UHF algebras by an example

Christa Hawthorne

April 2019

Contents

1 Introduction and preliminaries 1
2 A motivating example: the CAR algebra 2
3 UHF algebras: definitions and first properties 4
4 The supernatural number of a UHF algebra 6
References 10

1 Introduction and preliminaries

In his PhD thesis in 1960 ([2]), James Glimm introduced a class of C*-algebras called uniformly hyperfinite (UHF); these are C^{*}-algebras that can be written as the closed union of an increasing chain of matrix subalgebras. There turn out to be interesting examples of these: the CAR algebra is a UHF algebra of interest in quantum mechanics. A particularly remarkable property of UHF algebras is that there is an invariant that completely captures the isomorphism class of a UHF algebra, called the supernatural number.

In this paper, I give an exposition of UHF algebras, the CAR algebra, and the supernatural number of a UHF algebra. My presentation is a simplified version of [1, Chapter III], which develops the more general class of approximately finite C^{*}-algebras, and views UHF algebras as examples of these.

Ideals are closed and two-sided; $0 \in \mathbb{N}$.
A preliminary definition and theorem:
Definition 1.1. Suppose \mathfrak{A} is a C^{*}-algebra; suppose $F_{i j} \in \mathfrak{A}$ for $i, j \in\{1, \ldots, n\}$ satisfy:

1. $F_{i j} F_{k \ell}=\delta_{j k} F_{i \ell}$.
2. $F_{i j}^{*}=F_{j i}$.
3. $\sum_{i=1}^{n} F_{i i}=1$.

Then the $F_{i j}$ are $n \times n$ matrix units \mathfrak{A}.
Lemma 1.2. Suppose \mathfrak{A} is a C^{*}-algebra; suppose $F_{i j} \in \mathfrak{A}$ are $n \times n$ matrix units for \mathfrak{A}. Then $C^{*}\left(\left\{F_{i j}\right.\right.$: $i, j \in\{1, \ldots, n\}\}$) is ${ }^{*}$-isomorphic to $M_{n}(\mathbb{C})$.

Proof. It is clear from the given conditions that $\operatorname{span}\left\{F_{i j}: i, j \in\{1, \ldots, n\}\right\}$ is a unital ${ }^{*}$-subalgebra of \mathfrak{A} of dimension n^{2}; hence since it is finite-dimensional it is closed, and is thus $C^{*}\left(\left\{F_{i j}: i, j \in\{1, \ldots, n\}\right\}\right)$. Furthermore, an identical proof to the case of $M_{\ell}(\mathbb{C})$ shows that $C^{*}\left(\left\{F_{i j}: i, j \in\{1, \ldots, n\}\right\}\right)$ is simple. But up to isomorphism the only simple finite-dimensional C^{*}-algebra of dimension n^{2} is $M_{n}(\mathbb{C})$; the result follows.Lemma 1.2

2 A motivating example: the CAR algebra

Before defining UHF algebras, we first study a prototype: the CAR algebra. This is a C^{*}-algebra that arises naturally in the context of quantum mechanics (as noted in [1, Example III.5.4]). We will show that it is the closed union of a chain of matrix subalgebras; generalizing this property will yield the definition of a UHF algebra.

Fix a separable Hilbert space \mathcal{H} and some continuous linear map $\alpha: \mathcal{H} \rightarrow \mathcal{B}(\mathcal{H})$ such that for all $x, y \in \mathcal{H}$ we have:

$$
\begin{aligned}
\alpha(x) \alpha(y)+\alpha(y) \alpha(x) & =0 \\
\alpha(x) \alpha(y)^{*}+\alpha(y)^{*} \alpha(x) & =\langle x, y\rangle I(\mathrm{AC} 1)
\end{aligned}
$$

(These are called the canonical anticommutation relations; hence the name "CAR algebra".)
Fact 2.1 ([3, Lemma 6.5]). Such \mathcal{H} and α exist.
The CAR algebra is defined to be $\mathfrak{A}=C^{*}(\alpha(\mathcal{H})$). (In principle this might depend on α and \mathcal{H}; we will see in Corollary 4.11 that it does not.)

Fix an orthonormal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$ for \mathcal{H}. For $n \in \mathbb{N}$ define $\mathfrak{A}_{n}=C^{*}\left(\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right)$.
Proposition 2.2. There is a ${ }^{*}$-isomorphism $\mathfrak{A}_{n} \cong M_{2^{n}}(\mathbb{C})$ (and hence a continuous ${ }^{*}$-isomorphism, since they're finite dimensional).

The following proof appears in [1, Example III.5.4], though I have added some (perhaps unnecessary) details. Said details are somewhat unpleasant; the uninterested reader is encouraged to skip the proofs of the claims.

Proof. For $n \in \mathbb{N}$ we let $W_{n}=I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)$. Note that AC1 implies $\alpha(x)^{2}=0$ for all $x \in \mathcal{H}$; hence by AC 2 we have

$$
\left(\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right)^{2}=\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\left(I-\alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}\right)=\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)-\alpha\left(e_{n}\right)^{*} \underbrace{\alpha\left(e_{n}\right)^{2}}_{=0} \alpha\left(e_{n}\right)^{*}=\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)
$$

Claim 2.3. We have

$$
\begin{aligned}
W_{n} \alpha\left(e_{m}\right) & =(-1)^{\delta_{m n}+1} \alpha\left(e_{m}\right) W_{n} \\
W_{n} \alpha\left(e_{m}\right)^{*} & =(-1)^{\delta_{m n}+1} \alpha\left(e_{m}\right) W_{n}
\end{aligned}
$$

and W_{n} is self-adjoint with $W_{n}^{2}=I$.
Proof. Note by AC2 that $W_{n}=I-2\left(\left\langle e_{n}, e_{n}\right\rangle I-\alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}\right)=2 \alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}-I$. Thus

$$
\begin{aligned}
W_{n} \alpha\left(e_{n}\right) & =\left(I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right) \alpha\left(e_{n}\right) \\
& =\alpha\left(e_{n}\right)-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)^{2} \\
& =\alpha\left(e_{n}\right) \\
\alpha\left(e_{n}\right) W_{n} & =\alpha\left(e_{n}\right)\left(2 \alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}-I\right) \\
& =-\alpha\left(e_{n}\right) \\
& =-W_{n} \alpha\left(e_{n}\right)
\end{aligned}
$$

Also if $m \neq n$ then $\left\langle e_{m}, e_{n}\right\rangle=0$; so

$$
\begin{aligned}
W_{n} \alpha\left(e_{m}\right) & =\left(I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right) \alpha\left(e_{m}\right) \\
& =\alpha\left(e_{m}\right)-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right) \alpha\left(e_{m}\right) \\
& =\alpha\left(e_{m}\right)+2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{m}\right) \alpha\left(e_{n}\right)(\mathrm{AC} 1) \\
& =\alpha\left(e_{m}\right)+2\left(\left\langle e_{n}, e_{m}\right\rangle I-\alpha\left(e_{m}\right) \alpha\left(e_{n}\right)^{*}\right) \alpha\left(e_{n}\right)(\mathrm{AC} 2) \\
& =\alpha\left(e_{m}\right)-2 \alpha\left(e_{m}\right) \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right) \\
& =\alpha\left(e_{m}\right)\left(I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right) \\
& =\alpha\left(e_{m}\right) W_{n}
\end{aligned}
$$

Also it is clear that $W_{n}^{*}=W_{n}$; hence

$$
W_{n} \alpha\left(e_{m}\right)^{*}=(-1)^{\delta_{m n}+1} \alpha\left(e_{m}\right)^{*} W_{n}
$$

follows by taking adjoints. Finally we have

$$
W_{n}^{2}=\left(I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right)\left(I-2 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right)=I-4 \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)+4\left(\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right)^{2}=I
$$

as desired.Claim 2.3

For $n \in \mathbb{N}$ let $V_{n}=W_{0} \cdots W_{n-1} \in C^{*}\left(\alpha\left(e_{1}\right), \ldots, \alpha\left(e_{n-1}\right)\right)$.
Claim 2.4. The elements

$$
\begin{aligned}
& E_{11}^{(n)}=\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right) \\
& E_{12}^{(n)}=V_{n} \alpha\left(e_{n}\right) \\
& E_{21}^{(n)}=V_{n} \alpha\left(e_{n}\right)^{*} \\
& E_{22}^{(n)}=\alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}
\end{aligned}
$$

are 2×2 matrix units for \mathfrak{A}; furthermore if $m \neq n$ then $E_{i j}^{(m)}$ commutes with $E_{k \ell}^{(n)}$ for all $i, j, k, \ell \in\{1,2\}$.
Proof. Note by Claim 2.3 that V_{n} commutes with $\alpha\left(e_{n}\right)$ and $\alpha\left(e_{n}\right)^{*}$, and that $V_{n}^{*} V_{n}=V_{n} V_{n}^{*}=I$. We now verify the properties of matrix units:

1. This is routine; we do two sample computations and leave the rest to the interested reader.

$$
\begin{aligned}
E_{11}^{(n)} E_{21}^{(n)} & =\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right) V_{n} \alpha\left(e_{n}\right)^{*} \\
& =V_{n}\left(I-\alpha\left(e_{n}\right) \alpha\left(e_{n}\right)^{*}\right) \alpha\left(e_{n}\right)^{*} \\
& =V_{n} \alpha\left(e_{n}\right)^{*} \\
& =E_{21}^{(n)} \\
E_{11}^{(n)} E_{12}^{(n)} & =\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right) V_{n} \alpha\left(e_{n}\right) \\
& =V_{n} \alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)^{2} \\
& =0
\end{aligned}
$$

2. We have $\left(E_{12}^{(n)}\right)^{*}=\left(V_{n} \alpha\left(e_{n}\right)\right)^{*}=V_{n} \alpha\left(e_{n}\right)^{*}=E_{21}^{(n)}$, and we already saw that $\left(E_{11}^{(n)}\right)^{2}=\left(\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)\right)^{2}=$ $\alpha\left(e_{n}\right)^{*} \alpha\left(e_{n}\right)=E_{11}^{(n)}$; a similar proof yields that $\left(E_{22}^{(n)}\right)^{2}=E_{22}^{(n)}$.
3. This is just AC2.

For the last claim, we show that $V_{n} \alpha\left(e_{n}\right)$ commutes with $C^{*}\left(\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right)$; this will suffice, since $E_{i j}^{(n)} \in C^{*}\left(V_{n} \alpha\left(e_{n}\right)\right)$ and $E_{i j}^{(k)} \in C^{*}\left(\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right)$ if $k<n$. But by Claim 2.3 we get for $k<n$ that

$$
\begin{aligned}
V_{n} \alpha\left(e_{n}\right) \alpha\left(e_{k}\right) & =-W_{0} \cdots W_{n-1} \alpha\left(e_{k}\right) \alpha\left(e_{n}\right) \\
& =\alpha\left(e_{k}\right) W_{0} \cdots W_{n-1} \alpha\left(e_{n}\right) \\
& =\alpha\left(e_{k}\right) V_{n} \alpha\left(e_{n}\right)
\end{aligned}
$$

and similarly $V_{n} \alpha\left(e_{n}\right) \alpha\left(e_{k}\right)^{*}=\alpha\left(e_{k}\right)^{*} V_{n} \alpha\left(e_{n}\right)$.
Claim 2.5. The $E_{i_{0} j_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)}$ form $2^{n} \times 2^{n}$ matrix units for \mathfrak{A}.
Proof. We verify the properties of matrix units.

1. By Claim 2.4 we have

$$
\begin{aligned}
E_{i_{0} j_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)} \cdot E_{k_{0} \ell_{0}}^{(0)} \cdots E_{k_{n-1} \ell_{n-1}}^{(n-1)} & =E_{i_{0} j_{0}}^{(0)} E_{k_{0} \ell_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)} E_{k_{n-1} \ell_{n-1}}^{(n-1)} \\
& =\delta_{j_{0} k_{0}}^{\cdots \delta_{j_{n-1} k_{n-1}} E_{i_{0} \ell_{0}}^{(0)} \cdots E_{i_{n-1} \ell_{n-1}}^{(n-1)}} \\
& =\delta_{\left(j_{0}, \ldots, j_{n-1}\right),\left(k_{0}, \ldots, k_{n-1}\right)} E_{i_{0} \ell_{0}}^{(0)} \cdots E_{i_{n-1} \ell_{n-1}}^{(n-1)}
\end{aligned}
$$

as desired.
2. This follows directly from Claim 2.4.
3. We do this by induction on n. The base case is Claim 2.4; for the induction step notice that

$$
\sum_{i_{0}=1}^{2} \cdots \sum_{i_{n}=1}^{2} E_{i_{0} i_{0}}^{(0)} \cdots E_{i_{n} i_{n}}^{(n)}=\left(\sum_{i_{0}=1}^{2} \cdots \sum_{i_{n-1}=1}^{2} E_{i_{0} i_{0}}^{(0)} \cdots E_{i_{n-1} i_{n-1}}^{(n-1)}\right) \sum_{i_{n}=1}^{2} E_{i_{n} i_{n}}^{(n)}=\sum_{i_{n}=1}^{2} E_{i_{n} i_{n}}^{(n)}=I
$$

by the induction hypothesis.
Claim 2.5
Thus by Lemma 1.2 we get that $C^{*}\left(\left\{E_{i_{0} j_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)}\right\}\right)$ is ${ }^{*}$-isomorphic to $M_{2^{n}}(\mathbb{C})$. But $E_{i j}^{(k)} \in$ $C^{*}\left(\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{k}\right)\right) ;$ also

$$
\alpha\left(e_{\ell}\right)=V_{\ell}^{*} V_{\ell} \alpha\left(e_{\ell}\right)=\left(I-2 E_{11}^{(\ell)}\right) E_{12}^{(\ell)}
$$

and
$E_{i j}^{(\ell)}=\sum_{i_{0}=1}^{2} \cdots \sum_{i_{\ell-1}=1}^{2} \sum_{i_{\ell+1}=1}^{2} \cdots \sum_{i_{n-1}=1}^{2} E_{i_{0} i_{0}}^{(0)} \cdots E_{i_{\ell-1} i_{\ell-1}}^{(\ell-1)} E_{i j}^{(\ell)} E_{i_{\ell+1} i_{\ell+1}}^{(\ell+1)} \cdots E_{i_{n-1} i_{n-1}}^{(n-1)} \in C^{*}\left(\left\{E_{i_{0} j_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)}\right\}\right)$
So $C^{*}\left(\left\{\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right\}\right)=C^{*}\left(\left\{E_{i_{0} j_{0}}^{(0)} \cdots E_{i_{n-1} j_{n-1}}^{(n-1)}\right\}\right)$; so $\mathfrak{A}_{n}=C^{*}\left(\left\{\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right\}\right)$ is *-isomorphic to $M_{2^{n}}(\mathbb{C})$, as desired.

Proposition 2.2
Note, however, that

$$
\mathfrak{A}=C^{*}(\alpha(\mathcal{H}))=\overline{\bigcup_{n \in \mathbb{N}} \operatorname{alg}\left\{\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right\}} \subseteq \overline{\bigcup_{n \in \mathbb{N}} C^{*}\left(\alpha\left(e_{0}\right), \ldots, \alpha\left(e_{n-1}\right)\right)}=\overline{\bigcup_{n \in \mathbb{N}} \mathfrak{A}_{n}}
$$

We have thus shown that there is a chain $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \cdots \subseteq \mathfrak{A}$ of matrix subalgebras whose union is dense; this is the condition we will generalize when defining UHF algebras. This is a strong finiteness condition; we will see in Theorem 4.7 that the behaviour of algebras with such a chain is tightly controlled by the behaviour within the chain.

3 UHF algebras: definitions and first properties

Definition 3.1. A $U H F$ algebra is a unital C*-algebra \mathfrak{A} for which there exists a chain $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \cdots \subseteq \mathfrak{A}$ of unital subalgebras (i.e. subalgebras containing the unit of \mathfrak{A}) such that

- each \mathfrak{A}_{k} is ${ }^{*}$-isomorphic to a matrix algebra $M_{m_{k}}(\mathbb{C})$, and
- $\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}$.

So in particular the CAR algebra is a UHF algebra.
Some properties:
Remark 3.2. Since linear maps, and in particular *-homomorphisms, between finite dimensional spaces are continuous, we get that the isomorphism $\mathfrak{A}_{k} \cong M_{m_{k}}(\mathbb{C})$ is continuous; so we may assume that topological properties are preserved as well.

Remark 3.3. UHF algebras are separable. Indeed, suppose

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}
$$

is a UHF algebra. Let $A_{k} \subseteq \mathfrak{A}_{k}$ be the image of $M_{m_{k}}(\mathbb{Q})$ under the given isomorphism $M_{m_{k}}(\mathbb{C}) \rightarrow \mathfrak{A}_{k}$; so A_{k} is countable and dense in \mathfrak{A}_{k}. Then

$$
A=\bigcup_{k \in \mathbb{N}} A_{k}
$$

is dense in

$$
\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}
$$

and hence also in its closure \mathfrak{A}. But A is countable; so \mathfrak{A} is separable.
Proposition 3.4. UHF algebras are simple.
Proof. Suppose

$$
\mathfrak{A}=\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}
$$

is a UHF algebra; suppose $\mathfrak{J} \varsubsetneqq \mathfrak{A}$ is an ideal.
Claim 3.5. $\mathfrak{J} \cap \mathfrak{A}_{k}=\{0\}$ for all $k \in \mathbb{N}$.
Proof. We first check that $\mathfrak{J} \cap \mathfrak{A}_{k}$ is an ideal of \mathfrak{A}_{k}. It is clear that $\mathfrak{J} \cap \mathfrak{A}_{k}$ is a vector subspace of \mathfrak{A}_{k} that is closed in the relative topology. Suppose $a, b \in \mathfrak{A}_{k}$ and $c \in \mathfrak{J} \cap \mathfrak{A}_{k}$. Then acb $\in \mathfrak{A}_{k}$ since \mathfrak{A}_{k} is a subalgebra and $a c b \in \mathfrak{J}$ since \mathfrak{J} is an ideal; so $a c b \in \mathfrak{J} \cap \mathfrak{A}_{k}$, and $\mathfrak{J} \cap \mathfrak{A}_{k}$ is an ideal of \mathfrak{A}_{k}.

But $\mathfrak{A}_{k} \cong M_{m_{k}}(\mathbb{C})$, and $M_{m_{k}}(\mathbb{C})$ is simple. So $\mathfrak{J} \cap \mathfrak{A}_{k}$ is either $\{0\}$ or all of \mathfrak{A}_{k}.
Case 1. Suppose there is some $k \in \mathbb{N}$ such that $\mathfrak{J} \cap \mathfrak{A}_{k}=\{0\}$. Then for all $\ell<k$ we immediately get that $\mathfrak{J} \cap \mathfrak{A}_{\ell} \subseteq \mathfrak{J} \cap \mathfrak{A}_{k}=\{0\}$; also for $\ell>k$ with $\mathfrak{A}_{\ell} \supsetneqq \mathfrak{A}_{k}$ we get that $\mathfrak{J} \cap \mathfrak{A}_{\ell} \subseteq\left(\mathfrak{A}_{\ell} \backslash \mathfrak{A}_{k}\right) \cup\{0\} \varsubsetneqq \mathfrak{A}_{\ell}$, and thus $\mathfrak{J} \cap \mathfrak{A}_{\ell}=\{0\}$. The claim then follows.

Case 2. Suppose $\mathfrak{J} \cap \mathfrak{A}_{k}=\mathfrak{A}_{k}$ for all $k \in \mathbb{N}$. Then \mathfrak{J} is a closed set containing the dense set

$$
\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}
$$

So $\mathfrak{J}=\mathfrak{A}$, contradicting our assumption that \mathfrak{J} was proper.
Consider the quotient map $q: \mathfrak{A} \rightarrow \mathfrak{A} / \mathfrak{J}$; we will show that q is injective. Note that $q \upharpoonright \mathfrak{A}_{k}$ is injective: indeed, $\operatorname{ker}\left(q \upharpoonright \mathfrak{A}_{k}\right)=\operatorname{ker}(q) \cap \mathfrak{A}_{k}=\mathfrak{J} \cap \mathfrak{A}_{k}=\{0\}$. We can thus define a continuous linear map $\varphi_{k}: q\left(\mathfrak{A}_{k}\right) \rightarrow \mathfrak{A}_{k}$ such that $\varphi_{k} \circ q=\operatorname{id}_{\mathfrak{A}_{k}}$. This φ_{k} is uniquely determined, and thus the φ_{k} form a chain; so we can define

$$
\varphi_{\omega}=\bigcup_{k \in \mathbb{N}} \varphi_{k}: \bigcup_{k \in \mathbb{N}} q\left(\mathfrak{A}_{k}\right) \rightarrow \bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}
$$

But this φ_{ω} is a continuous linear map, and thus extends to

$$
\varphi: \overline{\bigcup_{k \in \mathbb{N}} q\left(\mathfrak{A}_{k}\right)} \rightarrow \mathfrak{A}
$$

But if $q(a) \in \mathfrak{A} / \mathfrak{J}$ and $\varepsilon>0$ then there is some $k \in \mathbb{N}$ and $a_{0} \in \mathfrak{A}_{k}$ such that $\left\|a-a_{0}\right\|<\varepsilon$; so $\left\|q(a)-q\left(a_{0}\right)\right\| \leq$ $\left\|a-a_{0}\right\|<\varepsilon$. So

$$
\bigcup_{k \in \mathbb{N}} q\left(\mathfrak{A}_{k}\right)
$$

is dense in $\mathfrak{A} / \mathfrak{J}$; so $\varphi: \mathfrak{A} / \mathfrak{J} \rightarrow \mathfrak{A}$. But by construction $\varphi \circ q \upharpoonright \mathfrak{A}_{k}=\mathrm{id}_{\mathfrak{A}_{k}}$; so by continuity of $\varphi \circ q$ we get that $\varphi \circ q=\operatorname{id}_{\mathfrak{A}}$. So q is injective, and $\mathfrak{J}=\operatorname{ker}(q)=\{0\}$.

4 The supernatural number of a UHF algebra

In this section we will justify our earlier claim that the behaviour of a UHF algebra is tightly controlled by the behaviour of its matrix subalgebras; in fact in Theorem 4.7 we will give an invariant that completely classifies the isomorphism type of a UHF algebra.

To understand the structure of a UHF algebra, it behooves us to study the structure of unital *-embeddings between matrix algebras: the embeddings $M_{m_{k}}(\mathbb{C}) \rightarrow M_{m_{k+1}}(\mathbb{C})$ induced by the inclusions $\mathfrak{A}_{k} \hookrightarrow \mathfrak{A}_{k+1}$ will determine how the $M_{m_{k}}(\mathbb{C})$ "fit together" in \mathfrak{A}. Since unital *-embeddings between matrix algebras can be viewed as non-degenerate representations, we first study the representation theory of matrix algebras.

Proposition 4.1. All irreducible representations of $M_{n}(\mathbb{C})$ are unitarily equivalent to the identity representation id: $M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$.
Proof. We know from assignment 3 that an irreducible representation is a surjective homomorphism $M_{n}(\mathbb{C}) \rightarrow$ $M_{m}(\mathbb{C})$, and the kernel is a maximal ideal of $M_{n}(\mathbb{C})$, and thus 0 . So the only irreducible representations are *-automorphisms $\rho: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$.

Note that the $E_{i i}$ must get sent to pairwise orthogonal rank 1 projections; we thus get an orthonormal basis f_{1}, \ldots, f_{n} for \mathbb{C}^{n} such that $\rho\left(E_{i i}\right)=f_{i} f_{i}^{*}=F_{i i}$. But then also $\rho\left(E_{i j}\right)=\rho\left(E_{i i} E_{i j} E_{j j}\right)=F_{i i} \rho\left(E_{i j}\right) F_{j j}$, so since ρ preserves spectra we get $\rho\left(E_{i j}\right)=f_{i} f_{j}^{*}=F_{i j}$. Then the map $U e_{i}=f_{i}$ is unitary, and $\rho\left(E_{i j}\right)=$ $F_{i j}=f_{i} f_{j}^{*}=U e_{i} e_{j}^{*} U^{*}=U E_{i j} U^{*}$ for all i, j; so $\rho(A)=U A U^{*}$ for all A. So ρ is unitarily equivalent to the identity.

We can use this to classify all unital *-embeddings between matrix algebras.
Corollary 4.2. Suppose $\varphi: M_{m}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a unital *-homomorphism. Then $m \mid n$ and there is a unitary $U \in M_{n}(\mathbb{C})$ such that $\varphi(A)=U^{*}(A \oplus \cdots \oplus A) U$ for all $A \in M_{m}(\mathbb{C})$.

Proof. Since φ is unital we get that φ defines a non-degenerate representation of a finite-dimensional C*-algebra, and is thus completely reducible. (Indeed, one checks that the orthogonal complement of a subrepresentation is also a subrepresentation.) Hence by previous proposition we get that $\varphi=\rho_{1} \oplus \cdots \oplus \rho_{k}$ with each ρ_{k} unitarily equivalent to id: $M_{m}(\mathbb{C}) \rightarrow M_{m}(\mathbb{C})$; so $n=k m$ and $m \mid n$. If U_{1}, \ldots, U_{k} are unitaries in $M_{m}(\mathbb{C})$ such that $\rho_{i}(A)=U_{i} A U_{i}^{*}$, then $U=U_{1} \oplus \cdots \oplus U_{k} \in M_{n}(\mathbb{C})$ is the desired unitary. \square Corollary 4.2

Suppose now that

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}
$$

is a UHF algebra. Then the inclusions $\mathfrak{A}_{k} \rightarrow \mathfrak{A}_{k+1}$ induce unital *-homomorphisms $M_{m_{k}}(\mathbb{C}) \rightarrow M_{m_{k+1}}(\mathbb{C})$; so $m_{0}\left|m_{1}\right| \cdots$. Consider the prime factorizations of the m_{k} : let

$$
m_{k}=\prod_{p \text { prime }} p^{v_{p}\left(m_{k}\right)}
$$

Then since the $m_{k} \mid m_{k+1}$ we get that the $\left(v_{p}\left(m_{k}\right)\right)_{k}$ are increasing sequences of natural numbers; so each one is either eventually constant or diverges to infinity. Let $e_{p}=\sup _{k} v_{p}\left(m_{k}\right) \in \mathbb{N} \cup\{\infty\}$.

Definition 4.3. The supernatural number associated to \mathfrak{A} is the formal product

$$
\delta(\mathfrak{A})=\prod_{p \text { prime }} p^{e_{p}}
$$

(Of course $\delta(\mathfrak{A})$ is only a true natural number if $\mathfrak{A} \cong M_{\delta(\mathfrak{A})}(\mathbb{C})$.)
In principle our definition of $\delta(\mathfrak{A})$ may depend on the choice of chain $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \cdots$; in fact it depends only on \mathfrak{A}.

Theorem 4.4. $\delta(\mathfrak{A})$ is well-defined.
We will need a lemma whose proof I omit; I direct the interested reader to [1, Lemma III.3.2], of which the following is a weakening:

Lemma 4.5. Suppose \mathfrak{D} is a C^{*}-algebra with a finite-dimensional C^{*}-subalgebra \mathfrak{A}. Then there is $\delta>0$ such that if $\mathfrak{B} \subseteq \mathfrak{D}$ is a C^{*}-subalgebra with $\operatorname{dist}(a, \mathfrak{B})<\delta$ for all $a \in b_{1}(\mathfrak{B})$ then there is a unitary $u \in \mathfrak{D}$ such that $u^{*} \mathfrak{A} u \subseteq \mathfrak{B}$.

Proof of Theorem 4.4. Suppose

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}=\overline{\bigcup_{\ell \in \mathbb{N}} \mathfrak{B}_{\ell}}
$$

with

$$
\begin{aligned}
& \mathfrak{A}_{k} \cong M_{m_{k}}(\mathbb{C}) \\
& \mathfrak{B}_{\ell} \cong M_{n_{\ell}}(\mathbb{C})
\end{aligned}
$$

Claim 4.6. For all k there is ℓ such that $m_{k} \mid n_{\ell}$. (And vice-versa.)
Proof. Fix k; let δ be as in Lemma 4.5. Since \mathfrak{A}_{k} is finite-dimensional and contained in

$$
\overline{\bigcup_{\ell \in \mathbb{N}} \mathfrak{B}_{\ell}}
$$

there is ℓ such that $\operatorname{dist}\left(a, \mathfrak{B}_{\ell}\right)<\delta$ for all $a \in \mathfrak{A}_{k}$. (Indeed, there is ℓ such that $\operatorname{dist}\left(a, \mathfrak{B}_{\ell}\right)<m_{k}^{-2} \delta$ whenever $a \in \mathfrak{A}_{k}$ is the image of one of the standard matrix units in $M_{m_{k}}(\mathbb{C})$; the triangle inequality then yields the desired bound.) So by Lemma 4.5 there is unitary $u \in \mathfrak{A}$ such that $u^{*} \mathfrak{A}_{k} u \subseteq \mathfrak{B}_{\ell}$. But then the map $a \mapsto u^{*} a u$ is a unital *-homomorphism $\mathfrak{A}_{k} \rightarrow \mathfrak{B}_{\ell}$, and thus induces a unital *-homomorphism $M_{m_{k}}(\mathbb{C}) \rightarrow M_{n_{\ell}}(\mathbb{C})$; so by Corollary 4.2 we get that $m_{k} \mid n_{\ell}$. The "vice-versa" follows by symmetry.Claim 4.6

So repeatedly applying the above claim we get subsequences k_{0}, k_{1}, \ldots and $\ell_{0}, \ell_{1}, \ldots$ such that $m_{k_{0}}\left|n_{\ell_{0}}\right|$ $m_{k_{1}}\left|n_{\ell_{1}}\right| \cdots$. Thus for any prime p we have

$$
v_{p}\left(m_{k_{0}}\right) \leq v_{p}\left(n_{\ell_{0}}\right) \leq v_{p}\left(m_{k_{1}}\right) \leq v_{p}\left(n_{\ell_{1}}\right) \leq \cdots
$$

Thus

$$
\sup _{k} v_{p}\left(m_{k}\right)=\sup \left\{v_{p}\left(m_{k_{0}}\right), v_{p}\left(m_{k_{1}}\right), \ldots\right\} \leq \sup \left\{v_{p}\left(n_{\ell_{0}}\right), v_{p}\left(n_{\ell_{1}}\right), \ldots\right\}=\sup _{\ell} v_{p}\left(n_{\ell}\right)
$$

(where the equalities follow because $\left(v_{p}\left(m_{k}\right)\right)_{k}$ and $\left(v_{p}\left(n_{\ell}\right)\right)_{\ell}$ are increasing sequences). We likewise get $\sup _{\ell} v_{p}\left(n_{\ell}\right) \leq \sup _{k} v_{p}\left(m_{k}\right)$. So $\delta(\mathfrak{A})$ computed with respect to the \mathfrak{A}_{k} agrees with $\delta(\mathfrak{A})$ computed with respect to the \mathfrak{B}_{ℓ}.
\square Theorem 4.4
We have shown that $\delta(\mathfrak{A})$ is an invariant depending only on \mathfrak{A}; in fact it completely characterizes the isomorphism class of \mathfrak{A}.

Theorem 4.7. If $\mathfrak{A}, \mathfrak{B}$ are UHF algebras with $\delta(\mathfrak{A})=\delta(\mathfrak{B})$ then there is a continuous ${ }^{*}$-isomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

Theorem 4.7 may seem unremarkable: it seems intuitive that the unions of "similar" chains of subalgebras should be isomorphic. This intuition hides the complexity that can arise from the arrangement of the subalgebras; indeed, the following fact shows that this intuition fails quite badly in even a slightly more general class of C^{*}-algebras.

Fact 4.8 ([1, Example III.3.7]). There exist C^{*}-algebras \mathfrak{A} and \mathfrak{B} with chains of unital subalgebras

$$
\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \cdots \subseteq \mathfrak{A}
$$

and

$$
\mathfrak{B}_{0} \subseteq \mathfrak{B}_{1} \subseteq \cdots \subseteq \mathfrak{B}
$$

such that

- each \mathfrak{A}_{k} and \mathfrak{B}_{ℓ} is finite-dimensional (and thus isomorphic to a direct sum of matrix algebras), and
- $\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}$ and $\mathfrak{B}=\overline{\bigcup_{\ell \in \mathbb{N}} \mathfrak{B}_{\ell}}$
with each $\mathfrak{A}_{k} \cong \mathfrak{B}_{k}$ but $\mathfrak{A} \neq \mathfrak{B}$.
Having hopefully convinced the reader that this is indeed a remarkable theorem, we proceed to its proof. This proof appears in [1, Theorem III.5.2].

Proof of Theorem 4.7. Write

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}} \quad \mathfrak{B}=\overline{\bigcup_{\ell \in \mathbb{N}} \mathfrak{B}_{\ell}}
$$

with each $\mathfrak{A}_{k} \cong M_{m_{k}}(\mathbb{C})$ and each $\mathfrak{B}_{\ell} \cong M_{n_{\ell}}(\mathbb{C})$.
Claim 4.9. For all k there is ℓ such that $m_{k} \mid n_{\ell}$. (And vice-versa.)
Proof. Suppose p is prime with $v_{p}\left(m_{k}\right) \neq 0$. Then since $\delta(\mathfrak{A})=\delta(\mathfrak{B})$ we get

$$
v_{p}\left(m_{k}\right) \leq \sup _{k} v_{p}\left(m_{k}\right)=\sup _{\ell} v_{p}\left(n_{\ell}\right)
$$

So there is ℓ_{p} such that $v_{p}\left(m_{k}\right) \leq v_{p}\left(n_{\ell_{p}}\right)$. Let ℓ be the maximum over such p of ℓ_{p}. Then for such p we have

$$
v_{p}\left(m_{k}\right) \leq v_{p}\left(n_{\ell_{p}}\right) \leq v_{p}\left(n_{\ell}\right)
$$

So $m_{k} \mid n_{\ell}$. The "vice versa" again follows by symmetry.
Claim 4.9
Thus using the above claim we can drop to a subsequence of the \mathfrak{A}_{k} and a subsequence of the \mathfrak{B}_{ℓ} such that $m_{0}\left|n_{0}\right| m_{1}\left|n_{1}\right| \cdots$. (Note that since the \mathfrak{A}_{k} form a chain dropping to a subsequence won't change the union; likewise with the $\mathfrak{B}_{\ell \text {. }}$)
Claim 4.10. There exists unital *-homomorphisms $\varphi_{k}: \mathfrak{A}_{k} \rightarrow \mathfrak{B}_{k}$ and $\psi_{k}: \mathfrak{B}_{k} \rightarrow \mathfrak{A}_{k+1}$ such that $\psi_{k} \circ$ $\varphi_{k}: \mathfrak{A}_{k} \rightarrow \mathfrak{A}_{k+1}$ and $\varphi_{k+1} \circ \psi_{k}: \mathfrak{B}_{k} \rightarrow \mathfrak{B}_{k+1}$ are the inclusion mappings. i.e. we require that the following diagram commute:

Proof. Since $m_{0} \mid n_{0}$ there is a natural unital *-homomorphism $M_{m_{0}}(\mathbb{C}) \rightarrow M_{n_{0}}(\mathbb{C})$, namely $A \mapsto A \oplus \cdots \oplus A$; let $\varphi_{0}: \mathfrak{A}_{0} \rightarrow \mathfrak{B}_{0}$ be induced by this map.

Suppose we have defined φ_{k}. Since $n_{k} \mid m_{k+1}$ there is a natural unital *-homomorphism $M_{n_{k}}(\mathbb{C}) \rightarrow$ $M_{m_{k+1}}(\mathbb{C})$; let ψ_{k}^{\prime} be induced by this map. Then $\psi_{k}^{\prime} \circ \varphi_{k}$ is a unital ${ }^{*}$-homomorphism $\mathfrak{A}_{k} \rightarrow \mathfrak{A}_{k+1}$, as is the inclusion map. So by Corollary 4.2 there is a unitary $u \in \mathfrak{A}_{k+1}$ such that $u^{*} \psi_{k}^{\prime}\left(\varphi_{k}(a)\right) u=a$ for all $a \in \mathfrak{A}_{k}$. Define $\psi_{k}: \mathfrak{B}_{k} \rightarrow \mathfrak{A}_{k+1}$ by $\psi_{k}(b)=u^{*} \psi_{k}^{\prime}(b) u$; then by construction we have $\psi_{k} \circ \varphi_{k}$ is the inclusion $\mathfrak{A}_{k} \rightarrow \mathfrak{A}_{k+1}$.

The definition of φ_{k+1} assuming ψ_{k} has been defined is identical.
Claim 4.10
Hence since the following diagram commutes:

we get a well-defined continuous *-homomorphism

$$
\bigcup_{k \in \mathbb{N}} \varphi_{k}: \bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k} \rightarrow \mathfrak{B}
$$

Since this is continuous and linear, it extends to a map

$$
\varphi: \overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}=\mathfrak{A} \rightarrow \mathfrak{B}
$$

Similarly we get $\psi: \mathfrak{B} \rightarrow \mathfrak{A}$ extending the ψ_{k}.
But for $a \in \mathfrak{A}_{k}$ we have $\psi(\varphi(a))=\psi\left(\varphi_{k}(a)\right)=\psi_{k}\left(\varphi_{k}(a)\right)=a$; so $\psi \circ \varphi$ agrees with $i d_{\mathfrak{A}}$ on a dense subset, and by continuity we get $\psi \circ \varphi=\mathrm{id}_{\mathfrak{A}}$. We likewise get $\varphi \circ \psi=\mathrm{id}_{\mathfrak{B}}$. So φ is a continuous *-isomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

Theorem 4.7
Corollary 4.11. The CAR algebra is independent of the choice of \mathcal{H} and α.
Proof. If \mathfrak{A} is a CAR algebra (i.e. constructed from some \mathcal{H} and α as detailed in Section 2) then recall from Section 2 that

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}
$$

where $\mathfrak{A}_{k} \cong M_{2^{k}}(\mathbb{C}) ;$ so $\delta(\mathfrak{A})=2^{\infty}$. So any two constructions of the CAR algebra have the same supernatural number; so by Theorem 4.7 we get that there is a continuous *-isomorphism between any two constructions of the CAR algebra.

Corollary 4.11
Remark 4.12. Suppose we are given a supernatural number

$$
\mathbf{n}=\prod_{p \text { prime }} p^{e_{p}}
$$

We construct a UHF algebra \mathfrak{A} with $\delta(\mathfrak{A})=\mathbf{n}$. Pick a bijection $\Phi: \mathbb{N} \rightarrow P \times \mathbb{N}$, where P is the set of primes. Let $m_{0}=1$. Suppose we have chosen m_{k}; write $\Phi(k)=(p, e)$. If $e>e_{p}$, we let $m_{k+1}=m_{k}$; else let $m_{k+1}=\operatorname{lcm}\left(m_{k}, p^{e}\right)$. Note in particular that $m_{k} \mid m_{k+1}$ for all k.

Fix a separable Hilbert space \mathcal{H} with orthonormal basis $\left\{e_{0}, e_{1}, \ldots\right\}$. For $n \geq 1$ and $0 \leq j<n$ let $P_{j}^{(n)} \in \mathcal{B}(\mathcal{H})$ be the orthogonal projection with range $\overline{\operatorname{span}\left\{e_{\ell}: \ell \equiv j(\bmod n)\right\}}$; for $\delta \in \mathbb{Z}$ let $S_{\delta} \in \mathcal{B}(\mathcal{H})$ be

$$
S_{\delta} e_{k}= \begin{cases}e_{k+\delta} & \text { if } k+\delta \geq 0 \\ 0 & \text { else }\end{cases}
$$

Then for $i, j \in\{0, \ldots, n-1\}$ the map $E_{i j}^{(n)}=S_{i-j} P_{j}^{(n)}$ is given by

$$
e_{k} \mapsto \begin{cases}e_{q n+i} & \text { if } k=q n+j \text { for some } q \\ 0 & \text { else }\end{cases}
$$

In fact the $E_{i j}^{(n)}$ act as $n \times n$ matrix units: we have $E_{i j}^{(n)} E_{i^{\prime} j^{\prime}}^{(n)}=\delta_{j i^{\prime}} E_{i j^{\prime}}$ and $\left(E_{i j}^{(n)}\right)^{*}=E_{j i}^{(n)}$ and

$$
\sum_{i=0}^{n-1} E_{i i}^{(n)}=I
$$

Thus by Lemma 1.2 we get that $\mathfrak{M}_{n}=C^{*}\left(\left\{E_{i j}^{(n)}: i, j \in\{0, \ldots, n-1\}\right\}\right)$ is ${ }^{*}$-isomorphic to $M_{n}(\mathbb{C})$. Note also that if $n \mid m$ then

$$
P_{i}^{(n)}=\sum_{j=0}^{\frac{m}{n}-1} P_{i+j n}^{(m)}
$$

We thus get that $E_{i j}^{(n)}=S_{i-j} P_{j}^{(n)} \in \mathfrak{M}_{m}$ (by expanding using the above sum and distributing), and hence $\mathfrak{M}_{n} \subseteq \mathfrak{M}_{m}$.

Now if we let $\mathfrak{A}_{k}=\mathfrak{M}_{m_{k}} \subseteq \mathcal{B}(\mathcal{H})$ then since $m_{k} \mid m_{k+1}$ we get that $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \cdots$; so if

$$
\mathfrak{A}=\overline{\bigcup_{k \in \mathbb{N}} \mathfrak{A}_{k}}
$$

then \mathfrak{A} is a UHF algebra.

Claim 4.13. $\delta(\mathfrak{A})=\mathbf{n}$.
Proof. Suppose p is prime, and recall that

$$
\mathbf{n}=\prod_{p \text { prime }} p^{e_{p}}
$$

We must then check that $e_{p}=\sup _{k} v_{p}\left(m_{k}\right)$.
(\leq) Suppose $e \in \mathbb{N}$ has $e \leq e_{p}$. Let $k=\Phi^{-1}(p, e)$; then by construction we have $p^{e} \mid m_{k+1}$, and hence $e \leq v_{p}\left(m_{k+1}\right) \leq \sup _{k} v_{p}\left(m_{k}\right)$. Since this holds for all natural $e \leq e_{p}$, we get that $e_{p} \leq \sup _{k} v_{p}\left(m_{k}\right)$.
(\geq) One checks by induction on k that if $e_{p}<e$ then $v_{p}\left(m_{k}\right)<e$; this is simply the nature of the construction of the m_{k}. Hence in particular e_{p} is an upper bound for the $v_{p}\left(m_{k}\right)$, and $e_{p} \geq \sup _{k} v_{p}\left(m_{k}\right)$.Claim 4.13

So for every supernatural \mathbf{n} there is a UHF algebra \mathfrak{A} with $\delta(\mathfrak{A})=\mathbf{n}$. So the continuous isomorphism classes of UHF algebras are in bijection with the supernatural numbers.

References

[1] Kenneth R. Davidson. C^{*}-Algebras by Example. Hindustan Book Agency, 1996 (cit. on pp. 1, 2, 6-8).
[2] James G. Glimm. "On a Certain Class of Operator Algebras". In: Transactions of the American Mathematical Society 95.2 (1960), pp. 318-340 (cit. on p. 1).
[3] Paul Skoufranis. Separable Exact C^{*}-Algebras Embed Into the Cuntz Algebra. July 8, 2016. URL: http: //pskoufra.info. yorku.ca/files/2016/07/Separable-Exact-C-Algebras-Embed-Into-the-Cuntz-Algebras.pdf (cit. on p. 2).

