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1 Introduction and preliminaries

In his PhD thesis in 1960 ([2]), James Glimm introduced a class of C*-algebras called uniformly hyperfinite
(UHF); these are C*-algebras that can be written as the closed union of an increasing chain of matrix
subalgebras. There turn out to be interesting examples of these: the CAR algebra is a UHF algebra of interest
in quantum mechanics. A particularly remarkable property of UHF algebras is that there is an invariant that
completely captures the isomorphism class of a UHF algebra, called the supernatural number.

In this paper, I give an exposition of UHF algebras, the CAR algebra, and the supernatural number of a
UHF algebra. My presentation is a simplified version of [1, Chapter III], which develops the more general
class of approximately finite C*-algebras, and views UHF algebras as examples of these.

Ideals are closed and two-sided; 0 ∈ N.
A preliminary definition and theorem:

Definition 1.1. Suppose A is a C*-algebra; suppose Fij ∈ A for i, j ∈ { 1, . . . , n } satisfy:

1. FijFkℓ = δjkFiℓ.

2. F ∗
ij = Fji.

3.

n∑
i=1

Fii = 1.

Then the Fij are n× n matrix units A.

Lemma 1.2. Suppose A is a C*-algebra; suppose Fij ∈ A are n × n matrix units for A. Then C∗({Fij :
i, j ∈ { 1, . . . , n } }) is *-isomorphic to Mn(C).

Proof. It is clear from the given conditions that span{Fij : i, j ∈ { 1, . . . , n } } is a unital *-subalgebra of A
of dimension n2; hence since it is finite-dimensional it is closed, and is thus C∗({Fij : i, j ∈ { 1, . . . , n } }).
Furthermore, an identical proof to the case of Mℓ(C) shows that C∗({Fij : i, j ∈ { 1, . . . , n } }) is simple. But
up to isomorphism the only simple finite-dimensional C*-algebra of dimension n2 is Mn(C); the result follows.

Lemma 1.2
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2 A motivating example: the CAR algebra

Before defining UHF algebras, we first study a prototype: the CAR algebra. This is a C*-algebra that arises
naturally in the context of quantum mechanics (as noted in [1, Example III.5.4]). We will show that it is the
closed union of a chain of matrix subalgebras; generalizing this property will yield the definition of a UHF
algebra.

Fix a separable Hilbert space H and some continuous linear map α : H → B(H) such that for all x, y ∈ H
we have:

α(x)α(y) + α(y)α(x) = 0 (AC1)

α(x)α(y)∗ + α(y)∗α(x) = ⟨x, y⟩I (AC2)

(These are called the canonical anticommutation relations; hence the name “CAR algebra”.)

Fact 2.1 ([3, Lemma 6.5]). Such H and α exist.

The CAR algebra is defined to be A = C∗(α(H)). (In principle this might depend on α and H; we will
see in Corollary 4.11 that it does not.)

Fix an orthonormal basis { en : n ∈ N } for H. For n ∈ N define An = C∗(α(e0), . . . , α(en−1)).

Proposition 2.2. There is a *-isomorphism An ∼=M2n(C) (and hence a continuous *-isomorphism, since
they’re finite dimensional).

The following proof appears in [1, Example III.5.4], though I have added some (perhaps unnecessary)
details. Said details are somewhat unpleasant; the uninterested reader is encouraged to skip the proofs of the
claims.

Proof. For n ∈ N we let Wn = I − 2α(en)
∗α(en). Note that AC1 implies α(x)2 = 0 for all x ∈ H; hence by

AC2 we have

(α(en)
∗α(en))

2 = α(en)
∗α(en)(I − α(en)α(en)

∗) = α(en)
∗α(en)− α(en)

∗ α(en)
2︸ ︷︷ ︸

=0

α(en)
∗ = α(en)

∗α(en)

Claim 2.3. We have

Wnα(em) = (−1)δmn+1α(em)Wn

Wnα(em)∗ = (−1)δmn+1α(em)Wn

and Wn is self-adjoint with W 2
n = I.

Proof. Note by AC2 that Wn = I − 2(⟨en, en⟩I − α(en)α(en)
∗) = 2α(en)α(en)

∗ − I. Thus

Wnα(en) = (I − 2α(en)
∗α(en))α(en)

= α(en)− 2α(en)
∗α(en)

2

= α(en)

α(en)Wn = α(en)(2α(en)α(en)
∗ − I)

= −α(en)
= −Wnα(en)

Also if m ̸= n then ⟨em, en⟩ = 0; so

Wnα(em) = (I − 2α(en)
∗α(en))α(em)

= α(em)− 2α(en)
∗α(en)α(em)

= α(em) + 2α(en)
∗α(em)α(en) (AC1)

= α(em) + 2(⟨en, em⟩I − α(em)α(en)
∗)α(en) (AC2)

= α(em)− 2α(em)α(en)
∗α(en)

= α(em)(I − 2α(en)
∗α(en))

= α(em)Wn
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Also it is clear that W ∗
n =Wn; hence

Wnα(em)∗ = (−1)δmn+1α(em)∗Wn

follows by taking adjoints. Finally we have

W 2
n = (I − 2α(en)

∗α(en))(I − 2α(en)
∗α(en)) = I − 4α(en)

∗α(en) + 4(α(en)
∗α(en))

2 = I

as desired. Claim 2.3

For n ∈ N let Vn =W0 · · ·Wn−1 ∈ C∗(α(e1), . . . , α(en−1)).

Claim 2.4. The elements

E
(n)
11 = α(en)

∗α(en)

E
(n)
12 = Vnα(en)

E
(n)
21 = Vnα(en)

∗

E
(n)
22 = α(en)α(en)

∗

are 2× 2 matrix units for A; furthermore if m ̸= n then E
(m)
ij commutes with E

(n)
kℓ for all i, j, k, ℓ ∈ { 1, 2 }.

Proof. Note by Claim 2.3 that Vn commutes with α(en) and α(en)
∗, and that V ∗

n Vn = VnV
∗
n = I. We now

verify the properties of matrix units:

1. This is routine; we do two sample computations and leave the rest to the interested reader.

E
(n)
11 E

(n)
21 = α(en)

∗α(en)Vnα(en)
∗

= Vn(I − α(en)α(en)
∗)α(en)

∗

= Vnα(en)
∗

= E
(n)
21

E
(n)
11 E

(n)
12 = α(en)

∗α(en)Vnα(en)

= Vnα(en)
∗α(en)

2

= 0

2. We have (E
(n)
12 )∗ = (Vnα(en))

∗ = Vnα(en)
∗ = E

(n)
21 , and we already saw that (E

(n)
11 )2 = (α(en)

∗α(en))
2 =

α(en)
∗α(en) = E

(n)
11 ; a similar proof yields that (E

(n)
22 )2 = E

(n)
22 .

3. This is just AC2.

For the last claim, we show that Vnα(en) commutes with C∗(α(e0), . . . , α(en−1)); this will suffice, since

E
(n)
ij ∈ C∗(Vnα(en)) and E

(k)
ij ∈ C∗(α(e0), . . . , α(en−1)) if k < n. But by Claim 2.3 we get for k < n that

Vnα(en)α(ek) = −W0 · · ·Wn−1α(ek)α(en)

= α(ek)W0 · · ·Wn−1α(en)

= α(ek)Vnα(en)

and similarly Vnα(en)α(ek)
∗ = α(ek)

∗Vnα(en). Claim 2.4

Claim 2.5. The E
(0)
i0j0

· · ·E(n−1)
in−1jn−1

form 2n × 2n matrix units for A.

Proof. We verify the properties of matrix units.
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1. By Claim 2.4 we have

E
(0)
i0j0

· · ·E(n−1)
in−1jn−1

· E(0)
k0ℓ0

· · ·E(n−1)
kn−1ℓn−1

= E
(0)
i0j0

E
(0)
k0ℓ0

· · ·E(n−1)
in−1jn−1

E
(n−1)
kn−1ℓn−1

= δj0k0 · · · δjn−1kn−1E
(0)
i0ℓ0

· · ·E(n−1)
in−1ℓn−1

= δ(j0,...,jn−1),(k0,...,kn−1)E
(0)
i0ℓ0

· · ·E(n−1)
in−1ℓn−1

as desired.

2. This follows directly from Claim 2.4.

3. We do this by induction on n. The base case is Claim 2.4; for the induction step notice that

2∑
i0=1

· · ·
2∑

in=1

E
(0)
i0i0

· · ·E(n)
inin

=

 2∑
i0=1

· · ·
2∑

in−1=1

E
(0)
i0i0

· · ·E(n−1)
in−1in−1

 2∑
in=1

E
(n)
inin

=

2∑
in=1

E
(n)
inin

= I

by the induction hypothesis. Claim 2.5

Thus by Lemma 1.2 we get that C∗({E(0)
i0j0

· · ·E(n−1)
in−1jn−1

}) is *-isomorphic to M2n(C). But E
(k)
ij ∈

C∗(α(e0), . . . , α(ek)); also

α(eℓ) = V ∗
ℓ Vℓα(eℓ) = (I − 2E

(ℓ)
11 )E

(ℓ)
12

and

E
(ℓ)
ij =

2∑
i0=1

· · ·
2∑

iℓ−1=1

2∑
iℓ+1=1

· · ·
2∑

in−1=1

E
(0)
i0i0

· · ·E(ℓ−1)
iℓ−1iℓ−1

E
(ℓ)
ij E

(ℓ+1)
iℓ+1iℓ+1

· · ·E(n−1)
in−1in−1

∈ C∗({E(0)
i0j0

· · ·E(n−1)
in−1jn−1

})

So C∗({α(e0), . . . , α(en−1) }) = C∗({E(0)
i0j0

· · ·E(n−1)
in−1jn−1

}); so An = C∗({α(e0), . . . , α(en−1) }) is *-isomorphic

to M2n(C), as desired. Proposition 2.2

Note, however, that

A = C∗(α(H)) =
⋃
n∈N

alg{α(e0), . . . , α(en−1) } ⊆
⋃
n∈N

C∗(α(e0), . . . , α(en−1)) =
⋃
n∈N

An

We have thus shown that there is a chain A0 ⊆ A1 ⊆ · · · ⊆ A of matrix subalgebras whose union is dense; this
is the condition we will generalize when defining UHF algebras. This is a strong finiteness condition; we will
see in Theorem 4.7 that the behaviour of algebras with such a chain is tightly controlled by the behaviour
within the chain.

3 UHF algebras: definitions and first properties

Definition 3.1. A UHF algebra is a unital C*-algebra A for which there exists a chain A0 ⊆ A1 ⊆ · · · ⊆ A
of unital subalgebras (i.e. subalgebras containing the unit of A) such that

• each Ak is *-isomorphic to a matrix algebra Mmk
(C), and

• A =
⋃
k∈N

Ak.

So in particular the CAR algebra is a UHF algebra.
Some properties:

Remark 3.2. Since linear maps, and in particular *-homomorphisms, between finite dimensional spaces are
continuous, we get that the isomorphism Ak ∼=Mmk

(C) is continuous; so we may assume that topological
properties are preserved as well.
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Remark 3.3. UHF algebras are separable. Indeed, suppose

A =
⋃
k∈N

Ak

is a UHF algebra. Let Ak ⊆ Ak be the image of Mmk
(Q) under the given isomorphism Mmk

(C) → Ak; so Ak
is countable and dense in Ak. Then

A =
⋃
k∈N

Ak

is dense in ⋃
k∈N

Ak

and hence also in its closure A. But A is countable; so A is separable.

Proposition 3.4. UHF algebras are simple.

Proof. Suppose

A =
⋃
k∈N

Ak

is a UHF algebra; suppose J ⫋ A is an ideal.

Claim 3.5. J ∩ Ak = { 0 } for all k ∈ N.

Proof. We first check that J ∩ Ak is an ideal of Ak. It is clear that J ∩ Ak is a vector subspace of Ak that is
closed in the relative topology. Suppose a, b ∈ Ak and c ∈ J ∩ Ak. Then acb ∈ Ak since Ak is a subalgebra
and acb ∈ J since J is an ideal; so acb ∈ J ∩ Ak, and J ∩ Ak is an ideal of Ak.

But Ak ∼=Mmk
(C), and Mmk

(C) is simple. So J ∩ Ak is either { 0 } or all of Ak.

Case 1. Suppose there is some k ∈ N such that J ∩ Ak = { 0 }. Then for all ℓ < k we immediately get that
J ∩ Aℓ ⊆ J ∩ Ak = { 0 }; also for ℓ > k with Aℓ ⫌ Ak we get that J ∩ Aℓ ⊆ (Aℓ \ Ak) ∪ { 0 } ⫋ Aℓ, and
thus J ∩ Aℓ = { 0 }. The claim then follows.

Case 2. Suppose J ∩ Ak = Ak for all k ∈ N. Then J is a closed set containing the dense set⋃
k∈N

Ak

So J = A, contradicting our assumption that J was proper. Claim 3.5

Consider the quotient map q : A → A/J; we will show that q is injective. Note that q ↾ Ak is injective:
indeed, ker(q ↾ Ak) = ker(q)∩Ak = J∩Ak = { 0 }. We can thus define a continuous linear map φk : q(Ak) → Ak
such that φk ◦ q = idAk

. This φk is uniquely determined, and thus the φk form a chain; so we can define

φω =
⋃
k∈N

φk :
⋃
k∈N

q(Ak) →
⋃
k∈N

Ak

But this φω is a continuous linear map, and thus extends to

φ :
⋃
k∈N

q(Ak) → A

But if q(a) ∈ A/J and ε > 0 then there is some k ∈ N and a0 ∈ Ak such that ∥a−a0∥ < ε; so ∥q(a)−q(a0)∥ ≤
∥a− a0∥ < ε. So ⋃

k∈N
q(Ak)

is dense in A/J; so φ : A/J → A. But by construction φ ◦ q ↾ Ak = idAk
; so by continuity of φ ◦ q we get that

φ ◦ q = idA. So q is injective, and J = ker(q) = { 0 }. Proposition 3.4
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4 The supernatural number of a UHF algebra

In this section we will justify our earlier claim that the behaviour of a UHF algebra is tightly controlled by
the behaviour of its matrix subalgebras; in fact in Theorem 4.7 we will give an invariant that completely
classifies the isomorphism type of a UHF algebra.

To understand the structure of a UHF algebra, it behooves us to study the structure of unital *-embeddings
between matrix algebras: the embeddings Mmk

(C) →Mmk+1
(C) induced by the inclusions Ak ↪→ Ak+1 will

determine how the Mmk
(C) “fit together” in A. Since unital *-embeddings between matrix algebras can be

viewed as non-degenerate representations, we first study the representation theory of matrix algebras.

Proposition 4.1. All irreducible representations of Mn(C) are unitarily equivalent to the identity represen-
tation id : Mn(C) →Mn(C).

Proof. We know from assignment 3 that an irreducible representation is a surjective homomorphismMn(C) →
Mm(C), and the kernel is a maximal ideal of Mn(C), and thus 0. So the only irreducible representations are
*-automorphisms ρ : Mn(C) →Mn(C).

Note that the Eii must get sent to pairwise orthogonal rank 1 projections; we thus get an orthonormal
basis f1, . . . , fn for Cn such that ρ(Eii) = fif

∗
i = Fii. But then also ρ(Eij) = ρ(EiiEijEjj) = Fiiρ(Eij)Fjj ,

so since ρ preserves spectra we get ρ(Eij) = fif
∗
j = Fij . Then the map Uei = fi is unitary, and ρ(Eij) =

Fij = fif
∗
j = Ueie

∗
jU

∗ = UEijU
∗ for all i, j; so ρ(A) = UAU∗ for all A. So ρ is unitarily equivalent to the

identity. Proposition 4.1

We can use this to classify all unital *-embeddings between matrix algebras.

Corollary 4.2. Suppose φ : Mm(C) → Mn(C) is a unital *-homomorphism. Then m | n and there is a
unitary U ∈Mn(C) such that φ(A) = U∗(A⊕ · · · ⊕A)U for all A ∈Mm(C).

Proof. Since φ is unital we get that φ defines a non-degenerate representation of a finite-dimensional
C*-algebra, and is thus completely reducible. (Indeed, one checks that the orthogonal complement of a
subrepresentation is also a subrepresentation.) Hence by previous proposition we get that φ = ρ1 ⊕ · · · ⊕ ρk
with each ρk unitarily equivalent to id : Mm(C) →Mm(C); so n = km andm | n. If U1, . . . , Uk are unitaries in
Mm(C) such that ρi(A) = UiAU

∗
i , then U = U1⊕· · ·⊕Uk ∈Mn(C) is the desired unitary. Corollary 4.2

Suppose now that

A =
⋃
k∈N

Ak

is a UHF algebra. Then the inclusions Ak → Ak+1 induce unital *-homomorphisms Mmk
(C) →Mmk+1

(C);
so m0 | m1 | · · ·. Consider the prime factorizations of the mk: let

mk =
∏

p prime

pvp(mk)

Then since the mk | mk+1 we get that the (vp(mk))k are increasing sequences of natural numbers; so each
one is either eventually constant or diverges to infinity. Let ep = supk vp(mk) ∈ N ∪ {∞}.

Definition 4.3. The supernatural number associated to A is the formal product

δ(A) =
∏

p prime

pep

(Of course δ(A) is only a true natural number if A ∼=Mδ(A)(C).)

In principle our definition of δ(A) may depend on the choice of chain A0 ⊆ A1 ⊆ · · ·; in fact it depends
only on A.

Theorem 4.4. δ(A) is well-defined.

We will need a lemma whose proof I omit; I direct the interested reader to [1, Lemma III.3.2], of which
the following is a weakening:
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Lemma 4.5. Suppose D is a C*-algebra with a finite-dimensional C*-subalgebra A. Then there is δ > 0
such that if B ⊆ D is a C*-subalgebra with dist(a,B) < δ for all a ∈ b1(B) then there is a unitary u ∈ D
such that u∗Au ⊆ B.

Proof of Theorem 4.4. Suppose

A =
⋃
k∈N

Ak =
⋃
ℓ∈N

Bℓ

with

Ak ∼=Mmk
(C)

Bℓ
∼=Mnℓ

(C)

Claim 4.6. For all k there is ℓ such that mk | nℓ. (And vice-versa.)

Proof. Fix k; let δ be as in Lemma 4.5. Since Ak is finite-dimensional and contained in⋃
ℓ∈N

Bℓ

there is ℓ such that dist(a,Bℓ) < δ for all a ∈ Ak. (Indeed, there is ℓ such that dist(a,Bℓ) < m−2
k δ whenever

a ∈ Ak is the image of one of the standard matrix units in Mmk
(C); the triangle inequality then yields the

desired bound.) So by Lemma 4.5 there is unitary u ∈ A such that u∗Aku ⊆ Bℓ. But then the map a 7→ u∗au
is a unital *-homomorphism Ak → Bℓ, and thus induces a unital *-homomorphism Mmk

(C) →Mnℓ
(C); so

by Corollary 4.2 we get that mk | nℓ. The “vice-versa” follows by symmetry. Claim 4.6

So repeatedly applying the above claim we get subsequences k0, k1, . . . and ℓ0, ℓ1, . . . such that mk0 | nℓ0 |
mk1 | nℓ1 | · · ·. Thus for any prime p we have

vp(mk0) ≤ vp(nℓ0) ≤ vp(mk1) ≤ vp(nℓ1) ≤ · · ·

Thus
sup
k
vp(mk) = sup{ vp(mk0), vp(mk1), . . . } ≤ sup{ vp(nℓ0), vp(nℓ1), . . . } = sup

ℓ
vp(nℓ)

(where the equalities follow because (vp(mk))k and (vp(nℓ))ℓ are increasing sequences). We likewise get
supℓ vp(nℓ) ≤ supk vp(mk). So δ(A) computed with respect to the Ak agrees with δ(A) computed with respect
to the Bℓ. Theorem 4.4

We have shown that δ(A) is an invariant depending only on A; in fact it completely characterizes the
isomorphism class of A.

Theorem 4.7. If A,B are UHF algebras with δ(A) = δ(B) then there is a continuous *-isomorphism A → B.

Theorem 4.7 may seem unremarkable: it seems intuitive that the unions of “similar” chains of subalgebras
should be isomorphic. This intuition hides the complexity that can arise from the arrangement of the
subalgebras; indeed, the following fact shows that this intuition fails quite badly in even a slightly more
general class of C*-algebras.

Fact 4.8 ([1, Example III.3.7]). There exist C*-algebras A and B with chains of unital subalgebras

A0 ⊆ A1 ⊆ · · · ⊆ A

and
B0 ⊆ B1 ⊆ · · · ⊆ B

such that

• each Ak and Bℓ is finite-dimensional (and thus isomorphic to a direct sum of matrix algebras), and
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• A =
⋃
k∈N

Ak and B =
⋃
ℓ∈N

Bℓ

with each Ak ∼= Bk but A ̸∼= B.

Having hopefully convinced the reader that this is indeed a remarkable theorem, we proceed to its proof.
This proof appears in [1, Theorem III.5.2].

Proof of Theorem 4.7. Write

A =
⋃
k∈N

Ak B =
⋃
ℓ∈N

Bℓ

with each Ak ∼=Mmk
(C) and each Bℓ

∼=Mnℓ
(C).

Claim 4.9. For all k there is ℓ such that mk | nℓ. (And vice-versa.)

Proof. Suppose p is prime with vp(mk) ̸= 0. Then since δ(A) = δ(B) we get

vp(mk) ≤ sup
k
vp(mk) = sup

ℓ
vp(nℓ)

So there is ℓp such that vp(mk) ≤ vp(nℓp). Let ℓ be the maximum over such p of ℓp. Then for such p we have

vp(mk) ≤ vp(nℓp) ≤ vp(nℓ)

So mk | nℓ. The “vice versa” again follows by symmetry. Claim 4.9

Thus using the above claim we can drop to a subsequence of the Ak and a subsequence of the Bℓ such
that m0 | n0 | m1 | n1 | · · ·. (Note that since the Ak form a chain dropping to a subsequence won’t change
the union; likewise with the Bℓ.)

Claim 4.10. There exists unital *-homomorphisms φk : Ak → Bk and ψk : Bk → Ak+1 such that ψk ◦
φk : Ak → Ak+1 and φk+1 ◦ ψk : Bk → Bk+1 are the inclusion mappings. i.e. we require that the following
diagram commute:

A0 A1 A2 · · ·

B0 B1 B2 · · ·

φ0 φ1 φ2
ψ0 ψ1 ψ2

Proof. Since m0 | n0 there is a natural unital *-homomorphism Mm0(C) →Mn0(C), namely A 7→ A⊕· · ·⊕A;
let φ0 : A0 → B0 be induced by this map.

Suppose we have defined φk. Since nk | mk+1 there is a natural unital *-homomorphism Mnk
(C) →

Mmk+1
(C); let ψ′

k be induced by this map. Then ψ′
k ◦ φk is a unital *-homomorphism Ak → Ak+1, as is

the inclusion map. So by Corollary 4.2 there is a unitary u ∈ Ak+1 such that u∗ψ′
k(φk(a))u = a for all

a ∈ Ak. Define ψk : Bk → Ak+1 by ψk(b) = u∗ψ′
k(b)u; then by construction we have ψk ◦ φk is the inclusion

Ak → Ak+1.
The definition of φk+1 assuming ψk has been defined is identical. Claim 4.10

Hence since the following diagram commutes:

A0 A1 A2 · · ·

B0 B1 B2 · · ·

φ0 φ1 φ2

we get a well-defined continuous *-homomorphism⋃
k∈N

φk :
⋃
k∈N

Ak → B

8



Since this is continuous and linear, it extends to a map

φ :
⋃
k∈N

Ak = A → B

Similarly we get ψ : B → A extending the ψk.
But for a ∈ Ak we have ψ(φ(a)) = ψ(φk(a)) = ψk(φk(a)) = a; so ψ ◦ φ agrees with idA on a dense subset,

and by continuity we get ψ ◦ φ = idA. We likewise get φ ◦ ψ = idB. So φ is a continuous *-isomorphism
A → B. Theorem 4.7

Corollary 4.11. The CAR algebra is independent of the choice of H and α.

Proof. If A is a CAR algebra (i.e. constructed from some H and α as detailed in Section 2) then recall from
Section 2 that

A =
⋃
k∈N

Ak

where Ak ∼=M2k(C); so δ(A) = 2∞. So any two constructions of the CAR algebra have the same supernatural
number; so by Theorem 4.7 we get that there is a continuous *-isomorphism between any two constructions
of the CAR algebra. Corollary 4.11

Remark 4.12. Suppose we are given a supernatural number

n =
∏

p prime

pep

We construct a UHF algebra A with δ(A) = n. Pick a bijection Φ: N → P × N, where P is the set of
primes. Let m0 = 1. Suppose we have chosen mk; write Φ(k) = (p, e). If e > ep, we let mk+1 = mk; else let
mk+1 = lcm(mk, p

e). Note in particular that mk | mk+1 for all k.
Fix a separable Hilbert space H with orthonormal basis { e0, e1, . . . }. For n ≥ 1 and 0 ≤ j < n let

P
(n)
j ∈ B(H) be the orthogonal projection with range span{ eℓ : ℓ ≡ j (mod n) }; for δ ∈ Z let Sδ ∈ B(H) be

Sδek =

{
ek+δ if k + δ ≥ 0

0 else

Then for i, j ∈ { 0, . . . , n− 1 } the map E
(n)
ij = Si−jP

(n)
j is given by

ek 7→

{
eqn+i if k = qn+ j for some q

0 else

In fact the E
(n)
ij act as n× n matrix units: we have E

(n)
ij E

(n)
i′j′ = δji′Eij′ and (E

(n)
ij )∗ = E

(n)
ji and

n−1∑
i=0

E
(n)
ii = I

Thus by Lemma 1.2 we get that Mn = C∗({E(n)
ij : i, j ∈ { 0, . . . , n− 1 } }) is *-isomorphic to Mn(C). Note

also that if n | m then

P
(n)
i =

m
n −1∑
j=0

P
(m)
i+jn

We thus get that E
(n)
ij = Si−jP

(n)
j ∈ Mm (by expanding using the above sum and distributing), and hence

Mn ⊆ Mm.
Now if we let Ak = Mmk

⊆ B(H) then since mk | mk+1 we get that A0 ⊆ A1 ⊆ · · ·; so if

A =
⋃
k∈N

Ak

then A is a UHF algebra.
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Claim 4.13. δ(A) = n.

Proof. Suppose p is prime, and recall that

n =
∏

p prime

pep

We must then check that ep = supk vp(mk).

(≤) Suppose e ∈ N has e ≤ ep. Let k = Φ−1(p, e); then by construction we have pe | mk+1, and hence
e ≤ vp(mk+1) ≤ supk vp(mk). Since this holds for all natural e ≤ ep, we get that ep ≤ supk vp(mk).

(≥) One checks by induction on k that if ep < e then vp(mk) < e; this is simply the nature of the
construction of the mk. Hence in particular ep is an upper bound for the vp(mk), and ep ≥ supk vp(mk).

Claim 4.13

So for every supernatural n there is a UHF algebra A with δ(A) = n. So the continuous isomorphism
classes of UHF algebras are in bijection with the supernatural numbers.
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