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Chapter 1 - Introduction

2016 01 04Population: the collection of potential study objects.

process: a mechanism by which the data are generated.

Example 1. The underlying probability distribution from which the sample data are gen-
erated.

sample:

� Usually a small proportion of the population

� Needs to be representative

Variate (Variable): characteristics measured on the subjects.

� continuous

� discrete

� categorical

⎧⎪⎪⎨⎪⎪⎩

nominal

ordinal

Attributes

Data collection:

(1) sample surveys

(2) observational study

(3) Experimental design

Data:
subject gender age weight ⋯ Y

1 M x x y1

2 F x ⋮ y2

3 F x ⋮ y3

⋮ ⋮ ⋮ ⋮
n M x x yn

Histogram.

(1) Partition the range of y into k non-overlapping (equal-length) intervals Ij = [aj−1, aj),
j = 1, . . . , k.
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(2) Calculate fj = # of yj’s there are in Ij, j = 1, . . . , k.

“relative frequency” histogram

Scatterplot

X Y
x1 y1

x2 y2

⋮ ⋮
xn yn

Numerical Summaries of the data:

(1) Measure of location {y1, . . . , yn} y(1) ≤ y(2) ≤ ⋯ ≤ y(n)
(i) mean ȳ = 1

n ∑
n
i=1 yi

(ii) median

⎧⎪⎪⎨⎪⎪⎩

if n is odd, then median = y(n+1
2

)

if n is even, then median = 1
2 (y(n

2
) + y(n

2
+1))
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median is more robust against outliers compared to mean.

(iii) mode

(2) measure of variability

(i) sample variance s2 = 1
n−1 ∑

n
i=1 (yi − ȳ)

2

s =
√
s2

(ii) range: y(n) − y(1) = max − min

(3) measure of skewness or shape

2016 01 06Numerical Summaries:

1) measure of location: mean, median, mode

2) measure of variability: sample variance s2, range, inter-quartile range (IQR)

3) measure of skewness and shape:

IQR: Def of quantiles: Let Y be a random variable with CDF FY (y) = P (Y ≤ y). the p-th
quantile of Y is QY (p) ≡ F −1

Y (p) ≡ inf {y; FY (y) ≥ p}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
QY (p)=y s.t. FY (y)=p

where p ∈ [0,1].
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some special quantiles:

lower quartile Q(0.25)

medain Q(0.5)

upper quartile Q(0.75)

IQR= Q(0.75) −Q(0.25)

3) measure of skewness and shape:

this measure indicates how the distribution of the data differs from a Normal distribu-
tion

i) skewness: measures the asymmetry of the data

sample skewness =
1
n ∑

n
i=1 (yi − ȳ)

3

[ 1
n ∑

n
i=1 (yi − ȳ)

2]3/2

→ skewed to the right Ô⇒ sample skewness > 0

ii) sample kurtosis =
1
n ∑

n
i=1 (yi − ȳ)

4

[ 1
n ∑

n
i=1 (yi − ȳ)

2]2

the sample kurtosis for Normal distribution ≈ 3

Data that are very peaked have a sample kurtosis > 3
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the five-number summary: y(1),Q1,Q2,Q3, y(n)

Sample Correlation: for {(x1, y1), . . . , (xn, yn)}, ρ = Sxy√
SxxSyy

where Syy = ∑ni=1(xi − x̄)2, Sxy =
∑ni=1(xi − x̄)(yi − ȳ), Syy = ∑ni=1(yi − ȳ)2

−1 ≤ ρ ≤ 1

ρ measures the linear relationship between x and y

⎧⎪⎪⎨⎪⎪⎩

when ρ is close to 1, x and y have a strong positive linear relationship

when ρ is close to −1, x and y have a strong negative linear relationship

Boxplot: y(1),Q1,Q2,Q3, y(n)

1) Draw a box with ends at the lower and upper quartiles

2) Add a line at the median

3) Draw two lines outside the box to y(1) and y(n). If y(1) or y(n) is more than 1.5IQR
then add lines at the most extreme data points within Q1 − 1.5IQR and Q3 + 1.5IQR

4) Plot any additional points beyond ±1.5IQR using “+” or “⋆”

2016 01 11ECDF F̂Y (y) =
# of values in {y1, . . . , yn} that are ≤ y

n

R demo
Ch 2. Maximum Likelihood Estimation

Y ∼ Binomial (n, p)

k possible outcomes: 1, . . . , k
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probability of the i-th outcome: θ1, . . . , θk

now we have n independent trials

let Yi be the # of the i-th outcome for these n trials

(Y1, . . . , Yk) ∼ Multinomial (n, θ⃗)

P (Y1 = y1, . . . , Yk =k; θ⃗) =
n!

y1!⋯yk!
θy11 ⋯θ

yk
k where

k

∑
i=1

yi = n
k

∑
i=1

θi = 1

Y ∼ Binomial (n, p)

P (Y = y; p) = (n
y
)py (1 − p)n−y

N (µ,σ2)

Def: (Estimator/Estimate)

Let Y⃗ be the data vector (random vector) and y⃗ the observed value of Y⃗

An estimator of a parameter θ is a function of Y⃗ and possibly other known quantities such
as n

An estimate of θ is the value of an estimator evaluated at the data y⃗

Def: the likelihood function for θ is L(θ) = L (θ; y⃗) = f (y⃗; θ), θ ∈ Ω

Def: the value of θ that maximizes L (θ) for given data Y⃗ is called the MLE of θ, denoted
by θ̂

Back to Y ∼ Binomial (n, p), → p̂ = y
n , p̂ =

Y
n

2016 01 13Likelihood L(θ) ≡ L (θ, y⃗) = f (y⃗; θ) MLE θ̂ ≡ arg max
θ
L (θ)

(n
y
)θy (1 − θ)n−y e[]

Def: ` (θ) = logL (θ): log-likelihood. θ̂ is usually derived by solving
d` (θ)
dθ

= 0

score equation
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

often Y⃗ = (Y1, . . . , Yn) where Yi’s are a random sample from the population

Yi’s are independent

often we assume Yi’s have the same distribution

⇒ Y1, . . . , Yn
i.i.d.∼ f (y; θ)⇒ L (θ) = f (y⃗; θ) =∏n

i=1 f (yi; θ) =∏n
i=1L (θ; yi)

Ex1 MLE for Exponential Let Y denote the lifetime of a randomly selected light bulb.

Y ∼ Exp (θ) Ô⇒ 4 (y, θ) = 1
θe

− y
θ θ > 0

a random sample Y1, . . . , Yn Ô⇒ L (θ) =
n

∏
i=1

f (yi; θ) =
1

θn
e−
∑
n
i=1 Yi
θ θ > 0

Ô⇒ ` (θ) logL (θ) = −n log θ − 1

θ

n

∑
i=1

Yi

Ô⇒ d` (θ)
dθ

= −n
θ
+ 1

θ2

n

∑
i=1

Yi = 0 Ô⇒ θ̂ = 1

n

n

∑
i=1

Yi = F

To check that θ̂ is the MLE
d2` (θ)
dθ2

∣
θ̂

< 0

Ex2: Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) f (y; µ,σ2) = 1√

2πσ
e−
(y−µ)2

2σ2 −∞ < µ <∞ σ > 0

L (θ⃗) =
n

∏
i=1

f (yi, θ⃗) = ( 1√
2π

)
n

σ−ne−
∑
n
i=1(Yi−µ)

2

2σ2

Ô⇒ ` (θ⃗) = logL (θ̂) = c − n logσ − ∑
n
i=1 (Yi − µ)

2

2σ2
Ô⇒

∂` (θ̂)
∂θ⃗

=
⎧⎪⎪⎨⎪⎪⎩

2∑ni=1(Yi−µ)
2σ2 = 0

−nσ +
∑ni=1(Yi−µ)

2

σ3 = 0

Ô⇒ (
µ̂ = Ȳ

σ̂2 = 1
n ∑

n
i=1 (Yi − Ȳ )2) s2 = 1

n − 1

n

∑
i=1

(Yi − Ȳ )2
E[s2] = σ2

Ex3: MLE for Multinomial

Y⃗ = (Y1, . . . , Yk) ∼ Multinomial Ô⇒ L (θ̂) = n!
Y1!⋯Yk!θ

Y1
1 ⋯θYkk where ∑ki=1 θi = 1 ∑ki=1 Yi = n

θ̂i = Yi
n i = 1, . . . , k

Ex4: X1, . . . ,Xn
i.i.d.∼ F (x; θ1, θ2) = 1 − (θ1

x
)
θ2

x ≥ θ1, θ1 > 0, θ2 > 0
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f (x, θ1, θ2) = θθ21 θ2x
−θ2−1 x ≥ θ1, θ1 > 0, θ2 > 0

L (θ1, θ2) =
n

∏
i=1

f (xi; θ1, θ2) = θnθ21 θn2 (
n

∏
i=1

xi)
−θ2−1

0 < θ1 ≤X(1), θ2 > 0

θ̂1 =X(1)

L (θ2) = L (θ̂1, θ2) = θ̂nθ21 θn2 (
n

∏
i=1

xi)
−θ2−1

θ2 > 0

Ô⇒ ` (θ2) = log L (θ2) = nθ2 log θ̂1 + n log θ2 − (θ2 + 1)
n

∑
i=1

logXi

Ô⇒
d` (θ)2

dθ2

= n log θ̂1 +
y

θ2

−
n

∑
i=1

logXi = 0 Ô⇒ θ̂2 =
n

∑ni=1 logXi − n log θ̂1

Check that θ̂2 is the MLE

Ex 5: let θ ≡ # of coliform bacteria in one ml of water:

Then for a water sample of v ml the average # of bacteria is vθ

Let Y ≡ actual # of bacteria in a water sample of v ml

Suppose that Y ∼ Poisson (θv)

1) Suppose that we can precisely count the # of bacteria. How to estimate θ using the
MLE approach?

Randomly select n water samples with volume v1, . . . , vn

let Yi dentoe the # of bacteria in sample i. Then Yi ∼ Poisson (viθ)

L (θ) =
n

∏
i=1

f (yi; θ) =
n

∏
i=1

[(θvi)
Yi

Yi!
e−θvi] = ∏

n
i=1 v

Yi
i

∏n
i=1 Yi!

θ∑
n
i=1 Yie−θ∑

n
i=1 vi

` (θ) = logL (θ) = c+
n

∑
i=1

Yi log θ−θ
n

∑
i=1

vi Ô⇒
d` (θ)
dθ

= ∑
n
i=1 Yi
θ

−
n

∑
i=1

vi = 0 Ô⇒ θ̂ = ∑
n
i=1 Yi

∑ni=1 vi

To check that θ̂ is the MLE

d2`θ

dθ2
∣
θ̂

= −∑
n
i=1 Yi

θ̂2
< 0

2016 01 18
2) Suppose now that we can only detect the presence/absence of bacteria

how to estimate θ using the ML method?

(Y > 0), (Y = 0) If we define z =
⎧⎪⎪⎨⎪⎪⎩

1 Y > 0

0 Y = 0
, Y ∼ Poisson (θV )

Z ∼ Bernoulli (P (Z = 1)) = Ber (P (Y > 0)) = Ber (1 − P (Y = 0)) = Ber (1 − e−θv)

fY (y) = P (Y = y) = θ
y

y!
e−θ
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Now randomly take water samples with volume v1, . . . , vn

Zi, i = 1, . . . , n, Zi ∼ Ber (1 − e−θvi)

L (θ) =
n

∏
i=1

f (Zi, θ) =
n

∏
i=1

(1 − e−θvi)Zi (e−θvi)1−Zi

` (θ) = logL (θ) =
n

∑
i=1

[Zi log (1 − e−θvi) − (1 −Zi) θvi]

d`

dθ
=

n

∑
i=1

[viZie
−θvi

1 − e−θvi
− (1 −Zi) vi] = 0

Newton-Raphson

Thm: (invariance property of the MLE) If θ̂ is the MLE of θ, then the MLE of g (θ) is g (θ̂),
where g ∈ C0 or g is continuous

e.x. N (µ,σ2) , σ̂ =

¿
ÁÁÀ 1

n

n

∑
i=1

(Xi − X̄)2

σ̂2 = 1

n

n

∑
i=1

(Xi − X̄)2

Merits of MLE:

1. bias E (θ̂) − θ → 0 as n→∞ E (θ̂) = θ

2. efficiency

problems of MLE:
not robust to model misspecification

Asymptotic Statistics

Model Checking:

� one way to check the adequacy of a model is to compare model-based probabilities to
sample-based frequencies

partition the range of Y into [aj−1, aj] , j = 1, . . . , J

Y ∼ f (Y ; θ) θ̂ P (aj−1 ≤ Y < aj; θ̂)

If the model is appropriate, then these probabilities should be close to the corresponding
relative frequencies
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QQ-plots {Y1, . . . , Yn} and f (y, θ̂) = N (µ,σ2)

Y ∼ N (µ,σ2) , Z ∼ N(0,1)

y = QY (τ) P (Y ≤ y) = τ = P (Y − µ
σ

≤ y − µ
σ

) = P (Z ≤ y − µ
σ

)

Ô⇒ QZ (τ) = y − µ
σ

= z
y = σz + µ

R demo

2016 01 20Ch4 Interval Estimation

� Sampling distribution of the MLE θ̂ = θ̂ (Y⃗ ;n)

● point estimator

● uncertainty of θ̂

● sampling distribution of θ̂

� Finding the sampling distribution of θ̂ is generally very difficult
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● Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) µ̂ = Ȳn ∼ N (µ, σ

2

n
) P (∣µ̂ − µ∣ ≤ 0)

● Y1, . . . , Yn
i.i.d.∼ Exp (θ) θ̂ = Ȳn ∼

app∼ N (µY ,
σ2
Y

n
)

● large sample approximation is commonly used to derive asymptotic distribution
of θ̂

� Interval Estimator

● a way of indicating the uncertainty of θ̂

● In the form of [L (Y⃗ ) , U (Y⃗ )]

● we would like P (L (Y⃗ ) ≤ θ ≤ U (Y⃗ )) to be large (skip sec 4.3)

Def: C (θ) = P (L (Y⃗ ) ≤ θ ≤ U (Y⃗ )) is called the coverage prob. of the interval estimator

Note: we’d like C (θ) to be close to 1 (0.95,0.99) while keeping the length of the interval
short

For a fixed C (θ) the interval estimators are called confidence intervals

[Y⃗ − 1.96 σ√
n
, Ȳ + 1.96 σ√

n
] is called a 95% CI for µ

Def: A 100p% for θ is an interval estimate [L (y⃗) , Y (vecy)] such that P (L (Y⃗ ) ≤ θ ≤ U (Y⃗ )) =
p
Here p is called the confidence coefficient

Ex 4.4.1 Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) µ unknown σ2 known Ȳn ∼ N (µ, σ2

n )

Consider [Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n
]

P (Ȳ − 1.96
σ√
n
≤ µ ≤ Ȳ + 1.96

σ√
n
) = P (−1.96 ≤ µ − Ȳσ√

n

´¹¹¹¹¸¹¹¹¹¶
∼N(0,1)

≤ 1.96) = 0.95

Note: 1O Suppose we observed y1, . . . , yn [Ȳ − 1.96
σ√
n
, ȳ + 1.96

σ√
n
]

P (Y − 1.96
σ√
n
, ȳ + 1.96

σ√
n
) ≠ 0.95

We have 95% confidence that [Y − 1.96 σ√
n
, ȳ + 1.96 σ√

n
] covers µ

2O CI gets narrower as n ↑

Def: A function Qn = g (Y⃗ , θ) of the data Y⃗ and unknown θ is called a pivotal quantity if
the distribution of Qn is completely known

Suppose now we have a pivotal quantity Qn
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1) find a and b st P (a ≤ Qn (Y⃗ ; θ) ≤ b) = p

2) solve for θ from a ≤ Qn (Y⃗ ; θ) ≤ b to get L (Y⃗ ) ≤ θ ≤ U (Y⃗ )

Ex 4.4.2 Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) µ unknown σ2 is known

Qn (Y⃗ ;µ) = Ȳ − µ
σ√
n

∼ N (0,1) so Qn (Y⃗ ;µ) is a pivotal quantity

to construct a 95% CI for µ

P
⎛
⎝
a ≤ Y⃗ − µ

σ√
n

≤ b
⎞
⎠
= 0.95 −● then solve for µ from a ≤ Ȳ − µ

σ√
n

≤ b to get

Ô⇒ Ȳ − b σ√
n
≤ µ ≤ Ȳ − a σ√

n

[Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n
] is a 95% CI for µ

Note: 1O [Y⃗ − 1.96
σ√
n
, Y⃗ + 1.96

σ√
n
] takes the form point estimator ± c ⋅ sd (point estima-

tor) which is known as “two-sided” CI

2O If we choose a = −∞, b = 1.645, then we have [Y⃗ − 1.645
σ√
n
,∞)

Similarly, we can take a = −.1645, b =∞ to get another “one-sided” CI for µ
(−∞,◻] P (µ ≤ ◻] = 0.95

How to obtain a pivotal quant̄ity?
for most problems, it’s not possible to get an “exact” pivotal quantity so we turn to “asymp-
totic” pivotal quantity, Qn (Y⃗ ; θ) st the distribution of Qn is known as n→∞

Ex 4.4.3 Y ∼ Binomial (n; θ) we want a 95% CI for θ
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Based on CLT,
Y − θ√
nθ (1 − θ)

∼ N(0,1) as n→∞ Z1, . . . , Zn
i.i.d.∼ Ber (θ) Y =

n

∑
i=1

Zi

2016 01 25Ex 4.4.3 Y ∼ Binomial (n, θ) we want a 95% CI for θ

Qn (θ) =
Y − nθ√
nθ (1 − θ)

∼ N (0,1) as n→∞

P (a < Qn (θ) < b) ≈ 0.95 Ô⇒ solve for θ from − 1.96 ≤ Y − nθ√
nθ (1 − θ)

≤ 1.96

a = −1.96, b = 1.96 Ô⇒ Q̃n (θ) =
Y − nθ√
nθ̂1 − θ̂

where θ̂ = Ȳ
n

∼ N (0,1) as n→∞

solve for θ from −19.6 ≤ Y − nθ
√
nθ̂ (1 − θ̂)

≤ 1.96 Ô⇒ Ȳ −1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n
≤ θ ≤ Ȳ +1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n

⎡⎢⎢⎢⎢⎢⎣
Ȳ − 1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n
, Ȳ + 1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n

⎤⎥⎥⎥⎥⎥⎦
Ex 4.4.5 Y ∼ Binmoal (n, θ) a 95% CI for θ is [ , ]
Suppose now we would like the length of the 95% CI no longer than a pre-fixed ∆ then what
n should we take?

The length of the 95% CI is 2 ⋅ 1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n
≤ ∆ Ô⇒ n ≥ (2 ⋅ 1.96

∆
)

2

θ̂ (1 − θ̂)
≤0.25

Ô⇒ n ≥ (2 ⋅ 1.96

∆
)

2

⋅0.25 because 0 < θ̂ < 1

for example, if ∆ = (0.03) ⋅ 2 Ô⇒ n ≥ 1067.1 or n ≥ 1068
Thus by taking n ≥ 1068, we have P (∣θ̂ − θ∣ ≤ 0.03) ≥ 95%

Def Let Z1, . . . , Zk
i.i.d.∼ N (0,1) and X =

k

∑
i=1

Z2
i the we call the distribution of X the χ2 (k)

●distribution with k df

The pdf of a X ∼ χ2 (k) is f (x;k) = 1

2
k
2 Γ (k

2
)
x
k
2
−1e−

x
2 x > 0

Γ (α) = ∫
∞

0
y−αe−y dy α > 0

i) Γ (α) = (α − 1)Γ (α − 1)

ii) Γ (n) = (n − 1)!

iii) Γ (1
2
) =

√
π

when k = 1 X ∼ χ2 (1) find the pdf fX (s) X = Z2 where Z ∼ N (0,1)
for x≥0PX (X ≤ x) = P (Z2 ≤ x) = P (−

√
x ≤ Z ≤

√
x) = Φ (

√
x)−Φ (−

√
x) Φ is the CDF of Z ∼
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N (0,1) φ is the pdf of Z ∼ N (0,1)

fX(x) = dPx (X ≤ x)
dx

= φ (
√
x) 1

2x
− 1

2 + φ (−
√
x) 1

2x
−1

2

= x− 1
2φ (

√
x) = 1√

2π
x−

1
2 e−

x
2 x ≥ 0

Thm: Let W1, . . . ,Wn be independent random variables with Wi ∼ χ2 (ki), i = 1, . . . , n

then
n

∑
i=1

Wi ∼ χ2 (
n

∑
i=1

ki)

solve for θ from −1.96 ≤ Y − nθ
√
nθ̂ (1 − θ̂)

≤ 1.96 Ô⇒ Ȳ −1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n
≤ θ ≤ Ȳ +1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n

⎡⎢⎢⎢⎢⎢⎣
Ȳ − 1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n
, Ȳ + 1.96

¿
ÁÁÀ θ̂ (1 − θ̂)

n

⎤⎥⎥⎥⎥⎥⎦
Moment Generating Function of a distribution
X ∼ χ2 (k) MGF of X is Mx (t) = E (etX)

×○Mx (t) = ∫
∞

0
etx

1

2
k
2 Γ(k

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c

x
k
2
−1e−

k
2 dx = ∫

∞

0
c ⋅ x k2−1e−

1−2t
2
x dx

let y = (1 − 2t)x
dy = (1 − 2t)dx

dx = dy

1 − 2t

= ∫
∞

0
c( y

1 − 2t
)
k
2
−1

e−
y
2
dy

1 − 2t
= 1

(1 − 2t)k/2
∫

∞

0
y
k
2
−1e−

y
2 dy = 1

(1 − 2t)k/2
t < 1

2

EX = dMX (t)
dt

∣
t=0

= k (1 − 2t)−
k
2
−1∣

t=0
= k

EX2 = d2MX (t)
dt2

∣
t=0

= k (k + 2) (1 − 2t)−
k
2
−1∣

t=0
= k (k + 2)

Def: Suppose X ∼ N (0,1), Y ∼ χ2 (k) and X�Y then we call the distribution of T = X
√

Y

k
the t (k) distribution with k df
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T ∼ t (k) fT (t;k) −Ck(1 + t
2

k
)
− k+1

2

k→∞→ e−
t2

2

2016 01 27Def: Λ ≡ Λ (θ) ≡ −2 log
L (θ)
L (θ̂)

, where θ̂ is the MLE, is called the likelihood-ratio statistic

Λ = 2 logL (θ̂) − 2 logL (θ) = 2` (θ̂) − 2` (θ)

Thm: Suppose θ is the true value of the parameter, then Λ (θ) ∼ χ2 (1) as n→∞
Thus Λ (θ) is asymptotically pivotal
To construct a 100% CI
Step 1: find a value c s.t. P (W ≤ c) = p where W ∼ χ2 (1)
Step 2: Solve for θ from Λ (θ) ≤ c Ô⇒ {θ ∶ Λ (θ) ≤ c}

X̄ − µ
σ/

√
n
∼ N (0,1)

Y − θ√
nθ (1 − θ)

∼ N(0,1)

Ex. Y ∼ Binomial (n, θ) P (Y = y; θ) = (n
y
)θy (1 − θ)n−y = L (θ)

θ̂ = Y
n Ô⇒

L(θ)
L(θ̂) = ( θ

θ̂
)Y (1−θ

1−θ̂)
n − Y Ô⇒ Λ (θ) = −2Y log θ

θ̂
− 2 (n − Y ) log 1−θ

1−θ̂
To get a 95% CI for θ

Step 1: find c s.t. P (W ≤ c) = .95 where W ∼ χ2 (1) W = Z2 Z ∼ N (0,1)
Ô⇒ c = 1.962 = 3.841 P (−1.96 ≤ Z ≤ 1.96) = 0.95

P (W ≤ c) = 0.95
Step 2: solve for θ from Λ (θ) ≤ 3.84.

Y = y = 40 n = 100 Ô⇒ θ̂ = Y
n
= 0.4 Ô⇒ Λ (θ) = −80 log

θ

0.4
− 120 log

1 − θ
0.6

Section 4.5 Inference for N (µ,σ2)
Y1,⋯, Yn

i.i.d∼ N (µ,σ2) our interest is to estimate both µ and σ2

Point estimators: µ̂ = 1

n

n

∑
i=1

Yi σ̂2 = 1

n

n

∑
i=1

(Yi − Ȳ )2
S2 = 1

n − 1

n

∑
i=1

(Yi − Ȳ )2
ES2 = σ2
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Interval estimators:

For µ

⎧⎪⎪⎨⎪⎪⎩

i) with know σ2 Ȳ −µ
σ/√n ∼ N (0,1) Ô⇒ 95% CI for µ is [Ȳ − 1.96 σ√

n
, Ȳ + 1.96 σ√

n
]

ii) with unknow σ2 Thm: T = Ȳ −µ
S/√n ∼ t(n − 1) Y1, . . . , Yn

i.i.d.∼ N (µ,σ2)

=
Ȳ −µ
σ/√n ∼ N (0,1)

√
(n−1)S2

(n−1)σ2

(n − 1)S2

σ2
∼ χ2 (n − 1)

To get a 95% CI for µ

step 1: P (a ≤ Ȳ − µ
S/

√
n
≤ b) = 0.95

step 2: solve for µ from a ≤ Y − µ
S/

√
n
≤ b

Ô⇒ a 95% CI for µ is [Ȳ − b S√
n
, Ȳ − a S√

n
]

if we take a = −b then

[Ȳ − b S√
n
, Ȳ + b S√

n
]

For σ2 Thm: Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) then U = (n − 1)S2

σ2
∼ χ2 (n − 1).

Thus U is a pivotal quantity

To construct a 100% CI for σ2

step 1: find a and b s.t P (a ≤ (n − 1)S2

σ2
≤ b) = p

step 2: solve for σ2 from a ≤ (n − 1)S2

σ2
≤ b gives [(n − 1)S2

b
,
(n − 1)S2

a
] is a 100% CI for

σ2 “equal=tail” CI

If we are just interested in the upper bound of σ2

we can take b =∞ so that P ( (n−1)S2

σ2 ≥ a) = p

then a “one-sided” 100% CI for σ2 is [0, (n−1)S2

a ]
projector
2016 02 01Prediction Y1, . . . , Yn

i.i.d∼ N (µ,σ2) Y is a new random draw from the same N (µ,σ2)
we want to predict Y

point prediction: Ȳn or µ
Interval prediction:

Y − Ȳ ∼ N (0, (1 + 1
n
)σ2) Var (Y − Ȳn) = Var (Y ) +Var (Ȳn) = σ2 + σ

2

n

1O σ2 is knowñ
Y − Ȳn
σ
√

1 + 1
n

∼ N (0,1) P
⎛
⎜
⎝
−1.96 ≤ Y − Ȳn

σ
√

1 + 1 1
n

≤ 1.96
⎞
⎟
⎠
= 0.95

Ô⇒ 95% PI for Y is [Ȳn − 1.96σ
√

1 + 1
n , Ȳn + 1.96σ

√
1 + 1

n]
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2O σ2 unknown
y − Ȳn
σ
√

1 + 1
n

∼ N (0,1) (n − 1)S2

σ2
∼ χ2 (n − 1) Ȳn�S2

Y − Ȳn
S
√

1 + 1
n

=

Y −Ȳn
σ

√
1+ 1
n√

(n−1)S2

(n−1)σ2

∼ t(n − 1)

95% PI P
⎛
⎜
⎝
−t0.975(n − 1) ≤ Y − Ȳn

S
√

1 + 1
n

≤ t0.975(n − 1)
⎞
⎟
⎠
= 0.95

Ô⇒ a 95% PI for Y is [Ȳn − t0.975(n − 1)S
√

1 + 1
n , Ȳn + t0.975(n − 1)S

√
1 + 1

n]

95% CI for µ is [Ȳn − t0.975(n − 1)S
√

1
n , Ȳn + t0.975(n − 1)S

√
1
n]

CI Ȳn µ
PI Ȳn → µ→ Y

Λ (θ) ≡ −2 log L(θ)
L(θ̂) → χ2 (1) as n→∞

Ex. Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) where µ is unknown, σ2 is known, we want a 95% CI for µ

f(y ;µ) = 1√
2πσ

e−
(y−µ)2

2σ2

Ô⇒ L (µ) =
n

∏
i=1

f (Yi;µ) Λ (µ) = −2 log
L (µ)
L (µ̂)

= s` (µ̂) − 2` (µ) where ` (µ) = logL (µ)

= 2 [−∑
n
i=1 (Yi − µ̂)

2

2σ2
+ ∑

n
i=1 (Yi − µ)

2

2σ2
]

= 1

σ2

n

∑
i=1

[(Yi − µ)2 − (Yi − µ̂)2] = 1

σ2

n

∑
i=1

[(Yi − µ̂ + µ̂ − µ)2 − (Yi − µ̂)2]

= 1

σ2

n

∑
i=1

[(Ȳn − µ)
2] =

n (Ȳn − µ)
2

σ2
∼ χ2 (1) as n→∞

= Ȳn − µ
σ/

√
n

2

∼ χ2 (1)
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to get a 95% CI for µ P
⎛
⎝
( Ȳn − µ
σ/

√
n
)

2

≤ χ2
0.95 (1)

⎞
⎠
= 0.95

−
√
χ2

0.95 (1) ≤ Ȳn − µ
σ/

√
n
≤
√
χ2

0.95 (1)

95% CI for µ is [Ȳn −
√
χ2

0.95 (1)
σ√
n
, Ȳn +

√
χ2

0.95 (1)
σ√
n
]

Ȳn − µ
σ/

√
n
∼ N(0,1)

exer 2.2

exer 4.30
2016 02 03

exer 4.30

exer 4.31
Midterm I

2016 02 08

Chapter 5 – Hypothesis Testing

Simple example: flipping a coin and counting number of tails/heads to see if it is fair

Hypothesize coin is fair and collect data

relation between lung cancer and smoking? hypothesis no. follow smokers and non-smokers
for 5 or 10 years and see how many get cancer. collect data and see if they support hypothesis

null hypothesis is that drug has no effect at all. see if data is for or against hypothesis

Example 2. [Lady Tasting Tea - R.A. Fisher] he gave her 8 cups of tea, 4 TM (tea
added to milk) 4 MT (milk added to tea) in random order

the lady is told that there are 4 and 4, is asked to tell which 4 are TM and which 4 are MT.

Suppose that she correctly tells all 4 TM. Does this really mean that she has the ability to
tell which is which?

H0: she has no ability to tell which is which (null hypothesis; she is just guessing)
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under H0 there are in total (8
4
) = 70 different ways to randomly choose 4 and only one of

these ways is correct. Since she correctly tells which 4 are TM, we have two possibilities:

1. H0 is true, but an event with probability 1/70 occurred

2. H0 is false

Since the probability 1/70 is small, the observed data is against (1), or against H0, so we
reject H0

Now suppose that the lady gets 3 TM correct. The probability that, by purely guessing, the
lady can tell at least 3 TM correctly is

P (she can tell at least 3 TM ∣H0) =
1 + (4

3
)(4

1
)

70
= 17

70
= 0.243.

Why are we looking at at least 3, as opposed to exactly 3? One reason is that when we
have continuous things, the probability of a single value is zero, so we have no choice but
to consider some interval, and the interval of the event together with the less likely things
seems natural and works well.

We still have two possibilities:

1. H0 is true but an event with probability 0.243 occurred

2. H0 is false

Since 0.243 is not very small, the observed data doesn’t provide evidence against H0 so we
do not reject H0

In practice, a level α needs to be pre-fixed so that when the calculated probability is less
than α we consider that the data provides enough evidence against H0

We look at a null hypothesis, rather than the alternative to the null hypothesis, because we
do calculations with the null hypothesis. I think?

A summary of steps needed for a hypothesis testing problem:

1. Specify the “NULL Hypothesis” H0

2. Find a test statistic D

Remark 3. i) A test statistic is a function of the observed data, and is used to
measure how well the observed data agrees with H0 (In the previous example we
had D = 4 and then D = 3.)

ii) P (D ≥ d ∣H0) is the probability that, under H0, we observe the current event and
events that are even less likely to occur; it is called the p-value

3. Under H0, calculate P (D ≥ d ∣H0) hwere d is the observed value of D

4. Draw a conclusion by comparing the p-value with a pre-fixed threshold α:
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If the p-value is less than α then we reject the null hypothesis H0.

Hi WilsonIf the p-value is greater than α then we fail to reject H0.

It’s not terribly important, for practical purposes, what to do if the p-value is equal to
α. The value of α is artificial, and for experimental measurement, are you likely to get
equality? People often use 0.05. Sometimes 0.1 or 0.01.

If we had an alternative hypothesis, apparently it would be notated as Ha (a for alternative)

Remark 4. By setting α at a low level, such as 0.05 and 0.01, rejecting H0 means we have
strong evidence against H0. However, not rejecting H0 doesn’t mean that H0 is true; it only
means that the observed data doesn’t provide enough evidence to say H0 is false.

Example 5. To study if a coin is fair. The null hypothesis is H0 ∶ θ = 0.5, or θ−0.5 = 0. Out
of 100 tosses, we observed 52 heads: HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH-
HHHHHHHHHHHHHHHHHHHHH.

Let Y denote the number of heads, a random variable I presume. We take the test statistic
to be D = ∣Y − 50∣. This is the discrepancy between the actual data and the expected data.
Later we will discuss a more formal/systematic way to select test statistics.

The p-value is

P (D ≥ d ∣H0) = P (∣Y − 50∣ ≥ ∣52 − 50∣ ∣H0) = P (Y ≤ 48 or Y ≥ 52 ∣H0)

Under the null hypothesis H0, Y ∼ Binomial (100, θ = 0.5). Hence the above is

1 − P (Y = 49 or Y = 50 or Y = 51 ∣H0) ≈ 0.76 > 0.05.

Hence we fail to reject the null hypothesis H0.

People do not tend to work backwards, as in “what would I need to get as observed data in
order to reject H0 for this α”, then just take the data and calculate the p-value and compare
to α.

Example 6. [6-sided die] Null hypothesis: H0 ∶ θ = 1/6, where θ is P (#1 showing up).
(An alternative hypothesis would be Ha ∶ θ ≠ 1/6.) Suppose we observed 44 ones out of 180
rolls. Let Y be the number of ones rolled out of n rolls. Take the test statistic D = ∣Y − n

6
∣.

The p-value is then

P (D ≥ d ∣H0) = P (∣Y − n
6
∣ ≥ ∣44 − 180

6
∣ ∣H0) = P (Y ≤ 16 or Y ≥ 44 ∣H0) .

Under the null hypothesis, Y ∼ Binomial (180, θ). Thus the p-value is, after calculation,
approximately 0.007 < α = 0.05. Therefore we reject the null hypothesis.

2016 02 10
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Midterm
Return

2016 02 22We reject H0: we have strong evidence against H0. Suppose that we suspect that the number
one turns up more often than if the die were fair. Suppose again n = 180 and y = 44. Do we
have enough evidence to say that θ > 1/6?

H0 ∶ θ = 1/6 vs Ha = θ > 1/6

Consider for this purpose the test statistic D = max{Y − n/6,0}. Take d = max{y − n/6,0} =
14. We calculate the p-value to be

P (D ≥ d ∣H0) = P (max{Y − n/6,0} ≥ 14 ∣P (Y ≥ 44 ∣H0)) ≈ 0.005 < 0.05.

So we reject H0: we have strong evidence that θ > 1/6.

Suppose that instead of y = 44 we observed y = 35. Then the p-value is

P (D ≥ d ∣H0) = P (D ≥ 5 ∣H0) = P (Y ≥ 35 ∣H0) ≈ 0.18 > 0.05.

We fail to reject H0.

Consider H0 ∶ θ = 1/6 vs Ha ∶ θ > 1/6. We have D = Y − n/6, d = y − n/6. The p-value is
P (D ≥ d ∣H0) = P (Y − n/6 ≥ d ∣ θ = 1/6) where Y ∼ Binomial (n,1/6).

Consider H0 ∶ θ = 1/6 vs Ha ∶ θ < 1/6. Here D = Y − n/6 and d = y − n/6. The p-value is
P (D ≤ d ∣H0). Small values of D provide evidence against H0 in the direction of Ha.

Remark 7. Different test statistics may be used to solve the same hypothesis testing prob-
lem. In hypothesis testing, there are two types of errors:

Type I error: P (reject H0 ∣H0 is true)

Type II error: P (fail to reject H0 ∣H0 is false)

Usually, we would like to control type I error to a small level (say 0.05) and then try to
reduce Type II error, or increase

1 −Type II error ≡ P (reject H0 ∣H0 is false) = power.

Testing hypothesis under a normal model

We have Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) where µ and σ2 are unknown.

Hypothesis for µ: H0 ∶ µ = µ0 vs Ha ∶ µ ≠ µ0. Consider T = Ȳ −µ
s/√n ∼ t (n − 1). Take D = ∣T ∣ =

∣ Ȳ −µ
s/√n ∣.

Given y1, . . . , yn we have d = ∣ ȳ−µ
s/√n ∣. The p-value is

P (D ≥ d ∣H0) = P (∣T ∣ ≥ d ∣H0) = 1 − P (∣T ∣ ≤ d) = 1 − P (−d ≤ T ≤ f) .
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Consider H0 ∶ µ = µ0 vs Ha ∶ µ > µ0. Use the test statistic D = T . Large values of D provide
evidence against H0 in the direction of Ha. The p-value is P (D ≥ d ∣H0).

Consider H0 ∶ µ = µ0 vs Ha ∶ µ < µ0. Use the test statistic D = T . Small values of D provide
evidence against H0 in the direction of Ha. The p-value is P (D ≤ d ∣H0).

Example 8. [5.1.2] Let n = 10, ȳ = 0.9810, s = 0.0170. Take H0 ∶ µ = 1 vs Ha ∶ µ ≠ 1. Then

D = ∣T ∣ = ∣ Ȳ − µ
s/

√
n
∣

and

d = ∣ ȳ − µ0

s/
√
n
∣ = 3.534.

The p-value is

P (D ≥ d ∣H0) = P (∣T ∣ ≥ 3.534) = 0.0064 < 0.05

where T ∼ t (9). We reject H0.

Remark 9. Although there is strong evidence against H0, we can say nothing about the
magnitude of the deviation between the true value µ and 1.

A 95% CI for µ using T = Ȳ −µ
s/√n is

[ȳ − 2.2622s/
√

10, ȳ + 2.2622s/
√

10] = [0.969,0.993] .

Although the 95% CI doesn’t contain 1, the true value of µ may not be far away from 1.

2016 02 24Connection between hypothesis testing and CI using the same pivotal quantity.

First consider the normal distribution case. We have Y1, . . . , Yn
i.i.d.∼ N (µ,σ2). We have the

null hypothesis H0 ∶ µ = µ0 and the alternate hypothesis Ha ∶ µ ≠ µ0. Take test statistic

D ∣T ∣ = ∣ Ȳ −µ
s/√n ∣. The p-value is

P (D ≥ d ∣H0) = P (∣ Ȳ − µ0

S/
√
n
∣ ≥ ∣ ȳ − µ0

s/
√
n
∣) = P (∣T ∣ ≥ ∣ ȳ − µ0

s/
√
n
∣)

where t ∼ t (n − 1). So the p-value is at least 0.05 if and only if

P (∣T ∣ ≤ ∣ ȳ − µ0

s/
√
n
∣) ≤ 0.95⇔ ∣ ȳ − µ0

s/
√
n
∣ ≤ t0.975 (n − 1)

⇔ µ0 ∈ [ȳ − t0.975 (n − 1) s/
√
n, ȳ + t0.975 (n − 1) s/

√
n] .

Suppose [L (Y) , U (Y)] is a 95% CI for θ. For θ∗ ∈ [L (y) ,R (y)], we can test H0 ∶ θ = θ∗
vs Ha ∶ θ ≠ θ∗. It turns out the p-value of this problem is at least 0.05. For any θ∗ ∈
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[L (y) , U (y)] the p-value is less than 0.05. On the other hand if the p-value for H0 ∶ θ = θ∗
is

⎧⎪⎪⎨⎪⎪⎩

≥ 0.05 then θ∗ ∈ [L (y) , U (y)]
< 0.05 then θ∗ ∉ [L (y) , U (y)]

Section 5.3 Likelihood Ratio Test

The goal is to test H0 ∶ θ = θ0. We discussed, but did not prove, that θ̂MLE
P→ θ0 (and this

uses the implicit assumption that the maximizer is unique). Therefore, if θ0 is the true value,
then θ̂MLE should “be close” to θ0 and thus L(θ̂) should be close to L (θ0). (Note L is the
likelihood function.) That is,

R (θ0) =
L (θ0)
L(θ̂)

should be close to one (if n is large (where n is the number of sample data)).

So small values of R (θ0) provides evidence against H0. To calculate the p-value, we need
the distribution of R (θ) under H0.

Theorem 10. If Y1, . . . , Yn
i.i.d.∼ f (y; θ) and θ is a scalar, then

Λ (θ) = −2 log (R (θ)) = −2 log(L (θ)
L(θ̂)

) app.∼ χ2 (1)

as n→∞. (This appears to be a definition of Λ.) Note Λ (θ) is called the likelihood ratio.

Under the null hypothesis H0 ∶ θ = θ0, Λ (θ0) ∼ χ2 (1) as n →∞. Since small values of R (θ)
corresponds to large values of Λ (θ), large values of Λ (θ0) provides evidence against H0. The
p-value is P (Λ (θ0) ≥ λ (θ0) ∣H0) . Note that λ is the observed value of Λ.

Example 11. [5.3.2] We have some things and we want to measure their lifetime or

something. Anyway, we end up with Y1, . . . , Yn
i.i.d.∼ Exp (θ). The observed data is n = 20

and ∑ni=1 yi = 38524. Take the null hypothesis H0 ∶ θ = 2000, and the alternate hypothesis
Ha ∶ θ ≠ 2000. We have/known/claim(?)

f (y; θ) = 1

θ
e−y/θ,

for θ > 0, y > 0. The likelihood function is

L (θ) =
n

∏
i=1

f (Yi; θ) .
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Skipping some computation, we end up with θ̂ = Ȳ . The likelihood ratio statistic therefore
is

Λ (θ) = 2 log(L (θ)
L(θ̂)

)

= 2 log (L(θ̂)) − 2 log (L (θ))

= 2n(log (θ) + Ȳ
θ
− log(θ̂) − Ȳ

θ̂
)

= 2n(log ( θ
Ȳ

) + Ȳ
θ
− 1) .

The p-value is

P (Λ (θ) ≥ λ (θ) ∣H0) = P (Λ (θ0)
´¹¹¹¹¸¹¹¹¹¶
∼χ2(1)

≥ 0.028) ≈ 0.87 > 0.05.

So we fail to reject H0.

Example 12. [5.2.3] Suppose we have Y1, . . . , Yn
i.i.d.∼ N (µ,σ2), where µ is unknown but

σ2 is known. Consider H0 ∶ µ = µ0 vs Ha ∶ µ ≠ µ0. Take the test statistic to be

D = ∣ Ȳ − µ
σ/

√
n
∣ = ∣Z ∣

where Z ∼ N (0,1). We have

F (y;µ) = 1√
2πσ

e−
(y−µ)2

2σ2

and hence

L (µ) =
n

∏
i=1

f (Yi;µ) =
1

(
√

2πσ)n
e−
∑
n
i=1(Yi−µ)

2

2σ2 .

This means

l (µ) = log (L (µ)) = c − ∑
n
i=1 (Yi − µ)

2

2σ2
.

Some computation not included here goes to show that µ̂ = Ȳ . Note that

n

∑
i=1

(Yiµ)2 =
n

∑
i=1

(Yi − Ȳ + Ȳ − µ)2 = ⋯ =
n

∑
i=1

(Yi − Ȳ )2 + n (Ȳ − µ)2
.
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Now we see

Λ (µ) = −2l(µ̂) − 2l (µ)

= 1

σ2
(
n

∑
i=1

(Yi − µ)2 −
n

∑
i=1

(Yi − Ȳ )2)

= ...?

= n

σ2
(Ȳ − µ)2

= ( Ȳ − µ
σ/

√
n
)

2

∼ χ2 (1) .

The p-value is

P (D ≥ d ∣H0) = P (∣ Ȳ − µ0

σ/
√
n

∣ ≥ d) = P
⎛
⎝
( Ȳ − µ0

σ/
√
n

)
2

≥ d2
⎞
⎠
.

Now we generalize to having more than one parameter. Suppose we have Y1, . . . , Yn
i.i.d.∼

f (y;θ), where θk×1 ∈ Ω and dim (Ω) = k. Let Ω0 ⊂ Ω with dim (Ω0) = r < k. Now we want to
test H0 ∶ θ ∈ Ω0.

Example 13. For the normal distribution N (µ,σ2) we have θ = (µ,σ2). We have

Ω = {(µ,σ2) ; µ ∈ R, σ > 0} .

We see dim (Ω) = 2. To have null hypothesis H0 ∶ µ = µ0 we set Ω0 = {(µ,σ2) ; µ = µ0, σ > 0}.
To have null hypothesis H0 ∶ σ2 = σ2

0 we set Ω0 = {(µ,σ2) ; µ ∈ R, σ = σ0}.

Example 14. Suppose S1, . . . ,Xn
i.i.d.∼ N (µ1, σ2

1) and Y1, . . . , Ym
i.i.d.∼ N (µ2, σ2

2). Let θ =
(µ1, µ2, σ2

1, σ
2
2), so dim (Ω) = 4. To take null hypothesis H0 ∶ µ1 = µ2, we take Ω0 =

{(µ1, µ2, σ2
1, σ

2
2) ; µ1 = µ2 ∈ R, σ1 > 0, σ2 > 0}, so dim (Ω0) = 3.

2016 02 29The likelihood-ratio statistic is

Λ = −2 log(L(θ̂0)
L(θ̂)

)

where

θ̂0 = arg max
θ∈Ω0

L (θ)

θ̂ = arg max
θ∈Ω

L (θ)

and recall the likelihood function is

L (θ) =
n

∏
i=1

f (y;θ) .
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Theorem 15. [Wilks’ Theorem] Under H0, Λ
app∼ χ2(k − r) as n→∞.

The p-value for the above test is P (Λ ≥ λ ∣H0) = P (W ≥ λ) where W ∼ χ2(k − r).

Example 16. [5.4.4] Suppose Y1, . . . , Yn
i.i.d.∼ N (µ,σ2) where µ and σ2 are unknown. Take

the null hypothesis to be H0 ∶ σ2 = σ2
0. The parameter space is Ω = {(µ,σ2) ; µ ∈ R, σ > 0},

and Ω0 = {(µ,σ2); µ ∈ R}. The likelihood function is

L (µ,σ2) =
n

∏
i=1

f (yi;µ,σ2) = ( 1√
2πσ

)
n

exp(−∑
n
i=1 (yi − µ)

2

2σ2
) .

So

l (µ,σ2) = log (L (µ,σ2)) = −n logσ − ∑
n
i=1 (yi − µ)

2

2σ2
+ c.

One calculates that θ̂ = (µ̂, σ̂2) where µ̂ = ȳ and σ̂2 = 1
n ∑

n
i=1 (yi − ȳ)

2
.

Something about θ̂? = µ̂0 = ȳ???

Now calculate

Λ = −2 log(L(θ̂0)
L(θ̂)

)

= 2l(θ̂) − 2l(θ̂0)

= −2n log(σ̂) − ∑
n
i=1(yi − µ̂)2

σ̂2
+ 2n log(σ0) +

∑ni=1(yi − µ̂0)2

σ2
0

= −n log( σ̂
2

σ2
0

) +
n

∑
i=1

(yi − ȳ)2 ( 1

σ2
0

− 1

σ̂2
)

= −n log( σ̂
2

σ2
0

) + n( σ̂
2

σ2
0

− 1) .

Definitely must be familiar with and able to do these types of calculations for test.

This finishes chapter 5, though we will revisit likelihood ratio test in chapter 7, looking at
applications of Wilks’ Theorem.

Chapter 6 – Gaussian Response Model

We always want to model exactly one random variable, denoted Y . We assume it follows
some sort of distribution, and study the consequences. In practice, many variables can be
explained with other variables.

The goal is to use X to explain the distribution of Y . We assume Y ∼ N (µ,σ2) where µ
and σ are unknown constants. In this chapter, we allow µ and σ to depend on other random
variables or factors.
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We will assume that, given Xi = xi, Yi ∼ N(µ(xi), σ2(xi)).

Y : “response variable” or ”outcome”
X: “explanatory variables” or ”covariates”

If X is continuous, then we won’t see these lines, we will see more like:

Example 17. [6.1.3 with some exaggeration] Consider

We see that variance does not depend on xi but mean does. So Yi ∼ N (µ(xi), σ2). Looking at
the curve we fitted, it seems reasonable to assume it is quadratic, so µ(x) = β0 + β1x + β2x2.
The unknown parameters are β0, β1, β2, σ2; these need to be estimated from the observed
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data.

It is common to assume (and we will, for this course) that µ(x) = β0 + β1x1 +⋯+ βkxk (here
x is a k-dimensional vector of covariates) and σ2(x) ≡ σ2.

Under these assumptions, the Gaussian response model is also called “linear regression
model”. This assumption is partly made by convention. It can also be made because most
often the quantity of interest are the β’s. The variance is less of interest.

Remark 18. The term “linear regression” means linear in the regression coefficients β0, . . . , βk
but not necessarily in x1, . . . , xk.

Example 19. If we have Yi ∼ N(µ(xi), σ2) where µ(x) = β0 +β1x1 +β2x2
2 +β3ex2 +β4 log(x3)

then it is still linear.

Another commonly used way to write the linear regression model is Yi = µ(xi) + εi where

εi
i.i.d.∼ N(0, σ2).

Special Case: Linear regression with no covariates. We have Y1, . . . , Yn
i.i.d.∼ N(µ,σ2), or

equivalently, Yi = µ + εi, εi
i.i.d.∼ N(0, σ2). In this case, µ(x) ≡ µ = β0 is just a constant.

The MLE of µ (or β0) is β̂0 = ȳ. By taking the logarithm,

µ̂ = arg max
µ

n

∏
i=1

1√
2πσ

exp(−
∑2
yi−µ

2σ2
)

= arg max
µ

[−
n

∑
i=1

log (
√

2πσ) − 1

2σ2

n

∑
i=1

(yi − µ)2]

= arg min
µ

n

∑
i=1

(yi − µ)2
.

So µ̂ is also the solution to a “least square” problem.

2016 03 02
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Simple Linear Regression

We will look at the model Yi = µ(xi) + εi, where µ(xi) = α + βxi and εi
i.i.d.∼ N(0, σ2). We

have three unknown quantities α, β, and σ.

The MLE of α, β, and σ is

L(α,β, σ2) =
n

∏
i=1

f(yi;α,β, σ2) =
n

∏
i=1

1√
2πσ

exp(−(yi − α − βxi)2

2σ2
) .

The log likelihood function

l(α,β, σ2) = c − n log (σ) − 1

2σ2

n

∑
i=1

(yi − α − βxi).

Taking derivatives we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂l

∂α
= 1

σ2∑
n

i=1
(yi − α − βxi) = 0

∂l

∂β
= 1

σ2∑
n

i=1
(yi − α − βxi)xi = 0

∂l

∂σ
= −n

σ
+ 1

σ3∑
n

i=1
(yi − α − βxi)2 = 0.

Solving yields

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α̂ = ȳ − β̂x̄

β̂ =
Sx,y
Sx,x

σ̂2 = 1
n∑

n

i=1
(yi − α̂ − β̂xi)2 = 1

n(Sy,y − β̂Sx,y).

(Recall that

Sx,y =
n

∑
i=1

(yi − ȳ)2

was defined long ago.) One can calculate that

Sx,x =
n

∑
i=1

(xi − x̄)xi

by factoring out on copy of (xi − x̄)2 and getting a difference of two sums.

Remark 20. Note (α̂, β̂) actually minimizes

n

∑
i=1

(yi − α − βxi).
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Also note that in the following, we will use

S2
e

1

n − 2

n

∑
i=1

(yi − α̂ − β̂xi)2

as an estimator of σ2 instead of using the MLE σ̂2 because E[S2
e ] = σ2.

Confidence Interval for β

Interpretation of β: since E[Y ∣x] = α + βx, β can be interpreted as the average increase in
y for one unit increase in x.

If β = 0, then x has no effect on y, assuming the linear regression model is correct.

Our goal is to find the distribution of β̂. Now

β̂ =
Sx,y
Sx,x

=
n

∑
i=1

xi − x̄
Sx,x

yi ≡
n

∑
i=1

aiyi.

Hence β̂ is a linear combination of the yi and thus β̂ ∼ N( , ). Well,

E(β̂) =
n

∑
i=1

aiE(Yi) =
n

∑
i=1

ai(α + βxi) = α
n

∑
i=1

ai

´¸¶
=0

+ β
n

∑
i=1

aixi = β
n

∑
i=1

(xi − x̄)xi
Sx,x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= β.

So β̂ ∼ N(β, ). Now

V ar(β̂) =
n

∑
i=1

aiV ar(Yi) =
n

∑
i=1

a2
iσ

2 = σ2
n

∑
i=1

(xi − x̄)2

S2
x,x

= σ2

Sx,x
.

Hence β̂ ∼ N(β,σ2/Sx,x).

The following fact will be provided on test/final if it is needed; we will not discuss proof:

(n − 2)S2
e

σ2
∼ χ2(n − 2) (n − 1)S2

σ2
∼ χ2(n − 1).
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β̂�S2
e Ô⇒

β̂ − β
√

σ2

Sx,x

∼ N(0,1)

√
(n − 2)S2

e

(n − 2)σ2

= β̂ − β
Se/

√
Sx,x

∼ t(n − 2).

Therefore a 95% confidence interval for β is

⎡⎢⎢⎢⎢⎣
β̂ − t(n−2)

0.975

Se√
Sx,x

, β̂ + t(n−2)
0.975

Se√
Sx,x

⎤⎥⎥⎥⎥⎦
.

Confidence interval for µ(x) = α + βx at a given x

Note µ(x) is the population mean of Y for given x. The MLE of µ(x) is, by the invariance
property,

µ̂(x) = α̂ + β̂x = Ȳ − β̂x̄ + β̂x = Ȳ + β̂(x − x̄) = Ȳ +
Sx,y
Sx,x

(x − x̄) = 1

n

n

∑
i=1

yi +
n

∑
i=1

xi − x̄
Sx,x

(x − x̄)yi

=
n

∑
i=1

( 1

n
+ (xi − x̄)(xi − x̄)

Sx,x
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ai

yi =
n

∑
i=1

aiyi.

Now

E[µ̂(x)] =
n

∑
i=1

aiE(Yi) =
n

∑
i=1

ai(α + βxi) = α
n

∑
i=1

ai

´¸¶
=1

+ β
n

∑
i=1

aixi = α + βx

since
n

∑
i=1

aixi =
n

∑
i=1

(xi
n
+ (xi − x̄)xi(x − x̄)

Sx,x
) = x̄ + (x − x̄) = x.

For variance, we have

V ar(µ̂(x)) =
n

∑
i=1

a2
iV ar(Yi) = σ2

n

∑
i=1

a2
i = σ2

n

∑
i=1

( 1

n2
+ 2

n

(xi − x̄)(x − x̄)
Sx,x

+ (xi − x̄)2(x − x̄)2

S2
x,x

)

= σ2 ( 1

n
+ 0 + (x − x̄)2

Sx,x
) .

So

µ̂(x) ∼ N (µ(x), σ2 ( 1

n
+ (x − x̄)2

Sx,x
)) .
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This, together with

(n − 2)S2
e

σ2
∼ χ2(n − 2) and χ2(n − 2)

imply that

µ̂(x) − µ(x)
√
σ2 ( 1

n +
(x−x̄)2
Sx,x

)
√

(n − 2)S2
e

(n − 2)σ2

= µ̂(x) − µ(x)

Se
√

1
n +

(x−x̄)2
Sx,x

∼ t(n − 2).

So a 95% confidence interval for µ(x) is

⎡⎢⎢⎢⎢⎣
µ̂(x) − t0.975(n − 2)Se

¿
ÁÁÀ 1

n
+ (x − x̄)2

Sx,x
, µ̂(x) + t0.975(n − 2)Se

¿
ÁÁÀ 1

n
+ (x − x̄)2

Sx,x

⎤⎥⎥⎥⎥⎦

Remark 21. The length of the 95% confidence interval for µ(x) is 2t0.975(n−2)Se
√

1
n +

(x−x̄)2
Sx,x

,

and is the smallest when x = x̄. Graphically,

By taking x = 0, we get a 95% confidence interval for α:

⎡⎢⎢⎢⎢⎣
α̂ − t0.975(n − 2)Se

¿
ÁÁÀ 1

n
+ x̄2

Sx,x
, . . .

⎤⎥⎥⎥⎥⎦
.

Inference on the intercept of α is usually of less interest than inference on β.

2016 03 07

6.3.3 — Prediction Interval for an Individual Response

substitute
We have Yi = µ(xi) + εi where εi ∼ G(0, σ) and µ(xi) = α + βxi.
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Covariates x, responses Y = µ(x) + ε, ε ∼ G(0, σ) and is independent of Y1, . . . , Yn. Our best
guess for a point prediction of Y is µ̂(x).

The error is

Y − µ̂(x) = Y − µ(x) + µ(x) − µ̂(x) = ε + (µ(x) − µ̂(x)).

So we understand the error as the sum of the two possible sources of error.

Since both ε and µ(x)−µ̂(x) follow Gaussian distribution, and they are independent, Y −µ̂(x)
follows a Gaussian distribution.

Now we calculate the expectation and variance, to find exactly which Gaussian distribution
we have:

E(Y − µ̂(x)) = E(ε) +E(µ(x) − µ̂(x)) = 0,

V ar(Y − µ̂(x)) = σ2 + σ2 ( 1

n
+ (x − x̄)2

Sx,x
) = σ2 (1 + 1

n
+ (x − x̄)2

Sx,x
) .

Thus

Y − µ̂(x) ∼ G
⎛
⎝

0, σ

¿
ÁÁÀ1 + 1

n
+ (x − x̄)2

Sx,x

⎞
⎠
.

To construct a prediction interval for Y , we use the following pivotal quantity:

Y − µ̂(x)

Se
√

1 + 1
n +

(x−x̄)2
Sx,x

=

Y − µ̂(x)

σ
√

1 + 1
n +

(x−x̄)2
Sx,x√

(n − 2)S2
e

(n − 2)σ2

∼ t(n − 2).

Therefore a 100p% interval for Y is

⎡⎢⎢⎢⎢⎣
µ̂(x) − bSe

¿
ÁÁÀ1 + 1

n
+ (x − x̄)2

Sx,x
,⋯

⎤⎥⎥⎥⎥⎦
,

where P (−b ≤ T ≤ b) = p for T ∼ t(n − 2).

A comparison between CI for µ(x) and prediction interval for an individual response at x.
Recall that the MLE of µ(x) is µ̂(x) = α̂ + β̂(x) which has distribution

G
⎛
⎝
µ(x), σ

¿
ÁÁÀ1 + 1

n
+ (x − x̄)2

Sx,x

⎞
⎠
.

Therefore a 100p% CI for µ(x) is given by

⎡⎢⎢⎢⎢⎣
µ̂(x) − bSe

¿
ÁÁÀ 1

n
+ (x − x̄)2

Sx,x

⎤⎥⎥⎥⎥⎦
,
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where P (−b ≤ T ≤ b) = p for T ∼ t(n − 2).

Thus the prediction interval is always wider than the CI.
Reason: If our goal is to predict Y at x,
Since Y ∼ G(µ(x), σ)
If we know µ(x), then the variance of the error is V ar(Y ) = σ2. However, we don’t know
µ(x), and we only have µ̂(x) as its estimation. Using µ̂(x) to substitute µ(x) as a prediction
for Y introduces an extra error µ(x) − µ̂(x). The total error at predicting Y using µ̂(x) is
Y − µ̂(x) = (Y − µ(x)) + (µ(x) − µ̂(x)) and this error is quantified as

V ar(Y − µ̂(x)) = V ar(Y − µ(x)) + V ar(µ(x) − µ̂(x))

= σ2 + σ2 ( 1

n
+ (x − x̄)2

Sx,x
)

= σ2 (1 + 1

n
+ (x − x̄)2

Sx,x
) .

Therefore the prediction interval is wider than CI.

6.3.4 — Verifying the assumptions for the simple linear regression
model

There are two main assumptions made for Gaussian Linear Regression model.

i) The error terms εi
i.i.d.∼ G(0, σ) with a constant standard deviation σ.

ii) E(Yi) = µ(xi) is a linear combination of the covariates with unknown coefficients.

In practice, it is important to check both of the two assumptions. We mainly focus on
graphical ways of model checking.

Scatter plot of (x, y) is a useful tool.

Example 22. [1]
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E(Y ) seems to be a linear function of x and it is reasonable to assume µ(x) = α + βx, but
he assumption of constant variance may be violated, as the variance of Y increases as x
increases.

Example 23. [2]

Then E(Y ) seems to be a quadratic function of x, and it is reasonable to assume µ(x) =
β0 + β1x + β2x2.

Another type of scatter plot is the “residual plot”. The residual for subject i is ri = yi− µ̂(x).

For simple linear regression, ri = yi − α̂ − β̂xi. Note that

1

n

n

∑
i=1

ri =
1

n

n

∑
i=1

(yi − α̂ − β̂xi) = ȳ − α̂ − β̂x̄ = 0.

Plot the points (xi, ri). If our model is satisfactory, ri should behave roughly like a random
sample from G(0, σ).

(xi, ri) should lie more or less horizontally within a band around the line r = 0, That is,
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When we have multiple covariates, that is, µ(x) = β0 + β1x1 + ⋯ + βkxk, then we can plot
(µ̂(xi), ri).

Departure from the above pattern suggests problems (with?) the model.

Example 24. For example,

indicates that V ar(Yi) may not be a constant, but may depend on x.

Example 25.

indicates that µ(x) is not a linear function of x.

We can define standardized residual:

r∗i =
ri
Se

= yi − α̂ − β̂xi
Se

for i ∈ {1, . . . , n}, and make plots using r∗i instead of ri.

The patterns of the plots are unchanged, but the r∗i values tend to lie in the range (−3,3).
Reason: if the model is satisfactory, then the ri’s are roughly a random sample from G(0, σ)
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and Se is an estimate of σ. So 95% of r∗i values should be in (−2,2), 99.7% of 4∗i values
should be in (−3,3).

Remark 26. 1. QQ plot of ri or r∗i may be used to check the Gaussian distribution
assumption

2. Most plots in practice do not have clear patterns as in the examples. Reading these
plots is something of an art, and we should not over-read them.

2016 03 09
TA

Comparing two Poisson means

We have

Y11, . . . , Y1n1 ∼ Poi(µ1),
T21, . . . , Y2n2 ∼ Poi(µ2).

Our null hypothesis is µ1 = µ2. The likelihood function is

L =
n1

∏
i=1

µY1i1 e−µ1

y1i!

n2

∏
j=1

µ
Y2j
2 e−µ2

y2j!
.

The log likelihood function is found by taking the logarithm (and ignoring constants if you
want because they don’t change were the maximum occurs).

Under the null hypothesis H0 ∶ µ1 = µ2 = µ, we take the derivative with respect to µ to
maximize and find

µ̂ =
∑n1
i=1 Y1i +∑n2

j=1 Y2j

n1 + n2

.

Under H1 ∶ µ1 ≠ µ2, we must take the derivative with respect to both µ1 and µ2. Solving
yields

µ̂1 = y1,

µ̂2 = y2.
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And it went on for a bit...

2016 03 14Comparison using paired data

Often times experimental studies comparing difference in population means are conducted
using pairs of units. Say we have

Y1,1, Y1,2, . . . , Y1,n
i.i.d.∼ N(µ1, σ

2
1),

Y2,1, Y2,2, . . . , Y2,n
i.i.d.∼ N(µ2, σ

2
2).

Then Y1,i and Y2,i are not independent. So the previous method cannot be used. How do we
construct a 95% CI for µ1 − µ2?

We may assume that the pairs (Y1,i, Y2,i)
i.i.d.∼ Bivaraite Normal Distribution (which we have

not covered). It can be shown that

Y1,i − Y2,i
i.i.d.∼ N(µ1 − µ2, σ

2)
σ2 = V ar(Y1,i − Y2,i) = V ar (Yi,1) + V ar(Y2,i) − 2Cov(Y1,i, Y2,i).

It looks like σ2 depends on i, but it doesn’t actually in the end.

Therefore, if our interest is inference about µ1 − µ2, we can use the data

X1 ≡ Y1,1 − Y2,1, . . . ,Xn ≡ Y1,n − Y2,n.

We will have Xi
i.i.d.∼ N(µ1 − µ2, σ2). This reduces the problem to a one-sample problem.

When Y1,i and Y2,i are positively correlated, using the paired data increases the precision of
estimating µ1 − µ2. This is because

V ar(Y 1 − Y 2) = V ar(Y 1) + V ar(Y 2) − 2Cov(Y 1, Y 2) ≤ V ar(Y 1) + V ar(Y 2).

6.4 — More general Gaussian response models

Our response Yi now depends on more covariates

Yi = β0 + β1xi,1 +⋯ + βpci,p + εi,

where εi
i.i.d.∼ N(0, σ2). We can write this in vector/matrix notations as

Yi = xTi β + εi.

Here,

xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
xi,1
⋮
xi,p

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

⋮
βp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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With

Y =
⎡⎢⎢⎢⎢⎢⎣

Y1

⋮
Yn

⎤⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎣

xT1
⋮

xTn

⎤⎥⎥⎥⎥⎥⎦
,

we have Y =Xβ + ε, where ε ∼ MVN (0, σ2I).

The MLE for β and σ2 is

L(β, σ2) =
n

∏
i=1

1√
2πσ

exp(−
(Yi − xTi β)

2

2σ2
) .

We can take the logarithm to get the log likelihood function:

l(β, σ2) = c − n log (σ) − (Y −Xβ)T (Y −Xβ)
2σ2

.

Taking derivatives and setting them equal to zero, we would find that

β̂ = (XTX)−1XTY

σ̂2 = 1

n
(Y −Xβ)T (Y −Xβ) ,

assuming XTX is invertible.

Define

S2
e =

nσ̂2

n − (p + 1)
.

Note that this is an unbiased estimator on σ2, as E(S2
e) = σ2.

What is the distribution of β̂? Well,

E(β̂) = (XTX)−1XTE(Y) = (XTX)−1XTXβ = β.

Note that it is a fact that

V ar(AY) = AV ar(Y)AT .

In particular, V ar(cY) = c2V ar(Y). Actually, maybe we should define variance and expec-
tation of vectors. That might be helpful. They are defined as

V ar(Y) = E ((Y −E (Y)) (Y −E (Y))T ) ,

E(Y) =
⎡⎢⎢⎢⎢⎢⎣

E(Y1)
⋮

E(Yn)

⎤⎥⎥⎥⎥⎥⎦
.

Therefore we can calculate

V ar(β̂) = (XTX)−1XTV ar(Y)X(XTX)−1 = σ2(XTX)−1.

Thus we have

β̂ ∼ MVN (β, σ2(XTX)−1) .
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Remark 27. [p = 1 case] This is just the case we already saw in previous subsections. We
just have

[β̂0

β̂1
] ∼ BVN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

[β0

β1
] , σ2

⎛
⎜
⎝
[ 1 ⋯ 1
x1 ⋯ xn

]
⎡⎢⎢⎢⎢⎢⎣

1 x1

⋮ ⋮
1 xn

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

∑ni=1
x2
i
−(nx)2

⎡⎢⎢⎢⎢⎢⎣

∑ni=1 x
2
i −bx

−nx n

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Go check that

β̂1 ∼ N (β1,
σ2

Sxx
) .

It can be shown that

W = (n − (p + 1))S2
e

σ2
∼ χ2(n − (p + 1))

and β�W . Based on these results we have

β̂j − βj
Se

√
C(j+1),(j+1)

∼ t(n − (p + 1)),

where C(j+1),(j+1) is the (j + 1), (j + 1)th entry of (XTX)−1.

Using this, we can give a 95% CI for βj:

[β̂j ± t0.975(n + (p − 1))Se
√
C(j+1),(j+1)] .

Midterm II

2016 03 16

Chapter 7 - Tests and Inference Problems Based on

Multinomial Distribution

7.1 - General Theory

You will not be tested on matrix notation on the final exam. There is no new theory in this
chapter, supposedly.
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Suppose that our data is Y = (Y1, . . . , Yn) ∼ Multinomial (n;θ) with probability mass function
(discrete version of pdf (probability density function))

P (Y1 = y1, . . . , Yk = yk; θ1, . . . , θk) = f(y;θ) = n!

y1!⋯yk!
θy11 ⋯θ

yk
k ,

where yj = 0, . . . , n and ∑ni=1 yj = n.

Suppose now we suspect that θ depends on a lower dimensional parameter α and wish to
test H0 ∶ θj = θj(α) for j = 1, . . . , k where dim(α) = p < k − 1. We use the likelihood ratio
statistic to test H0. The likelihood function is L (θ) = cθy11 ⋯θ

yk
k . Maximizing L (θ) subject

to ∑nk=1 θj = 1 yields the MLE of θj:

θ̂j =
yj
n
, j = 1, . . . , k.

Now under H0,

L (α) = c
k

∏
i=1

θj(α)yj .

Maximizing L (α) leads to the MLE α̂, and therefore the MLE of θj under H0 is θj(α̂).

The likelihood ratio statistic is

Λ = −2 log(L(θ(α̂))
L(θ̂)

)

= 2 log (L(θ̂)) − 2 log (L(θ(α̂)))

= 2(
k

∑
j=1

Yj log(θ̂j) −
k

∑
j=1

Yj log(θj(α̂)))

= 2
k

∑
j=1

Yj log(
Yj
Ej

) ,

where Ej = nθj(α̂). Note Ej can be viewed as the “expected frequency” of the jth outcome

under H0. Under H0, Λ
approximately∼ χ2 (k + 1 − p). Then the p-value is

P (Λ ≥ λ ∣H0) ≈ P (W ≥ λ),

where W ∼ χ2(k − 1 − p).

Remark 28. 1. log ( YjEj ) quantifies the difference between the observed data and the

“expected data” (if H0 is true). So if Λ is very large, H0 is unlikely to be true.

2. An alternative test statistic is the Pearson goodness-of-fit statistic:

D =
k

∑
j=1

(Yj −Ej)2

Ej
.

It can be shown that D
app∼ χ2(k − 1 − p) under H0 when n is large.
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7.2 - Examples on Testing Goodness-of-fit

Suppose Y = (Y1, Y2, Y3) ∼ Multinomial(n; θ1, θ2, θ3). The observed data is n = 100, y1 = 17,
y2 = 46, y3 = 37. We want to test that H0 ∶ θ1 = α2, θ2 = 2α(1 − α), θ3 = (1 − α)2. Under H0,

L(α) = Cθ1(α)y1θ2(α)y2θ3(α)y3 = Cα80(1 − α)120.

Maximizing L(α) yields α̂ = 0.40. Therefore e1 = nθ1(α̂) = nα̂2 = 16, e2 = ⋯ = 48, e3 = ⋯ = 36.
Therefore

λ = s
3

∑
j=1

yj log(
yj
ej

) = 0.17.

The p-value is

P (Λ ≥ 0.17 ∣H0) ≈ P (W ≥ 0.17) = 0.68 > 0.05

where W ∼ χ2(1). So we fail to reject H0.

Example 29. [7.2.2 - Goodness-of-fit of an exponential model] Suppose that an
Exponential distribution is assumed for a random variable T and a random sample t1, . . . , tn
is collected. We wish to test H0 ∶ f(t, α) = 1

αe
− t
α .

We can check graphically whether or not the data follows the model we want to assume.

To test the null hypothesis H0, we partition the support of T into k intervals:

[0, x1), [x1, x2), . . . , [xk−1,∞).

Let Yj ≡ # of subjects which fall into the jth interval, and let pj ≡ P (T ∈ the jth interval).
Then Y = (Y1, . . . , Yk) ∼ Multinomial(n;p1, . . . , pk). Under H0,

Pj = Pj(α) = ∫
xj

xj−1

1

α
e−

t
α dt.

Now suppose n = 100, and we partition [0,∞) into 7 intervals:

[0,100), [100,200), [200,300), [300,400), [400,600), [600,800), [800,∞).

And y1 = 29, y2 = 22, y3 = 12, y4 = 10, y5 = 10, y6 = 9, y7 = 8.

There were some calculations and then we got a p-value of 0.68.

2016 03 21
Midterm
ReturnWe have Y = (Y1, . . . , Yk) ∼ Multinomial(n;θ). Our null hypothesis is H0 ∶ θj = θj(α),

j ∈ {1, . . . , k}, dim(α) < k − 1. In previous lecture we saw the likelihood ratio is

Λ = 2
k

∑
j=1

Yj log(
Yj
Ej

)

where Ej = nθj(α̂).
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7.3 – Two-Way Tables

7.3.1 – Testing for Independence of Two Variables

We wish to test whether two categorical Y random variables A and B are independent.

Example 30. A =smoking, B =lung cancer

We will consider the case where A and B take on a fairly small number of possible values.
Suppose that, for A, there are a mutually exclusive types A1, . . . ,Aa. Suppose that, for B,
there are b mutually exclusive types B1, . . . ,Bb. Assume a, b ≥ 2. Let θi,j be the probability
that a randomly selected subject is of type (Ai,Bj), i.e. θi,j = P (Ai ∩Bj).

B1 B2 ⋯ Bb

A1 θ1,1 θ1,2 ⋯ θ1,b

A2 θ2,1 θ2,2 ⋯ θ2,b

⋮ ⋮ ⋮ ⋱ ⋮
Aa θa,1 θa,2 ⋯ θa,b

For a random sample with size n, let Yi,j be the number of units that are of type (Ai,Bj).
Then Y = (Y1,1, Y1,2, . . . , Yi,j, . . . , Ya,b) ∼ Multinomial(n; θ1,1, θ1,2, . . . , θi,j, . . . , θa,b), where

a

∑
i=1

b

∑
j=1

Yi,j = n,
a

∑
i=1

b

∑
j=1

θi,j = 1.

Let

αi = P (a subject is of type Ai) =
b

∑
j=1

θi,j,

βi = P (a subject is of type Bj) =
a

∑
i=1

θi,j.

B1 B2 ⋯ Bb total

A1 θ1,1 θ1,2 ⋯ θ1,b α1

A2 θ2,1 θ2,2 ⋯ θ2,b α2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aa θa,1 θa,2 ⋯ θa,b αa

total β1 β2 ⋯ βb 1

The independence of A and B is equivalent to θi,j = αiβj for all i, j. Thus H0 ∶ θi,j = αiβj,
i ∈ {1, . . . , a} , j ∈ {1, . . . , b}.

The likelihood ratio is

Λ = 2
a

∑
i=1

b

∑
j=1

Yi,j log(
Yi,j
Ei,j

) ,
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where Ei,j = nθi,j(α̂, β̂). Under the null hypothesis H0 we can compute

L(α,β) = C
a

∏
i=1

b

∏
j=1

θi,j(α̂, β̂)Yi,j = C (
a

∏
i=1

α
Yi,+
i )(

b

∏
j=1

β
Y+,j
j )

where

Yi,+ =
b

∑
j=1

Yi,j, Y+,j =
a

∑
i=1

Yi,j.

So we want to maximize L(α̂, β̂) subject to ∑ai=1αi = 1 and ∑bj=1 βj = 1. This will give

α̂i =
Yi,+
n
, β̂j =

Y+,j
n
.

B1 B2 ⋯ Bb total

A1 Y1,1 Y1,2 ⋯ Y1,b Y1,+
A2 Y2,1 Y2,2 ⋯ Y2,b Y2,+
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aa Ya,1 Ya,2 ⋯ Ya,b Ya,+

total Y+,1 Y+,2 ⋯ Y+,b n

So

Ei,j = nθi,j(α̂, β̂) = nα̂iβ̂j = n
Yi,+
n

Y+,j
n

=
Yi,+Y+,j
n

.

Under H0, Λ ∼ χ2((a − 1)(b − 1)). The p-value is P (Λ ≥ λ ∣H0).

2016 03 23

7.3.2 Testing for Homogeneity of Multiple Groups

Suppose the whole population is divided into a sub-populations A1, . . . ,Aa and each unit in
the population is one of the b types B1, . . . ,Bb.

Remark 31. Independence and Homogeneity are mathematically the same procedure, but
the two problems and their interpretations are different. The course notes don’t really
distinguish between the two.

Let θi,j ≡ P (a unit from sub-population i is of type j) = P (Bj ∣Ai). Let θi = (θi,1, . . . , θi,2, . . . , θi,b).
We wish to test the null hypothesis H0 ∶ θ1 = θ2 = ⋯ = θa ≡ θ. That is, the proportions of
units of types B1,B2, . . . ,Bb are the same for each sub-population.

Example 32. We wish to test whether the proportions of different age groups are the same
across different countries.
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For each group i, suppose we collect ni units. Among them there are Yi,1, Yi,2, . . . , Yi,b
units that are of types B1,B2, . . . ,Bb respectively. Let Yi = (Yi,1, . . . , Yi,b). Therefore
Yi ∼ Multinomial(ni; θi,1, . . . , θi,b) where

b

∑
j=1

Yi,j = ni,
b

∑
j=1

θi,j = 1.

B1 B2 ⋯ Bb total

A1 θ1,1 θ1,2 ⋯ θ1,b 1
A2 θ2,1 θ2,2 ⋯ θ2,b 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aa θa,1 θa,2 ⋯ θa,b 1

B1 B2 ⋯ Bb total

A1 Y1,1 Y1,2 ⋯ Y1,b n1

A2 Y2,1 Y2,2 ⋯ Y2,b n2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aa Ya,1 Ya,2 ⋯ Ya,b nb

(Note that in the following, when we maximize to get MLEs, we have the constraints that
some things sum to one and such.) We now have a Multinomial distributions, one for each
sub-population. The joint likelihood function is

L(θ1, . . . ,θa) =
a

∏
i=1

( ni!

Yi,1!⋯Yi,b!

b

∏
j=1

θ
Yi,j
i,j ) = c ⋅

a

∏
i=1

b

∏
j=1

θ
Yi,j
i,j .

One can calculate that the MLE is

θ̂i,j =
Yi,j
ni
.

Under the null hypothesis H0

L(θ) = c ⋅
a

∏
i=1

b

∏
j=1

θ
Yi,j
j =

b

∏
j=1

θ
Y+,j
j ,

and hence we can calculate the MLE to be

θ̂j =
Y+,j

∑bj=1 Y+,j
=
Y+,j
n
.

It can be shown that (exercise)

Λ = 2
a

∑
i=1

b

∑
j=1

Yi,j log(
Yi,j
Ei,j

)

where

Ei,j = ni
Y+,j
n
.
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So under H0, Λ
app∼ χ2((a − 1)(b − 1)). The p-value is P (Λ ≥ λ ∣H0) = P (W ≥ λ) where

W ∼ χ2((a − 1)(b − 1)).

The final result is the same as the previous thing we did, but the steps to get there were
different.

(The previous table can actually be:

B1 B2 ⋯ Bb total

A1 Y1,1 Y1,2 ⋯ Y1,b n1 = Y1,+
A2 Y2,1 Y2,2 ⋯ Y2,b n2 = Y2,+
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aa Ya,1 Ya,2 ⋯ Ya,b nb = Ya,+

total Y+,1 Y+,2 ⋯ Y+,b n

)

Remark 33. 1. H0 ∶ θ1 = ⋯ = θa means that θi doesn’t depend on i; that is, P (Bj ∣Ai) =
P (Bj), which essentially means independence.

2. For both testing problems, we can follow the same procedure to calculate the p-value:

i) lay out data in the two-way table;

ii) “expected frequencies” ei,j under H0:

ei,j =
Yi,+Y+,j
n

(I don’t think this is a definition of H0.);

iii)

λ = 2
a

∑
i=1

b

∑
j=1

yi,j log(
yi,j
ei,j

) ;

iv) the p-value is approximately P (W ≥ λ) where W ∼ χ2((a − 1)(b − 1)).

Example 34. [Example 7.3.1] n = 300

O A B AB total
Rh+ 82 89 54 19 244
Rh- 13 27 7 9 56
total 95 116 61 28 300

We can calculate

ei,j =
yi,+y+,j
n

, e.g. e1,1 ≈ 77.3

λ = 2
2

∑
i=1

4

∑
j=1

yi,j log(
yi,j
ei,j

) = 8.52

p-value = P (Λ ≥ 8.52 ∣H0) ≈ P (W ≥ 8.52) = 0.036 < 0.05
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where W ∼ χ2(3).

2016 03 28

Review of Course

Almost everything is build on likelihood.

Problem with point estimator is that two different data sets give different estimates. Natu-
rally leads to interval estimator; deals with uncertainty.

There are different estimators other than maximum likelihood estimators, but MLE is the
most widely used due to it’s nice properties (it is consistent when the data set is large, it
has the least variation). We didn’t take about properties, just how to find/derive/check.

Only for nice/special distribution can we find exact pivotal quantities. For example, we can
actually do it for Gaussian.

More comments were said after this point, but I was unable to write them down and copy
the digram.

Then we did some problems/exercises from the course notes.

2016 03 30Some discussion/problems/something about chapter 7.

Chapter 8: Causal Relationships

It is difficult to formally define what a causal relationship is. One idealized definition is as
follows: If all other factors affecting Y are held constant and if the distribution of Y changes
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with the change of factor X, then we say X has causal effect on Y . Problem: in a study, we
don’t even know what all the factors are, so how can we hold them all constant?

Remark 35. It is relatively easy to study causal effect in experimental studies, but difficult
to study causal effect in experimental studies.

Example 36. [8.3.1] The data of applications and admissions to graduate studies in En-
gineering and Arts faculties in a university over the past five years are available.

# Applied # Admitted % Admitted
Engineering 1000 600 60% Men

200 150 75% Women
Arts 1000 400 40% Men

1000 800 44% Women
Total 2000 1000 50% Men

2000 950 47.5% Women

The above feature (men appearing to have better chances than women overall, even though
when you break it down this is clearly not the case) is called Simpson’s paradox.

Mathematically, we may have P (A ∣B1Ci) > P (A ∣B2Ci) for i ∈ {1, . . . , k} but P (A ∣B1) <
P (A ∣B2), because

P (A ∣B1) =
k

∑
i=1

P (A ∣B1Ci)P (Ci ∣B1),

P (A ∣B2) =
k

∑
i=1

P (A ∣B2Ci)P (Ci ∣B2).

Page 48 of 48


