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1. Introduction

There are two primary goals in this talk. We first discuss the notion of a Hopf algebra and its relation
to representation theory. In particular, we shall see how the rich structure of Hopf algebras unifies
various representation theoretic constructions. Second, we will examine how Hopf algebras come up in
combinatorics by studying the ring of symmetric functions.

1.1. Motivation. Much of representation theory can be unified by considering the representation theory
of associative algebras. Specifically, the representation theory of Lie algebras may be studied via the
representations of universal enveloping algebras; the representation theory of finite groups studied via
the representation theory of the group algebra; the representation theory of quivers studied through the
representation theory of the path algebra; and so forth. The idea is that the representation theoretic aspects
of a particular mathematical object is captured by some associative algebra that is, in a rather precise way,
naturally related to the original object.

The associative algebras arising in each of the above constructions, however, are much more structured
and well-behaved than general associative algebras due to the representation theory underlying the original
objects. To illustrate more precisely what we mean here, let A be any algebra over C—for convenience, we
will work over the complex numbers, but for the most part, the base field will not be of concern—and
consider two representations V and W of A. There are general constructions which we would like to
perform on V and W and obtain new representations of A, namely, we would like to make sense of the
sum representation V ⊕W, the tensor representation V ⊗W and the dual representation V∗.

The sum representation V ⊕W is easy to make sense of even for general algebras A: for v⊕w ∈ V ⊕W,
we can define an A-action by acting on each component separately, a · (v⊕w) = (a · v)⊕ (a ·w). It is not
hard to check that this actually defines a representation on V ⊕W.

The tensor and dual representations, however, are a bit more tricky. The issue with the tensor product,
for instance, is that V ⊗W has an induced A⊗ A-action from the A-action on each of the components, but
this does not automatically yield an A-action on V ⊗W. The naïve thing to do here is to attempt to define
an A-action simply as above, by having A act on the tensor component-wise. This happens to work in the
case where A = C[G] is a group algebra, but this does not work, say, when A is the universal enveloping
algebra of a Lie algebra, as we have seen.

One solution to this problem is to fix a map ∆ : A→ A⊗ A, called comultiplication, and have A act on
V ⊗W through the map ∆. That is, we define an A-action on V ⊗W by

a · (v ⊗ w) := ∆(a) · (v ⊗ w),

where the action on the right hand side is the A⊗ A-action inherited from the original actions. Of course,
not just any map ∆ will do. We require that ∆ is at least an algebra homomorphism so that the resulting
action respects the associative and unit laws demanded of actions. But we require a bit more: tensor
products are associative, so we must have that ∆ satisfy some additional properties to reflect that fact. These
will be encapsulated by what are known as the coassociative and counitary laws, which we shall detail
shortly.

For instance, let G be a finite group and let A := k[G] be the group algebra. For any g ∈ G, set ∆(g) := g⊗ g
and extend ∆ linearly to the rest of A. Then we have seen that if V and W are representations of k[G], then
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V ⊗W may be turned into a representation of k[G] by defining

g · (v ⊗ w) = (g · v) ⊗ (g ·w) = ∆(g) · (v ⊗ w).

Now let g be a Lie algebra and let A := U(g) be the universal enveloping algebra of g. For any X ∈ U(g), set
∆(X) := X⊗ 1+ 1⊗ X. For representations V and W of U(g), V ⊗W may be turned into a representation of
U(g) by defining

X · (v ⊗ w) = (X · v) ⊗ w+ v ⊗ (X ·w) = ∆(X) · (v ⊗ w).

This is one of the ways in which both the group algebra and the universal enveloping algebra carry addi-
tional algebraic structure which, in some sense, encodes the essential representation theoretic constructions
we care about.

1.2. Bialgebras. To make precise the ideas of the preceding discussion, it is useful to recall the definition of
an algebra. Let A be a k-vector space. To make A into a k-algebra, we need a linear map µ : A⊗ A→ A, the
multiplication of A, and a linear map η : k→ A, the unit of A, such that the following diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗id

id⊗µ µ

µ

k⊗ A A⊗ A A⊗ k

A

∼=

η⊗id

µ
∼=

id⊗η

where the diagram on the left expresses associativity of multiplication and the diagram on the right
essentially says that η maps the 1 of k to the multiplicative unit of A. If we take the categorical dual of the
diagrams above, we obtain the definition of a coalgebra. Specifically, a k-coalgebra structure on A is given
by two linear maps ∆ : A→ A⊗ A and ε : A→ k such that the following diagrams commute:

A A⊗ A

A⊗ A A⊗ A⊗ A

∆

∆ id⊗∆
∆⊗id

A

k⊗ A A⊗ A A⊗ k

∆
∼=

ε⊗id id⊗ε

∼=

where the diagram on the left is called the coassociative law and the diagram on the right is the counitary
law. The coassociative law expresses the reasonable demand that, when applying the coproduct multiple
times, it should not matter which factor of the tensor product we make the later applications to. The
counitary law essentially says that the coproduct is symmetric, as measured by the counit. Note that the
counit also captures the trivial representation for the algebra.

A k-vector space A along with maps µ,η,∆, ε is said to be a bialgebra if (A,µ,η) is a k-algebra and
(A,∆, ε) is a coalgebra such that ∆ and ε are k-algebra homomorphisms. One may show that ∆ and ε

are k-algebra homomorphisms if and only if µ and η are k-coalgebra homomorphisms, so the apparently
asymmetric definition is but an illusion.

1.3. Commutativity and Cocommutativity. We digress from our representation theoretic considerations
and discuss a property of bialgebras. Let B be a bialgebra. We are very familiar with the notion of
commutativity: for every a,b ∈ B, µ(a⊗ b) = µ(b⊗ a). To formulate the analogous property for the
comultiplication, it will be useful to encode this condition into a diagram. Let T : B⊗ B→ B⊗ B be the twist
map given by a⊗ b 7→ b⊗ a. Then the commutativity property is equivalent to

B⊗ B B⊗ B

B

µ

T

µ

being a commutative diagram. Reversing the arrows and replacing multiplication µ by comulitplication ∆,
we say that a bialgebra B is cocommutative if the following diagram
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B

B⊗ B B⊗ B

∆ ∆

T

commutes. Algebraically, for b ∈ B, if we write ∆(b) =
∑
i b
′
i ⊗ b

′′
i , then B is cocommutative if for all b ∈ B,∑

i

b ′i ⊗ b
′′
i =

∑
i

b ′′i ⊗ b
′
i.

Thus cocommutativity is a symmetry condition on the comultiplication.

1.4. Hopf Algebras. As per the previous section, we can make sense of the direct sum representation with
just an algebra structure and we can make sense of the tensor product representation with the addition of a
coalgebra structure. Thus, bialgebras are structures in which we have a natural way to make sense of both
direct sum and tensor product representations. The definition of a Hopf algebra completes the picture by
allowing us to make general sense of the dual representation.

A Hopf algebra is a bialgebra A along with an algebra homomorphism S : A→ Aop, where Aop denotes
the opposite algebra—the algebra with the same underlying vector space but where multiplication is
flipped, a ·op b = ba—such that when V∗ is endowed with the A-action

(a · f)(x) := f(S(a) · x),

then the evaluation maps V∗ ⊗ V → k and V ⊗ V∗ → k are A-linear maps. To see what this means,
let f ∈ V∗, v ∈ V and a ∈ A and let ev : V∗ ⊗ V → k be the evaluation map. Linearity means that
ev(a · (f⊗ v)) = a · ev(f⊗ v), so let us compute both sides. Write ∆(a) =

∑
i a
′
i ⊗ a

′′
i . The left hand side is

ev(a · (f ⊗ v)) = ev

(∑
i

(a ′i · f) ⊗ (a ′′i · v)

)
= f

(∑
i

S(a ′i)a
′′
i · v

)
.

The right hand side is
a · ev(f ⊗ v) = ε(a)f(v) = f(ε(a)v).

For the equality ev(a · (f⊗ v)) = a · ev(f⊗ v) for all f and v, we must have∑
i

S(a ′i)a
′′
i = ε(a) · 1 = η(ε(a)).

A similar computation for the other evaluation map V ⊗ V ′ → k shows∑
i

a ′iS(a
′′
i ) = ε(a) · 1 = η(ε(a)).

These calculations show that the algebraic condition that captures the dual representation construction is
that S : A → Aop satisfies µ ◦ (S⊗ id) ◦∆ = η ◦ ε and µ ◦ (id⊗ S) ◦∆ = η ◦ ε, which may be expressed in a
diagram as

A⊗ A A⊗ A

A k A

A⊗ A A⊗ A

S⊗id

µ∆

∆

ε η

id⊗S

µ

Or equivalently, if ∆(a) =
∑
i a
′
i ⊗ a

′′
i ,∑
i

S(a ′i)a
′′
i = η(ε(a)) =

∑
i

a ′iS(a
′′
i ).

Yet another way to understand the antipode is through the induced k-algebra structure on Hom(A,A) for A
a bialgebra. Specifically, define a product on the k-vector space Hom(A,A) by setting, for f,g ∈ Hom(A,A),

f ∗ g := µ ◦ (f ⊗ g) ◦∆.
3



One can check that this product makes Hom(A,A) into a k-algebra with unit η ◦ ε. Then the antipode
S can be characterized as the inverse to the identity map idA in this algebra. A consequence of this
characterization is that if an antipode exists on a bialgebra, then it must be unique.

A few remarks before we move on. First, one intuition for the antipode is that it should be a sort of
replacement for inverting an element in a group. One can show that the antipode on the group algebra k[G]
acts on basis elements g by g 7→ g−1. Another way to think about the antipode, one which is perhaps more
helpful combinatorially, is that it somehow captures a sort of shuffling or mixing of elements. Indeed, the
antipode is the inverse to the identity map in the convolution algebra, so in some way, it should convolve
the underlying objects in some well-behaved way.

1.5. Graded and Connected. A Hopf algebra H is said to be graded if there exists linear subspaces Hn of
H, n > 0, such that H =

⊕
n>0Hn and the multiplication and comultiplication respect the grading in the

sense that
µ(Hi ⊗ Hj) ⊆ Hi+j, ∆(Hn) ⊆

⊕
i+j=n

Hi ⊗ Hj

and that η(k) ⊆ H0. A Hopf algebra is said to be connected if H0 = k. Note that the terminology for
connectedness comes from topology: one of the original examples of Hopf algebras was the cohomology
ring associated with topological spaces and the condition that the zeroth cohomology group is the base
field is equivalent to the fact that the topological space is connected. Let us now state two properties of
antipodes which we shall refer to.

Proposition 1. If H is a graded and connected bialgebra, then H admits a unique graded linear map
S : H→ H making H into a Hopf algebra.

Proposition 2. If H is a commutative or cocommutative Hopf algebra with antipode S, then S2 = idH.

Proposition 3. Let H be a Hopf algebra with antipode S, then for x ∈ H with ∆(x) = 1⊗ x+ x⊗ 1, S(x) = −x.

1.6. Hopf Algebras and Combinatorics. Hopf algebra techniques in combinatorics were pioneered by
Gian-Carlo Rota in his work to provide firm foundations for combinatorics. Rota realized that the
algebraic structure on Hopf algebras naturally encodes the notions of assembling and disassembling objects.
Specifically, the multiplication of the algebra structure allows one to put smaller pieces together to obtain
some composite object whereas the comultiplication of the coalgebra is a way to break a complicated
object to simpler constituents. The antipode then comes into the picture usually as a distinguished
mapping among the combinatorial objects being considered. In particular, most Hopf algebras associated
to combinatorial objects will be either commutative or cocommutative, so Proposition 2 implies that the
associated antipode is a distinguished involution.

1.7. Example: Group Algebra. Let G be a group and let H := k[G] be the group algebra of G. We have seen
that H has the structure of a bialgebra with the multiplication a linear extension of the group multiplication,
the coproduct given by g 7→ g⊗ g, the unit given by 1 7→ e and the counit given by g 7→ δeg, where e ∈ G is
the group identity. Also, we have remarked that the antipode of H is given by the linear extension of the
mapping g 7→ g−1.

1.8. Example: Universal Enveloping Algebra. Let H := U(g) be the universal enveloping algebra of some
Lie algebra g. The multiplication on H is the product of U(g), the unit maps 1 7→ e, the comultiplication is
given by X 7→ X⊗ 1+ 1⊗ X and the counit is given by X 7→ δeX. The antipode S on H is given by X 7→ −X.

1.9. Example: Polynomial Algebra. One example that is more combinatorial in flavour is given by the
polynomial bialgebra. Let H = k[x] be the vector space of polynomials in x over the field k. It is elementary
that H is an algebra. To define the comultiplication, let n > 1 and consider the mapping

∆(xn) :=

n∑
k=0

(
n

k

)
xk ⊗ xn−k.
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One may check that the linear extension of this map indeed defines a comultiplication on H. The counit of
H is given by xn 7→ δ0n. Finally, the antipode of H is given by x 7→ −x.

2. Symmetric Functions

The ring of symmetric functions is perhaps one of the most beautiful and well-studied mathematical
objects. Not only are symmetric functions fascinating on their own, but their properties find applications in
other areas of mathematics, including algebra, representation theory, geometry and combinatorics. Here, we
shall review some of the basic properties of symmetric functions, with the perspective that the symmetric
functions have the structure of a Hopf algebra.

2.1. Bialgebra of Symmetric Functions. Let k be a field, let x = { x1, x2, x3, . . . } be an infinite set of variables
and let k[[x]] be the ring of formal power series in the variables x. Let n ∈ N, then by a composition α of n,
we mean a sequence α = (α1,α2,α3, . . . ) for which each αi > 0 and

∑
i αi = n. For any composition α of n,

we write xα := xα11 x
α2
2 x

α3
3 . . . and say that xα is a monomial of degree n.

For each n > 1, denote by Sn the symmetric group on n letters. We can view Sn as a subgroup of
Sm for all m > n by thinking of π ∈ Sn as acting on the first n letters and leaving the last m− n letters
fixed. That is, we view π ∈ Sn as the element π ′ ∈ Sm for which π ′(i) = π(i) for i ∈ [n] and π ′(i) = i

for i ∈ [m] − [n]. In this way, we have an ascending chain of group S1 ⊆ S2 ⊆ S3 . . . and so we can
construct the infinite symmetric group as S∞ :=

⋃∞
n=1Sn: these are permutations that permute finitely

many positive integers and leave all others fixed.
There is a natural action of S∞ on k[[x]] given by permuting the variables. Specifically, for π ∈ S∞ and

f(x) ∈ k[[x]] by
π · f(x1, x2, x3, . . . ) := f(xπ(1), xπ(2), xπ(3), . . . ).

The ring of symmetric functions Λ = Λ(x) = k[[x]]S∞ is the S∞-invariant subalgebra of k[[x]]. That is to say
that Λ consists of all the power series for which permuting any of the variables leaves the power series the
same. Notice that there is a natural grading on Λ as

Λ =
⊕
n>0

Λn

where Λn consists of all symmetric functions which are homogeneous of degree n, which is to say that
each monomial appearing has degree n. Also notice that Λ is connected, since Λ0 = k. This tells us that
once we are able to define a bialgebra structure on Λ, then Λ can be turned into a Hopf algebra.

To obtain a coproduct on Λ, consider splitting the variables into two sets (x, y) = (x1, x2, . . . ,y1,y2, . . . ),
then we have a ring homomorphism

k[[x]] ⊗ k[[y]]→ k[[x, y]]
f(x) ⊗ g(y) 7→ f(x)g(y).

One can either show directly, or else it shall become apparent when we discuss bases for Λ, that the above
map restricts to an isomorphism

Λ(x, y) = k[[x]]S∞ ⊗ k[[y]]S∞ ∼= k[[x, y]]S∞×S∞ ,

where S∞ ×S∞ is viewed as the subgroup of S∞ that permutes the variables x and y separately. Observe
that if f(x, y) is invariant under permutation of all the variables x and y together, then f(x, y) is also invariant
under permuting the variables x amongst themselves and permuting the variables y amongst themselves.
In other words, we have a inclusion

Λ(x, y) = k[[x, y]]S∞ ↪→ k[[x, y]]S∞×S∞ ∼= Λ×Λ.

Hence we obtain a comultiplication

∆ : Λ(x)→ Λ(x, y) ↪→ Λ ⊗ Λ
f(x) 7→ f(x, y).
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In other words, the coproduct of a symmetric function f(x) is the power series f(x, y) which is symmetric in
both x and y independently, i.e. f(x, y) is fixed under permuting the variables x amongst themselves and
permuting the variables y amongst themselves.

2.2. Bases for Symmetric Functions. The structure of Λ is made much clearer by examining generators
for Λ. There are various generators for Λ, each with their own advantages. The simplest basis Λ is given by
monomial symmetric functions

mλ(x) :=
∑

α∈Sn·λ
xα

where λ : (λ1 > λ2 > · · · > 0) is a partition and the action of S∞ on a partition λ is given by permuting the
entries if the partition. Each mλ(x) is the symmetrization of the monomial xλ and so it is clear that the
collection of all monomial symmetric functions yields a k-basis for Λ.

From the monomial symmetric functions, we can define three other families of symmetric functions. For
each n > 1, define the power sum symmetric functions pn, the elementary symmetric functions en and
the complete homogeneous symmetric functions hn by

pn := m(n) =
∑
i>1

xni , en := m(1n) =
∑

i1<···<in

xi1 . . . xin , hn :=
∑
λ`n

mλ =
∑

i16···6in

xi1 . . . xin

For a partition λ : (λ1 > · · · > λ` > 0), write

pλ := pλ1 . . . pλ` , eλ := eλ1 . . . eλ` , hλ := hλ1 . . . hλ` .

Since {mλ }λ is a linear basis for Λ, each of the above symmetric functions may be expressed as a linear
combination of the mλ. By looking at the expansion of pλ, eλ and hλ in terms of the mλ and putting those
coefficients in a matrix indexed by partitions in lexicographic order, one can show that such coefficient
matrices are always upper triangular. In particular, this implies that each of the collections {pλ }λ, { eλ }λ
and {hλ }λ are bases for Λ. Notice that this means that the {pn }n, {hn }n and { en }n actually generate Λ as
an algebra.

With these bases in hand, let us understand the action of the coproduct a little bit better. The coproduct
has the following effect on the bases discussed so far:

(1) ∆(mλ) =
∑
µtν=λmµ ⊗mν;

(2) ∆(pn) = 1⊗ pn + pn ⊗ 1;
(3) ∆(en) =

∑
i+j=n ei ⊗ ej;

(4) ∆(hn) =
∑
i+j=n hi ⊗ hj,

where µt ν is the partition obtained by taking the disjoint union of the partitions as multisets and then one
reorders the result to obtain a partition. To see why the above formulae are true, one simply needs to recall
the definition of the coproduct and stare at the symbols for a while.

2.3. Antipode on Symmetric Functions. Now that we have a clearer understanding of the bialgebra
structure on Λ, we can attempt to find the antipode on Λ. Recall that since Λ is graded and connected,
Proposition 2 implies that Λ does indeed have an antipode S. We immediately note that since ∆(pn) =
1⊗ pn + pn ⊗ 1 that S(pn) = −pn. We now claim that for each n > 1,

S(en) = (−1)nhn, S(hn) = (−1)nen.

To see why this might be true, consider the generating functions

H(t) :=

∞∏
i=1

1

1− xit
=

∑
n>0

hn(x)tn, E(t) :=

∞∏
i=1

(1+ xit) =
∑
n>0

en(x)tn,

where the first is true by the same reasoning used to obtain the generating function for partitions, and the
second is true by noting that the coefficient of tn consists of all the distinct ways to pick n of the variables
xi. From these generating functions, we have that E(−t)H(t) = 1 and from which comparing coefficients
yields ∑

i+j=n

(−1)ieihj = δ0n
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Since Λ is a graded connected Hopf algebra, η(ε(en)) = δ0n = η(ε(hn)) and so the defining equations for
the antipode read∑

i+j=n

S(ei)ej = δ0n =
∑
i+j=n

eiS(ej),
∑
i+j=n

S(hi)hj = δ0n =
∑
i+j=n

hiS(hj).

Comparing these equations to the equalities from the generating functions, we see that S(en) = (−1)nhn
and S(hn) = (−1)nen.

Let us note one additional thing. The identities resulting from the generating functions may be rearranged
to obtain the Newton identities:

e0 = h0 = 1,

en = en−1h1 − en−2h2 + en−3h3 − · · ·+ (−1)n−1hn,

hn = hn−1e1 − hn−2e2 + hn−3e3 − · · ·+ (−1)n−1en.

Since the sets { en }n and {hn }n are generators for Λ as a k-algebra, they are algebraically independent and
so we may define a map ω : Λ→ Λ by ω(en) = hn. Then the above relations show that ω(hn) = en, i.e. ω
is an involutive automorphism of Λ. Thus the antipode is intimately related to the so-called fundamental
involution ω.

2.4. Schur Functions. We now come to the most important basis for Λ, the so-called Schur functions. We
take a combinatorial approach in defining the Schur functions, so let us first recall some combinatorial
concepts. Let λ : (λ1 > λ2 > · · · > λ` > 0) be a partition, then the Young diagram of λ is a diagram of ` rows
of left-justified boxes, where the ith row has λi boxes. We shall use the English convention with Young
diagrams and index the rows and columns as we would matrices. The partition λ is the shape of the Young
diagram.

Let D be a Young diagram of shape λ, then a semi-standard Young tableau is an assignment of the
boxes of D positive integers such that the rows weakly increase going left to right and the columns strictly
increase going top to bottom. A semi-standard Young tableaux is a standard Young tableau in which the
entries are precisely the integers 1, . . . , |λ|. The set of all semi-standard Young tableaux on shape λ will be
denoted by SSYT(λ) and the set of all standard Young tableaux on shape λ is denoted by SYT(λ). Let T be
a semi-standard Young tableaux, then the content c(T) of T is the sequence c(T) = (c1, c2, c3, . . . ) in which
ci is the number of boxes of T whose entry is i.

Let µ and λ be Young diagram such that µ is contained in λ. The skew diagram λ/µ is the set difference
of the diagram of λ with the diagram of µ. A semi-standard skew tableau T of shape λ/µ is a filling
of the diagram λ/µ such that the rows weakly increase and the columns strictly increase. The set of all
semi-standard skew tableaux of shape λ/µ is denoted by SSYT(λ/µ).

Let λ be a Young diagram, then the Schur function indexed by λ is

sλ(x) :=
∑

T∈SSYT(λ)

xc(T).

For skew diagram λ/µ, the skew Schur function sλ/µ is defined analogously as

sλ/µ :=
∑

T∈SSYT(λ/µ)

xc(T).

For example, let λ = , then

s = x21x2 + x21x3 + x1x
2
2 + x21x4 + x1x2x3 + x1x2x3 + x32 + . . .

1 1
2

1 1
3

1 2
2

1 1
4

1 2
3

1 3
2

2 2
2

. . . .

In fact, since the semistandard Young tableaux on λ must be in one of the following forms

x y

y

x y

z

x z

y
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where x < y < z, it follows that
s = m + 2m .

2.5. Schur Functions are Symmetric. From the definition given so far, it is not clear that the sλ are actually
symmetric functions. To see that the sλ are indeed symmetric, observe that it shall suffice to show that sλ is
invariant under the action of the transposition (i, i+ 1), since all such transpositions together will generate
S∞. This can be done by finding an involution SSYT(λ)→ SSYT(λ). The involution we consider here is
due to Bender and Knuth. Let T ∈ SSYT(λ), then for each column C of T , we may have that both i and
i+ 1 appear in C or at most one of i or i+ 1 appear in C. Each pair of i and i+ 1 appearing some the same
column will be called a locked pair and all other occurrences of i and i+ 1 will be called free. The map which
we want now is the one which interchanges the number of free i with the number of free i+ 1 in the row.
For example, say we are interchanging 2 and 3, then:

1 1 1 1 1 2 2 2 2 2 3 3

2 2 2 2 2 3 3 4

3 4 4

(2,3)7−−−→
1 1 1 1 1 2 2 2 2 3 3 3

2 3 3 3 3 3 3 4

3 4 4

The boxes coloured red are the locked boxes. The first row has three free 2s and two free 3s, so after the
mapping, the first row has two free 2s and three free 3s; likewise, the second row began with four free 2s
and zero free 3s, so after the mapping, the second row has zero free 2s and four free 3s. The content of
the first tableau is (5, 10, 5, 3) whereas the content of the second tableau is (5, 5, 10, 3), i.e. the mapping has
the effect of interchanging the number of boxes with entry i with that of i+ 1. This mapping is clearly an
involution and hence sλ is invariant under the action of (i, i+ 1).

2.6. Hopf Algebra Structure on the Schur Functions. The wonder of the Schur functions begin to show
through when we examine the effect of the Hopf algebra structure on Schur functions. Let us proceed
proceed in a strange order and first discuss the action of the antipode on the Schur functions. For a Young
diagram λ, denote by λt the transpose of the diagram. Then one can show that for skew diagram λ/µ,

ω(sλ/µ) = sλt/µt , S(sλ/µ) = (−1)|λ/µ|sλt/µt .

One way to see that these identities indeed hold would be through the Jacobi-Trudi formulae, which give
determinantal formulae for the skew Schur functions with respect to the complete and homogeneous
symmetric functions:

sλ/µ = det(hλi−µj−i+j)16i,j6`, sλt/µt = det(eλi−µj−i+j)16i,j6`,

where λ has at most ` nonzero parts and any function above with a nonpositive subscript is taken to be
zero. Some authors define the Schur functions with these formulae and in such definitions, it is immediate
that the Schur functions are indeed symmetric.

Next, the coproduct acts wonderfully on the Schur functions: for a Young diagram λ, the coproduct of
sλ is obtained by summing over all subdiagrams of λ:

∆(sλ) =
∑
µ⊆λ

sµ ⊗ sλ/µ.

One sees this by recalling that ∆ introduces two sets of variables, which can be ordered in such a way that
x1 < x2 < · · · < y1 < y2 < . . . ; then the terms occurring in ∆(sλ) will be all the ways of filling the diagram λ

with the xi and yj with that ordering.
Finally, we must do some work to understand the multiplicative structure. Since the Schur functions

themselves form a basis for Λ, a priori, we know that for every triple of partitions µ, λ,ν, there exists
coefficients cλµ,ν ∈ k such that

sµ · sν =
∑
λ

cλµ,νsλ.
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The obvious question now is what are these coefficients and how might we compute them. It turns
out that these coefficients cλµ,ν are quite important and have a name: they are called the Littlewood-
Richardson coefficients. The Littlewood-Richardson coefficients turn up in various areas of combinatorics
and representation theory, and there are various combinatorial rules to compute them.

Before discussing the Littlewood-Richardson coefficients further, however, let us make some suggestive
comments. We have express the coproduct ∆(sλ) as a linear combination of tensors involving a regular
Schur function and a skew Schur function. But skew Schur functions are symmetric and since the regular
Schur functions form a basis for Λ, we may express each skew Schur function as a linear combination of
regular Schur functions. In this way, for each triple of partitions λ,µ,ν, there are coefficients ĉλµ,ν such that

∆(sλ) =
∑
µ,ν

ĉλµ,νsµ ⊗ sν.

There is no reason to expect that the cλµ,ν are related to the ĉλµ,ν in any way. Remarkably, it turns out that
cλµ,ν = ĉλµ,ν for all partitions λ,µ,ν. To prove this, we use the Cauchy identity:∞∏

i,j=1

1

1− xiyj
=

∑
λ

sλ(x)sλ(y),

where the sum on the right is over all partitions λ. There is quite a nice combinatorial proof of this identity.
Introduce a new indeterminate t into both sides of the claimed identity, at which one would need to show∞∏

i,j=1

1

1− txiyj
=

∑
λ

t|λ|sλ(x)sλ(y).

The one expands the left hand side and compare coefficients on both sides with the help of the Robinson-
Schensted-Knuth correspondence between semi-standard tableaux and two rowed matrices that are ordered
lexicographically.

With Cauchy’s identity in hand, we can interpret the coefficients cλµ,ν, ĉλµ,ν as the coefficients of
sµ(x)sν(y)sλ(z) in the product∞∏

i,j=1

1

1− xizj

∞∏
i,j=1

1

1− yizj
=

(∑
µ

sµ(x)sµ(y)

)(∑
ν

sν(y)sν(z)

)

=
∑
µ,ν

sµ(x)sν(y) · sµ(z)sν(z)

=
∑
µ,ν

sµ(x)sν(y)

(∑
λ

cλµ,νsλ(z)

)
.

On the other hand, if we now regard the xi and yj as lying in the same set of variables,∞∏
i,j=1

1

1− xizj

∞∏
i,j=1

1

1− yizj
=

∑
λ

sλ(x, y)sλ(z) =
∑
λ

(∑
µ,ν

ĉλµ,νsµ(x)sν(y)

)
sλ(z),

since the coproduct is exactly the result of considering the Schur function with the two sets of variables x
and y. Rearranging the sums and comparing coefficients yields cλµ,ν = ĉλµ,ν. This property that the structure
constants for the product and coproduct being equal is called self-duality.

2.7. Littlewood-Richardson Coefficients. As we have remarked already, the Littlewood-Richardson coef-
ficients cλµ,ν appear in various areas of mathematics. Moreover, there are combinatorial methods, called
Littlewood-Richardson rules, for computing the coefficients cλµ,ν. Let us make some brief remarks on
these points.

The Littlewood-Richardson coefficients appear in the representation theory of the symmetric group as a
multiplicity of a irreducible representation appearing in a restriction representation. Specifically, recall that
the irreducible representations of the symmetric group are indexed by partitions µ,ν. Let Vµ and Vν be the
irreducible representations of S|µ| and S|ν| corresponding to the partitions µ and ν, respectively. Then the
tensor product Vµ ⊗ Vν is an irreducible representation of the product group S|µ| × S|ν|. For any partition
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λ, the Littlewood-Richardson coefficient is the multiplicity of Vµ ⊗ Vν in the representation obtained by
restricting the irreducible representation Vλ of S|λ| to the subgroup S|µ| × S|ν|. This phenomenon is a
consequence of a deeper connection between Λ and the representations of the symmetric group that is
given by the Frobenius characteristic map.

Another representation theoretic appearance of the Littlewood-Richardson coefficients is in the polyno-
mial representations of the general linear group. The polynomial representations of the general linear group
are also indexed by partitions µ,ν. It turns out that if Vµ and Vν are irreducible polynomial representations
of the general linear group, then one may decompose the tensor product

Vµ ⊗ Vν =
⊕
λ

V
⊕cλµ,ν
λ .

One reason behind this formula is that the character associated to Vµ is precisely the Schur function sµ.
The classical Littlewood-Richardson rule asserts that the number cλµ,ν is the number of skew tableaux

of shape λ/µ with content ν. For example, for λ = , µ = and ν = (4, 3, 2) we have the following two
tableaux:

1 1

1 2

2 3

1 1

2 2

1 3

which shows that cλµ,ν = 2.

2.8. Further Remarks. The theory of symmetric functions and this Hopf algebra approach to the symmetric
is definitely an object of intrinsic interest. However, it is also nice to know that this theory has many
connections to other parts of mathematics. We have touched on a few of the deep connections between
Hopf algebras, symmetric functions and representation theory, but there are much deeper connections.

In our discussion of the Schur functions, we saw that Λ is self-dual as a Hopf algebra. Since the
Littlewood-Richardson coefficients have a combinatorial meaning, the structure constants cλµ,ν are non-
negative integers. It turns out that graded connected Hopf algebras over Z with some basis satisfying
the self-duality and positivity conditions are rather special. Specifically, Zelevinsky developed a structure
theory showing that positive self-dual Hopf algebras are isomorphic to tensor products of scaled versions
Λ. In this way, positive self-dual Hopf algebras are, in a sense, polynomials in Λ.

The relationship between combinatorics and Hopf algebras run a lot deeper than we have seen so
far. There are a class of Hopf algebras that are very combinatorial in the sense that either: they have
a distinguished basis for which the structure constants for the product and coproduct are nonnegative
integers; there is a isomorphism between the Hopf algebra and a power series or copower series ring;
or the Hopf algebra has some nice representation theoretic properties. Hopf algebras with the precise
formulations of these properties are called combinatorial Hopf algebras, of which Λ is one of them. It turns
out that in the category of combinatorial Hopf algebras, there is a particular object, the quasi-symmetric
functions, which are like symmetric functions but instead of being indexed by partitions they are indexed
by compositions, turn out to be the terminal object there.
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