Last time

o UDP socket programming
+ DatagramSocket, DatagramPacket

o TCP

¢+ Sequence numbers, ACKs
¢ RTT, DevRTT, timeout calculations

+ Reliable data transfer algorithm

17-1

This time

o TCP

¢+ Fast retransmit
¢+ Flow control
+ Connection management

+ Congestion control

17-2

Fast Retransmit

o Time-out period often
relatively long:
¢+ long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

¢ Sender often sends
many segments back-to-
back

¢+ If segment is lost, there
will likely be many
duplicate ACKs.

o If sender receives 3

ACKs for the same data,
it supposes that segment
after ACKed data was
lost:

¢ fast retransmit: resend
segment before timer
expires

17-3

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y == 3) {
resend segment with sequence numbery

} \

/ \

already ACKed segment

17-4

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

17-5

TCP Flow Control

0 Receive side of TCP
connection has a
receive buffer:

-||— Revwindow —||-

7

data from

7 / 7 /
b RevBuffer ———

o0 App process may be
slow at reading from
buffer

- flow control

sender won't overflow
receiver’'s buffer by
transmitting too much,
too fast

application

/ //_,

0 Speed-matching

service: matching the
send rate to the
receiving app’s drain
rate

17-6

TCP Flow control: how it works

data from

-||— Revwindow —||-

7
/ oA / _Papplication

process
7 / 7 /
b RevBuffer ——

(Suppose TCP receiver

O

discards out-of-order
segments)

spare room in buffer
RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

o Rcvr advertises spare
room by including value
of ReviWindow in

segments

o Sender limits unACKed
data to RevWindow

¢ guarantees receive buffer
doesn’t overflow

See the applet in UW-ACE!

17-7

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

17-8

CP _Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

o initialize TCP variables:
¢ seq. #s

¢ buffers, flow control info
(e.g. ReviWindow)

o client: connection initiator

Socket clientSocket = new
Socket ("hostname", "port

number") ;

o Sserver: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

¢+ specifies initial seq #
¢ no data
Step 2: server host receives SYN,
replies with SYNACK segment
¢+ server allocates buffers
¢+ specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

17-9

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

Step 1: client end system
sends TCP FIN control
segment to server.

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

@ client

close

timed wait

closed —

FIN

cK

» close
/
k

server@

17-10

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client

replies with ACK. .
closing

¢+ Enters “timed wait” - will
respond with ACK to
received FINs

Note: with small modification,
can handle simultaneous
FINS.

timed wait

closed —

FIN

/]
closing
Step 4: server, receives ACK. PN
Connection closed.
&‘

server@

closed

17-11

TCP Connection Management (cont)

wait 30 seconds

CLOSED

TIME_WAIT

F Y

receive FIN
send ACK

FIN_WAIT_2

receive ACK
zend nathing

TCP client
lifecycle

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYM & ACK
send ACKH

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM CLOSED

receive ACK
send nothing

LAST_ACK
&

send FIN

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYM
send SYMN & ACK

h 4

SYN_RCVD

receive FIM

send ACK ESTABLISHED

receive ACK
send nothing

17-12

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

17-13

Principles of Congestion Control

Congestion:

o informally: “too many sources sending too much data
too fast for network to handle”

o different from flow control!
o manifestations:
+ lost packets (buffer overflow at routers)
+ long delays (queueing in router buffers)
o a top-10 problem!

17-14

Causes/costs of congestion: scenario 1

Host A

)\in . original data

o Two senders, two
receivers

o One router, infinite
buffers

0o No retransmission

unlimited shared
output link buffers

crod o Large delays

when congested

o Maximum
E achievable
t throughput

)\'ou’r
delay

17-15

Causes/costs of congestion: scenario 2

o One router, finite buffers
o Sender retransmission of lost packet

Host A A, : original data Aout

A',, . original data, plus 4
retransmitted data

finite shared output
link buffers

17-16

Causes/costs of congestion: scenario 2

O Always)\ }\ goodput)

o “Perfect” retransm|SS|on only when loss:

)\

>)\

o Retransmission of delayed (not lost) packet makes)\ larger (than
perfect case) for same A

23 . R/2

R/3

v R12

a.
“Costs” of congestion:

out

RI2

R/2

INn

R12

o More work (retransmissions) for given “goodput’
o Unneeded retransmissions: link carries multiple copies of packet

17-17

Causes/costs of congestion: scenario 3

o Four senders Q: what happens as A
o Multihop paths and)\ increase ? "
o Timeout/retransmit In

Host A L. A
A, - original data out

A" : original data, plus ? i I
retransmitted data

||

H finite shared output

77
A9
y 4 E

Host B

9”

———p

17-18

Causes/costs of congestion: scenario 3

C/2

5
QO
<<

:)Lf
N
Another “cost” of congestion:

o When packet dropped, any upstream transmission
capacity used for that packet was wasted!

17-19

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

o no explicit feedback from o routers provide feedback to
network end systems

o0 congestion inferred from ¢ single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,

o approach taken by TCP ATM)

¢ explicit rate sender
should send at

17-20

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

17-21

TCP Congestion Control: details

o Sender limits transmission:
LastByteSent-LastByteAcked

o Roughly,

<

CongWin

How does sender

rate =

CongWin

RTT

Bytes/sec

o CongWin is dynamic, function of

perceived network congestion

perceive congestion?

o Loss event = timeout or
3 duplicate acks

o TCP sender reduces
rate (CongWin) after

loss event

three mechanisms:
¢+ AIMD
¢+ slow start

¢ conservative after
timeout events

17-22

TCP congestion control: additive increase,
multiplicative decrease

o Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

¢ additive increase: increase CongWin by 1 MSS every
RTT until loss detected

¢ multiplicative decrease: cut CongWin in half after loss

§ Kbytes —

m rF'S
N ytes
(V)]
=
Saw tooth 5
behavior: probing § """
for bandwidth =
7
()]
(@)
[
(@)
(&)

time

17-23

TCP Slow Start

o When connection begins, o When connection begins,

CongWin =1 MSS Increase rate
¢+ Example: MSS = 1 kBytes exponentially fast until
& RTT = 200 msec first loss event

¢+ initial rate = 40 kbps

o available bandwidth may
be >> MSS/RTT

¢ desirable to quickly ramp
up to respectable rate

17-24

TCP Slow Start (more)

o When connection @Hosm Host B@

begins, increase rate
W

exponentially until first

loss event:
¢ double CongWin every o segments
RTT e

¢+ done by incrementing
CongWin for every ACK
received

o Summary: initial rate is

slow but ramps up
exponentially fast

«—RTT—

Ur segments

time

17-25

Refinement

Q: When should the
exponential
Increase switch to 14—
linear?

A: When CongWin

gets to 1/2 of its
value before
timeout.

TCP Series 2 Reno

_;
P
|

_| Threshold

Threshold

Transmission round

TCP Series 1 Tahoe

0 [[[[[[I I [[[[[[|
o1 2 34 5 6 7 8 9 10111213 1415
Transmission round

Implementation:
o Variable Threshold

o Atloss event, Threshold is
set to 1/2 of CongWin just
before loss event

17-26

Refinement: inferring loss

o After 3 dup ACKSs:
¢+ CongWin is cut in half

+ window then grows
linearly

o But after timeout event:

¢+ CongWin instead set to
1 MSS;

+ window then grows
exponentially

¢ to a threshold, then
grows linearly

—— Philosophy:

o 3 dup ACKs indicates
network capable of
delivering some
segments

o Timeout indicates a
“more alarming”

congestion scenario

17-27

summary: TCP Congestion Control

o When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

o When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

o When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

o When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

17-28

TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSorCA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSorCA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSor CA Duplicate Increment duplicate ACK count | CongWin and Threshold
ACK for segment being acked not changed

17-29

Recap

0 Fast retransmit
¢+ 3 duplicate ACKs

o Flow control
¢+ Receiver windows

0 Connection management
¢+ SYN/SYNACK/ACK, FIN/ACK, TCP states

o Congestion control
+ General concepts

o TCP congestion control
+ AIMD, slow start, congestion avoidance

17-30

Next time

o TCP

+ Throughput
¢+ Fairness

+ Delay modeling

o TCP socket programming

o NAT

17-31

