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Lines in IR”

You've probably seen Lines deseribed v the form

slope (vise over run)

A
V=X +b

\ Y-intercept

We can rearronge the 2quation:

ey 0EMX -y D

! 2 3 4

And evenn write 1 in termy of the vector (95)

0=(m (5] +b



Planes in K

We take the 1dea of writing lines tn terms of vectors

and 9eneralize.

0=(m, m. -1)

Z
A\

AN

X

J
Z

+b corresponds to the plane

ot this point, wWe Wlfgh‘f‘

of Well lceep going past I'i8




(n-1)- dimensional  Hyperplomes tn I

Let aclR® and Bell. We say that the set of points xet”
that S‘o«ﬂ{xcy 0=oax =B (or equivalently, that ax =f) form
a hyperplane in 27

B behaves as an of€set of Sorts. [t tells us that the
hyperplane. given by a and B 1s “shifted” from the origin
G
by Tial, &

a.
, vecYor
scolor vy

v
A '\\

ax=0 ax=p



Duality

Every Wwyperplane H corresponds to some pair (a,f)e IR"%IR,
ond every paiv (a,B) xR corresponds to a hyperplane (n
that you can find the slope and offset of any hyperplane,
ond that given o Slope and offret, you can construct

o hyperplane with that slope and offset.

I fome Sense, Sets of points ond (Slope, offret) poivs

are equally 9ood ways to represent o hyperplane.

{’Xeltz“ cax=R} € (a,p)




Half- cpaces

Hyperplanes tn ™ split the vector space ™ 1 half.

Defn. X is o closed half-space i¥ A={xelk":ax < p}

for fome a€elkr™ ond Belp.




Polyhedra.

Pek'n. A polyhedron (plural polyhedra) s the intersection
of a finite number of closed half-planes.

% U5 n this polyhedron since
axX <b,
Q‘L&- < b'z.)
asX £ by  and

ow'_x' < by,

¥ s not becouse 0«40("7/( by.



Polyhedra

Polyhedra. don't need To be lounded.

-X+y «1
-x-y ¢1

J

Conteins o half-line |




Polyhedra

Somekimes, sovme of the enclosing half-planes are redundont

I~

IN
= =

+Y
~ )

-X +y +( y)=-2% ¢2

doesn't change set of /

Points tn the polyhedron



Polyhedra

H's actually really easy to find new redundant half-planes.

let aX<b (s Satisfled by evevy « M Sowe pol\/\/le,drow P

ofCset s

oo “0‘"1 ’

. B _ .. B
&a Of{‘{et lf “10\”1— - 2 “0\”1_ .

’tp, 9ives offsret i termmg
of the (ength of a.

The closed half-plane given by (2o, 28) is the same as
the one givein by (a, ().



Conical Combmations

Def'n. Let %, %+, -, X be vectory in R™. A conical
combination s oo vector of the fornwu

X, + ALK + - FhuAn Where 20 for =1,---, n.
V’_\/\/
non-negative linear combination

£ aix ¢bi for each L fromw 1 To M, then every
conical combination of (b)), (B2, b)), -+, (Om, bw)

® correcponds to a “redundant” closed halé-plane.



A Quick detour to Reality™

: wd
Suppose you ol o —\er#eh—cwré':cfo;/\/.%\’c the moment, you

hove |00 units of sugev and 210 units of food dye.
Hard Candies require % units of sugar

% and 2L units of food dye. They sell for
¥ cents each.

Cummy Worms requive 2. units of fugar
oand 2 unity of food dve. They sell for

5 cents each.

Chocolatey cups require 4 units of sugar

W oand 1L unit of food dye. They sell for

[ cent( each.



A Quick Detour to thitgm

Suppose that you Wow't get another S\/lfpvvmch of Sugav
and food dye for o while. How wiuch of eaclh type of
candy should you wmake Tn the factory”

Xy =number of havrd candies
Let X2= number of gummy worms

X3 = humber of chocolatey cups

Sugavr pev unit total sugar
LN D\ 4

@D 3%, + LA + 4% £ 100
@ 2% +3% +1-% <20

T
food dve per U\V\itj\—-/l &"t‘o’rm\ food dye

® %>20, %0, %30



A Quick detour to thitgm

SULWOSQ that you Wowu't get another S\/\fpvvmch of Sugayv
and food dye for o while. How much of eaclh type of
Candy should you wmake n the factory”

@D 3% + LK + Y
@ 2% + 3% + 1% <210
® %> O, %>20,

IN

|00

Any X elld that satisfies @, @ and @ s n the ypolyhedron
Covresponding o ((3,2.4),100) and ((2,3,1), 210). We call
% o feasible solution.



A Quick Detour to Reatitgm

Suppose that you wown't get ancthev Shippwunt of Sugov
and food dye for a while, How much of eaclh type of
candy should you make Tn the factory”

Of Course, you are only interested n the feasible solutions

that maximize your profit.
\——f—\/\/
objective

We cain express the desiability of o given feasible candy
ordev (solution) by defining o objective function.

. "y
N assigns "goodness values



A Quick detour to Rmtitgm

So, expressed mathewatically, the problent t¢ to:

maximize 8% +5%. + 2%

subject to the constraints
@D 2A + LA + %% & |00
@D 2% + 3% + 1% <210
® %20, %20, %30

a linvear

progvawl

Aside . There’s an entive discipline dedicated to
formulating real Life problems as optimization [stats

problems called opevations reseavcih.



Diagravas in ) sie havd.
As an apology, have o pUpPpy.

\;b



Finding a Solution

maximize JX, +5%. + [2Lx

subject to thae constraints
@D 2% + 2K F Y%, & 100
@D 2% 3% + 1% < 210
® %20, %20, 30

So We have o Well-defined mathematical formulation and o

Well-defined way to dheck whether oo solution iy feacible.

(2,1,-1) cannot make -1 chocolatey cup.
(5, 10,20) don't have eviough suogor for this.
(4, ¥,15) donble. Will earn $2.52..

(5, %,1%8) doable. Will earn $2.C0.



Polyhedron Terminology

Fivst, 1"l introduce terminology for some generalizations of

concepts you owe already foumilior with tn Y and 123

/ o face

N

extveme pownt’s

~




What does cfx mean

let’s just cowsider the objective function for now.
How do we nterpret ctfx?

We are projecting X owto c.

Look at thhe set of vectors

i

that give the Sanme “value”,

They formi o hyperplane

{

¢ coviresponding to “slope” c.

lengthh of %



Maximizing the Objective Function

When the objective function is lineay,
Maximizing c*X subject to constraints just means that
We are tiying to find the hyperplane with "slope” ¢ that
hoe the bigogest “offset” out of all the hyperplanes that
a) have Slope €, and
b) Wtercect with the feasible region.




Linear Cost Functions
Let %o not be an extreme point,
Find the hyperplane corresponding
to “slope” ¢ that goesr through
. the poit %K.

W

There ts always o "worse" direction

unless. . .

The entive foce s contained wn the

hyperplane with slope givent by ¢ that

goes througlh %.
%o
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Fundamental Theorem of Linear Programming

Every optimal solution to a given
Linear programt lies either at oun
extreme point of the feasible region
or on a face wheve every point on the

face s optimal.

Q—VV\ZO\V\S We coan be o bit Lmlg.\/o\\j!



Still not quite there yet.

successfully narrowed dowin owr Searchispace.

ronly need to look at the ‘outside” (boundary) of

the feasible region (polyhedron formed by thae constraints).
ow do We find every single extreme point 7

Even if We can find all
exfremie points. con We do

So QFF(C\'CV\Hg?

Thic s uncdlear,

N
e

* look up Fourier-Motzlkin eliwmination if you're curious




Still not quite there yet.

It’s also undlear that Tt's niecessary fo look at every
Single extrewme point, even if we could £ind all of them

W a feasonoable oamownt of time.

ATSYR ¢ el o /-ﬁ

‘t'o C\A&Ck \
i




An Observation
Hey, do You remember conical combinations?

Def'n. Lek %, %a, -, Xe be vectors in [R™. A conical
combinetion s oo vector of the fornwu

X, + ALK + - FhuUn Wheve A>3 0 for =1,---, n.

Can We use Conical combinations of constraint halfplanes

Yo help solve owr Uiveor programwing problent 7

_Cpoil{fl Y<s



Conical Combinations of Hyperplanes

What € we found o conical combination yiai+ ---+Ymam = YA

wheve (YEA)i> ¢ for tefl, 2,3 ?

/ Grophically, YA s o longer

Vector thon C.

We also know thatt vEAX 2N%b for all S
X feasible to the original problem - S %o

since (YA, y¥b) covresponds to a

redundont hyperplane .



Redundancy

vedundant

V

Recoll that “redunmdanmt'
Wiean s that the closed half-

plane L question (s ot

ecessary To decerilbbe The

feasible yreglon.

This implies that
every {eatible solution is in

the closed half-plane given

by the vedundont hyperplane,



.G raphns

Let's graph the function £:IR"= R, £x)=c*x over thw

feasible region.




IG raphns

Let's graph the function £:IR"= R, £x)=c*x over thw
feasible region. 9:|0"IR, 9lx)=ytAx, too.

this is o~
picture n [




The Non-negative Orthant
Look at the set of points for Which (yFA-c)x s non-negotive.

/ contains the non-negative orthant

VEAX will overestimate c
for all x tn the l/\ol/\—mga’l'l'\/c
orthant since

YHAX = ¥ +(YPA- )X and

¥ (ytA-c)x 20 For all % n
the nou-negative orthant.

KX This s our motivation for restricting feasible solutions to be

hon-negative n all conmponents.



Everything So far

J Consequence of vtA being o
I We know that YA%C and y%0, conical combination

VEAx overestimates c®x tn fhe non-negative orthant
ytb overestimates yHAx for all % tn the feasible region

nside V\OV\-V\egaﬁve_
ovthont !

So vtb overestimates ctx  for all feasible x|

As you tan See, finding conical combinations of constraints
that overestimate the objective function allows ws to
put upper boundf on the waximum value affainable
by tWw objective function.

.

we have a stopping condition!



Upper Bounds For Fun and Profit

£ we can find Some feasible X for owr Livear pregrom
ond some Conical combination YA whee Yb = T,

then We know that we cannot find o better solution !

th -
wooloo! =~ > —ormal to (YA, )




A Pair of Problems

PRIMAL PROBLEM DUAL PROBLEM
(ovfgiho\l gon upper bound on ctQ
> maximize ¢ty minimize bty
Subject to subject To
2 X < b, (ytA): = ¢
01X € ba (VA > ¢ so VtAx > ctx
. : m the Nou = 1neg
A X € b (YA S cn orthant
x>0/ 1=1,2,--m v->0 1=1,2,-m

J

g Stay tn the nown -neg. k . : ,
yOY"t‘/\OLV\t. ) conical combimathens



The Dual Problem
The dual problent o 1trelé o linear progrant.

minimize bty —> winximize -bty
Subject to
(\/tA)t = G
(VA > ¢ .

; — [(_A{)Y]j é'Cj f‘”’J:ll'nln

(\/tA)V\. >/ Cn

Aside: oddly enough, tha dual of the dual is the original
\OHV\/\o\\ P\FO\OI&VVL. T\/\ey are \Oo\'\/\ equa”y gooé repr{Sevﬂ’mhrol/\j‘

of a Linear progromming problevn,



\V\Tcrpmtl'\nq the Dual Problemn

While it is possible to Treat the set of dual feasible

Solutions as a separate polyhedvron tn ™S H of primanl

) constraints
it doesn't really wviake sewse fo.

Rother, 1T encodes the set of redundant hyperplanes that
it on top of the ograph of tx over the set of feasible

ANAASNAAAANAAT,

priviial solutiongs,



In Case You lJere Sleeping...

Here's a recop.

for every linear programming problem, We

con construct a dual problen.

- Every feasible folution for the dusd gives an
upper bound for the wmax. value attainable

Yweak S _
by the objective function over thae fearible

duality"
] region 0F the original problemn.



Tying Up Loose Ends

Mmaximize B% +5%. + 2%
' ' (%), X2, %3) =(0,0,25)
subject to the constraints

@ BeX, + LA + 4%, £ 100 ¢O0+5-0+12:25
@ 2% + 3% + 1% < 210 =

O + O + 300
® %20, %20, %30 _

300

miniviize 00y, + 210y,
. 300 + O
subject to the constraints
100:3 + 2100

. SY, +'2.\I1_ >, 8 . L+\I| + 1\14_ 2 ‘1 (\I,)\[,L):(S,O)
S

) 2\/' t3v. 2 : \/|>/O) \I'L>/O




More Questions

How do you find feasible solutions? @ .
How do you find extreme points? ) @

ls there a systewatic way to find opfimal Solutions? ©

We ll. ..

Nouy CO2SS oy CO2SO nstructor s Pa\{d to
tell you these things.



Other Interesting Things

Sowetimef, your objective function tsn't Uruav.
Sometiwmes Youv Constraints aren't even Lilvar.

These problems ore outside the scope of this talk,

However, i€ you're nferested tn them, consider the

fol loin\fj courses:

\

CO 255 - Introduction to Optimization (adv level)
CO 3¢+ -~ Noulivwar Optimizoaticn

Co 450 - Combmatorial Optimization

CO 452 - Integer Programming

Co 163

CO Y¢C - Continuouns Optimization

1

Convex Optimization and Analygis

CO 471 - Sewidefinite Optimization



Cyﬁa/nk/au
Cammg,l

And alcs thanks to everyone who gove feedback on thee slides.

You guys oavVe oawesowne.



