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Basic representation theory

We wish to discuss the reps of the symmetric groups Sn and the general linear groups GL(V ), among others.
Therefore, we need to go over some basic rep theory (mostly of finite groups); I skipped this earlier so we
could get right into discussing the reps of sl(2,C) and sl(3,C).

For your convenience and review, I repeat some of the definitions we previously gave for Lie groups and Lie
algebras, although they are all identical.

In this section, G denotes a finite group. All our rings and algebras will be associative with 1, and their
homomorphisms take 1 to 1.

Basic definitions

Definition. A representation of G is just a group homomorphism ρ : G → GL(V ) for V a vector space
(here, of course, we need not impose any kind of smoothness condition on ρ as we did for Lie groups).

Remark. As usual, we are only concerned with the case when dimV < ∞, and the field is C. We will
also abuse notation and say things like “let V and W be representations of G”, or “let φ : V → W be an
intertwiner of the representations V and W ”, leaving the homomorphism ρ itself completely implicit. We
will also abhor notation such as ρ(g)(v) in favour of the much nicer-looking g · v.
Definition. If V is a representation of G, and W ⊆ V is a subspace such that g · w ∈ W for all g ∈ G
and w ∈ W , we call W an invariant subspace (or subrepresentation) of V . If V admits no invariant
subspaces except {0} and V , we say V is an irreducible representation (or irrep).

Exercise. It turns out that for finite groups (more generally, even for compact Lie groups), any complex
representation V of G decomposes as a direct sum of irreducible representations. This is because we can start
with an arbitrary inner product on V , then “average it over the group” to obtain a new inner product relative
to which G acts by unitary operators. With this averaged inner product, orthogonal complements of invariant
subspaces can easily be checked to remain invariant, so by iterating this we obtain the aforementioned
decomposition.

Definition. If ρ : G → GL(V ) and ρ′ : G → GL(W ) are representations, then by a morphism of rep-
resentations from ρ to ρ′ (also called an intertwiner or G-equivariant map) we mean a linear map
φ : V →W that commutes with the action of G: to be precise, we have the following eyesore:

φ(ρ(g)(v)) = ρ′(g)(φ(v)), ∀g ∈ G, v ∈ V

or, leaving implicit the representations ρ and ρ′, we obtain simply

φ(g · v) = g · φ(v).
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If we take as objects the representations, and as morphisms the intertwiners, we obtain a category, denoted
Rep(G). We will see later that this category is in fact something familiar. If V and W are representations
of G, we write HomG(V,W ) := HomRep(G)(V,W ) for the set1 of all intertwiners φ : V →W .

Example. From any group action of G on a set X we can obtain a representation in an obvious way. Namely,
let V be the free vector space on X, that is let V be spanned by the set {ex : x ∈ X} of formal symbols, and
define a representation of G on V by setting g · ex = egx and extending linearly. A representation obtained
in this way is called a permutation representation.

SinceG acts on itself by left multiplication, we obtain from this construction a |G|-dimensional representation,
called the left regular representation of G. This is never irreducible when G 6= {1} because the element∑
g∈G eg clearly spans a one-dimensional invariant subspace.

Schur’s Lemma

Given a morphism φ : V → W of representations (of groups, or Lie algebras, or quivers...), kerφ and imφ
are clearly subreps (of V and W respectively). The following is then immediate.

Lemma (Schur). If φ is a morphism between two irreducible representations, then either φ = 0 or φ is an
isomorphism.

New representations from old

If V and W are representations of G, then all the standard constructions on vector spaces familiar from
(multi)linear algebra (e.g. V ∗ := Hom(V,C), V ⊕W , V ⊗W , Hom(V,W ) = V ∗ ⊗W , Symn V , ΛnV , etc.)
yield representations of G in a natural way. For example, g ∈ G acts on a pure tensor v ⊗ w ∈ V ⊗W by

g(v ⊗ w) = gv ⊗ gw;

note carefully that this is different from the Lie algebra case, where an element X ∈ g would act on v ⊗ w
by the “infinitesimal” version of the above, that is, the product rule:

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw = (X ⊗ I + I ⊗X)(v ⊗ w).

V ∗ becomes a rep by the inverse transpose, i.e. given ρ : G→ GL(V ) we define ρ∗ : G→ GL(V ∗) by

ρ∗(g) := ρ(g−1)T : V ∗ → V ∗.

Again, this is different from the definition for Lie algebras, where we take ρ∗(X) = −ρ(X)T . If you are
confused about why these formulas are the “right things” to do, or just want more details, see Fulton and
Harris, or any other good book that covers representations of finite groups.

The last construction we feel the need to emphasize is Hom(V,W ). As alluded to above, there is a natural
isomorphism Hom(V,W ) ∼= V ∗ ⊗W , given merely by sending pure tensors in V ∗ ⊗W to rank one linear
maps: that is,

V ∗ ⊗W 3 (α⊗ w) 7→ (v 7→ α(v)w) = 〈α,−〉w ∈ Hom(V,W ).

Thus, since we already know how to take duals and tensor products of representations, we know how to
make Hom(V,W ) a representation as well. Unwrapping this definition, we find that g ∈ G acts on a linear
map φ : V →W as follows:

(gφ)(v) = g · φ(g−1 · v).

1As usual, Hom(V,W ) = HomC(V,W ) stands for the set of all linear maps V → W , and we often write End(V ) rather than
Hom(V, V ); End stands for endomorphism.
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Modules and algebras

We now introduce modules, which are just vector spaces where the scalars are allowed to come from any
ring, not necessarily a field. We will see soon how to recast representations as modules.

Note that a vector space over the field k is nothing more than an abelian groupM with a ring homomorphism
from k to the ring EndAb(M) of group homomorphisms M →M . If you have never seen this before, please
take a moment and convince yourself that within this concise statement is encoded the entire list of vector
space axioms. The following definition is therefore nothing surprising.

Let R be a ring.

Definition. A (left) R-module is an abelian group M together with a ring homomorphism

φ : R→ EndAb(M).

There is a concept of right R-module, but we will likely not need it.

Remark. We will immediately rid our notation from the morphism φ; for r ∈ R and m ∈M we write simply
rm for φ(r)(m).

I will leave it to you to guess the definitions of homomorphism, submodule, quotient module, and so
on.

We will find it useful to approach the concept of a module from a slightly more refined angle. For this, let
us recall the notion of an algebra over a field k. For us, k will likely always be C.

Definition. An algebra over k (or simply k-algebra) is a vector space A over k, together with two linear
maps

µ : A⊗A→ A, η : k → A,

called (vector) multiplication and identity respectively, such that the following diagrams commute:

A⊗ A⊗ A
id⊗µ−−−→ A⊗ A

µ⊗id
y yµ

A⊗ A −−→
µ

A

k ⊗ A
η⊗id−−→ A⊗ A

id⊗η←−− A⊗ k
∼=
y yµ y∼=
A A A

The first diagram encodes the associativity law of the multiplication µ, while the second diagram encodes
the fact that the element η(1) ∈ A acts as an identity (“1”) for the multiplication µ. Note that the vertical
arrows in the second diagram labelled by ‘∼=’ are natural isomorphisms (tensoring with the underlying field
essentially has no effect, just like taking a Cartesian product of a set with a singleton).

If this definition confuses you at all, remember that linear maps A⊗A→ A are in one-to-one correspondence
with bilinear maps A× A→ A. This is the tensor product’s raison d’être. So µ is just giving us a bilinear
way of multiplying the vectors of A, and η is picking out an element of A, namely η(1), to be the identity
for this multiplication.

If in the definition above, one replaces all vector spaces with sets, all linear maps with functions, and all tensor
products ⊗ with Cartesian products ×, one obtains exactly the definition of a monoid familiar from abstract
algebra (i.e. a set with an associative binary operation and an identity element for that operation). Thus,
a person who likes category theory might say that a k-algebra is simply a monoid object in the “monoidal
category” of k-vector spaces, where the monoidal structure is given by the tensor product.

This categorical approach to defining algebras is also nice, because we can then effortlessly flip all the arrows
involved and obtain the definition of a “coalgebra”. Raymond will speak more about this next week.

We now present the following slight modification of the concept of a module. It consists more of a change of
perspective than anything. Let A be an k-algebra, and denote by Endk(M) the k-algebra of k-linear maps
M →M .
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Definition. A (left) A-module (or representation of A) is a k-vector spaceM together with a morphism
of k-algebras φ : A→ Endk(M).

Group algebras

Having introduced modules, we will now construct from G, as promised above, a ring (more precisely, a
C-algebra2) whose modules are exactly the same as representations of G.

For inspiration, we present the following cute construction. Given a k-vector space V and a linear operator
T : V → V , we can make sense of the operators T , T 2, or even things like I−T −T 2, where I is the identity.
The assignment x 7→ T uniquely determines a morphism of k-algebras

k[x]→ Endk(V ).

Thus V becomes a k[x]-module, where the action (“scalar multiplication”) is given by

(a0 + a1x+ . . .+ anx
n)v := a0v + a1T (v) + . . .+ anT

n(v)

(note that V is a k-vector space, so we already know how to scale by the ai ∈ k). The k[x]-submodules of V
are precisely the T -invariant subspaces W of V used to develop the theory of canonical forms of matrices,
that is, those W ≤ V such that T (W ) ⊆ W (check this!) In fact, finitely generated modules over principal
ideal domains admit a very nice structure theory, and any such V , assuming it is finite-dimensional, certainly
satisfies these hypotheses. In fact this structure theory immediately yields the Jordan and rational canonical
forms for matrices.

A similar construction turns out to be immensely fruitful in the representation theory of finite groups. Given
our finite group G, how can we come up with a C-algebra, call it C[G], such that the C[G]-modules V
(with dimC V <∞) correspond exactly to the finite-dimensional reps of G? Well, a rep of G is just a group
homomorphism G→ GL(V ). If we had a vector space, call it C[G], with the elements of G as its basis, then
we could just extend this to a linear map into EndC(V ), right? At that point, the only question is how to
define the algebra structure on C[G] – but if we want the algebra homomorphisms out of C[G] to correspond
to the group homomorphisms out of G, our hand is forced – the product in C[G] must be given by declaring
egeh = egh, where eg is the basis element corresponding to g ∈ G, and extending bilinearly.

Definition. The group algebra (or group ring) of G over C, denoted C[G], is defined to be the free
vector space on the set G, that is, C[G] = spanC{eg : g ∈ G}.

We can think of C[G] as the complex vector space of functions f : G → C. Thus if we define eg to be the
characteristic/indicator function of {g} ⊆ G, i.e.

eg(h) =

{
1 if h = g

0 else

we may write such an f in the above notation merely as

f =
∑
g∈G

f(g)eg. (*)

Observe, however, that the multiplication on C[G] as we have defined it above is generally noncommutative.
This shows that it is certainly not given by the “pointwise” multiplication you might expect on such a space
of functions, i.e.

(f1f2)(g) = f1(g)f2(g).

Rather, we see from (*) that elements of C[G], if we think of them as functions G → C, are multiplied by
convolution:

(f1f2)(g) =
∑
a∈G

f1(a)f2(a−1g).

2This goes through, with no modification, for any field k (in fact any ring R), not just C, but we won’t bother here.
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This is reminiscent of the formula for polynomial multiplication (discrete convolution)

(
∑
i

aix
i)(

∑
j

bjx
j) =

∑
k

ckx
k, where ck =

∑
`

a`bk−`

or the convolution of functions familiar from Fourier analysis on the real line:

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt.

Remark. Note that we can not, from the ring (or algebra) structure of C[G] alone, recover the group G.
This is one motivation for the notion of a Hopf algebra, which are the subject of Raymond’s talk next week.
For details, see §3.1 of Representations and Cohomology (volume 1) by D. J. Benson. Examples of Hopf
algebras include group algebras of finite groups, and cohomology algebras of Lie groups.

To summarize our above discussion, the group algebra C[G] is important to us because given any C-algebra
A, there is a one-to-one correspondence between group homomorphisms G→ A× and C-algebra homomor-
phisms C[G]→ A. Here A× denotes the group of units (invertible elements) of A.

Somewhat more precisely, one would say, in the language of category theory, that the “group algebra” functor
(G 7→ C[G]) : Grp→ C-Alg is left adjoint to the “group of units” functor (A 7→ A×) : C-Alg→ Grp: we
have

HomGrp(G,A×) ∼= HomC-Alg(C[G], A)

naturally in both G and A. For comparison, note that the “free vector space” functor is left adjoint to the
forgetful functor from vector spaces to sets.

In particular, take A = EndC(V ). Then A× = GL(V ) so the above adjunction reads

HomGrp(G,GL(V )) ∼= HomC-Alg(C[G],EndC(V )).

This is exactly the correspondence we wanted. We immediately obtain the crucial fact that

a representation of G is the same thing as a module over the complex algebra C[G].

When we view C[G] itself as a C[G]-module, the representation of G we obtain is (unsurprisingly) the left
regular representation. Also, as one might guess, the direct sum of representations is exactly the direct sum of
C[G]-modules. However, the tensor product is a bit more bizarre from this new perspective; its construction
relies on the fact that since we’re dealing with a group algebra we have a natural map C[G]→ C[G]⊗C[G]...
you guessed it! Hopf algebras again.

Character theory

We will now associate to a representation a simpler object which surprisingly turns out to capture all of its
information.

Definition. The character of a representation V of G, denoted χV , is defined to be the trace of the action
of g on V :

χV (g) = tr(g|V ).

Observe immediately that χV is constant on each conjugacy class of G, that is χV (hgh−1) = χV (g). We call
such functions class functions. Also, it is easy to show they play nicely with constructions on representa-
tions:

Proposition. We have

χV⊕W = χV + χW , χV⊗W = χV · χW , χV ∗ = χV .
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Example. If V is a permutation representation of G, then χV (g) is clearly the number of fixed points of g
as a permutation.

For any finite group G, we can write down a table with one column for each conjugacy class C ⊆ G, and
one row for each irreducible representation V , where in the (V,C) entry we place the value assumed by χV
on any element in C. This is called the character table of G. We won’t elaborate on this here.

We will now show that the characters of irreps form an orthonormal basis for the space of class functions.
Suppose V is a representation of a finite group G. Put

V G = {v ∈ V : gv = v for all g ∈ G}.

This is the set of invariants: vectors in V fixed by the whole action of G. Define a linear map φ : V → V
by

φ =
1

|G|
∑
g∈G

g.

Note that this is the image in EndC V of the element |G|−1
∑
g∈G eg ∈ C[G]. When it is convenient, we will

frequently abuse notation and ignore the distinction between eg ∈ C[G] and g ∈ G.
Proposition. φ is a projection onto V G.

Proof. Clearly imφ ⊆ V G. Conversely, given v ∈ V G, observe

φ(v) =
1

|G|
∑
g∈G

v = v.

Thus imφ = V G and φ2 = φ.

From the above it follows that
dimV G = trφ =

1

|G|
∑
g∈G

χV (g).

Here’s the trick: given two reps V and W of G, we apply this to the representation Hom(V,W ) = V ∗ ⊗W .
From the behaviour of characters on duals and tensors we obtain

χHom(V,W ) = χV · χW .

The above then yields

dim Hom(V,W )G =
1

|G|
∑
g∈G

χV (g)χW (g).

Now, one can easily verify that Hom(V,W )G = HomG(V,W ). By Schur’s Lemma, if V andW are irreducible,
then any intertwiner between them is either 0 or an isomorphism, so

dim HomG(V,W ) =

{
1 if V ∼= W

0 else.

More generally, if V is irreducible then dim HomG(V,W ) is the multiplicity of V in W (i.e. the num-
ber of copies of V appearing in the decomposition of W into irreps). Similarly if W is irreducible then
dim HomG(V,W ) is the multiplicity of W in V . In summary, for irreducible representations V and W , we
have that

1

|G|
∑
g∈G

χV (g)χW (g) =

{
1 if V ∼= W

0 else.

This suggests defining an inner product on the space of complex-valued class functions by

〈ϕ,ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g).

This is clearly an inner product. If we do this, the above work shows that:
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Proposition. The irreducible characters form an orthonormal set in the space of class functions.

The dimension of this space, of course, is the number of conjugacy classes of G, so the following is immediate.

Corollary. The number of (isomorphism classes of) irreducible representations of G is at most the number
of conjugacy classes of G.

In fact, equality holds above (this means the character table is always square).

Corollary. Representations are determined by their characters.

Corollary. A representation V is irreducible if and only if 〈χV , χV 〉 = 1.

Corollary. The multiplicity of Vi in V is equal to 〈χV , χVi〉.

What happens if we apply this to the left regular representation R of G? Remember, it’s a permutation
representation, so we know its character:

χR(g) =

{
0 if g 6= 1

|G| if g = 1.

Suppose V is an irreducible representation, and let a be the multiplicity with which it appears in R. Then

a = 〈χV , χR〉 =
1

|G|
χV (1) · |G| = dimV.

Corollary. Any irrep V of G appears in the left regular representation exactly dimV times.

Also, writing R =
⊕
V ⊕aii for distinct irreps Vi, the orthonormality of the irreducible characters also yields

dimR = |G| = 〈χR, χR〉 = 〈
∑
i

aiχVi ,
∑
j

ajχVj 〉 =
∑
i,j

aiaj〈χVi , χVj 〉 =
∑
i

a2i =
∑
i

(dimVi)
2.

Finally, if we evaluate χR(g) for g 6= 1 we obtain

0 =
∑
i

ai · χVi(g) =
∑
i

(dimVi) · χVi(g).

Given all the irreducible characters except one, the last one is determined by this formula.

Let us now prove that the irreducible characters are indeed an orthonormal basis for the space of class
functions. It is not difficult to show that:

Proposition. Let α : G→ C be any function, and for any representation V of G define φα,V : V → V by

φα,V =
∑
g∈G

α(g) · g.

Then φα,V is an intertwiner for all V if and only if α is a class function.

As a consequence, we have

Corollary. The irreducible characters form an orthonormal basis for the space of class functions on G, that
is, the number of irreps of G is equal to the number of conjugacy classes.

Proof. Suppose α : G → C is a class function such that 〈α, χV 〉 = 0 for all irreps V . We claim α = 0.
Consider φα,V as defined above; note it’s an intertwiner so by Schur’s lemma we have φα,V = λI. Thus if
n = dimV we have

λ =
1

n
tr(φα,V ) =

1

n

∑
g∈G

α(g)χV (g) =
|G|
n
〈α, χV ∗〉 = 0.

Thus φα,V = 0 or
∑
α(g)·g = 0 on any rep V of G. Take V = R, the regular rep. By the linear independence

of {g · e1 : g ∈ G} ⊆ R we obtain α(g) = 0 for all g ∈ G, as required.
Definition. The representation ring of G, denoted R(G), is the free abelian group on the set of isomor-
phism classes of representations of G, quotiented out by the subgroup generated by all elements of the form
V +W − (V ⊕W ). It becomes a ring under the tensor product of representations.
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Partitions and Young tableaux

Definition. A partition of n is a weakly decreasing sequence λ = (λ1, . . . , λk) of positive integers such that∑
λi = n. We write λ ` n to mean “λ is a partition of n”, and set |λ| := n.

Example. There are 5 partitions of 4:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Here is a common way to represent partitions.

Definition. A Young diagram is a collection of boxes arranged in left-justified rows, with a weakly de-
creasing number of boxes in each row.

Example. The partitions of 4 are represented as

The reason we do this, of course, is so we can put things in the boxes.

Definition. By a numbering (or filling) of a Young diagram, we mean an assignment of a positive integer
to each box. A (semistandard) Young tableau, or SSYT, is a filling that is weakly increasing in each
row, and strictly increasing in each column. If the entries are exactly the numbers from 1 to n, each occurring
once, we call it a standard Young tableau or SYT.

Representations of symmetric groups3

The conjugacy classes of Sn are precisely the partitions of n, since two permutations are conjugate if and
only if they are of the same cycle structure. We saw that the irreps are in bijection with the conjugacy
classes, so it is unsurprising that we can use partitions to classify the irreps of Sn.

Consider the Young tableau Tλ obtained by simply filling the numbers 1, . . . , n in increasing order from left
to right, top to bottom. From Tλ we can define two subgroups of Sn:

• The row subgroup Pλ consisting of all σ ∈ Sn that preserve the rows.

• The column subgroup Qλ consisting of all σ ∈ Sn that preserve the columns.

Clearly Pλ ∩Qλ = {1}. We define the Young projectors

aλ =
1

|Pλ|
∑
σ∈Pλ

σ, bλ =
1

|Qλ|
∑
σ∈Qλ

sgn(σ) · σ.

The irreducible representations of Sn are described by the following theorem.

Theorem. The subspace Vλ := C[Sn]cλ of C[Sn], under left multiplication, is an irrep of Sn. Moreover,
every irrep of Sn is isomorphic to Vλ for a unique λ ` n.

The modules Vλ are called Specht modules.

3Reference: Etingof et al, Introduction to Representation Theory.
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