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Lie theory and its ubiquity

Excerpt from Introduction to representation theory (Etingof et al.)

“The graphs listed in the theorem are called (simply laced) Dynkin
diagrams. These graphs arise in a multitude of classification
problems in mathematics, such as classification of simple Lie
algebras, singularities, platonic solids, reflection groups, etc. In
fact, if we needed to make contact with an alien civilization and
show them how sophisticated our civilization is, perhaps showing
them Dynkin diagrams would be the best choice!”
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Lie theory and its ubiquity

Goals of the seminar

At the moment, I am planning to focus mainly on the structure
and representation theory of semisimple Lie algebras. Their full
classification, via so-called Dynkin diagrams, is one of the most
beautiful pieces of modern mathematics.

The purpose of this particular talk is to provide some context (and
hence, motivation) for this material by:

defining the basic objects studied in Lie theory, and

discussing some of the numerous, oft unexpected, appearances
of Lie theory in various diverse branches of mathematics and
theoretical physics.

I expect this will very likely convince you to care about it, so please
at least bear with me until then (or just skip to the motivation!).
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Lie theory and its ubiquity

Overview

1 Background and context

2 Motivation

Note

Fully understanding the background/context will require you to
know basic differential geometry (smooth manifolds, tangent
spaces, pushforward/differential of a smooth map). However, if
you are willing to accept that Lie algebras are useful without
understanding their connection to Lie groups, then I strongly
believe such prerequisites are completely unnecessary for everything
I do in this seminar. It should mostly be linear algebra.
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Background and context

Lie groups

A Lie group is an object that carries both algebraic structure (it is a
group) and geometric structure (it is a smooth manifold), in such a way
that the two structures are compatible. This amounts to requiring that
the multiplication (x , y) 7→ xy and inversion x 7→ x−1 are smooth maps
(a smooth manifold, of course, is precisely the type of geometric object
where the concept of a map being “smooth” makes sense). To say it
concisely:

Definition

A Lie group is a group object in the category of smooth manifolds.

So they are differential-geometric objects. One can also consider group
objects in other geometric categories, like the category of algebraic
varieties; these are called algebraic groups or, a bit less ridiculously,
group varieties. There are also complex Lie groups (replace “smooth”
with “complex” above). We will not concern ourselves with these here.
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Background and context

Matrix Lie groups

It turns out that certain families of matrices yield many interesting and
nontrivial examples of Lie groups. Classically, these were the first studied.

Key Example

Let F = R or C. We define the n × n general linear group over F by

GL(n,F) = {A ∈ Mn(F) : A invertible} = {A ∈ Mn(F) : det A 6= 0}.

GL(n,F) is a group under matrix multiplication, and also (by continuity
of the determinant) an open subset of

Mn(F) ∼= Fn2 ∼=

{
Rn2 if F = R

R2n2 if F = C

and thus it carries the structure of a smooth manifold. The multiplication
and inversion (Cramer’s rule) are smooth, thus, GL(n,F) is a Lie group!
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Background and context

Matrix Lie groups

Definition

A matrix Lie group is a closed subgroup of GL(n,F).

It is shown in any book on Lie theory that all matrix Lie groups are in
fact Lie groups. Here are some particularly important examples.

Examples

special linear group: SL(n,F) = {A ∈ GL(n,F) : det A = 1}
(linear operators which preserve volume and orientation).

orthogonal group: O(n) = {A ∈ GL(n,R) : ATA = I}
(linear isometries of Rn, i.e. preserve the standard distance).

unitary group: U(n) = {A ∈ GL(n,C) : A∗A = I}
(linear isometries of Cn).
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Background and context

Matrix Lie groups

Many of these examples come from looking at all the invertible linear
operators on a space V that preserve some sort of “extra structure” on
V , for example, some kind of bilinear, hermitian, or symplectic form. It
could also be a quadratic form, or something fancier.

More Examples

special orthogonal group: SO(n) = O(n) ∩ SL(n,R)
(orientation-preserving linear isometries of Rn).

special unitary group: SU(n) = U(n) ∩ SL(n,C)
(orientation-preserving linear isometries of Cn).

symplectic group Sp(n).

the group of upper triangular matrices.

the Heisenberg group H3(R), important in quantum mechanics.
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Background and context

Are all Lie groups matrix Lie groups?

Since all of the classical groups are matrix Lie groups, one might ask
whether every Lie group is a matrix Lie group (up to isomorphism).

Interestingly, this is not the case: the universal covering group of
SL(2,R) is one example. Another is given by the so-called metaplectic
groups Mp2n, which double cover the symplectic groups.

Remark

As with most mathematical objects, there are standard operations which
produce new Lie groups from given ones. Sometimes, such a Lie group
may actually be isomorphic to a matrix Lie group, even though this is far
from obvious from its abstract specification. An example is the groups
Spin(n), which double cover the groups SO(n); these can be constructed
as certain elements in a Clifford algebra. We will likely explore this more
later.
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Background and context

Lie algebras

We now consider linear-algebraic objects called Lie algebras. For us,
these will take the center stage. First, we will define them abstractly, and
then discuss how to attach one to any Lie group.

Definition

A Lie algebra g is a vector space equipped with a Lie bracket, that is, a
bilinear map [−,−] : g× g→ g with the following properties:

alternating: [X ,X ] = 0 for all X ∈ g.

Jacobi identity: [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 for all
X ,Y ,Z ∈ g.

From the alternating property we see that [X ,Y ] = −[Y ,X ], so [−,−] is
skew-symmetric. In general, [−,−] is not associative; the Jacobi
identity is a kind of “substitute” for associativity.
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Background and context

The Lie algebra of a Lie group

Note

For those with no manifold background, this may not be comprehensible.
Don’t worry if you can only understand it intuitively; there is a
considerably simpler definition for matrix Lie groups.

Let G be a Lie group. Denote by Γ(TG ) the space of all vector fields on
G . Then Γ(TG ), under the usual Lie derivative [−,−] of vector fields,
forms an infinite-dimensional real Lie algebra. Let g denote the subspace
of all left-invariant1 vector fields X ∈ Γ(TG ). One can verify that g is a
Lie subalgebra of Γ(TG ).

Next, let TeG be the tangent space to the identity of G ; recall dim TeG
is equal to the manifold dimension of G . We define a linear ` : TeG → g
just by using the pushforward of the left-multiplication maps Lg : G → G
to “create a copy” of a tangent vector X ∈ TeG in each space TgG .

1These are vector fields which loosely speaking “look the same” everywhere.
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Background and context

The Lie algebra of a Lie group

This map ` : TeG → g is a linear isomorphism; its inverse is the linear
map g→ TeG given by X 7→ Xe (that is, start with a left-invariant
vector field X on G , and look at what it does at the identity element).

Thus, we can use ` to “transport” the Lie algebra structure of g to TeG .
Explicitly, we define [X ,Y ] := [`(X ), `(Y )]e for X ,Y ∈ TeG .

This turns TeG into a finite-dimensional Lie algebra;

dim g = dim TeG = dim G .

We henceforth identify g ∼= TeG . The Lie algebra g, being a linear
object, is easier to understand and is therefore very useful in studying G .
The structure of G near the identity element is very much controlled by
g. The stronger the connectedness assumptions on G , the more global
and pronounced this “control” becomes. We elaborate on this below.
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Background and context

The matrix exponential

Although the above definition of the Lie algebra g is the most general
since it applies to all Lie groups G , the situation simplifies considerably
for matrix Lie groups. First, we recall the matrix exponential.

Definition

Let X ∈ Mn(F). We define the exponential of the matrix X by

exp X = eX =
∞∑
k=0

X k

k!
= I + X +

X 2

2!
+

X 3

3!
+ · · · .

The following calculation shows absolute convergence of this series, so
life is good:

∞∑
k=0

∥∥∥∥X k

k!

∥∥∥∥ = lim
N→∞

N∑
k=0

∥∥∥∥X k

k!

∥∥∥∥ ≤ lim
N

N∑
k=0

‖X‖k

k!
=
∞∑
k=0

‖X‖k

k!
= exp ‖X‖.
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Background and context

The Lie algebra of a matrix Lie group

The following is proved in any introductory book on Lie groups.

Theorem

Let G ≤ GL(n,F) be a matrix Lie group, and g its Lie algebra. Then

g ∼= {X ∈ Mn(F) : exp(tX ) ∈ G for all t ∈ R}.

Here, the Lie bracket on Mn(F), and hence on the RHS above, is just the
commutator of matrices: [X ,Y ] = XY − YX .

A Lie group homomorphism ϕ : (R,+)→ G (by this, we mean a smooth
group homomorphism) is referred to as a one-parameter subgroup of
G . To each such ϕ there corresponds a unique X ∈ g, called the
infinitesimal generator of ϕ, so that ϕ(t) = exp(tX ), ∀t ∈ R.

So the above may be interpreted in the following slightly more geometric
sense: the Lie algebra g of a matrix Lie group G consists precisely of all
infinitesimal generators of one-parameter subgroups of G .
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Background and context

To what extent does the Lie algebra control the Lie group?

The following result is of significant theoretical and practical importance.

Theorem (Baker-Campbell-Hausdorff)

Let G be a Lie group. For X ,Y ∈ g, we have

log(eX eY ) = X + Y +
1

2
[X ,Y ] +

1

12
[X , [X ,Y ]]− 1

12
[Y , [X ,Y ]] + . . .

It is not supposed to be obvious what “. . .” refers to. The point is that
the right-hand side involves only X and Y , brackets of X and Y ,
brackets of these, and so on. This has the following profound corollary.

Corollary, at least in the case of matrix Lie groups

Let G and H be Lie groups, with G simply connected. There is a (nice)
one-to-one correspondence between Lie group homomorphisms
Φ : G → H and Lie algebra homomorphisms φ : g→ h.
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Motivation

Representation theory

Representations are to vector spaces as group actions are to sets. That
is, a representation of a group (or Lie group, or Lie algebra) is just a
linear action on a vector space.

Definition

Let G be a Lie group. A finite-dimensional representation of G is a
Lie group homomorphism Π : G → GL(V ) for some vector space V , with
0 < dim V <∞.

Since Mn(F) is the Lie algebra of GL(n,F), we write gl(n,F) := Mn(F).

Definition

Let g be an (abstract) Lie algebra. A finite-dimensional representation
of g is a morphism of Lie algebras2 π : g→ gl(V ) for some vector space
V , with 0 < dim V <∞.

2A morphism of Lie algebras is just a linear map preserving the Lie bracket:
π([X ,Y ]) = [π(X ), π(Y )].
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Motivation

Representation theory in general

Representation theory is not limited to Lie groups and Lie algebras. It
also studies finite groups, quivers, partially ordered sets, and perhaps
most fundamentally, associative algebras.

Thanks to some convenient adjunctions, such as

HomGrp(G ,A×) ∼= HomK -Alg(K [G ],A),

it turns out that all of these seemingly different flavours of representation
theory can be recast merely as the representation theory of some cleverly
conceived associative algebra.

Examples include the group algebra of a finite group, the path algebra of
a quiver, and the universal enveloping algebra of a Lie algebra. Since a
representation of an associative algebra A is the same thing as an
A-module, this enables us to employ the techniques of module theory.
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Motivation

Representation theory

With some care, we can also define infinite-dimensional representations.
Here is an example from harmonic analysis where these show up.

Example

R, SO(2) and SO(3) are Lie groups. They admit (infinite-dimensional)
representations on the Hilbert spaces of “square-integrable” functions
L2(R), L2(S1), and L2(S2), respectively, by acting as translations: more
explicitly, for g ∈ G and ϕ ∈ L2, we define

(g ∗ ϕ)(x) = ϕ(g−1 · x).

For example, a ∈ R acts on L2(R) by (a ∗ ϕ)(x) = ϕ(x − a).

Decomposing these representations yields the theories of Fourier
transform, Fourier series, and spherical harmonics, respectively.
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Motivation

Lie theory in physics

Example

In the standard model of particle physics, the Eight-Fold Way involves an
8-dimensional representation of the Lie algebra sl(3; C). This will be one
of the first Lie algebras whose representation theory we study.

Example

The representation theory of a particular (non-compact) Lie group known
as the Poincaré group plays a crucial role in quantum field theory.

There are many, many more instances where the representation theory of
these objects arises in particle physics.

Example

Mysterious objects known as quantum groups (particular special cases of
Hopf algebras) arise as “deformations” of universal enveloping algebras.
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Motivation

Lie theory in physics

There are also intimate connections to differential equations, and special
functions/orthogonal polynomials. We will probably see at least some of
this.

Excerpts from Lie Groups, Physics, and Geometry (Gilmore)

“If finite groups were required to decide on the solvability of finite-degree
polynomial equations, then “infinite groups” would probably be involved
in the treatment of ordinary and partial differential equations.”

“... most of the classical functions of mathematical physics are matrix
elements of simple Lie groups, in particular matrix representations. There
is a very rich connection between Lie groups and special functions that is
still evolving.”

The five so-called “exceptional simple Lie groups”, which do not fit into
the classification, are largely related to octonionic symmetry. We may see
a bit of these as well.
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Motivation

Lie theory in geometry and topology

Example

One can discuss covering groups of Lie groups; these have interesting
relationships to projective representations.

Example

Lie algebras are also an important ingredient in the Chern-Weil theory of
characteristic classes of vector bundles.

Example

There are applications of the representation theory of Lie algebras to
projective algebraic geometry. A good reference for this is Fulton and
Harris.
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Motivation

Lie theory in combinatorics

There is considerable interplay between the representation theory of Lie
algebras and combinatorics.

Example

The Schur functions, which are examples of symmetric functions (which
in turn are of significant interest in enumeration), arise in the
representation theory of the unitary groups.

Example (Problem 6.25 of R. Stanley’s Enum. Comb. Volume 2)

The Catalan numbers have many algebraic interpretations. In particular,
they arise as the dimensions of irreducible representations of the
symplectic group.

Other examples include quantum walks on graphs, crystal operators,
palindromic unimodal sequences, q-theory... the list goes on and on.
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Motivation

References

Here are some relevant books:

Bump, Lie Groups.

Fulton and Harris, Representation Theory: A First Course.

Gilmore3, Lie Groups, Physics, and Geometry.

Hall, Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction.

Humphreys, Introduction to Lie Algebras and Representation
Theory.

Varadarajan, Lie Groups, Lie Algebras, and their Representations.

3Be warned; this guy claims at some point that if H is a normal subgroup in
G , then G ∼= H × (G/H).
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