
  

The Black Magic of Python Wheels

Elana Hashman
Two Sigma

PyGotham 2018 – New York, NY

@ehashdn



  

Wheels/Black Magic FAQ

Q: But I’m not a witch?!

A: Sometimes the greater good requires a little sacrifice.



  



  

Topics

 Python packaging and distribution
 ELF (Executable and Linkable Format) files
 Dynamic vs. static linking



  

Outline

 A brief history of Python packaging and distribution
 An overview of the wheel
 Why we need native extensions
 How do native extensions even work, really?

– What are manylinux and auditwheel for?
 How you can get involved



  

A Brief History of Python Packaging: Eggs

 Organically adopted (no guiding PEP)
 No standard  many incompatible → many incompatible 

implementations
 Designed to be directly importable, could include 

compiled Python (.pyc files)



  

Python Packaging Reinvented: The Wheel

 Adopted via PEP 427
 Follows the PEP 376 standard for distributions and 

PEP 426 standard for package metadata
 Designed for distrubution, cannot include .pyc 

files (but may include other pre-compiled resources)



  

Wheels “make it easier to roll out” Python

 Pure wheels
– Only contain Python code
– May target a specific version of Python

 Universal wheels
– Python 2/3 compatible pure wheels

 Extension wheels
– Allow for platform-specific prebuilt packagespip install wheel

python setup.py bdist_wheel

pip install wheel
python setup.py bdist_wheel



  

Extensions without binary distributions

$ pip install --no-binary :all: cryptography

...
    c/_cffi_backend.c:2:10: fatal error: Python.h: 
No such file or directory
     #include <Python.h>
              ^~~~~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed 
with exit status 1

$ sudo apt install python-dev  # get Python.h



  

Extensions without binary distributions

$ pip install --no-binary :all: cryptography

...
    c/_cffi_backend.c:15:10: fatal error: ffi.h: No 
such file or directory
     #include <ffi.h>
              ^~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed 
with exit status 1

$ sudo apt install libffi-dev  # get ffi.h



  

Extensions without binary distributions

$ pip install --no-binary :all: cryptography

...
   build/temp.linux-x86_64-2.7/_openssl.c:498:10: 
fatal error: openssl/opensslv.h: No such file or 
directory
     #include <openssl/opensslv.h>
              ^~~~~~~~~~~~~~~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed 
with exit status 1

$ sudo apt install libssl-dev  # get opensslv.h



  

Extensions without binary distributions

$ time pip install --no-binary :all: cryptography

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7 
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m16.369s
user 0m15.823s
sys 0m0.627s



  

Extensions with binary distributions

$ time pip install cryptography  # prebuilt binary

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7 
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m1.088s
user 0m0.980s
sys 0m0.108s



  

What sort of black magic is this? ✨🔮



  

cryptography is a Python Native Extension

 Native: the code was compiled specifically for my 
operating system

 Extension: this library extends Python’s functionality 
with non-Python code

 It uses CFFI: the “C Foreign Function Interface” for 
Python



  

Python code is not just Python.

For Python to harness its full potential,
it must be able to depend on C libraries. 



  

C is a compiled language

// hello.c

#include<stdio.h>

int main(void) {
puts("hello

 world");
}

# a.out (hexadecimal)

0000000 7f45 4c46 0201 0100
0000008 0000 0000 0000 0000
0000010 0300 3e00 0100 0000
0000018 5005 0000 0000 0000
0000020 4000 0000 0000 0000
...

gcc
(compiler)

gcc hello.c hexdump a.out

ELF File



  

Hexes and ELFs
$ readelf -a a.out
ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00
           00 00 00 00 00 00 00 00
  Class:        ELF64
  Data:         2's complement, little endian
  Version:      1 (current)
  OS/ABI:       UNIX - System V
  ABI Version:  0
  Type:         DYN (Shared object file)
  Machine:      Advanced Micro Devices X86-64
...



  

Hexes and ELFs
$ readelf -a a.out
...

Program Headers:

  Type      Offset             VirtAddr           PhysAddr
            FileSiz            MemSiz              Flags  Align

  INTERP    0x0000000000000238 0x0000000000000238 0x0000000000000238
            0x000000000000001c 0x000000000000001c  R      0x1

      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]



  

Hexes and ELFs
$ readelf -a a.out

...

Relocation section '.rela.plt' at offset
0x4d0 contains 1 entry:

  Offset          Info           Type       
000000200fd0  000200000007 R_X86_64_JUMP_SLO

  Sym. Value     Sym. Name + Addend
0000000000000000 puts@GLIBC_2.2.5 + 0



  

Hexes and ELFs
$ readelf -a a.out

...
Version needs section '.gnu.version_r' contains
1 entry:

 Addr: 0x00000000000003f0  Offset: 0x0003f0  Link: 6 
(.dynstr)

  000000: Version: 1  File: libc.so.6  Cnt: 1

  0x0010:   Name: GLIBC_2.2.5  Flags: none  Version: 2



  

Symbol Versions in Action
hello.c

#include<stdio.h>
...
puts("hello world");

a.out

.rela.plt
Symbol Name
puts@GLIBC_2.2.5

.gnu.version_r
File  Symbol Version
libc.so.6  GLIBC_2.2.5

libc.so.6

.gnu.version_d
Symbol Versions Available:
GLIBC_2.2.5
GLIBC_2.2.6
GLIBC_2.3
...
GLIBC_2.27

.dynsym
Type Name
FUNC puts@@GLIBC_2.2.5



  

What happens when we run this?

 OS parses “magic ELF” text
 OS invokes the ELF interpreter specified by the binary
 ELF interpreter loads any required files with valid versions
 ELF interpreter relocates the program code and 

dependencies in memory so that it can run
 This is called dynamic linking



  

Q: That all sounds really complex. Couldn’t I just
include all the code I need in my output binary?

A: Sure! That’s called static linking.

Q: ...then why doesn’t everyone just do that??



  

Dynamic vs. Static Linking

 Pros: Dynamic
– Less storage space used
– One copy of a library

= one upgrade

 Cons: Static
– More storage space used
– May store many copies of 

one library

 Cons: Dynamic
– Complex
– Needs some kind of 

dependency management

 Pros: Static
– Simple
– Dependencies are bundled 

with your programs



  

Conclusion: Static linking is great,
but should be used sparingly.

...so…

What if we “used it sparingly” to build Python 
extensions for easier distribution?



  

But that might not work! What if my C standard 
library is too old to run your binary?

...so…

What if we made sure to statically link against 
symbol versions that are maximally compatible?



  

Q: How can we ship compiled Python extensions
compatible with as many systems as possible?

A: Static linking (manylinux)
and symbol versioning (auditwheel).



  

What are manylinux and auditwheel?

 PEPs 513 and 571 define a set of permitted libraries 
and their symbol versions
– “Many” Linux systems are compatible with this standard

 manylinux is an ancient CentOS Docker image that 
implements the policy

 auditwheel is a tool to enforce the symbol policies



  

Wheel Builder’s Pipeline

❷ ❸❶

❶ Add your code, dependencies to the manylinux Docker image

❷ Inspect the built wheel with auditwheel for compliance

❸ Upload to PyPI!

Python Extension
manylinux 

container
auditwheel 

inspection
PyPI



  

Want in on the magic?

 Help us build wheels!
– Feedback enthusiastically welcomed ✨

 pythonwheels.com
– See what packages already build wheels
– Find examples for how to build yours

 github.com/pypa/python-manylinux-demo
– Simple demo to learn wheelbuilding



  

Questions?

Questions? 



  

Thanks to:

Two Sigma
Nelson Elhage, Paul Kehrer

Talk resources: https://hashman.ca/pygotham-2018



  

Image License Information

 Tree Cat Silhouette Sunset: Public Domain (CC0) 
@besshamiti https://plixs.com/photo/3297/tree-
cat-silhouette-sunset 

 Happy Halloween! (Costume Dog): Public Domain 
(CC0) @milkyfactory https://flic.kr/p/ArW1N9


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

