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1 Introduction and preliminaries

In his PhD thesis in 1960 ([2]), James Glimm introduced a class of C*-algebras called uniformly hyperfinite
(UHF); these are C*-algebras that can be written as the closed union of an increasing chain of matrix
subalgebras. There turn out to be interesting examples of these: the CAR algebra is a UHF algebra of interest
in quantum mechanics. A particularly remarkable property of UHF algebras is that there is an invariant that
completely captures the isomorphism class of a UHF algebra, called the supernatural number.

In this paper, I give an exposition of UHF algebras, the CAR algebra, and the supernatural number of a
UHF algebra. My presentation is a simplified version of [1, Chapter III], which develops the more general
class of approximately finite C*-algebras, and views UHF algebras as examples of these.

Ideals are closed and two-sided; 0 € N.

A preliminary definition and theorem:

Definition 1.1. Suppose 2 is a C*-algebra; suppose F;; € 2 for i,5 € {1,...,n} satisfy:

1. FjFye = 051 F5.

2. F; = Fj;
3. ZF“» =1
=1

Then the F;; are n X n matriz units 2A.

Lemma 1.2. Suppose A is a C*-algebra; suppose F;j € A are n x n matriz units for A. Then C*({ F}; :
i,j7€{1,...,n}}) is *~isomorphic to M, (C).

Proof. Tt is clear from the given conditions that span{ Fj; : 4,5 € {1,...,n} } is a unital *-subalgebra of A
of dimension n?; hence since it is finite-dimensional it is closed, and is thus C*({ F; : i,j € {1,...,n}}).
Furthermore, an identical proof to the case of My(C) shows that C*({ F; : ¢,5 € {1,...,n}}) is simple. But
up to isomorphism the only simple finite-dimensional C*-algebra of dimension n? is M, (C); the result follows.

0 Lemma 1.2



2 A motivating example: the CAR algebra

Before defining UHF algebras, we first study a prototype: the CAR algebra. This is a C*-algebra that arises
naturally in the context of quantum mechanics (as noted in [1, Example I11.5.4]). We will show that it is the
closed union of a chain of matrix subalgebras; generalizing this property will yield the definition of a UHF
algebra.

Fix a separable Hilbert space H and some continuous linear map «: H — B(#) such that for all z,y € H
we have:

a(z)a(y) + a(y)a(r) =0 (AC1)
a(z)a(y)” +aly) a(z) = (z,y)I (AC2)
(These are called the canonical anticommutation relations; hence the name “CAR algebra”.)
Fact 2.1 ([3, Lemma 6.5]). Such H and « ezist.

The CAR algebra is defined to be 2 = C*(a(H)). (In principle this might depend on « and H; we will
see in Corollary 4.11 that it does not.)
Fix an orthonormal basis { e, : n € N} for H. For n € N define 2,, = C*(a(eo), ..., a(en—1)).

Proposition 2.2. There is a *-isomorphism 2, = M (C) (and hence a continuous *-isomorphism, since
they’re finite dimensional).

The following proof appears in [1, Example II1.5.4], though I have added some (perhaps unnecessary)
details. Said details are somewhat unpleasant; the uninterested reader is encouraged to skip the proofs of the
claims.

Proof. For n € N we let W,, = I —2a(e,)*a(e,). Note that AC1 implies a(x)? = 0 for all € H; hence by
AC2 we have

(alen)*alen))? = alen) alen) (I — aflen)alen)®) = alen) alen) — alen)” alen)? alen)* = alen)*alen)
H:,O_/

Claim 2.3. We have

Wha(em) = (—1)°=+a(en) W,
Wna(em)* = (_1)5mn+1a(e'm)Wn

and W, is self-adjoint with W2 = 1.
Proof. Note by AC2 that W, = I — 2((en, en)] — alen)a(en)*) = 2a(en)a(en)* — I. Thus
Wha(en) = (I —2a(en)*alen))aler)
=ale,) — 2a(en) alen)?
= a(en)
alen)W,, = alen)(2a(en)alen,)” —I)
= —afen)
= —Wya(e,)

Also if m # n then (e, e,) = 0; so
Whalen) = (I —2a(ey) alen))a(em)
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Also it is clear that W = W,,; hence
Whalen)* = (=12 a(en) W,
follows by taking adjoints. Finally we have
W2 = (I —2a(e,)*alen))(I —2a(en) alen)) = I —4a(en) ale,) + 4(ale,) aley))? =1
as desired. O Claim 2.3

Forne Nlet V,, =Wy---Wy,_1 € C*(aler),...,a(en—1)).
Claim 2.4. The elements

E{Y = alen)*alen)
Eg) = Vaa(en)
ng) = Vaa(en)”

(

Eég) = alen)ale,)”

are 2 X 2 matrixz units for A; furthermore if m # n then El(jm) commutes with E,(!Z) foralli,j, k,0e{1,2}.

Proof. Note by Claim 2.3 that V,, commutes with a(e,) and a(ey,)*, and that V)V, = V,,V* = I. We now
verify the properties of matrix units:

1. This is routine; we do two sample computations and leave the rest to the interested reader.

BV B = aleq) alen) Vaa(en)”
= VoI — alen)a(en)”)alen)”
= Vha(en)”
5
Eﬂl)Egn) = alen) alen)Vaalen)
= Vha(e,) ale,)?
=0

2. We have (E{S))* = (Vhalen))* = Vaalen)* = ng), and we already saw that (Ei?))2 = (alen)*aley))? =
alen)*a(en) = E\; a similar proof yields that (E{2)? = E{.
3. This is just AC2.

For the last claim, we show that V,a(e,) commutes with C*(a(ep),...,a(e,—1)); this will suffice, since
Ez(]") € C*(Vya(ey)) and El(f) € C*(aleg), ... alen—1)) if k < n. But by Claim 2.3 we get for k < n that

Vaalen)a(er) = =Wy -+ - Wy _1a(eg)aley)
= afer)Wo - - Wy_1a(en)
= a(ex) Vaolen)
and similarly Vya(en)a(er)* = aler)* Vaalen). O Claim 2.4
Claim 2.5. The Ei(fj)o e EZ(TZ_IIJ)i1 form 2" x 2™ matriz units for A.

Proof. We verify the properties of matrix units.



1. By Claim 2.4 we have

(0) (n—1) (0) (n—1) (0) (0 (n—1) (n—1)
EZU]O E'Ln 1Jn—1 Ekoeo E kn—1€n—1 7E2010Ek0€0. Eln 1Jn— lEkn—len—l
0 n—1
= jokﬂ.néj”—lk" 1E’L(ogo ’ E’L(n 1271,71
_ (0) (n—1)
= 0osin—1)s(koseenskn—1) By - By,

as desired.
2. This follows directly from Claim 2.4.

3. We do this by induction on n. The base case is Claim 2.4; for the induction step notice that

2
0 0) n—1 n
Z Z Ez(oz)g o znzn = Z Z El(olo o 1(n 121 1 Z lnln Z El(nl)n =
i0=1 1n=1 10=1 ip—1=1 in=1 1n=1
by the induction hypothesis. O Claim 2.5
Thus by Lemma 1.2 we get that C*({ EW0 EZ(: 1lj)n . }) is *-isomorphic to M- (C). But EZ(Jk) €
C*(aleg), ..., alex)); also . ,
aler) = Vi Veales) = (I - 2B{7)ELy)
and
) _ (0) (e-1) (&) p(e+1) (n— 1) * (0) (n—1)
E Z Z Z Z Eloio ’ Ew 16— 1E1 Ele+1w+1 T Eln 10n E C ({ Elojo Eln 1Jn—1 })
i0=1 ip—1=1ip4y1=1 in—1=1

So C*({afen),...,alen1)}) = C*{EY .. E" Y Vyiso, = C*({alen),. .., alen—1)}) is *-isomorphic

20Jo n—1Jn—1

to Man (C), as desired. O Proposition 2.2

Note, however, that

A =C*(a(M) = | alg{alen),....alea1)} € [ C*(aleo), ... alen—1)) = | An

neN neN neN

We have thus shown that there is a chain 2y C 2(; C --- C 2 of matrix subalgebras whose union is dense; this
is the condition we will generalize when defining UHF algebras. This is a strong finiteness condition; we will
see in Theorem 4.7 that the behaviour of algebras with such a chain is tightly controlled by the behaviour
within the chain.

3 UHF algebras: definitions and first properties

Definition 3.1. A UHF algebra is a unital C*-algebra 2 for which there exists a chain 4y C24; C--- C A
of unital subalgebras (i.e. subalgebras containing the unit of ) such that

e cach 2, is *-isomorphic to a matrix algebra M,,, (C), and

o = UQlk

keN

So in particular the CAR algebra is a UHF algebra.

Some properties:
Remark 3.2. Since linear maps, and in particular *-homomorphisms, between finite dimensional spaces are
continuous, we get that the isomorphism A, = M,,, (C) is continuous; so we may assume that topological
properties are preserved as well.



Remark 3.3. UHF algebras are separable. Indeed, suppose

A= 2w

keN

is a UHF algebra. Let Ay C 2, be the image of M,,, (Q) under the given isomorphism M,,, (C) — 2; so Ay
is countable and dense in ;. Then
A= A

keN

2

keN

is dense in

and hence also in its closure 2. But A is countable; so 2 is separable.
Proposition 3.4. UHF algebras are simple.

Proof. Suppose

A= 2w

kEN
is a UHF algebra; suppose J ; 2l is an ideal.
Claim 3.5. JNA, ={0} for all k € N.

Proof. We first check that J N %A is an ideal of 2. It is clear that J N A is a vector subspace of A that is
closed in the relative topology. Suppose a,b € 2 and ¢ € JNA,. Then ach € Ay since Ay, is a subalgebra
and acb € J since J is an ideal; so acb € JN Ak, and J N A is an ideal of Ay.

But 2y, = M,,, (C), and M,,, (C) is simple. So J N Ay, is either {0} or all of 2A.

Case 1. Suppose there is some k € N such that 3N A = {0}. Then for all £ < k we immediately get that
INA, CINA, = {0}; also for £ > k with A, 2 2, we get that JN A, € (A \ Ax) U{0} G Ay, and
thus 3N A, = {0}. The claim then follows.

Case 2. Suppose g N, = A for all £ € N. Then J is a closed set containing the dense set
U2
kEN
So J = 2, contradicting our assumption that J was proper. O Claim 3.5

Consider the quotient map ¢: 2 — 2/J; we will show that ¢ is injective. Note that ¢ [ 2, is injective:
indeed, ker(q | Aj) = ker(¢)NAr = JNA,, = {0}. We can thus define a continuous linear map ¢y : ¢(A) — A
such that ¢ o ¢ =idg,. This ¢} is uniquely determined, and thus the ¢ form a chain; so we can define

vo=Jer: Ja@) — 2w
kEN keN kEN
But this ¢, is a continuous linear map, and thus extends to
p: | a@) — 2
keN
But if g(a) € 2/J and € > 0 then there is some k € N and ag € 2, such that ||a —ao|| < €; so ||g(a) —q(ao)|| <

la —agl] < e. So
U a()

keN

is dense in 2/J; so ¢: A/J — A. But by construction ¢ o g [ A = idy, ; so by continuity of ¢ o ¢ we get that
poq=1idg. So g is injective, and J = ker(q) = {0 }. [0 Proposition 3.4



4 The supernatural number of a UHF algebra

In this section we will justify our earlier claim that the behaviour of a UHF algebra is tightly controlled by
the behaviour of its matrix subalgebras; in fact in Theorem 4.7 we will give an invariant that completely
classifies the isomorphism type of a UHF algebra.

To understand the structure of a UHF algebra, it behooves us to study the structure of unital *-embeddings
between matrix algebras: the embeddings M, (C) — My, ,(C) induced by the inclusions 2 < 21 will
determine how the M,,, (C) “fit together” in 2(. Since unital *-embeddings between matrix algebras can be
viewed as non-degenerate representations, we first study the representation theory of matrix algebras.

Proposition 4.1. All irreducible representations of M, (C) are unitarily equivalent to the identity represen-
tation id: M, (C) — M, (C).

Proof. We know from assignment 3 that an irreducible representation is a surjective homomorphism M,,(C) —
M,,(C), and the kernel is a maximal ideal of M,,(C), and thus 0. So the only irreducible representations are
*_automorphisms p: M, (C) — M,(C).

Note that the E;; must get sent to pairwise orthogonal rank 1 projections; we thus get an orthonormal
basis fl, ceey fn for C™ such that p(E“) = flfl* = F” But then also p(EZJ) = p(EuEszj]) = F“p(E”)F]j,
so since p preserves spectra we get p(E;;) = fif; = Fij. Then the map Ue; = f; is unitary, and p(Ei;) =
Fij = fif] =UeiejU* = UE;;U* for all 4, j; so p(A) = UAU™ for all A. So p is unitarily equivalent to the
identity. O Proposition 4.1

We can use this to classify all unital *-embeddings between matrix algebras.

Corollary 4.2. Suppose ¢: M,,(C) — M, (C) is a unital *-homomorphism. Then m | n and there is a
unitary U € M, (C) such that o(A) =U*(A®---® A)U for all A € M,,,(C).

Proof. Since ¢ is unital we get that ¢ defines a non-degenerate representation of a finite-dimensional
C*-algebra, and is thus completely reducible. (Indeed, one checks that the orthogonal complement of a
subrepresentation is also a subrepresentation.) Hence by previous proposition we get that ¢ = p1 ® -~ B pg
with each py, unitarily equivalent to id: M,,(C) — M,,,(C); son = km and m | n. If Uy, ..., Uy are unitaries in
M., (C) such that p;(A) = U; AU, then U = U1 &- - - & Uy, € M, (C) is the desired unitary. O Corollary 4.2

Suppose now that

A= 2w

keN

is a UHF algebra. Then the inclusions 2, — ;41 induce unital *-homomorphisms M,,, (C) = M,,, ., (C);

so mg | my | ---. Consider the prime factorizations of the my: let
my = H p")p(mk)
p prime

Then since the my, | myy1 we get that the (v,(my)), are increasing sequences of natural numbers; so each
one is either eventually constant or diverges to infinity. Let e, = sup, v,(mg) € NU{ o0 }.

Definition 4.3. The supernatural number associated to 2 is the formal product

sy = [ »>

p prime

(Of course 6(2A) is only a true natural number if A = Mo (C).)

In principle our definition of §(2l) may depend on the choice of chain 2y C 2 C --+; in fact it depends
only on 2.

Theorem 4.4. §(2A) is well-defined.

We will need a lemma whose proof I omit; I direct the interested reader to [1, Lemma III.3.2], of which
the following is a weakening:



Lemma 4.5. Suppose ® is a C*-algebra with a finite-dimensional C*-subalgebra 2. Then there is 6 > 0
such that if B C D is a C*-subalgebra with dist(a,B) < § for all a € b1(B) then there is a unitary u € D
such that ©*Au C B.

Proof of Theorem 4.4. Suppose

A=J2u =B

keN LeN
with

A = M, (C)
By = M, (C)

Claim 4.6. For all k there is £ such that my | ng. (And vice-versa.)

Proof. Fix k; let § be as in Lemma 4.5. Since 2l is finite-dimensional and contained in

U

£eN

there is ¢ such that dist(a, B,) < ¢ for all @ € 2y, (Indeed, there is £ such that dist(a, B,) < m; %5 whenever
a € Ay, is the image of one of the standard matrix units in M,,, (C); the triangle inequality then yields the
desired bound.) So by Lemma 4.5 there is unitary u € 2 such that u*Agu C B,. But then the map a — u*au
is a unital *-homomorphism 2, — B, and thus induces a unital *-homomorphism M,,, (C) — M, (C); so

by Corollary 4.2 we get that my, | ng. The “vice-versa” follows by symmetry. 0 Claim 4.6
So repeatedly applying the above claim we get subsequences ko, k1, ... and £, {1, ... such that myg, | ne, |
Mg, | ne, | -+ - Thus for any prime p we have

Up(mko) < ’Up(néo) < Up(mkl) < Up(n&) <

Thus
Sl;p Up(mk) = Sup{ Up(mko)v vp(mk1)7 e } S sup{ /Up(neo)’ Up(nfl)a e } = sgpvp(ng)

(where the equalities follow because (v,(my))r and (vy(n¢))e are increasing sequences). We likewise get
sup, vp(ne) < supy, vp(my). So §(2A) computed with respect to the 2y agrees with §(2() computed with respect
to the B,. 0 Theorem 4.4

We have shown that §(2() is an invariant depending only on 2; in fact it completely characterizes the
isomorphism class of .

Theorem 4.7. IfA,B are UHF algebras with §(2A) = §(B) then there is a continuous *-isomorphism A — B.

Theorem 4.7 may seem unremarkable: it seems intuitive that the unions of “similar” chains of subalgebras
should be isomorphic. This intuition hides the complexity that can arise from the arrangement of the
subalgebras; indeed, the following fact shows that this intuition fails quite badly in even a slightly more
general class of C*-algebras.

Fact 4.8 ([1, Example I11.3.7]). There exist C*-algebras 2 and B with chains of unital subalgebras
Ag C2A; C---C2A

and

By B C---CB
such that

e cach Ay and By is finite-dimensional (and thus isomorphic to a direct sum of matriz algebras), and



o%l:Ui?lk and%:U‘Bz

keN LeN

with each Ay = By, but A ¥ B.

Having hopefully convinced the reader that this is indeed a remarkable theorem, we proceed to its proof.
This proof appears in [1, Theorem III.5.2].

Proof of Theorem 4.7. Write

A=Jue B=JB

keN €eN
with each 2 =2 M,,, (C) and each B, = M, (C).
Claim 4.9. For all k there is £ such that my | ng. (And vice-versa.)

Proof. Suppose p is prime with v,(mg) # 0. Then since () = 6(*B) we get

0y (ms) < sup iy (me) = supv, )

So there is £, such that v,(mg) < vp(ng,). Let £ be the maximum over such p of £,. Then for such p we have

vp(my) < Up(nfp) < vp(ne)
So my | ng. The “vice versa” again follows by symmetry. 0 Claim 4.9

Thus using the above claim we can drop to a subsequence of the 2 and a subsequence of the B, such
that mg | no | m1 | ny | ---. (Note that since the ) form a chain dropping to a subsequence won’t change
the union; likewise with the 9B,.)

Claim 4.10. There exists unital *~homomorphisms ¢i: A, — By and Yr: B — Up1 such that Py o
o A = g1 and @1 0 P By — Bry1 are the inclusion mappings. i.e. we require that the following

diagram commute:
Ao A, Ay ...
l@ojﬁL//Z l@ljt///z l¢2jf;//z
By B, B, .

Proof. Since myg | ng there is a natural unital *-homomorphism M, (C) = M, (C), namely A — A®--- @ A;
let pg: Ay — B be induced by this map.

Suppose we have defined . Since ny | my41 there is a natural unital *-homomorphism M, (C) —
My, ., (C); let 4y, be induced by this map. Then 1} o ¢ is a unital *~homomorphism 2, — Ay, as is
the inclusion map. So by Corollary 4.2 there is a unitary u € 241 such that u*y; (¢x(a))u = a for all
a € Ay. Define v : By — Apy1 by ¥ (b) = w1}, (b)u; then by construction we have vy, o ¢y, is the inclusion
ﬂk—%QQ+1

The definition of g1 assuming 1, has been defined is identical. 0 Claim 4.10

Hence since the following diagram commutes:

Ao 2, Ay
|0 |# |2
By B, B,

we get a well-defined continuous *-homomorphism

LJ Pk - LJ mk — B

keN keN



Since this is continuous and linear, it extends to a map

p: Uﬁk:ﬁ—)%

keN

Similarly we get 1: B — 2l extending the .

But for a € ), we have (p(a)) = ¥ (pr(a)) = Yr(pr(a)) = a; so ¥ o ¢ agrees with idy on a dense subset,
and by continuity we get ¢ o ¢ = idg. We likewise get ¢ 019 = idgs. So ¢ is a continuous *-isomorphism
A — B. [0 Theorem 4.7

Corollary 4.11. The CAR algebra is independent of the choice of H and «.

Proof. If 2 is a CAR algebra (i.e. constructed from some H and « as detailed in Section 2) then recall from
Section 2 that
A= 2w

keN

where 20, = M,k (C); so 6(2) = 2°°. So any two constructions of the CAR algebra have the same supernatural
number; so by Theorem 4.7 we get that there is a continuous *-isomorphism between any two constructions
of the CAR algebra. O Corollary 4.11

Remark 4.12. Suppose we are given a supernatural number

IT »
p prime
We construct a UHF algebra 2 with () = n. Pick a bijection ®: N — P x N, where P is the set of
primes. Let my = 1. Suppose we have chosen my; write ®(k) = (p,e). If e > e,, we let my41 = my; else let
mi+1 = lem(my, p®). Note in particular that my, | mg4q for all k.
Fix a separable Hilbert space H with orthonormal basis {eg,e1,...}. Forn > 1 and 0 < j < n let

Pj(n) € B(H) be the orthogonal projection with range span{ e, : £ = j (mod n) }; for 6§ € Z let S5 € B(H) be

if k& >
S(;ek _ €+ 1 + ) = 0
0 else

Then for i,j € {0,...,n — 1} the map E’ = S;_;P\") is given by

R egn+i if k= gn+ j for some ¢
0 else

In fact the Efjn) act as n X n matrix units: we have EZ-(;)E(”) i Eijr and (B, E™ ))* = E™ and

i’ iJ J
n—1
S e -1
=0

Thus by Lemma 1.2 we get that 9%, = C*({ E(" 24,5 €{0,...,n—1}}) is *-isomorphic to M,,(C). Note
also that if n | m then
m_g

P = Z P

We thus get that Ez(j") = Si,ij(n) € M, (by expanding using the above sum and distributing), and hence
M, CM,,.
Now if we let 2, = 9M,,, C B(H) then since my, | myy1 we get that Ay C Ay C -+ so if

m:Umk

keN

then 2 is a UHF algebra.



Claim 4.13. () = n.

Proof. Suppose p is prime, and recall that

n= H O

p prime
We must then check that e, = sup, vp(my).

(<) Suppose e € N has e < e,. Let k = ®~1(p,e); then by construction we have p® | my1, and hence
e < vp(mys1) < supy vp(my). Since this holds for all natural e < e,, we get that e, < sup;, vy(my).

(>) Onme checks by induction on k that if e, < e then v,(my) < e; this is simply the nature of the
construction of the my. Hence in particular e, is an upper bound for the v,(my), and e, > sup;, v,(my).
O Claim 4.13

So for every supernatural n there is a UHF algebra 2 with () = n. So the continuous isomorphism
classes of UHF algebras are in bijection with the supernatural numbers.
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