
46

A Simple Soundness Proof for Dependent Object Types

MARIANNA RAPOPORT, University of Waterloo, Canada

IFAZ KABIR, University of Waterloo, Canada

PAUL HE, University of Waterloo, Canada

ONDŘEJ LHOTÁK, University of Waterloo, Canada

Dependent Object Types (DOT) is intended to be a core calculus for modelling Scala. Its distinguishing feature

is abstract type members, fields in objects that hold types rather than values. Proving soundness of DOT has

been surprisingly challenging, and existing proofs are complicated, and reason about multiple concepts at

the same time (e.g. types, values, evaluation). To serve as a core calculus for Scala, DOT should be easy to

experiment with and extend, and therefore its soundness proof needs to be easy to modify.

This paper presents a simple and modular proof strategy for reasoning in DOT. The strategy separates

reasoning about types from other concerns. It is centred around a theorem that connects the full DOT type

system to a restricted variant in which the challenges and paradoxes caused by abstract type members are

eliminated. Almost all reasoning in the proof is done in the intuitive world of this restricted type system. Once

we have the necessary results about types, we observe that the other aspects of DOT are mostly standard and

can be incorporated into a soundness proof using familiar techniques known from other calculi.

Our paper comes with a machine-verified version of the proof in Coq.

CCS Concepts: • Software and its engineering→ Formal language definitions;

Additional Key Words and Phrases: Scala, dependent object types, DOT calculus, type safety

ACM Reference Format:
Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple Soundness Proof for Dependent

Object Types. Proc. ACM Program. Lang. 1, OOPSLA, Article 46 (October 2017), 27 pages. https://doi.org/10.
1145/3133870

1 INTRODUCTION
2016 was an exciting year for those who desire a formalism to understand and reason about the

unique features of Scala’s type system. Mechanized soundness results were published for the

Dependent Object Types (DOT) calculus and other related calculi [Amin et al. 2016; Amin and

Rompf 2017; Rompf and Amin 2016]. These proofs were the culmination of an elusive search that

spanned more than ten years. The chief subtleties and paradoxes inherent in DOT and the Scala

type system, which made the proof so challenging, were documented along the way [Amin et al.

2012, 2014].

Since the DOT calculus exhibits such subtle and counterintuitive behaviour, and since the proofs

are the result of such a long effort, it is to be expected that the proofs must be complicated. The

calculus is dependently typed, so it is not surprising that the lemmas that make up the proofs

reason about tricky relationships between types and values. In some contexts, the type system

admits typings that seem just plain wrong, and give no hope for soundness, so it seems necessary

to have lemmas that reason simultaneously about the intricate properties of values, types, and the

environments that they inhabit.

Authors’ addresses: Marianna Rapoport, University of Waterloo, Canada; Ifaz Kabir, University of Waterloo, Canada; Paul

He, University of Waterloo, Canada; Ondřej Lhoták, University of Waterloo, Canada.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proc. ACM Program. Lang., https://doi.org/10.1145/3133870.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870

46:2 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

A core calculus needs to be easy to extend. Some extensions of DOT are necessary even just

to model essential Scala features. As a prominent example, types in Scala may depend on paths

x .a1.···.an .A (where x is a variable, ai are fields, and A is a type member), but types in the existing

DOT calculi can depend only directly on variables (x .A). Path-dependent types are needed to model

essential features such as classes and traits (as members nested in objects and packages) and the

famous cake pattern [Odersky and Zenger 2005]. Another important Scala feature to be studied

in DOT are implicit parameters. Moreover, language modifications and extensions are the raison

d’être of a core calculus. DOT enables designers to experiment with exciting new features that can

be added to Scala, to tweak them and reason about their properties before attempting to integrate

them in the compiler with the complexity of the full Scala language.

The complexity of the proof is a hindrance to such extension and experimentation. Over the past

ten years, DOT has been designed and re-designed to be just right, so that the brilliant lemmas that

ensure its soundness hold and can be proven. When the DOT calculus is disrupted by a modification,

it is difficult to predict which parts of the proof will be affected. Experimenting with modifications

to DOT is difficult because each tweak requires many lemmas to be re-proven.

Our goal in this paper is a soundness proof that is simpler, more modular, and more intuitive.

We aim to separate the concepts of types, values, and operational semantics, and to reason about

one concept at a time. Then, if a language extension modifies only one concept, such as typing,

the necessary changes are localized to the parts of the proof that deal with types. We also aim to

isolate most of the reasoning in a simpler system that is immune to the paradox of bad bounds, the

key challenge that plagued the long search for a soundness proof. In this system, our reasoning can

rely on intuitive notions from familiar object calculi without dependent object types [Abadi and

Cardelli 1996; Pierce 2002]. The results of this reasoning are lifted to the full DOT type system by a

single, simple theorem.

The main focus of our proof is on types. Dependent object types are the one feature that

distinguishes DOT, so we aim to decouple that one feature, which mainly affects the static type

system, from other concerns. We focus on proving the properties that one expects of types, and

deliberately keep the proof independent of other aspects, such as operational semantics and runtime

values, which are similar in DOT as in other object calculi. Of course, a soundness proof must

eventually speak about execution and values, but once we have the necessary theory to reason

about types, these other concerns can be handled separately, at the end of the proof, using standard

proof techniques. Our final soundness theorem is stated for the small-step operational semantics

given by Amin et al. [2016], but that is only the final conclusion; the theory that we develop about

dependent object types would be equally applicable in a proof for a big-step operational semantics.

In a sense, this paper moves in the opposite direction compared to other recent work related to

DOT: this paper aims for a simpler proof of one specific calculus, while other work generalizes

DOT with features from other calculi. The most significant addition in Rompf and Amin [2016] is

subtyping between recursive types, which requires sophisticated proof techniques and induction

schemes, but is not needed to model Scala. Amin and Rompf [2017] focuses on a family of calculi

with some features similar to those in DOT, and on general proof techniques applicable to the

whole family. While it is useful to generalize and compare DOT to other calculi, that is not the topic

of this paper. This paper focuses inwards, on DOT itself, on only those features of DOT that are

necessary for modelling Scala, with an aim to make the soundness proof of those specific features

as simple and modular as possible.

The power of DOT is also its curse. DOT empowers a program to define a domain-specific type

system with a custom subtyping lattice inside the existing Scala type system. This power has

been used to encode in plain Scala expressive type systems that would otherwise require new

languages to be designed. But this power also enables typing contexts that make no sense, in which

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:3

types cannot be trusted and thus become meaningless. For example, a program could define typing

contexts in which an object, which is not a function, nevertheless has a function type. Since such

“crazy” contexts are possible, a soundness proof needs to consider them (but prove that they are

harmless during execution).

Besides the general pursuit of modularity, the simplicity of our new proof depends on two main

ingredients.

The first ingredient is inert types and inert typing contexts, which we will define in Section 3.2.

The essential property of an inert type is that if all variables have inert types, then no unexpected

subtyping relationships are possible, so types can be trusted, and none of the paradoxes are possible.

We express this property more formally in Section 3.2. An important part of the soundness proof is

to ensure that a term cannot evaluate until the types of all its free variables have been narrowed to

inert types.

We define inertness as a concise, easily testable syntactic property of a type. The definition

consists of only two non-recursive inference rules, so it can be easily inverted when it occurs in a

proof. By contrast, existing DOT proofs achieve similar goals using properties that characterize

types by the existence of values with specific relationships to those types. The benefit of our

inertness property is that it involves only a type, not any values, and it is defined directly, not via

existential quantification of some corresponding value.

The second ingredient is tight typing, a small restriction of the DOT typing rules with major

consequences, which we will discuss in Section 3.3. We did not invent tight typing; it appears

as a technical definition in the proof of Amin et al. [2016]. Our contribution is to identify and

demonstrate just how useful and important tight typing is to a simple proof. Amin et al. [2016] use

tight typing in a collection of technical lemmas mixed with reasoning about other concerns, such

as general typing (the full typing rules of DOT) and correspondences between values and types. In

our proof, however, tight typing takes centre stage; it is the main actor that enables intuition and

simplicity.

Tight typing neutralizes the twoDOT type rules that enable a program to define custom subtyping

relationships. Tight typing immunizes the calculus: even if a typing context contains a type that is

not inert, tight typing prevents it from doing any harm. The paradoxes that make it challenging to

work with DOT disappear under tight typing. Without those two typing rules, the calculus behaves

very differently, like object calculi without dependent object types, and our reasoning can rely on

familiar properties that we are used to from these calculi.

Of course, DOT with tight typing is not at all the real DOT: it lacks the power to create cus-

tomized type systems, and it is uninteresting; it is just another calculus with predictable behaviour.

Theorem 3.3 in Section 3.3 bridges the gap by showing that in inert contexts, tight typing has all

the power of general typing. Therefore, all the reasoning that we do in the intuitive environment of

tight typing applies to the full power of DOT. Even our proof of Theorem 3.3 itself reasons entirely

with tight typing, without having to deal with the paradoxes of general DOT typing, and without

having to reason about relationships between types and values.

Combining these two ingredients, we contribute a unified general recipe that can be used

whenever a proof about DOT needs to deduce information about a term from its type. Many of our

lemmas follow this recipe. The first step of the recipe, which should be the first step of any reasoning

about types in DOT, is to drop down from general typing to tight typing using Theorem 3.3. The

purpose of the remaining steps is to make inductive reasoning as easy and systematic as possible.

Contributions. This paper presents a simplified and extensible soundness proof for the DOT

calculus [Amin et al. 2016]. We contribute the following:

– A modular proof that reasons about types, values, and operational semantics separately.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:4 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

– The concept of inert typing contexts, a syntactic characterization of contexts that rule out

any non-sensical subtyping that could be introduced by abstract type members.

– A simple proof recipe for deducing properties of terms from their types in full DOT while

reasoning only in a restricted, intuitive environment free from the paradoxes caused by

abstract type members. Multiple lemmas follow the same recipe, and following the recipe

can facilitate the development of new lemmas needed in future extensions for DOT.

– A Coq formalization of the DOT soundness proof presented in this paper.

Our Coq proof can be found at

https://git.io/simple-dot-proof

The rest of this paper is organized as follows. Section 2 describes the DOT type system and

explains the problem of bad bounds, which is responsible for the complexity in DOT soundness

proofs. Section 3 presents a detailed description of the simplified DOT soundness proof introduced

in this paper. Section 4 summarizes the overall proof structure and explains how to extend the proof

with new DOT features. Section 5 continues the discussion of the bad-bounds problem. Section 6

examines related work. We finish with concluding remarks in Section 7.

2 BACKGROUND
The proof in this paper proves type soundness of the variant of the DOT calculus defined by Amin

et al. [2016].

2.1 DOT Syntax

x , y, z Variable
a, b, c Term member
A, B, C Type member
s, t , u F Term

x variable

v value

x .a selection

x y application

let x = t in u let binding

v F Value
λ(x : T).t lambda

ν (x : T)d object

d F Definition
{a = t } field definition

{A = T } type definition

d ∧ d ′ aggregate definition

S, T , U F Type
∀(x : S)T dependent function

µ (x : T) recursive type

{a : T } field declaration

{A : S ..T } type declaration

x .A type projection

S ∧T intersection

⊤ top type

⊥ bottom type

Fig. 1. Abstract syntax of DOT [Amin et al. 2016]

We begin by describing the abstract syntax of the calculus, shown in Figure 1. The calculus

defines two forms of values:
– A lambda abstraction λ(x : T).t is a function with parameter x of typeT and a body consisting

of the term t .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

https://git.io/simple-dot-proof

A Simple Soundness Proof for Dependent Object Types 46:5

– An object of type T with definitions d is denoted as ν (x : T)d . The body of the object consists

of the definitions d , which are a collection of field and type member definitions, connected

through the intersection operator. The field definition {a = t } assigns a term t to a field

labeled a, and the type definition {A = U } defines the type label A as an alias for the typeU .

The object also explicitly declares a recursive self, or “this”, variable x . As a result, both T
and d can refer to x .

A DOT term is a variable x , value v , field selection x .a, function application x y, or let binding
let x = t in u. To keep the syntax simple, the DOT calculus uses administrative normal form (ANF);

as a result, field selection and function application can involve only variables, not arbitrary terms.

A DOT type can be one of the following:

– A dependent function type ∀(x : S)T is the type of a function with a parameter x of type S ,
and with the return type T , which can refer to the parameter x .

– A recursive type µ (x : T) declares an object type T which can refer to its self-variable x .
– A field declaration {a : T } states that the field labeled a has type T .
– A type declaration {A : S ..T } specifies that an abstract type member A is a subtype of T and a

supertype of S .
– A type projection x .A is the type assigned to the type member labelled A of the object x (ANF

allows type projection only on variables).

– An intersection type S ∧T is the most general subtype of both S and T .
– The bottom type ⊥ and the top type ⊤ correspond to the bottom and top of the subtyping

lattice, and are analogous to Scala’s Nothing and Any.

Examples of DOT programs and their Scala equivalents can be found in Amin et al. [2016].

2.2 DOT Typing Rules
The DOT typing rules (which we will call the “general” typing relation throughout this paper) are

presented in Figure 2.

The rules (All-I) and ({}-I) give types to values. An object ν (x : T)d has the recursive type µ (x : T),
where the types T must match, and T must summarize the definitions d following the definition

typing rules in Figure 2. Note that due to (Def-Typ), each of the type declarations in an object must

have equal lower and upper bounds (i.e. an object ν (x : {A : S ..U }) {A = T } is only well-typed if

S = U = T). The rules (Var), (All-E), ({}-E), (Let) give types to the other four forms of terms, and are

unsurprising. The recursion introduction (Rec-I), recursion elimination (Rec-E), and intersection

introduction (And-I) rules apply only to variables, but the subsumption rule (Sub) applies to all

terms. The subtyping rules establish the top and bottom of the subtyping lattice (Top, Bot), define

reflexivity and transitivity (Refl, Trans), and basic subtyping rules for intersection types (And1-<:,
And2-<:, <:-And). As is commonplace, dependent functions are covariant in the return type and

contravariant in the parameter type (All-<:-All). Field typing is covariant by the rule (Fld-<:-Fld),
whereas type member declarations are contravariant in the lower bound and covariant in the upper

bound via (Typ-<:-Typ). The most interesting rules that distinguish DOT are (<:-Sel) and (Sel-<:),
which introduce an object-dependent type x .A and define subtyping between it and its bounds. As

we will see, these rules are responsible for much of the complexity of the safety proof.

2.3 Bad Bounds
The type selection subtyping rules (<:-Sel) and (Sel-<:) enable users to define a type system with

a custom subtyping lattice. If a program defines a function λ(x : {A : S ..U }).t , then t is typed in

a context in which S is considered a subtype of U , because S <: x .A <: U . The soundness proof

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:6 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

Term typing

Γ(x) = T

Γ ⊢ x : T
(Var)

(Γ, x : T) ⊢ t : U x < fv(T)

Γ ⊢ λ(x : T).t : ∀(x : T)U
(All-I)

Γ ⊢ x : ∀(z : S)T Γ ⊢ y : S

Γ ⊢ x y : [y/z]T
(All-E)

(Γ, x : T) ⊢ d : T

Γ ⊢ ν (x : T)d : µ (x : T)
({}-I)

Γ ⊢ x : {a : T }

Γ ⊢ x .a : T
({}-E)

Γ ⊢ t : T
(Γ, x : T) ⊢ u : U x < fv(U)

Γ ⊢ let x = t in u : U
(Let)

Γ ⊢ x : T

Γ ⊢ x : µ (x : T)
(Rec-I)

Γ ⊢ x : µ (z : T)

Γ ⊢ x : [x/z]T
(Rec-E)

Γ ⊢ x : T Γ ⊢ x : U

Γ ⊢ x : T ∧U
(And-I)

Γ ⊢ t : T Γ ⊢ T <: U

Γ ⊢ t : U
(Sub)

Definition typing rules

Γ ⊢ t : U

Γ ⊢ {a = t } : {a : U }
(Def-Trm)

Γ ⊢ {A = T } : {A : T ..T } (Def-Typ)

Γ ⊢ d1 : T1 Γ ⊢ d2 : T2
dom(d1), dom(d2) disjoint

Γ ⊢ d1 ∧ d2 : T1 ∧T2
(AndDef-I)

Subtyping rules

Γ ⊢ T <: ⊤ (Top)

Γ ⊢ ⊥ <: T (Bot)

Γ ⊢ T <: T (Refl)

Γ ⊢ T <: U

Γ ⊢ {a : T } <: {a : U }
(Fld-<:-Fld)

Γ ⊢ S <: T Γ ⊢ S <: U

Γ ⊢ S <: T ∧U
(<:-And)

Γ ⊢ T ∧U <: T (And1-<:)

Γ ⊢ T ∧U <: U (And2-<:)

Γ ⊢ x : {A : S ..T }

Γ ⊢ S <: x .A
(<:-Sel)

Γ ⊢ x : {A : S ..T }

Γ ⊢ x .A <: T
(Sel-<:)

Γ ⊢ S <: T Γ ⊢ T <: U

Γ ⊢ S <: U
(Trans)

Γ ⊢ S2 <: S1
Γ ⊢ T1 <: T2

Γ ⊢ {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Γ ⊢ S2 <: S1
(Γ, x : S2) ⊢ T1 <: T2

Γ ⊢ ∀(x : S1)T1 <: ∀(x : S2)T2
(All-<:-All)

Fig. 2. DOT Type Rules [Amin et al. 2016]

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:7

must ensure that such a user-defined subtyping lattice does not cause any harm, i.e., cannot cause

a violation of type soundness of the overall calculus.

Let S be the object type {a : ⊤} and U be the function type ∀(z : ⊤)⊤. Then the following is a

valid and well-typed DOT term:

λ(x : {A : S ..U }).let y = ν (y : S)
{
a = y.a

}
in y y

How is this possible? The inner term y y is a function application applying y to itself, but y is bound

by the let to an object, not a function. How can y appear in a function application when it is not a

function? This is possible because y has the object type S , and in the body of the lambda, we have

the subtyping chain S <: x .A <: U . The declaration of the lambda asserts that x .A is a supertype

of S and a subtype of U , and therefore introduces the new custom subtyping relationship S <: U .

Inside the body of the lambda, the object type S is a subtype of the function typeU , so since the

object y has type S , it also has the function typeU . The function application of object y to itself is

therefore well-typed in this context.

This is crazy, the reader may be thinking. Indeed, in an environment in which subtyping can be

arbitrarily redefined, types cannot be trusted. In particular, we cannot conclude from the fact that y
has the function type S that it is indeed a function; actually, it is an object. The seemingly obvious

fix is to require S to be a subtype ofU when the parameter x of the lambda is declared to have type

{A : S ..U }. But as we will discuss in Section 5, this seemingly obvious fix does not work, and the

struggle to try to make it work has caused much of the difficulty in the ten-year struggle for a DOT

soundness proof.

How can DOT be sound then, when it is so crazy? After all, the function application y y is

well-typed but its evaluation gets stuck, because y is not a function, so how can DOT be sound? The

key is that the DOT semantics is call-by-value. In order to invoke the body of the lambda, one must

provide an argument value to pass for the parameter x . This value must contain a type assigned to

A that is both a supertype of U and a subtype of S . If no such type exists, then no such argument

value can exist, so the lambda cannot be called, so its body containing the crazy application y y
cannot ever be executed. Therefore, this term is not a counterexample to the soundness of the DOT

type system.

Why should DOT have such a strange feature? The ability to define a custom subtyping lattice

turns out to be very useful. For example, we can define the term:

λ(x : {A : ⊥..⊤} ∧ {B : x .A..x .C} ∧ {C : ⊥..⊤}).t

In the body t of this lambda, we can make use of unspecified opaque typesA, B, andC , making use of

only the condition thatA <: B <: C . We can use this feature to define arbitrary type systems within

the language. For example, Scalas and Yoshida [2016] have implemented session types, a feature that

usually requires a custom-designed language, inside plain Scala. As another example, Osvald et al.

[2016] used this ability to define a lattice of lifetimes within the Scala type system for categorizing

values that cannot outlive different stack frames. Even the well-known Scala cake pattern [Odersky

and Zenger 2005] is built using this feature.

To reconcile a custom subtyping lattice with a sound language, we only need to force the

programmer to provide evidence that the custom lattice does not violate any familiar assumptions

(e.g., it does not make object types subtypes of function types). This evidence takes the form of an

argument value that must be passed to the lambda before the body that uses the custom type lattice

can be allowed to execute. This value must be an object that provides existing types that satisfy the

specified custom subtyping constraints. In our example, this is easy: it suffices to pass the same

type, such as ⊤, for all three type parameters, since ⊤ <: ⊤ <: ⊤. However, the types are opaque:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:8 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

when checking the body of the lambda, the type checker cannot use the fact that A = B = C = ⊤;
the body must type-check even under only the assumptions that A <: B <: C .

Since DOT programs can exhibit unexpected subtyping lattices in some contexts, and since this

is unavoidable, an essential feature of a soundness proof is to clearly distinguish contexts in which

types can be trusted, because any custom subtyping relationships have been justified by actual

type arguments, from contexts in which types cannot be trusted, because they could have been

derived from arbitrary unjustified custom subtyping relationships. In Section 3.2, we will formally

define this property that types can be trusted, and define a simple syntactic characterization of

inert typing contexts that guarantee this property. In earlier DOT soundness proofs, the trusted

types property was not precisely defined, and typing contexts in which there are no bad bounds

were defined more indirectly, not in terms of the types themselves, but in terms of the existence of

values having those types.

3 PROOF
3.1 Overview
We will first outline the general recipe that we use to reason throughout the proof about the

meaning of a type. The details of each step will be discussed in the following subsections. We

present the overview on an example proof of Lemma 3.9, which will be introduced in Section 3.5, but

the specific example is unimportant; most of the reasoning throughout the proof follows the same

steps, through the same typing relations, in the same order, using the same reasoning techniques.

Usually, we know that some term has some type (e.g. Γ ⊢ x : {a : T }), and we seek to interpret

what the type tells us about the term, and to determine how the type of the term was derived. In

this example, we seek more detailed information about x , for example that the typing context Γ
assigns it an object type Γ(x) = µ (x : ··· ∧ {a : T ′} ∧ ···), or the shape of the value that it will hold at

run time (e.g. an object ν (x : ··· ∧ {a : T ′} ∧ ···) (··· ∧ {a = t ′} ∧ ···)).
Each such derivation follows the same sequence of steps (although sometimes only a subsequence

of the steps is necessary):

inert Γ Γ ⊢ x : {a : T }

inert Γ Γ ⊢# x : {a : T }
Theorem 3.3 (⊢ to ⊢#)

inert Γ Γ ⊢## x : {a : T }
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! x :
{
a : T ′

}
Γ ⊢ T ′ <: T

Induction on ⊢##

inert Γ Γ(x) = µ (x : ··· ∧
{
a : T ′

}
∧ ···) Γ ⊢ T ′ <: T

Inversion of ({}-I-!)

Although there are four steps, each individual step is quite simple. More importantly, each step

is modular, independent of the other steps, and the proof techniques at each step are either directly

reusable (theorems) or easily adaptable (induction) to proofs of properties other than this specific

lemma.

The derivation starts with general typing (Γ ⊢ x : {a : T }), the typing relation of the DOT calculus.

The key property that makes reasoning possible is that the typing context Γ is inert. Inert contexts

will be defined in Section 3.2. Inertness ensures that customized subtyping in the program does not

introduce unexpected subtyping relationships. If the context were not inert, any type could have

been customized to have arbitrary subtypes and be inhabited by arbitrary terms, so it would be

impossible to draw any conclusions about a term from its type.

Knowing that the typing context is inert, we apply Theorem 3.3 (⊢ to ⊢#) to get a tight typing

(Γ ⊢# x : {a : T }), which will be discussed in Section 3.3. A tight typing is immune to any unexpected

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:9

subtyping relationships that the program may have defined, so our reasoning can now rely on

familiar intuitions about what types ought to mean about their terms.

However, the tight typing rules are not amenable to inductive proofs. Theorem 3.6 (⊢# to ⊢##)

gives invertible typing (Γ ⊢## x : {a : T }), which is specifically designed to make inductive reasoning

as easy as possible. Invertible typing will be discussed in Section 3.4.

By induction on invertible typing, we obtain a property of all of the precise types Γ ⊢! x : {a : T
′}

that could have caused x to have the general type {a : T }. Informally, the precise typing means

that the type Γ(x) given to x by the typing context is an object type containing a field a of type T ′.
We will present precise typing in Section 3.3. Precise typing is also amenable to straightforward

induction proofs, so we can use one to obtain Γ(x).

3.2 Inert Typing Contexts
Recall the function λ(x : {A : S ..U }).t that we discussed in Section 2.3. If the function appears in a

context Γ, its body is type checked in an extended context (Γ, x : {A : S ..U }). The extended context

adds a new subtyping relationship (Γ, x : {A : S ..U }) ⊢ S <: U that might not have held in the

original context Γ. In particular, the extended context could introduce a subtyping relationship

that does not make sense, such as ∀(x : S)T <: µ (x : U), or ⊤ <: ⊥. To control such unpredictable

contexts, we define the notion of inert typing contexts and inert types.

Definition 3.1. A typing context Γ is inert if the type Γ(x) that it assigns to each variable x is inert.

Definition 3.2. A type U is inert if
– U is a dependent function type ∀(x : S)T , or
– U is a recursive type µ (x : T), where T is an intersection of field declarations {a : S } and tight

type declarations {A : S ..S }, and the type labels A of the tight type declarations are distinct. A

type declaration {A : S ..U } is tight if its bounds S andU are the same.

An inert typing context has the following useful property.

Property 1 (Inert Context Guarantee). Let Γ be any inert typing context, t be a closed term
andU be a closed type. If Γ ⊢ t : U , then ⊢ t : U .

The significance of this property is that in an inert typing context, a term t does not have any
“unexpected” types that it would not have in an empty typing context. For example, we can be sure

that in an inert typing context, a function value will not have an object (recursive) type, and an

object will not have a function type. Though we do not directly apply the property in the proof, it

is useful for intuitive reasoning about typing and subtyping in inert typing contexts.

Every value has an inert type (as long as the value is well formed, i.e., as long as it has any type

at all). This is because the two base typing rules for values, (All-I) and ({}-I), and the definition

typing rules that they depend on, always assign an inert type to the value. The converse is not

true: not every inert type is inhabited by a value. For example, we cannot construct a value of type

λ(x : ⊤).⊥.
Returning to the example, suppose now that the function is invoked with some value v bound to

a variable y: let y = v in (λ(x : {A : S ..U }).t) y. Recall that the body t is typed with the assumption

that S <: U . Type checking the overall term ensures that the argument y provides evidence for that
assumption. Specifically, the value v has an inert type, so y has an inert type. The typing rule for

function application requires subtyping between the argument and parameter types, so the type

of y must have a member {A : T ..T } with S <: T and T <: U . (The bounds T of the type member

must be tight because the type is inert.) The type T that y provides is evidence that justifies the

assumption S <: U under which the body t of the function was type checked. During execution,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:10 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

when the function is called, all occurrences of x in the body t will be replaced byy before evaluation

of the body begins. In general, the semantics ensures that before it begins evaluating a term (such

as t), the term has a type in a context in which all non-inert types (such as the type of x) have been
narrowed to inert types (such as the type of y).

3.3 Tight Typing

Tight term typing

Γ(x) = T

Γ ⊢# x : T
(Var-#)

(Γ, x : T) ⊢ t : U x < fv(T)

Γ ⊢# λ(x : T).t : ∀(x : T)U
(All-I-#)

Γ ⊢# x : ∀(z : S)T Γ ⊢# y : S

Γ ⊢# x y : [y/z]T
(All-E-#)

(Γ, x : T) ⊢ d : T

Γ ⊢# ν (x : T)d : µ (x : T)
({}-I-#)

Γ ⊢# x : {a : T }

Γ ⊢# x .a : T
({}-E-#)

Γ ⊢# t : T
(Γ, x : T) ⊢ u : U x < fv(U)

Γ ⊢# let x = t in u : U
(Let-#)

Γ ⊢# x : T

Γ ⊢# x : µ (x : T)
(Rec-I-#)

Γ ⊢# x : µ (z : T)

Γ ⊢# x : [x/z]T
(Rec-E-#)

Γ ⊢# x : T Γ ⊢# x : U

Γ ⊢# x : T ∧U
(And-I-#)

Γ ⊢# t : T Γ ⊢# T <: U

Γ ⊢# t : U
(Sub-#)

Tight subtyping

Γ ⊢# T <: ⊤ (Top-#)

Γ ⊢# ⊥ <: T (Bot-#)

Γ ⊢# T <: T (Refl-#)

Γ ⊢# S <: T Γ ⊢# T <: U

Γ ⊢# S <: U
(Trans-#)

Γ ⊢# T ∧U <: T (And1-<:-#)

Γ ⊢# T ∧U <: U (And2-<:-#)

Γ ⊢# S <: T Γ ⊢# S <: U

Γ ⊢# S <: T ∧U
(<:-And-#)

Γ ⊢# T <: U

Γ ⊢# {a : T } <: {a : U }
(Fld-<:-Fld-#)

Γ ⊢! x : {A : T ..T }

Γ ⊢# T <: x .A
(<:-Sel-#)

Γ ⊢! x : {A : T ..T }

Γ ⊢# x .A <: T
(Sel-<:-#)

Γ ⊢# S2 <: S1
Γ ⊢# T1 <: T2

Γ ⊢# {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ-#)

Γ ⊢# S2 <: S1
(Γ, x : S2) ⊢ T1 <: T2

Γ ⊢# ∀(x : S1)T1 <: ∀(x : S2)T2
(All-<:-All-#)

Fig. 3. Tight Typing Rules [Amin et al. 2016]

Although inert contexts provide the assurance of Property 1 (Inert Context Guarantee), in our

proofs, we often need to reason even in contexts that are not inert. Moreover, even when we know

that a context is inert, it would be difficult to express the important consequences of the inert

context in every proof that deals with the general DOT typing and subtyping rules.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:11

Precise variable typing

Γ(x) = T

Γ ⊢! x : T
(Var-!)

Γ ⊢! x : µ (z : T)

Γ ⊢! x : [x/z]T
(Rec-E-!)

Γ ⊢! x : T ∧U

Γ ⊢! x : T
(And1-E-!)

Γ ⊢! x : T ∧U

Γ ⊢! x : U
(And2-E-!)

Precise value typing

(Γ, x : T) ⊢ t : U x < fv(T)

Γ ⊢! λ(x : T).t : ∀(x : T)U
(All-I-!)

(Γ, x : T) ⊢ d : T

Γ ⊢! ν (x : T)d : µ (x : T)
({}-I-!)

Fig. 4. Precise Typing Rules [Amin et al. 2016]

Tight typing [Amin et al. 2016] is a slight restriction of general typing that can bridge the gap

between the unpredictability of the general DOT typing rules in arbitrary typing contexts and the

predictable assurances of Property 1 in inert typing contexts. The tight typing rules are presented in

Figure 3. They are almost the same as the general DOT typing rules, except that the (<:-Sel-#) and
(Sel-<:-#) rules have the restricted premise Γ ⊢! x : {A : T ..T }, so they can be applied only when

the bounds T of the type member A are tight. Precise typing, denoted ⊢!, is defined in Figure 4. The

precise type of a variable x is the type Γ(x) given to it by the typing context Γ, possibly decomposed

using the elimination rules, so that if Γ(x) is an object type such as µ (x : ··· ∧ {A : T ..T } ∧ ···), then
x also has just the type member {A : T ..T } as a precise type. For values, precise typing applies only

the base case rules (All-I) and ({}-I) from general typing. In premises of rules that extend the typing

context (All-I-#, Let-#, {}-I-#), tight typing reverts to general typing in the extended context.

We observe two useful properties of tight typing that together combine to make it especially

convenient for reasoning about DOT typing. The first property is that tight typing extends the

benefits of Property 1 (Inert Context Guarantee) to all typing contexts, not only inert ones:

Property 2 (Tight Typing Guarantee). Let Γ be any typing context, t be a closed term andU be
a closed type. If Γ ⊢# t : U , then ⊢# t : U and ⊢ t : U .

The general typing rules that enable DOT programs to define new user-defined subtyping

relationships, (<:-Sel) and (Sel-<:), are restricted in tight typing to (<:-Sel-#) and (Sel-<:-#),
which allow only to give an alias to an existing type, but not to introduce new subtyping between

existing types.

Property 2 makes reasoning in tight typing easy: we never have to worry about unexpected

custom subtyping relationships being introduced by the program, and we do not need to reason

about whether we are in an inert typing context, because tight typing gives the guarantee in all

contexts.

Although tight typing satisfies the desirable intuitive Property 2, it is not DOT. In particular,

tight typing does not, in general, enable a program to use a custom-defined subtyping lattice that is

the key feature of dependent object types. We would like the best of both worlds: to allow DOT

programs to enjoy the full power of general typing, yet to reason about our proofs with the intuitive

tight typing. For this, we need the second property of tight typing.

The second important property of tight typing is that in an inert typing context, tight typing is

equivalent to general DOT typing:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:12 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

Theorem 3.3 (⊢ to ⊢#). If Γ is an inert context, then Γ ⊢ t : T implies Γ ⊢# t : T , and Γ ⊢ S <: U
implies Γ ⊢# S <: U .

We delay giving the proof of the theorem until after some discussion.

These two properties motivate and justify our recommendation that tight typing should be at

the core of all reasoning about the meaning of types in DOT. Tight typing is predictable, like the

type systems of familiar calculi without dependent object types, yet in an inert typing context,

it has the same power as general DOT typing. Therefore, every proof with a premise involving

general typing and an inert typing context should immediately apply Theorem 3.3 (⊢ to ⊢#) to drop

down into the intuitive environment of tight typing for the rest of the reasoning.

What if we do not have an inert context as a premise, and therefore cannot apply Theorem 3.3?

In that case, we should not reason about the meanings of types at all. As we saw in Section 2.3, in

such a context, a term could be given an arbitrary type by custom subtyping rules. Therefore, we

cannot deduce anything about a term from its type, and it would be futile to try.

In summary, inert contexts, tight typing, and Theorem 3.3 that justifies reasoning in tight typing

should be the cornerstones of any reasoning about the meaning of types in the DOT calculus.

How shall we prove Theorem 3.3, then? It is tempting to prove the theorem by trying to compare

various properties of the tight and general typing relations, the closures of the tight and general

typing rules. This approach was taken in the proof of Amin et al. [2016] for a related theorem (with

the same conclusion but different premises). The typing relations are very different from each other

(general typing is much more powerful), but the rules that give rise to them are quite similar. It is

much easier, therefore, to instead show that the rules are equivalent in an inert context. The only

rules in general typing missing from tight typing are the (<:-Sel) and (Sel-<:) rules. Our goal is
therefore to replace these rules with a lemma:

Lemma 3.4 (Sel-<: Replacement). If Γ is an inert context, then if Γ ⊢# x : {A : S ..U }, then Γ ⊢#
S <: x .A and Γ ⊢# x .A <: U .

One nice property of this lemma is that it is stated entirely in terms of tight typing. Thus, to

prove it, we can ignore the unpredictable world of general typing, and work exclusively in the

intuitive world of tight typing.

But how can we prove it? We would like to apply the (<:-Sel-#) and (Sel-<:-#) rules. Their
premises are Γ ⊢! x : {A : T ..T }. Therefore, we need to invert tight typing, to show the following:

Lemma 3.5 (Sel-<:-# Premise). If Γ is an inert context, then if Γ ⊢# x : {A : S ..U }, then there exists
a type T such that Γ ⊢! x : {A : T ..T }, Γ ⊢# S <: T , and Γ ⊢# T <: U .

We will discuss how to invert tight typing to prove this lemma in Section 3.4.

Using Lemma 3.5 (Sel-<:-# Premise), proving Lemma 3.4 (Sel-<: Replacement) is easy:

Proof of Lemma 3.4 (Sel-<: Replacement). Apply Lemma 3.5 (Sel-<:-# Premise), then (<:-Sel-#)
and (Sel-<:-#), to get Γ ⊢# S <: T <: x .A <: T <: U . The result follows by (Trans-#). □

Using Lemma 3.4 (Sel-<: Replacement), proving Theorem 3.3 (⊢ to ⊢#) is now also quite easy.

Proof of Theorem 3.3 (⊢ to ⊢#). The proof is by mutual induction on the tight typing and

subtyping derivations of Γ ⊢ t : T and Γ ⊢ S <: U . In general, for each rule of general typing, we

invoke the corresponding rule of tight typing. The premises of the tight typing rules differ from

those of the general typing rules in that they require tight typing in rules that do not extend the

context. Since the unextended context is inert, the general premise implies the tight premise by the

induction hypothesis. Premises that do extend the context use general typing, so nothing needs to be

proven for them. The exception is the (<:-Sel) and (Sel-<:) rules. Lemma 3.4 (Sel-<: Replacement)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:13

is an exact replacement for these rules, so we just apply it. Despite the long explanation, the proof

in Coq is only two lines long. □

3.4 Inversion of Tight Typing
Although reasoning with tight typing is intuitive because it obeys Property 2 (Tight Typing

Guarantee), we often need to invert the tight typing rules to prove properties such as Lemma 3.5

(Sel-<:-# Premise), which we used in the proof of Lemma 3.4 (Sel-<: Replacement). More generally,

we need to prove that if Γ ⊢# x : T , where T is of a certain form, then Γ(x) = U , and there is a

certain relationship between T andU .

The obvious approach to proving such inversion properties is by induction on the derivation

of the tight typing. This usually fails, however, because of cycles in the tight typing rules. Each

language construct typically has both an introduction and an elimination rule, and the two form a

cycle. For example, if Γ ⊢# x : T , then Γ ⊢# x : µ (x : T) by (Rec-I-#), so again Γ ⊢# x : T by (Rec-E-#).

Such cycles block inductive proofs because a proposition Γ ⊢# x : T is justified by Γ ⊢# x : µ (x : T),
which in turn is justified by the original proposition Γ ⊢# x : T . The solution is to define a set of

acyclic, invertible rules on which induction is easy, and to prove that the invertible rules induce the

same typing relation as the cyclic tight typing rules.

The construction of the invertible typing rules is simplified by two restrictions:

(1) We only ever need to invert typing rules in inert typing contexts.

(2) We only ever need to invert typings of variables and values, not of arbitrary terms.

In the invertible rules, we can thus exclude rules that cannot apply to variables or values, and rules

that cannot apply to inert types or to types derived from inert types.

It remains to decide, when facing a cycle of two rules that introduce and eliminate a given

language construct, which one of the two rules to remove and which one to keep in the acyclic,

invertible rule set. In general, because a construct can be introduced an unbounded number of

times in tight typing, we must keep the introduction rule. For example, if x has type T , then x
also has type µ (y : µ (y ′ : µ (y ′′ : T))), and the invertible rules must generate this type. On the other

hand, the base case of the typing rules for variables, the rule (Var-#), gives each variable x the type

Γ(x), which in an inert context is an inert type, and can therefore be a recursive type containing

an intersection type. Since the tight typing rules eliminate the recursion and the intersection,

the invertible rules must also eliminate them. It seems that we have reached a contradiction: the

invertible rules must have both introduction and elimination rules for recursive and intersection

types.

The solution is to split the invertible rules into two phases. The first phase of rules contains all the

elimination rules. After all necessary eliminations have been performed, a second phase containing

only introduction rules can then perform all necessary introductions. By splitting the rules into

two phases, we ensure that no derivation can cycle between introductions and eliminations, so the

rules are invertible. It turns out that we already have rules for the first phase: the precise typing

rules introduced in Section 3.3 already contain all of the elimination rules that apply to variables

and values, and eliminate from the type of a variable all constructs that can appear in an inert type.

(Note that even the general DOT typing rules remove recursive and intersection types only from

the types of variables, not values.) To construct the invertible introduction rules, we propose the

following recipe:

(1) Start with the tight typing rules.

(2) Inline the subsumption rule (inline the subtyping rules into the typing rules). This simplifies

the construction, so we define only one relation instead of two separate typing and subtyping

relations.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:14 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

(3) Specialize the terms in all rules to variables and values, and remove all rules that cannot

apply to variables or values.

(4) Remove all elimination rules.

(5) Remove all rules that cannot apply in an inert context. Specifically, this means the (Bot-#)

rule, because it has Γ ⊢# x : ⊥ as a premise, but this typing cannot be derived by any of the

other remaining rules starting from an inert type given to a variable by the (Var-#) rule or to

a value by the (All-I-#) and ({}-I-#) rules.

Invertible Typing for Variables

Γ ⊢! x : T

Γ ⊢## x : T
(Var-##)

Γ ⊢## x : {a : T } Γ ⊢# T <: U

Γ ⊢## x : {a : U }
(Fld-<:-Fld-##)

Γ ⊢## x : {A : T ..U }
Γ ⊢# T

′ <: T Γ ⊢# U <: U
′

Γ ⊢## x : {A : T ′..U ′}
(Typ-<:-Typ-##)

Γ ⊢## x : T

Γ ⊢## x : µ (x : T)
(Rec-I-##)

Γ ⊢## x : ∀(z : S)T Γ ⊢# S
′ <: S

(Γ, y : S ′) ⊢ T <: T ′

Γ ⊢## x : ∀(z : S
′)T ′

(All-<:-All-##)

Γ ⊢## x : T Γ ⊢## x : U

Γ ⊢## x : T ∧U
(And-I-##)

Γ ⊢## x : S Γ ⊢! y : {A : S ..S }

Γ ⊢## x : y.A
(Sel-##)

Γ ⊢## x : T

Γ ⊢## x : ⊤
(Top-##)

Invertible Typing for Values

Γ ⊢! v : T

Γ ⊢## v : T
(Val-##v)

Γ ⊢## v : ∀(z : S)T Γ ⊢# S
′ <: S

(Γ, y : S ′) ⊢ T <: T ′

Γ ⊢## v : ∀(z : S
′)T ′

(All-<:-All-##v)

Γ ⊢## v : T Γ ⊢## v : U

Γ ⊢## v : T ∧U
(And-I-##v)

Γ ⊢## v : S Γ ⊢! y : {A : S ..S }

Γ ⊢## v : y.A
(Sel-##v)

Γ ⊢## v : T

Γ ⊢## v : ⊤
(Top-##v)

Fig. 5. Invertible Typing Rules

By applying this recipe to the tight typing rules, we arrive at the invertible typing rules shown

in Figure 5. We must now prove that the typing relation induced by the invertible typing rules is

equal to the typing relation induced by the tight typing rules (restricted to inert contexts and to

variables and values):

Theorem 3.6 (⊢# to ⊢##). If Γ is an inert context, t is a variable or a value, and Γ ⊢# t : T , then
Γ ⊢## t : T .

Proof. We first prove as a helper lemma that if Γ ⊢## t : T and Γ ⊢# T <: U then Γ ⊢## t : U by

induction on the derivation of Γ ⊢# T <: U . The main proof is by induction on the derivation of

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:15

Γ ⊢# t : T . Although we said that induction on tight typing usually fails because the rules have

cycles, in this specific case, the induction is quite straightforward because invertible typing is

part of the induction hypothesis. The inductive cases for elimination rules, which would usually

lead to cycles in the induction, are all discharged using the invertible typing in the induction

hypothesis. □

With this theorem, inversion proofs such as the proof of Lemma 3.5 (Sel-<:-# Premise) become

easy inductions on the invertible typing rules:

Proof of Lemma 3.5 (Sel-<:-# Premise).

inert Γ Γ ⊢# x : {A : S ..U }

inert Γ Γ ⊢## x : {A : S ..U }
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! x : {A : T ..T } Γ ⊢# S <: x .T Γ ⊢# x .T <: U
Induction on ⊢##

□

We will see more lemmas that follow the same proof strategy in the next section.

3.5 Extending to Values
In general, soundness proofs require canonical-forms lemmas that show that if a value has a given

type, then it is a particular form of value. Following our theme of a modular proof that deals with

one concept at a time, we do most of our work at the level of types, following the same general

recipe.

Because the DOT syntax enforces ANF, before a value can be used for anything interesting, it

must first be assigned to a variable through a let expression. Suppose a variable x is bound to a

value v by let x = v in t and the variable x is used somewhere inside t . From the typeU of the use

of x , we would like to deduce the form of the value v .
We proceed in two steps. First, from a typeU such that Γ′ ⊢ x : U , where Γ′ is the typing context

used to type the use of x occurring inside t , we follow the proof recipe to deduce the type Γ′(x)
given to x by the typing context. The typing context Γ′ is constructed by the premises of the (Let)

typing rule, which extends an existing typing context Γ to the typing context Γ′ by adding a binding
(x : T). Here, T is some type such that Γ ⊢ v : T . Therefore, Γ′(x) is this T , and we have, in general,

that Γ ⊢ v : Γ′(x) and thus also Γ′ ⊢ v : Γ′(x).
For the second step, we know Γ′ ⊢ v : T , where the type T has been identified by the first step,

and we wish to deduce the precise type of v , and thence invert the precise value typing rules to

obtain the form of v .
The following lemmas instantiate these two steps, first for dependent function types, and then

for field member types.

Lemma 3.7 (∀ to Γ(x)).

inert Γ Γ ⊢ z : ∀(x : T)U

Γ(z) = ∀(x : T ′)U ′ Γ ⊢ T <: T ′ (Γ, x : T) ⊢ U ′ <: U

Lemma 3.8 (∀ to λ).

inert Γ Γ ⊢ v : ∀(x : T)U

v = λ(x : T ′).t Γ ⊢ T <: T ′ (Γ, x : T) ⊢ t : U

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:16 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

Lemma 3.9 (µ to Γ(x)).

inert Γ Γ ⊢ x : {a : T }

Γ(x) = µ (x : ··· ∧
{
a : T ′

}
∧ ···) Γ ⊢ T ′ <: T

Lemma 3.10 (µ to ν).

inert Γ Γ ⊢ v : µ (x : S) S = ··· ∧ {a : T } ∧ ···

v = ν (x : S) (··· ∧ {a = t } ∧ ···) Γ ⊢ t : T

The proofs of all of the lemmas follow the same general proof recipe that we introduced for

Lemma 3.9 in Section 3.1. We show the proof of Lemma 3.8 here, and proofs of the other three

lemmas in the Appendix.

Proof of Lemma 3.8 (∀ to λ).

inert Γ Γ ⊢ v : ∀(x : T)U

inert Γ Γ ⊢# v : ∀(x : T)U
Theorem 3.3 (⊢ to ⊢#)

inert Γ Γ ⊢## v : ∀(x : T)U
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! v : ∀(x : T
′)U ′ Γ ⊢ T <: T ′ (Γ, x : T ′) ⊢ U ′ <: U

Induction on ⊢##

v = λ(x : T ′).t (Γ, x : T ′) ⊢ t : U ′ Γ ⊢ T <: T ′ (Γ, x : T ′) ⊢ U ′ <: U

Inversion

of (All-I-!)

v = λ(x : T ′).t (Γ, x : T) ⊢ t : U ′ Γ ⊢ T <: T ′ (Γ, x : T) ⊢ U ′ <: U
Narrowing

v = λ(x : T ′).t (Γ, x : T) ⊢ t : U Γ ⊢ T <: T ′
(Sub)

□

Since the return type of a dependent function type depends on the parameter type, this proof

and the proof of Lemma 3.7 rely on a standard narrowing property, which states that making a

typing context more precise by substituting one of the types by its subtype preserves the typing

and subtyping relations.

Lemma 3.11 (Narrowing). Suppose Γ(x) = T and Γ[x : T ′] ⊢ T ′ <: T . Then Γ ⊢ t : U implies
Γ[x : T ′] ⊢ t : U , and Γ ⊢ S <: U implies Γ[x : T ′] ⊢ S <: U .

Narrowing is proved for DOT by Amin et al. [2016]. The proof is standard, with no issues specific

to DOT, by induction on the typing and subtyping rules.

3.6 Operational Semantics
In general, a type soundness proof for a given operational semantics shows that if a term t has a
type T , then it steps to another term of the same type (in a small-step semantics), or it reduces to

a value of the same type (in a big-step semantics). In both cases, the first step of the proof is to

deduce the form of the value from its type. The second step is then to apply the evaluation relation

to obtain a new term (or value), apply the typing rules to obtain its type, and (hopefully) conclude

that it has the original type T . The techniques presented in the preceding sections solve the first

step for DOT. In this section, we consider the second step, highlighting aspects that differ from

standard techniques for other calculi.

A key concept in any type soundness proof is that if an overall term has a type, then each

subterm that the semantics evaluates must also have a type in some appropriate typing context Γ.
This applies both in big-step semantics to each subterm that the evaluation function recursively

evaluates, and in small-step semantics to each subterm that can appear in the hole of an evaluation

context. In order to use the theory developed in the preceding sections to prove soundness of any

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:17

DOT semantics, whether big-step or small-step, an essential extension to this concept is that the

typing context Γ in which the subterm to be evaluated has a type must be inert. If the typing context
were not inert, we would not be able to conclude anything about the subterm being evaluated from

its type. The various existing semantics that have been defined for DOT have the property that

each subterm that the semantics evaluates is indeed typable in some inert context. Note that it is

possible for a well-typed DOT program to have subterms not typable in any inert context, but only

in positions where they do not reduce, such as in a function whose parameter type is uninhabited.

e F [] | let x = [] in t | let x = v in e evaluation context

t 7−→ t ′

e[t] 7−→ e[t ′]
(Term)

v = λ(z : T).t

let x = v in e[x y] 7−→ let x = v in e[[y/z] t]
(Apply)

v = ν (x : T) . . . {a = t } . . .

let x = v in e[x .a] 7−→ let x = v in e[t]
(Project)

let x = y in t 7−→ [y/x] t (Let-Var)

let x = let y = s in t in u 7−→ let y = s in let x = t in u (Let-Let)

Fig. 6. DOT Operational Semantics [Amin et al. 2016]

e contains the binding let x = λ(z : T).t

e[x y] 7−→ e[[y/z] t]
(Apply)

e contains the binding let x = ν (x : T) . . . {a = t } . . .

e[x .a] 7−→ e[t]
(Project)

e[let x = [y] in t] 7−→ e[[y/x] t] (Let-Var)

e[let x = [let y = s in t] in u] 7−→ e[let y = s in let x = t in u] (Let-Let)

Fig. 7. DOT Operational Semantics with Inlined (Term) Rule

The variant of DOT that we have studied in this paper is fromAmin et al. [2016], which defines the

small-step semantics with evaluation contexts shown in Figure 6. Accordingly, we prove soundness

using the progress and preservation approach of Wright and Felleisen [1994]. To make the reduction

rules more convenient to work with, we have inlined the (Term) rule into each of the other rules in

Figure 7. As a result, the conclusions of the (Apply) and (Project) rules operate on the complicated

contexts of the form e[let x = v in e[]]. We rewrite these contexts into just e[] and add a premise

that e contains the binding let x = v .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:18 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

Since the semantics is small step, we must show that if an overall term u = e[t] has a type, then
t has a type in an appropriate, inert typing context Γ. The next definitions make precise which

typing contexts are appropriate for a given evaluation context e , and the next lemma gives us the

typing context that we need.

Definition 3.12. An evaluation context e is well-typed with respect to a typing context Γ, written
e : Γ, if whenever e contains the binding let x = v , then Γ ⊢ v : Γ(x).

Definition 3.13. The domain of an evaluation context e is the set of variables that are bound to

values by let bindings in e .

Lemma 3.14 (Context Type). If ⊢ e[t] : U , then there exists an inert typing context Γ and a typeT
such that e : Γ, the domains of e and Γ are equal, and Γ ⊢ t : T .

Proof. We prove a stronger induction hypothesis: for any Γ′, if Γ′ ⊢ e[t] : U , then there exists

an inert typing context Γ and a type T such that e : Γ′, Γ, the domains of e and Γ are equal, and

Γ′, Γ ⊢ t : T . The lemma will then follow by setting Γ′ = ∅. The proof is by induction on the

derivation of Γ′ ⊢ e[t] : U . The interesting case is the (Let) typing rule. For each let binding xi = vi
in e , the premises of the rule yield a type Ti of vi to which xi can be bound in the typing context Γ
being constructed. In order to construct an inert Γ, the type that we add must be inert, which may

not be the case for Ti . The following lemma ensures that every value that has a type Ti also has

a precise type T ′i that is a subtype of Ti . Every precise type of a value is inert, so we add T ′i to Γ
instead of Ti to keep Γ inert. □

Lemma 3.15 (Value Typing). If Γ ⊢ v : T , then there exists a type T ′ such that Γ ⊢! v : T ′ and
Γ ⊢ T ′ <: T .

Proof. [Amin et al. 2016] The proof is by induction on the derivation of Γ ⊢ v : T , and is short

because only three typing rules apply to values: (All-I), ({}-I), and (Sub). In the first two cases, the

precise type of v coincides with the general type. The subsumption case is handled by using the

induction hypothesis and transitivity of subtyping. □

With these results, we can prove the standard progress theorem that every typable term is a

normal form or reduces to some other term.

Definition 3.16. [Amin et al. 2016] A normal form is a term generated by the grammar:

n ::= v | x | let x = v in n

Theorem 3.17 (Progress). If ⊢ u : U , then u is a normal form or there is some u ′ such that
u 7−→ u ′.

Proof. Let e be the longest evaluation context such that e[t] = u, constructed by greedily

applying the production rules of the evaluation context grammar, preferring e ::= let x = v in e
over e ::= let x = [] in t , and preferring the latter over e ::= [], for as long as there exists a t such
that e[t] = u. For every u, some evaluation context e always exists because [u] = u.
Then, by Lemma 3.14, there exists an inert typing context Γ and type T such that e : Γ, the

domains of e and Γ are equal, and Γ ⊢ t : T . We proceed by induction on the derivation of Γ ⊢ t : T ,
in each case finding a reduction rule that applies. The interesting cases are (All-E) and ({}-E).

In the premises of (All-E), variable x has type ∀(z : S)T . Lemma 3.7 (∀ to Γ(x)) tells us that Γ
binds x to a compatible function type. The equality of the domains of e and Γ ensures that e binds
x to some value v , and e : Γ ensures that v has a compatible function type. Finally, Lemma 3.8 (∀ to

λ) tells us the v is a lambda, so the (Apply) reduction rule can be applied.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:19

The ({}-E) case is similar, but using Lemma 3.9 (µ to Γ(x)) and Lemma 3.10 (µ to ν) instead of

Lemmas 3.7 and 3.8, respectively, and the (Project) reduction rule instead of (Apply). □

In the above proof, our Coq formulation omits proving that the procedure of constructing the

longest evaluation context e for which there exists a t such that e[t] = u terminates, i.e., that we

cannot keep adding an unbounded number of value let bindings of the form let x = v to e and
always finding a subterm t such that e[t] = u.
We can now prove the standard preservation theorem.

Theorem 3.18 (Preservation). If ⊢ u : U and u 7−→ u ′, then ⊢ u ′ : U .

Proof. Since u 7−→ u ′, there must be some evaluation contexts and subterms such that u = e[t]
and u ′ = e ′[t ′]. We use the observation that in the reduction relation, e and e ′ are very similar;

precisely, for each case, we can find a subterm t0 such that e ′[t0] = e[t] = u. Using Lemma 3.14,

we obtain an inert Γ and T such that e ′ : Γ and Γ ⊢ t0 : T . The proof proceeds by induction on

the derivation of this typing. The interesting cases are again (All-E) and ({}-E), and we apply

Lemmas 3.7 to 3.10 to obtain values with the necessary types like in the proof of Theorem 3.17

(Progress). In each case, we obtain that Γ ⊢ t ′ : T , with the (All-E) case requiring the substitution

lemma defined below.

Now we have ⊢ e ′[t0] : U , Γ ⊢ t0 : T , and Γ ⊢ t ′ : T , and we need to prove ⊢ e ′[t ′] : U . The overall

approach is to apply induction to the structure of e ′, and in the inductive step, to apply another

induction on the derivation of Γ ⊢ t0 : T . Specifically, if the evaluation context e ′ is empty, then

e ′[t0] = t0, T = U , Γ = ∅, and e ′[t ′] = t ′, so Γ ⊢ e ′[t ′] : U . If e ′ is not empty, then it ends in either

let x = v in [] or let x = [] in s . The inductive step moves this final let out of the evaluation context

into the term by replacing the term t0 with let x = v in t0 or let x = t0 in s , respectively. The same

replacement is also applied to t ′. Each such move of a value let binding out of e ′ and into t0 and t
′

preserves the fact that if Γ ⊢ t0 : T , then Γ ⊢ t ′ : T , which we prove by induction on the derivation

of Γ ⊢ t0 : T . □

Lemma 3.19 (Substitution). If (Γ, x : S) ⊢ t : T and Γ ⊢ y : [y/x] S then Γ ⊢ [y/x] t : [y/x]T .

The lemma is proven by Amin et al. [2016]. The proof is standard, with no issues specific to DOT,

by induction on the typing and subtyping rules. Thanks to the use of A-normal form in the DOT

syntax, function application and therefore substitution is needed only for substituting variables for

other variables.

Our paper comes with a Coq-formalized version of the presented proof. It is based on the original

Coq proof by Amin et al. [2016].

4 PROOF STRUCTURE AND EXTENSIONS
This section summarizes the structure of the proof and discusses how the proof is affected by

changes and extensions of the DOT calculus.

4.1 Proof Structure
The dependencies between the main lemmas in the proof are summarized in the diagram in Figure 8.

The gray nodes and solid lines denote the lemmas in the proof for the DOT calculus that we have

presented in this paper. The white boxes and dotted lines correspond to changes needed to prove

soundness of an example extension of the calculus that will be described in Section 4.3.

The final progress and preservation theorems depend on the four applications of the proof recipe

to prove canonical forms for values and variables of object and function type (written in the figure

as ∀ to λ, µ to ν , ∀ to Γ(x), and µ to Γ(x)). Each application of the proof recipe uses Theorem 3.3 (⊢

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:20 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

progress preservation

canonical forms

general to tight

tight to invertible

invertible to precise

⊢ to ⊢#

Sel

replacement

Sel

premise

µ to ν ∀ to Γ(x)∀ to λ µ to Γ(x)

⊢# to ⊢##v

⊢##v
subtyping

closure

⊢# to ⊢##

⊢##

subtyping

closure

⊢##v to ⊢! λ ⊢##v to ⊢! ν ⊢## to ⊢! ∀ ⊢## to ⊢! µ

T to v T to Γ(x)

⊢##v to ⊢! v ⊢## to ⊢! T

Fig. 8. Dependencies between main lemmas in the proof. Gray nodes denote existing lemmas. White nodes
denote lemmas that would need to be added if DOT were extended with a new type T and a new value v .
Dotted lines correspond to lemmas that will need to be added or modified for the extension.

to ⊢#) and Theorem 3.6 (⊢# to ⊢##) to convert general typing to tight typing and then to invertible

typing. Theorem 3.3 depends on Lemma 3.4 (Sel-<: Replacement) and Lemma 3.5 (Sel-<:-# Premise).

Theorem 3.6 depends on a subtyping closure helper lemma. After using the theorems to obtain

invertible typing, we invert the invertible typing in each of the four cases to obtain either the type

Γ(x) assigned to a variable x by the typing context Γ or the form of the value v with the given type.

The four light large boxes in the figure indicate the canonical-forms lemmas, and the three phases

of the proof recipe (conversion of general to tight typing, tight to invertible typing, and inversion

of invertible typing).

4.2 Modifications of the Calculus
The most common expected extensions of a calculus are the addition of new forms of values and

terms, of new forms of types and typing rules, and changes to the evaluation rules. Most extensions

will change multiple aspects (e.g., add a new form of value and an associated type), but we discuss

each change individually. In the next section, we will present a specific example of an extension

that makes all of these kinds of changes.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:21

The only part of our proof that deals with values are the two pairs of canonical forms lemmas in

Section 3.5 and the final progress and preservation theorems. A new form of value will require an

additional pair of canonical-forms lemmas. The lemma can follow the general recipe: it will apply

Theorem 3.3 (⊢ to ⊢#) and Theorem 3.6 (⊢# to ⊢##). It does not need to reason with the general DOT

typing rules, but only to invert the invertible typing obtained from Theorem 3.6. This last inversion

step should be easy, because invertible typing is designed to be easily invertible. The addition of a

new form of value is illustrated in the dependence graph by the two white nodes on the left side of

the graph.

The only part of the proof that deals with terms in general are the final progress and preservation

theorems. The only non-trivial change required when adding a new term is that if new reduction

rules are added for the new term to the operational semantics, cases for the new reduction rules

need to be added to the progress and preservation theorems. This is illustrated in the dependence

graph by the dotted outlines of the nodes representing those two theorems.

Adding a new form of type is a more significant change. Given general typing rules for the

new type, we must incorporate the changes into the tight, invertible, and precise typing rules.

Tight typing differs from general typing only in its handling of abstract type members and type

projections, so changes unrelated to those features can be incorporated directly into tight typing. A

change involving abstract type members or type projections requires corresponding modifications

to tight typing. Property 2 (Tight Typing Guarantee) gives a modular specification to guide the

design of such modifications. Specifically, we know that as long as the modified tight typing rules

satisfy the property and we can prove Theorem 3.3 (⊢ to ⊢#), then the proof recipe and the rest

of the whole soundness proof will continue to hold without requiring non-trivial changes. To

incorporate the modifications into invertible and precise typing, it suffices to follow the general

recipe outlined in Section 3.4. Specifically, we must classify the new tight typing rules as either

introducing or eliminating a syntactic construct, and then add them to either invertible or precise

typing, respectively. Adding new typing rules requires adding the corresponding cases to the proofs

of Theorem 3.3 (⊢ to ⊢#) and Theorem 3.6 (⊢# to ⊢##). To illustrate this, we add a dotted outline

around the node representing Theorem 3.6 and the subtyping closure lemma used in its proof. In

the proof of Theorem 3.3 (⊢ to ⊢#), all cases except (<:-Sel) and (Sel-<:) are so simple that Coq

discharges them automatically, so we do not add a dotted outline to the node to indicate new cases

in the proof.

A change to the evaluation rules of the calculus does not affect any of the reasoning in Sections 3.1

to 3.5, since those sections are independent of any particular evaluation semantics. Only the final

progress and preservation theorems are affected.

4.3 Case Study: Adding Mutation to DOT
We have applied our proof technique to prove soundness of the mutable extension of DOT of

Rapoport and Lhoták [2017], which adds mutable reference cells and associated reference types.

This extension of the calculus involved adding the following to the soundness proof:

– a new case to the definition of inert types: any reference type T is inert;

– an additional case to the definitions of invertible typing for variables and invertible typing

for values v ;
– two new canonical forms lemmas for values and variables of reference type following the

proof recipe;

– the corresponding cases to Theorem 3.6 (⊢# to ⊢##) and the subtyping closure lemma that it

depends on, to Theorem 3.17 (Progress), and to Theorem 3.18 (Preservation).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:22 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

These changes are shown using dotted lines and white nodes in the dependence graph in Figure 8.

The overall structure of the dependencies between the lemmas did not change. The new canonical

forms lemmas followed the proof recipe that we have described in this paper. In the proofs of some

lemmas, we had additional new cases to prove, but the structure of the proof of each lemma did

not change. In general, we found that the new lemmas and new cases in the existing lemmas were

easy to prove.

5 THE STRUGGLE FOR “GOOD” BOUNDS
A recurring theme in previous work on DOT has been the struggle to enforce “good” bounds. A type

member declaration {A : S ..U } is considered to have “good” bounds if S <: U . If all type members

could be forced to maintain “good” bounds, it would prevent an object of type µ (x : {A : S ..U })
from introducing a new, possibly non-sensical subtyping relationship S <: U from S <: x .A <: U
and transitivity. Many of the challenges along the way to defining a sound DOT calculus arose

from the negative interaction between “good” bounds and other properties, such as narrowing

and transitivity. For example, although both {A : ⊥..⊥} and {A : ⊤..⊤} have “good” bounds, the
narrowed type {A : ⊥..⊥}∧{A : ⊤..⊤} causes trouble: in the function λ(x : {A : ⊥..⊥}∧{A : ⊤..⊤}).t ,
the body t is type-checked in a typing context in which ⊤ <: x .A <: ⊥.
Not only do “good” bounds interact poorly with other desirable properties, but even defining

precisely what “good” bounds are is surprisingly elusive. Informally, bounds are “good” if S <: U .

But in what typing context should this subtyping relationship hold? In deciding whether the type

µ (x : {A : S ..U }) should be allowable, it seems appropriate to respect the recursion implied by µ and
use a context that includes x ; that is, to require that (Γ, x : {A : S ..U }) ⊢ S <: U . But this statement

is always true regardless of the types S and U because it is self-justifying: (Γ, x : {A : S ..U }) ⊢
S <: x .A <: U . If we decide instead to exclude the self-reference x from the context used to

decide whether S <: U , we exclude many desirable types from the definition of “good” bounds. For

example, we consider “bad” the type µ (x : {A : ⊥..⊤} ∧ {B : x .A..x .C} ∧ {C : ⊥..⊤}) that innocently
defines three type members with A <: B <: C , because x .A cannot be a subtype of x .C without x
in the context. We also consider “bad” the following type that defines two type members A <: B
constrained to be function types: µ (x :

{
A : ⊥..∀(y : ⊥)⊤

}
∧
{
B : x .A..∀(y : ⊥)⊤

}
). Again, x .A cannot

be a subtype of ∀(y : ⊥)⊤ without x in the context. Finally, such a definition of “good” bounds

restricts the applicability of type aliases: the following type defines A and B as aliases for ⊤ and

⊥, respectively, but cannot use these aliases in the bounds of C because x .B ̸<: x .A in a context

without x : µ (x : {A : ⊤..⊤} ∧ {B : ⊥..⊥} ∧ {C : x .B..x .A}). Although it would be possible to come

up with some definition of “good” bounds that handles these specific examples, the definition of

what was intended to be an obvious and intuitive concept would become very complicated, and

other more sophisticated counterexamples would probably continue to exist. Thus, it appears that

trying to enforce “good” bounds, and even trying to define what “good” bounds are, is a dead end.

By contrast, inert types obey a purely syntactic property that is easily defined and checked,

without requiring a subtyping judgment in some typing context that would have to be specified.

The property provided by an inert typing context can be stated precisely and formally (Property 1

(Inert Context Guarantee)).

6 RELATEDWORK
6.1 DOT Soundness Proofs
The work most closely related to ours is Amin et al. [2016], which defines and proves sound the

variant of the DOT calculus for which we have developed our alternative soundness proof. That

work also defines tight typing, though it does not use it as pervasively as our proof does.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:23

A central notion of that proof is store correspondence, a relationship between typing contexts

and stores of runtime values. A typing context Γ corresponds to a store s if for every variable x ,
Γ ⊢! s (x) : Γ(x). Typing and subtyping in a context Γ that corresponds to some store s have similar

predictable behaviour as they do in an inert context. Part of the proof consists of lemmas that

relate internal details of values in stores with internal details of types in corresponding contexts.

By contrast, the property of inert contexts is independent of values, so our proof does not depend

on such lemmas.

Another central notion is “possible types”: if a typing context Γ corresponds to some store s , and
s assigns to variable x the value v , then the possible types of the triple (Γ,x ,v) include all types T
such that Γ ⊢ x : T . Possible types serve a similar purpose as our invertible typing rules, to facilitate

induction proofs. Unlike invertible typing, possible types depend on the runtime value v of x . The
possible types lemma relates general typing in a context with a corresponding store to possible

types. It serves a similar purpose as our Theorem 3.6 (⊢# to ⊢##) (which relates tight to invertible

typing), but its proof is more complicated, because it depends on sublemmas that relate types to

values in the context corresponding to the store, and on general typing.

Amin et al. [2016] also prove a similar result as Theorem 3.3 (⊢ to ⊢#): the general to tight lemma

states that in a context Γ for which there exists some corresponding runtime store s , general typing
implies tight typing. We prove Theorem 3.6 (⊢# to ⊢##) first, which makes proving Theorem 3.3 (⊢ to

⊢#) easy. The proof of Amin et al. [2016] does the analogous steps in the opposite order: it proves

the general to tight lemma first, and the possible types lemma afterwards, using the general to tight

lemma in its proof. The proof of the general to tight lemma is thus complicated because it cannot

make use of possible types. Another complication is that the proof of the general to tight lemma,

like the proof of the possible types lemma, depends on sublemmas that relate types to values in the

context corresponding to the store.

Rompf and Amin [2016] define a variant of the DOT calculus with additional features, most

significantly subtyping between recursive types. This adds significant complexity to the proof:

Lemmas 6 to 11 are needed only because of this feature. However, subtyping between Scala’s types

can be already modelled by subtyping between type members in DOT. Scala has nominal subtyping

between classes and traits that are explicitly declared to be subtypes using an extends clause. A
class or trait declaration in Scala corresponds in DOT to a type member definition in some package

x that gives a label A to a recursive type. The recursive type is used to define the members of the

class, and the recursion is necessary so that members of the class can refer to the object of the class

this. A subclass B of A can be declared as the type member definition B = x .A ∧ µ (z : x .A ∧T),
where the type T describes the additional members that B adds to A. Then x .B is a subtype of x .A,
and given a variable of type x .B, it is possible to access both members that were declared in A and

members that were added in B. This DOT encoding models the Scala subtyping between classes A
and B without requiring subtyping between recursive types, and it can be expressed in the DOT

of Amin et al. [2016].

Unlike Amin et al. [2016] and our proof, the proof of Rompf and Amin [2016] does not use

tight typing, the typing relation that neutralizes the two type rules that enable a DOT program to

introduce non-sensical subtyping relationships in a custom type system. Instead, the proof uses

“precise subtyping”, a restriction of general subtyping to relationships whose derivation does not

end in the transitivity rule.

6.2 History of Scala Calculi
Odersky et al. [2003] introduce νObj, a calculus to formalize Scala’s path-dependent types. νObj
includes abstract type members, classes, compound (non-commutative) mixin composition, and

singleton types, among other features. However, the calculus lacks several essential Scala features,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:24 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

such as the ability to define custom lower bounds for type members, and has no top and bottom

types. Additionally, νObj, unlike Scala, has classes as first-class values. νObj comes with a type

soundness proof. The paper also shows that type checking for νObj is undecidable. Cremet et al.

[2006] propose Featherweight Scala, which is similar to νObj, but without classes as first-class
values. The paper shows that type inference in Featherweight Scala is decidable, but does not prove

type safety. Scalina, introduced by Moors et al. [2008], presents a formalization for higher-kinded

types in Scala, but also without a soundness proof.

Amin et al. [2012] present the first DOT. DOT has fewer syntax-level features than νObj: there are
no classes, mixins, or inheritance. However, some of the previously missing crucial Scala features

are now present. The calculus allows refinement of abstract type members through commutative

intersections, combining nominal with structural typing. Type members can have custom lower

and upper bounds, and the type system contains a bottom and top type. The paper comes without

a type safety proof, but it explains the challenges and provides counterexamples to preservation.

The paper shows how the environment narrowing property makes proving soundness complicated:

replacing a type in the context with a more precise version can impose a new subtyping relationship,

which could disagree with the existing ones.

Amin et al. [2014] have the first mechanized soundness proof for µDOT, a simplified calculus

that excludes refinements, intersections, and the bottom and top types, and uses big-step semantics.

The paper proposes the idea to circumvent bad bounds by reasoning about types that correspond

to runtime values.

Amin et al. [2016] and Rompf and Amin [2016] build on this store correspondence idea, to

establish the first mechanized soundness proofs for DOT calculi with support for type intersection

and refinement, and top and bottom types. The two calculi and soundness proofs were discussed in

the previous section.

6.3 Other Related Calculi
Path-dependent types were first introduced in the context of family polymorphism by Ernst [2001].

In family polymorphism, groups of types can form families that correspond to a specific object. Two
types from the same class are considered incompatible if the types are associated with different

runtime objects.

Family polymorphism is the foundation of virtual classes, which were introduced in the Beta

programming language [Madsen and Møller-Pedersen 1989] and further developed in gbeta [Ernst

1999]. Virtual classes are nested classes that can be extended or redefined (overridden), and are

dynamically resolved through late binding. Family polymorphism allows for a fine-grained distinc-

tion between classes that have the same static path, yet belong to different runtime objects and can

thus have different implementations.

Virtual classes were first formalized and proved type safe in the vc calculus [Ernst et al. 2006]. vc
is a class-based, nominally-typed calculus with a big-step semantics. To create path-based types,

the keyword out is used to refer to an enclosing object. With its support for classes, inheritance,

and mutation of variables, vc is more complex than DOT, whose purpose is to serve as a simple

core calculus for Scala. Additionally, Scala has no support for virtual classes: the language does not

allow class overriding, and its classes are resolved statically at compile time.

Tribe by Clarke et al. [2007] is a simpler, more general calculus inspired by vc. One of the main

distinctions to vc is that variables, and not just enclosing objects (out), can be used as paths for path-

dependent types. This makes the calculus more general, as it can express subtyping relationships

between classes with arbitrary absolute paths. Tribe comes with a type-safety proof, which is

based on a small-step semantics. Expanding paths to allow variables brings Tribe closer to DOT.

However, the complexity of the type system, resulting from modelling classes and inheritance, and

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

A Simple Soundness Proof for Dependent Object Types 46:25

the modelling of virtual classes, which are not present in Scala, leaves DOT more suitable as a core

calculus for Scala.

Amin and Rompf [2017] offer a survey of mechanized soundness proofs for big-step, DOT-like

calculi using definitional interpreters. The paper explores a family of calculi ranging from System F

to System D<:> and general proof techniques that can be applied to this entire family. The paper

discusses similarities and differences between System D<:> and DOT.

7 CONCLUSION
DOT [Amin et al. 2016] is the result of a long effort to develop a core calculus for Scala. Now that

there is a sound version of the calculus, we would like to extend it with other Scala features, such as

classes, mixin composition, side effects, implicit parameters, etc. DOT can be also used as a platform

for developing new language features and for fixing Scala’s soundness issues [Amin and Tate 2016].

But these applications are hindered by the complexity of the existing soundness proofs, which

interleave reasoning about variables, types, and runtime values, and their complex interactions.

We have presented a simplified soundness proof for the DOT calculus, formalized in Coq. The

proof separates the reasoning about types, typing contexts, and values from each other. The proof

depends on the insight of inert typing contexts, a syntactic characterization of contexts that rule

out any non-sensical subtyping that could be introduced by abstract type members. The central

lemmas of the proof follow a general proof recipe for deducing properties of terms from their types

in full DOT while reasoning only in a restricted, intuitive environment free from the paradoxes

caused by abstract type members. The same recipe can be followed to prove similar lemmas when

the calculus is modified or extended. The result is a simple, modular proof that is well suited for

developing extensions.

A APPENDIX
Proof of Lemma 3.7 (∀ to Γ(x)).

inert Γ Γ ⊢ x : ∀(y : T)U

inert Γ Γ ⊢# x : ∀(y : T)U
Theorem 3.3 (⊢ to ⊢#)

inert Γ Γ ⊢## x : ∀(y : T)U
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! x : ∀(y : T
′)U ′ Γ ⊢ T <: T ′ (Γ, y : T ′) ⊢ U ′ <: U

Induction

on ⊢##

inert Γ Γ ⊢! x : ∀(y : T
′)U ′ Γ ⊢ T <: T ′ (Γ, y : T) ⊢ U ′ <: U

Narrowing

inert Γ Γ(x) = ∀(y : T ′)U ′ Γ ⊢ T <: T ′ (Γ, y : T) ⊢ U ′ <: U
Induction

on ⊢!

□

Proof of Lemma 3.9 (µ to Γ(x)).

inert Γ Γ ⊢ x : {a : T }

inert Γ Γ ⊢# x : {a : T }
Theorem 3.3 (⊢ to ⊢#)

inert Γ Γ ⊢## x : {a : T }
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! x :
{
a : T ′

}
Γ ⊢ T ′ <: T

Induction on ⊢##

inert Γ Γ(x) = µ (x : ··· ∧
{
a : T ′

}
∧ ···) Γ ⊢ T ′ <: T

Induction on ⊢!

□

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

46:26 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták

Proof of Lemma 3.10 (µ to ν).

inert Γ Γ ⊢ v : µ (x : S) S = ··· ∧ {a : T } ∧ ···

inert Γ Γ ⊢# v : µ (x : S) S = ··· ∧ {a : T } ∧ ···
Theorem 3.3 (⊢ to ⊢#)

inert Γ Γ ⊢## v : µ (x : S) S = ··· ∧ {a : T } ∧ ···
Theorem 3.6 (⊢# to ⊢##)

inert Γ Γ ⊢! v : µ (x : S) S = ··· ∧ {a : T } ∧ ···
Induction on ⊢##

inert Γ v = ν (x : S) (··· ∧ {a = t } ∧ ···) Γ ⊢ t : T
Inversion of ({}-I-!)

□

ACKNOWLEDGMENTS
This research was supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES
Martín Abadi and Luca Cardelli. 1996. A Theory of Objects. Springer.
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday (Lecture Notes in Computer Science), Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.),

Vol. 9600. Springer, 249–272. DOI:http://dx.doi.org/10.1007/978-3-319-30936-1_14
Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent Object Types. In International Workshop on Foundations

of Object-Oriented Languages (FOOL 2012).
Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 666–679. DOI:http://dx.doi.org/10.1145/3009837

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-dependent types. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 233–249. DOI:
http://dx.doi.org/10.1145/2660193.2660216

Nada Amin and Ross Tate. 2016. Java and Scala’s type systems are unsound: the existential crisis of null pointers, See [Visser

and Smaragdakis 2016], 838–848. DOI:http://dx.doi.org/10.1145/2983990.2984004
Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. 2007. Tribe: a simple virtual class calculus. In

Proceedings of the 6th International Conference on Aspect-Oriented Software Development, AOSD 2007, Vancouver, British
Columbia, Canada, March 12-16, 2007 (ACM International Conference Proceeding Series), Brian M. Barry and Oege de Moor

(Eds.), Vol. 208. ACM, 121–134. DOI:http://dx.doi.org/10.1145/1218563.1218578
Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. 2006. A Core Calculus for Scala Type Checking. In

Mathematical Foundations of Computer Science, 31st International Symposium, Slovakia.
Erik Ernst. 1999. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic Inheritance. Ph.D.

Dissertation. Department of Computer Science, University of Aarhus, Århus, Denmark.

Erik Ernst. 2001. Family Polymorphism. In ECOOP 2001 - Object-Oriented Programming, 15th European Conference, Budapest,
Hungary, June 18-22, 2001, Proceedings (Lecture Notes in Computer Science), Jørgen Lindskov Knudsen (Ed.), Vol. 2072.

Springer, 303–326. DOI:http://dx.doi.org/10.1007/3-540-45337-7_17
Erik Ernst, Klaus Ostermann, and William R. Cook. 2006. A virtual class calculus. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13,
2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 270–282. DOI:http://dx.doi.org/10.1145/1111037.
1111062

Ole Lehrmann Madsen and Birger Møller-Pedersen. 1989. Virtual Classes: A Powerful Mechanism in Object-Oriented

Programming. In Conference on Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA’89), New
Orleans, Louisiana, USA, October 1-6, 1989, Proceedings., George Bosworth (Ed.). ACM, 397–406. DOI:http://dx.doi.org/10.
1145/74877.74919

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Safe type-level abstraction in Scala. In International Workshop on
Foundations of Object-Oriented Languages (FOOL 2008).

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. 2003. A Nominal Theory of Objects with Dependent

Types. In ECOOP 2003 - Object-Oriented Programming, 17th European Conference, Darmstadt, Germany, July 21-25,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

http://dx.doi.org/10.1007/978-3-319-30936-1_14
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1145/2660193.2660216
http://dx.doi.org/10.1145/2983990.2984004
http://dx.doi.org/10.1145/1218563.1218578
http://dx.doi.org/10.1007/3-540-45337-7_17
http://dx.doi.org/10.1145/1111037.1111062
http://dx.doi.org/10.1145/1111037.1111062
http://dx.doi.org/10.1145/74877.74919
http://dx.doi.org/10.1145/74877.74919

A Simple Soundness Proof for Dependent Object Types 46:27

2003, Proceedings (Lecture Notes in Computer Science), Luca Cardelli (Ed.), Vol. 2743. Springer, 201–224. DOI:http:
//dx.doi.org/10.1007/978-3-540-45070-2_10

Martin Odersky and Matthias Zenger. 2005. Scalable component abstractions. In Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005, October 16-20,
2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.). ACM, 41–57. DOI:http://dx.doi.org/10.1145/
1094811.1094815

Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone

too far? affordable 2nd-class values for fun and (co-)effect, See [Visser and Smaragdakis 2016], 234–251. DOI:http:
//dx.doi.org/10.1145/2983990.2984009

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Marianna Rapoport and Ondřej Lhoták. 2017. Mutable WadlerFest DOT. In Proceedings of the 19th Workshop on Formal
Techniques for Java-like Programs (FTFJP’17). ACM, New York, NY, USA, Article 7, 6 pages. DOI:http://dx.doi.org/10.
1145/3103111.3104036

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT), See [Visser and Smaragdakis 2016],

624–641. DOI:http://dx.doi.org/10.1145/2983990.2984008
Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In 30th European Conference on

Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shriram Krishnamurthi and Benjamin S.

Lerner (Eds.), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 21:1–21:28. DOI:http://dx.doi.org/10.4230/
LIPIcs.ECOOP.2016.21

Eelco Visser and Yannis Smaragdakis (Eds.). 2016. Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016. ACM. DOI:http://dx.doi.org/10.1145/2983990

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994), 38–94.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 46. Publication date: October 2017.

http://dx.doi.org/10.1007/978-3-540-45070-2_10
http://dx.doi.org/10.1007/978-3-540-45070-2_10
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1145/2983990.2984009
http://dx.doi.org/10.1145/2983990.2984009
http://dx.doi.org/10.1145/3103111.3104036
http://dx.doi.org/10.1145/3103111.3104036
http://dx.doi.org/10.1145/2983990.2984008
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.1145/2983990

	Abstract
	1 Introduction
	2 Background
	2.1 DOT Syntax
	2.2 DOT Typing Rules
	2.3 Bad Bounds

	3 Proof
	3.1 Overview
	3.2 Inert Typing Contexts
	3.3 Tight Typing
	3.4 Inversion of Tight Typing
	3.5 Extending to Values
	3.6 Operational Semantics

	4 Proof Structure and Extensions
	4.1 Proof Structure
	4.2 Modifications of the Calculus
	4.3 Case Study: Adding Mutation to DOT

	5 The Struggle for ``Good'' Bounds
	6 Related Work
	6.1 DOT Soundness Proofs
	6.2 History of Scala Calculi
	6.3 Other Related Calculi

	7 Conclusion
	A Appendix
	Acknowledgments
	References

