
17-1

Last time

□ UDP socket programming

♦ DatagramSocket, DatagramPacket

□ TCP

♦ Sequence numbers, ACKs

♦ RTT, DevRTT, timeout calculations

♦ Reliable data transfer algorithm

17-2

This time

□ TCP

♦ Fast retransmit

♦ Flow control

♦ Connection management

♦ Congestion control

17-3

Fast Retransmit

□ Time-out period often
relatively long:
♦ long delay before

resending lost packet

□ Detect lost segments
via duplicate ACKs.
♦ Sender often sends

many segments back-to-
back

♦ If segment is lost, there
will likely be many
duplicate ACKs.

□ If sender receives 3
ACKs for the same data,
it supposes that segment
after ACKed data was
lost:
♦ fast retransmit: resend

segment before timer
expires

17-4

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y == 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

17-5

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

17-6

TCP Flow Control

□ Receive side of TCP
connection has a
receive buffer:

□ Speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

□ App process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

17-7

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

□ spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

□ Rcvr advertises spare
room by including value
of RcvWindow in
segments

□ Sender limits unACKed
data to RcvWindow
♦ guarantees receive buffer

doesn’t overflow

See the applet in UW-ACE!

17-8

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

17-9

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

□ initialize TCP variables:
♦ seq. #s
♦ buffers, flow control info

(e.g. RcvWindow)

□ client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
□ server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
♦ specifies initial seq #
♦ no data

Step 2: server host receives SYN,
replies with SYNACK segment

♦ server allocates buffers
♦ specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

17-10

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server.

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
ed

 w
ai

t

17-11

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

♦ Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
 Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed

17-12

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

17-13

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

17-14

Principles of Congestion Control

Congestion:
□ informally: “too many sources sending too much data

too fast for network to handle”
□ different from flow control!
□ manifestations:

♦ lost packets (buffer overflow at routers)
♦ long delays (queueing in router buffers)

□ a top-10 problem!

17-15

Causes/costs of congestion: scenario 1

□ Two senders, two
receivers

□ One router, infinite
buffers

□ No retransmission

□ Large delays
when congested

□ Maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

17-16

Causes/costs of congestion: scenario 2

□ One router, finite buffers
□ Sender retransmission of lost packet

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

17-17

Causes/costs of congestion: scenario 2
□ Always: (goodput)

□ “Perfect” retransmission only when loss:

□ Retransmission of delayed (not lost) packet makes larger (than

perfect case) for same

λ
in

λout
=

λ
in

λout
>

λ
inλout

“Costs” of congestion:
□ More work (retransmissions) for given “goodput”
□ Unneeded retransmissions: link carries multiple copies of packet

R/2

R/2
λin

λ o
u

t

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

17-18

Causes/costs of congestion: scenario 3
□ Four senders
□ Multihop paths
□ Timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

17-19

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
□ When packet dropped, any upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o

u

t

17-20

Approaches towards congestion control

End-end congestion
control:

□ no explicit feedback from
network

□ congestion inferred from
end-system observed loss,
delay

□ approach taken by TCP

Network-assisted
congestion control:

□ routers provide feedback to
end systems
♦ single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

♦ explicit rate sender
should send at

Two broad approaches towards congestion control:

17-21

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

17-22

TCP Congestion Control: details

□ Sender limits transmission:
 LastByteSent-LastByteAcked

 ≤ CongWin

□ Roughly,

□ CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?

□ Loss event = timeout or
3 duplicate acks

□ TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
♦ AIMD
♦ slow start
♦ conservative after

timeout events

rate =
CongWin

RTT
Bytes/sec

17-23

TCP congestion control: additive increase,
multiplicative decrease

8 K b y t e s

1 6 K b y t e s

2 4 K b y t e s

t i m e

c o n g e s t i o n
w i n d o w

□ Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

♦ additive increase: increase CongWin by 1 MSS every
RTT until loss detected

♦ multiplicative decrease: cut CongWin in half after loss

timeco
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

17-24

TCP Slow Start

□ When connection begins,
CongWin = 1 MSS
♦ Example: MSS = 1 kBytes

& RTT = 200 msec
♦ initial rate = 40 kbps

□ available bandwidth may
be >> MSS/RTT
♦ desirable to quickly ramp

up to respectable rate

□ When connection begins,
increase rate
exponentially fast until
first loss event

17-25

TCP Slow Start (more)

□ When connection
begins, increase rate
exponentially until first
loss event:
♦ double CongWin every

RTT
♦ done by incrementing
CongWin for every ACK
received

□ Summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

R
T

T

Host B

time

two segments

four segments

17-26

Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

 Implementation:
□ Variable Threshold
□ At loss event, Threshold is

set to 1/2 of CongWin just
before loss event

17-27

Refinement: inferring loss

□ After 3 dup ACKs:
♦ CongWin is cut in half
♦ window then grows

linearly
□ But after timeout event:

♦ CongWin instead set to
1 MSS;

♦ window then grows
exponentially

♦ to a threshold, then
grows linearly

□ 3 dup ACKs indicates
network capable of
delivering some
segments

□ Timeout indicates a
“more alarming”
congestion scenario

Philosophy:

17-28

Summary: TCP Congestion Control

□ When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

□ When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

□ When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

□ When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

17-29

TCP sender congestion control

SS or CA

SS or CA

SS or CA

Congestion
Avoidance
(CA)

Slow Start
(SS)

State

CongWin and Threshold
not changed

Increment duplicate ACK count
for segment being acked

Duplicate
ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Timeout

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Loss event
detected by
triple
duplicate
ACK

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

ACK receipt
for previously
unacked
data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)
 set state to “Congestion
 Avoidance”

ACK receipt
for previously
unacked
data

CommentaryTCP Sender Action Event

17-30

Recap

□ Fast retransmit
♦ 3 duplicate ACKs

□ Flow control
♦ Receiver windows

□ Connection management
♦ SYN/SYNACK/ACK, FIN/ACK, TCP states

□ Congestion control
♦ General concepts

□ TCP congestion control
♦ AIMD, slow start, congestion avoidance

17-31

Next time

□ TCP

♦ Throughput

♦ Fairness

♦ Delay modeling

□ TCP socket programming

□ NAT

