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1 Preliminaries

Theorem 1. An o-minimal theory is NIP.

Proof. Suppose p(z;y) is a partitioned formula, A C dom(l{) infinite. Pick some sequence (a; : i < w) in A
such that a; # a; when ¢ # j. But every sequence in a totally ordered set has a monotone subsequence. So
we have some monotone (b; : i < w); suppose for convenience that it is increasing. Then by < by < .... Let
B = {by; : i <w}. Then B is not the intersection of a definable set with A; if it were, the definable set would
be a finite union of intervals and points, but each interval can contain at most one of the bo;, a contradiction.
So B is not definable, and thus is not defined by ¢(U;b) N A for any b € dom(Uf). Thus ¢ is NIP.

Thus all formulae with one parameter are NIP. Thus, by [Simon, Proposition 2.14], the theory is NIP. [

Consider a x-saturated and strongly x-homogeneous o-minimal L-structure I, and a (not necessarily
small) A C dom(U). Unless otherwise stated, any types we consider are complete global 1-types.

Fact 2. The complete global 1-types in U are just the realized types and the cuts.

Proof. By o-minimality, if two types satisfy the same formulae with parameters in the order language, then
they satisfy the same Ly,-formulae, since each formula L;,-formula is equivalent to a formula with parameters
in the language of order language. O

We call a cut infinite if it is either {x > a:a € dom(U)} or {z < a:a € dom(U)}. We call a cut finite if
it is not infinite. If there exists a supremum of the lower set or an infimum of the upper set of a cut p, then
both must exist, and they will be equal; we call this the standard part of the cut (denoted st(p)). In this
case, we have d > st(p) = phtax <dand c<st(p) = pktz>ec.

Ezxample 3. Not all finite cuts have a standard part; consider ((—oo,0) U (0,00), <) as a model of DLO, and
p={z>a:a<0}U{z<a:a>0}

Definition 4. Suppose p is a type. We say p is an accumulation type of A if and only if whenever
pk ¢ < x <d, there is some a € A such that ¢ < a < d.



Ezxample 5. Tt is not the case that being an accumulation type of A is equivalent to its realization in an
elementary extension being an accumulation point of A. Consider in R the type of an infinitesimal s > 0, with
A= {n‘l 0<n< w}. Then this is an accumulation type of A, but in the hyperreals we have (0,2s)NA =0
and s € (0,2s).

Remark 6. Suppose p has a standard part and p F x > st(p). Then p is an accumulation type of A if and
only if st(p) is an accumulation point of A N (st(p),c0) in the order topology.

Proof.

(=) Suppose p is an accumulation type of A. Suppose ¢ < st(p) < d. Then p | st(p) < z < d, so we
have some a € A such that st(p) < a < d. But then a € AN (st(p),0) and ¢ < a < d. So st(p) is an
accumulation point of A N (st(p), 00).

(<= Suppose st(p) is an accumulation point of AN (st(p),c0). Suppose p - ¢ < z < d. Then ¢ < st(p) < d.
Pick ¢/ < ¢. Then ¢ < st(p) < d, so by assumption there is some a € AN (st(p), 00) such that ¢ < a < d.
Then ¢ < st(p) < a < d, and p is an accumulation type of A.

O

2 Finite Satisfiability

In an o-minimal structure, a realized type is finitely satisfiable in A if and only if its realization (unique since
these are global types) is in A.

Proposition 7. A finite cut p is finitely satisfiable in A if and only if p is an accumulation type of A.
Proof.

(=) Suppose p is not an accumulation type of A. Then we have ¢ and d such that p - ¢ < z < d but
(¢,d)N A=1(. Then A contains no realizations of ¢ < x < d, so p is not finitely satisfiable in A.

(<) Suppose p is an accumulation type of A. Suppose p - ¢(x), where ¢ is an L-formula with parameters.
Then ¢ defines a finite union of intervals and points, so to show that ¢ has a realization in A it suffices
to show that whenever ¢ (z) is ¢ < x < d defining an interval and p F ¢(z), then v is realized in A.
(We don’t need to consider formulae defining points because no formula defining a finite set of points is
entailed by an omitted type.) But this is just the definition of an accumulation type. So ¢ is realized in
A, and p is finitely satisfiable in A.

O

Corollary 8. If a finite cut p has a standard part and p - x > st(p), then it is finitely satisfiable in A if and
only if st(p) is an accumulation point of AN (st(p),00) (in the order topology).

For infinite cuts, the cut is finitely satisfiable in A if and only if A is unbounded in the appropriate
direction. (To see this, note that any ¢(x) entailed by an infinite type must be unbounded in the appropriate
direction in its realizations, and thus must have an unbounded interval in the appropriate direction by
o-minimality. Thus any A unbounded in the appropriate direction will have a realization of ¢.) For realized
types, the type is finitely satisfiable in A if and only if its realization is in A.

3 Definability

Proposition 9. A realized type is A-definable if and only if its realization is in dcl(A).

Proof. Reverse direction easy. To get the forward direction, suppose a is a realization of an A-definable type.
Consider p(z,y) =z < y. Then dp(y) is an L 4-formula defining (a, 00); thus a € dcl(A) as the infimum of
(a, 00). O



Lemma 10. Suppose p is a finite cut with a standard part, p =z > st(p), and ¢(z,b) an L-formula with
parameters. Then p = o(x,b) if and only if

U = Fz(z > st(p) AVy(st(p) <y <z — ¢(y,b)))
(i.e. there is some interval (st(p), z) such that ¢(x,b) holds everywhere on that interval.)
Proof.

(== ) Suppose p - ¢(x,b). By o-minimality, ¢(x,b) defines a finite union of intervals and points. But p is
realized in some elementary extension, and ¢(z, b) will define the same union of intervals and points in
the extension; thus the realization of p is equal to one of the points or is in one of the intervals. But p
is omitted, and the points are in U, so the realization must be in one of the intervals. Thus there exist

¢,d € dom(U) such that pFe<z <dand U =Vy(c <y <d— ¢(y,b)). But then ¢ < st(p) < d, so

UEVy(st(p) <y <d—p(y,b))

So d is our required element, and:

U F2(Vy(st(p) <y < z— ¢(y,b)))

(<= Suppose p I# ¢(x,b). Then, as a complete type, p - ~¢(z,b), so by the forward direction we have
some d > st(p) such that whenever y € (st(p),d) we have U = —¢(y,b). But then whenever z > st(p),

we may find some (indeed, any) y € (st(p), min(z, d)) C (st(p), z) such that U = ¢(y,b). So

U 7 F2(Vy(st(p) <y <z — ¢(y,b)))

Proposition 11. A finite cut is p is A-definable if and only if st(p) exists and is in dcl(A).
Proof.

(=) Let p be an A-definable cut. Consider ¢(x,y) = © < y. Then dy(y) is an L4-formula, and thus
defines a finite union of intervals and points. Let s be the minimum of the points and the lower bounds
of the intervals. (As p is a finite cut, s > —00.) It then follows that whenever b < s, we have p -z > b,
and whenever ¢ > s, we have p+ = < ¢. So s = st(p). Furthermore, dy defines either (s, c0) or [s, c0),
so s € dcl(A) as the infimum of dp".

(<) Let p be a cut whose standard part is in dcl(4). Suppose p F 2 > st(p). Let ¢(x,7) be a formula
without parameters. Then, by Lemma 10, we may let dp(y) be

Fz(Vw(st(p) < w < z = p(w,7)))

As st(p) € dcl(A) and ¢ has no parameters, this is an L4 formula that holds if and only if p F o(x,7).
So p is A-definable. (The case where p F & < st(p) is similar; one needs to check that the corresponding
version of Lemma 10 holds.)

O

Regarding the infinite types, ¢(x,7) holds in the infinite type if and only if 4 = Fz(Vw(w > z — p(w,7))).
But this has no parameters, so the infinite type is A-definable for every A; likewise with the negative infinite

type.



4 Invariance

Definition 12. Let A C dom(), p € S;(dom(U)). We say that p is A-invariant if for every formula ¢(z;y)
and tuples b, b’ € dom(U)|b|, if b=, ¥/, then we have

pEo(x,b) <= pto(,V)

Note that this definition agrees with the primary definition given in Simon only in the case where A is
small.
We can extend this definition to non-global types:

Definition 13. Let A C B C dom(U), p € S,(B). We say that p is A-invariant if for every formula o(z;y)
and tuples b, € BI®l if b =4 ¥, then

pEo(z,b) < pko(x,b)

We can then make sense of the assertion following remark 2.20 in Simon:

Remark 14. Suppose p € S(U) is A-invariant. Suppose U < U’, and dom(U/) C V C dom(U’). Then there is
a unique extension of p to an element of S(V') that is A-invariant.

Given a formula ¢, o-minimality tells us that it is a finite union of intervals and points; however, such
representations are not unique, and may not be nice. Lemma 15 gives us a canonical representation with
some desirable properties.

Lemma 15. Suppose ¢ is a formula with parameters. Then there is a representation of ¢ as a finite union
of intervals and points where the intervals are disjoint and mazimal as open interval subsets of o, and the
points are contained in none of the intervals. Furthermore, this representation is unique.

Proof.

Existence By o-minimality, there exists some representation of ¥ as a finite union of intervals and points;
by well-ordering of w, we may find such a representation using a minimum number of points and
intervals. We claim that this is our desired representation.

Suppose the representation contains two intervals I and J such that I N.J # (. Then T U.J C ¢¥ is
also an interval, so if we replace I and J by I U J, we obtain a representation using one fewer interval,
contradicting minimality.

Suppose the representation contains a point ¢ and an interval I such that ¢ € I. Then we may obtain a
representation using one fewer point by simply omitting ¢, contradicting minimality.

Suppose the representation has an interval I and there is an open interval J C oY such that I g J.
Then J \ I has an open interval subset, say K. K is infinite, so our representation doesn’t cover it
entirely with points. So there is some interval K’ in our representation such that K’ N K # ). Clearly
K'#1. But K’'NJ 2K NK 20, and K" and J are both open interval subsets of . So K’ U J is
an open interval subset of Y. But then by replacing K’ and I with K’ U J, we obtain a representation
using one fewer interval, contradicting minimality.

So our representation has the desired properties.

Uniqueness Suppose we have two such representations.

Suppose [ is an interval in the first. [ is infinite, so it cannot be covered entirely by points, so there is
some interval J in the second representation such that I NJ # (. Then I U J is an open interval subset
of M, so by maximality I = I UJ = J. Similarly, any interval in the second representation shows up in
the first representation.

Suppose c¢ is a point in the first representation. Then it does not show up in any of the intervals in the
first representation, and hence in the second representation, so it is a point in the second representation.
Likewise, any point in the second representation is a point in the first representation.

So the representations are the same.



O

In talking about A-invariance, discussing types over A forces us to discuss L s-formulae. Given an
L 4-formula ¢(x), Lemma 15 gives us a canonical representation of ¢(x) as a quantifier-free formula in order
language, but this representation may not be an L 4-formula. Lemma 16 tells us that while the parameters
may not be in A, they will be in dcl(A).

Lemma 16. Suppose o is an L s-formula. Write oY as a finite union of intervals and points as in Lemma 15.
Then the finite endpoints and the individual points are all in dcl(A).

Proof. Apply induction on the number of intervals and points in the representation. Base case trivial.
For the induction step, suppose ¥ # (). By disjointness of the intervals and points, we may totally order
the intervals and points in the natural way. Consider the rightmost interval or point.

Case 1. Suppose it is a point, say ¢ € dom(U). Then it is definable by:

o(x) ANYY(y > o — —p(y))

and is therefore in dcl(A4).
Consider then ¢(z) Az # ¢. This can be expressed as an L 4-formula, and its representation is clearly
the representation of ¢ with ¢ removed. So, by induction, the finite endpoints and individual points in the

remaining objects in the representation of ¢ are all in dcl(A). So all the finite endpoints and individual points
are in dcl(A).

Case 2. Suppose it is an interval. We consider the case where both endpoints are finite; the other cases are
similar. Suppose then that it is (a, ) for a,b € dom(U). Then b is in dcl(A) as the unique realization of

Vy(y >z — —p(y)) AVz(z <z — Jw(z < w A p(w)))
and ¢ is in dcl(A) as the unique realization of
Vy(z <y <b— o) AVz(z <z = Jw(z < w < bA —p(w)))

Consider then ¢(z) A —(a < x < b). This can be expressed as an L 4-formula, and its representation is
clearly the representation of ¢ with (a,b) removed. So, by induction, the finite endpoints and individual
points in the remaining objects in the representation of ¢ are all in dcl(A). So all the finite endpoints and
individual points are in dcl(A).

[
Corollary 17. Suppose b,c € dom(U), b < ¢, b#£4 c. Then dcl(A) N [b,c] # 0.

Proof. Suppose b #4 ¢. Take some L 4-formula ¢(z) such that U = ¢(b) but U = ¢(c). Then by Lemma 16,
¢ defines a finite union of intervals with endpoints in dcl(A) and points in dcl(A). Thus either b is one of the
points, in which case b € dcl(A), or there is some ay, az € dcl(A) such that b € (a1,a2) and ¢ ¢ (a1, az2). But
then b < ag < ¢, so az € [b,¢]. O

Proposition 18. A finite cut p without a standard part is A-invariant if and only if p is an accumulation
type of dcl(A).

Proof.

(=) Say p is A-invariant. Suppose p - b < x < ¢. p has no standard part, so we may find d, e € (b, ¢) such
that ptd < x < e. Then d #4 e by A-invariance, so by Corollary 17 there is some element of dcl(A)
in [d,e] C (b,c). So p is an accumulation type of dcl(A).

(<= ) Suppose p is an accumulation type of dcl(A). Then, by Proposition 7, p is finitely satisfiable in
dcl(A), and thus dcl(A)-invariant. Suppose b =4 b'. Then b =4.1(4) V', so for any L-formula ¢, we have
pho(z,b) <= phk p(z,b) by dcl(A)-invariance. So p is A-invariant.

O



Proposition 19. A finite cut p with a standard part is A-invariant if and only if p is an accumulation type
of dcl(A) or st(p) € dcl(A).

Proof.

(=) Say p with a standard part is A-invariant. Suppose st(p) ¢ dcl(A4). Suppose p b 2 > st(p); the other
case is identical. Suppose p b < x < ¢. Then b < st(p). Also, by density we may find d € (st(p), c)
such that p F x < d. Then p b st(p) < z < d. So d #£4 st(p) by A-invariance, so by Corollary 17,
there is some element of dcl(A4) in [st(p),d]. But st(p) ¢ dcl(A), so there is some element of dcl(A) in
(st(p),d] C (b,c). So p is an accumulation type of dcl(A).

(<= ) Suppose st(p) € dcl(A). Then, by Proposition 11, p is A-definable, and hence A-invariant.

Suppose p is an accumulation type of dcl(A). Then, by Proposition 7, p is finitely satisfiable in dcl(A),
and thus dcl(A)-invariant. Suppose b =4 O/. Then b =4ca) V', so for any L-formula ¢, we have

ph@(z,b) <= phk p(z,b) by dcl(A)-invariance. So p is A-invariant.
O

Corollary 20. A finite cut p is A-invariant if and only if p is an accumulation type of dcl(A) or p has a
standard part and st(p) € dcl(A).

Corollary 21. A finite cut is A-invariant if and only if it is A-definable or finitely satisfiable in dcl(A).
Fact 22. Suppose A is small. Then a type p realized by ¢ € dom(U) is A-invariant if and only if ¢ € dcl(A).
Proof.
(=) Suppose ¢ ¢ dcl(A). A is small, so AU {c} is small, and by saturation we may find some realization
c of
{z>ctU{z<a:ae AN(c,0)}

Then [¢, ]| N A =0, so by Corollary 17 we have that c=4 ¢’. But pFxz =c,and pt/ z = . So p is
not A-invariant.

(<= ) Suppose ¢ € dcl(A). By Proposition 9, p is A-definable, and thus A-invariant.
O]

Ezample 23. The left-to-right direction of Fact 22 does not hold when A is not small. Consider tp(7/R) in
(R, <). This is Q-invariant, as b =g b’ = b=V, but 7 ¢ dcl(Q).

Conjecture 24. A type p realized by ¢ € dom(U) is A-invariant if and only if ¢ € dcl(A) or

c € del(A) N (e, 00) Ndel(A) N (—o0,¢)

in the order topology. (Another way of stating the latter condition is that ¢ is a limit point of dcl(A) both
from above and below.)

Partial Proof.

(=) Suppose ¢ ¢ dcl(A) N (¢,00) Ndecl(A) N (—o0,¢) and ¢ ¢ dcl(A); then there is some b > ¢ such that
dcl(A) Ne,b] = 0 (the case where b < ¢ is identical). Then, by Corollary 17, c =4 b. But pF z = ¢,
and p I/ x = b. So p is not A-invariant.

(<= Suppose ¢ € dcl(A) N [¢,00) Ndcl(A) N (—o0, c]. We observe that if ¢ € dcl(A), then the result follows
by Proposition 9; suppose then the ¢ ¢ dcl(A). Suppose p - ¢(z,b) but p I ¢(x,b); we aim to prove
that b #Z4 b/. Then p - —p(x, ). By o-minimality, ¢(z,b) and —p(x, ) define a union of intervals and
points. If either defines an interval around c, say w(x,g) does, then there is some a1,a2 € A in that
interval such that a; < ¢ < ag; thus U |= Va(a1 < = < ag — ¢(x,b)). But by assumption U  ¢(z, V),
so the same statement does not hold for o; thus b Z4 . Suppose then that in both ¢(z,b) and
—¢(z,b'), c is one of the finitely many points. Then ¢ € decl(h) and ¢ € dcl(¥).



TODO 1. Finish this. Probably want to use propositions 4.3 and 4.4 in Casanovas.

O

As noted at the end of Section 3, the infinite types are A-definable for every A C dom(U), and thus
A-invariant for every A C dom(U).

5 Product Types and Morley Sequences

Definition 25 (Product Type). Let p,, g, € S(U) be two invariant types. We define the type p, ®qy, € Sqy(U)
as tp(ab/U) where b |= ¢, and a |= p|Ub.

Proposition 26. Let T' be an O-minimal theory, U an |A|-saturated model of T, and let p be the 1-type at
infinity. Then, we claim that for every ¢ € dcl(Uy), we have p, ® p, - x > c. That is, if (a,b) = p, @ py
then for all ¢ € dcl(Ub) we have a > c.

Proof. Suppose to the contrary that there exists (a,b) = p ® p such there exists ¢ € dcl(Ub) such that a < c.
By saturation, there exists b’ € U such that b =4 b’ and so there exists an A-automorphism o such that
o(b') =b. pis A-invariant and so by definition, p F ¢(x;b) <= ¢(x;b"). Let (z;b) be the formula defining
¢, then let ¢(x;b) := Jy(x <y A(y;b)). By hypothesis, a < cso pk ¢(x;b) <= pt o(z; V).

Note that since ¥ (y; b) has a unique realization, so does 1 (y; b") because take the formula v(z) := Iy (x, 2)
and by elementary equivalence since b = v(z) so does b'. Thus, ¥(y; ') has a unique realization d, and by
elementary equivalence of U < V we have that d € U (Tarski-Vaught). Thus, since p b ¢(z;b") we have
a = ¢(x;b') and so a < d which is a contradiction because a |= p,, the type at +oo. O

Ezample 27 (2.22 in Notes). Let T be DLO and take p = ¢ to be the type at +00. Then p, ® ¢, -z >y
since the dcl of a set in DLO is just itself.

Ezample 28 (RCOF). Let T be RCOF and let p € S1(U), then for every polynomial f € U[z] we have
Pe @yt a> f(y).

Proposition 29. Let T be an O-minimal theory, U an |A|-saturated model of T and let p be an unrealized
type with standard part st(p) € dcl(A). Then, for all c € del(Uy) N (st(p), 00) we have py @ py F = < c.

Proof. This will follow in a similar way to the previous proof. Suppose to the contrary that there exists
(a,b) = ps ® py such that there exists ¢ € del(Ub) with a > ¢ > st(p). Again by saturation, there exists
b € U such that b =4 b’ and so there exists an A-automorphism o with o(b) = (V). p is A-invariant, so
pEo(x;b) < @(x;b). Let ¢(z;b) define ¢, then let

@(x;0) := Fy(x > y AY(y; b) Ny > st(p))

Then, ¥ (x; V) has a unique realization ¢’ as well and ¢/, by elementary equivalence, is in U as well. So since
a = p we have a > ¢’ > st(p). This is a contradiction because ¢’ € U and since a = p we have that a < z for
all x > st(p). O

Ezample 30. Let p € S1(U) be a cut with standard part 0. If T is DLO, then, p, ® p, - = < y and if
(a,b) = pz @ py then a,b > 0 and a < b. If T is RCOF, then if (a,b) |= p; ® py then a,b > 0 and a < f(b)
where f is any polynomial in U[x].

Definition 31 (Morley Sequence). Let p, be an invariant type, we define by induction for n € N*
1)

pxo = p.’IJo
P! e = Pon O D) ey
and define pg‘;)xl = Up™. For any N D A, a realization (a; : i < w) of p“)|N is called a Morley

Sequence of p over N.



Ezample 32. Let T be DLO and p be the type at +0o and consider pgﬁ,)___,xl, what do the (-Morley Sequences
look like? By our characterization of products in DLO, it follows that if {a;} is an increasing sequence such
that ag > v for all v € U then {a;} is a Morley sequence over A.

If p is the type of an infinitessimal with standard part 0, then if a; is a decreasing sequence of infinitessimals
with standard part 0, then {a;} is a Morley sequence over A.

Ezample 33. Let T be RCOF, then if p is type at +oco then similar to the above example, a morley sequence
consists of an increasing sequence such that a; 1 > f(a;) where f is any polynomial in U U {ao, ..., a;—1 }[z].
Similarly, if p is the type of an infintessimal with standard part 0, then if {a;} is a decreasing sequence of
infinitessimals with standard part 0 such that a;+1 < f(a;) for each f € U U{ao,...,a;—1}[z], then {a;} is a
Morely sequence of p over A.

Remark 34. This is tangentially related to the above but came up when we were thinking about invariant
types. It is not the case that if U is a k-saturated model of a theory T, then if V > U then V is also
k-saturated. Let T be DLO and let i/ be an N;-saturated model of T. Let ¥V = U U Q such that U < Q, i.e.
every elements u € U, q € Q we have u < ¢. V is a model of DLO and by model completeness U < V. But V
is not Ny-saturated since {v > p : p € Q} is not realized in V.
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