every f, € P, we have that P ¢ D(f,) for every a.

Finally, cover X by an open cover; we may assume each element of this open cover is D(f) for
some f € A. Then the finitely many f which generate the unit ideal also cover X. m



We now define a sheaf of rings on X; it is called the structure sheaf. Let U C X be open. We
define O(U) to be the set of functions s : U — | | ; A, which satisfy the following two conditions.
The first is that they are sections, ie that s(q) € A, for all g € U.

The second condition is less obvious, but is equally important. Suppose we are given a,s € A
so that for all p € U we have that s ¢ p. Then there is a natural map from U — | | _;; Ay, namely
q— a/s € Ay where here a/s denotes its image under the localisation map A — A,. We require
that our maps s be locally modelled on this condition. More precisely, for each p € U we require
there be an open neighbourhood p € V- C U and b, f € A so that f ¢ q for every q € V. Then we
insist that over V, the function s is modelled by b/ f as above, ie we have that s(q) = b/f € A, for
all g e V.

This is a presheaf of rings under pointwise operations and usual function restriction. It is a
sheaf because it is constructed exactly as we constructed the sheafification.

THEOREM 7. The structure sheaf O of X = Spec(A) relates in the following way to various
localisations of A.

(1) For every p € X we have that O, = A,.

(2) For every f € A we have that O(D(f)) = Ay. In particular, O(X) = A.

Proof. For the first claim, define a map ¢ : O, — A, by [V, s] — s(p). This is well defined because
our restriction’ maps are just function restrictions, and it is clearly a ring map. An element of A,
can be represented as a quotient a/f with a € A and f € A —p. Let U C X denote the open set
X —V(f), and let t € O(U) denote the map corresponding to a, f. Then ¢ : [U,t] — a/f € Ay, so
the map is surjective.

Now let s,t € O(U) have the same image at p. By shrinking U, we may assume that s cor-
responds to a/f and t corresponds to b/g. Thus there exists h ¢ p so that h(ga — fb) = 0 € A.
It follows that s = t inside every local ring A, where f,g,h ¢ q. The set of all such ¢ is the
open neighbourhood V.= X — (V(f)uUV(g) UV (h)) = X — V(fgh) of p. So s =t in an open
neighbourhood of p, proving that ¢ is injective.

For the second part of the theorem, define a function ¢ : Ay — O(Dy) by sending a/f"
to the element s of O(Dy) corresponding to a/f". First, we show that ¢ is injective. Suppose
Y(a/f") =1(b/f™). This means that for all ¢ € D; we have that a/f" = b/ f™ € A,. For a fixed
p € Dy we may find an element h € A — p so that h(f™a — f"b) = 0 € A. Letting a denote the
annihilator of f™a — f™b, we have that h € a. Since h ¢ p, we see that a is not a subset of p. So
we have that p € D; implies that a is not a subset of p, which implies that p ¢ V(a). Thus we
have that V(a) N Dy = (). Thus V(a) is contained in the (set-theoretic) complement of D, which is
V(f). In particular, the earlier lemma shows that v/f C +/a, which shows that f!(f™a — f"b) =0
for some { > 1. This proves that a/f" = b/ f™ € Ay, so 1 is injective.

Now, we show that v is onto. Let s € O(D(f)). Our first reduction is to simplify what we
may assume about the definition of the structure sheaf. By its definition, we may cover D(f) with
open sets V; so that s|y, is represented by a;/g;, where a;,g; € A and g; ¢ q for all g € V;. In other
words, V; C D(g;). Since the sets D(h) form a basis for the Zariski topology as h ranges over A,
we may, making our open sets V; smaller if neccesary, assume that V; = D(h;). Fix an i for now.
By the lemma this gives us that vh; C V/9;, with says that for some n > 0 and ¢ € A we have that
h? = cg;, which implies that a;/g; = ca;/h}. Relabelling hl" as h; (certainly D(h) = D(h™)) and ca;
as a;, we may thus assume that D(f) is covered by open sets of the form D(h;), and that s|p,)
corresponds to a;/h; on this open subset.

Next, we reduce to the case of considering only finitely many h;. We have that D(f) C U;D(h;),
which says that N;(V(h;)) = V(>,(h;)) € V(f). By the lemma this implies that f™ € > _.(h;) for



some n > 0, and hence is a finite A-linear combination of the h;. This finite set of the D(h;) in fact
covers the D(f).

Since we have that D(h;) N D(h;) = D(h;h;), it must be the case that inside Ay, ;; we have the
equality a;/h; = a;/h;; this is because s is represented by both of them on this open subset, and
we know that ¢ : Ay, — O(D(h;h;)) is injective. Thus for some n > 0 we have that

(hlhj)”(hjaz — hiaj) =0

We are only dealing with finitely many h;; thus we may pick n so that it works simultaneously for
all pairs (a;/h;, a;/h;). Relabel h"! as h; and h?a; as a;. We still have the representation of s on
D(h;) as a;/h;, and now we may assume that h;a; = h;a; for all 7, j.

For b; € A, write f" = ). b;a;; we previously showed this is possible. Define the element a € A
as a =y _.b;a;. For any j we then have

]’Lj(l = Z biaz‘h]‘
= Z bihiaj

Thus, on D(h;) we may also represented s by a/f". It is immediate that i(a/f") = s, proving the
theorem. O

DEFINITION 1. Let X be a space with a sheaf of rings O. We say that (X, Q) is a locally ringed
space if for all p € X we have that O, is a local ring. A morphism of locally ringed spaces
(X,0x) — (Y,0y) consists of amap f: X =Y and a map f# : Oy — f.Ox so that for allp € X
we have that f} Oy.tp) — Ox,p is local.t By this map I mean as follows: as V' ranges over the
open neighbourhoods of f(P) we have that f~(V) ranges over (some of) the open neighbourhoods
of P. Take limits; this latter term naturally maps to the stalk Ox p.

LEMMA 8. Let ¢ : A — B be a ring map, and let f : Spec B — Spec A be defined by q — ¢~ 1(q).
Then f is continuous.

Proof. Let a C A be an ideal. We prove that f~!(V(a) = V(¢(a)), which says that the inverse image
of a closed set under f is closed. Let q € f~(V(a). Then f(q) € V(a), which says that a C f(q).
Applying ¢ yields that ¢(a) C ¢(¢~*(q)) C q where the final containment is a set-theoretic fact.
Therefore q € V(¢(a)).

Conversely, let ¢ € V(¢(a)) - we must show that q € f~!(V(a)), ie that f(q) € V(a), ie that
a C f(q). Since q € V(¢(a)) we have that ¢(a) C q: applying f says that f(¢(a)) C f(q). The left
hand side is ¢~'¢(a), which by general set theory contains a. ]

PROPOSITION 9. Every ring map ¢ : A — B induces a morphism of ringed spaces (f, f#) :
(SpeC Ba OSpecB) — (Spec A7 OSPGC A)'

Proof. The continuous map f is given by the previous lemma. For notation, given any ring R we
denote Ogpec g by Or. We describe the morphism f#*: 04 — f.Op. To this end, let V C Spec A
be open. Let s € O4(V) - it is a map

V| A

qeVv

LA map of local rings is called local if the inverse image of the maximal ideal is the maximal ideal
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which satisfies (1) s(p) € A, for all p € V and (2) for all p € V' there exists an open neighbourhood
W(p) =W of pand a, f € A with f ¢ m for all m € W so that s|y corresponds to a/f : W —
L wew Am- We must associate to s a section ¢ € Op(f~'(V)) - that is a map

Fv) = |_| B

mef-1

which satisfies the right properties. Since we are ranging over m € f~!(V), we definitely have
f(m) € V, and associated to this is the local homomorphism ¢n : Afm) — Bw. Define ¢ to be the
composition
V=V [ 4w— [ Ba
f(m)ev mef=1(V)

where the first map is f, the second map is s, and the final map is the union of all the ¢,. This
map obviously satisfies that ¢(q) € B, for all ¢ € f~*(V). For the second condition, let p € f~1(V).
Pick a neighbourhood W of f(p) in V so that s|y corresponds to a/f, where a € A and f ¢ m
for all m € W. It is routine to verify that ¢(f) ¢ q for all ¢ € f~1(W), and that ¢ corresponds to
é(a)/é(f) on the neighbourhood f~1(W) of p.

Finally, we must show that the induced stalk map f* on the stalks are local homomorphisms.
For ¢ € Spec B, consider the map

&+ Ougie) = Ong

Unwinding the definition of this map and using our known isomorphisms, this map is seen to be
precisely the local homomorphism
Afq) = By

More precisely, an element a/g € Ay corresponds to the class [D4(g),a/g] € Oa s from theorem
7, and our stalk map sends this to the class [f~1(Da(f)),¢(a)/¢(g)], and this class corresponds
o ¢(a)/o(g), again from theorem 7, showing that the stalk map is precisely our beloved local
homomorphism. O

It is clear that if we start with a ring map ¢ : A — B, then the induced map on global sections
from the morphism of the previous lemma is exactly ¢ again. What is less clear is the converse.

LEMMA 10. Every morphism (f, f#) : (Spec B,Op) — (Spec A,04) ‘comes from’ a ring map
A — B as in the previous lemma.

Proof. Let fspec 4= ¢ : A— B denote the map on global sections. For p € Spec B, we thus have a
commutative diagram

ALB

| ]

Af(p) > By

I claim that ¢~(p) = f(p), ie that the continuous map f is precisely the map induced from ¢
from a few lemmas ago. To see this, note that (fi)~'(pB,) = f(p)As() since the map is a local
homomorphism. Pulling back f(p)Ay() along the first diagnol map ylelds the ideal f(p) of A. The
other direction: pulling back pB, via the second vertical map yields the ideal p of B, and pulling
it back via ¢ yields ¢~!(p). Since the diagram commutes, these ideals are equal. So f is induced
from the map ¢.



We must now show that f# is also induced from ¢ - but this is true because they induce the
same map on stalks. ]

DEFINITION 2. Let (X, O) be a scheme. We say that X is locally noetherian if it can be covered
by open subsets U, = Spec(A,) where A, is noetherian. We call X moetherian if it is locally
noetherian and quasi-compact.

Why about arbitrary affine open subsets? The next theorem answers this question. First, we
need an algebraic lemma.

LEMMA 11. Let fi,..., fr € A with ¢; : A — Ay, denoting localisation. Suppose that (f1, ..., fr)
generate the unit ideal, and let a be an ideal of A. Then

a = i (6(a) Ay

Proof. The left hand side is contained in the right hand side. Let b € A be contained in the right
hand side. Then ¢;(b) = a;/f;" for some a; € a and n; > 0. Possibly replacing a; f! with a;, we
may assume that all of the n; are all equal to say n. This means that, in the ring A, we have
that f"(bf!" — a;) = 0 for some m; > 0. Again, we may take all of the m; equal to some fixed
m. Let N = n + m; we thus have that f¥b = f™a; € a. Since (f1,..., f;) = A, we also have that
(fN, ..., fN) = A: simply write 1 an an A-linear combination of the f; and raise it to a huge power.
So, for appropriate ¢; € A we have that 1 = >, ¢;f¥. Therefore b = >, ¢;bf € a, which proves
the lemma. O

THEOREM 12. Let X be locally noetherian, and let U = Spec A be open. Then A is noetherian.

Proof. We make several claims. First: let B be noetherian and let f € B. Then By is noetherian.
To see this, suppose that J C By is an ideal; denote by ¢ the localisation map B — By. Then
I = ¢~ %(J) is an ideal of B, which is generated by by, ...,b; since B is noetherian. I claim that
J is generated by b;/1,...,b4/1. Given x € J, we may write it as ¢/f". Then, in B, we write
¢ =aiby + ... + aqby. Since ¢(c) = c¢/1 = f"(c/ f"), we see that ¢(c) € J. Hence ¢(c)/f" € J, which
is exactly x. The claim is proved.

The next claim is as follows: let U C X be open. Then we may write U as a union of the
spectra of noetherian rings. Proceed as follows. Since X is locally noetherian, we may cover X by
W, = Spec A, with each A, noetherian. Then U N W, is an open subset of W,; it is thus equal to
a union Uyep, D(fy). Since for any ring R we have a bijection between the primes of R, and the
primes of R that miss {f" : n > 0}, we may identify the open subset D(f) of Spec R with the affine
scheme Spec(Ry). Thus we may write

U = U, Uxen,, Spec((ca)fQ

By the first claim, each of these rings is noetherian, and so the second claim is proved. Furthermore,
since U is an affine scheme, it is quasi-compact, hence finitely many of the Spec((C,)y,) cover U.
Next, consider the following set-up. We have an affine scheme X = Spec A and U = Spec B an
open subset of X. We may pick some f € A so that D4(f) C U. The inclusion U C X corresponds
to a ring homomorphism ¢ : A — B; let f be the image of f under this map. I claim that A ;= By
Indeed, the element f € A is viewed as a function X — UgexAy. Since U C X is open, the stalk
Ospec By, Which is equal to By, is isomorphic to the stalk Ogpec a,6-1(p), Which is equal to Ag-1().
The isomorphism is given by the localisation of ¢ at p. It follows that f, when viewed as a function



U — Ugespee BBy, is simply the restriction of f to U. This implies that Da(f) = Dg(f) as schemes,
which says that Ay & By.

Thus our cover of U by the Spec((Cy,)y,) corresponds to a (finite) covering of Spec A by the
spectrum of the noetherian rings Spec Az~

Therefore, the problem has been reduced to proving the following. Let A be a ring and let
fi,..., f generate the unit ideal. Let ¢; : A — Ay, denote localisation, and suppose that each Ay, is
noetherian. Show that A is noetherian. Let

ap Capy C ..

be an ideal chain. Then we obtain, for each 7, an ideal chain

di(ar)Ay, C ¢i(ag)Ay, C ...

Since each Ay, is noetherian, each of these chains must stabalize. Then, by the lemma, when the
'longest” Ay, chain stabalizes, so does the original chain, so A is noetherian. O



