Binary expansion of a real number.

Let r be a real number, with $0 \le r \le 1$. Let

$$r_1 = \max \left\{ k \in \{0, 1\} = \mathbb{Z}_2 : k/2 \le r \right\}$$

and put $s_1 = r_1/2$.

Now proceed recursively. Assume we have defined r_1, r_2, \ldots, r_n and put $s_n = \sum_{i=1}^n r_i/2^i$. Let

$$r_{n+1} = \max \left\{ k \in \mathbb{Z}_2 : k/2^{n+1} \le r - s_n \right\}$$

and put

$$s_{n+1} = \sum_{i=1}^{n+1} r_i / 2^i.$$

Then the sequence $(s_n)_{n=1}^{\infty}$ converges and its limit is

$$\lim_{n \to \infty} s_n = r.$$