
This document contains some of the details from 2.1-2.5 of Hartshorne - I’ve filled in a lot of
the details that I’ve been curious. The word ’ring’ means commutative unitary.

Let F be a presheaf of abelian groups (it could just as well be rings - from here on in, I just say
a sheaf) over a topological space X.

Theorem 1. There exists a sheaf F+ on X and a morphism φ : F → F+ which satisfies the
following universal property for all sheaves H and morphisms λ : F → H.

F F+

H

φ

λ
∃!

Proof. Let U ⊆ X be open. Define F+(U) to be the group (ring, module, ...) of functions s : U →
∪p∈UFp which satisfy two requirements. The first requirement is that the functions be ’sections’,
ie we require that s(q) ∈ Fq for all q ∈ U . The second requirement is that s is modelled, at least
locally, on an element of F(U). More precisely, for any p ∈ U , we require that there exists an open
subset p ∈ V ⊆ U and a section t ∈ F(V ) so that for all q ∈ Q we have ’s = t’, ie that s(q) equals
the image of t inside Fq. We use the obvious restriction maps to make F+ into a presheaf.

Now, this gives a sheaf on X: let U be a fixed open subset and let {Wα}α∈A be a fixed open
cover of U . Suppose I give you a section s ∈ F+(U) which satisfies s|Wα = 0 ∈ F+(Wα) for all α:
then it is immediate that s = 0. Now suppose I give you sections sα ∈ F+(Wα) for all α ∈ A which
agree on all double intersections. Then you define s : U → ∪p∈UFp by q 7→ sα(q) for q ∈ Wα. We
must show that s ∈ F+(U). The first condition is obviously satisfied, so we verify the second: fix
p ∈ U : for some α we have p ∈ Wα. Pick an open neighbourhood p ∈ W ⊆ Wα so that there exists
t ∈ F(W ) which satisfies t = sα on W . Then t|W∩U ∈ F(W ∩ U) does the trick for our s.

So it is indeed a sheaf. Now we describe the morphism φ : F → F+. Fix an open subset U of
X. Let t ∈ F(U). We define φU(t) : U → ∪p∈UFp by q 7→ tq ∈ Fq - here, tq means the image of t
under the natural map F(U)→ Fq. You may check for yourself that {φU}U⊆X is a morphism - the
only thing to check is that the squares induced by a nest of open sets W ⊆ U commute.

Now we verify the universal property. Fix a sheaf H and a morphism λ : F → H. Fix an open
subset U of X. Consider the diagram (now of groups)

F(U) F+(U)

H(U)

φU

λU

Define ψU : F+(U) → H(U) as follows. Fix an element s ∈ F+(U). By definition of F+, for each
p ∈ U we may find an open neighbourhood p ∈ Wp ⊆ X so that there exists tp ∈ F(Wp) which
satisfy (tp)q = s(q) for all q ∈ Wp. Consider the elements

λWp(t
p) ∈ H(Wp)

I claim that these elements agree on all double intersections Wp ∩Wq. Since λ is a morphism, it
suffices to prove that tp|Wp∩Wq = tq|Wp∩Wq , and this is true because (tp)x = s(x) for all x ∈ Wp.
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Since H is a sheaf, the collection
{
λWp(t

p)
}
p∈U glue to give a unique section r ∈ H(U). Define

ψU(s) = r - it may be verified that this r does not depend on our choice of Wp and of tp.
First, we check that the diagram commutes: let t ∈ F(U). Then φU(t) is the map U → ∪q∈UFq

defined by p 7→ tp. We calculate ψU of this element. For an arbitrary element of F+(U), we must
pick an open neighbourhood of each point to calculate ψU . For this element however, we may
pick the single element t ∈ F(U). Following through the definition of ψU , we must glue the ’data’
λU(t) ∈ H(U) to obtain an element of H(U) - but the glueing is already done for us because we
worked with a single element of F(U)! So the diagram commutes.

Next, note that {ψU}U⊆X is indeed a sheaf map - we must verify for an open nest V ⊆ U the
commutativity of the diagram

F+(U) H(U)

F+(V ) H(V )

ψU

ψV

But this is easy to see - if the data tp ∈ F(Wp) works for ψU , then the data tp|Wp∩V works for ψV .
We now note that for all q ∈ X we have that Fq ∼= F+

q , and this isomorphism is canonical
via φq : [(W,a)] 7→ [(W,φW (a))]. It is injective: suppose that [W,φW (a)] = [V, φV (b)]. Then there
exists an open subset U ⊆ V ∩W so that φW (a)|U = φV (b)|U . Since φ is a morphism, this means
that φU(a|U) = φU(b|U). Each of the elements of F+(U) are functions U → ∪p∈UF + p; saying that
they are equal means they agree at every point. Their evaluation at a point r ∈ X is defined by
φU(a|U)(r) = ar - in our current notation we might also write this as [U, a] ∈ Fr. This immediately
implies that [U, a] = [U, b] ∈ Fq, ie that [W,a] = [V, b].

Also, the map surjects: let [W, s] ∈ F+
q - this means that W ⊆ X is open and that q ∈ W and

that s ∈ F+(W ). By definition of F+, there exists an open subset p ∈ V ⊆ W and an element
a ∈ F(V ) so that for all p ∈ V we have that s(p) = ap. It is immediate that [W, s] = [V, s|V ] =
[V, φV (a)] = φq([V, a]).

From this we now verify the uniqueness of the universal property. For a fixed morphism λ :
F → H, suppose Ψ : F+ → H were another solution (besides our solution ψ) to the diagram. At a
point p ∈ X we have the following group diagram

Fp F+
p

Hp

φp :∼=

λp
ψp,Ψp

Since φp is an isomorphism, it follows that we have ψp = Ψp. Since F+,H are sheaves and morphisms
are determined by their behaviour at stalks, we immediately obtain that ψ = Ψ.

Call F+ the sheafification of F , or the sheaf associated to the presheaf F .

Corollary 1. The pair (F+, φ) is unique up to unique isomorphism.

Proof. It satisfies the universal property.
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Let f : X → Y be a map of topological spaces, and let G be a sheaf on Y . We define the inverse
image sheaf to be the sheaf on X associated to the presheaf

U 7→ lim
−→ f(U)⊆V

G(V )

Here, the limit is taken over open subsets V of Y which approximate (ie contain) f(U); a smaller
open subset better approximates f(U). Denote this sheaf by f−1G. In particular, for an open
subset U ⊆ X and any morphism from the inverse image presheaf to a sheaf H we have the
following universal property.

lim
−→ f(U)⊆V

G(V ) f−1G(U)

H(U)

∃!

Lemma 2. Let F be a sheaf on X and let H be a sheaf on Y . Let f : X → Y be a map of topological
spaces. Then there are canonical maps H → f∗f

−1H and f−1f∗F → F .

Proof. This is just unwinding the definitions. We first construct H → f∗f
−1H. Let U ⊆ Y be open;

we are looking for a map
H(U)→ f∗f

−1H(U) = f−1H(f−1(U))

It suffices to exhibit a map to the presheaf that f−1H comes from; for we simply compose this map
with φU . Our map

H(U)→ lim
−→ f(f−1(U)⊆V

H(V )

just comes from the basic inclusion f(f−1(U)) ⊆ U : we simply map a 7→ [(U, a)]. These maps
obviously communte with restrictions along an open nest.

Next we exhibit the map f−1f∗F → F . By the universal property of f−1(f∗F), it suffices to
(for an open subset U ⊆ X) to exhibit a map

lim
−→ f(U)⊆V

f∗F(V )→ F(U)

The domain is lim
−→ f(U)⊆V

F(f−1(V )). An element of this is a class [(W,a)] with W ⊆ Y open

and f(U) ⊆ W and a ∈ F(f−1(W )). Thus we have that U ⊆ f−1(W ); this means our map is
[(W,a)] 7→ a|U . Again, this gives a sheaf map.

We say that f−1 is the left adjoint of f∗ and that f∗ is the right adjoint of f−1. This is
justified by the following result.

Theorem 3. Let f : X → Y be a map and let F be a sheaf on X and let H be a sheaf on Y .
There is a canonical bijection (of sets)

HomX(f−1H,F) = HomY (H, f∗F)

Proof. To a X-map T : f−1H → F we associate the Y -map H → f∗f
−1H f∗T→ f∗F where the

first map comes from the lemma. It is obvious what the map f∗T is: for U ⊆ Y open, we assign
(f∗T )U = Tf−1(U).
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To the Y -map R : H → f∗F we associate the X-map f−1H f−1R→ f−1(f∗F) → F - here the
second map comes from the lemma, and f−1R is as follows. Let U ⊆ X be open. By the universal
property, it suffices to exhibit a map

lim
−→ f(U)⊆V

H(V )→ f−1f∗F(U)

and via the sheafification map, it suffices to exhibit a map

lim
−→ f(U)⊆V

H(V )→ lim
−→ f(U)⊆V

f∗F(V ) = lim
−→ f(U)⊆V

F(f−1(V ))

The natural map is [(W,a)] 7→ [(W,RW (a))]. It remains to verify that these constructions are
inverses - I don’t have the heart to do this.

Fix a ring A, and let X = Spec(A) be the set of prime ideals. Define a topology on X by saying
that the closed subsets of X are precisely the sets {p ∈ X : I ⊆ p}, where I ⊆ A; call this set V (I).
Since V (I) = V ((I)A), we may assume that I is an ideal.

Lemma 4. Defining the closed sets to be of the form V (I) as above forms a topology on X, which
we call the Zariski Topology. Furthermore, for two ideals I, J we have that V (I) ⊆ V (J) if and
only if

√
J ⊆
√
I.

Proof. It is easy to verify that V (IJ) = V (I)∪ V (J) and that V (
∑

i Ii) = ∩iV (Ii) for an arbitrary
family of ideals {Ii}. Furthermore, ∅ = V (A) and X = V (0). The second statement boils down to
the fact from commutative algebra that for any ideal J ⊆ A we have that

√
J equals the intersection

of all prime ideals which contain J . For completeness we prove this.
One direction is trivial. Conversely, suppose that x /∈

√
J . Let S = {xn : n ≥ 0}. Since

J ∩ S = ∅, the ideal JAS of AS is proper, and is therefore contained inside a maximal ideal M
of AS. The pullback m of M to A is thus a prime of A which contains J . It is easy to see that
x /∈ m.

Lemma 5. A basis for the topology on X = SpecA are the sets D(f) = {p ∈ X : f /∈ p} as f
ranges over A.

Proof. Let U ⊆ X be open, and let q ∈ U . Since U is open, it is equal to X − V (I) for some ideal
I of A. Thus I is not a subset of q; so we may pick a ∈ I with a /∈ q. I claim that D(a) ⊆ U : if
p ∈ D(a), then a /∈ p, which means I is not a subset of p, which means p ∈ U . Since q ∈ D(a), we
are done.

Lemma 6. Let X = SpecA, and let fα be a collection of elements of A. Let X = ∪αD(fα) if and
only if (fα)α = A. In particular, X is quasicompact.

Proof. Suppose 1 =
∑

α aαfα. Let p ∈ X; if each fα lives in p, then so does 1 which is impossible.
Does fβ /∈ p for some β. Thus p ∈ D(fβ). Conversely, suppose (fα) is proper; then pick a prime
ideal P containing (fα). Since every fα ∈ P , we have that P /∈ D(fα) for every α.

Finally, cover X by an open cover; we may assume each element of this open cover is D(f) for
some f ∈ A. Then the finitely many f which generate the unit ideal also cover X.
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We now define a sheaf of rings on X; it is called the structure sheaf. Let U ⊆ X be open. We
define O(U) to be the set of functions s : U →

⊔
p∈U Ap which satisfy the following two conditions.

The first is that they are sections, ie that s(q) ∈ Aq for all q ∈ U .
The second condition is less obvious, but is equally important. Suppose we are given a, s ∈ A

so that for all p ∈ U we have that s /∈ p. Then there is a natural map from U →
⊔

p∈U Ap, namely
q 7→ a/s ∈ Aq where here a/s denotes its image under the localisation map A → Aq. We require
that our maps s be locally modelled on this condition. More precisely, for each p ∈ U we require
there be an open neighbourhood p ∈ V ⊆ U and b, f ∈ A so that f /∈ q for every q ∈ V . Then we
insist that over V , the function s is modelled by b/f as above, ie we have that s(q) = b/f ∈ Aq for
all q ∈ V .

This is a presheaf of rings under pointwise operations and usual function restriction. It is a
sheaf because it is constructed exactly as we constructed the sheafification.

Theorem 7. The structure sheaf O of X = Spec(A) relates in the following way to various
localisations of A.

(1) For every p ∈ X we have that Op
∼= Ap.

(2) For every f ∈ A we have that O(D(f)) ∼= Af . In particular, O(X) ∼= A.

Proof. For the first claim, define a map φ : Op → Ap by [V, s] 7→ s(p). This is well defined because
our ’restriction’ maps are just function restrictions, and it is clearly a ring map. An element of Ap

can be represented as a quotient a/f with a ∈ A and f ∈ A − p. Let U ⊆ X denote the open set
X − V (f), and let t ∈ O(U) denote the map corresponding to a, f . Then φ : [U, t] 7→ a/f ∈ Ap, so
the map is surjective.

Now let s, t ∈ O(U) have the same image at p. By shrinking U , we may assume that s cor-
responds to a/f and t corresponds to b/g. Thus there exists h /∈ p so that h(ga − fb) = 0 ∈ A.
It follows that s = t inside every local ring Aq where f, g, h /∈ q. The set of all such q is the
open neighbourhood V = X − (V (f) ∪ V (g) ∪ V (h)) = X − V (fgh) of p. So s = t in an open
neighbourhood of p, proving that φ is injective.

For the second part of the theorem, define a function ψ : Af → O(Df ) by sending a/fn

to the element s of O(Df ) corresponding to a/fn. First, we show that ψ is injective. Suppose
ψ(a/fn) = ψ(b/fm). This means that for all q ∈ Df we have that a/fn = b/fm ∈ Aq. For a fixed
p ∈ Df we may find an element h ∈ A − p so that h(fma − fnb) = 0 ∈ A. Letting a denote the
annihilator of fma − fnb, we have that h ∈ a. Since h /∈ p, we see that a is not a subset of p. So
we have that p ∈ Df implies that a is not a subset of p, which implies that p /∈ V (a). Thus we
have that V (a)∩Df = ∅. Thus V (a) is contained in the (set-theoretic) complement of Df , which is
V (f). In particular, the earlier lemma shows that

√
f ⊆
√
a, which shows that f l(fma− fnb) = 0

for some l ≥ 1. This proves that a/fn = b/fm ∈ Af , so ψ is injective.
Now, we show that ψ is onto. Let s ∈ O(D(f)). Our first reduction is to simplify what we

may assume about the definition of the structure sheaf. By its definition, we may cover D(f) with
open sets Vi so that s|Vi is represented by ai/gi, where ai, gi ∈ A and gi /∈ q for all q ∈ Vi. In other
words, Vi ⊆ D(gi). Since the sets D(h) form a basis for the Zariski topology as h ranges over A,
we may, making our open sets Vi smaller if neccesary, assume that Vi = D(hi). Fix an i for now.
By the lemma this gives us that

√
hi ⊆

√
g
i
, with says that for some n ≥ 0 and c ∈ A we have that

hni = cgi, which implies that ai/gi = cai/h
n
i . Relabelling hni as hi (certainly D(h) = D(hn)) and cai

as ai, we may thus assume that D(f) is covered by open sets of the form D(hi), and that s|D(hi)

corresponds to ai/hi on this open subset.
Next, we reduce to the case of considering only finitely many hi. We have that D(f) ⊆ ∪iD(hi),

which says that ∩i(V (hi)) = V (
∑

i(hi)) ⊆ V (f). By the lemma this implies that fn ∈
∑

i(hi) for
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some n ≥ 0, and hence is a finite A-linear combination of the hi. This finite set of the D(hi) in fact
covers the D(f).

Since we have that D(hi) ∩D(hj) = D(hihj), it must be the case that inside Ahihj we have the
equality ai/hi = aj/hj; this is because s is represented by both of them on this open subset, and
we know that ψ : Ahihj → O(D(hihj)) is injective. Thus for some n ≥ 0 we have that

(hihj)
n(hjai − hiaj) = 0

We are only dealing with finitely many hi; thus we may pick n so that it works simultaneously for
all pairs (ai/hi, aj/hj). Relabel hn+1

i as hi and hni ai as ai. We still have the representation of s on
D(hi) as ai/hi, and now we may assume that hjai = hiaj for all i, j.

For bi ∈ A, write fn =
∑

i biai; we previously showed this is possible. Define the element a ∈ A
as a =

∑
i biai. For any j we then have

hja =
∑
i

biaihj

=
∑
i

bihiaj

= fnaj

Thus, on D(hi) we may also represented s by a/fn. It is immediate that ψ(a/fn) = s, proving the
theorem.

Definition 1. Let X be a space with a sheaf of rings O. We say that (X,O) is a locally ringed
space if for all p ∈ X we have that Op is a local ring. A morphism of locally ringed spaces
(X,OX)→ (Y,OY ) consists of a map f : X → Y and a map f# : OY → f∗OX so that for all p ∈ X
we have that f#

P : OY,f(p) → OX,p is local.1 By this map I mean as follows: as V ranges over the
open neighbourhoods of f(P ) we have that f−1(V ) ranges over (some of) the open neighbourhoods
of P . Take limits; this latter term naturally maps to the stalk OX,P .

Lemma 8. Let φ : A→ B be a ring map, and let f : SpecB → SpecA be defined by q 7→ φ−1(q).
Then f is continuous.

Proof. Let a ⊆ A be an ideal. We prove that f−1(V (a) = V (φ(a)), which says that the inverse image
of a closed set under f is closed. Let q ∈ f−1(V (a). Then f(q) ∈ V (a), which says that a ⊆ f(q).
Applying φ yields that φ(a) ⊆ φ(φ−1(q)) ⊆ q where the final containment is a set-theoretic fact.
Therefore q ∈ V (φ(a)).

Conversely, let q ∈ V (φ(a)) - we must show that q ∈ f−1(V (a)), ie that f(q) ∈ V (a), ie that
a ⊆ f(q). Since q ∈ V (φ(a)) we have that φ(a) ⊆ q: applying f says that f(φ(a)) ⊆ f(q). The left
hand side is φ−1φ(a), which by general set theory contains a.

Proposition 9. Every ring map φ : A → B induces a morphism of ringed spaces (f, f#) :
(SpecB,OSpecB)→ (SpecA,OSpecA).

Proof. The continuous map f is given by the previous lemma. For notation, given any ring R we
denote OSpecR by OR. We describe the morphism f# : OA → f∗OB. To this end, let V ⊆ SpecA
be open. Let s ∈ OA(V ) - it is a map

V →
⊔
q∈V

Aq

1A map of local rings is called local if the inverse image of the maximal ideal is the maximal ideal

6



which satisfies (1) s(p) ∈ Ap for all p ∈ V and (2) for all p ∈ V there exists an open neighbourhood
W (p) = W of p and a, f ∈ A with f /∈ m for all m ∈ W so that s|W corresponds to a/f : W →⊔

m∈W Am. We must associate to s a section t ∈ OB(f−1(V )) - that is a map

f−1(V )→
⊔

m∈f−1(V )

Bm

which satisfies the right properties. Since we are ranging over m ∈ f−1(V ), we definitely have
f(m) ∈ V , and associated to this is the local homomorphism φm : Af(m) → Bm. Define t to be the
composition

f−1(V )→ V →
⊔

f(m)∈V

Af(m) →
⊔

m∈f−1(V )

Bm

where the first map is f , the second map is s, and the final map is the union of all the φm. This
map obviously satisfies that t(q) ∈ Bq for all q ∈ f−1(V ). For the second condition, let p ∈ f−1(V ).
Pick a neighbourhood W of f(p) in V so that s|W corresponds to a/f , where a ∈ A and f /∈ m
for all m ∈ W . It is routine to verify that φ(f) /∈ q for all q ∈ f−1(W ), and that t corresponds to
φ(a)/φ(f) on the neighbourhood f−1(W ) of p.

Finally, we must show that the induced stalk map f# on the stalks are local homomorphisms.
For q ∈ SpecB, consider the map

f#
q : OA,f(q) → OB,q

Unwinding the definition of this map and using our known isomorphisms, this map is seen to be
precisely the local homomorphism

Af(q) → Bq

More precisely, an element a/g ∈ Af(q) corresponds to the class [DA(g), a/g] ∈ OA,f(q) from theorem
7, and our stalk map sends this to the class [f−1(DA(f)), φ(a)/φ(g)], and this class corresponds
to φ(a)/φ(g), again from theorem 7, showing that the stalk map is precisely our beloved local
homomorphism.

It is clear that if we start with a ring map φ : A→ B, then the induced map on global sections
from the morphism of the previous lemma is exactly φ again. What is less clear is the converse.

Lemma 10. Every morphism (f, f#) : (SpecB,OB) → (SpecA,OA) ’comes from’ a ring map
A→ B as in the previous lemma.

Proof. Let f#
SpecA = φ : A→ B denote the map on global sections. For p ∈ SpecB, we thus have a

commutative diagram

A B

Af(p) Bp

φ

f#
p

I claim that φ−1(p) = f(p), ie that the continuous map f is precisely the map induced from φ
from a few lemmas ago. To see this, note that (f#

p )−1(pBp) = f(p)Af(p) since the map is a local
homomorphism. Pulling back f(p)Af(p) along the first diagnol map yields the ideal f(p) of A. The
other direction: pulling back pBp via the second vertical map yields the ideal p of B, and pulling
it back via φ yields φ−1(p). Since the diagram commutes, these ideals are equal. So f is induced
from the map φ.
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We must now show that f# is also induced from φ - but this is true because they induce the
same map on stalks.

Definition 2. Let (X,O) be a scheme. We say that X is locally noetherian if it can be covered
by open subsets Uα ∼= Spec(Aα) where Aα is noetherian. We call X noetherian if it is locally
noetherian and quasi-compact.

Why about arbitrary affine open subsets? The next theorem answers this question. First, we
need an algebraic lemma.

Lemma 11. Let f1, ..., fr ∈ A with φi : A → Afi denoting localisation. Suppose that (f1, ..., fr)
generate the unit ideal, and let a be an ideal of A. Then

a = ∩iφ−1
i (φi(a)Afi)

Proof. The left hand side is contained in the right hand side. Let b ∈ A be contained in the right
hand side. Then φi(b) = ai/f

ni
i for some ai ∈ a and ni ≥ 0. Possibly replacing aif l with ai, we

may assume that all of the ni are all equal to say n. This means that, in the ring A, we have
that fmii (bfni − ai) = 0 for some mi > 0. Again, we may take all of the mi equal to some fixed
m. Let N = n + m; we thus have that fNi b = fmi ai ∈ a. Since (f1, ..., fr) = A, we also have that
(fN1 , ..., f

N
r ) = A: simply write 1 an an A-linear combination of the fi and raise it to a huge power.

So, for appropriate ci ∈ A we have that 1 =
∑

i cif
N
i . Therefore b =

∑
i cibf

N
i ∈ a, which proves

the lemma.

Theorem 12. Let X be locally noetherian, and let U ∼= SpecA be open. Then A is noetherian.

Proof. We make several claims. First: let B be noetherian and let f ∈ B. Then Bf is noetherian.
To see this, suppose that J ⊆ Bf is an ideal; denote by φ the localisation map B → Bf . Then
I = φ−1(J) is an ideal of B, which is generated by b1, ..., bd since B is noetherian. I claim that
J is generated by b1/1, ..., bd/1. Given x ∈ J , we may write it as c/fn. Then, in B, we write
c = a1b1 + ...+ adbd. Since φ(c) = c/1 = fn(c/fn), we see that φ(c) ∈ J . Hence φ(c)/fn ∈ J , which
is exactly x. The claim is proved.

The next claim is as follows: let U ⊆ X be open. Then we may write U as a union of the
spectra of noetherian rings. Proceed as follows. Since X is locally noetherian, we may cover X by
Wα
∼= SpecAα with each Aα noetherian. Then U ∩Wα is an open subset of Wα; it is thus equal to

a union ∪λ∈ΛαD(fλ). Since for any ring R we have a bijection between the primes of Rf and the
primes of R that miss {fn : n ≥ 0}, we may identify the open subset D(f) of SpecR with the affine
scheme Spec(Rf ). Thus we may write

U = ∪α ∪λ∈Λα Spec((Cα)fλ)

By the first claim, each of these rings is noetherian, and so the second claim is proved. Furthermore,
since U is an affine scheme, it is quasi-compact, hence finitely many of the Spec((Cα)fλ) cover U .

Next, consider the following set-up. We have an affine scheme X = SpecA and U = SpecB an
open subset of X. We may pick some f ∈ A so that DA(f) ⊆ U . The inclusion U ⊆ X corresponds
to a ring homomorphism φ : A→ B; let f be the image of f under this map. I claim that Af ∼= Bf .
Indeed, the element f ∈ A is viewed as a function X → ∪q∈XAq. Since U ⊆ X is open, the stalk
OSpecB,p, which is equal to Bp, is isomorphic to the stalk OSpecA,φ−1(p), which is equal to Aφ−1(p).
The isomorphism is given by the localisation of φ at p. It follows that f , when viewed as a function
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U → ∪q∈SpecBBq, is simply the restriction of f to U . This implies that DA(f) = DB(f) as schemes,
which says that Af ∼= Bf .

Thus our cover of U by the Spec((Cα)fλ) corresponds to a (finite) covering of SpecA by the
spectrum of the noetherian rings SpecAfλ .

Therefore, the problem has been reduced to proving the following. Let A be a ring and let
f1, ..., fr generate the unit ideal. Let φi : A→ Afi denote localisation, and suppose that each Afi is
noetherian. Show that A is noetherian. Let

a1 ⊆ a2 ⊆ ...

be an ideal chain. Then we obtain, for each i, an ideal chain

φi(a1)Afi ⊆ φi(a2)Afi ⊆ ...

Since each Afi is noetherian, each of these chains must stabalize. Then, by the lemma, when the
’longest’ Afi chain stabalizes, so does the original chain, so A is noetherian.
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