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Abstract

A self-contained introduction to the theory of F -automatic sets is given. Building on
[Bell, Moosa, F -sets and finite automata, Journal de théorie des nombres de Bordeaux,
2019], contributions are made to both the foundations of this theory and to questions of a
model-theoretic nature.

Suppose Γ is an abelian group and F : Γ → Γ is an injective endomorphism. If (Γ, F )
admits a spanning set then the notion of an F -automatic set can be defined. It is shown that
this notion is independent of the spanning set chosen. A characterization of the existence
of a spanning set is given in terms of certain functions on Γ, called height functions. It is
shown that if Γ is finitely generated then (Γ, F ) admits a spanning set if and only if no
eigenvalue of the matrix of F lies in the complex unit disk.

A notion of sparsity among F -automatic sets, called F -sparsity, is studied. Outstanding
questions from [Bell, Moosa, F -sets and finite automata, Journal de théorie des nombres de
Bordeaux, 2019] are resolved, including independence from the spanning set chosen and
closure under set summation. In addition, it is shown that sparsity can be characterized in
terms of another natural class of functions introduced here, called length functions.

Model-theoretic tameness properties of F -automatic sets are studied. In the case where Γ
is finitely generated, a combinatorial description is given of the stable F -sparse sets in terms
of the F -sets introduced in [Moosa, Scanlon, F -structures and integral points on semiabelian
varieties over finite fields, American Journal of Mathematics, 2004]. When Γ = Z, this
description is extended to a characterization of the stable F -automatic sets. It is shown that
if A ⊆ Γ is F -sparse then (Γ,+, A) is NIP. Automatic methods are used to show that the
following structures have NIP theories: (Z,+, dN,×↾dN) for d ≥ 2, (Fp[t],+, tN,×↾tN) for
prime p ≥ 9, and (Z,+, <, dN) for d ≥ 2. (Here dN = { 1, d, d2, . . . }, and likewise with tN.)
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Chapter 1

Introduction

Suppose we fix a finite alphabet Σ. What sets L of strings over Σ can be computed by a
computer with a finite amount of memory? That is, when is there a computer program
with bounded memory usage that takes in a string and decides whether its input lies in L?

An L for which such a program exists is called a regular language over Σ. Regular
languages satisfy many nice closure properties, and by their nature are very concrete and
easy to reason about compared to general computable languages. Moreover they show up in
many applications: compilers, for example, make heavy use of them. So regular languages
are an interesting object of study.

One of the most natural examples of a finite alphabet is the set of decimal digits, or
more generally the set of digits base d for some d ≥ 2. In this context, we can view a
string as representing a natural number. We are thus lead to the question of when a set of
numbers A is such that the set of base-d expansions of elements of A is a regular language.
Such A are called d-automatic sets. The study of d-automatic sets has nice links to logic
and algebra; more details on the theory of d-automatic sets can be found in [3].

The definition of d-automaticity can be extended to subsets of Z, and more generally
to subsets of Zm (see [20, 1]). More recently, Bell and Moosa show in [6] that in some
circumstances we can further generalize this idea to the setting of an arbitrary countably
infinite abelian group Γ where d (or rather, multiplication-by-d) is replaced by an arbitrary
endomorphism F : Γ → Γ. The idea is that if (Γ, F ) admits a finite Σ ⊆ Γ such that every
a ∈ Γ has an “expansion base F over Σ”, then we can say that A ⊆ Γ is F -automatic if the
set of such base-F expansions of elements of A is a regular language.

The original motivation for this generalization came from problems in Diophantine
geometry in positive characteristic. In this setting Γ comes from the rational points on some
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commutative algebraic group over a finite field, and F : Γ → Γ is induced by the Frobenius
endomorphism. In [5], Bell, Ghioca, and Moosa were able to use this generalization to
prove an effective isotrivial Mordell-Lang theorem.

Even if one is not interested in Diophantine geometry, this generalization is of intrinsic
interest. It applies, for example, in the elementary setting where Γ = Zm and F is given by
some m×m matrix with integer entries. In this setting, the model theorist is lead naturally
to ask which expansions of the group of integers by an F -automatic set result in a tame
structure; say one whose first-order theory is stable, or does not satisfy the independence
property (i.e., is NIP).

The goal of this thesis is to provide a self-contained account of the theory of F -automatic
sets; this includes the basic theory, as well as some model-theoretic tameness results. For
the sake of being self-contained, some material from [6] and other sources will be repeated;
the bibliographical notes at the end of each chapter will clarify my own contributions.

We begin in Chapter 2 with an introduction to the theory of F -automatic sets. Beyond
elementary properties, our main results there are concerned with the Σ chosen above, which
we call a spanning set. We show that the requirements of Σ can be relaxed slightly: our
definition of Σ is less stringent than the one appearing in [6], but we can still recover their
main results. We characterize the existence of a spanning set in terms of the existence of a
height function on (Γ, F ) (Theorem 2.43). In the case where Γ is finitely generated, we show
that (Γ, F ) admits a spanning set if and only if all the eigenvalues of F ⊗Z idC have modulus
> 1 (Theorem 2.48). We also show that the notion of F -automaticity is independent of the
chosen spanning set (Corollary 2.27). In Chapter 3 we introduce F -sparse sets: these are
the F -automatic sets A such that the number of elements of A that can be represented by a
string of length n grows polynomially in n. We will establish the independence of this notion
from the choice of Σ, and demonstrate some closure properties of F -sparsity, including set
summation as asked for in [6]. We will show that sparsity can be characterized in terms
of certain functions on Γ, which we call length functions (Theorem 3.19). Some of these
results on F -sparsity have found use in [5]. In Chapter 4, we begin our consideration of
model-theoretic tameness properties. For Γ finitely generated, we will characterize stability
among the F -sparse sets: we show that an F -sparse set A is stable if and only if it is a
Boolean combination of translates of finite sums of sets of the form

{ a+ F ra+ · · ·+ F r(n−1)a : n ∈ N }

(Theorem 4.11). For the special case Γ = (Z,+), in Chapter 5 we extend our characterization
to all automatic subsets of Z: we show that the stable F -automatic subsets of Z are precisely
the Boolean combinations of stable F -sparse sets and cosets of subgroups of Γ (Theorem 5.17).
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In Chapter 6 we turn our attention from stability to NIP. We introduce a class of subsets
of Γ called the F -EDP sets, which contains the F -sparse sets. We show that if A ⊆ Γ is
F -EDP and if Th(Γ,+) is weakly minimal then Th(Γ,+, A) is NIP (Theorem 6.13). We
then give some applications of this result: we show that the structures (Z,+, dN,×↾dN),
(Fp[t],+, tN,×↾tN) for prime p ≥ 9, and (Z,+, <, dN) have NIP theories. This last was
shown in [17], but with a very different proof. Finally, we present some possible avenues of
future research in Chapter 7.

The original contributions of this thesis appeared in the publications [14, 13]. Much of
the material here is drawn from these papers.

In this thesis, N denotes the set of non-negative integers.
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Chapter 2

F -automatic sets

In this chapter, we develop the basic theory of F -automatic sets. We begin by reviewing the
relevant theory of regular languages, as well as the classical theory of d-automatic sets of
natural numbers. We give a formal description of spanning sets and F -automatic sets. We
establish some elementary properties of F -automaticity, and we show that F -automaticity
is independent of the choice of spanning set (Corollary 2.27). We then characterize the
existence of spanning sets in Theorems 2.43 and 2.48. Finally, we give a class of examples
of F -automatic sets, the F -sets, that will come up in Chapters 4 and 5.

Unless otherwise stated, Γ refers to some fixed infinite abelian group, and F refers to
some fixed injective endomorphism of Γ.

2.1 Preliminaries from formal languages

We begin by reviewing some basic definitions and results from the study of formal languages.
A more detailed treatment can be found in [24].

Fix a finite set Σ, which we will use as an alphabet. We let Σ∗ denote the set of strings
of elements of Σ. We let ε denote the empty string. Given a string σ we let |σ| denote its
length. A language over Σ is any subset of Σ∗.

Definition 2.1. The class of regular languages over Σ is the smallest class of languages
over Σ that contains all finite languages and is such that if L1, L2 ⊆ Σ∗ are regular then so
are:

1. L1 ∪ L2,
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2. L1L2 = {στ : σ ∈ L1, τ ∈ L2 }, and

3. L∗
1 = {σ1 · · · σn : n ∈ N, σ1, . . . , σn ∈ L1 }.

Note that ε ∈ L∗
1 regardless of L1.

Regular languages are computationally easy to work with: if L is regular then member-
ship in L can be decided by a restricted computer called a finite automaton.

Definition 2.2. A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q0,Ω, δ), where:

• Σ is a finite alphabet;

• Q is a finite set, the set of states ;

• q0 ∈ Q is the initial state;

• Ω ⊆ Q is the set of accepting states ; and

• δ : Q× Σ → Q is the transition function.

Informally, given a finite automaton M = (Σ, Q, q0,Ω, δ) and an input σ ∈ Σ∗, the machine
starts in state q0. It then reads the first character s0 of σ, and transitions to state δ(q0, s0).
It then reads the second character, and so on. Eventually σ will be exhausted, and the
machine will be left in some state q. We say M accepts σ if q ∈ Ω, and otherwise rejects σ.

More formally, we extend δ to a map Q× Σ∗ → Q by setting δ(q, ε) = q and δ(q, σℓ) =
δ(δ(q, σ), ℓ) for ℓ ∈ Σ and σ ∈ Σ∗. The language accepted or recognized by M is {σ ∈ Σ∗ :
δ(q0, σ) ∈ Ω }.

Example 2.3. Let Σ = { 0, 1 }, and let L ⊆ Σ∗ be the set of binary representations of
multiples of 3, with leading zeroes allowed. We construct a DFA recognizing L. The idea is
as follows: suppose we are given σ ∈ Σ∗ that is a binary representation of some n ∈ N. Let
n0 = 2n and n1 = 2n+ 1 be the numbers represented in binary by σ0 and σ1, respectively.
Then in order to determine n0 + 3Z and n1 + 3Z, it suffices to know n + 3Z. So we can
take the states of our machine to be the congruence classes modulo 3, and the above tells
us that we can define a sensible transition map.

More formally, let Q = Z/3Z, q0 = 0 + 3Z, and Ω = { 0 + 3Z }. We then set
δ(i + 3Z, j) = 2i + j + 3Z. One can verify by induction that if σ ∈ Σ∗ is a binary
representation of n then δ(q0, σ) = n+ 3Z; so this machine accepts the σ that represent
multiples of 3, as desired.

Our DFA can be represented in diagram as follows:
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where each bubble represents a state; the sourceless arrow indicates the start state; a bubble
enclosed by two circles represents an accepting state; and an arrow from state q1 to state
q2 labelled with ℓ ∈ Σ indicates that δ(q1, ℓ) = q2. We will not make further use of these
diagrams, but they are common in the study of automata, and are a useful way to think
about DFAs.

Fact 2.4 ([24, Sections 3.2 and 3.3]). A language L ⊆ Σ∗ is regular if and only if it is
recognized by a DFA.

Corollary 2.5. Regular languages are closed under Boolean combinations.

Proof. Since they are closed under union by definition, it suffices to check complementation.
Suppose L ⊆ Σ∗ is regular; say it is recognized by (Σ, Q, q0,Ω, δ). Then Σ∗ \L is recognized
by (Σ, Q, q0, Q \ Ω, δ), and is thus regular. Corollary 2.5

A useful fact about DFAs is that we can add non-determinism without changing the
class of languages recognized.

Definition 2.6. A non-deterministic finite automaton (NFA) is a 5-tuple (Σ, Q, q0,Ω, δ)
where Σ, Q, q0,Ω are as in the definition of DFAs and δ : Q× Σ → P(Q). The idea is that
if the machine is in state q and receives input ℓ ∈ Σ then it can transition to any state
in δ(q, ℓ); the machine accepts a string if there is some choice of transitions for which the
machine ends in an accepting state.

More formally, we extend δ to a map Q× Σ∗ → P(Q) by setting δ(q, ε) = { q } and

δ(q, σℓ) =
⋃

q′∈δ(q,σ)

δ(q′, ℓ)

for ℓ ∈ Σ and σ ∈ Σ∗. The language recognized by the machine is then {σ ∈ Σ∗ :
δ(q0, σ) ∩ Ω ̸= ∅ }.

Fact 2.7 ([24, Lemma 2.2]). L ⊆ Σ∗ is recognized by an NFA if and only if it is recognized
by a DFA.
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We can use NFAs to deduce that regular languages are closed under projections. First,
we will need a short discussion of Cartesian powers. We will use the notation Σm to denote
the alphabet Σ× · · · × Σ︸ ︷︷ ︸

m times

. Note that this conflicts with the usual notation in the study of

formal languages, in which Σm denotes {σ ∈ Σ∗ : |σ| = m }; we will use Σ(m) for this.

When working over Σm, it will be convenient to view (Σm)∗ as a subset of (Σ∗)m; we do

this as follows. Given a string σ ∈ (Σm)∗, write σ =

s11
...
sm1

 · · ·

s1n
...

smn

 for sij ∈ Σ. We

then identify σ with

 s11 · · · s1n
...

sm1 · · · smn

 ∈ (Σ∗)m. We thus identify (Σm)∗ with the set of tuples

in (Σ∗)m whose constituent strings all have the same length.

Corollary 2.8. Suppose L ⊆ (Σm+1)∗ is regular. Then the projection L0 ⊆ (Σm)∗ of L
away from the last coordinate is regular.

Proof. This follows from the general fact that the image of a regular language under a
monoid homomorphism is again regular; for expository purposes, we instead give a direct
proof using NFAs. The idea will be to construct an NFA that given σ ∈ (Σm)∗ uses

non-determinism to “guess” τ ∈ Σ∗ such that

(
σ
τ

)
∈ L.

Fix a DFAM = (Σm+1, Q, q0,Ω, δ) recognizing L. Define an NFAM ′ = (Σm, Q, q0,Ω, δ
′)

where

δ′(q, ℓ) =

{
δ

(
q,

(
ℓ
ℓ′

))
: ℓ′ ∈ Σ

}
.

for ℓ ∈ Σm. One can check by induction that δ′(q,σ) =

{
δ

(
q,

(
σ
τ

))
: τ ∈ Σ∗, |τ | = |σ|

}
for σ ∈ (Σm)∗. So if σ ∈ (Σm)∗ then M ′ accepts σ if and only if there is τ ∈ Σ∗ such that

|τ | = |σ| and δ
(
q0,

(
σ
τ

))
∈ Ω; i.e., if and only if σ ∈ L0. So M

′ recognizes L0, and L0 is

regular. Corollary 2.8

A nice fact about regular languages: one can expand the alphabet without changing
whether a language is regular.
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Proposition 2.9. Suppose Σ1 ⊆ Σ2 are finite alphabets and L ⊆ Σ∗
1. Then L is a regular

language over Σ1 if and only if it is regular over Σ2.

Proof. The left-to-right direction can be done by structural induction on the regular
languages over Σ1. Indeed, finite subsets of Σ∗

1 are regular over Σ2, and if L1, L2 ⊆ Σ∗
1 are

regular over Σ2 then so are L1 ∪ L2, L1L2, and L
∗
1. Conversely, suppose L is regular over

Σ2; so there is a DFA M = (Σ2, Q, q0,Ω, δ) recognizing L. We can obtain another DFA by
simply removing from M any transition labelled by Σ2 \ Σ1: more formally, we consider
M ′ = (Σ1, Q, q0,Ω, δ↾(Q× Σ1)). Then M

′ is a DFA with input alphabet Σ1 recognizing L,
and thus L is regular over Σ1. Proposition 2.9

2.2 d-Automatic sets and generalizations

We would like to use the framework of regular languages to analyze sets of numbers. To do
so, we need a way to represent numbers as strings over some finite alphabet. In the case of
natural numbers, there is a natural way to do so: base-d representations. Fix an integer
d ≥ 2. We use the alphabet Σd := { 0, . . . , d− 1 }. Given a string s0 · · · sn−1 ∈ Σ∗

d, we define
[s0 · · · sn−1]d = s0 + ds1 + · · · + dn−1sn−1; that is, [s0 · · · sn−1]d is the number represented
by sn−1 · · · s0 in base d.1 Then [·]d : Σ∗

d → N is a surjective map, and thus allows us to
talk about natural numbers using strings. We will be interested in when a set of natural
numbers corresponds to a regular set of strings.

Definition 2.10. We say A ⊆ N is d-automatic if {σ ∈ Σ∗
d : [σ]d ∈ A } is a regular

language.

A first example: dN is d-automatic, since {σ ∈ Σ∗
d : [σ]d ∈ 2N } = 0∗10∗. (Here we use

“0∗10∗” as shorthand for { 0 }∗{ 1 }{ 0 }∗ = { 0i10j : i, j ∈ N }.) Interestingly, a set is rarely
both d- and d′-automatic: Cobham’s theorem tells us that if d and d′ are multiplicatively
independent and A ⊆ N is both d- and d′-automatic, then the characteristic function of A
is ultimately periodic. More information on d-automaticity can be found in [3].

So we can analyze subsets of N using formal languages. What about subsets of Z? Here,
too, we have a natural way to represent numbers as strings over a finite alphabet: we simply
add a sign to our representations of natural numbers. Our alphabet is now Σd ∪ {+,−}.
Given σ ∈ Σ∗

d we set [+σ]d = [σ]d, and [−σ]d = −[σ]d; all other strings are not considered

1Our map [·]d views the last digit as the most significant; note that this contrasts the usual convention
for base-d representations, in which the most significant digit appears first.
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valid representations. Again this is surjective, and we say that A ⊆ Z is d-automatic if the
set of valid representations σ such that [σ]d ∈ A is regular.

What about subsets of Zm? Let us restrict our attention to non-negative integers for

now. We would like to represent a tuple

a1
...
am

 of naturals by a tuple

σ1
...
σm

 of base-d

representations; but our representation needs to be a single string, not a tuple. As we
mentioned at the end of the previous section, if all σi have the same length then we can

view

σ1
...
σm

 as a single string over Σmd ; moreover by adding trailing zeroes to the σi we can

assume they do all have the same length. This gives us our representations: our alphabet is

Σm
d , and given

σ1
...
σm

 ∈ (Σm
d )

∗ we let


σ1

...
σm



d

=

 [σ1]d
...

[σm]d

. Our approach to negative

numbers is analogous to the one-dimensional case; so for example a base-d representation of(
−23
456

)
is

(
−
+

)(
3
6

)(
2
5

)(
0
4

)
. As before, this [·]d is surjective, and we say that A ⊆ Zm

is d-automatic if the set of σ such that [σ]d ∈ A is regular.

What if we replace d with some injective endomorphism F of (Zm,+)? At this point
we may as well replace (Zm,+) with a general abelian group Γ as well. If we wish to mimic
the constructions we used above, we will need a finite set Σ and a surjective (possibly
partial) function [·]F : Σ∗ → Γ. It is not clear in this context what Σ should be, but we
can define [·]F by analogy with the above: given group elements a0, . . . , an−1 ∈ Γ, we define
[a0 · · · an−1]F = a0 +Fa1 + · · ·+F n−1an−1. We are then faced with the question of whether
there is a finite Σ ⊆ Γ such that [·]F : Σ∗ → Γ is surjective. This question turns out to be
complicated; we will explore it in Section 2.5. For now we merely assume Γ and F are such
that there is such a Σ, which we call an F -spanning set. (The full definition of a spanning
set, Definition 2.12, requires that Σ satisfy some other conditions.) Under this assumption,
we have found a way to represent group elements as strings over some finite alphabet, and
can thus give a definition of automaticity in this context: we say that A ⊆ Γ is F -automatic
if {σ ∈ Σ∗ : [σ]F ∈ A } is regular. Remarkably, this definition turns out to be independent
of the Σ chosen; this is Corollary 2.27.

Some examples of (Γ, F ) to which we might apply our definition:

• We can take Γ = (Zm,+) equipped with multiplication by some d ≥ 2, or more

9



generally some m×m matrix with integer coefficients that is invertible over Q.

• If R is a ring we can take Γ = (R[t],+) with F : Γ → Γ given by f 7→ tf .

• Let G be a commutative algebraic group over a finite field Fq, and let K be a finitely
generated field extension of Fq. We can take Γ to be G(K), the K-rational points of
G, and let F : Γ → Γ be the q-power Frobenius mapping. These objects are considered
in [18, 6, 5].

We defer for now the question of whether these admit spanning sets.

2.3 Spanning sets

We now give the full definition of spanning sets, which consists of some technical conditions
in addition to the property described in the previous section.

Fix an infinite abelian group Γ and an injective endomorphism F : Γ → Γ. Given a
string a0 · · · an−1 of elements of Γ we let [a0 · · · an−1]F = a0 + Fa1 + · · ·+ F n−1an−1.

Remark 2.11. A useful property of [·]F is that it interacts nicely with string concatenation:
given strings σ, τ ∈ Γ∗ of elements of Γ, we have that [στ ]F = [σ]F + F |σ|[τ ]F .

Definition 2.12. An F -spanning set2 (for Γ) is a finite Σ ⊆ Γ satisfying the following:

(i) For every a ∈ Γ there is σ ∈ Σ∗ such that a = [σ]F .

(ii) 0 ∈ Σ and if a ∈ Σ then −a ∈ Σ.

(iii) If a1, a2, a3 ∈ Σ then a1 + a2 + a3 ∈ Σ + FΣ.

(iv) If a1, a2 ∈ Σ are such that a1 + a2 = Fb for some b ∈ Γ, then b ∈ Σ.

If Σ is F -spanning we define a map λΣ : Γ → N that sends a ∈ Γ to the length of the
shortest σ ∈ Σ∗ such that [σ]F = a.

We saw axiom (i) in Section 2.2, and axiom (ii) is straightforward. Axioms (iii) and (iv)
are more technical. Roughly speaking, their purpose is to constrain λΣ(a+ b) and λΣ(Fa)
in terms of λ(a) and λ(b); see Proposition 2.14 and Proposition 2.19.

2This definition is more general than the one appearing in [6]; see the bibliographical notes for details.

10



Example 2.13. Some examples of (Γ, F ) for which a spanning set exists:

1. Consider Γ = (Z,+) and Fa = da for some d ≥ 2. Then Σ = {−d+1,−d+2, . . . , d−
1 } is an F -spanning set. Indeed, axiom (i) is just the usual base-d representation
of integers; axiom (ii) is clear; axiom (iii) is because if |a1|, |a2|, |a3| ≤ d − 1 then
|a1 + a2 + a3| ≤ 3(d − 1) ≤ (d + 1)(d − 1) = d2 − 1 (since d ≥ 2), so a1 + a2 + a3
has a 2-digit representation base d; and axiom (iv) is because if |a1|, |a2| ≤ d− 1 and
a1 + a2 = da then |a| = d−1|a1 + a2| ≤ d−12(d− 1) ≤ d− 1 (since d ≥ 2), so a ∈ Σ.

So our setting includes the first generalization we discussed in Section 2.2. (Though
we don’t yet know that our notion of automaticity coincides with the existing one; we
will see this in Corollary 2.30.)

2. Suppose we are given (Γ, F ) and (Γ′, F ′); suppose there is an F -spanning set Σ and
an F ′-spanning set Σ′. Then Σ× Σ′ is an (F × F ′)-spanning set for Γ× Γ′. Indeed:

(i) Given

(
a
a′

)
∈ Γ× Γ′ we can write a = [s0 · · · sn−1]F and a′ = [s′0 · · · s′n′−1]F ′ for

some si ∈ Σ and s′i ∈ Σ′. By appending zeroes, we may assume n = n′. Then(
a
a′

)
=

[(
s0
s′0

)
· · ·
(
sn−1

s′n−1

)]
F×F ′

, and each

(
si
s′i

)
∈ Σ× Σ′.

(ii) Since 0 ∈ Σ and 0 ∈ Σ′ we get that

(
0
0

)
∈ Σ× Σ′. If

(
a
a′

)
∈ Σ× Σ′ then since

Σ,Σ′ are spanning sets we get that −a ∈ Σ and −a′ ∈ Σ′; so −
(
a
a′

)
∈ Σ× Σ′.

(iii) Suppose

(
a1
a′1

)
,

(
a2
a′2

)
,

(
a3
a′3

)
∈ Σ × Σ′. Then since Σ is F -spanning there are

b, c ∈ Σ such that a1 + a2 + a3 = b+ Fc; likewise we can find b′, c′ ∈ Σ′. Then(
a1
a′1

)
+

(
a2
a′2

)
+

(
a3
a′3

)
=

(
b+ Fc
b′ + F ′c′

)
=

(
b
b′

)
+ (F × F ′)

(
c
c′

)
.

(iv) Suppose

(
a1
a′1

)
,

(
a2
a′2

)
∈ Σ×Σ′ satisfies

(
a1
a′1

)
+

(
a2
a′2

)
= (F ×F ′)

(
b
b′

)
for some(

b
b′

)
∈ Γ× Γ′. Since Σ is F -spanning and a1 + a2 = Fb we get that b ∈ Σ; we

likewise get that b′ ∈ Σ′. So

(
b
b′

)
∈ Σ× Σ′.

A particular example: combining this with the previous example, we see that when
Γ = (Zm,+) and F is multiplication by d there is an F -spanning set. So our setting
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also includes the second generalization discussed in Section 2.2. (Though again
we won’t see until Corollary 2.30 that F -automaticity in this context agrees with
d-automaticity.)

3. Consider Γ = (Z2,+) with F given in matrix form by

(
3 1
0 3

)
. Let Σ = { v ∈ Z2 :

∥v∥∞ ≤ 2 }. We verify that Σ is F -spanning.

(i) We show by induction on ∥v∥∞ that if v ∈ Z2 then there is σ ∈ Σ∗ such that
v = [σ]F . For the base cases ∥v∥∞ ≤ 2 we simply get that v ∈ Σ. For the
induction step, suppose ∥v∥∞ ≥ 3. We compute

FΓ =

{(
3a+ b
3b

)
: a, b ∈ Z

}
=

{(
a
b

)
: a, b ∈ Z, 3 | b, a ≡ b

3
(mod 3)

}
.

In particular, { 0, 1, 2 }2 ⊆ Σ contains a representative of each coset of FΓ.

Indeed, suppose

(
a
b

)
∈ Z2. Pick b′ ∈ { 0, 1, 2 } such that b′ ≡ b (mod 3), and

pick a′ ∈ { 0, 1, 2 } such that a′ ≡ a+ b−b′
3

(mod 3). So

(
a
b

)
=

(
a′

b′

)
+

(
a− a′

b− b′

)
and

(
a− a′

b− b′

)
∈ FΓ, as desired.

So there is s ∈ Σ such that s ≡ v (mod FΓ). Then by the triangle inequality

∥v − s∥∞ ≤ ∥v∥∞ + ∥s∥∞ ≤ ∥v∥∞ + 2. Moreover given any w =

(
a
b

)
∈ Z2 we

have that

∥Fw∥∞ =

∥∥∥∥(3a+ b
3b

)∥∥∥∥
∞

= max{ |3a+ b|, |3b| }
≥ max{ |3a| − |b|, |3b| − |b| }
= max{ |3a|, |3b| } − |b|

≥ 3∥w∥∞ − 1

3
∥Fw∥∞

(since ∥Fw∥∞ ≥ |3b|). So rearranging we find that

∥w∥∞ ≤ 4

9
∥Fw∥∞ (2.1)

12



for any w ∈ Z2. In particular ∥F−1(v− s)∥∞ ≤ 4
9
∥v− s∥∞ ≤ 4

9
∥v∥∞ + 4

9
∥s∥∞ ≤

4
9
∥v∥∞ + 1 ≤ 7

9
∥v∥∞ (since ∥s∥∞ ≤ 2 and ∥v∥∞ ≥ 3 by hypothesis). So by

the induction hypothesis there is σ ∈ Σ∗ such that F−1(v − s) = [σ]F . Then
[sσ]F = s+ F [σ]F = v, as desired.

(ii) It is clear from the definition of Σ that 0 ∈ Σ and if s ∈ Σ then so too is −s.
(iii) Note that if s1, s2, s3 ∈ Σ then ∥s1 + s2 + s3∥∞ ≤ 6. Suppose we are given(

a
b

)
∈ Z2 with |a|, |b| ≤ 6; we wish to show that

(
a
b

)
∈ Σ+ FΣ. By negating

if necessary we may assume a ≥ 0. In axiom (i) we argued that { 0, 1, 2 }2 ⊆ Σ
contains a representative for each coset of FΓ; we can similarly prove that the

same holds of { 0, 1, 2 } × { 0,−1,−2 } ⊆ Σ. So we can find

(
c
d

)
∈ Σ such that

•
(
a
b

)
≡
(
c
d

)
(mod FΓ);

• a, c ≥ 0; and

• b and d have the same sign.

In particular |a − c| ≤ max{ |a|, |c| } ≤ 6 and |b − d| ≤ max{ |b|, |d| } ≤ 6. So∥∥∥∥(ab
)
−
(
c
d

)∥∥∥∥
∞

≤ 6, and by Eq. (2.1) we get that

∥∥∥∥F−1

((
a
b

)
−
(
c
d

))∥∥∥∥
∞

≤

4
9
·6 < 3. Thus, recalling the definition of Σ, we find that F−1

((
a
b

)
−
(
c
d

))
∈ Σ,

and

(
a
b

)
∈ Σ + FΣ.

(iv) Note that if s1, s2 ∈ Σ then ∥s1 + s2∥∞ ≤ 4. Hence if s1 + s2 ∈ FΓ then by
Eq. (2.1) ∥F−1(s1 + s2)∥∞ ≤ 4

9
· 4 ≤ 2. Thus, recalling the definition of Σ, we

find that F−1(s1 + s2) ∈ Σ.

Note that since F isn’t diagonalizable this example doesn’t arise from combining the
previous two examples.

4. Let G be a finite abelian group, and consider Γ =
⊕
i∈N

G equipped with the shift

operation F (a0, a1, . . .) = (0, a0, a1, . . .). Then Σ := G is an F -spanning set.

Two of the examples above took the form of Zm equipped with a matrix with integer
coefficients. We will see later on in Theorem 2.48 that a spanning set exists in such contexts
if and only if none of the complex eigenvalues of the matrix lie in the unit disk.
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It’s a bit distasteful that axiom (iii) needs to be about ternary sums, rather than just
binary. The main reason for this is the following result, which extends axioms (iii) and (iv)
to strings over Σ, at the cost of making axiom (iii) about binary sums.

Proposition 2.14. Suppose Σ is an F -spanning set and n ∈ N.

1. If a, b ∈ Γ then λΣ(a+ b) ≤ max(λΣ(a), λΣ(b)) + 1.

2. If a, b ∈ Γ with a+ b ∈ FΓ then λΣ(F
−1(a+ b)) ≤ max(λΣ(a), λΣ(b)).

Proof.

1. We show that if σ, τ ∈ Σ(n) then there is ν ∈ Σ(n+1) such that [σ]F + [τ ]F = [ν]F .

We apply induction on n; the base case n = 1 is by axiom (iii). Assume the result
holds of n ≥ 1. Suppose σ, τ ∈ Σ(n+1); say σ = σ0s and τ = τ0t for σ0, τ0 ∈ Σ(n) and
s, t ∈ Σ. By the induction hypothesis there is ν ∈ Σ(n+1) such that [σ0]F +[τ0]F = [ν]F .
Write ν = ν0v for ν0 ∈ Σ(n) and v ∈ Σ. Then

[σ]F + [τ ]F = [σ0]F + F ns+ [τ0]F + F nt = [ν]F + F n(s+ t) = [ν0]F + F n(s+ t+ v).

But by axiom (iii) there are s′, t′ ∈ Σ such that s+ t+ v = s′ + Ft′. So

[σ]F + [τ ]F = [ν0]F + F n(s′ + Ft′) = [ν0s
′t′]F ,

as desired.

2. We show that if σ, τ ∈ Σ(n) and [σ]F + [τ ]F = Fb for b ∈ Γ then there is ν ∈ Σ(n) such
that b = [ν]F .

We apply induction on n; the base case n = 1 is precisely axiom (iv). Assume the
result holds of n ≥ 1. Suppose σ, τ ∈ Σ(n+1) and b ∈ Γ are such that [σ]F + [τ ]F = Fb;
as before write σ = σ0s and τ = τ0t. Then [σ0]F + [τ0]F = Fb − F ns − F nt =
F (b − F n−1s − F n−1t). So by the inductive hypothesis there is ν ∈ Σ(n) such that
b− F n−1s− F n−1t = [ν]F . Write ν = ν0v for ν0 ∈ Σ(n−1) and v ∈ Σ. Then

b = [ν]F + F n−1s+ F n−1t = [ν0]F + F n−1(s+ t+ v).

But by axiom (iii) there are s′, t′ ∈ Σ such that s+ t+ v = s′ + Ft′. So

b = [ν0]F + F n−1(s′ + Ft′) = [ν0s
′t′]F ,

as desired. Proposition 2.14
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Note that in both proofs we needed axiom (iii) to apply to ternary sums, not just binary.

It will sometimes be useful to assume there is a spanning set containing given elements.
The following tells us we may do so:

Proposition 2.15. Suppose there exists an F -spanning set. If A ⊆ Γ is finite then there is
an F -spanning set containing A.

Proof. Fix an F -spanning set Σ. By axiom (i) for a ∈ A there is σa ∈ Σ∗ such that
a = [σa]F . Let n = max{ |σa| : a ∈ A }; we may assume n ≥ 1. We will show that
[Σ(n)]F := { [σ]F : σ ∈ Σ, |σ| = n } is F -spanning.

(i) Since n ≥ 1 we get that Σ = [Σ0n−1]F ⊆ [Σ(n)]F . So this follows by axiom (i) of Σ.

(ii) We immediately get that 0 = [0n]F ∈ [Σ(n)]F . Given [s0 · · · sn−1]F ∈ [Σ(n)]F , note since
Σ is F -spanning that each −si ∈ Σ; so −[s0 · · · sn−1]F = [(−s0) · · · (−sn−1)]F ∈ [Σ(n)]F
as well.

(iii) We apply induction on n. The base case n = 1 is because Σ is F -spanning. For the
induction step, suppose the axiom holds of [Σ(n)]F ; suppose σ, τ, ν ∈ Σ(n+1). Write
σ = σ0s, τ = τ0t, and ν = ν0v for s, t, v ∈ Σ. So by the induction hypothesis there are
µ1, µ2 ∈ Σ(n) such that [σ0]F + [τ0]F + [ν0]F = [µ1]F + F [µ2]F . By axiom (iii) applied
to Σ there are a, b ∈ Σ such that s+ t+ v = a+ Fb. Then

[σ]F + [τ ]F + [ν]F = [σ0]F + F ns+ [τ0]F + F nt+ [ν0]F + F nv

= [µ1]F + F [µ2]F + F n(a+ Fb)

= [µ1a]F + F [µ2b]F ,

as desired.

(iv) This is precisely Proposition 2.14 (2). Proposition 2.15

It will sometimes transpire that there is an F r-spanning set for some r > 0 but no
F -spanning set.

Example 2.16. Consider Γ = (Z2,+) with F given in matrix form by

(
0 3
1 0

)
. Then

F 2 = 3I, so by Example 2.13 (2) we get that {−2,−1, . . . , 2 }2 is an F 2-spanning set.

Suppose for contradiction we had an F -spanning set Σ. Let M = sup

{
|w1| :

(
w1

w2

)
∈ Σ

}

15



andN = sup

{
|w2| :

(
w1

w2

)
∈ Σ

}
. The idea will be to use axiom (iii) to obtain contradictory

bounds on M in terms of N and vice-versa.

Suppose

(
w1

w2

)
∈ Σ. Then by axiom (iii) there are

(
u1
u2

)
,

(
v1
v2

)
∈ Σ such that

3

(
w1

w2

)
=

(
u1
u2

)
+ F

(
v1
v2

)
=

(
u1 + 3v2
u2 + v1

)
. So

3|w1| = |u1 + 3v2|
≤ |u1|+ 3|v2|
≤M + 3N

3|w2| = |u2 + v1|
≤ N +M.

In particular, if we pick

(
w1

w2

)
∈ Σ such that |w1| =M we find that 3M ≤M + 3N , and

thus M ≤ 3
2
N . If on the other hand we pick

(
w1

w2

)
∈ Σ such that |w2| = N then we obtain

3N ≤ N +M , and thus N ≤ M
2
≤ 3

4
N . So N =M = 0, a contradiction. So no F -spanning

set exists.

To deal with this case, we will change our focus from F -spanning sets to F r-spanning
sets for some r > 0. The following result will be useful in reconciling F r- and F s-spanning
sets for different r, s.

Proposition 2.17. If Σ is an F -spanning set and r > 0 then

[Σ(r)]F := { [σ]F : σ ∈ Σ∗, |σ| = r }

is an F r-spanning set.

Proof. We verify the axioms.

(i) Suppose a ∈ Γ. Since Σ is F -spanning there is σ ∈ Σ∗ such that [σ]F = a; by
appending zeroes we may assume r

∣∣ |σ|, say σ = s0 · · · skr−1 for some k. Then

[σ]F = s0 + Fs1 + · · ·+ F kr−1skr−1

= (s0 + Fs1 + · · ·+ F r−1sr−1) + F r(sr + Fsr+1 + · · ·+ F r−1s2r−1)

+ · · ·+ F (k−1)r(s(k−1)r + Fs(k−1)r+1 + · · ·+ F r−1skr−1)

= [s0 · · · sr−1]F + F r[sr · · · s2r−1]F + · · ·+ F (k−1)r[s(k−1)r · · · skr−1]F

= [[s0 · · · sr−1]F [sr · · · s2r−1]F · · · [s(k−1)r · · · skr−1]F ]F r ,
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as desired.

(ii) This is precisely as in the proof of the previous proposition.

(iii) The case r = 1 is because Σ is F -spanning; suppose then that r ≥ 2. Suppose
σ, τ, ν ∈ Σ(r). Two applications of Proposition 2.14 (1) yield µ ∈ Σ(r+2) such that
[µ]F = [σ]F + [τ ]F + [ν]F . Since r ≥ 2, we get that |µ| ≤ 2r. So by the argument in
the proof of axiom (i) we get that [σ]F + [τ ]F + [ν]F = [µ] ∈ [Σ(r)]F + F r[Σ(r)]F , as
desired.

(iv) Suppose σ, τ ∈ Σ(r) and b ∈ Γ is such that [σ]F + [τ ]F = F rb. It follows from
repeated application of Proposition 2.14 (2) that there is ν ∈ Σ(r) such that b =
[ν]F . Proposition 2.17

Remark 2.18. It falls out from the proof of axiom (i) that λ[Σ(r)]F
(a) ≤

⌈
λΣ(a)
r

⌉
.

We conclude this section by bounding λΣ(F
ra) in terms of λΣ(a). We immediately

get an upper bound: if we fix σ ∈ Σ∗ such that [σ]F = a and |σ| = λΣ(a) then since
[0rσ]F = F ra we get that λΣ(F

ra) ≤ |0rσ| = λΣ(a) + r. We can get a weak lower bound
from repeated application Proposition 2.14 (2): namely that λΣ(F

ra) ≥ λΣ(a). It turns
out that we can do much better:

Proposition 2.19. Suppose Σ is an F -spanning set; suppose a ∈ Γ \ Σ and r ∈ N. Then
λΣ(F

ra) ≥ λΣ(a) + r − 1.

Proof. We first show by induction on r that if |σ| = r and [σ]F ∈ F rΓ then [σ]F ∈ F rΣ.
The base case r = 1 is just by axiom (iv). For the induction step, suppose the claim holds
of r, and suppose we are given σ ∈ Σ(r+1) with [σ]F ∈ F r+1Γ. Write σ = σ0s for σ0 ∈ Σ(r)

and s ∈ Σ. Then [σ0]F ≡ [σ]F ≡ 0 (mod F rΓ), so by the induction hypothesis there is
a ∈ Σ such that F ra = [σ0]F . Then F

r(a+ s) = [σ]F ∈ F r+1Γ, so a+ s ∈ FΓ. So by axiom
(iv) there is b ∈ Σ such that a+ s = Fb. Then [σ]F = F r+1b, as desired.

It follows that λΣ(F
ra) > r. Indeed, otherwise there would be σ ∈ Σ(r) such that

[σ]F = F ra; hence the above would yield that [σ]F ∈ F rΣ and thus that a ∈ Σ, contradicting
our hypothesis.

So if σ ∈ Σ∗ is such that [σ]F = F ra and |σ| = λΣ(F
ra) then we can write σ = σ0σ1 for

some σ0 ∈ Σ(r), σ1 ∈ Σ∗. Then [σ0]F ≡ [σ]F ≡ 0 (mod F rΓ), so by the above there is b ∈ Σ
such that [σ0]F = F rb. Then

F ra = [σ0σ1]F = [σ0]F + F r[σ1]F = F r(b+ [σ1]F )
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and thus a = b+ [σ1]F . Then by Proposition 2.14 (1)

λΣ(a) = λΣ(b+ [σ1]F ) ≤ max(λΣ(b), λΣ([σ1]F )) + 1 ≤ max(1, |σ1|) + 1 = λΣ(F
ra)− r + 1,

as desired. Proposition 2.19

So for a ∈ Γ \ Σ and r ∈ N we get that λΣ(a) + r − 1 ≤ λΣ(F
ra) ≤ λΣ(a) + r.

2.4 F -automatic sets

Throughout this section we assume there is a spanning set for some power of F .

Definition 2.20. If Σ is an F r-spanning set for some r > 0, we say A ⊆ Γ is (F r,Σ)-
automatic if {σ ∈ Σ∗ : [σ]F r ∈ A } is regular. We say A is F -automatic if it is (F r,Σ)-
automatic for some r > 0 and some F r-spanning set Σ.

Some examples:

Example 2.21.

1. Let R be a finite ring, and consider Γ = (R[t],+) with Ff = tf . Notice that (Γ,+, F )
is isomorphic to the case we considered in Example 2.13 (4); from this we conclude
that Σ := R is F -spanning. The following are F -automatic:

• The set A1 of monomials, since {σ ∈ Σ∗ : [σ]F ∈ A1 } = 0∗R0∗ is regular.

• The set A2 of monic polynomials, since {σ ∈ Σ∗ : [σ]F ∈ A1 } = R∗10∗ is regular.

• The set A3 of f ∈ R[t] with some fixed unit a ∈ R× as a root. Indeed, fix N
such that aN = 1, and consider the DFA M = (Σ, Q, q0,Ω, δ) where

Q = R× Z/NZ
q0 = (0, 0 +NZ)
Ω = { 0 } × Z/NZ

δ((b, i+NZ), c) = (b+ cai, i+ 1 +NZ).

One can show by a quick induction that if s0 · · · sn−1 ∈ Σ∗ then

δ(q0, s0 · · · sn−1) = (s0 + s1a+ · · ·+ sn−1a
n−1, n+NZ) = ([σ]F (a), n+NZ).

So M accepts σ if and only if a is a root of [σ]F , and A3 is F -automatic.

18



2. Consider Γ = (Zm,+) and F is a 7→ da for some d ≥ 2. We will see in Corollary 2.30
that every d-automatic set is F -automatic. In particular, dN is an F -automatic subset
of Z.

We will see more examples as we go along. In particular, we will see in Section 2.6 that
the F -sets arising in the positive-characteristic Diophantine geometric problem considered
in [18] are F -automatic.

We wish to show that F -automaticity can be verified in any spanning set for any power
of F . To do this, we will characterize F -automaticity in terms of finiteness of kernels; this
generalizes a similar characterization of d-automatic sets.

Definition 2.22. Suppose S ⊆ Γ is finite and A ⊆ Γ. Given σ = s0 · · · sn−1 ∈ S∗ we let

AF,σ = { a ∈ Γ : [σa]F ∈ A } = { a ∈ Γ : s0 + Fs1 + · · ·+ F n−1sn−1 + F na ∈ A }.

We define the (F, S)-kernel of A to be kerF,S(A) = {AF,σ : σ ∈ S∗ }.

Remark 2.23. If σ = s0 · · · sn−1, τ = t0 · · · tn′−1 ∈ S∗ then

a ∈ AF,στ

⇐⇒ s0 + Fs1 + · · ·+ F n−1sn−1 + F nt0 + F n+1t1 + · · ·+ F n+n′−1tn′−1 + F n+n′
a ∈ A

⇐⇒ t0 + Ft1 + · · ·+ F n′−1tn′−1 + F n′
a ∈ AF,σ

⇐⇒ a ∈ (AF,σ)F,τ .

In particular, given X ⊆ P(Γ), in order to show kerF,S(A) ⊆ X it suffices to show that
A ∈ X, and that if B ∈ X and s ∈ S then BF,s ∈ X.

A sample computation:

Example 2.24. Consider Γ = (Z,+) equipped with multiplication by some d ≥ 2. Let S =
{ 0, . . . , d− 1 }; we compute kerd,S(d

N). Let X = { dN, { 0 }, ∅ }; I claim that kerd,S(d
N) ⊆ X.

Using the previous remark, it suffices to show that if B ∈ X and s ∈ S then Bd,s ∈ X.

• Consider the case B = dN. If s ∈ S and a ∈ Z then a ∈ Bd,s ⇐⇒ s + da ∈ dN. If
s = 0, then this is equivalent to a ∈ dN; so Bd,0 = dN ∈ X. If s = 1, then s+ da ≡ 1
(mod d). Hence s+ da ∈ dN if and only if s+ da = 1; i.e., a = 0. So Bd,1 = { 0 } ∈ X.
Finally, if s > 1, then since s+da ≡ s (mod d) we get that s+da /∈ dN for any a ∈ Z;
so Bd,s = ∅ ∈ X.
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• Consider the case B = { 0 }. If s ∈ S and a ∈ Z then a ∈ Bd,s ⇐⇒ s+ da = 0. It is
clear that there is no such a if s ̸= 0, and otherwise this is equivalent to a = 0; so
Bd,s is either { 0 } or ∅, and both of these lie in X.

• It is clear that ∅d,s = ∅ ∈ X for all s ∈ S.

Moreover the above shows that X = kerd,S(d
N), since every B ∈ X occurs as (dN)d,s for

some s ∈ S.

The point of kernels is that automaticity can be characterized in terms of finiteness of
kernels. The simplest case of this is when S = Σ is an F r-spanning set:

Proposition 2.25. Suppose Σ is an F r-spanning set and A ⊆ Γ. Then A is (F r,Σ)-
automatic if and only if kerF r,Σ(A) is finite.

Proof. The idea is that elements of the kernel will be roughly in correspondence with states
in a DFA witnessing (F r,Σ)-automaticity.

By replacing F with F r we may assume r = 1.

( =⇒ ) Suppose A is (F,Σ)-automatic; fix a DFA (Σ, Q, q0, δ,Ω) recognizing {σ ∈ Σ∗ :
[σ]F ∈ A }.
Suppose σ, τ ∈ Σ∗ are such that δ(q0, σ) = δ(q0, τ). We will show that AF,σ = AF,τ .
Suppose a ∈ Γ; since Σ is F -spanning we can find ν ∈ Σ∗ such that a = [ν]F . Then

[σa]F ∈ A ⇐⇒ [σν]F ∈ A

⇐⇒ δ(δ(q0, σ), ν) ∈ Ω

⇐⇒ δ(δ(q0, τ), ν) ∈ Ω

⇐⇒ [τν]F ∈ A

⇐⇒ [τa]F ∈ A.

So AF,σ = AF,τ . So, since there are finitely many possibilities for δ(q0, σ), we get that
kerF,S(A) is finite.

( ⇐= ) Suppose kerF,Σ(A) is finite. We describe a DFA recognizing {σ ∈ Σ∗ : [σ]F ∈ A }.
We let

Q = kerF,Σ(A)

q0 = A = AF,ε

Ω = {AF,σ ∈ kerF,Σ(A) : 0 ∈ AF,σ }
δ(AF,σ, ℓ) = (AF,σ)F,ℓ = AF,σℓ
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for σ ∈ Σ∗ and ℓ ∈ Σ. One can show by induction that δ(q0, σ) = AF,σ. So
our machine accepts σ if and only if 0 ∈ AF,σ; i.e., if and only if [σ]F ∈ A, as
desired. Proposition 2.25

In fact we can dispense with the requirement that S be a spanning set, as long as it
contains a representative of each coset of F rΓ. (Note that axiom (i) of spanning sets implies
that Γ/F rΓ is finite, so we can always find such S finite.)

Lemma 2.26. Suppose S, T ⊆ Γ are finite and contain a representative of each coset of
F rΓ, F r′Γ, respectively. If A ⊆ Γ then kerF r,S(A) is finite if and only if kerF r′ ,T (A) is.

Proof. We first do the case r = r′ = 1 under the assumption that there is an F -spanning
set Σ (as opposed to a spanning set for some power of F ).

Note first that [S(n)]F = { s0 + Fs1 + · · · + F n−1sn−1 : s0, . . . , sn−1 ∈ S } contains a
representative of each coset of F nΓ. Indeed, given a+ F nΓ we can find s0 ∈ S such that
a ≡ s0 (mod FΓ); we then recursively find s1, . . . , sn−1 such that s1+Fs2+· · ·+F n−2sn−1 ≡
F−1(a− s0) (mod F n−1Γ). Likewise with [T (n)]F .

Given AF,σ ∈ kerF,S(A), say with |σ| = n, we can thus find τ ∈ T ∗ of length n such that
[σ]F ≡ [τ ]F (mod F nΓ). Note that

AF,τ = { a ∈ Γ : [τ ]F + F na ∈ A }
= { a ∈ Γ : [σ]F + F n(a+ F−n([τ ]F − [σ]F )) ∈ A }
= { a ∈ Γ : a+ F−n([τ ]F − [σ]F ) ∈ AF,σ }
= AF,σ + F−n([σ]F − [τ ]F ).

We will show that there are finitely many possible values for F−n([σ]F − [τ ]F ). In particular,
it will follow that kerF,T (A) is contained in finitely many translates of kerF,S(A); so if the
latter is finite, then so is the former.

Recall our function λΣ : Γ → N that maps a ∈ Γ to the length of the shortest σ ∈ Σ∗

such that [σ]F = a. We will bound λΣ(F
−n([σ]F − [τ ]F )); since there are finitely many

σ ∈ Σ∗ of any given length, this will suffice.

Let M = max{λΣ(s− t) : s ∈ S, t ∈ T }. We first bound λΣ([σ]F − [τ ]F ): we show by
induction on n = |σ| = |τ | that λΣ([σ]F − [τ ]F ) ≤M + n. The case n = 0 is vacuous, and
the case n = 1 is simply the fact that λΣ(s0 − t0) ≤ M . For the induction step, suppose
the result holds of n, and suppose |σ| = |τ | = n + 1. Write σ = σ0s for some s ∈ S and
τ = τ0t for some t ∈ T . Note that

λΣ(F
ns− F nt) = λΣ(F

n(s− t)) ≤ λΣ(s− t) + n ≤M + n,
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where the first inequality is because if [ν]F = s− t then [0nν]F = F n(s− t). Moreover by
the induction hypothesis λΣ([σ0]F − [τ0]F ) ≤M + n. Thus

λΣ([σ]F − [τ ]F ) = λΣ(([σ0]F − [τ0]F ) + (F ns− F nt))

≤ max{λΣ([σ0]F − [τ0]F ), λΣ(F
ns− F nt) }+ 1 (Proposition 2.14 (1))

≤M + n+ 1,

as desired.

Recall from Proposition 2.19 that if a /∈ Σ then λΣ(F
na) ≥ λΣ(a)+n−1. From this, and

the above bound on λΣ([σ]F − [τ ]F ), it follows that λΣ(F
−n([σ]F − [τ ]F )) ≤M + 1. Indeed,

otherwise we would have λΣ([σ]F−[τ ]F ) = λΣ(F
n(F−n([σ]F−[τ ]F ))) > M+1+n−1 =M+n,

contradicting our bound.

So we always have that F−n([σ]F − [τ ]F ) ∈ [Σ(M+1)]F . So

kerF,T (A) ⊆ {B + δ : B ∈ kerF,S(A), δ ∈ [Σ(M+1)]F }.

So if kerF,S(A) is finite, then so too is kerF,T (A). By symmetry, we have proven the case
r = s = 1 under the assumption that there is an F -spanning set.

We now move on to the general case. By our standing assumption, there is an F s-
spanning set Σ for some s > 0. By Proposition 2.17 we may assume r, r′ | s; say s = ir = jr′.
As noted earlier, S ′ := [S(i)]F r contains a representative of each coset of F sΓ; likewise with
T ′ := [T (j)]F r′ . By the above special case of the lemma (applied to F s), we have that
kerF s,S′(A) is finite if and only if kerF s,T ′(A) is. So it suffices to show that kerF r,S(A) is
finite if and only if kerF s,S′(A) is (at which point the analogous result about T will follow
by symmetry). Replacing F with F r, we are left to show that if S contains a representative
of each coset of F and n ∈ N then kerF,S(A) is finite if and only if kerFn,S′(A) is, where
S ′ = [S(n)]F .

( =⇒ ) I claim that kerFn,S′(A) = {AF,σ : n | |σ| }. Indeed, if

σ = [s0 · · · sn−1]F · · · [s(k−1)n · · · skn−1]F ∈ (S ′)∗

and a ∈ Γ then

a ∈ AFn,σ

⇐⇒ [s0 · · · sn−1]F + F n[sn · · · s2n−1]F + · · ·+ F (k−1)n[s(k−1)n · · · skn−1] + F kna ∈ A

⇐⇒ [s0s1 · · · skn−1]F + F kna ∈ A

⇐⇒ a ∈ AF,s0s1···skn−1
.
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So AFn,σ = AF,s0s1···skn−1
. Conversely if s0s1 · · · skn−1 ∈ S∗ has length divisible by n,

then the above equivalence shows that AF,s0···skn−1
= AFn,σ ∈ kerFn,S′(A).

In particular, we get that kerFn,S′(A) ⊆ kerF,S(A); so if the latter is finite, then so is
the former.

( ⇐= ) Suppose we are given σ ∈ S∗; pick k < n such that n | |σ|+ k. Note that we can
recover AF,σ from the set of AF,στ as τ ranges over Sk. Indeed, fix a ∈ Γ. Since S ′

contains a representative of each coset of F nΓ, it must also contain a representative
of each coset of F kΓ; so we can find some τ ∈ S(k) such that a ≡ [τ ]F (mod F kΓ).
Then

a ∈ AF,σ ⇐⇒ [τ ]F + F k(F−k(a− [τ ]F )) ∈ AF,σ

⇐⇒ F−k(a− [τ ]F ) ∈ (AF,σ)F,τ

⇐⇒ F−k(a− [τ ]F ) ∈ AF,στ .

So we can indeed recover AF,σ from the AF,στ :

AF,σ =
⋃

τ∈S(k)

([τ ]F + F k(AF,στ )).

In particular, if kerFn,S′(A) is finite, then as noted in the left-to-right direction there
are only finitely many AF,στ ; hence there are only finitely many AF,σ, and kerF,S(A)
is finite. Lemma 2.26

Corollary 2.27. Suppose A ⊆ Γ, r1, r2 > 0, Σ is an F r1-spanning set, and S ⊆ Γ is finite
and contains a representative of each coset of F r2Γ. The following are equivalent:

1. A is F -automatic.

2. A is (F r1 ,Σ)-automatic.

3. kerF r2 ,S(A) is finite.

Proof. (3) =⇒ (2) is Lemma 2.26 and Proposition 2.25, and (2) =⇒ (1) is by definition.
Suppose (1) holds; say there is an F r′-spanning set Σ′ such that A is (F r′ ,Σ′)-automatic.
Then again by Lemma 2.26 and Proposition 2.25 we get that (3) holds. Corollary 2.27

In particular, as we claimed much earlier, F -automaticity is independent of the spanning
set chosen (and indeed, of the power of F for which a spanning set is chosen). Using this,
we can deduce some elementary properties of F -automaticity:
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Corollary 2.28. Suppose A ⊆ Γ and r > 0. Then A is F -automatic if and only if A is
F r-automatic.

Proof. The right-to-left direction is by definition. Suppose for the left-to-right that A
is F -automatic. By Proposition 2.17 we may assume there is an F r′-spanning set Σ for
some r′ ∈ rN. Then by Corollary 2.27 A is (F r′ ,Σ)-automatic, and hence is F r-automatic.

Corollary 2.28

Corollary 2.29. F -automatic sets are closed under Boolean combinations.

Proof. Suppose A,B ⊆ Γ are F -automatic; we will show that A ∪B and Γ \ A are as well.

Fix r > 0 for which there is an F r-spanning set Σ. By Corollary 2.27 both {σ ∈ Σ∗ :
[σ]F r ∈ A } and {σ ∈ Σ∗ : [σ]F r ∈ B } are regular. So their union {σ ∈ Σ∗ : [σ]F r ∈
A ∪B } is regular, and A ∪B is F -automatic. The case of complements is similar, except
we use Corollary 2.5 for the fact that the complement of a regular language is regular.

Corollary 2.29

Using the finite kernel characterization of automaticity, we can now see that our notion
of F -automaticity includes the notion of d-automaticity on Zm:

Corollary 2.30. Suppose d ∈ N with d ≥ 2; let F : Zm → Zm be multiplication by d. Then
A ⊆ Zm is d-automatic if and only if it is F -automatic.

Proof. Recall from Example 2.13 (2) that there is an F -spanning set for (Zm, F ); so F -
automaticity is indeed defined. We mentioned previously that our kernel characterization
of automaticity generalizes a similar characterization of d-automatic sets; in this context,
the known characterization tells us that A ⊆ Zm is d-automatic if and only if

{ { a ∈ Zm : b+ dna } : n ∈ N,b ∈ { 0, . . . , dn − 1 }m }

is finite (see [1, Proposition 5.1]). But if we let S = { 0, . . . , d−1 }m then this is just kerF,S(A),
which by Corollary 2.27 is finite if and only if A is F -automatic. Corollary 2.30

We can extend the notion of F -automaticity to subsets of Γm:

Definition 2.31. We say A ⊆ Γm is F -automatic if it is (F × · · · × F )-automatic in
(Γm, F × · · · × F ). Note that (Γm, F × · · · × F ) does admit a spanning set: we saw in
Example 2.13 (2) that if Σ is F -spanning in Γ then Σm is (F × · · · × F )-spanning in Γm.
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In general when working with subsets of Γm we will conflate F with F × · · · × F .

Proposition 2.32. Suppose Γ admits an F r-spanning set for some r > 0. The following
are F -automatic:

1. The diagonal

{(
a
a

)
: a ∈ Γ

}
in Γ2.

2. The graph of addition


 a

b
a+ b

 : a, b ∈ Γ

 in Γ3.

3. The graph of F in Γ2.

This result is a bit surprising. We assume only that elements of Γ can be nicely described
using strings over some finite alphabet (i.e., that there is a spanning set for some power
of F ). The conclusion is a very strong computability condition on Γ: that there is a
finite automaton that decides whether two strings represent the same element, and a finite
automaton that computes the sum in Γ of two strings.

All of the above are examples of F -invariant subgroups of powers of Γ; in fact we will
see in Theorem 2.54 that any F -invariant subgroup of any Γm is F -automatic.

Proof.

1. Let ∆ denote the diagonal. Fix S ⊆ Γ containing exactly one representative of each
coset of FΓ; note that S2 contains exactly one representative of each coset of FΓ2. If

s =

(
s1
s2

)
∈ S2 with s1, s2 distinct then ∆F,s =

{(
a
b

)
∈ Γ2 : Fa+ s1 = Fb+ s2

}
= ∅

since
Fa+ s1 ≡ s1 ̸≡ s2 ≡ Fb+ s2 (mod FΓ).

If on the other hand s1 = s2 then ∆F,s =

{(
a
b

)
∈ Γ2 : Fa+ s1 = Fb+ s1

}
= ∆

since F is injective. Proceeding inductively we see that for all σ ∈ (S2)∗ we have
∆F,σ ∈ {∆, ∅ }. So kerF,S2(∆) is finite, and ∆ is F -automatic.

2. Let A denote the graph of addition. Fix S ⊆ Γ containing exactly one representative
of each coset of FΓ; let

S ′ =


s1s2
s3

 : s1, s2, s3 ∈ S, s1 + s2 ̸≡ s3 (mod FΓ)

∪


 s1

s2
s1 + s2

 : s1, s2 ∈ S

.
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So S ′ contains a representative of each coset of FΓ3, and is such that if

s1s2
s3

 ∈ S ′

and s3 ≠ s1 + s2 then s3 ̸≡ s1 + s2 (mod FΓ). Then given s =

s1s2
s3

 ∈ S ′ with

s1 + s2 ̸= s3, we have

AF,s =


ab
c

 ∈ Γ3 : Fa+ s1 + Fb+ s2 = Fc+ s3

 = ∅,

since if we had such a, b, c then we would have s1+s2 ≡ s3 (mod FΓ), a contradiction.
On the other hand, if s1 + s2 = s3 then

AF,s =


ab
c

 ∈ Γ3 : Fa+ s1 + Fb+ s2 = Fc+ s3

 = A,

since F is injective. So again we inductively get that kerF,S(A) = {A, ∅ }, and thus
that A is F -automatic.

3. Let B denote the graph of F . Fix S ⊆ Γ containing exactly one representative of
each coset of FΓ; so as before S2 contains a representative of each coset of FΓ2. We
may assume that 0 ∈ S.

I claim that kerF,S2(B) contains only ∅ and sets of the form C =

{(
a
b

)
: b = s+ Fa

}
for s ∈ S. Indeed, since 0 ∈ S we get that B takes the given form. Suppose we are

given such a C and t =

(
t1
t2

)
∈ S2. Then(

a
b

)
∈ CF,t ⇐⇒

(
t1 + Fa
t2 + Fb

)
∈ C ⇐⇒ t2 + Fb = s+ Ft1 + F 2a.

If t2 ̸= s, so t2 ̸≡ s (mod FΓ), then t2 + Fb ≡ t2 ̸≡ s ≡ s + Ft1 + F 2a (mod FΓ),

and there are no such

(
a
b

)
. If on the other hand t2 = s, then by injectivity of F we

get that CF,t =

{(
a
b

)
: b = t1 + Fa

}
takes the desired form.

So by an inductive argument, our claim about kerF,S2(B) holds. In particular,
kerF,S2(B) is finite, and thus B is F -automatic. Proposition 2.32
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The following proposition tells us that to show a set is automatic, it suffices to find
some set of representations of its elements that is regular; this is sometimes considerably
simpler than showing that the set of all representations of its elements is.

Proposition 2.33. If Σ is an F r-spanning set for some r > 0 and L ⊆ Σ∗ is regular then
[L]F r is F -automatic.

Proof. Note that given σ ∈ Σ∗, the question of whether [σ]F r ∈ [L]F r is an existential one:
we are asking whether there exists τ ∈ L such that [σ]F r = [τ ]F r . We thus look to apply
the fact that regular languages are closed under projections (Corollary 2.8).

It suffices to check the case r = 1. Since L is regular so too is L0∗. One can use an au-

tomaton recognizing L0∗ to construct an automaton recognizing

{(
σ
τ

)
∈ (Σ2)∗ : τ ∈ L0∗

}
;

hence the latter is also regular. By Corollary 2.27 and Proposition 2.32{(
σ
τ

)
∈ (Σ2)∗ : [σ]F = [τ ]F

}
is regular. So since regular languages are closed under Boolean combinations (Corollary 2.5)
their intersection {(

σ
τ

)
∈ (Σ2)∗ : [σ]F = [τ ]F , τ ∈ L0∗

}
is regular; hence by closure of regular languages under projection (Corollary 2.8) its
projection

L′ = {σ ∈ Σ∗ : ∃τ ∈ L0∗ such that |σ| = |τ |, [σ]F = [τ ]F }

is regular. Finally, note that L′′ := {σ ∈ Σ∗ : σ0∗ ∩ L′ ̸= ∅ } is regular: given a DFA
(Σ, Q, q0,Ω, δ) recognizing L

′, the DFA

(Σ, Q, q0, { q ∈ Q : δ(q, 0i) ∈ Ω for some i ∈ N }, δ)

recognizes L′′. But if σ ∈ Σ∗ then

σ ∈ L′′ ⇐⇒ there is i ∈ N such that σ0i ∈ L′

⇐⇒ there is i ∈ N, τ ∈ L0∗ such that |τ | = |σ|+ i and [σ0i]F = [τ ]F

⇐⇒ there is τ ∈ L0∗ such that |τ | ≥ |σ| and [σ]F = [τ ]F

⇐⇒ [σ]F ∈ [L]F .

So {σ ∈ Σ∗ : [σ]F ∈ [L]F } is regular, and [L]F is F -automatic. Proposition 2.33
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Another closure property of automatic sets:

Proposition 2.34. Suppose A ⊆ Γm+1 is F -automatic. Then the projection A0 of A away
from the last coordinate is F -automatic in Γm.

Proof. By Corollary 2.28 it suffices to check the case where there is an F -spanning set
Σ. Recall that in Example 2.13 we showed that Σm+1 is F -spanning for Γm+1. So by

Corollary 2.27

{(
σ
τ

)
∈ ((Σm)× Σ)∗ :

(
[σ]F
[τ ]F

)
∈ A

}
is regular. Then by closure of regular

languages under projection (Corollary 2.8) we get that

L :=

{
σ ∈ (Σm)∗ : ∃τ ∈ Σ∗ such that |σ| = |τ |,

(
[σ]F
[τ ]F

)
∈ A

}
is regular.

It’s clear that [L]F ⊆ A0. Conversely if a ∈ A0, say with b ∈ Γ such that

(
a
b

)
∈ A,

then we can find σ ∈ (Σm)∗, τ ∈ Σ∗ such that [σ]F = a and [τ ]F = b. Pick i, j such

that |σ| + i = |τ | + j. Then

(
[σ0i]F
[τ0j]F

)
=

(
a
b

)
∈ A and |σ0i| = |τ0j|. So σ0i ∈ L; thus

a = [σ]F = [σ0i]F ∈ [L]F .

So A0 = [L]F , and L ⊆ (Σm)∗ is regular. So Proposition 2.33 yields that A0 is
F -automatic. Proposition 2.34

Corollary 2.35. Every definable set in the following structures is F -automatic:

1. (Γ, 0,+,−, F ).

2. The structure G with domain Γ and a predicate for every F -automatic subset of
every Γm.

Here we use “structure” in the sense of first-order logic, and we use “definable” to mean
definable with parameters.

Proof. The definable sets of (Γ, 0,+,−, F ) coincide with those of (Γ,+, F ), which by
Proposition 2.32 is a reduct of G; so it suffices to check that the definable sets of G are
F -automatic. We first prove the claim for 0-definable sets. The atomic formulas define F -
automatic sets: this is by Proposition 2.32 (for equality) and the definition of G (for all other
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atomic formulas). The induction then follows from closure under Boolean combinations
(Corollary 2.29) and projections (Proposition 2.34).

To prove the result for all definable sets, note from Proposition 2.33 that singletons are
F -automatic, and hence 0-definable in G. So every definable set in G is 0-definable, and
hence is F -automatic by the above. Corollary 2.35

A particular case of the above is that if A,B ⊆ Γ are F -automatic then so is A+B.

2.5 When spanning sets exist

We turn our attention to the question of when Γ admits an F r-spanning set for some r > 0.
Unfortunately, this isn’t always the case, even when Γ is finitely generated:

Example 2.36. Let Γ = Z2 and F : Γ → Γ be given by some invertible T ∈M2(Z) that has
two complex eigenvalues µ, ν with |µ| > 1 and |ν| < 1. (One could, for example, take

T =

(
1 1
1 0

)
which has eigenvalues φ,−φ−1 where φ = 1+

√
5

2
.)

We first show there is no F -spanning set; suppose for contradiction that Σ were F -
spanning. Pick eigenvectors u for µ and v for ν; given w ∈ C2 write w = fu(w)u+ fv(w)v.
Note that fv : C2 → C is linear, and if w ∈ Z2 then fv(Fw) = νfv(w). Let M =
max{ |fv(a)| : a ∈ Σ }. Then given s0 · · · sn−1 ∈ Σ∗ we have

|fv([s0 · · · sn−1]F )| = |fv(s0 + Fs1 + · · ·+ F n−1sn−1)|
= |fv(s0) + νfv(s1) + · · ·+ νn−1fv(sn−1)|
≤ |fv(s0)|+ |νfv(s1)|+ · · ·+ |νn−1fv(sn−1)|
≤M(1 + |ν|+ · · ·+ |ν|n−1)

≤M
∞∑
i=0

|ν|i

= M
1

1− |ν|

since |ν| < 1. So by axiom (i) we get that |fv(w)| ≤ M 1
1−|ν| for all w ∈ Z2. Since fv is

linear and 2w ∈ Z2 if w ∈ Z2, this implies that fv(w) = 0 for all w ∈ Z2. So Z2 ⊆ Cu, and
Z2 spans a one-dimensional subspace of C2, a contradiction.
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So there is no F -spanning set. But if r > 0 then F r also satisfies the hypotheses; so
there is no F r-spanning set for any r > 0.

In the above example we exhibited a (Γ, F ) for which no finite set could satisfy axiom
(i) of spanning sets. It is also possible for there to exist finite sets satisfying axiom (i), but
nonetheless for there to be no spanning set.

Example 2.37. Consider any infinite finitely generated abelian group Γ; let F = idΓ. If
{ γ1, . . . , γn } is any generating set for Γ then Σ = {±γ1, . . . ,±γn } satisfies axiom (i) of
spanning sets: if a = k1γ1 + · · ·+ knγn ∈ Γ for k1, . . . , kn ∈ Z, then

a = [(sgn(k1)γ1)
|k1| · · · (sgn(kn)γn)|kn|]F .

But when F = idΓ axiom (iv) simply says that Σ is closed under addition, which cannot
be true of any finite Σ that satisfies axiom (i) (since that would imply that Σ contains an
element of infinite order). So there is no F -spanning set (and hence no F r-spanning set,
since F = F r), despite the existence of finite sets that satisfy axiom (i).

We will characterize the existence of spanning sets in terms of the existence of certain
functions on Γ.

Definition 2.38. A length function for (Γ, F ) is a map λ : Γ → R≥0 that satisfies:

(i) (Northcott property). For all N ∈ N there are only finitely many a ∈ Γ such that
λ(a) ≤ N .

(ii) (Ultrametric inequality). There is D ∈ R≥0 such that λ(a+b) ≤ max{λ(a), λ(b) }+D
for all a, b ∈ Γ.

(iii) (Symmetry). λ(−a) = λ(a) for all a ∈ Γ.

(iv) (Logarithmic property). There are C ∈ R>0, E ∈ R≥0, and a finite exceptional set
X ⊆ Γ such that

• λ(F na) ≥ λ(a) + nC − E for a ∈ Γ \X, and

• λ(Fa) ≤ λ(a) + C for all a ∈ Γ.

Recall that if Σ is F -spanning we define λΣ : Γ → N to be

a 7→ min{ |σ| : σ ∈ Σ∗, [σ]F = a }.

As the terminology suggests, these are the prototypical length functions.
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Proposition 2.39. If Σ is an F -spanning set then λΣ is a length function with respect to
the constants C = D = E = 1 and exceptional set X = Σ.

Proof. We verify the axioms.

(i) This follows from the fact that there are only finitely many strings of a given length.

(ii) This is precisely Proposition 2.14 (1).

(iii) If s0 · · · sn−1 ∈ Σ∗ is such that [s0 · · · sn−1]F = a then by axiom (ii) of spanning sets
(−s0) · · · (−sn−1) ∈ Σ∗ as well, and [(−s0) · · · (−sn−1)]F = −a.

(iv) Proposition 2.19 says that if a /∈ Σ then λΣ(F
na) ≥ λΣ(a) + n− 1. That λΣ(Fa) ≤

λΣ(a) + 1 is because if σ ∈ Σ∗ then [0σ]F = F [σ]F . Proposition 2.39

Here is a related notion that will also be of use:

Definition 2.40. A height function3 for (Γ, F ) is a map h : Γ → R≥0 that satisfies:

(i) (Northcott property). For all N ∈ N there are only finitely many a ∈ Γ such that
h(a) ≤ N .

(ii) (Weak ultrametric inequality). There are α, κ ∈ R with α ≥ 1 and κ ≥ 0 such that if
a, b ∈ Γ then h(a+ b) ≤ αmax{h(a), h(b) }+ κ.

(iii) (Canonicity). There is β ∈ R with β > 1 and a finite exceptional set X such that
h(Fa) ≥ βh(a) for a ∈ Γ \X.

In practice we will use height functions (which have less stringent requirements) to
deduce the existence of spanning sets, whereas we will use length functions to understand
the structure of (Γ, F ) that we already know have spanning sets, as we did with λΣ in the
proof of Lemma 2.26.

The following proposition tells us that the existence of a length function is stronger
than the existence of a height function. In fact we will see in Theorem 2.43 that they are
both equivalent to the existence of a spanning set.

3Our definition of height function differs slightly from the definition appearing in [6], but the two are
equivalent; see the bibliographical notes.
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Proposition 2.41. Suppose λ is a length function for (Γ, F ) with associated constants
C,D,E and exceptional set X. Pick r ∈ N such that rC > E. Then h(a) := 2λ(a) is a height
function for (Γ, F r) with associated constants α = 2D, β = 2rC−E, κ = 0 and exceptional set
X.

Proof. The weak ultrametric inequality and Northcott property of h follow directly from
the ultrametric inequality and Northcott property of λ. For canonicity, we note that if
a ∈ Γ \X then the logarithmic property of λ yields that h(F ra) ≥ 2λ(a)+rC−E = 2rC−Eh(a),
as desired. Proposition 2.41

Remark 2.42. If λ is a length function for (Γ, F ) with associated constants C,D,E and
exceptional set X, then λ is also a length function for (Γ, F r) for any r > 0, with associated
constants rC,D,E, and exceptional set X. So if we are willing to work with powers of
F we can assume C is arbitrarily large, and in particular is large compared to the other
constants. A similar property holds of height functions.

We now give our first characterization of the existence of spanning sets. As we remarked
earlier, if Γ/FΓ is infinite there is no hope for a spanning set. The setting for our
characterization therefore includes the assumption that Γ/FΓ is finite.

Theorem 2.43. Suppose Γ/FΓ is finite. The following are equivalent:

1. Γ admits an F r-spanning set for some r > 0.

2. There is a length function for (Γ, F r) for some r > 0.

3. There is a height function for (Γ, F r) for some r > 0.

A particular case where Γ/FΓ is finite is when Γ is finitely generated. Indeed, since F
is injective, Γ and FΓ have the same rank; so Γ/FΓ is torsion, and thus since Γ is finitely
generated we get that Γ/FΓ is finite.

Proof. That (1) =⇒ (2) is Proposition 2.39, and that (2) =⇒ (3) is Proposition 2.41. We
check that (3) =⇒ (1). By replacing F with F r, it suffices to check the case where h is a
height function for (Γ, F ), say with associated constants α, β, κ and exceptional set X.

Claim 2.44. We may assume κ = 0.
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Proof. We produce a height function h′ for (Γ, F ) with the associated κ = 0. Let K =
min{h(a) : a ∈ Γ, h(a) ̸= 0 }; note that the minimum exists by the Northcott property.
Define

h′(a) =

{
h(a) if h(a) ̸= 0

K else.

So h′(a) ≥ h(a) and h′(a) ≥ K for all a ∈ Γ. It is clear that h′ satisfies Northcott. If
X ′ = X ∪ h−1(0) and β′ = β then h′ satisfies canonicity with respect to β′ and X ′. Indeed,
if a ∈ Γ \ X ′ then since a /∈ X and h(a) ̸= 0 we get that h(Fa) ≥ βh(a) > 0; hence
h′(Fa) = h(Fa) ≥ βh(a) = βh′(a).

It remains to verify the weak ultrametric inequality. Let α′ = α + κ
K
, and suppose

a, b ∈ Γ. If h(a+ b) ̸= 0, then

h′(a+ b) = h(a+ b)

≤ αmax{h(a), h(b) }+ κ

≤ αmax{h′(a), h′(b) }+ κ

≤
(
α +

κ

K

)
max{h′(a), h′(b) }

≤ α′ max{h′(a), h′(b) }.

If on the other hand h(a+ b) = 0 then h′(a+ b) = K ≤ h′(a) ≤ α′ max{h′(a), h′(b) } (since
α′ ≥ α ≥ 1). Claim 2.44

Claim 2.45. We may further assume h(a) = h(−a) for all a ∈ Γ.

Proof. Let h′(a) = max(h(a), h(−a)). We verify that this is a height function for (Γ, F )
with the same associated constants (and in particular with κ = 0) and with exceptional set
±X. The Northcott property follows from the fact that if h′(a) ≤ N then h(a) ≤ N . For
the weak ultrametric inequality, note that if a, b ∈ Γ then

h′(a+ b) = max(h(a+ b), h(−a− b))

≤ max(αmax(h(a), h(b)), αmax(h(−a), h(−b)))
= αmax(max(h(a), h(−a)),max(h(b), h(−b)))
= αmax(h′(a), h′(b)).

For canonicity, we note that if a ∈ Γ \ ±X then

h′(Fa) = max(h(Fa), h(F (−a))) ≥ max(βh(a), βh(−a)) = βh′(a),

as desired. Claim 2.45
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Claim 2.46. We may further assume that β > α3.

Proof. If we pick r > logβ(α
3) then h is also a height function for (Γ, F r) with respect to

the constants α, βr, κ = 0 and exceptional set X. (See Remark 2.42.) So we can replace F
with F r and assume that β > α3. Claim 2.46

Since Γ/FΓ is finite, there is N > 0 such that Σ := { a ∈ Γ : h(a) ≤ N } ⊇ X ∪ { 0 }
and Σ contains a representative of each coset of FΓ. Let us check that Σ is F -spanning:

(i) We mimic the usual argument that a base-d expansion exists for any natural number.
Suppose a ∈ Γ, and we wish to find σ ∈ Σ∗ such that a = [σ]F . If h(a) ≤ N then
a ∈ Σ, and we can take σ = a; suppose then that h(a) > N . Since Σ contains a
representative of each coset of FΓ, there is ℓ ∈ Σ such that a = ℓ+Fb for some b ∈ Γ;
we then recursively find σ0 ∈ Σ∗ such that [σ0]F = b, at which point σ := ℓσ0 is our
desired string.

It remains to show that this recursion terminates. Let us consider h(b). By the weak
ultrametric inequality and symmetry, we find that

h(Fb) = h(a− ℓ) ≤ αmax{h(a), h(−ℓ) } ≤ αmax{h(a), N } = αh(a)

(since h(a) > N). Now, if b ∈ X then b ∈ Σ, and the recursion terminates; assume
then that b /∈ X. Then canonicity yields that h(b) ≤ 1

β
h(Fb) ≤ α

β
h(a); so, since

α
β
≤ α3

β
< 1 by assumption, this recursion terminates.

(ii) That 0 ∈ Σ is by assumption; that Σ is closed under negation is because we chose h
such that h(a) = h(−a).

(iii) Suppose a, b, c ∈ Σ. Then h(a), h(b), h(c) ≤ N ; so by the weak ultrametric inequality

h(a+ b+ c) ≤ αmax{h(a), h(b+ c) } ≤ αmax{h(a), αmax{h(b), h(c) } } ≤ α2N.

If a+ b+ c ∈ Σ then we’re done. If not, then by our computation for axiom (i), if we
write a+ b+ c = ℓ+ Fd for ℓ ∈ Σ and d ∈ Γ, then h(d) ≤ α

β
h(a+ b+ c) ≤ α3

β
N ≤ N

(since by assumption β > α3). So d ∈ Σ, and a+ b+ c ∈ Σ + FΣ.

(iv) Suppose a, b ∈ Σ are such that a + b = Fc for some c ∈ Γ. If c ∈ X then c ∈ Σ,
as desired; suppose then that c /∈ X. Then by canonicity and the weak ultrametric
inequality we get that

h(c) ≤ h(Fc)

β
=
h(a+ b)

β
≤ αmax{h(a), h(b) }

β
≤ α

β
N ≤ α3

β
N < N.

So c ∈ Σ, as desired. Theorem 2.43
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Remark 2.47. The proof that Σ satisfies axiom (i) further shows that if h is a height function
and Σ is the associated spanning set, then λΣ ∈ O(log(h)).

As an application of this characterization, we get a much more concrete description
when Γ is finitely generated:

Theorem 2.48. Suppose Γ is finitely generated. Then there is an F r-spanning set for some
r > 0 if and only if every complex eigenvalue µ of F ⊗Z idC satisfies |µ| > 1.

Before proving this, we will need to know more about length functions. The following
lemma tells us that by increasing E, we can assume the exceptional set only contains a ∈ Γ
such that the F -orbit FNa of a is finite.

Lemma 2.49. Suppose λ is a length function for (Γ, F ) with associated constants C,D,E
and exceptional set X. Then there is E ′ ≥ E such that λ is a length function with respect
to constants C,D,E ′ and exceptional set { a ∈ X : FNa is finite }.

The idea is to observe that if a has infinite F -orbit, then since the exceptional set is
finite it follows that the logarithmic property applies to F ia for i sufficiently large.

Proof. Let X0 = { a ∈ X : FNa is finite }. Since X is finite, and every element of X \X0

has infinite F -orbit, there is N ∈ N such that FNa /∈ X for all a ∈ X \X0.

Suppose a ∈ X \X0. We will show that by increasing E we can make the logarithmic
property apply to a. The upper bound of the logarithmic property already applies to a,
since no exceptions to it are permitted; we will focus on the lower bound. If n ≥ N then
since the logarithmic property applies to FNa we get

λ(F na) = λ(F n−N(FNa))

≥ λ(FNa) + (n−N)C − E

= λ(a) + nC − (λ(a)− λ(FNa) +NC + E︸ ︷︷ ︸
Ea,N

).

If on the other hand n < N then

λ(F na) = λ(a) + nC − (λ(a)− λ(F na) + nC︸ ︷︷ ︸
Ea,n

).

Hence if we pick Ea ≥ Ea,n for all n ≤ N then λ(F na) ≥ λ(a) + nC − Ea for all n ∈ N; so
the logarithmic property applies to a.

35



So if we pick E ′ ≥ E such that E ′ ≥ Ea for all a ∈ X \X0, then the logarithmic property
applies to all such a with respect to the constants C,D,E ′. Moreover since E ′ ≥ E the
logarithmic property still applies to all a /∈ X. So λ is a length function for (Γ, F ) with
constants C,D,E ′ and exceptional set X0. Lemma 2.49

As a consequence, we can assume that every exceptional element is torsion:

Lemma 2.50. Suppose there is a length function for (Γ, F ). If a ∈ Γ has finite F -orbit
then a is torsion. In particular, if λ is a length function for (Γ, F ) with associated constants
C,D,E and exceptional set X, then there is E ′ ≥ E such that λ is a length function for (Γ, F )
with respect to the constants C,D,E ′ and with exceptional set { a ∈ X : a is torsion }.

Proof. Fix a length function λ for (Γ, F ). Suppose a ∈ Γ has finite F -orbit. If na ∈ Za
then FN(na) = n(FNa) is also finite. But if b ∈ Γ has finite F -orbit then λ(F nb) is bounded
as n ranges; so b cannot satisfy the logarithmic property with respect to any C,D,E, and
thus b is exceptional. So Za is finite, and a is torsion.

The “in particular” then follows from Lemma 2.49. Lemma 2.50

In fact when Γ is finitely generated then all torsion elements also have finite F -orbit;
this is because endomorphisms preserve the torsion subgroup, which is finite. We will not
need this, however.

The consequence that is of interest to us in proving Theorem 2.48 is that if Γ is finitely
generated and there is non-torsion a ∈ Γ such that FNa is finite, then there cannot be a
length function for (Γ, F ).

To prove Theorem 2.48, we will want to reduce to the torsion-free case. The following
lemma allows us to do so:

Lemma 2.51. Suppose Γ is finitely generated. Write Γ = Γ0 ×H for Γ0 ≤ Γ torsion-free
and H ≤ Γ finite. Let π : Γ → Γ0 be the projection, and let F0 : Γ0 → Γ0 be (π ◦ F )↾Γ0.
Then:

1. F0 is an injective endomorphism of Γ0, and satisfies π ◦ F = F0 ◦ π.

2. If s0 · · · sn−1 ∈ Γ∗ then π([s0 · · · sn−1]F ) = [π(s0) · · · π(sn−1)]F0.

3. If Σ is an F r-spanning set for Γ then π(Σ) is an F r
0 -spanning set for Γ0.

4. If Σ0 is an F r
0 -spanning set for Γ0 then π−1(Σ0) is an F

r-spanning set for Γ.
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Proof.

1. For injectivity of F0, suppose a, b ∈ Γ0 satisfy π(Fa) = π(Fb). Then π(F (a− b)) = 0,
so F (a− b) ∈ H; so, since H is the torsion subgroup of Γ and F is injective, we get
that a− b ∈ H. But a− b ∈ Γ0; so a = b, and F0 is injective.

To see that π ◦ F = F0 ◦ π, note for a ∈ Γ that

π(Fa)− F0(π(a)) = π(Fa)− π(F (π(a))) = π(F (a− π(a))) ∈ π(H) = { 0 }.

2. Suppose s0, . . . , sn−1 ∈ Γ. Then part (1) yields that

[(π(s0)) · · · (π(sn−1))]F0 = π(s0) + F0(π(s1))) + · · ·+ F n−1
0 (π(sn−1)))

= π(s0) + π(Fs1) + · · ·+ π(F n−1sn−1)

= π([s0 · · · sn−1]F ),

as desired.

3. Note by part (1) we get that (π ◦ F r)↾Γ0 = (F r
0 ◦ π)↾Γ0 = F r

0 . So we can replace F
with F r and F0 with F r

0 , and thus assume r = 1. Suppose Σ ⊆ Γ is F -spanning; we
show that π(Σ) is F0-spanning.

(i) Suppose a ∈ Γ0. Since Σ is F -spanning there is s0 · · · sn−1 ∈ Σ∗ such that
[s0 · · · sn−1]F = a. Then π(s0), . . . , π(sn−1) ∈ π(Σ), and by part (2) we get that

[(π(s0)) · · · (π(sn−1))]F0 = π([s0 · · · sn−1]F ) = π(a) = a.

(ii) Since Σ is F -spanning we get that 0 = π(0) ∈ π(Σ), and that if π(a) ∈ π(Σ)
then −a ∈ Σ, and hence π(−a) ∈ π(Σ).

(iii) Suppose π(a1), π(a2), π(a3) ∈ π(Σ). Since Σ is F -spanning there are b, c ∈ Σ
such that a1 + a2 + a3 = b+ Fc; then

π(a1) + π(a2) + π(a3) = π(b) + π(Fc) = π(b) + F0(π(c)).

(iv) Suppose π(a1), π(a2) ∈ π(Σ) and π(a1) + π(a2) = F0b for some b ∈ Γ0. Then
π(a1 + a2) = F0(π(b)) = π(Fb); so there is h ∈ H such that a1 + a2 = Fb + h.
Since F is injective and H is F -invariant and finite, we get that F is bijective
on H; so there is h0 ∈ H such that Fh0 = h. So a1 + a2 = F (b+ h0); so since Σ
is F -spanning we get that b+ h0 ∈ Σ. So a = π(b+ h0) ∈ π(Σ).

37



4. As in part (3), it suffices to check the case r = 1. Suppose Σ0 ⊆ Γ0 is F0-spanning;
we show that π−1(Σ0) is F -spanning.

(i) Suppose a ∈ Γ. Since Σ0 is F0-spanning there is s0 · · · sn−1 ∈ Σ∗
0 such that

[s0 · · · sn−1]F0 = π(a). Then as in axiom (i) of the converse, we get

π([s0 · · · sn−1]F ) = [π(s0) · · · π(sn−1)]F0 = [s0 · · · sn−1]F0 = π(a);

so [s0 · · · sn−1]F = a + h for some h ∈ H. Then [(s0 − h)s1 · · · sn−1]F = a, and
s0 − h, s1, . . . , sn−1 ∈ π−1(Σ0), as desired.

(ii) Since 0 ∈ Σ0 we get that 0 ∈ π−1(Σ0). If a ∈ π−1(Σ0) then since Σ0 is F0-
spanning we get that π(−a) ∈ Σ0; hence −a ∈ π−1(Σ0) as well.

(iii) Suppose a1, a2, a3 ∈ π−1(Σ0). Since Σ0 is F -spanning there are b, c ∈ Σ0 such
that

π(a1) + π(a2) + π(a3) = b+ F0c = π(b) + F0(π(c)) = π(b) + π(Fc).

So there is h ∈ H such that a1 + a2 + a3 = b + Fc + h = (b + h) + Fc; so
a1 + a2 + a3 ∈ π−1(Σ0) + F (π−1(Σ0)), as desired.

(iv) Suppose a1, a2 ∈ π−1(Σ0) and a1+a2 = Fb for some b ∈ Γ. Then π(a1)+π(a2) =
π(Fb) = F0(π(b)). So since Σ0 is F0-spanning we get that π(b) ∈ Σ0, and thus
that b ∈ π−1(Σ0), as desired. Lemma 2.51

Proof of Theorem 2.48. We first reduce to the case Γ = (Zm,+) for some m. By the
fundamental theorem of finitely generated abelian groups, we may assume Γ = Zm ×H for
some finite group H. As in Lemma 2.51, we let F0 = (π ◦ F )↾Zm, where π : Γ → Zm is the
projection; so by Lemma 2.51 there is an F r-spanning set for Γ if and only if there is an
F r
0 -spanning set for Zm. Moreover Γ⊗Z C ∼= Cm, and under this identification F ⊗ idC acts

as F0 ⊗ idC; so F ⊗ idC has an eigenvalue in the unit disk if and only if F0 ⊗ idC does.

It thus suffices to check the case Γ = Zm. So F is the restriction of the C-linear map
FC := F ⊗Z idC on Cm; moreover FC can be represented by a matrix over Z.

( ⇐= ) By replacing F with a power thereof, we may assume that |µ| ≥ 3 for all eigenvalues
µ of FC. Fix a basis {w1, . . . , wm } for Cm that puts FC into Jordan canonical form,
and let h be the associated infinity norm; so if

v =
m∑
i=1

fi(v)wi
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then h(v) = max{ |f1(v)|, . . . , |fm(v)| }. We show that h is a height function for
(Zm, F ). If we take α = 2 and κ = 0, then the triangle inequality for norms implies
that h satisfies the weak ultrametric inequality. The Northcott property follows
from the equivalence of norms on finite-dimensional spaces. Indeed, recall that given
two norms ∥·∥1, ∥·∥2 on a finite-dimensional space there are C1, C2 > 0 such that
C1∥v∥1 ≤ ∥v∥2 ≤ C2∥v∥1 for all vectors v. So if ∥·∥∞ denotes the usual infinity norm
on Cm, then there is C > 0 such that ∥v∥∞ ≤ Ch(v) for all v ∈ Cm. Thus if h(v) ≤ N
then ∥v∥∞ ≤ CN . The Northcott property of h follows from the fact that there are
only finitely many v ∈ Zm such that ∥v∥∞ ≤ CN .

For canonicity, let β = 2 and X = ∅. Suppose v ∈ Zm; fix k such that h(v) = |fk(v)|.
Then since {w1, . . . , wm } puts FC into Jordan canonical form we get that either
fk(FCv) = µfk(v) or fk(FCv) = µfk(v) + fk+1(v), where µ is the eigenvalue of the
Jordan block associated to wk. In the former case, we get

h(FCv) ≥ |fk(FCv)| = |µ||fk(v)| = |µ|h(v) ≥ 2h(v).

In the latter case, we get by the reverse triangle inequality that

h(FCv) ≥ |fk(FCv)| ≥ |µ||fk(v)| − |fk+1(v)| ≥ 3h(v)− h(v) = 2h(v).

So h(Fv) ≥ βh(v) for all v ∈ Zm \X; so h satisfies canonicity, and is thus a height
function. Theorem 2.43 then yields an F r-spanning set for some r > 0.

( =⇒ ) There are two cases. Suppose first that there is an eigenvalue µ of FC with |µ| < 1.
In this case, our approach generalizes that of Example 2.36. Fix a basis {w1, . . . , wm }
that puts FC in Jordan canonical form; as before for v ∈ Cm write

v =
m∑
i=1

fi(v)wi.

So each fi : Cm → C is linear. Since {w1, . . . , wm } puts FC in Jordan canonical form,
there is k such that fk(FCv) = µfk(v) for all v ∈ Cm. Suppose for contradiction
that there is an F -spanning set Σ ⊆ Zm; let M = max{ |fk(a)| : a ∈ Σ }. Then if
s0 · · · sn−1 ∈ Σ∗ then

|fk([s0 · · · sn−1]F )| ≤ |fk(s0)|+ · · ·+ |fk(F n−1
C sn−1)|

= |fk(s0)|+ · · ·+ |µn−1fk(sn−1)|
≤M + · · ·+ |µ|n−1M

≤ M

1− |µ|
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since |µ| < 1. So since Σ is F -spanning for Zm we get that |fk(v)| < M
1−|µ| for all

v ∈ Zm. Since Zm is closed under doubling and fk(2v) = 2fk(v), this implies that
fk(v) = 0 for all v ∈ Zm. So Zm ⊆ spanC({w1, . . . , wm } \ {wk }), contradicting the
fact that Zm spans Cm. So no F -spanning set can exist. But given any r > 0 we get
that µr is an eigenvalue of F r

C = F r ⊗C idC, and |µr| < 1. So we can apply the above
argument to F r, and conclude that there is no F r-spanning set for any r > 0.

For the second case, suppose there is no eigenvalue µ of FC with |µ| < 1. Then
by hypothesis there is some eigenvalue µ of FC with |µ| = 1. Let pµ ∈ Q[t] be the
minimal polynomial of µ over Q. Suppose ν ∈ C is another root of pµ; so |ν| ≥ 1.
There is an automorphism Φ: C → C fixing Q that sends µ 7→ ν. So since µ−1 = µ
we get that pµ(ν

−1) = pµ(Φ(µ
−1)) = Φ(pµ(µ)) = 0; thus ν−1 is also a root of pµ. Let

pF be the characteristic polynomial of FC; note that pF has coefficients in Z, since
FC can be represented by a matrix over Z. So, since pF (µ) = 0, we get that pµ | pF .
So ν−1 is also an eigenvalue of FC, and hence by assumption satisfies |ν−1| ≥ 1. So
|ν| ≤ 1, and thus |ν| = 1. So all roots of pµ lie on the unit circle.

Now, let V = ker(pµ(FC)), and let FV = FC↾V ; note that V is FC-invariant, so we
may view FV as a map V → V . Then pµ(FV ) = 0, so the minimal polynomial of FV
divides pµ, and thus splits into distinct linear factors over C. So FV is diagonalizable,
and moreover all eigenvalues of FV are on the unit circle; so if ⟨·, ·⟩ is the inner product
induced by any eigenbasis for FV , then FV is unitary with respect to ⟨·, ·⟩. So if ∥·∥
is the 2-norm induced by ⟨·, ·⟩ then FV preserves ∥·∥.
Since pµ(FC) has a non-trivial zero in Cm (for instance pµ(FC)v = pµ(µ)v = 0 whenever
v is an eigenvector associated to µ), we get that det(pµ(FC)) = 0; so, since FC can be
represented by a matrix over Z and pµ ∈ Q[t], we get that pµ(FC) has a non-trivial
zero in Qm. So there is some non-zero v ∈ Qm ∩ V ; since V is closed under scalar
multiplication, we may assume v ∈ Zm. Then since FV is a ∥·∥-isometry, we get that
∥F iv∥ = ∥F i

V v∥ = ∥v∥ for all i. As argued in the right-to-left direction above, the
equivalence of norms on a finite-dimensional space implies there can only be finitely
many w ∈ Zm with ∥w∥ = ∥v∥. So by injectivity of F there is i such that v = F iv.
Hence by Lemma 2.50 no length function for (Γ, F ) can exist. Again any power of F
also satisfies our hypothesis; so we can apply the same argument to F r, and again
conclude that there is no length function for (Γ, F r) for any r > 0. Theorem 2.43
then yields that there is no F r-spanning set for any r > 0. Theorem 2.48
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2.6 F -sets are F -automatic

In this section we introduce F -sets and show that they are F -automatic. We continue to
assume that Γ is an infinite abelian group, that F : Γ → Γ is an injective endomorphism,
and that there is a spanning set for some power of F .

The class of F -sets arose in the study of the isotrivial Mordell-Lang problem: given a
commutative algebraic group G over a finite field Fq, characterize the sets of the form X ∩Γ
where Γ ≤ G is finitely generated and X ⊆ G is a closed subvariety. Moosa and Scanlon
showed in [18] that if G is a semiabelian variety and Γ is F -invariant, where F : G → G
is the q-power Frobenius endomorphism, then all such intersections are F -sets. (The full
problem was subsequently solved by Bell, Ghioca, and Moosa in [5].)

Definition 2.52. Suppose Γ is an abelian group and F : Γ → Γ is an endomorphism of Γ
(not necessarily injective). For a ∈ Γ we let

K(a;F ) := { a+ Fa+ · · ·+ F n−1a : n ∈ N } = [a∗]F .

An elementary F -set is a set of the form α + K(a1;F
r1) + · · · + K(an;F

rn) for some
α, a1, . . . , an ∈ Γ and r1, . . . , rn > 0. A groupless F -set4 is a finite union of elementary
F -sets. An F -set is a finite union of sets of the form A+H where A is an elementary F -set
and H ≤ Γ is F -invariant. The F -structure (Γ,F) on Γ has domain Γ and a predicate for
every F -set in every Γm (where F is viewed as an endomorphism of Γm coordinatewise).

The class of F -sets also shows up indirectly in Derksen’s positive-characteristic Skolem-
Mahler-Lech theorem of [11]: Derksen shows that the solutions to a linear recurrence over a
field of characteristic p are what he calls a p-normal set. Up to finite symmetric differences,
these turn out to be precisely the F -sets of Z where F : Z → Z is multiplication by p; this
was shown in [6].

Remark 2.53. F -orbits are examples of elementary F -sets: if a ∈ Γ then

FNa = a+K(Fa− a;F ).

A converse to this is shown in [18] under some additional assumptions on Γ and Z[F ]: they
show that given any a ∈ Γ there is an extension Γ′ ≥ Γ and F ′ : Γ′ → Γ′ extending F such
that K(a;F ) takes the form α+ (F ′)Nb for some α, b ∈ Γ′. It follows that any elementary
F -set in Γ can be written as a translate of a finite sum of orbits in Γ′.

4The definitions of F -sets and groupless F -sets here differ slightly from the definitions in [18], though
they turn out to be equivalent; see the bibliographical notes.
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We will later make use of F -sets when studying stability of automatic sets; for now they
are, for us, simply an interesting class of examples of F -automatic sets:

Theorem 2.54. F -sets are F -automatic.

To show this, we will need to show in particular that F -invariant subgroups of Γ
are always F -automatic. This will be an instance of a more general consequence of our
characterization of the existence of spanning sets in terms of height functions:

Proposition 2.55. Suppose H ≤ Γ is F -invariant. Then there is a spanning set for
(H, (F ↾H)r) for some r > 0. Moreover if A ⊆ H then A is (F ↾H)-automatic in H if and
only if A is F -automatic in Γ.

Proof. By Theorem 2.43 there is a height function h for (Γ, F r) for some r > 0. Then
h↾H is a height function for (H, (F ↾H)r): the Northcott property, the weak ultrametric
inequality, and canonicity of h↾H all follow directly from the corresponding property of h.
So again by Theorem 2.43 there is an (F ↾H)r

′
-spanning set for some r′ > 0.

We now check the “moreover” clause. By Proposition 2.17 there is r > 0 such that
there is both an F r-spanning set Σ for Γ and an (F ↾H)r-spanning set Σ0 for H. By
Proposition 2.15 we may assume Σ ⊇ Σ0.

( =⇒ ) Suppose A ⊆ H is (F ↾H)-automatic in H. By Corollary 2.27 we get that

L := {σ ∈ Σ∗
0 : [σ](F ↾H)r ∈ A } = {σ ∈ Σ∗

0 : [σ]F r ∈ A }

is regular over Σ0. Then since regularity isn’t dependent on the alphabet chosen
(see Proposition 2.9) L is regular over Σ. So, since [L]F r = [L](F ↾H)r = A, we get by
Proposition 2.33 that A is F -automatic in Γ.

( ⇐= ) Suppose A ⊆ H is F -automatic in Γ; then by Corollary 2.27, and since regular
languages are closed under Boolean combinations (Corollary 2.5), we get that

L := {σ ∈ Σ∗
0 : [σ](F ↾H)r ∈ A } = {σ ∈ Σ∗ : [σ]F r ∈ A } ∩ Σ∗

0

is regular over Σ. Then L is also regular over Σ0, since L ⊆ Σ∗
0; so A is (F ↾H)-

automatic in H. Proposition 2.55

We now complete the proof that F -sets are F -automatic.

42



Proof of Theorem 2.54. Recall from Corollary 2.35 that the finite union or sum of F -
automatic sets is again F -automatic. So it suffices to check that singletons, F -invariant
subgroups of Γ, and sets of the form K(a;F r) are F -automatic. That singletons are
F -automatic follows from Proposition 2.33 and the fact that finite languages are regular. If
H ≤ Γ is F -invariant then by Proposition 2.55 there is an (F ↾H)r-spanning set for H for
some r > 0. Then H is (F ↾H)-automatic in H, since Σ∗ is regular over Σ for any alphabet
Σ; so the “moreover” clause of Proposition 2.55 yields that H is F -automatic in Γ.

Suppose then that a ∈ Γ and r > 0; we show that K(a;F r) is F -automatic. Replacing
F with F r (which is harmless by Corollary 2.28) we may assume r = 1. Fix s > 0 for which
there is an F s-spanning set Σ. Then

K(a;F ) = { [an]F : n ∈ N }

=
s−1⋃
i=0

{ [aiasn]F : n ∈ N }

=
s−1⋃
i=0

{ [ai]F + F i[asn]F : n ∈ N }

=
s−1⋃
i=0

([ai]F +K(F i[as]F ;F
s)).

In particular by closure under unions and translations (Corollary 2.35) it suffices to show
that K(b;F s) is F -automatic for all b ∈ Γ. By Proposition 2.15 we may assume Σ contains
b. But then K(b;F s) = [b∗]F s and b∗ ⊆ Σ∗ is regular. So Proposition 2.33 yields that
K(b;F s) is F -automatic, as desired. Theorem 2.54

2.7 Bibliographical notes

Section 2.1 consists entirely of general knowledge from automata theory. The definition of
d-automatic sets is standard. The generalizations of d-automaticity to Z and Zm is from [1],
and was inspired by [20]. In fact in [1] the authors define a notion of d-automaticity in an
arbitrary finitely generated abelian group, not just Zm; but this is outside of our context,
since the mapping a 7→ da isn’t typically injective when there’s torsion.

Spanning sets and automaticity were introduced in [6] in the context of finitely generated
abelian groups, and in [5] it was observed that they can be used in the more general context
of abelian groups. My spanning sets generalize theirs slightly, however: whereas my axiom
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(iii) only requires that sums of three elements of Σ land in Σ + FΣ, they demand that this
hold for sums of five elements; likewise whereas my axiom (iv) is only about binary sums,
they demand that it hold for ternary sums as well. This relaxation requires a different
proof of the fact that the graph of addition, and more generally any F -invariant subgroup,
is F -automatic. Most of the results in Section 2.3 appear in [6]; the exceptions are the fact
that λΣ(F

ra) ≥ λΣ(a) + r − 1 (Proposition 2.19) and the example of a (Γ, F ) where F 2

admits a spanning set but F does not (Example 2.16).

The characterization of automaticity in terms of spanning set kernels (Proposition 2.25)
appears in [6], as does a restricted version of the fact that F -automaticity is independent
of the spanning set chosen: they show that A ⊆ Γ is (F,Σ)-automatic if and only if it
is (F,Σ′)-automatic, provided Σ and Σ′ are both F -spanning (or more generally both
F r-spanning for the same r). The relaxation (Corollary 2.27) of the kernel characterization
to the case where S merely contains a representative of each coset of FΓ, rather than being
a spanning set, is original. The full independence of (F r,Σ)-automaticity from both r and
Σ (also Corollary 2.27) is original, though it can be deduced from the results in [6] without
going through the more general kernel characterization. Closure of F -automatic sets under
finite unions appears in [6], and closure under complements follows immediately from their
work. The fact (Proposition 2.32) that the diagonal in Γ2, the graph of addition, and the
graph of F are F -automatic appears in [6], but my more general kernel characterization
of automaticity allowed me to simplify the proof. The fact that [L]F r is F -automatic
whenever L is regular (Proposition 2.33) appears in [6], as does the fact (Corollary 2.30)
that F -automaticity agrees with classical d-automaticity when F is multiplication by d.
The observation that F -automatic sets are closed under projection is new, but it is a direct
adaptation of the proof of the analogous fact for d-automatic sets, as appearing for example
in [7].

Everything in Section 2.5 is original except the definition of height functions and
the fact that the existence of a height function implies the existence of a spanning set
(part of Theorem 2.43); these appeared in [6]. The notion of height function described
here differs cosmetically from the one described in [6]: we include the weak ultrametric
inequality h(a + b) ≤ αmax(h(a), h(b)) + κ, whereas they use the triangle inequality
h(a + b) ≤ α(h(a) + h(b)) + κ. However, the former directly implies the latter, and if h
satisfies the latter with respect to α, κ then it satisfies the former with respect to 2α, κ. So
the two definitions capture the same class of functions.

I am indebted to Luke Anthony Franceschini for helping me work through the details of
Example 2.36.

My presentation of F -sets differs slightly from how they were introduced in [18]: they
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first define F -cycles, which are sets of the form C(a; r) = { a+F ra+ · · ·+F (n−1)ra : n > 0 };
so K(a;F r) = C(a; r) ∪ { 0 }. They then define groupless F -sets to be finite unions of sets
of the form

α + C(a1; r1) + · · ·+ C(an; rn)

and F -sets to be finite unions of sets of the form

α + C(a1; r1) + · · ·+ C(an; rn) +H

where H ≤ Γ is F -invariant. (The “elementary F -set” terminology was introduced here for
convenience; it doesn’t occur in [18].) In fact the two notions of groupless F -sets coincide,
and likewise with the two notions of F -sets: this follows from the fact that

C(a; r) = a+K(F ra;F r)

K(a;F r) = C(a; r) ∪ { 0 }.

Our context for F -sets is more general than the one in which they were introduced in
[18]: they require that Z[F ] ⊆ EndZ(Γ) be a finite extension of Z in which F is not a zero
divisor and

∞⋂
i=0

(F i) = 0

(where (F i) is the ideal generated by F i in Z[F ]), and moreover that Γ be a finitely generated
Z[F ]-module. These assumptions weren’t necessary in this chapter, but they will come up
in later chapters, in which we will want to make use of the results of [18].

The fact that F -sets are F -automatic (Theorem 2.54) was shown in [6] when Γ is finitely
generated; however, since we don’t require that, and due to our relaxation of the spanning
set axioms, their proof that F -invariant subgroups of Γ are F -automatic falls through in
this context. The proof that appears here instead relies on our characterization of spanning
sets in terms of height functions via Proposition 2.55, which is original.
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Chapter 3

F -sparsity

In this chapter, we introduce a notion of sparsity for F -automatic sets. We develop the
basic properties of F -sparse sets in Section 3.1, and we show in Theorem 3.19 that we can
characterize F -sparsity among the F -automatic sets using the asymptotics of the length
functions we defined in Chapter 2 (see Definition 2.38).

We continue to assume that Γ is an infinite abelian group, that F : Γ → Γ is an injective
endomorphism, and that there is an F r-spanning set for some r > 0.

3.1 Sparse languages and F -sparse sets

Recall the notion of sparsity in the context of regular languages:

Definition 3.1. If Σ is a finite alphabet, we say L ⊆ Σ∗ is sparse if it is regular and
|{σ ∈ L : |σ| ≤ x }| grows polynomially in x; i.e., there is f ∈ R[x] and C,M ≥ 0 such that
if x ≥M then |{σ ∈ L : |σ| ≤ x }| ≤ Cf(x).

Remark 3.2. If L1, L2 ⊆ Σ∗ are sparse and L′ ⊆ Σ∗ is regular, then L1 ∪ L2, L1L2, and
L1 ∩ L′ are sparse. Indeed, that these are regular follows from the definition of regularity
and the closure of regular languages under Boolean combinations (see Corollary 2.5); for
sparsity, we then note that

|{σ ∈ L1 ∪ L2 : |σ| ≤ x }| ≤ |{σ ∈ L1 : |σ| ≤ x }|+ |{σ ∈ L2 : |σ| ≤ x }|
|{σ ∈ L1L2 : |σ| ≤ x }| ≤ |{σ1 ∈ L1 : |σ1| ≤ x }| · |{ σ1 ∈ L2 : |σ2| ≤ x }|

|{σ ∈ L1 ∩ L′ : |σ| ≤ x }| ≤ |{σ ∈ L1 : |σ| ≤ x }|
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all grow polynomially in x.

The sparse languages are very well understood: the following fact follows from the
results of [22, 16].

Fact 3.3. Suppose Σ is a finite alphabet and L ⊆ Σ∗. The following are equivalent:

1. L is sparse.

2. L is a finite union of sets of the form

u0v
∗
1u1v

∗
2 · · ·un−1v

∗
nun = {u0vk11 u1vk22 · · ·un−1v

kn
n un : k1, . . . , kn ∈ N }

for some u0, . . . , un, v1, . . . , vn ∈ Σ∗. We call sets of the form u0v
∗
1u1v

∗
2 · · ·un−1v

∗
nun

simple sparse.

3. There is a DFA (Σ, Q, q0,Ω, δ) recognizing L such that if q ∈ Q satisfies:

• q is reachable from q0; that is, there is ν ∈ Σ∗ such that δ(q0, ν) = q.

• q is not a dead state; that is, there is ν ∈ Σ∗ such that δ(q, ν) ∈ Ω.

then for any n ∈ N there is at most one σ ∈ Σ(n) satisfying δ(q, σ) = q.

Informally, the last condition states that there is a DFA such that no state has a “double
loop” back to itself.

We study the natural adaptation of sparsity to the setting of F -automatic sets:

Definition 3.4. If Σ is an F r-spanning set, we say A ⊆ Γ is (F r,Σ)-sparse if there is some
sparse L ⊆ Σ∗ such that A = [L]F r . We say A is F -sparse if it is (F r,Σ)-sparse for some
r > 0 and F r-spanning set Σ.

It will follow from work in this chapter (see Corollary 3.20) that F -sparsity does not
depend on the choice of r and Σ. Note that F -sparse sets are F -automatic as sparse
languages are regular by definition (and using Proposition 2.33).

Example 3.5. Some examples of F -sparse sets:

1. Finite subsets of Γ are F -sparse as finite languages are sparse.
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2. Fix a ∈ Γ; we show that the F -orbit FNa of a is F -sparse. Fix an F r-spanning set Σ.
By Proposition 2.15 we may assume a, Fa, . . . , F r−1a ∈ Σ. Then

FNa = { [0na]F : n ∈ N }
= { [(0r)i0ja]F : i ∈ N, j < r }
= { [0i(F ja)]F r : i ∈ N, j < r }

=

[
r−1⋃
j=0

0∗(F ja)

]
F r

,

and
r−1⋃
j=0

0∗(F ja) ⊆ Σ∗ is sparse by our characterization of sparse languages (Fact 3.3).

So FNa is (F r,Σ)-sparse, and hence F -sparse.

3. Consider the case Γ = (Z,+) with F : Z → Z multiplication by some d ≥ 2; we show

that the ordering A =

{(
a
b

)
: a, b ∈ dN, a < b

}
on dN is F -sparse in Γ2. Indeed,

recall that Σ = {−d+ 1,−d+ 2, . . . , d− 1 } is F -spanning for Γ (see Example 2.13
(1)), and hence Σ2 is F -spanning for Γ2 (see Example 2.13 (2)). Moreover,

A =

{(
di

dj

)
: i, j ∈ N, i < j

}
=

{[(
0
0

)i(
1
0

)(
0
0

)j−i−1(
0
1

)]
F

: i, j ∈ N, i < j

}

=

[(
0
0

)∗(
1
0

)(
0
0

)∗(
0
1

)]
F

,

and hence A is F -sparse.

We can verify some closure properties immediately from the definition:

Proposition 3.6.

1. If A ⊆ Γ and r > 0 then A is F -sparse if and only if it is F r-sparse.

2. If A,B ⊆ Γ are F -sparse then so is A ∪B.

3. If A ⊆ Γ is F -sparse and X ⊆ Γ is F -automatic then A ∩X is F -sparse.
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Proof.

1. That F r-sparsity implies F -sparsity is by definition. For the converse, we show for an
F s-spanning set Σ that (F s,Σ)-sparsity implies (F rs, [Σ(r)]F s)-sparsity, which suffices.
(Recall from Proposition 2.17 that [Σ(r)]F s is indeed F rs-spanning.) Replacing F with
F s, we may assume s = 1.

Suppose then that A is (F,Σ)-sparse; so A = [L]F for some sparse L ⊆ Σ∗. Let
Σ′ = [Σ(r)]F ; note that strings over Σ′ correspond to strings over Σ with length in rN.
Our strategy will then be to show that we can force all elements of L to have length r,
and then use this correspondence to produce a sparse L′ ⊆ (Σ′)∗ such that A = [L′]F r .

We have A = [L]F = [L0∗ ∩ Σ(rN)]F , and since L is sparse so too is L0∗ ∩ Σ(rN); this
follows from the closure properties of sparse languages noted in Remark 3.2. Given
σ ∈ Σ(rN), say σ = σ0 · · ·σn−1 with σ0, . . . , σn−1 ∈ Σ(r), we let σ′ = [σ0]F · · · [σn−1]F ∈
(Σ′)∗. Then |σ′| = r−1|σ|, and

[σ′]F r = [σ0]F + F r[σ1]F + · · ·+ F r(n−1)[σn−1]F = [σ0σ1 · · ·σn−1]F = [σ]F .

So if L′ = {σ′ : σ ∈ L } ⊆ (Σ′)∗, then [L′]F r = A; it then suffices to show that
L′ is sparse. Fix a DFA M = (Σ, Q, q0,Ω, δ) recognizing L, and define an NFA
M ′ = (Σ′, Q, q0,Ω, δ

′) where

δ′(q, a) = { δ(q, σ) : σ ∈ Σ(r), [σ]F = a }

for a ∈ Σ. Then given τ ∈ (Σ′)∗ of length n we get that M ′ accepts τ if and only if
there are σ0, . . . , σn−1 ∈ Σ(r) such that τ = [σ0]F · · · [σn−1]F and δ(q0, σ0 · · ·σn−1) ∈ Ω;
i.e., if and only if τ ∈ L′. So L′ is regular. For sparsity of L′, we note that

|{σ′ ∈ L′ : |σ′| ≤ x }| = |{σ ∈ L : |σ| ≤ rx }|.

So L′ ⊆ (Σ′)∗ is sparse, and hence A = [L′]F r is (F r,Σ′)-sparse.

2. Suppose A,B ⊆ Γ are F -sparse. We argued above that (F,Σ)-sparsity implies
(F r, [Σ(r)]F )-sparsity for any r > 0. Applying this to A and B, we find that there
is r > 0 and F r-spanning sets Σ and Σ′ such that A is (F r,Σ)-sparse and B is
(F r,Σ′)-sparse; say A = [L]F r and B = [L′]F r for L ⊆ Σ∗ and L′ ⊆ (Σ′)∗ sparse. By
Proposition 2.15 there is an F r-spanning set Θ containing Σ ∪ Σ′. Then L ∪ L′ ⊆ Θ∗

is sparse (see Remark 3.2), and A∪B = [L∪L′]F r ; so A∪B is (F r,Θ)-sparse, and is
thus F -sparse.
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3. Suppose A ⊆ Γ is F -sparse and X ⊆ Γ is F -automatic; say there is an F r-spanning
set Σ and a sparse L ⊆ Σ∗ such that A = [L]F r . Since F -automaticity implies
(F r,Σ)-automaticity, we get that L′ := {σ ∈ Σ∗ : [σ]F r ∈ X } is regular. Hence by our
closure properties of sparse languages (Remark 3.2) we get that L∩L′ ⊆ Σ∗ is sparse.
So, since [L ∩ L′]F r = A ∩X, we get that A ∩X is F -sparse. Proposition 3.6

A consequence of this is that the F -sparse sets are closed under relative complement: if
A,B ⊆ Γ are F -sparse, then Γ\B is F -automatic by closure of F -automaticity under Boolean
combinations Corollary 2.29, and hence by the previous result we get that A\B = A∩(Γ\B)
is F -sparse.

Because of our characterization of sparse languages (Fact 3.3), we can write an F -sparse
set as a finite union of sets of the form [u0v

∗
1u1 · · · v∗nun]F r . The following lemma and

corollary tell us that we can dispense with the ui, at the cost of introducing a translation.

Lemma 3.7. Suppose r > 0 and u0, . . . , un, v1, . . . , vn ∈ Γ∗; suppose v1, . . . , vn all have the
same length N . Then there is α, a1, . . . , an ∈ Γ such that for k1, . . . , kn ∈ N we have

[u0v
k1
1 u1 · · · vknn un]F r = α + [ak11 a

k2
2 · · · aknn ]F rN .

Proof. Replacing F with F r, we may assume r = 1. We apply induction on n; the base
case n = 0 is vacuous. For the induction step, use the induction hypothesis to find
β, b2, . . . , bn ∈ Γ such that for k2, . . . , kn ∈ N we have

[u1v
k2
2 u2 · · · vknn un]F = β + [bk22 · · · bknn ]FN .

If we let ai = F |u0|bi for 2 ≤ i ≤ n, then

[u0v
k1
1 u1 · · · vknn un]F = [u0v

k1
1 ]F + F |u0|+k1N [u1v

k2
2 u2 · · · vknn un]F

= [u0]F + F |u0|[vk11 ]F + F |u0|+k1Nβ + F |u0|+k1N [bk22 · · · bknn ]FN

= [u0]F + F |u0|[vk11 ]F + F |u0|+k1Nβ + F k1N [ak22 · · · aknn ]FN .

We wish to write F |u0|[vk11 ]F + F |u0|+k1Nβ as a translate of something of the form [ak11 ]FN .
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We can do so via a telescoping sum: if we let a1 = F |u0|([v1]F − β + FNβ), then

F |u0|[vk11 ]F + F |u0|+k1Nβ

= F |u0|[vk11 ]F + F |u0|
(
β + (−β + FNβ) + (−FNβ + F 2Nβ) + · · ·+ (−F (k1−1)Nβ + F k1Nβ)

)
= F |u0|β

+F |u0|([v1]F − β + FNβ)

+F |u0|+N([v1]F − β + FNβ)

+ · · ·
+F |u0|+(k1−1)N([v1]F − β + FNβ)

= F |u0|β + [ak11 ]FN .

Hence if we let α = [u0]F + F |u0|β, then substituting this into the above yields

[u0v
k1
1 u1 · · · vknn un]F = [u0]F + F |u0|β + [ak11 ]FN + F k1N [ak22 · · · aknn ]FN

= α + [ak11 a
k2
2 · · · aknn ]FN ,

as desired. Lemma 3.7

Corollary 3.8. Suppose A ⊆ Γ is F -sparse. Then there is s0 > 0 such that if s0 | s then A
is a finite union of sets of the form α + [a∗1 · · · a∗n]F s where α, a1, . . . , an ∈ Γ.

Proof. Replacing F with some power thereof, it suffices to check the case where A is
(F,Σ)-sparse for some F -spanning set Σ; say A = [L]F for some sparse L ⊆ Σ∗. By our
characterization Fact 3.3 of sparse languages, we get that L is a finite union of simple sparse
languages u0v

∗
1u1 · · · v∗nun. Let N be the least common multiple of all the |vi| across the

union, and let s0 = N ; suppose s0 | s. If we let Ni =
s

|vi| then

u0v
∗
1u1 · · · v∗nun =

N1−1⋃
j1=0

· · ·
Nn−1⋃
jn=0

u0(v
N1
1 )∗vj11 u1 · · · (vNn

n )∗vjnn un,

and each |vNi
i | = s. So L is a finite union of sets of the form u0v

∗
1u1 · · · v∗nun with

|v1| = · · · = |vn| = s. Given such ui, vi, Lemma 3.7 yields α, a1, . . . , an ∈ Γ such that
[u0v

k1
1 u1 · · · vknn un]F = α+ [ak11 · · · aknn ]F s for all k1, . . . , kn ∈ N. So A = [L]F is a finite union

of sets of the form α + [a∗1 · · · a∗n]F s , as desired. Corollary 3.8

Remark 3.9. The converse holds when there is an F s-spanning set Σ1 (which by Propo-
sition 2.17 can be assumed by replacing s with a multiple thereof). Indeed, by closure

1In fact the converse holds more generally, but we will not need this.
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of F -sparsity under finite unions (Proposition 3.6) it suffices to show that sets of the
form α+ [a∗1 · · · a∗n]F s are F -sparse. By Proposition 2.15 we may assume α, a1, . . . , an, α+
a1, . . . , α + an ∈ Σ. Then

L := {α } ∪
n⋃
i=1

(α + ai)a
∗
i a

∗
i+1 · · · a∗n ⊆ Σ∗

is sparse by Fact 3.3, and hence α + [a∗1 · · · a∗n]F s = [L]F s is F -sparse.

In particular, we get that the F -sparse sets are closed under translation. Indeed, by
Corollary 3.8 any F -sparse set A can be written as a finite union of sets of the form
α+ [a∗1 · · · a∗n]F s for some s for which there is an F s-spanning set. But then for γ ∈ Γ we get
that A+ γ is a finite union of sets of the form γ + α + [a∗1 · · · a∗n]F s , which is then F -sparse
by the above.

We can now show that the F -sparse sets are closed under sums:

Corollary 3.10. If A,B ⊆ Γ are F -sparse then so is A+B.

Proof. By Corollary 3.8 there is s > 0 such that A can be written as a finite union of sets
of the form α+ [a∗1 · · · a∗n]F s for some α, a1, . . . , an ∈ Γ, and likewise B is a finite union of
β + [b∗1 · · · b∗n′ ]F s . Moreover Proposition 2.17 tells us that by replacing s with a multiple
thereof we may assume there is an F s-spanning set Σ. Since F -sparsity is closed under
finite unions, it suffices to show that a set of the form α+ β + [a∗1 · · · a∗n]F s + [b∗1 · · · b∗n′ ]F s

is F -sparse. We noted in Remark 3.9 that translates of F -sparse sets are F -sparse; so it
suffices to show that

[a∗1 · · · a∗n]F s + [b∗1 · · · b∗n′ ]F s

is F -sparse.

Note by Proposition 2.15 that we can assume ai, bj, ai + bj ∈ Σ for all i, j. Now, for
s0 · · · sk−1, t0 · · · tℓ−1 ∈ Σ∗, say with k ≤ ℓ, we let

s0 · · · sk−1 ⊕ t0 · · · tℓ−1 = (s0 + t0)(s1 + t1) · · · (sk−1 + tk−1)tktk+1 · · · tℓ−1

be their characterwise sum; note then that

[s0 · · · sk−1 ⊕ t0 · · · tℓ−1]F s = (s0 + t0) + · · ·+ F k−1(sk−1 + tk−1) + F ktk + · · ·+ F ℓ−1tℓ−1

= [s0 · · · sk−1]F s + [t0 · · · tℓ−1]F s .

Moreover if σ ∈ a∗1 · · · a∗n and τ ∈ b∗1 · · · b∗n′ then σ⊕τ ∈ Σ∗. So L := a∗1 · · · a∗n⊕b∗1 · · · b∗n′ ⊆ Σ∗

and [L]F s = [a∗1 · · · a∗n]F s + [b∗1 · · · b∗n′ ]F s . It then suffices to show that L is sparse; we do so
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by induction on (n, n′). The base case n = n′ = 0 is simply that { ε } is sparse. For the

induction step, note given σ = ak11 · · · aknn and τ = bℓ11 · · · bℓn′
n′ that either k1 ≤ ℓ1, in which

case
σ ⊕ τ = (a1 + b1)

k1(ak22 · · · aknn ⊕ bℓ1−k11 bℓ22 · · · bℓn′
n′ ),

or k1 ≥ ℓ1, in which case

σ ⊕ τ = (a1 + b1)
ℓ1(ak1−ℓ11 ak22 · · · aknn ⊕ bℓ22 · · · bℓn′

n′ ).

We thus see that

L = (a1 + b1)
∗(a∗2 · · · a∗n ⊕ b∗1b

∗
2 · · · b∗n′) ∪ (a1 + b1)

∗(a∗1a
∗
2 · · · a∗n ⊕ b∗2 · · · b∗n′),

which is sparse by the induction hypothesis (and Remark 3.2, which tells us that the
concatenation and union of sparse languages is sparse). Corollary 3.10

Corollary 3.11. Groupless F -sets are F -sparse.

Recall from Definition 2.52 that a groupless F -set is a finite union of translates of finite
sums of sets of the form K(a;F r) = [a∗]F r .

Proof. Note that if s > 0 is such that there is an F s-spanning set Σ, then K(b;F s) is F -
sparse: indeed, by Proposition 2.15 we may assume b ∈ Σ, and K(b;F s) = [b∗]F s . Moreover,
we showed in the proof of Theorem 2.54 that given any a ∈ Γ and r > 0 we can write
K(a;F r) as a finite union of translates of K(b;F s) for some s > 0 for which there is an
F s-spanning set. So K(a;F r) is a finite union of translates of F -sparse sets, and hence
by Proposition 3.6 and Corollary 3.10 we get that K(a;F r) is F -sparse. But a groupless
F -set is a finite union of translates of finite sums of K(a;F r); so again by Proposition 3.6
and Corollary 3.10 we get that any groupless F -set is F -sparse. Corollary 3.11

3.2 F -sparsity via length functions

The definition of F -sparsity raises the question of independence from the chosen spanning
set: that is, given an F r-spanning set Σ and an F r′-spanning set Σ′, if A is (F r,Σ)-sparse,
must it also be (F r′ ,Σ′)-sparse? More concretely, one might also wonder whether there even
exist F -automatic sets that aren’t F -sparse. In this section, we will characterize F -sparsity
in terms of length functions, and use this characterization to answer both questions in the
affirmative.
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Lemma 3.12. Suppose Σ is F -spanning. Suppose λ is a length function for (Γ, F ) with
associated constants C,D,E such that C ≥ D. Then λ ∈ O(λΣ).

Proof. Let M = max{λ(a) : a ∈ Σ }. For σ ∈ Σ∗ non-empty, we show by induction on |σ|
that λ([σ]F ) ≤M + (|σ| − 1)C +D. The base case |σ| = 1 is just the definition of M . For
the induction step, suppose |σ| > 1, and write σ = σ0a for some non-empty σ0 ∈ Σ∗ and
a ∈ Σ. By the induction hypothesis we get that λ([σ0]F ) ≤M + (|σ0| − 1)C +D, and by
definition of M we get that λ(a) ≤M . So by the ultrametric inequality and the logarithmic
property we get that

λ([σ]F ) = λ([σ0]F + F |σ0|a)

≤ max(λ([σ0]F ), λ(F
|σ0|a)) +D

≤ max(M + (|σ0| − 1)C +D,M + |σ0|C) +D

= M + |σ0|C +D

= M + (|σ| − 1)C +D

(since C ≥ D by assumption).

Hence if 0 ̸= a ∈ Γ, say a = [σ]F with ε ̸= σ ∈ Σ∗ of length λΣ(a), then

λ(a) ≤M + (|σ| − 1)C +D ≤M + (λΣ(a)− 1)C +D = CλΣ(a) +M − C +D.

So λ ∈ O(λΣ), as desired. Lemma 3.12

Corollary 3.13. If λ is a length function for (Γ, F r) and λ′ is a length function for (Γ, F r′),
then λ ∈ Θ(λ′).

(Recall that f ∈ Θ(g) if f ∈ O(g) and g ∈ O(f).)

Proof. By symmetry, it suffices to show that λ ∈ O(λ′). Recall from Proposition 2.41
that h(a) := 2λ

′(a) is a height function for (Γ, F r′); recall further from Theorem 2.43
and Remark 2.47 that from h we can derive an F s-spanning set Σ for some s such that
λΣ ∈ O(log ◦h) = O(λ′). It then suffices to show that λ ∈ O(λΣ).

Let the constants associated to λ be C,D,E. By possibly replacing r with a multiple
thereof, we may assume that C ≥ D (see Remark 2.42) and that s | r. Recall from
Proposition 2.17 and Remark 2.18 that Σ′ := [Σ

r
s ]F s is an F r-spanning set, and λΣ′(a) ≤⌈

λΣ(a) · sr
⌉
. So λΣ′ ∈ O(λΣ), and it suffices to prove that λ ∈ O(λΣ′). But this is precisely

the previous lemma. Corollary 3.13
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In regular languages, the defining condition of sparsity is that |{σ ∈ L : |σ| ≤ x }| grows
polynomially in x. We would like to adapt this to the context of F -automatic sets using
length functions in place of |σ|; the above corollary tells us that it won’t matter which
length function we choose.

Definition 3.14. We say A ⊆ Γ is F -meagre if |{ a ∈ A : λ(a) ≤ x }| grows polynomially
in x for some (equivalently, any) length function λ for (Γ, F r) for some (equivalently, any)
r > 0.

To see that this is truly independent of the λ chosen, suppose |{ a ∈ A : λ(a) ≤ x }| ∈
O(f(x)) for some polynomial f . Suppose λ′ is another length function. By Corollary 3.13
we get λ′ ∈ Θ(λ); so there is M > 0 such that λ(a) ≤Mλ′(a) for a outside some finite set
X. Then

|{ a ∈ A : λ′(a) ≤ x }| ≤ |{ a ∈ A : λ(a) ≤Mx }|+ |X| ∈ O(f(Mx))

grows polynomially in x.

Remark 3.15. F -meagreness coincides with F r-meagreness. Indeed, fix s > 0 for which
there is a length function λ for (Γ, F s). Recall from Remark 2.42 that λ is also a length
function for (Γ, F rs); so if A ⊆ Γ then

A is F -meagre ⇐⇒ |{ a ∈ A : λ(a) ≤ x }| grows polynomially in x ⇐⇒ A is F r-meagre.

F -meagreness is intended to capture the polynomial growth condition of F -sparsity
without any implication of F -automaticity. We first show:

Lemma 3.16. If A ⊆ Γ is F -sparse then it is F -meagre.

We will need the following reverse ultrametric inequality:

Remark 3.17. Suppose λ is a length function for (Γ, F ) with associated constants C,D,E.
If a, b ∈ Γ satisfy λ(b) > λ(a) +D then λ(a+ b) ≥ λ(b)−D. Indeed, otherwise

λ(b) = λ((a+ b) + (−a)) ≤ max(λ(a+ b), λ(a)) +D < λ(b),

a contradiction.

Proof of Lemma 3.16. Fix r > 0, an F r-spanning set Σ, and sparse L ⊆ Σ∗ such that
A = [L]F r . Replacing F with F r, we may assume r = 1. It is clear that F -meagreness is
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closed under finite union; so it suffices to check the case where L = u0v
∗
1u1 · · · v∗nun is simple

sparse. We do so by induction on n; the case n = 0 is just that singletons are F -meagre.

For the induction step, note first that if [v∗nun]F is finite, then

[L]F =
⋃

a∈[v∗nun]F

[u0v
∗
1u1 · · · v∗n−1un−1a]F

is F -meagre by the induction hypothesis. Suppose then that [v∗nun]F is infinite; we will
show that |{ a ∈ [L]F : λΣ(a) ≤ x }| grows polynomially in x. As a notational convenience,
let f(k1, . . . , kn) = u0v

k1
1 · · ·un−1v

kn
n ; so we are interested in λΣ([f(k1, . . . , kn)un]F ) for

k1, . . . , kn ∈ N. Pick N such that λΣ([v
N
n un]F ) > 2. Then

[L]F =

(⋃
i<N

[u0v
∗
1u1 · · · v∗n−1un−1v

i
nun]F

)
∪ { [f(k1, . . . , kn +N)un]F : k1, . . . , kn ∈ N }.

and by the induction hypothesis each [u0v
∗
1u1 · · · v∗n−1un−1v

i
nun]F is F -meagre; it thus suffices

to show that B := { [f(k1, . . . , kn +N)un]F : k1, . . . , kn ∈ N } is F -meagre.

We are thus interested in placing a lower bound on

λΣ([f(k1, . . . , kn +N)un]F ) = λΣ([f(k1, . . . , kn)]F + F |f(k1,...,kn)|[vNn un]F ).

We apply the reverse ultrametric inequality. Recall (Proposition 2.39) that the constants
associated to λΣ are C = D = E = 1, and the exceptional set is Σ. We then see from the
logarithmic property that

λΣ(F
|f(k1,...,kn)|[vNn un]F ) ≥ λ([vNn un]F ) + |f(k1, . . . , kn)| − 1

> |f(k1, . . . , kn)|+ 1

≥ λΣ([f(k1, . . . , kn)]F ) + 1

(since λΣ([v
N
n un]F ) > 2 implies that [vNn un]F /∈ Σ is not exceptional). So the reverse

ultrametric inequality applies, and thus

λΣ([f(k1, . . . , kn +N)un]F ) ≥ λΣ(F
|f(k1,...,kn)|[vNn uN ]F )− 1 ≥ |f(k1, . . . , kn)|.

So if λΣ([f(k1, . . . , kn + N)un]F ) ≤ x then x ≥ |f(k1, . . . , kn)| ≥ max{ k1, . . . , kn } (under
the assumption that no vi is empty, which is harmless), and there are at most (x+ 1)n such
(k1, . . . , kn). So B is F -meagre, and thus so too is A. Lemma 3.16
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The following lemma provides a partial converse, and moreover tells us that F -automaticity
and F -sparsity can be verified by looking at a “minimal” set of representations.

Lemma 3.18. Suppose Σ is F r-spanning and L ⊆ Σ∗ is regular. Suppose ⪯ is a linear
ordering on Σ; we identify ⪯ with the length-lexicographical order it induces on Σ∗.2 Then

L̃ := {σ ∈ L : σ ⪯ τ for every τ ∈ L such that [σ]F r = [τ ]F r }

is regular. Moreover the following are equivalent:

1. L̃ is sparse.

2. [L]F r is F -sparse.

3. [L]F r is F -meagre.

We will primarily be interested in the case where L is the set of all representations of
some F -automatic set, but the full statement has found some use in the literature; see the
bibliographical notes.

Proof. We first verify that L̃ is regular. By closure under Boolean combinations (Corol-

lary 2.5) it suffices to show that Σ∗ \ L̃ = (Σ∗ \ L) ∪ (L \ L̃) is regular; since L is regular, it

thus suffices to show that L \ L̃ is regular. Note that given σ ∈ L, the question of whether

σ ∈ L \ L̃ is an existential one: we are asking whether there is τ ∈ L such that [σ]F r = [τ ]F r

and τ ≺ σ. We thus look to write L \ L̃ as a projection of a regular language. Let L′ be

the set of

(
σ
τ

)
∈ (Σ2)∗ such that σ ∈ L, [σ]F r = [τ ]F r , and either

• τ ∈ L and τ ≺ σ, or

• τ ∈ { τ00i : τ0 ∈ L, i > 0 } = L00∗.

I claim that L \ L̃ is the projection of L′ onto its first coordinate. Indeed, if σ ∈ L \ L̃

then there is τ ∈ L such that [τ ]F r = [σ]F r and τ ≺ σ. If |τ | < |σ| then
(

σ
τ0|σ|−|τ |

)
∈ L′;

if on the other hand |τ | = |σ| then
(
σ
τ

)
∈ L′. Conversely, suppose

(
σ
τ

)
∈ L′ for some τ .

2Recall that σ precedes τ in the length-lexicographical order induced by ⪯ if |σ| < |τ | or if |σ| = |τ | and
σ precedes τ in the lexicographical order induced by ⪯.
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If τ ∈ L and τ ≺ σ, then τ itself witnesses that σ /∈ L̃. If on the other hand τ = τ00
i for

some τ0 ∈ L and i > 0, then τ0 ≺ σ since |τ0| < |τ | = |σ|; so, since [τ0]F r = [τ ]F r = [σ]F r ,

we get that σ /∈ L̃.

So by closure of regular languages under projections (Corollary 2.8) it suffices to show
that L′ is regular. By closure under Boolean combinations, it suffices to show that L,

L00∗,

{(
σ
τ

)
∈ (Σ2)∗ : [σ]F r = [τ ]F r

}
, and

{(
σ
τ

)
∈ (Σ2)∗ : σ ≺ τ

}
are regular. The first

is by hypothesis; the second is by definition of regularity; the third is by Proposition 2.32
and Corollary 2.27; and the fourth is ∆∗X(Σ2)∗, where ∆ ⊆ Σ2 is the diagonal and

X =

{(
a
b

)
∈ Σ2 : a ≺ b

}
, and is thus regular by definition.

We now show the “moreover” clause.

(1) =⇒ (2) This is just the definition of F -sparsity, since L̃ is sparse and [L̃]F r = [L]F r .

(2) =⇒ (3) This is Lemma 3.16.

(3) =⇒ (1) Note that [·]F r is a bijection L̃→ [L]F r with the property that λΣ([σ]F r) ≤ |σ|.
So

|{σ ∈ L̃ : |σ| ≤ x }| ≤ |{ a ∈ [L]F r : λΣ(a) ≤ x }|
grows polynomially in x since [L]F r is F -meagre. Lemma 3.18

We have thus proven:

Theorem 3.19. A ⊆ Γ is F -sparse if and only if it is F -automatic and F -meagre.

Proof. It suffices to show that if A is F -automatic then A is F -sparse if and only if A is
F -meagre. Fix r > 0 and an F r-spanning set Σ; so L := {σ ∈ Σ∗ : [σ]F r ∈ A } is regular.
The result is then the “moreover” clause of the previous lemma. Theorem 3.19

Corollary 3.20. If A ⊆ Γ is F -sparse then it is (F r,Σ)-sparse for all r > 0 and all
F r-spanning sets Σ.

Proof. Suppose A is F -sparse; suppose r > 0 and Σ is an F r-spanning set. Let L =
{σ ∈ Σ∗ : [σ]F r ∈ A }; so L is regular, since A is F -automatic (using Corollary 2.27). Fix

any linear ordering ⪯ on Σ, and let L̃ be as in Lemma 3.18. Then since A = [L]F r is

F -sparse, Lemma 3.18 yields that L̃ is sparse. Then since A = [L̃]F r , it follows that A is
(F r,Σ)-sparse. Corollary 3.20
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As a consequence, we get that F -sparsity interacts nicely with F -invariant subgroups:

Corollary 3.21. Suppose H ≤ Γ is F -invariant and A ⊆ H. Then A is F -sparse in Γ if
and only if it is (F ↾H)-sparse in H.

Proof. Recall from Proposition 2.55 that there is a spanning set for some power of F ↾H,
and that A is (F ↾H)-automatic in H if and only if it is F -automatic in Γ. Furthermore if
r > 0 and λ is any length function for (Γ, F r) then λ↾H is a length function for (H,F ↾H);
so A is F -meagre in Γ if and only if A is (F ↾H)-meagre in H. Theorem 3.19 then yields
that A is F -sparse in Γ if and only it is (F ↾H)-sparse in H. Corollary 3.21

Finally, we see that there are sets that aren’t F -sparse.

Proposition 3.22. Suppose A ⊆ Γ is F -sparse. Then:

1. A does not contain a coset of an infinite F -invariant subgroup.

2. A does not contain Za for any non-torsion a ∈ Γ.

Proof.

1. We first show that Γ itself is not F -meagre. Replacing F with a power thereof, which is
harmless by Remark 3.15, we may assume there is an F -spanning set Σ. We will show
that |{ a ∈ Γ : λΣ(a) ≤ x }| grows exponentially in x. Recall from Proposition 2.39
that the constants associated to λΣ are C = D = E = 1; moreover, we noted in
Lemma 2.49 that by increasing E we can assume the exceptional set only contains
elements of finite F -orbit.

Fix a ∈ Σ with FNa infinite; so the logarithmic property applies to a. Note that such
a must exist, since otherwise Lemma 2.50 would yield that all a ∈ Σ are torsion, and
hence that

Γ = { [σ]F : σ ∈ Σ∗ } =
∑
a∈Σ

∑
b∈FNa

Zb

is finite, a contradiction.

Fix s > E + 1. For n ∈ N consider An := { [τ ]F s : τ ∈ { 0, a }(n) }. Note for
τ = t0 · · · tn−1 ∈ { 0, a }(n) we have that

[τ ]F s = t0 + F st1 + · · ·+ F s(n−1)tn−1 = [t00
s−1t10

s−1 · · · tn−20
s−1tn−1]F ,
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and hence that λΣ([τ ]F s) ≤ s(|τ | − 1)+ 1. So λΣ(b) ≤ s(n− 1)+ 1 for b ∈ An. I claim
that |An| = 2n. This will then imply that |{ b ∈ Γ : λΣ(a) ≤ s(x − 1) + 1 }| ≥ 2n

for x ∈ N; hence Γ isn’t F -meagre, and hence by Theorem 3.19 we get that Γ isn’t
F -sparse.

To prove this, we wish to show that the map Φ: { 0, a }(n) → Γ given by τ 7→
[τ ]F s is injective. Note, however, that given distinct σ, τ ∈ { 0, a }(n) we can write
[σ]F s − [τ ]F s = [ν]F s for some ν ∈ {−a, 0, a }∗ \ { 0 }∗. It then suffices to show that
given ν ∈ {−a, 0, a }∗ \ { 0 }∗ we must have [ν]F s ̸= 0.

Suppose we are given such ν; we will show that λΣ([ν]F s) ̸= 0. The result is clear
when |ν| = 1; suppose then that |ν| ≥ 2. By negating and removing trailing
zeroes, we may assume ν ends in a; say ν = ν0a for some ν0 ∈ {−a, 0, a }∗. Then
[ν]F s = [ν0]F s + F s|ν0|a; we look to apply the reverse ultrametric inequality. Applying
our earlier bound to ν0, we get that

λΣ([ν0]F s) ≤ s(|ν0|−1)+1 = λΣ(a)+s|ν0|−s < λΣ(a)+s|ν0|−E−1 ≤ λΣ(F
s|ν0|a)−1

(using the logarithmic property, and recalling that C = D = 1 and s > E + 1). So, by
the reverse ultrametric inequality, we get that

λΣ([ν]F s) ≥ λΣ(F
s|ν0|a)− 1 ≥ s(|ν0| − 1) + 1 ≥ 1

(since by assumption |ν| ≥ 2, and thus |ν0| ≥ 1). So [ν]F s ̸= 0.

It then follows that Φ is injective. So 2n = |Φ({ 0, a }(n))| ≤ |An|, and thus Γ is not
F -meagre, as desired.

We now prove the full statement. By closure of F -sparsity under translation (Re-
mark 3.9) it suffices to show that A doesn’t contain an infinite F -invariant subgroup;
for this, it suffices to show that if H ≤ Γ is F -invariant then H isn’t F -meagre. Recall
from Proposition 2.55 that there is a spanning set for some power of (F ↾H); so our
work above applies to (H,F ↾H), and hence H is not (F ↾H)-meagre. But if r > 0 and
λ is any length function for (Γ, F r), then λ↾H is a length function for (H, (F ↾H)r),
and hence |{ b ∈ H : λ(b) ≤ x }| grows exponentially in x; so H is not F -meagre, as
desired.

2. Suppose a ∈ Γ is non-torsion; we will show that Za is not F -meagre, and hence
by Theorem 3.19 that no superset of Za is F -sparse. Replacing F with a power
thereof, we may assume there is a length function λ for (Γ, F ), say with associated
constants C,D,E. We show by induction on k ∈ N that if 1 ≤ i ≤ 2k then
λ(ia) ≤ λ(a) + kD. The base case k = 0 is clear. For the induction step, suppose
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the claim holds of k. If 1 ≤ i ≤ 2k then the induction hypothesis yields that
λ(ia) ≤ λ(a) + kD ≤ λ(a) + (k + 1)D. If on the other hand 2k ≤ i ≤ 2k+1 then the
ultrametric inequality and the induction hypothesis yield that

λ(ia) = λ(2ka+ (i− 2k)a)

≤ max(λ(2ka), λ((i− 2k)a)) +D

≤ max(λ(a) + kD, λ(a) + kD) +D

= λ(a) + (k + 1)D,

as desired.

Hence |{ b ∈ Za : λ(b) ≤ λ(a) + xD }| ≥ 2x for x ∈ N; so Za isn’t F -meagre, and thus
no superset of Za is F -sparse. Proposition 3.22

3.3 Bibliographical notes

The definitions of sparsity and F -sparsity were taken from [6]. Corollary 3.11 is proven as
part of [6, Theorem 7.4].

All other definitions and results in this chapter are original. This includes the closure
properties of F -sparse sets (Proposition 3.6 and Corollary 3.10); the definition of F -
meagreness; the characterization of F -sparsity in terms of F -meagreness (Theorem 3.19);
the independence of F -sparsity from the chosen spanning set (Corollary 3.20); and the fact
that F -sparse sets cannot contain certain infinite subgroups (Proposition 3.22).

When F -sparsity was introduced in [6], the handling was somewhat cumbersome because
the authors couldn’t use independence from the chosen spanning set (Corollary 3.20). They
also asked whether a translate of an F -sparse set is necessarily F -sparse, which we answered
here in the affirmative in Corollary 3.10.

The (2) =⇒ (1) direction of Lemma 3.18 found use in [5], as did Proposition 3.22 (2).
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Chapter 4

Stable sparse sets

In this chapter, we consider the question of which F -sparse subsets of Γ are stable. Stability is
an important model-theoretic tameness condition that rules out certain infinite combinatorial
configurations. We briefly recall it here; more information can be found in [23, Chapter 8].

Definition 4.1. Suppose X and Y are sets, and R ⊆ X × Y is a binary relation. If N ∈ N
then an N -ladder for R is a tuple (a0, . . . , aN−1; b0, . . . , bN−1) with each ai ∈ X and bj ∈ Y
such that (ai, bj) ∈ R if and only if i ≤ j. We say R is stable if there is a bound on the N
for which there is an N -ladder for R.

If (G, ·, e) is a group and A ⊆ G, we say A is stable in the group G if the binary relation
xy ∈ A on G2 is stable.

If T is a complete first-order theory and φ(x1, . . . , xk; y1, . . . , yℓ) is a partitioned formula
in the associated signature, we say φ is stable (in T ) if there is M |= T such that the
relation on Mk×M ℓ defined by φ is stable. (Since T is complete, it decides the existence of
N -ladders for φ; hence we can replace “there is M |= T” in the above definition with “for
any M |= T”.) We say T is stable if every partitioned formula in the associated signature
is stable in T .

Suppose (Γ,+) is an infinite abelian group, F : Γ → Γ is an injective endomorphism, and
Γ admits an F r-spanning set for some r > 0. We consider the question of which F -sparse
A ⊆ Γ are stable in (Γ,+). Note first that not all of them are:

Example 4.2. Let Γ = (Z2,+) and F : Γ → Γ be multiplication by some d ≥ 2. Let

A =

{(
a
b

)
∈ Z2 : a, b ∈ dN, a < b

}
. We saw in Example 3.5 (3) that A is F -sparse.
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However, if i, j ∈ N then (
di

0

)
+

(
0

dj+1

)
∈ A ⇐⇒ i ≤ j,

and thus if N ∈ N then

((
d0

0

)
, . . . ,

(
dN−1

0

)
;

(
0
d1

)
, . . . ,

(
0
dN

))
forms an N -ladder for

x+ y ∈ A. So A isn’t stable in Γ.

Our characterization of the stable F -sparse sets will make use of the following result of
Moosa and Scanlon, which under certain conditions gives a sufficient condition for stability:

Fact 4.3 ([18, Theorem A]). Let Z[F ] ⊆ End(Γ) be the Z-subalgebra generated by F .
Suppose that Z[F ] is a finite extension of Z, that Γ is a finitely generated Z[F ]-module, and
that ⋂

i∈N

F iZ[F ] = { 0 }.

Then Th(Γ,F) is stable and admits quantifier elimination. (Recall that (Γ,F) is the
F -structure on Γ, which has domain Γ and a predicate for every F -set in every Γm.)

The fact that this last hypothesis holds in our context will come from our assumption
that Γ admits an F r-spanning set for some r > 0.

So under these hypotheses, the groupless F -sets are stable in Γ. Moreover, we showed in
Corollary 3.11 that groupless F -sets are F -sparse. So (under some additional assumptions
on Z[F ]) we have a class of examples of stable F -sparse sets, namely the groupless F -sets.

It turns out that when Γ is finitely generated these are the only stable F -sparse sets, up
to Boolean combinations:

Theorem. Suppose Γ is finitely generated and A ⊆ Γ is F -sparse. Then A is stable in Γ if
and only if A is a Boolean combination of elementary F -sets.

This is the goal of the chapter; it appears as part of Theorem 4.11 below.

We continue to assume that Γ is an infinite abelian group, that F : Γ → Γ is an injective
endomorphism, and that Γ admits an F r-spanning set for some r > 0.
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4.1 An auxiliary structure on N

To characterize the stable F -sparse sets, we will need to understand certain stable formulas
on natural numbers. Consider the first-order signatures Ldiv := { 0, S }∪{Pδ : δ ∈ N, δ ≥ 2 }
and Ldiv,< := Ldiv ∪ {< }, where

• 0 is a constant symbol,

• S is a unary function symbol,

• each Pδ is a unary relation symbol, and

• < is a binary relation symbol.

Let N = (N, 0, S, (δN)δ≥2, <), where S is the successor function and Pδ is interpreted as
the set δN of natural numbers divisible by δ. We fix Th(N) as our ambient theory.

The order relation is the only obvious source of instability in N, and indeed:

Proposition 4.4. If φ ∈ Ldiv,< is quantifier-free and stable under any partition of its
variables then φ is equivalent to a quantifier-free Ldiv-formula.1

Proof. Write φ = φ(x) = φ(x1, . . . , xn). We apply induction on n.

The base case n = 0 is vacuous, since any sentence is equivalent to either ∃x(x = x)
or ∃x(x ̸= x). (A word on what stability means in absence of variables: according to the
definition, stability of φ(; ) says that there is M |= T such that φ defines a stable relation
on M0 ×M0. But there is no unstable relation on M0 ×M0; so φ is automatically stable.)

We describe the atomic Ldiv,<-formulas. An Ldiv,<-term takes the form Sex or Se0
(which we simply write as e) for e ∈ N. An atomic Ldiv,<-formula thus takes one of the
following forms, for some e, f ∈ N, some δ ≥ 2, and distinct variables x, y:

(i) e = f , Pδ(e), e < f , Sex = Sfx, or Sex < Sfx

(ii) Sex = f

(iii) Sex = Sfy

1In fact both Th(N) and Th(N, 0, S, (δN)δ≥2) admit quantifier elimination, but we will not make use of
this.

64



(iv) Pδ(S
ex)

(v) Sex < f

(vi) e < Sfx

(vii) Sex < Sfy

So φ is a Boolean combination of formulas of the above form. We now describe how to
remove or simplify some of these forms. The arguments below are arranged so that later
simplifications will not ruin earlier ones.

• Formulas of form (i) are either inconsistent or necessarily true, and can thus be
removed from φ.

• For form (vii), we first note that Sex < Sfy is equivalent to ¬((Sex = Sfy) ∨ (Sfy <
Sex)). Thus if Sex < Sfy occurs in φ, then by possibly applying the above substitution
we can reduce to the case where e ≥ f . Moreover, in this case we get that Sex < Sfy
is equivalent to Se−fx < y. We may thus assume that f = 0 whenever Sex < Sfy
appears in φ.

• For form (vi), we note that e < Sfx is equivalent to ¬((Sfx = e) ∨ (Sfx < e)).
Applying this substitution, we may assume that form (vi) does not occur in φ.

• For form (v), if e ≥ f then this is inconsistent, and can thus be removed; otherwise
we can replace Sex < f with

∨
k<f S

ex = k. We may thus assume that form (v) does
not occur in φ.

• For form (ii), if e > f then Sex = f is inconsistent, and can thus be removed;
otherwise we can replace Sex = f with x = f − e, and thus assume e = 0.

• For form (iii), by symmetry we may assume e ≤ f , in which case Sex = Sfy is
equivalent to x = Sf−ey; we may thus assume that e = 0 whenever Sex = Sfy
appears in φ.

• For form (iv), note if k > 0 that Pδ(x) is equivalent to
∨
e<k Pkδ(S

eδx). Thus if δ′ is
the least common multiple of all the δ for which Pδ appears in φ, we can replace any
Pδ occurring in φ with a Boolean combination of Pδ′ ; so we can assume that all Pδ
occurring in φ share the same δ.

For ease of comprehension we will write Pδ(S
ex) as x ≡ e′ (mod δ), where 0 ≤ e′ < δ

and e ≡ −e′ (mod δ).
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Altogether, there is some δ for which we can write φ = φ(x) = φ(x1, . . . , xn) as a Boolean
combination of formulas of the following forms:

xi = e xi = Sexj Sexi < xj xi ≡ e (mod δ)

for e ∈ N, δ ≥ 2, and distinct i, j ∈ { 1, . . . , n }. Let M be the largest e for which a
formula of the above form appears in φ, and let ∆ be the collection of formulas of the above
forms with e ≤ M ; so ∆ is finite. So whether φ holds of some a ∈ Nn is determined by
tp∆(a) := {ψ ∈ ∆ : N |= ψ(a) }. We can thus write φ(x) as

∨
p∈X

(∧
ψ∈p

ψ(x) ∧
∧

ψ∈∆\p

¬ψ(x)

︸ ︷︷ ︸
θp

)

for some X ⊆ P(∆). We may further assume that θp is consistent for each p ∈ X.
We will show given p ∈ X that there is a quantifier-free Ldiv-formula θ′p(x) such that
θp(N) ⊆ θ′p(N) ⊆ φ(N). It will then follow that φ(x) is equivalent to the quantifier-free
Ldiv-formula

∨
p∈X θ

′
p(x), completing the proof.

There are two cases:

Case 1. Suppose p contains a formula of the form xi = e or xi = Sexj; assume for
notational convenience that i = 1. Define the Ldiv-term t to be e in the former case
and Sexj in the latter. Let χ(x2, . . . , xn) be φ(t, x2, . . . , xn).

Then χ is stable under any partition of its variables. Indeed, suppose otherwise; for
notational convenience, assume the unstable partition is χ(x2, . . . , xn0 ;xn0+1, . . . , xn)
for some n0. So for any N ∈ N there are ak2, . . . , akn0 , bk(n0+1), . . . , bkn ∈ N for k < N
such that

N |= χ(ak2, . . . , akn0 ; bℓ(n0+1), . . . , bℓn) ⇐⇒ k ≤ ℓ.

If t = e for some e ∈ N then this means that φ(x1, x2, . . . , xn0 ;xn0+1, . . . , xn) is
unstable, since

N |= φ(e, ak2, . . . , akn0 ; bℓ(n0+1), . . . , bℓn) ⇐⇒ k ≤ ℓ.

If t = xj for some 2 ≤ j ≤ n0 then we again get that φ(x1, x2, . . . , xn0 ;xn0+1, . . . , xn)
is unstable, since

N |= φ(akj, ak2, . . . , akn0 ; bℓ(n0+1), . . . , bℓn) ⇐⇒ k ≤ ℓ.
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If t = xj for some n0 +1 ≤ j ≤ n, we instead get that φ(x2, . . . , xn0 ;x1, xn0+1, . . . , xn)
is unstable, since

N |= φ(ak2, . . . , akn0 ; bℓj, bℓ(n0+1), . . . , bℓn) ⇐⇒ k ≤ ℓ.

Thus in any case we get that φ is unstable with respect to some partition of its
variables, a contradiction.

So χ has one fewer variable than φ, and is also stable under any partition of its
variables. So by the induction hypothesis we get that χ is equivalent to some quantifier-
free χ′ ∈ Ldiv. We then take θ′p to be (x1 = t) ∧ χ′(x2, . . . , xn). Then θp(x) implies
x1 = t and φ(x) by assumption, and hence implies φ(t, x2, . . . , xn); so θp(N) ⊆ θ′p(N).
Moreover by definition of χ we get that θ′p implies (x1 = t) ∧ φ(t, x2, . . . , xn), and
hence φ(x); so θ′p(N) ⊆ φ(N). So this choice of θ′p works as desired.

Case 2. Suppose p contains no formula of the form xi = e or xi = Sexj. Let χ(x) be the
conjunction of the negations of such formulas; so χ asserts that no xi ≤ M and no
xi is within M of some xj for i ≠ j. Examining ∆, and using the fact that θp is
consistent and decides every formula in ∆, we see that θp can be written in the form

χ(x) ∧

(
n∧
i=1

xi ≡ ei (mod δ)

)
︸ ︷︷ ︸

θ′p

∧(xσ(1) < · · · < xσ(n))

for some e1, . . . , en < δ and some σ ∈ Sn (the symmetric group on { 1, . . . , n }). (Note
that formulas of the form Sexσ(i) < xσ(j) for e ≤ M and i < j are implied by χ(x)
and xσ(i) < xσ(j), and can thus be omitted.)

We will show that this θ′p satisfies the desired properties. It is clear that θp(N) ⊆ θ′p(N);
it remains to show that θ′p(N) ⊆ φ(N). Let

T = { τ ∈ Sn : N |= ∀x((θ′p(x) ∧ (xτ(1) < · · · < xτ(n))) → φ(x)) }.

Since θp(N) ⊆ φ(N) we get that σ ∈ T . To show that θ′p(N) ⊆ φ(N) it suffices to
show that T = Sn. Indeed, if a ∈ θ′p(N) then a ∈ χ(N), and thus the ai are all
distinct; so there is τ ∈ Sn such that N |= θ′p(a) ∧ (aτ(1) < · · · < aτ(n)), and hence if
T = Sn we can conclude that a ∈ φ(N). Since Sn is generated by permutations of
the form (j j + 1) for 1 ≤ j < n, and since we know T is non-empty, it suffices to
show that if τ ∈ T then so too is (j j + 1)τ .
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Suppose for contradiction that we had τ ∈ T with (j j + 1)τ /∈ T ; assume for
notational convenience that τ = id. Then

θ′p(x) ∧ (x(j j+1)(1) < · · · < x(j j+1)(n))

decides every formula in ∆, and thus takes the form θq for some q ⊆ ∆. In particular,
since by assumption we have that θq(N) ̸⊆ φ(N), and since whether N |= φ(a) is
determined by tp∆(a), we get that θq(N) ∩ φ(N) = ∅. We will use this to contradict
the stability of φ(x1, . . . , xj;xj+1, . . . , xn).

Fix N < ω; we construct an N -ladder for φ(x1, . . . , xj;xj+1, . . . , xn). Inductively
choose

a1, . . . , aj−1, aj,0, . . . , aj,N−1, aj+1,0, . . . , aj+1,N−1, aj+2, . . . , an ∈ N

such that

• ai ≡ ei (mod δ) for i ∈ { 1, . . . , n } \ { j, j + 1 };
• aj,k ≡ ej (mod δ) for k < N ;

• aj+1,ℓ ≡ ej+1 (mod δ) for k < N ; and

• The ai, aj,k, aj+1,ℓ are ordered as in the following diagram:

0 a1 · · · aj−1 aj,0 aj+1,0

aj,1 aj+1,1

· · ·

aj,N−1 aj+1,N−1

aj+2 · · · an

where an arrow indicates that the target exceeds the source plus M .

Now, for k < N let ak = (a1, . . . , aj−1, aj,k) and bk = (aj+1,k, aj+2, . . . , an). Then by
construction for any k, ℓ we get that N |= θ′p(ak,bℓ). Moreover if k ≤ ℓ then (ak,bℓ)
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satisfies x1 < · · · < xn; so since we assumed id = τ ∈ T , it follows that N |= φ(ak,bℓ).
If on the other hand k > ℓ then (ak,bℓ) satisfies x(j j+1)(1) < · · · < x(j j+1)(n); so
N |= θq(ak,bℓ), and thus N ̸|= φ(ak,bℓ).

So N |= φ(ak,bℓ) if and only if k ≤ ℓ, and we have exhibited an N -ladder for
φ(x1, . . . , xj ;xj+1, . . . , xn). But this contradicts our assumption that φ is stable under
any partition of its variables. So no such j exists. So T is all of Sn, and thus
θ′p(N) ⊆ φ(N), as desired. Proposition 4.4

We will need the following general fact relating regular languages to N:

Lemma 4.5. Suppose Σ is a finite alphabet and a1, . . . , an ∈ Σ. Suppose L ⊆ Σ∗ is
regular. Then the relation { (k1, . . . , kn) ∈ Nn : ak11 · · · aknn ∈ L } is definable by a Boolean
combination of formulas of the form xi = K and xi ≡ K (mod δ) for K ∈ N and δ ≥ 2.

Proof. Fix a DFA (Σ, Q, q0,Ω, δ) recognizing L. We will show by induction on n that for all
q, q′ ∈ Q the relation { (k1, . . . , kn) ∈ Nn : δ(q, ak11 · · · aknn ) = q′ } is definable by a formula
of the desired form. Note that the result then follows, since

ak11 · · · aknn ∈ L ⇐⇒
∨
q∈Ω

δ(q0, a
k1
1 · · · aknn ) = q.

The base case n = 0 is vacuous. For the induction step, let qi = δ(q, ai1) for i ∈ N; so
δ(q, ak11 · · · aknn ) = δ(qk1 , a

k2
2 · · · aknn ). Note that since Q is finite and qi+1 = δ(qi, ai) we get

that qi is ultimately periodic in i; say with M,µ such that qi+µ = qi for i ≥ M . Then
δ(q, ak11 · · · aknn ) = q′ if and only if

∨
i<M

((k1 = i)∧(δ(qi, a
k2
2 · · · aknn ) = q′))∨

M+µ−1∨
i=M

((k1 ≡ i (mod µ))∧(δ(qi, a
k2
2 · · · aknn ) = q′)),

which can be written in the desired form by the induction hypothesis. Lemma 4.5

4.2 Characterizing the stable sparse sets

We now work towards our desired classification of the F -sparse sets that are stable.

We will need the following refinement of Corollary 3.8:
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Lemma 4.6. Suppose A ⊆ Γ is F -sparse. Then there is s0 > 0 such that if s0 | s then
A is a finite union of sets of the form α + { [be11 ]F s + · · ·+ [benn ]F s : e1 ≤ · · · ≤ en } where
α, b1, . . . , bn ∈ Γ.

Proof. By Corollary 3.8 there is s0 > 0 such that if s0 | s then A can be written as a finite
union of sets of the form α+ [a∗1 · · · a∗n]F s for α, a1, . . . , an ∈ Γ. Given such α, a1, . . . , an, fix
b1, . . . , bn ∈ Γ such that ai = bi + bi+1 + · · ·+ bn. Note then for e1 ≤ · · · ≤ en in N that

[be11 ]F + · · ·+ [benn ]F = [be11 ]F +

[be12 ]F + F e1 [be2−e12 ]F +

[be13 ]F + F e1 [be2−e13 ]F + F e2 [be3−e23 ]F +
...

[be1n ]F + F e1 [be2−e1n ]F + F e2 [be3−e2n ]F + · · ·+ F en−1 [ben−en−1
n ]F

= [ae11 ]F + F e1 [ae2−e12 ]F + F e2 [ae3−e23 ]F + · · ·+ F en−1 [aen−en−1
n ]F

= [ae11 a
e2−e1
2 · · · aen−en−1

n ]F .

Hence α+ [a∗1 · · · a∗n]F = α+ { [be11 ]F + · · ·+ [benn ]F : e1 ≤ · · · ≤ en }, and A can be written
in the desired form. Lemma 4.6

Using this, we can relate the F -sparse stable sets to F -sets. In fact, this connection
doesn’t require that Γ be finitely generated.

Proposition 4.7. If A ⊆ Γ is F -sparse and stable in Γ then A is definable in (Γ,F).

Proof of Proposition 4.7. By Lemma 4.6 and Proposition 2.17 there is s for which

• Γ admits an F s-spanning set, and

• A can be written as a finite union
M⋃
i=1

Ai where each Ai takes the form α + { [be11 ]F s +

· · ·+ [benn ]F s : e1 ≤ · · · ≤ en } for some α, b1, . . . , bn ∈ Γ.

Since F -sparsity coincides with F s-sparsity (Proposition 3.6) and the F s-structure on Γ is
a reduct of the F -structure on Γ (which follows from the definition), we can replace F with
F s, and thus assume s = 1. Fix i, and write Ai = α+ { [be11 ]F + · · ·+[benn ]F : e1 ≤ · · · ≤ en }.
We will produce A′

i ⊆ Γ definable in (Γ,F) such that Ai ⊆ A′
i ⊆ A. It will then follow that

A =
M⋃
i=1

A′
i is definable in (Γ,F).
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Let A′
i = A ∩ (α + K(b1;F ) + · · · + K(bn;F )) = A ∩ (α + [b∗1]F + · · · + [b∗n]F ). It is

clear that Ai ⊆ A′
i ⊆ A; it remains to show that A′

i is definable in (Γ,F). For this we will
consider

X := { (e1, . . . , en) ∈ Nn : α + [be11 ]F + · · ·+ [benn ]F ∈ A }

and look to apply our result (Proposition 4.4) on stable subsets of N = (N, 0, S, (δN)δ≥2, <).
We first check that X is quantifier-free definable in N. Indeed, fix f ∈ Sn, and let

Xf := X ∩ { (e1, . . . , en) ∈ Nn : ef(1) ≤ · · · ≤ ef(n) }.

We will show that Xf is quantifier-free definable in N, and hence that X =
⋃
f∈Sn

Xf is as
well.

Assume for notational simplicity that f = id. Then as we argued above, if ai =
bi + bi+1 + · · ·+ bn then for e1 ≤ · · · ≤ en we have

[be11 ]F + · · ·+ [benn ]F = [ae11 a
e2−e1
2 · · · aen−en−1

n ]F .

Recall by assumption that Γ admits an F -spanning set, say Σ; by Proposition 2.15 we
may assume a1, . . . , an ∈ Σ. Since A is F -sparse, in particular it is F -automatic; closure of
F -automaticity under translation (Corollary 2.35) then yields that A− α is F -automatic,
and thus (F,Σ)-automatic (by Corollary 2.27). So {σ ∈ Σ∗ : [σ]F ∈ A − α } is regular.
Then Lemma 4.5 yields that { (k1, . . . , kn) ∈ Nn : [ak11 a

k2
2 · · · aknn ]F ∈ A− α } is definable by

some Boolean combination of formulas of the form xi = K and xi ≡ K (mod δ). So for
e1 ≤ · · · ≤ en we get that

α + [ae11 a
e2−e1
2 · · · aen−en−1

n ]F ∈ A

is equivalent to some Boolean combination of statements of the following forms:

• e1 = K.

• e1 ≡ K (mod δ).

• ej+1 − ej = K; note that this is equivalent to ej+1 = SKej.

• ej+1 − ej ≡ K (mod δ); note that this is equivalent to

δ−1∨
ℓ=0

((ej ≡ ℓ (mod δ)) ∧ (ej+1 ≡ ℓ+K (mod δ))).
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In particular, α + [ae11 a
e2−e1
2 · · · aen−en−1

n ]F ∈ A is equivalent to some quantifier-free Ldiv-
formula under the assumption that e1 ≤ · · · ≤ en. So Xf is quantifier-free definable in N
by

(e1 ≤ · · · ≤ en) ∧ (α + [ae11 a
e2−e1
2 · · · aen−en−1

n ]F ∈ A),

as desired. So X is quantifier-free definable in N, say by φX(x).

We now check that the formula φX is stable under any partition of the variables. In-
deed, suppose otherwise; assume for notational convenience that we have a partition
φX(x1, . . . , xn0 ;xn0+1, . . . , xn) that is unstable for some n0. So for N ∈ N there are
ek1, . . . , ekn ∈ N for k < N such that

N |= φX(ek1, . . . , ekn0 ; eℓ(n0+1), . . . , eℓn) ⇐⇒ k ≤ ℓ.

But by definition of X, and since X = φX(N), this means that

(α + [bek11 ]F + · · ·+ [b
ekn0
n0 ]F ) + ([b

eℓ(n0+1)

n0+1 ]F + · · ·+ [beℓnn ]F ) ∈ A ⇐⇒ k ≤ ℓ,

contradicting our assumption that A is stable in Γ. So φX is stable under any partition of
the variables.

So Proposition 4.4 applies, and thus φX can be taken to be a quantifier-free Ldiv-formula.
Fix a ∈ Γ such that FNa is infinite. Note that such a must exist: if λ is any length function
for any power of F , then whenever a ∈ Γ is such that FNa is finite, we must have that a
fails the logarithmic property, and thus that a lies in the finite exceptional set of λ. So
since Γ is infinite there must exist a ∈ Γ with FNa infinite.

Consider the map Φ: N → Γ given by e 7→ [ae]F . Note that Φ embeds N into Γ as the
0-definable set K(a;F ). Indeed, if [ae1 ]F = [ae2 ]F for some e1, e2 ∈ N, then applying F − 1
yields that F e1a− a = F e2a− a, and hence since FNa is infinite that e1 = e2.

We will show that Φ induces a 0-definable interpretation of N0 := (N, 0, S, (δN)δ≥2) in
(Γ,F). From this, and the fact that X is definable in N0, it will follow that A′

i is indeed
definable in (Γ,F).

We must show that {Φ(0) } = { 0 } is 0-definable in (Γ,F); this is simply because

{ 0 } = K(0;F ). We must also show that

{(
Φ(e)
Φ(Se)

)
: e ∈ N

}
is 0-definable; for this we

note that it is precisely

(
0
a

)
+K

((
a
Fa

)
;F

)
. Finally, we must show that {Φ(e) : e ∈ δN }

is 0-definable; but this is K([aδ]F ;F
δ). Since all of these are F -sets, we get that all are

0-definable in (Γ,F).
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So Φ does indeed induce a 0-definable interpretation of N0 in (Γ,F). Thus

Φ(X) =


[ae1 ]F

...
[aen ]F

 : e1, . . . , en ∈ N, α+ [be11 ]F + · · ·+ [benn ]F ∈ A


is 0-definable in (Γ,F). Moreover, for each 1 ≤ j ≤ n the map gj : K(a;F ) → K(bj;F )

given by [ae]F 7→ [bej ]F is definable in (Γ,F): its graph is K

((
a
bj

)
;F

)
. Finally, recall that

addition is definable in (Γ,F), since its graph is an F -invariant subgroup of Γ3. Putting
these together, we find that

A′
i = A ∩ (α +K(b1;F ) + · · ·+K(bn;F ))

= {α + [be11 ]F + · · ·+ [benn ]F : (e1, . . . , en) ∈ X }

=

α + [be11 ]F + · · ·+ [benn ]F :

[ae1 ]F
...

[aen ]F

 ∈ Φ(X)


is definable in (Γ,F), namely by the formula

∃y1 · · · ∃yn


y1...
yn

 ∈ Φ(X) ∧ (x = α + g1(y1) + · · ·+ gn(yn))

.
So A =

M⋃
i=1

A′
i is definable in (Γ,F), as desired. Proposition 4.7

In the finitely generated torsion-free case, we can do better:

Proposition 4.8. Suppose Γ = (Zm,+) for some m. Then:

1. Th(Γ,F) is stable.

2. If A ⊆ Γ is F -sparse and stable in Γ then A is a Boolean combination of elementary
F -sets.

We will need the following result of Moosa and Scanlon:
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Fact 4.9 ([18, Proposition 3.9]). Suppose that Z[F ] is a finite extension of Z, that Γ is a
finitely generated Z[F ]-module, and that⋂

i∈N

F iZ[F ] = { 0 }.

If A,B ⊆ Γ are F -sets then so is A ∩B.

Proof of Proposition 4.8. We will appeal to Fact 4.3; we verify that the hypotheses hold.
It is clear that Z[F ] extends Z, and since Γ is a finitely generated group it is certainly a
finitely generated Z[F ]-module. To see that Z[F ] is a finite extension of Z, we note that
F is given by some matrix T with integer entries; so if pT is the characteristic polynomial
of T then pT is monic, pT ∈ Z[t], and by the Cayley-Hamilton theorem pT (T ) = 0. So
pT (F ) = 0, and F is integral over Z; so Z[F ] is a finite extension of Z. Finally, we must
show that ⋂

i∈N

F iZ[F ] = { 0 }.

This will use our standing assumption that Γ admits an F r-spanning set for some r > 0.
Indeed, by Theorem 2.43 there is a length function λ for (Γ, F r) for some r > 0, say
with associated constants C,D,E. By Lemma 2.50 we may assume the exceptional set
contains only torsion elements, and is thus { 0 }; so the logarithmic property applies to
all non-zero elements of Γ. Suppose G ∈ F iZ[F ] for all i ∈ N; so for all i we get that
G ∈ F irZ[F ], and there is Gi ∈ Z[F ] such that G = F irGi. Suppose for contradiction we
had a ∈ Γ such that Ga ̸= 0. Then Gia ̸= 0, so by the logarithmic property we get that
λ(Ga) ≥ λ(Gia) + iC − E. But this grows without bound as i grows, a contradiction. So
Ga = 0 for all a ∈ Γ, and thus G = 0.

So Fact 4.3 applies, and thus Th(Γ,F) is stable. Suppose now that A ⊆ Γ is F -sparse
and stable in Γ. Proposition 4.7 yields that A is definable in (Γ,F), which admits quantifier
elimination by Fact 4.3. So A is a Boolean combination of F -sets; using disjunctive normal
form, we can write A as a finite union of sets of the form

B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪ Cℓ)

for F -sets B1, . . . , Bk, C1, . . . , Cℓ. We wish to show that the Bi, Cj can be taken to be
groupless.

Since A is F -sparse, Lemma 4.6 yields that there is some s for which A can be written
as a finite union of sets of the form

α + { [be11 ]F s + · · ·+ [benn ]F s : e1 ≤ · · · ≤ en }.
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In particular, A is contained in a finite union of sets of the form

α +K(b1;F
s) + · · ·+K(bn;F

s),

and is thus contained in a groupless F -set, say Ã.

Now, if k > 0 then

B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪ Cℓ) = Ã ∩ (B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪ Cℓ))
= Ã ∩B1 ∩ · · · ∩Bk \ (Ã ∩ (C1 ∪ · · · ∪ Cℓ))
= (Ã ∩B1) ∩ · · · ∩ (Ã ∩Bk) \ ((Ã ∩ C1) ∪ · · · ∪ (Ã ∩ Cℓ)).

By Fact 4.9 we get that each Ã ∩Bi is an F -set. Fix i, and write Ã ∩Bi as a finite union
of sets of the form D +H for some elementary F -set D and some F -invariant H ≤ Γ. If
H is finite then D +H =

⋃
h∈H(h +D), and we can replace D +H in the union with a

union of elementary F -sets. If H is infinite, then Ã ⊇ Ã ∩Bi ⊇ D +H contains a coset of
the infinite F -invariant subgroup H, and thus isn’t F -sparse by Proposition 3.22. But we
showed in Corollary 3.11 that groupless F -sets are F -sparse, and Ã is a groupless F -set, a
contradiction.

So Ã ∩ Bi can be written as a union of elementary F -sets; similarly with Ã ∩ Cj. So
if k > 0 then we can write B1 ∩ · · · ∩ Bk \ (C1 ∪ · · · ∪ Cℓ) as a Boolean combination of
elementary F -sets. If on the other hand k = 0, then

B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪ Cℓ) = Γ \ (C1 ∪ · · · ∪ Cℓ) = Ã \ ((Ã ∩ C1) ∪ · · · ∪ (Ã ∩ Cℓ)),

and by a similar argument we can deduce that each Ã ∩ Cj is a finite union of elementary
F -sets. So in this case too we can write B1 ∩ · · · ∩ Bk \ (C1 ∪ · · · ∪ Cℓ) as a Boolean
combination of elementary F -sets. Thus, since A is a finite union of sets of the form
B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪Cℓ) for F -sets Bi, Cj , we get that A can be written as a Boolean
combination of elementary F -sets. Proposition 4.8

A general finitely generated abelian group is obtained by allowing finitely many torsion
elements; we now study how this affects automaticity.

Lemma 4.10. Suppose Γ is finitely generated; write Γ = Γ0 × H for some torsion-free
Γ0 ≤ Γ and some finite H. Then Γ0 is F -automatic. Moreover, if a ∈ Γ then πH([a

i]F ) is
ultimately periodic in i, where πH : Γ → H is the projection.

The primary difficulty here is that most of our previous results on automaticity and
spanning sets in subgroups required that the subgroup be F -invariant, which need not hold
of Γ0.
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Proof. Suppose first that there is an F -spanning set Σ. We will produce a DFA (Σ, Q, q0,Ω, δ)
for which there exists a map f : Q→ H such that f(δ(q0, σ)) = πH([σ]F ) for σ ∈ Σ∗; that
is to say, πH([σ]F ) can be determined from δ(q0, σ).

Fix generators γ1, . . . , γm for Γ, and write Fγj = a1jγ1 + · · ·+ amjγm for some aij ∈ Z.
Observe that if b = b1γ1 + · · ·+ bmγm ∈ Γ then

πH(b) = b1πH(γ1) + · · ·+ bmπH(γm) = (b1 + |H|Z)πH(γ1) + · · ·+ (bm + |H|Z)πH(γm)

since |H| ·H = 0. In particular, to know πH(b) it suffices to know b1 + |H|Z, . . . , bm+ |H|Z.
So if we want to determine πH(F

kb) then it suffices to determinea11 · · · a1m
...

. . .
...

am1 · · · amm


k b1

...
bm

+ |H|Zm

=

a11 + |H|Z · · · a1m + |H|Z
...

. . .
...

am1 + |H|Z · · · amm + |H|Z


︸ ︷︷ ︸

X

k b1 + |H|Z
...

bm + |H|Z

 ∈ (Z/|H|Z)m.

Thus given σ ∈ Σ∗ and b = b1γ1 + · · · + bmγm ∈ Σ, we can determine πH([σb]F ) =
πH([σ]F ) + πH(F

|σ|b) from πH([σ]F ) and X
|σ|. But πH([σ]F ) ∈ H and X |σ| ∈Mm(Z/|H|Z)

both take on one of finitely many possible values, and can thus be tracked by a DFA.

Indeed, let

Q = H ×Mm(Z/|H|Z)
q0 = (0, I)

Ω = { (0, Y ) : Y ∈Mm(Z/|H|Z) }.

For the transition map δ, suppose we are given (h, Y ) ∈ Q and b = b1γ1 + · · ·+ bmγm ∈ Σ.

Let ci be the ith component of Y

 b1 + |H|Z
...

bm + |H|Z

; we then let

δ((h, Y ), b) = (h+ c1πH(γ1) + · · ·+ cmπH(γm), Y X).

We show by induction on |σ| that if σ ∈ Σ∗ then δ(q0, σ) = (πH([σ]F ), X
|σ|). The base

case is immediate. For the induction step, suppose we are given σ ∈ Σ∗ such that
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δ(q0, σ) = (πH([σ]F ), X
|σ|), and suppose b = b1γ1 + · · · + bmγm ∈ Σ. Let ci be the ith

component of X |σ|

 b1 + |H|Z
...

bm + |H|Z

; so F |σ|b ∈ (c1+ |H|Z)γ1+ · · ·+(cm+ |H|Z)γm, and thus

πH(F
|σ|b) = c1πH(γ1) + · · ·+ cmπH(γm). So

δ(q0, σb) = δ((πH([σ]F ), X
|σ|), b)

= (πH([σ]F ) + c1πH(γ1) + · · ·+ cmπH(γm), X
|σ|+1)

= (πH([σ]F ) + πH(F
|σ|b), X |σ|+1)

= (πH([σb]F ), X
|σb|),

as desired.

Thus if we take f : Q → H to be (h, Y ) 7→ h, we get that f(δ(q0, σ)) = πH([σ]F ) for
σ ∈ Σ∗; so we have constructed our desired DFA. Moreover examining Ω we see that this
DFA accepts Γ0; so if Γ admits an F -spanning set Σ then Γ0 is (F,Σ)-automatic.

We now do the general case. By assumption there is r > 0 for which Γ admits an
F r-spanning set Σ; then by the above applied to F r we get that Γ0 is (F r,Σ)-automatic,
and thus F -automatic in Γ. Moreover if a ∈ Γ then by Proposition 2.15 we may assume
that ai := [ai]F ∈ Σ for i ≤ r. Let (Σ, Q, q0,Ω, δ) be the DFA constructed above. Then
since Q is finite we get that δ(q0, a

j
r) is eventually periodic in j. So for each i < r we get

that δ(q0, a
j
rai) is eventually periodic in j; hence since we can determine πH([a

j
rai]F r) from

δ(q0, a
j
rai) (using the function f above), it follows that

πH([a
j
rai]F r) = πH([a

r]F + F r[ar]F + · · ·+ F (j−1)r[ar]F + F jr[ai]F ) = πH([a
jr+i]F )

is also eventually periodic in j. So, taking the LCMs of the periods of the πH([a
jr+i]F ) for

i < r, we see that πH([a
i]F ) is ultimately periodic in i. Lemma 4.10

We can now prove our main theorem.

Theorem 4.11. Suppose Γ is finitely generated and A ⊆ Γ is F -sparse. The following are
equivalent:

1. (Γ,+, A) is stable.

2. A is stable in (Γ,+).

3. A is a Boolean combination of elementary F -sets.
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Proof. By the fundamental theorem of finitely generated abelian groups, we can write
Γ = Γ0 ×H with H a finite group and Γ torsion-free and finitely generated. Let π0, πH
be the projections Γ → Γ0,Γ → H, respectively. Let F0 : Γ0 → Γ0 be (π0 ◦ F )↾Γ0; so by
Lemma 2.51 F0 is injective and Γ0 admits a spanning set for some power of F0. Our general
strategy will be to apply Proposition 4.8 to (Γ0, F0), and then use that to deduce the result
on (Γ, F ).

(1) =⇒ (2) This follows from the definition of stable theories.

(2) =⇒ (3) Suppose A is stable in Γ. For h ∈ H let Ah := { a ∈ Γ0 : a+ h ∈ A }. We will
show that the Ah are F0-sparse and stable in (Γ0,+), and hence that Proposition 4.8
applies.

To see thatAh is stable in (Γ0,+), suppose we have anN -ladder (a0, . . . , aN−1; b0, . . . , bN−1)
for x + y ∈ Ah in Γ0; so ai + bj ∈ Ah if and only if i ≤ j. Then ai + (bj + h) ∈ A
if and only if i ≤ j, and thus (a0, . . . , aN−1; b0 + h, . . . , bN−1 + h) is an N -ladder for
x+ y ∈ A in Γ. So since A is stable in Γ we get that Ah is stable in (Γ0,+).

To see that Ah is F0-sparse, note by Lemma 4.10 that Γ0 is F -automatic in Γ. Closure
of F -sparsity under translation (Remark 3.9) yields that A− h is F -sparse. Hence by
closure properties of F -sparsity (Proposition 3.6 (3)) we get that Ah = Γ0 ∩ (A− h)
is F -sparse; say there is an F r-spanning set Σ such that Ah is (F r,Σ)-sparse. Then
by Fact 3.3 we get that Ah is a finite union of sets of the form [u0v

∗
1u1 · · · v∗nun]F r

for u0, . . . , un, v1, . . . , vn ∈ Σ∗. So Ah = π0(Ah) is a finite union of sets of the form
π0([u0v

∗
1u1 · · · v∗nun]F r) = [π0(u0)(π0(v1))

∗π0(u1) · · · (π0(vn))∗π0(un)]F r
0
by Lemma 2.51

(2) (where we let π0(s0 · · · sn−1) = (π0(s0)) · · · (π0(sn−1))). But Lemma 2.51 (3) yields
that π0(Σ) is an F

r
0 -spanning set for Γ0; so Ah is (F r

0 , π0(Σ))-sparse, and is F0-sparse.

Thus Proposition 4.8 applies, and we get that Ah is a Boolean combination of
elementary F0-sets. So to show that Ah is a Boolean combination of elementary
F -sets, it will suffice to show that given a ∈ Γ0 and s > 0 we can write K(a;F s

0 ) as a
finite union of elementary F -sets. Replacing F with a power thereof, it suffices to
check the case s = 1. Recall from Lemma 2.51 (2) that

π0([a
i]F ) = [(π0(a))

i]F0 = [ai]F0 ;

so if we let hi = πH([a
i]F ) then [ai]F −hi = [ai]F0 . Moreover we showed in Lemma 4.10

that hi is ultimately periodic in i; say with M,µ such that hi = hi+µ for i ≥ M .
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Then

K(a;F0) = { [ai]F0 : i ∈ N }

=
⋃
j<M

{ [aj]F0 } ∪
M+µ−1⋃
j=M

{ [aj+iµ]F0 : i ∈ N }

=
⋃
j<M

{ [aj]F0 } ∪
M+µ−1⋃
j=M

({ [aj+iµ]F : i ∈ N } − hj),

and for M ≤ j < M + µ we have

{ [aj+iµ]F : i ∈ N } = [aj]F + {F j[aiµ]F : i ∈ N }
= [aj]F + {F j([aµ]F + F |µ|[aµ]F + · · ·+ F (i−1)|µ|[aµ]F ) : i ∈ N }
= [aj]F +K(F j[aµ]F ;F

µ).

So

K(a;F0) =
⋃
j<M

{ [aj]F0 } ∪
M+µ−1⋃
j=M

(K(F j[aµ]F ;F
µ) + [aj]F − hj)

is a finite union of elementary F -sets (noting that { [aj]F0 } = [aj]F0 +K(0;F ) is an
elementary F -set). From this, and the fact that sum of two elementary F -sets is by
definition again an elementary F -set, it follows that an elementary F0-set is a finite
union of elementary F -sets, and hence that each Ah is a Boolean combination of
elementary F -sets. Thus

A =
⋃
h∈H

(Ah + h)

is a Boolean combination of elementary F -sets.

(3) =⇒ (1) From Proposition 4.8 we know that the theory of the F0-structure (Γ0,F0) on
Γ0 is stable. We will show that (Γ,+, A) is definably interpretable in (Γ0,F0); since
stability of a theory is defined as the absence of an unstable definable set, this implies
that Th(Γ,+, A) is stable.

For each h ∈ H fix some bh ∈ Γ0 such that bh ̸= bh′ for h ̸= h′. Let Φ: Γ → Γ0 be

a + h 7→
(
a
bh

)
; we show that Φ induces a definable interpretation of (Γ,+, A) in

(Γ0,F0). It is clear that Φ is well-defined and injective, and since H is finite we get
that

Φ(Γ) =

{(
a
bh

)
: a ∈ Γ0, h ∈ H

}
⊆ Γ2

0
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is definable in (Γ0,F0). We must show that addition in Γ corresponds to a definable
set in (Γ0,F0); for this we note that

(a1 + h1) + (a2 + h2) = a3 + h3 ⇐⇒ (a1 + a2 = a3) ∧ (h1 + h2 = h3)

⇐⇒ (a1 + a2 = a3) ∧

bh1bh2
bh3

 ∈


 bh

bh′
bh+h′

 : h, h′ ∈ H

︸ ︷︷ ︸
H+

(and H+ is definable in (Γ0,F0) since H, and hence H+, is finite).

It remains to show that Φ(A) is definable in (Γ0,F0). We have already seen that
addition in Γ is definable in (Γ0,F0) under this interpretation; so, since A is a Boolean
combination of translates of sums of sets of the form K(a;F r), it suffices to show
that Φ(K(a;F r)) is definable in (Γ0,F0) for a ∈ Γ and r > 0. Replacing F with F r,
it suffices to check the case r = 1. Fix a ∈ Γ; we will show for h ∈ H that

Bh := { c ∈ Γ0 : c+ h ∈ K(a;F ) }

is definable; this will suffice, since

Φ(K(a;F )) =
⋃
h∈H

{(
c
bh

)
: c ∈ Bh

}
.

Let a0 = π0(a), and as before let hi = πH([a
i]F ) for i ∈ N. Again Lemma 4.10 yields

that hi is ultimately periodic in i; say with M,µ such that hi = hi+µ for i ≥M . Then
using Lemma 2.51 (2) we find that

Bh = ([a∗]F − h) ∩ Γ0

= { [ai]F − h : i ∈ N, hi = h }
= { π0([ai]F ) : i ∈ N, hi = h }
= { [ai0]F0 : i ∈ N, hi = h }
= { [ai0]F0 : i < M, hi = h } ∪

⋃
M≤j<M+µ

hj=h

{ [aj+iµ0 ]F0 : i ∈ N }

= { [ai0]F0 : i < M, hi = h } ∪
⋃

M≤j<M+µ
hj=h

([aj0]F0 +K(F j
0 [a

µ
0 ]F0 ;F

µ
0 ))

(where the argument that { [aj+iµ0 ]F0 : i ∈ N } = [aj0]F0 +K(F j
0 [a

µ
0 ]F0 ;F

µ
0 ) is as in the

proof of (2) =⇒ (3)). So Bh is definable in (Γ0,F0); so Φ indeed induces a definable
interpretation of (Γ,+, A) in (Γ0,F0), and Th(Γ,+, A) is stable. Theorem 4.11
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We can adapt Theorem 4.11 to give a characterization of the stable F -sparse sets among
all subsets of Γ, rather than among the F -sparse sets.

Corollary 4.12. Suppose Γ is finitely generated and A ⊆ Γ. The following are equivalent:

1. A is F -sparse and stable in Γ.

2. A is a finite union of sets of the form

B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪ Cℓ)

for Bi, Cj elementary F -sets, k > 0, and ℓ ≥ 0.

Proof.

(1) =⇒ (2) Suppose A is F -sparse and stable in Γ. By Theorem 4.11 we get that A is a
Boolean combination of elementary F -sets, and hence by disjunctive normal form is a
finite union of sets of the form

B1 ∩ · · · ∩Bk \ (C1 ∪ · · ·Cℓ)

for Bi, Cj elementary F -sets and k, ℓ ≥ 0. Suppose for contradiction that some such
k = 0; so A contains Γ \ (C1 ∪ · · · ∪ Cℓ). By Corollary 3.11 we get that each Cj is
F -sparse, and hence by closure under union (Proposition 3.6) that Γ = A∪C1∪· · ·∪Cℓ
is F -sparse, contradicting Proposition 3.22. So all such k > 0, and A takes the desired
form.

(2) =⇒ (1) Suppose we are given such a set B1∩· · ·∩Bk \(C1∪· · ·∪Cℓ) (in particular with
k > 0); then B1∩· · ·∩Bk\(C1∪· · ·∪Cℓ) ⊆ B1. Moreover B1 is a groupless F -set, and is
thus F -sparse by Corollary 3.11. Furthermore B1∩· · ·∩Bk\(C1∪· · ·∪Cℓ) is a Boolean
combination of F -sets, and is thus F -automatic by Theorem 2.54 and Corollary 2.29.
So by Proposition 3.6 (3) we get that B1 ∩ · · · ∩Bk \ (C1 ∪ · · · ∪Cℓ) is F -sparse. But
A is a finite union of such sets; hence Proposition 3.6 (2) yields that A is F -sparse.
That A is stable in Γ then follows from Theorem 4.11. Corollary 4.12

4.3 Bibliographical notes

Stability is a standard concept; see for instance [23, Chapter 8]. The definition of stability
in a group is adapted from a similar definition in [9]. The term “ladder” is from [15]. As
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noted in-text, Facts 4.3 and 4.9 are Theorem A and Proposition 3.9 of [18], respectively.
Their results require that F not be a zero divisor in Z[F ], which we did not explicitly
demand; however, in our context this follows from injectivity of F . Proposition 4.4 is
presumably not new, given how elementary it is, but I was unable to find a reference for it
in the literature. All other results in this section are original.
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Chapter 5

Stable automatic sets in (Z,+)

We now specialize back to the case Γ = (Z,+) and F is given by multiplication by d for
some d ≥ 2. In this context, we abbreviate F -automaticity, F -sparsity, F -sets, etc. as
d-automaticity, d-sparsity, d-sets, etc. In principle, this introduces a conflict: we already
had a definition of d-automaticity for the integers in Section 2.2. However, we saw in
Corollary 2.30 that it coincides with F -automaticity, so there is no ambiguity.

We ask which d-automatic A ⊆ Z are stable in the group (Z,+) (which we abbreviate
to “stable in Z”). A result of stable group theory lets us reduce to the case where A is
not generic: that is, to the case where no finite union of translates of A covers Z. If A is
d-sparse, then our question is answered by Theorem 4.11; we thus consider the case where
A is neither generic nor d-sparse. We will show in Theorem 5.3 that in fact such A are
never stable in Z. This leads to our characterization of the d-automatic A ⊆ Z that are
stable in Z:

Theorem. If A ⊆ Z then A is d-automatic and stable in (Z,+) if and only if A is a
Boolean combination of elementary d-sets and cosets of subgroups of Z.

This appears as part of our full characterization, Theorem 5.17 below.

Recall from Example 2.13 that there is a natural d-spanning set for (Z,+), namely
Σ±
d := {−d+ 1, . . . , d− 1 }. We will often use the fact that a ∈ Z is represented by a word

over Σ±
d of length N if and only if |a| < dN .
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5.1 The non-generic case

Definition 5.1. We say A ⊆ Z is generic if some finite union of translates of A covers Z.

Note that A ⊆ Z is not generic if and only if it has arbitrarily large gaps; that is,
arbitrarily large runs of integers that are omitted from A. Indeed, if A is generic, say with
a1, . . . , an ∈ Z such that Z = (a1 +A) ∪ · · · ∪ (an +A), then given b ∈ Z there is 1 ≤ i ≤ n
and a ∈ A such that b = ai + a; so |b− a| = |ai| ≤ max(|a1|, . . . , |an|). Thus any gap in A
has size at most 2max(|a1|, . . . , |an|). Conversely if there is N such that any gap in A has
size at most N , then Z ⊆ A ∪ (1 + A) ∪ · · · ∪ (N + A), and A is generic.

Genericity should be thought of as a “largeness” condition, and indeed generic sets are
never sparse. Suppose otherwise; suppose we had d-sparse C ⊆ Z and a1, . . . , an ∈ Z such
that Z = (a1 +C)∪ · · · ∪ (an +C). Then each ai +C is d-sparse by Remark 3.9, and hence
Z itself is d-sparse by Proposition 3.6 (2); but this contradicts Proposition 3.22.

Some examples and non-examples of generic sets:

Example 5.2.

1. 2Z is generic, since 2Z ∪ (1 + 2Z) = Z. More generally any coset of any non-trivial
subgroup of Z is generic.

2. N is not generic, since for any a1, . . . , an ∈ Z we have that (a1 + N) ∪ · · · ∪ (an + N)
doesn’t contain min(a1, . . . , an)− 1.

3. Recall our alphabet Σd := { 0, . . . , d−1 } ⊆ Σ±
d . Let A = [Σ∗

d1]d∪[(−Σd)
∗(−1)]d be the

set of naturals whose most significant digit base d is a 1, together with the negatives
of such. Then A is not generic if d > 2, since if k ∈ N then { [σ2]d : σ ∈ Σ

(k)
d } is a

gap in A of size dk.

4. Let B = { [σ]d : σ ∈ Σ∗
d, |σ| ∈ 2N+ 1, σ has no trailing zeroes }. Then B ∪ −B is not

generic, since if k ∈ N then { [σ1]d : σ ∈ Σ
(2k)
d } is a gap in B ∪ −B of size d2k.

One can check that all of the above examples are d-automatic, and that none is d-sparse;
the latter can be proven by showing that they aren’t d-meagre using the length function
associated with the spanning set Σ±

d . So the non-generic d-automatic sets strictly include
the d-sparse sets. It turns out, however, that passing from d-sparse sets to non-generic
d-automatic sets adds no new stable sets:
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Theorem 5.3. Suppose A ⊆ Z is d-automatic and is not generic. If A is stable in Z then
A is d-sparse.

It will be convenient to work in N, rather than Z. The main advantage is that we can
work with representations over Σd = { 0, . . . , d−1 }, rather than Σ±

d , and representations are
essentially unique over the former: if σ, τ ∈ Σ∗

d have the same length and [σ]d = [τ ]d, we must
have that σ = τ . (Note that this fails in (Σ±

d )
∗: for instance, we have [(d−1)0]d = [(−1)1]d.)

Note that as with Σ±
d we get that a ∈ N has a representation in Σ∗

d of length N if and only
if a < dN .

A set A ⊆ N is d-automatic in (Z,+) if and only if {σ ∈ Σ∗
d : [σ]d ∈ A } is regular.

(This is in fact the classical definition of d-automaticity for subsets of N, which we saw
in Section 2.2.) Indeed, if A is d-automatic then since Σ±

d is d-spanning, we get that
{σ ∈ (Σ±

d )
∗ : [σ]d ∈ A } is regular, and hence since regular languages are closed under

intersection that

{σ ∈ Σ∗
d : [σ]d ∈ A } = {σ ∈ (Σ±

d )
∗ : [σ]d ∈ A } ∩ Σ∗

d

is regular. The converse is by Proposition 2.33. Moreover, if A ⊆ N is d-automatic but not
d-sparse in (Z,+), then the definition of d-sparsity yields that {σ ∈ Σ∗

d : [σ]d ∈ A } is not
sparse. So we can convert d-automaticity and d-sparsity to properties of representations
over Σ∗

d.

What should stability and genericity mean for subsets of N? For stability, we simply
consider the monoid structure rather than the group structure: we say that A ⊆ N is stable
in (N,+) if the binary relation x+ y ∈ A on N2 is stable. For genericity, we say that A ⊆ N
is generic in N if there are a1, . . . , an ∈ Z such that N ⊆ (a1 + A) ∪ · · · ∪ (an + A). Note
that we allow negative translates of A; this is to ensure that e.g. N \ { 0 } is generic in N.
As in Z, we get that A ⊆ N is not generic in N if and only if it has arbitrarily large gaps.

We characterize genericity in N in terms of when L := {σ ∈ Σ∗
d : [σ]d ∈ A } has a

forbidden suffix : that is, some σ ∈ Σ∗
d such that if τ ∈ Σ∗

d has σ as a suffix then τ /∈ L.

Proposition 5.4. Suppose A ⊆ N, and let L = {σ ∈ Σ∗
d : [σ]d ∈ A }. The following are

equivalent:

1. A is not generic in N.

2. There are s > 0 and r ∈ N such that L ∩ Σ
(r+sN)
d has a forbidden suffix.

3. There is s > 0 such that if 0 ≤ r < s then L ∩ Σ
(r+sN)
d has a forbidden suffix.

85



We will need the following fact from automata theory:

Fact 5.5 (Pumping lemma, [24, Lemma 4.1]). Suppose Σ is an alphabet and L ⊆ Σ∗ is
regular. There is a pumping length p ∈ N for L such that if σ ∈ L is of length ≥ p then we
can write σ = uvw for u, v, w ∈ Σ∗ such that

• v ̸= ε,

• |uv| ≤ p, and

• uv∗w ⊆ L.

Proof of Proposition 5.4.

(1) =⇒ (2) Suppose A is not generic in N. Let $ be a symbol not in Σd, which we will use
as a separator, and consider

S := { 0i$σ : i ∈ N, σ ∈ Σ∗
d, L ∩ Σ

(i)
d σ = ∅ } ⊆ (Σd ∪ { $ })∗.

That is, S is the set of 0i$σ such that σ is a forbidden suffix for L ∩Σ
(i+|σ|)
d . We wish

to apply the pumping lemma to S; so we must show that S is regular.

We will use the fact (Corollary 2.8) that regular languages are closed under projection.

Let S2 ⊆ ((Σd ∪ { $ })2)∗ be the set of

(
0|τ |

τ

)(
$
$

)(
σ
0|σ|

)
for σ, τ ∈ Σ∗

d such that

τσ ∈ L. So

(
0|τ |$σ
τ$0|σ|

)
∈ S2 if and only if τσ witnesses that 0|τ |$σ /∈ S. So if

π : ((Σd ∪ { $ })2)∗ → (Σd ∪ { $ })∗ is the projection to the first coordinate, then
S = 0∗$Σ∗

d \ π(S2). Hence by Corollaries 2.5 and 2.8 if S2 is regular then so is S.

We show that S2 is regular; fix a DFA M = (Σd, Q, q0,Ω, δ) recognizing L. We
construct a new DFA M ′ = ((Σd ∪ { $ })2, Q′, q′0,Ω

′, δ′) that will recognize S2. Let
qdead be some new state, which we will use to indicate that whatever partial input M ′

has received precludes the input being accepted. Let Q′ = (Q× { 0, 1 }) ∪ { qdead },
q′0 = (q0, 0), and Ω′ = Ω× { 1 }. For q ∈ Q and a ∈ Σd, we let

δ′
(
(q, 0),

(
0
a

))
= (δ(q, a), 0)

δ′
(
(q, 0),

(
$
$

))
= (q, 1)

δ′
(
(q, 1),

(
a
0

))
= (δ(q, a), 1);
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we let δ′(q′,a) = qdead for all other q′ ∈ Q′ and a ∈ (Σd ∪ { $ })2. Informally, M ′

verifies that its input takes the form

(
0|τ |$σ
τ$0|σ|

)
, and if so it feeds τσ through M . So

M ′ recognizes S2, and thus S2 is regular; so S is regular.

So the pumping lemma applies to S. We wish for some 0p$σ ∈ S where p is the
pumping length of S. Since A has arbitrarily large gaps, it must have a gap I of size
at least 2dp; so I contains two multiples of dp, say adp and (a + 1)dp. Pick σ ∈ Σ∗

d

such that [σ]d = a. Then σ is a forbidden suffix for L ∩ Σ
(p+|σ|)
d : if τ ∈ Σ

(p)
d then

[τσ]d = adp + [τ ]d lies between adp and (a + 1)dp, and hence lies in I ⊆ Ac. So
0p$σ ∈ S.

So by the pumping lemma we can write 0p$σ = uvw for strings u, v, w such that
v ̸= ε, |uv| ≤ p, and uv∗w ⊆ S; so u and v consist entirely of zeroes. Let s = |v| > 0
and r = p− s. Then for i ∈ N we have 0r+si$σ = uviw ∈ S, and thus σ is a forbidden
suffix for L ∩ Σ

(r+si+|σ|)
d . So σ is forbidden suffix for L ∩ Σ

(r+|σ|+sN)
d .

(2) =⇒ (1) Suppose there are r ∈ N and s > 0 for which L ∩ Σ
(r+sN)
d has a forbidden

suffix σ ∈ Σ∗
d. If k ∈ N satisfies k ≡ r − |σ| (mod s) then { τσ : τ ∈ Σ

(k)
d } ⊆ Σ(r+sN)

only contains strings that have σ as a suffix, and hence is disjoint from L. So
{ [τσ]d : τ ∈ Σ

(k)
d } is a gap in A of size dk (since [·]d is injective when restricted to

Σ
(k)
d ). Thus A has arbitrarily large gaps, and A is non-generic in N.

(2) =⇒ (3) Suppose there is r ∈ N and s > 0 such that L∩Σ
(r+sN)
d has a forbidden suffix σ.

Note that 0iσ is also a forbidden suffix for L ∩ Σ
(r+sN)
d , since any string that has 0iσ

as a suffix must also have σ as a suffix. Hence by prepending zeroes to σ, we may
assume |σ| ≥ r.

Fix 0 ≤ r0 < r such that r ≡ r0 (mod s). Then σ is a forbidden suffix for L∩Σ
(r0+sN)
d .

Indeed, if τ ∈ Σ
(r0+sN)
d has σ as a suffix, then since |σ| ≥ r we get that |τ | ≥ r, and

thus that τ ∈ Σ
(r+sN)
d ; so, since τ has σ as a suffix, it follows that τ /∈ L. Thus,

replacing r with r0, we may assume 0 ≤ r < s.

Suppose 0 ≤ r′ < s; fix k ∈ N such that r′ ≡ r + k (mod s). Then σ0k is a

forbidden suffix for L ∩ Σ
(r′+sN)
d . Indeed, if τ ∈ Σ∗

d and τσ0k ∈ L ∩ Σ
(r′+sN)
d then

[τσ]d = [τσ0k]d ∈ A, and thus τσ ∈ L as well. But |τσ| ∈ (r′ − k + sN), and hence

|τσ| ≡ r′ − k ≡ r (mod s); so τσ ∈ L ∩ Σ
(r+sN)
d , contradicting our assumption that σ

is a forbidden suffix for L ∩ Σ
(r+sN)
d .

(3) =⇒ (2) This is clear. Proposition 5.4
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Suppose we are given d-automatic A ⊆ N that is neither d-sparse nor generic in N; so our
goal is to show that A is unstable in N. Rather than exhibit ladders for the relation x+y ∈ A
on N2, we will instead consider an associated relation on strings. Given K ∈ N, we define
a partial binary operation +K on Σ∗

d as follows: given σ, τ ∈ Σ∗
d, we set σ +K τ to be the

unique ν ∈ Σ
(K)
d such that [ν]d = [σ]d + [τ ]d, if such ν exists. Let L = {σ ∈ Σ∗

d : [σ]d ∈ A },
and consider the binary relation x +K y ∈ L on (Σ∗

d)
2 consisting of those σ, τ ∈ Σ∗

d such
that σ +K τ is defined and lies in L. We will show that for every N ∈ N there is K > 0
such that there is an N -ladder for x +K y ∈ L; we will then conclude that x + y ∈ A is
unstable in N.

It is inconvenient for us that L need not be closed under concatenation; that is, it need
not hold that L = L∗. To remedy this, we pass from L to an associated language. Fix a
DFA (Σd, Q, q0,Ω, δ) recognizing L. Given q ∈ Q, we let Lq = {σ ∈ Σ∗

d : δ(q, σ) = q }; that
is, Lq is the set of σ ∈ Σ∗

d such that if the machine starts in state q and receives σ as input
then it returns to state q. Then Lq is regular: it is recognized by the DFA (Σd, Q, q, { q }, δ).
Moreover Lq = L∗

q.

We will work with Lq for some appropriate choice of q. Of course, if no accepting state
is reachable from q, then Lq doesn’t tell us much about A. We will thus be interested in q
that are not dead :

Definition 5.6. If (Σ, Q, q0,Ω, δ) is a DFA and q ∈ Q, we say q is a dead state if δ(q, σ) /∈ Ω
for all σ ∈ Σ∗.

The following lemma tells us that if we choose q correctly, the properties that L inherits
from A being neither generic in N nor d-sparse carry over to Lq.

Lemma 5.7. Suppose (Σd, Q, q0,Ω, δ) is a DFA recognizing some language L ⊆ Σ∗
d; suppose

that L is not sparse and there is s > 0 such that if 0 ≤ r < s then L ∩ Σ
(r+sN)
d has a

forbidden suffix. Then there is a non-dead q ∈ Q such that the same holds of Lq: that is,

Lq is not sparse and there is s > 0 such that if 0 ≤ r < s then Lq ∩Σ
(r+sN)
d has a forbidden

suffix.

Proof. By Fact 3.3, we get that there is q ∈ Q that is not a dead state, that is reachable
from q0, and for which there is n ∈ N and distinct σ, τ ∈ Σ

(n)
d such that δ(q, σ) = δ(q, τ) = q;

in particular, we get that Lq contains {σ, τ }∗, and is thus not sparse. Since q is not a dead
state, there is ν ∈ Σ∗

d such that q′ := δ(q, ν) ∈ Ω.

Case 1. Suppose Lq′ is not sparse. By assumption q is reachable from q0; so there is ρ ∈ Σ∗
d

such that δ(q0, ρ) = q.
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Suppose 0 ≤ r < s; let 0 ≤ r′ < r be such that r+ |ρν| ≡ r′ (mod s). By assumption

L∩Σ(r′+sN)
d has a forbidden suffix σr′ . Then σr′ is also a forbidden suffix for Lq′∩Σ(r+sN)

d .

Indeed, suppose for contradiction that τ ∈ Lq′ ∩ Σ
(r+sN)
d has σr′ as a suffix. Then

δ(q′, τ) = q′, and thus

δ(q0, ρντ) = δ(q, ντ) = δ(q′, τ) = q′ ∈ Ω;

so ρντ ∈ L. But |ρντ | ∈ |ρν|+ r + sN ⊆ r′ + sN; so ρντ ∈ L ∩ Σ
(r′+sN)
d and ρντ has

σr′ as a suffix, a contradiction.

So Lq′ ∩ Σ
(r+sN)
d has a forbidden suffix for every 0 ≤ r < s; so q′ is our desired state.

Case 2. Suppose Lq′ is sparse. Note that there cannot exist σ ∈ Σ∗
d such that δ(q′, σ) = q.

Indeed, if we had such σ then we would get that Lq′ ⊇ σLqν, and thus that

|{ τ ∈ Lq : |τ | ≤ x }| ≤ |{ τ ∈ Lq′ : |τ | ≤ x+ |σ|+ |ν| }|

grows polynomially in x; so Lq would be sparse, a contradiction. We will use this to
construct σ ∈ Σ∗

d that does not occur as a substring of any element of Lq, which in
particular implies that σ is a forbidden suffix for Lq.

Enumerate the states θ ∈ Q for which there exists τ ∈ Σ∗
d such that δ(θ, τ) = q

as q0, . . . , qn−1; that is, the qi are the states from which q is reachable. Note
since δ(q, ν) = q′ that q′ is also reachable from each qi. Inductively construct
σ0, . . . , σn−1 ∈ Σ∗

d as follows: having constructed σ0, . . . , σi−1, if δ(qi, σ0 · · ·σi−1) = qj
for some j then pick σi such that δ(qj, σi) = q′, and otherwise let σi = ε. Let
σ = σ0 · · ·σn−1. Note by construction that q is not reachable from δ(qi, σ0 · · ·σi), and
hence is not reachable from δ(qi, σ). Moreover if θ ∈ Q is not one of the qi then q is
not reachable from θ, and hence is not reachable from δ(θ, σ). So for any θ ∈ Q we
get that q is not reachable from δ(θ, σ); hence σ cannot occur as a substring of an
element of Lq. So σ is a forbidden suffix for Lq, and thus taking s = 1 we see that q
is our desired state. Lemma 5.7

We now construct our ladders for x+K y ∈ Lq:

Lemma 5.8. Suppose L ⊆ Σ∗
d is any language satisfying:

• L is regular but not sparse,

• L = L∗, and
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• there is s > 0 such that if 0 ≤ r < s then L ∩ Σ
(r+sN)
d has a forbidden suffix.

Then for all N ∈ N there is K ∈ N such that the binary relation x+K y ∈ L on Σ∗
d admits

an N-ladder (µ0, . . . , µN−1; ν0, . . . , νN−1) such that µi +K νj is defined for all i, j < N .

The proof of this lemma is fairly involved; for the sake of intuition, we first do a concrete
example.

Example 5.9. Consider the case d = 10 and L = { 3, 6, 8 }∗. Note that L satisfies the
hypotheses; in particular, 4 is a forbidden suffix for L, and hence is a forbidden suffix for
L ∩ Σ

(r+sN)
10 for any r, s.

Suppose N > 0, and let K = N + 1; for notational convenience, we let LK = L ∩ Σ
(K)
d .

Consider the preorder ≤10 on Σ∗
10 given by σ ≤10 τ if [σ]10 ≤ [τ ]10; note that ≤10 forms a

total order when restricted to Σ
(K)
10 . Observe that there is a “boundary” for LK at 8N3:

namely 8N3 ∈ LK , and there is a gap after 8N3 in the sense that 8N3 is the ≤10-largest
string in LK that ends in 3, and no strings in LK end in 4. (Here the exponential notation
8N3 refers to iterated concatenation.) More formally,

LK ∩ {σ ∈ Σ
(K)
10 : 8N3 <10 σ ≤10 9

N4 } = ∅. (†)

(Note that 9N4 is the ≤10-largest string of length K that ends in 4. )

Suppose we can find µi, νj ∈ Σ∗
10 for i, j ≤ N such that

1. the µi are strictly increasing in ≤10,

2. [µi]10 + [νi]10 = [8N3]10 for all i,

3. [µi]10 + [νj]10 ≤ [9N4]10 for all i, j, and

4. µi +K νj ∈ LK for i ≤ j.

Then (3) tells us that [µi]10 + [νj]10 < 10|9
N4| = 10K , and hence µi +K νj is defined for all

i, j ≤ N . Moreover for i > j properties (1)–(3) yield that

9N4 ≥10 µi +K νj >10 µj +K νj = 8N3

(since [µi+K νj ]10 = [µi]10 + [νj ]10). So µi+K νj lies in the gap (†) in LK following 8N3, and
hence µi +K νj /∈ LK . But property (4) tells us that µi +K νj ∈ LK if i ≤ j; so the µi, νj
form our desired ladder.
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To construct a ladder satisfying properties (1)–(4), we will use the fact that { 6, 8 }∗3 ⊆ L.
For i ≤ N we let µi = 6N−i8i3 and let νi = 2N−i. Property (1) is clear, and for property (3)
we note that

[µi]10 + [νj]10 < [6N−i8i3]10 + 10|νj | ≤ [6N−i8i3]10 + 10N = [6N−i8i4]10 ≤ [9N4]10.

For properties (2) and (4), we use place value addition to compute [µi]10 + [νj]10 for i ≤ j:

N−j copies︷ ︸︸ ︷
6 · · · 6

j−i copies︷ ︸︸ ︷
6 · · · 6

i copies︷ ︸︸ ︷
8 · · · 8 3

+ 2 · · · 2
8 · · · 8 6 · · · 6 8 · · · 8 3

So µi +K νj = 8N−j6j−i8i3 ∈ LK if i ≤ j, and property (4) holds. Moreover µi +K νi = 8N3
for all i, and property (2) holds.

So properties (1)–(4) hold, and hence by the above we get that (µ0, . . . , µN ; ν0, . . . , νN)
forms an (N + 1)-ladder for x+K y ∈ L.

Our proof will generalize this example.

Proof of Lemma 5.8. Suppose N ∈ N; to avoid notational clutter, we will in fact produce
an (N + 1)-ladder with the desired property, rather than just an N -ladder.

We first look for K ∈ N for which there is a gap in L ∩ Σ
(K)
d as in the example. To do

this, we will use the forbidden suffix property of L. Indeed, fix s > 0 such that if 0 ≤ r < s
then L∩Σ

(r+sN)
d has a forbidden suffix. Since L is infinite (as it isn’t sparse), the pigeonhole

principle yields some 0 ≤ r < s such that L ∩ Σ
(r+sN)
d is infinite; let τ ∈ Σ∗

d be a forbidden

suffix for L ∩ Σ
(r+sN)
d . For notational convenience, we let Lr+sN = L ∩ Σ

(r+sN)
d ; as before, if

K ∈ N we let LK = L ∩ Σ
(K)
d .

As in the example, let ≤d be the preorder on Σ∗
d given by ρ ≤d ρ

′ if [ρ]d ≤ [ρ′]d; again

note that ≤d restricts to a total order on Σ
(K)
d for any K ∈ N. Since Lr+sN is infinite, there

is some σ ∈ Σ∗
d with |σ| = |τ | that occurs as a suffix of some element of Lr+sN. Assume

there is such a σ with σ <d τ ; we will describe afterwards how to deal with the case where
there is no such σ.

If K ∈ r+ sN and K ≥ |τ |, then the fact that τ is a forbidden suffix for Lr+sN is enough

to produce a gap in LK : if ρ ∈ Σ
(K)
d ends in τ (that is, 0K−|τ |τ ≤d ρ ≤d (d− 1)K−|τ |τ), then
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since τ is a forbidden suffix for Lr+sN ⊇ LK we get that ρ /∈ LK . For our “boundary” point,
we want to choose the ≤d-largest element of LK that precedes this gap: we let

∂K = max{ ρ ∈ LK : ρ <d 0
K−|τ |τ }

if such ρ exist (where the maximum is taken under ≤d). So ∂K ∈ LK , and there is a gap in
LK following ∂K : using maximality of ∂K and the fact that τ is a forbidden suffix, we get
that

LK ∩ { ρ ∈ Σ
(K)
d : ∂K <d ρ

′ ≤d (d− 1)K−|τ |τ } = ∅. (‡)

Suppose K ∈ r + sN is such that ∂K is defined; that is, K ≥ |τ | and there is ρ ∈ LK
satisfying ρ <d 0

K−|τ |τ . (We will see in Claim 5.10 that there are infinitely many such K.)
Suppose we can find µi, νi ∈ Σ∗

d for i ≤ N such that

1. the µi are strictly increasing in ≤d,

2. [µi]d + [νi]d = [∂K ]d for all i,

3. [µi]d + [νj]d ≤ [(d− 1)K−|τ |τ ]d for all i, j, and

4. µi +K νj ∈ L for i ≤ j.

Then (3) tells us that [µi]d + [νj ]d < dK , and hence that µi +K νj is defined for all i, j ≤ N .
Moreover for i > j properties (1)–(3) yield that

(d− 1)K−|τ |τ ≥d µi +K νj >d µj +K νj = ∂K .

So µi +K νj lies in the gap (‡) in LK that follows uvNw ∈ S, and thus µi +K νj /∈ L. But
property (4) guarantees that µi +K νj ∈ L for i ≤ j; so the µi, νi form our desired ladder.

So we need only find µi, νi satisfying properties (1)–(4). In our example, our boundary
point took on a very simple form, namely 8N3, and we moreover had that { 6, 8 }∗3 ⊆ L;
this allowed us to construct such µi, νi. To mimic this in our more general context, we will
appeal to the pumping lemma. Let S be the set of ∂K for K ∈ r + sN such that ∂K is
defined; i.e., such that K ≥ |τ | and there is ρ ∈ LK satisfying ρ <d 0

K−|τ |τ .

Claim 5.10. S is regular and infinite.

Proof. Let S0 = { ρ ∈ Lr+sN : |ρ| ≥ |τ |, ρ <d 0
|ρ|−|τ |τ }. Then S is the set of ∂ ∈ S0 such

that if ρ ∈ S0 and |∂| = |ρ| then ρ ≤d ∂; that is, S0 \ S is the projection to the first
coordinate of

S2 :=

{(
ρ
ρ′

)
∈ (Σ2

d)
∗ : ρ, ρ′ ∈ S0, ρ

′ >d ρ

}
.
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(One might think that in order for S2 to project to S0 \ S we should further demand that if(
ρ
ρ′

)
∈ S2 then |ρ| = |ρ′|. This actually comes for free when we assume that

(
ρ
ρ′

)
∈ (Σ2

d)
∗:

recall that when we view an element of (Σ2
d)

∗ as a pair of strings, the two strings are
necessarily of the same length.)

Thus if we can show that S0 and S2 are regular, it will follow from closure properties
(Corollaries 2.5 and 2.8) that S is regular. For S0, we note for ρ ∈ Σ∗

d with |ρ| ≥ |τ |, say
ρ = ρ0σ for σ ∈ Σ

(|τ |)
d , that ρ <d 0

|ρ|−|τ |τ if and only if σ <d τ . Indeed, if σ <d τ then

[ρ]d = [ρ0]d + d|ρ0|[σ]d < d|ρ0| + d|ρ0|[σ]d ≤ d|ρ0|[τ ]d = [0|ρ0|τ ]d;

conversely if σ ≥d τ then

[ρ]d = [ρ0]d + d|ρ0|[σ]d ≥ d|ρ0|[σ]d ≥ d|ρ0|[τ ]d = [0|ρ0|τ ]d.

It follows that S0 is simply the set of strings in Lr+sN that have σ as a suffix for some

σ ∈ Σ
(|τ |)
d with σ <d τ ; that is,

S0 = Lr+sN ∩ Σ∗
d{σ ∈ Σ

(|τ |)
d : σ <d τ }.

But Lr+sN = L∩Σ
(r+sN)
d = L∩Σ

(r)
d (Σ

(s)
d )∗ is regular since L is, and Σ∗

d{σ ∈ Σ
(|τ |)
d : σ <d τ }

is regular by definition. So closure of regular languages under intersection yields that S0 is
regular.

For S2, we note that using a similar argument to the one given in the previous paragraph,
we can show that {(

ρ
ρ′

)
∈ (Σ2

d)
∗ : ρ <d ρ

′
}

= Σ∗
dX∆∗

where ∆ ⊆ Σ2
d is the diagonal and X =

{(
a
b

)
: a, b ∈ Σd, a < b

}
; that is, ρ <d ρ

′ if and

only if on the most significant digit on which ρ and ρ′ differ, the digit in ρ′ is larger than
the digit in ρ. So

S2 =

{(
ρ
ρ′

)
∈ (Σ2

d)
∗ : ρ, ρ′ ∈ S0

}
∩∆∗XΣ∗

d.

But ∆∗XΣ∗
d is regular by definition, and we can use a DFA recognizing S0 (which

must exist, as we showed above that S0 is regular) to construct a DFA recognizing{(
ρ
ρ′

)
∈ (Σ2

d)
∗ : ρ, ρ′ ∈ S0

}
. So again using our closure properties we get that S2 is

regular, and hence that S is regular.
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We now show that S is infinite. Recall by our earlier assumption that there is σ ∈ Σ
(|τ |)
d

that occurs as a suffix of some ρ ∈ Lr+sN = L ∩ Σ
(r+sN)
d and satisfies σ <d τ . So, since

L = L∗, it follows that if i ∈ N then ρ1+si ∈ Lr+sN and ρ1+si has σ as a suffix. Moreover, as
we argued in the proof that S0 is regular, this implies that ρ1+si <d 0

|ρ1+si|−|τ |τ . So ∂|ρ1+si|
is defined for all i; so S is infinite. Claim 5.10

Since S is infinite, there is an element of S whose length exceeds the pumping length of
S; so by the pumping lemma there are u, v, w ∈ Σ∗

d with v ̸= ε such that uv∗w ⊆ S. By
prepending some power of v to w we may assume that |w| ≥ |τ | (and that w ≠ ε); say

w = w0σ for some σ ∈ Σ
(|τ |)
d and w0 ∈ Σ∗

d. Then σ <d τ , since otherwise we would have
that

[uw]d = [uw0σ]d ≥ d|uw0|[σ]d ≥ d|uw0|[τ ]d = [0|uw|−|τ |τ ]d,

contradicting our assumption that uw ∈ S.

Note that uvNw is a boundary point ∂K forK = |uvNw|; this gives us some generalization
of the fact that our boundary point in the example was 8N3. To construct a ladder in the
example, we further used the fact that { 6, 8 }∗3 ⊆ L; to get an analogous property in this
context, we will use the fact that L is not sparse.

Since L is regular but not sparse, there are α1, α2 ∈ L with α1 ≠ α2 and |α1| =
|α2| ≠ 0; indeed, otherwise there would be at most one string in L of any given length,
and L would be sparse. It follows that u{wα1u,wα2u, v }∗w ⊆ L. Indeed, an element of
u{wα1u,wα2u, v }∗w can be written in the form

uvk1(wαi1u)v
k2 · · · (wαin−1u)v

knw = (uvk1w)αi1(uv
k2w) · · ·αin−1(uv

knw)

for some k1, . . . , kn ∈ N and some i1, . . . , in−1 ∈ { 1, 2 }. Hence since uv∗w ⊆ S ⊆ L and
α1, α2 ∈ L, we get that u{wα1u,wα2u, v }∗w ⊆ L∗ = L.

Since our only requirement of v is that uv∗w ⊆ S and v ̸= ε, we can replace v with
a power thereof, and thus assume that |wα1u| divides |v|; say |v| = M |wα1u|. Then
(wα1u)

M ̸= (wα2u)
M , so there is β ∈ { (wα1u)

M , (wα2u)
M } such that β ̸= v. So |β| = |v|,

and u{ β, v }∗w ⊆ L. We will use u{ β, v }∗w as our analogue of { 6, 8 }∗3 in the example.

Since |β| = |v| and β ̸= v, we get that [v]d ̸= [β]d. Using the definition of S, we look to
show that β <d v. Recall that w = w0σ with |σ| = |τ | and σ <d τ ; so

[uβw]d = [uβw0σ]d = [uβw0]d + d|uβw0|[σ]d < d|uβw0| + d|uβw0|[σ]d ≤ d|uβw0|[τ ]d = [0|uβw0|τ ]d,

and hence uβw <d 0
|uβw0|τ = 0|uvw|−|τ |τ . Moreover uvw ∈ S, so

uvw = ∂|uvw| = max{ ρ ∈ L|uvw| : ρ <d 0
|uvw|−|τ |τ }
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(using ≤d as the ordering); furthermore |uβw| = |uvw| and uβw ∈ L. So maximality of
uvw yields that uβw ≤d uvw, and thus that β ≤d v; so, since β ̸= v, we get that β <d v, as
claimed. Since 0 < [v]d− [β]d ≤ [v]d < d|v|, we get that [v]d− [β]d has a base-d representation

of length |v|, say η ∈ Σ
(|v|)
d . This η will play the role that 2 did in the example.

Let K = |uvNw|; so since uvNw ∈ S we get that K ∈ r + sN and uvNw = ∂K . For
i ≤ N we let

µi = uβN−iviw

νi = 0|u|ηN−i.

We show that the µi, νi satisfy properties (1)–(4). Property (1) follows from the fact that
β <d v, and for property (3) we note that

[µi]d + [νj]d < [µN ]d + d|νj |

= [uvNw0σ]d + d|uv
N−i|

≤ [uvNw0σ]d + d|uv
Nw0|

= [uvNw0]d + d|uv
Nw0|([σ]d + 1)

≤ [uvNw0]d + d|uv
Nw0|[τ ]d

= [uvNw0τ ]d

≤ [(d− 1)|uv
Nw0|τ ]d

≤ [(d− 1)K−|τ |τ ]d

(recalling that σ <d τ). For properties (2) and (4), we use (some generalization of) place
value addition to compute [µi]d + [νj]d for i ≤ j:

u

N−j copies︷ ︸︸ ︷
β · · · β

j−i copies︷ ︸︸ ︷
β · · · β

i copies︷ ︸︸ ︷
v · · · v w

+ 0|u| η · · · η
u v · · · v β · · · β v · · · v w

(since [β]d + [η]d = [v]d). Moreover |uvN−jβj−iviw| = |uvNw| = K ∈ r + sN; so

µi +K νj = uvN−jβj−iviw ∈ u{ β, v }∗w ⊆ L

for i ≤ j, and property (4) holds. Furthermore µi +K νi = uvNw = ∂K for all i ≤ N , and
property (2) holds. So properties (1)–(4) hold, and (µ0, . . . , µN ; ν0, . . . , νN) is our desired
(N + 1)-ladder for x+K y ∈ L.
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At the beginning of the proof, we assumed that there was σ ∈ Σ
(|τ |)
d with σ <d τ that

occurs as a suffix of some element of Lr+sN; we now describe how to deal with the case

where no such σ exists. Since Lr+sN is infinite, there must exist σ ∈ Σ
(|τ |)
d that occurs as a

suffix of some element of Lr+sN; it then follows that all such σ satisfy σ >d τ . (Certainly
we can’t have σ = τ since τ is a forbidden suffix for Lr+sN.) So we try to recreate the above
proof with the order inverted.

We now let ∂K = min{ ρ ∈ LK : ρ >d (d− 1)K−|τ |τ }; so there is now a gap preceding
∂K . We deduce that if K ∈ r + sN is such that ∂K is defined, and if we can find µi, νi for
i ≤ N satisfying:

1. the µi are strictly decreasing in ≤d,

2. [µi]d + [νi]d = [∂K ]d for all i,

3. [µi]d + [νj]d ≥ [0K−|τ |τ ]d for all i, j, and

4. µi +K νj ∈ L for i ≤ j

then µi +K νj is defined for all i, j ≤ N and µi +K νj ∈ LK ⇐⇒ i ≤ j.

Again let S be the set of ∂K for K ∈ r + sN such that ∂K is defined. As before we find
that S is infinite and regular; so the pumping lemma yields u, v, w with v ≠ ε such that
uv∗w ⊆ S. Again we may assume |w| ≥ |τ |; say w = w0σ for some σ ∈ Σ

(|τ |)
d and w0 ∈ Σ∗

d.
Dually to before we get that σ >d τ .

We again use the fact that L is regular but not sparse to produce β ∈ Σ∗
d such that

β ̸= v, |β| = |v|, and u{ β, v }∗w ⊆ L. We deduce using the definition of S that β >d v,

and hence that there is η ∈ Σ
(|v|)
d such that [η]d = [β]d − [v]d.

We now run into a small wrinkle in producing the ladder. We would like to take
K = |uvNw| and

µi = uβN−iviw

νi = 0|u|(−ηN−i)

(where −η ∈ Σ±
d is the characterwise negation of η) so that dually to before we get for

i ≤ j that [µi]d + [νj]d = [uvN−jβj−iviw]d, and hence that the µi, νi satisfy the desired
properties. The problem is that since we are working over Σd, not Σ

±
d , we can’t use strings

with negative digits. Happily, this is easily circumvented. Recall that w = w0σ and σ >d τ ;
so in particular [w]d ≥ 1. So for i ≤ N we get that

[µi]d ≥ d|uv
N |[w]d ≥ d|uv

N | ≥ d|νi| ≥ −[νi]d.
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So we can pick µ′
i, ν

′
i ∈ Σ∗

d such that [µ′
i]d = [µi]d − d|uv

N | and [ν ′i]d = [νi]d + d|uv
N |.

Then for any i, j we get that [µ′
i]d + [ν ′j]d = [µi]d + [νj]d. That (µ′

0, . . . , µ
′
N ; ν

′
0, . . . , ν

′
N)

satisfies properties (1)–(4) then follows from the fact that (µ0, . . . , µN ; ν0, . . . , νN) does.
Lemma 5.8

We are now ready to prove Theorem 5.3 in the context of N. Our proof will make use
of minimal automata:

Fact 5.11 ([24, Theorem 4.7]). Suppose Σ is a finite alphabet and L ⊆ Σ∗ is regular. There
is a DFA (Σ, Q, q0,Ω, δ) recognizing L satisfying:

• Every state is reachable from the start state: that is, if q ∈ Q then there is σ ∈ Σ∗

such that δ(q0, σ) = q.

• Given distinct q, q′ ∈ Q there is σ ∈ Σ∗ such that exactly one of δ(q, σ) and δ(q′, σ) is
an accepting state.

We call such an automaton a minimal automaton for L.

We will also need the following closure properties of stability:

Fact 5.12.

1. Boolean combinations of stable relations are stable.

2. If A ⊆ Γ is stable in a group (Γ,+) and γ ∈ Γ then A+ γ is stable in (Γ,+).

The former appears as [23, Exercise 8.2.9], and is a consequence of the counting-types
characterization of stability (see for example [23, Theorem 8.2.3]). For the latter, one
simply notes that if (a0, . . . , aN−1; b0, . . . , bN−1) is an N -ladder for x + y ∈ A + γ, then
(a0 − γ, . . . , aN−1 − γ; b0, . . . , bN−1) is an N -ladder for x+ y ∈ A.

We are now ready to prove our theorem in the context of N:

Proposition 5.13. If A ⊆ N is d-automatic, stable in N, and not generic in N then A is
d-sparse.

Proof. Suppose A is d-automatic but neither generic in N nor d-sparse; we show that
x+ y ∈ A isn’t stable in N. Fix a minimal automaton (Σd, Q, q0,Ω, δ) for L := {σ ∈ Σ∗

d :
[σ]d ∈ A }. Since A isn’t d-sparse, we get that L isn’t sparse, and since A isn’t generic in N
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Proposition 5.4 yields s > 0 such that if 0 ≤ r < s then L ∩ Σ
(r+sN)
d has a forbidden suffix.

By Lemma 5.7 there is q ∈ Q such that Lq isn’t sparse and satisfies the same forbidden
suffix condition as L. Suppose N ∈ N; then by Lemma 5.8 there is K ∈ N such that there
is an N -ladder (µ0, . . . , µN−1; ν0, . . . , νN−1) for x+K y ∈ Lq with the property that µi+K νj
is defined for all i, j < N . Note that since

[µi]K ≤ [µi]K + [νi]K = [µi +K νi] < dK

we may assume each |µi| = K.

Minimality of (Σd, Q, q0,Ω, δ) yields that for q
′ ̸= q there is σq′ ∈ Σ∗

d and εq′ ∈ { 0, 1 }
such that

(δ(q, σq′) ∈ Ω)εq′ ∧ (δ(q′, σq′) ∈ Ω)1−εq′

holds (where φ1 denotes φ and φ0 denotes ¬φ). So for θ ∈ Q we get that θ = q if and only
if ∧

q′ ̸=q

(δ(θ, σq′) ∈ Ω)εq′ .

By minimality of (Σd, Q, q0,Ω, δ) there is τ ∈ Σ∗
d such that δ(q0, τ) = q. Then for i, j < N

we get

i ≤ j ⇐⇒ µi +K νj ∈ Lq

⇐⇒ δ(q, µi +K νj) = q

⇐⇒
∧
q′ ̸=q

(δ(δ(q, µi +K νj), σq′) ∈ Ω)εq′

⇐⇒
∧
q′ ̸=q

(δ(q, (µi +K νj)σq′) ∈ Ω)εq′

⇐⇒
∧
q′ ̸=q

(δ(q0, τ(µi +K νj)σq′) ∈ Ω)εq′

⇐⇒
∧
q′ ̸=q

(τ(µi +K νj)σq′ ∈ L)εq′

⇐⇒
∧
q′ ̸=q

([τ(µi +K νj)σq′ ]d ∈ A)εq′

⇐⇒
∧
q′ ̸=q

([τµiσq′ ]d + d|τ |[νj]d ∈ A)εq′ ,

where for the last line we are using our assumption that |µi| = K to deduce that

[τ(µi +K νj)σq′ ]d = [τ ]d + d|τ |([µi]d + [νj]d) + d|τ |+K [σq′ ]d = [τµiσq′ ]d + d|τ |[νj]d.
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Let ai,q′ = [τµiσq′ ]d ∈ N for i < N and q′ ̸= q; let ai = (ai,q′ : q
′ ̸= q) and bi = d|τ |[νi]d

for i < N . Then the above shows that (a0, . . . ,aN−1; b0, . . . , bN−1) is an N -ladder for the
relation defined in (N,+, A) by the formula

φ((xq′ : q
′ ̸= q), y) :=

∧
q′ ̸=q

(xq′ + y ∈ A)εq′ .

So φ isn’t stable in Th(N,+, A). But φ is a Boolean combination of instances of x+ y ∈ A;
so if x+ y ∈ A were stable then Fact 5.12 would yield that φ is as well. So A isn’t stable
in N. Proposition 5.13

Before proving Theorem 5.3 in general, we will need another closure property of sparse
languages:

Fact 5.14 ([24, Theorem 3.8]). If Σ is a finite alphabet and L ⊆ Σ∗ is sparse, then

{σ ∈ Σ∗ : there is τ ∈ L such that σ is a prefix of τ }

is sparse.

Proof of Theorem 5.3. Suppose A ⊆ Z is d-automatic but neither d-sparse nor generic (in
Z); we show that x+ y ∈ A isn’t a stable relation on Z2.

Note first that one of A∩N,−A∩N is not generic in N. Indeed, suppose otherwise; say
we have a1, . . . , ak, b1, . . . , bℓ ∈ Z such that

N ⊆ (a1 + A ∩ N) ∪ · · · ∪ (ak + A ∩ N)
N ⊆ (b1 + (−A ∩ N)) ∪ · · · ∪ (bℓ + (−A ∩ N)).

Then

Z = N ∪ (−N)
⊆ (a1 + A ∩ N) ∪ · · · ∪ (ak + A ∩ N) ∪ (−b1 + A ∩ (−N)) ∪ · · · ∪ (−bℓ + A ∩ (−N))
⊆ (a1 + A) ∪ · · · ∪ (ak + A) ∪ (−b1 + A) ∪ · · · ∪ (−bℓ + A)

and A is generic in Z, a contradiction. Note further that one of A ∩ N,−A ∩ N is not
d-sparse. Indeed, suppose otherwise. Note since a 7→ −a is an automorphism of (Z,+) that
preserves the map a 7→ da it follows that A ∩ −N = −(−A ∩ N) is d-sparse; then closure
of d-sparsity under union (Proposition 3.6 (2)) yields that A = (A ∩ N) ∪ −(−A ∩ N) is
d-sparse.
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Case 1. Suppose one of A ∩ N,−A ∩ N is neither generic in N nor d-sparse; by possibly
negating, we may assume it is A∩N. By Proposition 5.13 we get that A∩N isn’t stable
in N; so for N ∈ N there is an N -ladder (a0, . . . , aN−1; b0, . . . , bN−1) for x+ y ∈ A∩N
(as a binary relation on N2). Then since each ai, bj ≥ 0 we get for i, j < N that
ai+ bj ∈ A ⇐⇒ ai+ bj ∈ A∩N ⇐⇒ i ≤ j; so (a0, . . . , aN−1; b0, . . . , bN−1) forms an
N -ladder in Z for x+ y ∈ A (as a binary relation on Z2). So A isn’t stable in (Z,+).

Case 2. Suppose otherwise; so each of A∩N and −A∩N is either generic in N or d-sparse.
But we showed above that at most one of A ∩ N and −A ∩ N is generic in N, and
likewise at most one is d-sparse. So one of A ∩ N is d-sparse, and the other is generic
in N. Assume by possibly negating that −A∩N is generic in N and A∩N is d-sparse;
say we have a1, . . . , ak ∈ Z such that N ⊆ (a1 + (−A ∩ N)) ∪ · · · ∪ (ak + (−A ∩ N)).
Let A′ = (−a1 + A) ∪ · · · ∪ (−ak + A); so

A′ = −((a1+(−A))∪· · ·∪(ak+(−A))) ⊇ −((a1+(−A∩N))∪· · ·∪(ak+(−A∩N))) ⊇ −N.

We show that A′ ∩ N is d-sparse. Indeed, if 1 ≤ i ≤ k and ai ≥ 0 then

(−ai + A) ∩ N = −ai + (A ∩ { ai, ai + 1, . . . }) = −ai + ((A ∩ N) ∩ { ai, ai + 1, . . . })

is d-sparse (as can be seen, for example, using Corollary 2.35, Proposition 3.6 (3),
and Remark 3.9); if on the other hand ai ≤ 0 then

(−ai + A) ∩ N = −ai + (A ∩ { ai, ai + 1, . . . })
= (−ai + (A ∩ N)) ∪ (−ai + (A ∩ { ai, ai+1, . . . ,−1 }))

is d-sparse (as can be seen, for example, using Example 3.5 (1), Remark 3.9, and
Proposition 3.6 (2)). So (−ai+A)∩N is d-sparse for each 1 ≤ i ≤ k; so since d-sparse
sets are closed under finite unions (Proposition 3.6 (2)) we get that

A′ ∩ N = ((−a1 + A) ∩ N) ∪ · · · ∪ ((−ak + A) ∩ N)

is d-sparse.

This implies that A′ ∩ N misses some coset:

Claim 5.15. If B ⊆ N is d-sparse then there are s > 0 and 0 ≤ r < s such that
B ∩ (r + sN) = ∅.

Proof. Let L = {σ ∈ Σ∗
d : [σ]d ∈ B }; so L = Σ∗

d ∩ { σ ∈ (Σ±
d )

∗ : [σ]d ∈ B } is regular.
Let ⪯ be the usual ordering on Σd. Then by Lemma 3.18 we get that

L̃ := {σ ∈ Σ∗
d : [σ]d ∈ B, σ ⪯ τ for all τ ∈ Σ∗

d such that [τ ]d ∈ B }
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is sparse. But over Σd we have that representations are essentially unique: that is, if
σ, τ ∈ Σ∗

d and [σ]d = [τ ]d then one is obtained from the other by appending zeroes.

So L = L̃0∗, and thus L is sparse by Remark 3.2.

So by Fact 5.14 we get that the set of prefixes of elements of L is sparse, and in
particular is not all of Σ∗

d; hence there is σ ∈ Σ∗
d that is a forbidden prefix for L. Let

r = [σ]d and s = d|σ|. Suppose we are given r + sn ∈ r + sN; fix τ ∈ Σ∗
d such that

[τ ]d = n. If we had r + sn ∈ B, then since [στ ]d = [σ]d + d|σ|[τ ]d = r + sn ∈ B, we
would have στ ∈ L, a contradiction. So B∩(r+sN) = ∅, as desired. Claim 5.15

So there are s > 0 and 0 ≤ r < s such thatA′∩(r+sZ) = (A′∩−N)∩(r+sZ) = r+sZ<0

(since A′ ⊇ −N). Thus if we let bi = r + is and ci = −(i + 1)s for i ∈ N, then for
i, j ∈ N we have

bi + cj ∈ A′ ⇐⇒ r + (i− j − 1)s ∈ A′

⇐⇒ r + (i− j − 1)s ∈ A′ ∩ (r + sZ)
⇐⇒ i− j − 1 < 0

⇐⇒ i ≤ j.

So x+ y ∈ A′ is an unstable formula in Th(Z,+, A). But A′ is a union of translates
of A; thus Fact 5.12 yields that if A were stable in N then A′ would be as well. So A
is unstable in N. Theorem 5.3

5.2 Characterizing stable automatic sets

A general characterization of the F -automatic A ⊆ Z that are stable in (Z,+) follows
quickly from our earlier work, together with the following fact from stable group theory:

Fact 5.16 ([9, Theorem 2.3 (iv)]). If Γ is a group and A ⊆ Γ is stable in Γ then A has
non-generic symmetric difference from a union of cosets of a subgroup of Γ.

(We say A ⊆ Γ is generic in Γ if there are a1, . . . , an ∈ Γ such that Γ ⊆ (a1 +A)∪ · · · ∪
(an + A).)

Theorem 5.17. If A ⊆ Z then the following are equivalent:

1. A is d-automatic and Th(Z,+, A) is stable.
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2. A is d-automatic and stable in (Z,+).

3. A is a Boolean combination of elementary d-sets and cosets of subgroups of Z.

4. A is definable in (Z,+, dN).

Proof.

(1) =⇒ (2) This is by the definitions of stability.

(2) =⇒ (3) By Fact 5.16 there is H ≤ Γ and a union Y of cosets of H such that A△ Y
is not generic. Moreover cosets are d-sets, and hence by Theorem 2.54 and Fact 4.3
are d-automatic and stable in Γ. (It is easily verified that the hypotheses of Fact 4.3
are satisfied, since Z[d] = Z.) Furthermore both d-automaticity and stability are
closed under Boolean combinations (Corollary 2.29 and Fact 5.12). Thus A△ Y is
d-automatic and stable in Γ. So Theorem 5.3 yields that A is d-sparse, at which
point Theorem 4.11 yields that A is a Boolean combination of elementary d-sets. So
A = (A△ Y )△ Y is a Boolean combination of cosets and elementary d-sets.

(3) =⇒ (4) Since the only subgroups of (Z,+) are of the form sZ for some s ∈ N, it
follows that cosets are definable in (Z,+, dN). It then suffices to show that elementary
d-sets are definable in (Z,+, dN); since addition is definable in (Z,+, dN), and since

K(a; dr) = ad
rN−1
dr−1

for a ∈ Z and r > 0, it suffices to show that drN is definable in

(Z,+, dN) for r ≥ 2.

We show that a ∈ drN if and only if a ∈ dN and dr − 1 | a − 1. The left-to-right
direction is just the geometric series formula. For the right-to-left, suppose we are
given dn ∈ dN such that dr − 1 | dn − 1; so dn ≡ 1 (mod dr − 1). Write n = ir + j for
some i ∈ N and 0 ≤ j < r; so, since dr ≡ 1 (mod dr − 1), we get that 1 ≡ dn ≡ dj

(mod dr − 1). Since r, d ≥ 2, we get that

dr−1 = dr − (1− d−1) · dr ≤ dr − (1− 2−1) · 22 = dr − 2 < dr − 1.

So dj ≤ dr−1 < dr − 1, and thus since 1 ≡ dj (mod dr − 1) we get that dj = 1. So
j = 0, and dn = dir ∈ drN. So drN is definable in (Z,+, dN) for r ≥ 2, as desired.

(4) =⇒ (1) Again, the hypotheses of Fact 4.3 are satisfied since Z[d] = Z; so Th(Z,Fd) (the

d-structure on Z) is stable. But (Z,+, dN) is a reduct of (Z,Fd): addition is definable
in (Z,Fd) as its graph is a d-invariant subgroup of Z3, and dN = K(d− 1; d) + 1 is
an elementary d-set. Moreover by hypothesis we get that (Z,+, A) is a reduct of
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(Z,+, dN). So (Z,+, A) is a reduct of (Z,Fd); thus since Th(Z,Fd) is stable, and
since stability is defined as the absence of an unstable definable relation, we get that
Th(Z,+, A) is stable. Theorem 5.17

5.3 Bibliographical notes

Genericity is a standard definition in stable group theory; see for example [9].

I am indebted to Gabriel Conant for pointing out that Theorem 5.3 together with
Fact 5.16 imply the (2) =⇒ (3) direction of Theorem 5.17. All other results in this chapter
are original.

103



Chapter 6

NIP expansions

In Chapter 4, we considered the question of when an F -sparse A ⊆ Γ is such that Th(Γ,+, A)
is stable. In this chapter, we consider the question of when Th(Γ,+, A) is NIP. This is an
interesting relaxation of stability; see [21] for a thorough description. We briefly recall the
definition here:

Definition 6.1. Suppose X and Y are sets, and R ⊆ X × Y is a binary relation. We
say X0 ⊆ X is shattered by R if for all S ⊆ X0 there is bS ∈ Y such that S = { a ∈ X0 :
(a, bS) ∈ R }. We say R has the independence property (IP) if it shatters arbitrarily large
finite subsets of X; otherwise we say R is NIP.

If T is a complete first-order theory and φ(x1, . . . , xk; y1, . . . , yℓ) is a partitioned formula
in the associated signature, we say φ is NIP if there is M |= T such that the relation
on Mk ×M ℓ defined by φ is NIP. We say T is NIP if every partitioned formula in the
associated signature is NIP.

As in the definition of stability, completeness of T lets us replace “there is M |= T” with
“for any M |= T” in the definition of a formula being NIP.

Remark 6.2. If R ⊆ X × Y has IP then it is an unstable relation. Indeed, for N < ω the
independence property implies that there is X0 ⊆ X that is shattered by R and satisfies
|X0| = N ; enumerate X0 = { a0, . . . , aN−1 }. Since R shatters X0, we get for j < N that
there is bj ∈ Y such that (ai, bj) ∈ R if and only if i ≤ j. Then (a0, . . . , aN−1; b0, . . . , bN−1)
forms an N -ladder for R.

So stable theories are NIP. A standard example of an NIP theory that isn’t stable is
that of any ordered abelian group; see [12].
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In this chapter, given an infinite abelian group Γ and an injective F : Γ → Γ, we consider
the question of which F -automatic A ⊆ Γ are such that Th(Γ,+, A) is NIP. Note first that
not all such A yield an NIP theory:

Example 6.3. Let Γ = Z2, F be multiplication by 2, and

A =

[{(
s0 · · · sn−1

t0 · · · tn−1

)
∈ ({ 0, 1 }2)∗ : si = ti = 1 for some i

}]
2

=

[
({ 0, 1 }2)∗

(
1
1

)
({ 0, 1 }2)∗

]
2

.

That is, A is the set of pairs

(
a
b

)
∈ N2 for which there is some position i such that the

binary representations of a and b both have a 1 in the ith position. Then A is 2-automatic by
Proposition 2.33 (using e.g. Σ±

2 = {−1, 0, 1 }2 as our spanning set). Moreover Th(Z2,+, A)

isn’t NIP: if N ∈ N then

{(
20

0

)
, . . . ,

(
2N−1

0

)}
is shattered by the relation x + y ∈ A.

Indeed, if S ⊆ { 0, . . . , N − 1 } we let

bS =
∑
i∈S

2i.

So the binary representation of bS has a 1 in position i if and only if i ∈ S. So, since the
only 1 in the binary representation of 2i is at position i, it follows that(

2i

0

)
+

(
0
bS

)
∈ A ⇐⇒ i ∈ S.

So x+y ∈ A shatters

{(
20

0

)
, . . . ,

(
2N−1

0

)}
for all N , and hence shatters arbitrarily large

sets. So we have indeed produced an automatic set that yields a theory that isn’t NIP.

We will define a class of subsets of Γ called the F -EDP sets that will include the
F -sparse subsets of Γ. We will then show in Theorem 6.13 that if (Γ,+) satisfies a stability
hypothesis called weak minimality and if A ⊆ Γ is F -EDP then Th(Γ,+, A) is NIP. We do so
by interpreting the induced structure of (Γ,+) on A in Presburger arithmetic N := (N,+),
which is NIP as it is definable in the ordered abelian group (Z,+, <).

The general definition of weak minimality is somewhat technical, and not useful to us.
We instead use the following characterization for abelian groups:

Fact 6.4 ([10, Proposition 3.1]). If Γ is an abelian group, then Th(Γ,+) is weakly minimal
if and only if for all n > 1 the subgroups nΓ and { a ∈ Γ : na = 0 } either are finite or have
finite index in Γ.
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In particular, our results will apply to the case Γ = (Zm,+).

We then give three applications of Theorem 6.13. We show in Theorem 6.15 that
Th(Z,+, dN,×↾dN) is NIP for d ≥ 2, where ×↾dN is the graph of multiplication restricted to
dN, and we show in Theorem 6.16 that Th(Fp[t],+, tN,×↾tN) is NIP for prime p ≥ 9. Using
methods similar to the proof of Theorem 6.13, we show in Theorem 6.17 that Th(Z,+, <, dN)
is NIP.

We continue to assume that Γ is an infinite abelian group, that F : Γ → Γ is an injective
endomorphism, and that Γ admits an F r-spanning set for some r > 0.

6.1 EDP sets yield NIP expansions

To motivate our definition of F -EDP sets, we describe our approach to proving that
Th(Γ,+, A) is NIP. We will use a result of Conant and Laskowski that gives a sufficient
condition for an expansion of a weakly minimal structure to be NIP. In our context, their
condition is in terms of the induced structure AΓ of (Γ,+) on A: this has domain A and a
basic relation X ∩ Am for each X ⊆ Γm definable in (Γ,+) with parameters from Γ.

Fact 6.5 ([10, Theorem 2.9]). Suppose Γ is a weakly minimal abelian group and A ⊆ Γ. If
Th(AΓ) is NIP, then Th(Γ,+, A) is NIP.

Our approach will be to show that AΓ is interpretable in N = (N,+), and hence that
AΓ is NIP. Our definition of F -EDP sets will be set up to guarantee that we can produce
such an interpretation.

Before defining F -EDP sets, we introduce a convenient multi-index notation. If
s = (σ1, . . . , σn) is a tuple of strings σi ∈ Γ∗ and k = (k1, . . . , kn) ∈ Nn, we let
sk = σk11 σ

k2
2 · · ·σknn ∈ Γ∗.

Definition 6.6. An F -EDP subset of Γ is a set of the form

[sφ(N )]F r := { [sk]F r : N |= φ(k) } = { [σk11 · · · σknn ]F r : N |= φ(k1, . . . , kn) }

for some r > 0, some tuple s = (σ1, . . . , σn) of strings over Γ, and some formula φ(x1, . . . , xn)
in Presburger arithmetic.

The acronym “EDP” stands for “exponentially definable in Presburger arithmetic”; the
idea is that the exponents of the strings come from some Presburger-definable set. We will
prove in Proposition 6.11 that if A ⊆ Γ is F -EDP then AΓ is interpretable in N . Roughly
speaking, we will show that if A = [sφ(N )]F r then the map φ(N ) → A given by k 7→ [sk]F r

induces an intepretation of AΓ in N .
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Proposition 6.7. F -sparse sets are F -EDP.

Proof. Suppose A ⊆ Γ is F -sparse; say A = [L]F r for some r > 0, some F r-spanning set Σ,
and some sparse L ⊆ Σ∗.

If L is simple sparse, say L = u0v
∗
1u1 · · · v∗nun, then we can let s = (u0, v1, u1, . . . , vn, un)

and φ(x0, y1, x1, . . . , yn, xn) to be x0 = x1 = · · · = xn = 1. Then

A = [u0v
∗
1u1 · · · v∗nun]F r = { [uk00 vℓ11 uk11 · · · vℓnn uknn ]F r : N |= φ(k0, ℓ1, k1, . . . , ℓn, kn) } = [sφ(N )]F r .

In general, we know from Fact 3.3 that L is a finite union of simple sparse languages. The
result then follows from the observation that

[sφ(N )]F r ∪ [tψ(N )]F r = [(st)χ(N )]F r

where χ(x,y) is (y = 0 ∧ φ(x)) ∨ (x = 0 ∧ ψ(y)). Proposition 6.7

The F -EDP sets include sets that aren’t F -sparse, and indeed sets that aren’t even
F -automatic. For example, if Γ = Z2 and F : Γ → Γ is multiplication by 2, then

A :=

{(
2i

22i

)
: 0 ̸= i ∈ N

}
=

{[(
0
0

)i(
1
0

)(
0
0

)i−1(
0
1

)]
F

: 0 ̸= i ∈ N

}

is F -EDP. But the (F, { 0, 1 }2)-kernel of A is infinite: one can check that if 0 ̸= i ∈ N and

we let σi =

(
0
0

)i(
1
0

)
, then

(
0
2j

)
∈ AF,σi if and only if j = i− 1. So A isn’t F -automatic

by Corollary 2.27.

The following is an analogue of Corollary 3.8 for F -EDP sets:

Proposition 6.8. Suppose A ⊆ Γ is F -EDP. Then there is s0 > 0 such that if s0 | s then
A can be written in the form [aφ(N )]F s where a is a tuple of elements of Γ (i.e., strings of
length 1).

Proof. We first argue that sets of the desired form are closed under finite union, provided
they share the same s. Indeed, given [aφ(N )]F s and [bψ(N )]F s , as we did at the end of the
proof of Proposition 6.7 we can let χ(x,y) be (y = 0 ∧ φ(x)) ∨ (x = 0 ∧ ψ(y)). Then

[aφ(N )]F s ∪ [bφ(N )]F s = [(ab)χ(N )]F s

also takes the desired form, since all the elements of ab are again strings of length 1.
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Write A = [sφ(N )]F r ; by replacing F with F r, we may assume r = 1. Write s =
(σ1, . . . , σn), and let N = lcm{ |σ1|, . . . , |σn| }. Let s0 = N , and suppose s0 | s. Let
Ni =

s
|σ|i . Then

A = { [σk11 · · ·σknn ]F : N |= φ(k1, . . . , kn) }

=

N1−1⋃
j1=0

· · ·
Nn−1⋃
jn=0

{ [σj11 (σNi
1 )ℓ1 · · ·σjnn (σNn

n )ℓn ]F : N |= φ(ℓ1N1 + j1, . . . , ℓnNn + jn) }︸ ︷︷ ︸
Aj1,...,jn

and each |σNi
i | = s.

Fix j1, . . . , jn, and let χ(x1, . . . , xn) be φ(x1N1 + j1, . . . , xnNn + jn). Lemma 3.7 then
yields α, a1, . . . , an ∈ Γ such that

[σj11 (σNi
1 )ℓ1 · · ·σjnn (σNn

n )ℓn ]F = α + [aℓ11 · · · aℓnn ]F s

for all ℓ1, . . . , ℓn ∈ N. Thus

Aj1,...,jn = {α + [aℓ11 · · · aℓnn ]F s : N |= χ(ℓ1, . . . , ℓn) }

= (Aj1,...,jn ∩ {α }) ∪
n⋃
i=1

{ [(α + ai)a
ℓi
i a

ℓi+1

i+1 · · · aℓnn ]F s : N |= χ(0, . . . , 0, ℓi + 1, ℓi+1, . . . , ℓn) }.

So Aj1,...,jn is a union of sets of the desired form, and hence as we argued at the beginning
of the proof Aj1,...,jn takes the desired form. So, since

A =

N1−1⋃
j1=0

· · ·
Nn−1⋃
jn=0

Aj1,...,jn ,

we get that A itself takes the desired form. Proposition 6.8

Remark 6.9. We saw in the proof of Proposition 6.7 that as long as two F -EDP sets
are defined using the same power of F , their union is again F -EDP. A consequence of
Proposition 6.8 is that we can prove closure under union in general. Indeed, if A,B ⊆ Γ are
F -EDP, then by Proposition 6.8 there is s > 0 such that we can write A = [aφ(N )]F s and
B = [bψ(N )]F s . Since they use the same power F s of F , it follows from our earlier argument
that A ∪B is F -EDP.

We now turn towards proving that the map k 7→ [ak]F defines an interpretation of AΓ

in N . We will reduce this to the following lemma:
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Lemma 6.10. Suppose Σ is any finite alphabet, and L ⊆ (Σm)∗ is regular. If a is a tuple
of letters from Σ, then the relation

k1
...
km

 ∈ Nm|a| :

ak1

...
akm

 ∈ L


is definable in N .

Here, and for the rest of the chapter, we interpret the statement

ak1

...
akm

 ∈ L to include

the assertion that |ak1| = · · · = |akm |. Indeed, otherwise we can’t interpret

ak1

...
akm

 as an

element of (Σm)∗, and the statement doesn’t make sense.

Proof of Lemma 6.10. Fix a DFA M = (Σ, Q, q0,Ω, δ) recognizing L. Thenak1

...
akm

 ∈ L ⇐⇒
∨
q∈Ω

δ

q0,
ak1

...
akm


 = q,

where again we interpret the latter statement as including the assertion that |ak1| = · · · =
|akm|, so that it is well-defined. It thus suffices to show that the relation

δ

q0,
ak1

...
akm


 = q

is definable in N for each q. For our induction to work properly, we will instead prove the
following stronger statement: for every q, q′ ∈ Q and all tuples a1, . . . , am of elements of Σ,
the relation R defined by

δ

q,
ak1

1
...

akm
m


 = q′
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is definable in N .

We apply induction on |a1| · · · |am|. For the base case |a1| · · · |am| = 0, we get that some
|ai| = 0. Then since aki

i = ε, the only way for our length condition |ak1
1 | = · · · = |akm

m | to
be satisfied is if each kj = 0. So R is either empty or only contains the zero tuple, and
both of these are definable in N .

For the induction step, we may assume that no |ai| = 0. Write ai = (ai1, . . . , aini
) and

ki = (ki1, . . . , kini
). For 1 ≤ i ≤ n we let

Ri =


k1

...
km

 ∈ R : ki1 = min{ k11, . . . , km1 }

.
We show that Ri is definable in N for each i; since R is the union of the Ri, this will be
sufficient to show that R is definable in N .

For ease of notation, we check R1. Suppose then that k11 is minimum among the ki1.
In this case, we can decomposeak1

1
...

akm
m

 =


ak1111

ak2121
...

ak11m1




(a′
1)

k′
1

ak21−k1121 (a′
2)

k′
2

...

akm1−k11
m1 (a′

m)
k′
m

 ,

where a′
i = (ai2, . . . , aini

), and likewise with k′
i. Hence if we let qk = δ

q,
ak11

...
akm1


 for

k ∈ N, then

δ

q,
ak1

1
...

akm
m


 = δ

qk11 ,


(a′
1)

k′
1

ak21−k1121 (a′
2)

k′
2

...

akm1−k11
m1 (a′

m)
k′
m


.

But since |a′
1||a2| · · · |am| < |a1||a2| · · · |am|, and since subtraction is definable in N , it

follows from the induction hypothesis that for fixed θ ∈ Q the relation

δ

θ,


(a′
1)

k′
1

ak21−k1121 (a′
2)

k′
2

...

akm1−k11
m1 (a′

m)
k′
m


 = q′
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is definable in N (again assuming that k11 ≤ ki1 for all i). Moreover since there are only
finitely many states in M we get that qk is ultimately periodic in k, and hence that the
statement qk = θ is an N -definable property of k for any fixed θ ∈ Q. Putting these
together, we find that R1 is equivalent to

k11 = min{ k11, . . . , km1 } ∧
∨
θ∈Q

qk11 = θ ∧ δ

θ,


(a′
1)

k′
1

ak21−k1121 (a′
2)

k′
2

...

akm1−k11
m1 (a′

m)
k′
m


 = q′

,
and is thus definable in N .

The case Ri for i > 1 is similar. So each Ri is definable in N , and thus so is R.
Lemma 6.10

Proposition 6.11. If A ⊆ Γ is F -EDP then AΓ is interpretable in N .

Proof. Recall from Proposition 2.17 that if Γ admits an F s-spanning set then it admits
an F t-spanning set whenever s | t. Hence by Proposition 6.8 we may assume A takes
the form [aφ(N )]F s for some tuple a = (a1, . . . , an) of elements of Γ, some formula φ in
Presburger arithmetic, and some s > 0 for which there exists an F s-spanning set Σ. By
Proposition 2.15 we may assume that each ai ∈ Σ.

Consider the map Φ: φ(N ) → A given by k 7→ [ak]F s . It is clear that Φ is surjective.
So to show that Φ induces an interpretation of AΓ in N , we need only show that given a
basic relation (including equality) X ∩Am of AΓ, its preimage Φ−1(X ∩Am) is definable in
N .

Since X ⊆ Γm is definable in (Γ,+), Corollary 2.35 yields that X is F -automatic.
Moreover we saw in Example 2.13 (2) that Σm is an F s-spanning set for Γm. So by
Corollary 2.27 we get that X is (F s,Σm)-automatic, and thus

L :=


σ1

...
σm

 ∈ (Σm)∗ :

 [σ1]F s

...
[σm]F s

 ∈ X


is regular. So Lemma 6.10 applies, and we can conclude that the relation

ak1

...
akm

 ∈ L is

definable in N .
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We would like to use this to show that Φ−1(X ∩ Am) is definable in N . Unfortunately,

given k1, . . . ,km ∈ φ(N ), it doesn’t necessarily hold that |ak1| = · · · = |akm|; so

ak1

...
akm

 ∈ L

may fail simply because the lengths don’t match up.

We can remedy this by adding trailing zeroes. If we choose ℓ1, . . . , ℓm ∈ N such that
|ak10ℓ1| = · · · = |akm0ℓm|, then we can regard ak10ℓ1

...
akm0ℓm

 =

 (a0)k1ℓ1

...
(a0)kmℓm


as a bona fide element of (Σm)∗, where a0 denotes the tuple whose first entries are the
entries of ai and whose last entry is 0, and likewise with kiℓi. HenceΦ(k1)

...
Φ(km)

 ∈ X ⇐⇒

 [(a0)k1ℓ1 ]F s

...
[(a0)kmℓm ]F s

 ∈ X ⇐⇒

 (a0)k1ℓ1

...
(a0)kmℓm

 ∈ L.

Of course, this only holds if we choose ℓ1, . . . , ℓn to be such that |(a0)k1ℓ| = · · · = |(a0)kmℓm|.
If we existentially quantify the ℓ1, . . . , ℓn, however, we find thatΦ(k1)

...
Φ(km)

 ∈ X ⇐⇒ ∃ℓ1, . . . , ℓm


 (a0)k1ℓ1

...
(a0)kmℓm

 ∈ L

.
Hence applying Lemma 6.10 to a0 and L, it follows that Φ−1(X ∩ Am) is indeed definable
in N . Proposition 6.11

Remark 6.12. Let G be the structure with domain Γ and a basic relation for every F -
automatic set in every Γm. The above proof in fact shows the following stronger result:
that the map Φ: φ(N ) → A given by k 7→ [ak]F s induces an interpretation of the induced
structure AG in N .

Our theorem now quickly follows:

Theorem 6.13. If Γ is weakly minimal and A ⊆ Γ is F -EDP then Th(Γ,+, A) is NIP.
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Proof. By Fact 6.5 it suffices to show that AΓ is NIP. But Th(N ) is NIP, and Proposi-
tion 6.11 yields that AΓ is interpretable in N . So, since NIP is defined by the absence
of a definable relation with the independence property, it follows that AΓ is indeed NIP.

Theorem 6.13

Corollary 6.14. If Γ is weakly minimal and A ⊆ Γ is F -sparse then Th(Γ,+, A) is NIP.

6.2 Examples of expansions by F -EDP sets

In this section we give two applications of Theorem 6.13.

Theorem 6.15. If d ≥ 2 then Th(Z,+, dN,×↾dN) is NIP, where ×↾dN is the graph of
multiplication restricted to dN.

Our primary difficulty is that we wish to expand by a subset of Z3, whereas Theorem 6.13
only applies to subsets of Z. We will need to encode our expansion in a subset of Z.

Proof. We first do the case d ≥ 8. We let F : Z → Z be multiplication by d.

We choose F -EDP A ⊆ Z such that both dN and B := { di + 2dj + 4di+j : 0 < i < j }
are definable in (Z,+, A). We let

A = { da : a ∈ dN }∪{ 1+db : b ∈ B } = { [0n+11]d : n ∈ N }∪{ [10k10ℓ20k−14]d : k > 0, ℓ ≥ 0 }.

So A is a union of F -EDP sets, and is thus F -EDP. Moreover dN and B are indeed definable
in A: they are defined by dx ∈ A and 1 + dx ∈ A, respectively.

It is clear from Fact 6.4 that (Z,+) is weakly minimal. Theorem 6.13 then yields that
Th(Z,+, A) is NIP, and hence so is Th(Z,+, dN, B). It then suffices to show that ×↾dN is
definable in (Z,+, dN, B).

I claim that if di, dj, dk ∈ dN satisfy 1 < di < dj then di · dj = dk if and only if
di+2dj +4dk ∈ B. The left-to-right direction is clear; for the right-to-left, suppose we have
s > r > 0 such that di + 2dj + 4dk = dr + 2ds + 4dr+s. The usual base-d representation
for dr + 2ds + 4dr+s is 0r10s−r−120r−14. At this point, examining the possible base-d
representations of di + 2dj + 4dk, and using the uniqueness of base-d representations up to
trailing zeroes, we find that i = r, j = s, and k = r + s = i+ j; so di · dj = dk, as desired.

It follows that for x ̸= y both ̸= 1, we can define ×↾dN by

x, y, z ∈ dN ∧ (x+ 2y + 4z ∈ B ∨ y + 2x+ 4z ∈ B).
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It remains to deal with the case where one of x, y is 1, and the case where x = y ̸= 1.
In the former, ×↾dN is definable by x, y, z ∈ dN ∧ z = y in the case x = 1, and by
x, y, z ∈ dN ∧ z = x in the case y = 1. In the latter case, we observe that x2 = z for
x ∈ dN \ { 1 } if and only if (d−1x)(dx) = z, and d−1x < dx; so in this case ×↾dN is definable
by x, y, z ∈ dN ∧ d−1x+ 2dx+ 4z ∈ B.

Putting these together, we find that ×↾dN is definable with parameters in (Z,+, dN, B)
by the formula

x, y, z ∈ dN ∧
(
x ̸= y ∧ (x, y ̸= 1) ∧ (x+ 2y + 4z ∈ B ∨ y + 2x+ 4z ∈ B)∨
(x = 1 ∧ z = y)∨
(y = 1 ∧ z = x)∨
(x = y ̸= 1 ∧ d−1x+ 2dx+ 4z ∈ B)

)
.

It follows that (Z,+, dN,×↾dN) has an NIP theory.

The case d < 8 follows from the case d ≥ 8, since (Z,+, dN,×↾dN) is a reduct of
(Z,+, (d′)N,×↾(d′)N) whenever d′ is a power of d. Theorem 6.15

Theorem 6.16. If p ≥ 9 is prime then Th(Fp[t],+, tN,×↾tN) is NIP.

Proof. We let F : Fp[t] → Fp[t] be f 7→ tf . We enumerate the elements of Fp[t] ∼= Z/pZ as
i for 0 ≤ i < p. It follows from Example 2.13 (4) that Fp[t] admits an F -spanning set; so
Theorem 6.13 applies.

As in Theorem 6.15, we choose F -EDP A ⊆ F[t] such that both tN and B := { ti + 2tj +
4ti+j : 0 < i < j } are definable in (Fp[t],+, A). In this context, however, we can no longer
use congruences to encode two sets into one, since congruence modulo any fixed d is either
vacuous or degenerate; so our amalgamation will have to be a bit more subtle.

We let

A = tN ∪ 2tN ∪B
= { [(0)n1]F : n ∈ N } ∪ { [(0)n2]F : n ∈ N } ∪ { [(0)k1(0)ℓ2(0)k−14]F : k > 0, ℓ ≥ 0 }.

So A is a union of F -EDP sets, and is thus F -EDP. Moreover tN and B are indeed definable
in A: the former is defined by x ∈ A ∧ 2x ∈ A, and the latter by x ∈ A ∧ x /∈ tN ∧ x /∈ 2tN.
(Note since p ≥ 9 that if f ∈ B then 2f /∈ A; this can be seen by noting that the leading
coefficient of 2f is 8, which cannot appear as a leading coefficient in A.)
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From here, it follows as in Theorem 6.15 that outside of the case x = y ≠ 1 we can
define ×↾tN in (Fp[t],+, tN, B) (with parameters). A subtlety arises in the case x = y ̸= 1:
unlike in Theorem 6.15, the map ti 7→ ti+1 isn’t definable in the group structure, so we
can’t simply use the formula

x, y, z ∈ tN ∧ t−1x+ 2tx+ 4z ∈ B

as we did before. However, we can make use of the fact that ×↾tN is definable outside of
this case: note if ti, tj, tk ∈ tN and ti = tj ̸= t then ti · tj = tk if and only if tk ̸= t and
ti · (t · ti) = t · tk. Since ti, tk ̸= t, it follows that t · ti, t · tk fall into the already-defined case
of ×↾tN, as does ti · (t · ti); so ×↾tN is definable in (Fp[t],+, tN, B) in the case x = y ̸= t.
This only leaves the case x = y = t; for this we can use the formula x = y = t ∧ z = t2.

It thus follows that (Fp[t],+, tN,×↾tN) is definable with parameters in (Fp[t],+, tN, B),
and thus in (Fp[t],+, A). But (Fp[t],+) is weakly minimal: one can check that

nFp[t] =

{
Fp[t] if p ∤ n
{ 0 } else

{ a ∈ Fp[t] : na = 0 } =

{
{ 0 } if p ∤ n
Fp[t] else.

So Theorem 6.13 yields that Th(Fp[t],+, A) is NIP, and hence that Th(Fp[t],+, tN,×↾tN) is
NIP. Theorem 6.16

6.3 (Z,+, <, dN) is NIP

The following theorem is another example of an NIP expansion of (Z,+). Unlike the
previous two examples, this one doesn’t directly follow from Theorem 6.13, though the
argument is similar.

Theorem 6.17. If d ≥ 2 then Th(Z,+, <, dN) is NIP.

This was proven by Lambotte and Point in [17, Corollary 2.34]; we use automata to
give an alternate proof.

The difficulty here is that it seems unlikely that we’ll be able to encode < in an F -EDP
set. So rather than view (Z,+, dN, <) as the expansion of (Z,+) by dN and <, we instead
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view it as the expansion of (Z,+, <) by dN. Of course, Th(Z,+, <) isn’t even stable, let
alone weakly minimal; so the methods of Conant and Laskowski don’t apply. We instead
make use of a more general result of Chernikov and Simon. This result replaces the weak
minimality hypothesis with the assumption that A is bounded in (Γ,+, <):

Definition 6.18. Suppose L is a first-order signature; let LP = L ∪ {P } for some unary
predicate symbol P not appearing in L. A bounded LP -formula is a formula of the form
(Q1x1 ∈ P ) · · · (Qnxn ∈ P )φ for some quantifiers Q1, . . . , Qn and some L-formula φ. If
M is an L-structure and A ⊆ M , we say that A is bounded in M if every LP -formula is
equivalent in Th(M,A) to a bounded LP -formula.

Fact 6.19 ([8, Corollary 2.5]). Suppose M is an L-structure and A ⊆M . If Th(M) is NIP,
A is bounded in M , and the theory of the induced structure AM is NIP, then Th(M,A) is
NIP.1

We look to apply this with M = (Z,+, <) and A = dN. Checking that A is bounded in
(Z,+, <) looks intimidating at first glance; happily, we have the following result of Point to
fall back on.

Fact 6.20 ([19, Propositions 9 and 11]). Th
(
N,+, −̇, <,

( ·
n

)
n>0

, λ, S, S−1
)
admits quantifier

elimination, where

• a −̇ b = max{ 0, a− b };

• ·
n
denotes integer division rounded down;

• λ(0) = 0, and if a > 0 then λ(a) = max{ b ∈ dN : b ≤ a };

• S(dn) = dn+1, and S(a) = a for all other a; and

• S−1(dn+1) = dn, and S−1(a) = a for all other a.

Proof of Theorem 6.17. To more easily make use of Fact 6.20, we instead show that
Th(N,+, dN) is NIP; since (Z,+, <, dN) is interpretable in (N,+, dN), this will suffice.

We look to apply Fact 6.19. We have seen that Th(N,+) = Th(N ) is NIP.

1In fact the theorem is stronger than stated here; rather than requiring that the full induced structure
of M on A be NIP, they only require that the structure on A induced by the 0-definable sets in M be NIP.
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We need to show that the induced structure (dN)N is NIP. Since N is definable in
(Z,+, <), we get that (dN)N is a reduct of (dN)(Z,+,<); so it suffices to show that (dN)(Z,+,<)

is NIP. Note that {(
a
b

)
∈ Z2 : a < b

}
is d-automatic in Z. Indeed, one can check that its (d, { 0, . . . , d− 1 })-kernel contains only{(

a
b

)
∈ Z2 : a < b

}
and

{(
a
b

)
∈ Z2 : a ≤ b

}
,

and is thus finite, at which point Corollary 2.27 yields d-automaticity. Hence if we let Z be
the structure with domain Z and a basic relation for every d-automatic subset of every Zm,
we get from Corollary 2.35 that (Z,+, <) is a reduct of Z . Hence (dN)(Z,+,<) is a reduct of
(dN)Z , and it suffices to show that (dN)Z is NIP. But this follows from Remark 6.12, since
dN = { [0i1]d : i ∈ N } is F -EDP.

So the induced structure (dN)N is NIP. It remains to show that dN is bounded in N . Let

L = {+ } and L′ =
{
+, −̇,

( ·
n

)
n>0

, λ, S, S−1
}
; so by Fact 6.20 every LP formula is equiva-

lent to a quantifier-free L′-formula (since dN is definable in
(
N,+, −̇, <,

( ·
n

)
n>0

, λ, S, S−1
)

by the formula x ̸= 0 ∧ λ(x) = x). We show that any quantifier-free L′-formula φ is
equivalent to a bounded LP -formula. We do so by induction on the number of occurrences
of λ, S, or S−1 in φ. For the base case, if φ contains no such occurrences, then φ is a

quantifier-free formula in the signature
{
+, −̇,

( ·
n

)
n>0

}
; so φ is equivalent to an L-formula,

which is a bounded LP -formula. For the induction step, suppose φ contains a term of the
form λ(t) for some L′-term t that contains no occurrences of λ, S, or S ′; so φ takes the
form φ′(λ(t),x) for some quantifier-free L′-formula φ′. Then recalling the definition of λ
we find that φ is equivalent to

(t = 0 ∧ φ′(0,x)) ∨ (t ̸= 0 ∧ (∃y ∈ dN)(y ≤ t ∧ (∀z ∈ dN)(z ≤ t→ z ≤ y) ∧ φ′(y,x)))

≡ (∃y ∈ dN)(∀z ∈ dN)
(
(t = 0 ∧ φ′(0,x)︸ ︷︷ ︸

χ1

) ∨ (t ̸= 0 ∧ (y ≤ t ∧ (z ≤ t→ z ≤ y) ∧ φ′(y,x))︸ ︷︷ ︸
χ2

)
)

(where by possibly changing variables we have assumed that x, y, z are all distinct). But
each of χ1, χ2 are both quantifier-free L′-formulas that contain one fewer occurrence of λ,
S, or S−1 than φ does; so by the induction hypothesis they are equivalent to bounded
LP -formulas. So φ is as well.

Similarly if φ takes the form φ′(S(t),x) then φ is equivalent to

(∃w ∈ dN)(t = w ∧ φ′(dw,x)) ∨ (∀w ∈ dN)(t ̸= w ∧ φ′(t,x)),
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and if φ takes the form φ′(S−1(t),x) then φ is equivalent to

(∃w ∈ dN)(t = dw ∧ φ′(w,x)) ∨ (∀w ∈ dN)(t ̸= dw ∧ φ′(t,x)).

In both of these cases we can argue as we did in the first case that φ is equivalent to a
bounded LP -formula. Note moreover that if φ contains an occurrence of λ(t), S(t), or
S−1(t) then it must contain one in which t does not have an occurrence of λ, S, or S−1;
i.e., we fall into one of the above three cases. So any such φ is equivalent to a bounded
LP -formula, and by induction we’re done.

So Th(N ) is NIP, Th((dN)N ) is NIP, and dN is bounded in (N,+). So Fact 6.19 yields
that Th(N,+, dN) is NIP. Theorem 6.17

6.4 Bibliographical notes

NIP is a standard notion; see [21]. Theorem 6.17 was conjectured in [4], and was proven
by Lambotte and Point in [17] using different methods from the ones appearing here. All
other results in this chapter are original.
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Chapter 7

Future research

We list some possible avenues of future research.

• In classical automata theory, Christol’s theorem (see e.g. [3, Theorem 12.2.5]) tells
us that if p is prime then a power series a0 + a1t + · · · with coefficients in Z/pZ
is algebraic over (Z/pZ)(t) if and only if { i ∈ N : ai = j } is p-automatic for all
j ∈ Z/pZ. Is there a generalization of this to the setting of F -automatic sets?

• Another result of classical automata theory is Cobham’s theorem ([3, Theorem 11.2.1]):
that if A ⊆ N is both d- and d′-automatic for d, d′ multiplicatively independent (i.e.,
di ̸= (d′)j for any i, j > 0) then the characteristic function of A is ultimately periodic.
Is there some analogue for sets A ⊆ Γ that are both F - and F ′-automatic, under
some assumptions on F and F ′?

• In the classical context, we say that a sequence (an)n∈N with values in some finite
set ∆ is d-automatic if { i ∈ N : ai = δ } is a d-automatic set for every δ ∈ ∆. In
[2], Allouche and Shallit use kernels to give a general notion of d-automaticity for
sequences with values in a (possibly infinite) ring, which they call d-regularity ; this
can be further extended to sequences taking values in an abelian group, as described
in [3, Chapter 16]. Can we make a similar (coherent) definition in our setting? That
is, if G is an abelian group, can we sensibly define a notion of F -regularity of a map
Γ → G?

• A link between automata theory and logic is that A ⊆ N is d-automatic if and only
if it is definable in (N,+, Vd), where Vd(a) is the largest power of d dividing a (and
Vd(0) = 1); for more details on this see [7, Theorem 4.1]. Can we make a similar
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statement about F -automatic sets being the definable sets in some natural expansion
of (Γ,+)?

• Can Theorem 5.17 be extended to a characterization of the stable d-automatic
A ⊆ Zm (rather than just A ⊆ Z)? More generally, can Theorem 4.11 be extended to
a description of the stable F -automatic A ⊆ Γ? A first conjecture is that they are
precisely the F -sets.

• We saw in Theorem 6.13 that if A ⊆ Γ is F -sparse (or more generally F -EDP) and Γ
is weakly minimal then Th(Γ,+, A) is NIP. Can we extend this to a characterization
of the F -automatic A ⊆ Γ such that Th(Γ,+, A) is NIP? Are there any examples of
an F -automatic set A that isn’t F -sparse or the complement of an F -sparse set but
nonetheless satisfies Th(Γ,+, A) is NIP? (Note from the definition that every F -EDP
set is contained in an F -sparse set; thus if an F -EDP set is F -automatic then it’s
F -sparse by Proposition 3.6 (3). So the F -EDP sets aren’t the sets we’re asking for.)

In a different direction, can we refine Theorem 6.13 to say something about whether
Th(Γ,+, A) satisfies more fine-grained tameness properties within NIP? For example,
will it be distal? What are the possible dp-ranks of types in Th(Γ,+, A)? Is Th(Γ,+, A)
strongly dependent? Dp-minimal?
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