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Abstract

After introducing the concept of a vector bundle, we will examine the problem of how many linearly
independent vector fields can be found on the n-sphere Sn, and discuss how representations of Clifford
algebras can be used to give a construction. Frank Adams later proved using deep methods of K-theory
that this construction in fact gives the largest possible number of such vector fields.

Bundles

Given a (smooth) manifold M , we can make sense of what it means for a function f : M → R to be smooth.
So we obtain the R-algebra of all such smooth functions, C∞(M). However, we may also want to consider
other kinds of (say, vector-valued) functions on M . Often it is the case that, to each point of M there is
attached some fixed “model space” F , and the totality of these spaces itself, which we denote E, carries a
natural manifold structure. This is roughly the concept of a fibre bundle. The trivial example is that F is
some manifold, and we consider the product manifold, E := M × F . For example, if F = M = S1 then we
obtain S1 × S1, the standard torus. We have taken a circle and placed another circle above all of its points,
in the most straightforward way possible. However, we could also have inserted a “twist” and obtained a
more interesting fibre bundle, the Klein bottle. . . .

Review

Recall the following notation from last time. Let V be an n-dimensional vector space over R, equipped with
a non-degenerate quadratic form q. We can choose a basis for V ∼= Rn such that

q(x) = x21 + . . .+ x2r − x2r+1 − . . .− x2r+s

where r + s = n and 0 ≤ r ≤ n. We now introduce a bunch of simplified notation: write qr,s = q,
Or,s = O(V, q), SOr,s = SO(V, q), and

Pinr,s = Pin(V, q), Spinr,s = Spin(V, q).

Similarly we write
On = On,0 ∼= O0,n, SOn = SOn,0 ∼= SO0,n,

Pinn = Pinn,0, Spinn = Spinn,0,

Pr,s = P(V, q), P̃r,s = P̃(V, q),

and note from the paragraph above that
Pr,s = P̃r,s.
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We now study the Clifford algebras Clr,s = Cl(V, q) where V = Rr+s and

q(x) = x21 + . . .+ x2r − x2r+1 − . . .− x2r+s.

Of course we are particularly interested in the cases Cln = Cln,0 and Cl∗n = Cl0,n.
Remark. The algebra Clr,s contains the groups Spinr,s and Pinr,s, and so any representation of the algebra
Clr,s restricts to a representation of these groups which is non-trivial on the element −1; such representations
are therefore not pullbacks of representations of Or,s or SOr,s.

Proposition (?). Let e1, . . . , er+s be any q-orthonormal basis of Rr+s ⊂ Clr,s. Then Clr,s is generated (as
an algebra) by e1, . . . , er+s subject to the relations

eiej + ejei =

{
−2δij if i ≤ r
+2δij if i > r.

Proof. This is pretty clear.

Under the canonical isomorphism Cln ∼= Λ∗Rn, Clifford multiplication has a nice interpretation. Using the
inner product on Rn we can identify Rn with its dual. We can thereby talk about the interior product or
contraction in Λ∗Rn. For v ∈ Rn, this is a linear map (v ) : ΛpRn → Λp−1Rn given on simple vectors by

v (v1 ∧ . . . ∧ vp) =

p∑
i=1

(−1)i+1〈vi, v〉v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp

where ˆ indicates deletion. This gives a skew-derivation of the algebra, that is,

v (ϕ ∧ ψ) = (v ϕ) ∧ ψ + (−1)pϕ ∧ (v ψ)

for any ϕ ∈ ΛpRn. It is not difficult to see that v (v ) = 0 for any v ∈ Rn. Hence, by universality the
interior product extends to all elements of Λ∗Rn, i.e. to a bilinear map Λ∗Rn × Λ∗Rn → Λ∗Rn.

Proposition. With respect to the canonical isomorphism Cln ∼= Λ∗Rn, Clifford multiplication between
v ∈ Rn and any ϕ ∈ Cln can be written as

v · ϕ ∼= v ∧ ϕ− v ϕ

Classification of Clifford algebras

Before we proceed, we will need some results from the classification of Clifford algebras. In particular:

Theorem. For all k, ` ≥ 0, we have isomorphisms

Cl0,k+2
∼= Clk,0 ⊗ Cl0,2

Clk+2,0
∼= Cl0,k ⊗ Cl2,0

Clk+1,`+1
∼= Clk,` ⊗ Cl1,1.

Proof. Let e1, . . . , ek+2 be an orthonormal basis for Rk+2 in the standard inner product, and let q(x) =
−‖x‖2. Let e′1, . . . , e′k denote standard generators for Clk,0 and let e′′1 , e′′2 denote standard generators for Cl0,2
(in the sense of ?). Define a map f : Rk+2 → Clk,0 ⊗ Cl0,2 by setting

f(ei) =

{
e′i ⊗ e′′1e′′2 for 1 ≤ i ≤ k
1⊗ e′′i−k for i = k + 1, k + 2

and extending linearly. Note that for 1 ≤ i, j ≤ k, we have

f(ei)f(ej) + f(ej)f(ei) = (e′ie
′
j + e′je

′
i)⊗ (−1) = 2δij1⊗ 1;
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and for k + 1 ≤ α, β ≤ k + 2 we have

f(eα)f(eβ) + f(eβ)f(eα) = 1⊗ (e′′α−ke
′′
β−k + e′′β−ke

′′
α−k) = 2δαβ1⊗ 1.

Also we see that
f(ei)f(eα) + f(eα)f(ei) = 0.

It follows that f(x)f(x) = ‖x‖21 ⊗ 1 for all x ∈ Rk+2. Hence, by the universal property, f extends to an
algebra morphism f̃ : Cl0,k+2 → Clk,0 ⊗Cl0,2. Since f̃ maps onto a set of generators for Clk,0 ⊗Cl0,2, it must
be surjective. Then, since dim Cl0,k+2 = dim Clk,0⊗Cl0,2, we conclude that f̃ must be an isomorphism. This
proves the first isomorphism. The second is entirely analogous; the third is not really needed for us and is
left as an exercise.

We need the following elementary facts concerning the tensor products of algebras over R.

Proposition (tensor products of algebras).

(R×R)⊗A ∼= A×A
R(n)⊗A ∼= A(n)

H⊗C ∼= C(2)

R(n)⊗R(m) ∼= R(nm)

H⊗H ∼= R(4).

Using these, we can build the table:

Constructing the vector fields

It turns out that by understanding the representations of the algebras Clk, we can construct linearly inde-
pendent vector fields on spheres.

Definition (representation/module for Clk). A representation of Clk (or a Clk-module) V is just a
real vector space with an R-algebra morphism Clk → EndRV . That is, there is a multiplication (ϕ, v) 7→ ϕ ·v
for ϕ ∈ Clk and v ∈ V , which we call Clifford multiplication.

Definition. Define Fk ⊂ Cl×k to be the finite group generated by an orthonormal basis e1, . . . , ek of Rk.

The group Fk can be presented by the abstract elements e1, . . . , ek,−1 subject to the relation that −1 is
central and (−1)2 = 1, e2i = −1 and eiej = (−1)ejei for all i 6= j. The Clifford algebra is nearly the group
algebra of Fk, in the sense that

Clk ∼= RFk/R · {(−1) + 1}.

It is clear that representations of Clk correspond exactly to linear representations of Fk such that −1 acts
by −id. This group yields the following important conclusion.

Proposition (unitarizability). Let Clk → HomR(W,W ) be a real representation of Clk. Then there exists
an inner product 〈•, •〉 on W such that Clifford multiplication by unit vectors e ∈ Rk is orthogonal, that is,

〈e · w, e · w′〉 = 〈w,w′〉

for all w,w′ ∈W and for all e ∈ Rk with ‖e‖ = 1.

Proof. Choose an arbitrary inner product and average it over the finite group Fk. Note that if e =
∑
ajej

where
∑
a2j = 1, then

〈ew, ew〉 =
∑

a2j 〈ejw, ejw〉+
∑
i 6=j

aiaj〈eiw, ejw〉 = 〈w,w〉

since 〈eiw, eiw〉 = 〈w,w〉 and for i 6= j, 〈eiw, ejw〉 = 〈ejeiw,−w〉 = 〈eiejw,w〉 = −〈ejw, eiw〉 = 0.
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Corollary (skew-symmetry of Clifford multiplication). In this inner product 〈•, •〉, Clifford multipli-
cation by any vector v ∈ Rk is a skew-symmetric transformation of W . That is,

〈v · w,w′〉 = −〈w, v · w′〉

for any w,w′ ∈W .

Proof. Assume v 6= 0. Then

〈v · w,w′〉 = 〈(v/‖v‖) · v · w, (v/‖v‖) · w′〉 = (1/‖v‖2)〈v2 · w, v · w′〉 = −〈w, v · w′〉.

Proposition (construction of vector fields). Suppose Rn is a module for the Clifford algebra Clk.
Then there exist k pointwise linearly independent tangent vector fields on the sphere Sn−1 and also on the
projective space Pn−1(R) = Sn−1/Z2.

Proof. Choose an inner product in Rn so that Clifford multiplication by unit vectors in Rk is orthogonal
(see above proposition). Let

Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.
Choose a basis v1, . . . , vk for Rk, and to each vj associate the vector field Vj on Rn defined by

Vj(x) = vj · x j = 1, . . . , k

where the dot denotes Clifford multiplication. Since the linear transformation x 7→ v · x is skew-symmetric
(see above), we have that 〈Vj(x), x〉 = 〈vjx, x〉 = 0. Hence, the vector fields Vj are tangent to Sn−1. It
remains to show that V1, . . . , Vk are pointwise linearly independent. Fix x ∈ Sn−1 and consider the linear
map ix : Rk → TxS

n−1 ⊂ Rn given by
ix(v) = v · x

The image of ix is the linear span of V1(x), . . . , Vk(x), so it suffices to prove that ix is injective. However if
ixv = v ·x = 0, then v · v ·x = −‖v‖2x = 0 and so v = 0. Since Vj(−x) = −Vj(x), these vector fields descend
to (pointwise linearly independent) vector fields on Pn−1(R).

The question therefore becomes: given an integer n, what is the largest number of independent vector fields
on Sn−1 that can be constructed in this manner? That is, what is the largest integer k such that Rn is a
Clk-module? We recall that the dimension of an irreducible Clk-module is always a power of 2. Hence we
want to find the largest power of 2 which divides n. That is, we write n = p2m where p is odd, then we
consult the table to find the largest k such that dk = 2m. The result is the following.

Theorem (Radon-Hurwitz-Eckmann). On the sphere Sn−1 (and on the projective space Pn−1(R))
there exist k pointwise linearly independent vector fields where k is calculated as follows. Write n = 24a+bm,
0 ≤ b ≤ 3, and m odd. Then

k = 8a+ 2b − 1.

Remark. The number 8a+ 2b is usually written ρ(n). These numbers ρ(n) are called the Radon-Hurwitz
numbers.

Proof. One need only check this when a = 0, and then note that for each increase of k by 8 the dimension
of the vector space for an irreducible representation of Clk increases by 24. Note that when n is odd (i.e. we
are on an even sphere) the number of such vector fields is zero as it must be, since the Euler characteristic is
nonzero in this case. Note also that this construction gives three vector fields on S3, seven on S7 and eight
on S15.

Here is a striking result of algebraic topology, whose proof relies on deep methods from topological K-theory.

Theorem (J.F. Adams). The number of vector fields constructed on Sn−1 above is the largest possible
number of linearly independent vector fields that can exist on Sn−1!

The following corollary was actually known before the above theorem was proved.

Corollary (Kervaire, c. 1956). A sphere is said to be parallelizable when its tangent bundle is trivial,
i.e. ρ(n) = n. This occurs exactly when n ∈ {1, 2, 4, 8}, so the only spheres which have trivial tangent
bundles are S0, S1, S3, and S7.
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