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1 Introduction
When first encountering the definition of adjoint functors, one might remark that being adjoint is a weakening
of being mutually inverse. This naturally leads to questions about the composition of a pair of adjoint
functors: do such compositions have any properties of note? Can we recover the original adjunction from the
composition? The former question leads to the notion of a monad; the goal of this paper (Theorem 4.3) is to
give a sense in which the Eilenberg-Moore algebras are the best we can do in regard to the latter question.
The particular sense in which these are the best is formalized by way of universal algebra.

Section 2 gives an overview of monads and Eilenberg-Moore algebras. Section 3 gives a minimal and very
fast introduction to the universal algebra needed to state our main result. Section 4 is devoted to stating
and proving Theorem 4.3.

Our notation in universal algebra occasionally diverges from established usage in the interest of readability
to the uninitiated. To maintain a decent length, we will necessarily gloss over some relevant universal algebra.
However, it should be noted that nothing involved is at all deep; the curious reader is encouraged to seek
further edification in [1, Chapter II]. [2, Section VI] is a good reference for monads.

We make use of the horizontal composition of functors and natural transformations as defined in [2,
Section II.5]. Briefly, given a natural transformation η : G → G′ between functors G,G′ : B → C and given
functors H : A → B and F : C → D, there is a natural transformation FηH : FGH → FG′H given by
(FηH)A = F (ηHA) : FGHA→ FG′HA for A ∈ Ob(A).

2 Monads
Consider a pair of adjoint functors F : C → D and G : D → C (with F � G); a useful example to keep in
mind throughout this section is the free-forgetful adjunction between Set and Grp. In general we have no
right to expect that F and G be mutually inverse, or even that their composition be naturally isomorphic to
the identity functor. Looking at the definition of adjunctions, however, there seems to be a sense in which
F and G “do opposite things”. Indeed, an equivalent definition of being adjoint requires the existence of
natural transformations η : idC → GF and ε : FG→ idD such that

(εF ) ◦ (Fη) = idF
(Gε) ◦ (ηG) = idG
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(See for example [2, Theorem IV.1.2].) Writing adjunction in this form, we see that being adjoint is a
weakening of being an equivalence of categories; the compositions aren’t naturally isomorphic to the identity
functors, but there is some kind of cancellation taking place. A natural question to ask is “what can we say
about the composition GF?” (One might also ask about FG; this leads to the study of comonads, which we
will not consider.)

Our answer is Theorem 2.2; to get there, however, we need a technical lemma.

Lemma 2.1. Suppose F : C → D and G : D → C have F � G; let α : HomD(F−,−) → HomC(−, G−) be
the natural isomorphism yielding F � G. Then for any A,B ∈ Ob(C) and any ϕ : A→ B, we have

αB,FB(idFB) ◦ ϕ = GFϕ ◦ αA,FA(idFA)

Likewise, for any M,N ∈ Ob(D) and any ψ : M → N , we have

ψ ◦ α−1
GM,M (idGM ) = α−1

GN,N (idGN ) ◦ FGψ

Proof. Note that by naturality of α we get

αB,FB(idFB) ◦ ϕ = αA,FB(idFB ◦Fϕ) = αA,FB(Fϕ) = αA,FB(Fϕ ◦ idFA) = GFϕ ◦ αA,FA(idFA)

Likewise, by naturality of α−1 we get

ψ ◦ α−1
GM,M (idGM ) = α−1

GM,N (Gψ ◦ idGM ) = α−1
GM,N (Gψ) = α−1

GM,N (idGN ◦Gψ) = α−1
GN,N (idGN ) ◦ FGψ

as desired. Lemma 2.1

We are now ready to answer the question “what can we say about GF?”

Theorem 2.2. Suppose F : C → D and G : D → C have F � G; let T = G ◦ F : C → C. Then we have
natural transformations η : idC → T and µ : T 2 → T such that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2

T 2 T

Tη

ηT
idT µ

µ

(Here T 2 = T ◦ T , which is sensible because T is an endofunctor.)

Proof. Let α : HomD(F−,−) → HomC(−, G−) be the natural isomorphism yielding the adjunction F �
G. For A ∈ Ob(C) we note that αA,FA : HomD(FA,FA) → HomC(A,GFA); we may then set ηA =
αA,FA(idFA) : A→ GFA = TA.

Claim 2.3. η as defined above is a natural transformation.

Proof. Suppose A,B ∈ Ob(C); suppose f : A→ B. We wish to check that the following diagram commutes:

A B

GFA GFB

f

ηA ηB

GFf

But by Lemma 2.1 we get that

ηB ◦ f = αB,FB(idFB) ◦ f = GFf ◦ αA,FA(idFA) = GFf ◦ ηA

as desired. Claim 2.3

Along similar lines, we note that forA ∈ Ob(C) we have α−1
GFA,FA : HomC(GFA,GFA) → HomD(FGFA,FA);

we may then set µA = G(α−1
GFA,FA(idGFA)) ∈ HomC(GFGFA,GFA) = HomC(T

2A, TA).
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Claim 2.4. µ as defined above is a natural transformation.

Proof. Suppose A,B ∈ Ob(C); suppose f : A→ B. We wish to check that the following diagram commutes:

GFGFA GFGFB

GFA GFB

GFGFf

µA µB

GFf

But by Lemma 2.1 we get that

Ff ◦ α−1
GFA,FA(idGFA) = α−1

GFB,FB(idGFB) ◦ FGFf

Hence, applying G, we get that

GFf ◦ µA = GFf ◦G(α−1
GFA,FA(idGFA)) (by definition of µ)

= G(Ff ◦ α−1
GFA,FA(idGFA)) (since G is a functor)

= G(α−1
GFB,FB(idGFB) ◦ FGFf) (by equation above)

= Gα−1
GFB,FB(idGFB) ◦GFGFf (since G is a functor)

= µB ◦GFGFf (by definition of µ)

as desired. Claim 2.4

It remains to check that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2

T 2 T

Tη

ηT
idT µ

µ

Suppose A ∈ Ob(C); we check that the following diagrams commute:

T 3A T 2A

T 2A TA

T (µA)

µTA µA

µA

TA T 2A

T 2A TA

T (ηA)

ηTA
idTA µA

µA

For the first, we note that

µA ◦ µTA = G(α−1
GFA,FA(idGFA)) ◦G(α

−1
GFGFA,FGFA(idGFGFA)) (by definition of µ)

= G(α−1
GFA,FA(idGFA) ◦ α

−1
GFGFA,FGFA(idGFGFA)) (since G is a functor)

= G(α−1
GFA,FA(idGFA) ◦ FG(α

−1
GFA,FA(idGFA))) (by Lemma 2.1)

= G(α−1
GFA,FA(idGFA)) ◦GFG(α

−1
GFA,FA(idGFA)) (since G is a functor)

= µA ◦ T (µA) (by definition of µ)

For the second, we note that

µA ◦ T (ηA) = G(α−1
GFA,FA(idGFA)) ◦GF (αA,FA(idFA)) (by definitions of µ and η)

= G(α−1
GFA,FA(idGFA) ◦ F (αA,FA(idFA))) (since G is a functor)

= G(α−1
A,FA(idGFA ◦αA,FA(idFA))) (by naturality of α−1)

= G(α−1
A,FA(αA,FA(idFA)))

= G(idFA)
= idTA
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and

µA ◦ ηTA = G(α−1
GFA,FA(idGFA)) ◦ αGFA,FGFA(idFGFA) (by definitions of µ and η)

= αGFA,FA(α
−1
GFA,FA(idGFA) ◦ idFGFA) (by naturality of α)

= αGFA,FA(α
−1
GFA,FA(idGFA))

= idTA

So the desired diagrams commute. Theorem 2.2

This motivates the following definition:

Definition 2.5. A monad in a category C is a triple (T, η, µ) where

• T : C → C is an endofunctor

• η : idC → T is a natural transformation, called the unit

• µ : T 2 → T is a natural transformation, called the multiplication

such that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2

T 2 T

Tη

ηT
idT µ

µ

When η and µ are clear from context, we will use T to refer to the monad.

The terms “unit” and “multiplication” arise from the observation that the monad axioms resemble the
monoid axioms. Indeed, a monoid can be defined as a triple (X, e,m) where X ∈ Ob(Set), e ∈ HomSet(1, X)
(where 1 = { 0 } is the identity of ×), and m ∈ HomSet(X

2, X) such that the following diagrams commute:

X3 X2

X2 X

idX ×m

m×idX m

m

X X2

X2 X

idX ×e

e×idX
idX m

m

(where in the second diagram we regard X as X × { 0 } or { 0 } ×X as necessary). If we allow an arbitrary
category C with well-behaved products to replace Set in the above, we get the notion of a monoid-like
object. In particular, if we use the category of endofunctors C → C and squint enough that we overlook the
difference between X2 as a product object and T 2 the composition of two endofunctors, we notice that we
have recovered exactly the definition of a monad; hence the facetious explanation “a monad is just a monoid
in the category of endofunctors” given by Haskell enthusiasts when they feel like being unhelpful. (To do
away with the squinting entirely, one needs the notion of a monoidal category.)

Theorem 2.2 then says that any pair of adjoint functors gives rise to a monad in a canonical way; so
monads are generalizations of compositions of adjoint functors. In fact, it turns out that all monads arise in
this way.

Definition 2.6. Suppose (T, η, µ) is a monad in C. We define CT , the Kleisli category of T , as follows:

• For each A ∈ Ob(C) we define a new object AT ∈ Ob(CT ).

• For each f ∈ HomC(A, TB) we define a new morphism fT ∈ HomCT
(AT , BT ).

• Given f ∈ HomC(A, TB) and g ∈ HomC(B, TC), we define gT ◦ fT = (µC ◦ Tg ◦ f)T ∈ HomCT
(A,C).
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One can without too much trouble construct adjoint functors F : C → CT and G : CT → C such that T
arises from the adjunction F � G; in particular, our F will act on objects by FA = AT and our G will act
on objects by GAT = TA. (The details can be found in [2, Theorem VI.5.1].) Hence we indeed get that
every monad arises from an adjunction.

Veteran Haskell coders will recognize A → TB as a relabelling of the type signature a −> m b that
haunts their dreams; indeed, the Kleisli category applies very well to computer science. From an algebraic
perspective, however, it is less ideal: for most adjunctions that one encounters in the wild, the Kleisli
category of the associated monad is a proper subcategory of the original one. For example, in the free-
forgetful adjunction between Set and Grp, the Kleisli category of the associated monad turns out to be the
full subcategory of free groups, rather than Grp; see [2, Exercise VI.5.2].

A better way to recover an adjunction from a monad turns out to be the following:

Definition 2.7. Suppose (T, η, µ) is a monad in C. An Eilenberg-Moore algebra over T is a pair (A, h) where
A ∈ Ob(C) and h : TA→ A such that the following diagrams commute:

T 2A TA

TA A

Th

µA h

h

A TA

A

ηA

idA

h

A morphism of Eilenberg-Moore algebras (A, h) → (A′, h′) is some f : A → A′ such that the following
diagram commutes:

TA TA′

A A′

Tf

h h′

f

This defines a category CT , the Eilenberg-Moore category of T .

Here too we can find adjoint functors F : C → CT and G : CT → C such that T arises from the adjunction
F � G; in particular, our F will act on objects by FA = (TA, µA), and our G will act on objects by
G(A, h) = A. One remarks that this adunction bears some resemblance to a free-forgetful adjunction. (The
details of this construction can be found in [2, Theorem VI.2.1].)

At first glance, the definition of an Eilenberg-Moore algebra is quite opaque; it’s not at all clear how to
justify my claim that the Eilenberg-Moore category is “probably” the category the original adjunction came
from. Why should an Eilenberg-Moore algebra over the free group monad have any correspondence to a
group? Phrasing my assertion in a suitable level of generality and proving it will be the content of the next
two sections.

3 A whirlwind tour of universal algebra
To give formal meaning to my assertion above, we will need the language of universal algebra; this section is
devoted to covering the necessary definitions and theorems. Throughout this section, we use monoids as a
concrete example to which we can apply the concepts and theorems; another good example the reader may
wish to keep in mind would be rings. As noted in the introduction, [1, Section II.5] is an excellent reference
for elementary universal algebra.

Definition 3.1. A signature or type is a collection F of symbols, each with an associated arity (which is
allowed to be 0). An algebra A of type F is a non-empty set A together with a function fA : An → A for
each n-ary f ∈ F ; we then write A = (A, (fA : f ∈ F )). We call A the underlying set of A; we call the fA

the fundamental operations of A.

We will use boldface to denote algebras and functions that output an algebra; we will use roman to
denote sets and functions that output a set. When a binary relation symbol is conveniently expressed as an
infix operator, we will do so.
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Example 3.2. Let M = { ·, 1 } where · is a binary symbol and 1 is a nullary symbol; we call this the signature
of monoids. An algebra of type M then consists of a set together with a binary operation and an identified
constant; for example:

• (N,+N, 0N) (where +N and 0N are the normal addition and 0 of N).

• (N,−N, 0N) (where −N is binary subtraction in N); note that there is no requirement that an algebra
of type M actually be a monoid.

Definition 3.3. Suppose A and B are algebras of type F . A homomorphism A → B is a map ϕ : A → B
such that given any f ∈ F of arity n and any a1, . . . , an ∈ A we have

ϕ(fA(a1, . . . , an)) = fB(ϕ(a1), . . . , ϕ(an))

One checks that the algebras of type F together with the homomorphisms form a category.

We now give an appropriate generalization of subobjects and Cartesian products.

Definition 3.4. Suppose A is an algebra of type F . A subalgebra of A is an algebra B of type F such that
B ⊆ A and for all n-ary f ∈ F we have fB = fA � Bn.

Definition 3.5. Suppose (Ai : i ∈ I) are algebras of type F . We define their direct product
∏
i∈I Ai to

have domain set
∏
i∈I Ai and given n-ary f ∈ F we define

f
∏

i∈I Ai((a1i : i ∈ I), . . . , (ani : i ∈ I)) = (fAi(a1i, . . . , an−i) : i ∈ I)

This gives us a notion of a “nice” class of algebras:

Definition 3.6. A variety is a non-empty class of algebras of a fixed type that is closed under direct
products, subalgebras, and homomorphic images.

Example 3.7. Let M = { ·, 1 } be the signature of monoids; let V be the class of algebras of type M that
are actually monoids (i.e. the A of type M such that · is associative and 1 is a multiplicative identity.) One
can easily verify that V is closed under direct products, subalgebras, and homomorphic images, and is thus
a variety. On the other hand, let V ′ be the class of algebras of type M whose elements are groups; then
V ′ is not a variety, as it is not closed under subalgebras. (For example, we have that (N,+N, 0N) /∈ V ′ is a
subalgebra of (Z,+Z, 0Z) ∈ V ′.)

While not directly helpful in proving our main result, the following characterization of varieties is quite
nice:

Fact 3.8 ([1, Theorem II.11.9]). Suppose V is a class of algebras of type F . Then V is a variety if and
only if there some set Σ of “identities” such that the elements of V are exactly the algebras of type F .

To avoid bogging the reader down with definitions that are not relevant to our main result, I forgo giving
a proper definition of “identities” in favour of an example:
Example 3.9. Let M , V , and V ′ be as in the previous example. Another way to see that V is a variety is to
note that V is exactly the class of algebras of type M satisfying the following identities:

(x · y) · z ≈ x · (y · z)
x · 1 ≈ x

1 · x ≈ x

One wonder whether adding the identities x · x−1 ≈ 1 and x−1 · x ≈ 1 would yield a proof that V ′ is a
variety; it does not, because −1 is not a symbol in our signature. However, if we expand our signature to
G = { ·, 1,−1 }, then the class of algebras of type G that form a group does form a variety.

Definition 3.10. Given a class K of algebras of type F , the category associated to K is the full subcategory
of the category of algebras of type F whose objects are the elements of K.
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Before we consider the free monad, we need to know that free objects exist. Remarkably, it turns out
that as long as V is a variety, we can guarantee the existence of free objects. For this we will need the notion
of a term:
Definition 3.11. Suppose F is a signature containing a 0-ary symbol; suppose X is a set (which we will
think of as a set of variables). We define the set of terms to be the smallest set TF (X) satisfying:

• X ⊆ TF (X).

• Given n-ary f ∈ F and t1, . . . , tn ∈ TF (X), we have that the tuple (f, t1, . . . , tn) ∈ TF (X); roughly
speaking, we think of this as saying that the “string” f(t1, . . . , tn) is in TF (X).

We make this into an algebra T(X) of type F as follows: given n-ary f ∈ F and t1, . . . , tn ∈ TF (X), we
let fT(X)(t1, . . . , tn) = (f, t1, . . . , tn). Given t ∈ TF (X) and x1, . . . , xn ∈ X, we write t(x1, . . . , xn) to mean
that the variables in t are from the x1, . . . , xn.

The requirement that F contain a 0-ary symbol allows us to consider TF (∅); one could dispense with it
at the cost of requiring that X be non-empty. When we are being informal, we will write f(t1, . . . , tn) instead
of (f, t1, . . . , tn); we will also write binary operators that are conveniently expressed as infix operators in
infix notation.
Example 3.12. Let M = { ·, 1 } as before. Then x, 1 · 1, and x · (y · z) are elements of TM ({x, y, z }); they
would formally be written x, (·, 1, 1), and (·, x, (·, y, z)), respectively. If t = x · y ∈ TM ({x, y, z }), we might
refer to t by t(x, y) to assert that x and y are the only variables appearing in t. (It would also be correct to
refer to t by t(x, y, z); we make no requirement that all of the variables show up in t.)

We think of terms as functions in the following way:
Definition 3.13. Suppose A is an algebra of type F . We recursively define tA : An → A for t(x1, . . . , xn) ∈
TF (X):

• xA
i : A

n → A is projection onto the ith coordinate.

• Suppose t = (f, t1, . . . , tk) for some k-ary f ∈ F and t1, . . . , tk ∈ TF (X). Given a1, . . . , an ∈ A, we set

tA(a1, . . . , an) = fA(tA1 (a1, . . . , an), . . . , t
A
k (a1, . . . , an))

Note that tA depends on the presentation t = t(x1, . . . , xn), which is not unique; whenever we use tA, we
will be careful to specify a presentation in advance.
Example 3.14. Let M = { ·, 1 } as before; let t = t(x, y) = x · (y · y) ∈ TM ({x, y }). Let A = (N,+N, 0N).
Then tA is the map N2 → N given by (m,n) 7→ m+ 2n.
Remark 3.15. For t(x1, . . . , xn) ∈ T (X) we have tT(X)(x1, . . . , xn) = t.

When working in a variety V , we may have non-trivial relations between the terms. For example, let
V be the variety of monoids; let t1(x) = x and t2(x) = x · 1. Then for any A ∈ V we have tA1 = tA2 . This
motivates the following definition:
Definition 3.16. Suppose F is a signature containing a 0-ary symbol and K is a class of algebras of type
F ; suppose X is a set. We define an equivalence relation on TF (X) by t1(x1, . . . , xn) ∼K t2(x1, . . . , xn) if
and only if for all A ∈ K we have tA1 = tA2 . (Note that while this superficially only applies when t1 and t2
have the same free variables, we can always add variables to the presentations of t1 and t2 until they have
the same presentation; one also checks that ∼K is independent of the common presentation chosen.)

We then define FK(X) = TF (X)/∼K . To avoid clutter, we use t to denote the equivalence class of t in
FK(X). We make this into an algebra FK(X) of type F as follows: given n-ary f ∈ F and t1, . . . , tn ∈
FK(X), we define fFK(X)(t1, . . . , tn) = fT(X)(t1, . . . , tn). (One checks that this is well-defined.)
Fact 3.17 ([1, Theorem II.10.10]). Given any A ∈ K and any set map ϕ : X → A there is a unique
homomorphism ϕ̂ : FK(X) → A such that the following diagram commutes:

X FK(X)

A

ϕ
ϕ̂
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Fact 3.18 ([1, Theorem II.10.12]). If V is a variety, then FV (X) ∈ V .

So these FV (X) play the role of free objects. In fact, we can make FV into a functor from Set to the
category associated to V as follows: given a set map ϕ : X → Y , we let π : Y → FV (Y ) be the map y 7→ y; we
then set FV (ϕ) = π̂ ◦ ϕ : FV (X) → FV (Y ) (the unique homomorphism FV (X) → FV (Y ) extending π ◦ ϕ).

4 Eilenberg-Moore algebras over FV

Throughout this section, we work in a fixed variety V over a signature F containing a 0-ary symbol. (The
latter is a technical requirement to avoid having to deal with ∅ ∈ Ob(Set) as a special case.) We let V be
the category associated to V .

From the previous section, we get that:

Proposition 4.1. FV is left adjoint to the forgetful functor.

In keeping with the conventions of the previous section, we use FV to denote the associated monad (which
is just the composition of the forgetful functor and FV ).

The following proposition results from working through definitions and the details of the construction in
Theorem 2.2.

Proposition 4.2.

1. Suppose ϕ : X → Y and t(x1, . . . , xn) ∈ TF (X). Then FV (ϕ)(t) = tFV (Y )(ϕ(x1), . . . , ϕ(xn)).

2. The unit η of FV is given by ηX : X → FV (X) is x 7→ x.

3. The multiplication µ of FV is given as follows. Suppose t(t1, . . . , tn) ∈ T (FV (X)). (Recall that the
“variables” in T (FV (X)) are elements of FV (X), and thus take the form ti for some ti ∈ T (X).) Then
µX(t) = tFV (X)(t1, . . . , tn).

Theorem 4.3. V and SetFV are isomorphic categories.

Proof. We first define a functor Φ: V → SetFV . Given A ∈ V , the universal property of free objects yields
that idA : A→ A extends to a unique homomorphism hA : FV (A) → A; i.e. such that the following diagram
commutes:

A FV (A)

A

idA
hA

Claim 4.4. (A, hA) is an Eilenberg-Moore algebra over FV .

Proof. We must check that the following diagrams commute:

FV (FV (A)) FV (A)

FV (A) A

FV (hA)

µA hA

hA

A FV (A)

A

ηA

idA
hA

For the first, suppose we are given t ∈ FV (FV (A)) where t(t1, . . . , tn) ∈ TF (FV (A)). Then

hA(FV (hA)(t)) = hA(t
FV (A)(hA(t1), . . . , hA(tn))) (by Proposition 4.2)

= tA(hA(hA(t1)), . . . , hA(hA(tn))) (since hA is a homomorphism)
= tA(hA(t1), . . . , hA(tn)) (by definition of hA)
= hA(t

FV (A)(t1, . . . , tn)) (since hA is a homomorphism)
= hA(µA(t)) (by Proposition 4.2)

For the second, note that Proposition 4.2 and the definition of hA yield that for a ∈ A we have hA(ηA(a)) =
hA(a) = a. Claim 4.4
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We may then set Φ(A) = (A, hA).

Claim 4.5. Given A,B ∈ V and a homomorphism ϕ : A → B, we have that ϕ : Φ(A) → Φ(B) is a morphism
of Eilenberg-Moore algebras over FV .

Proof. We must check that the following diagram commutes:

FV (A) FV (B)

A B

FV (ϕ)

hA hB

ϕ

But if t ∈ FV (A) where t(a1, . . . , an) ∈ TF (A), then

hB(FV (ϕ)(t)) = hB(t
FV (B)(ϕ(a1), . . . , ϕ(an))) (by Proposition 4.2)

= tB(hB(ϕ(a1)), . . . , hB(ϕ(an))) (since hB is a homomorphism)
= tB(ϕ(a1), . . . , ϕ(an)) (by definition of hB)
= tB(ϕ(hA(a1)), . . . , ϕ(hA(an))) (by definition of hA)
= ϕ(tA(hA(a1), . . . , hA(an))) (since ϕ is a homomorphism)
= ϕ(hA(t

FV (A)(a1, . . . , an))) (since hA is a homomorphism)
= ϕ(hA(t)) (by Proposition 4.2)

as desired. Claim 4.5

Given A,B ∈ V and a homomorphism ϕ : A → B, we may then set Φ(ϕ) = ϕ : Φ(A) → Φ(B); it is then
immediate that Φ preserves composition and identity morphisms, and is thus a functor.

We now define a functor Ψ: SetFV → V. Suppose (A, h) ∈ Ob(SetFV ); then h : FV (A) → A. Note that
given n-ary f ∈ F and given a1, . . . , an ∈ A, we have that (f, a1, . . . , an) ∈ TF (A); thus (f, a1, . . . , an) ∈
FV (A), and h((f, a1, . . . , an)) ∈ A. We can thus define an algebra Ah of type F to have underlying set A
and fundamental operations fAh(a1, . . . , an) = h((f, a1, . . . , an)).

Claim 4.6. h is a homomorphism FV (A) → Ah.

Proof. Suppose we have n-ary f ∈ F ; suppose t1, . . . , tn ∈ FV (A). Let t = (f, t1, . . . , tn) ∈ TF (FV (A)).
Since (A, h) form an Eilenberg-Moore algebra over FV , we have that the following diagram commutes:

FV (FV (A)) FV (A)

FV (A) A

µA

FV (h) h

h

Thus

h(fFV (A)(t1, . . . , tn)) = h(µA((f, t1, . . . , tn))) (by Proposition 4.2)
= h(µA(t)) (by definition of t)
= h(FV (h)(t)) (by the above commuting diagram)
= h(tFV (A)(h(t1), . . . , h(tn)) (by Proposition 4.2)
= h((f, h(t1), . . . , h(tn))) (by definition of t)
= fAh(h(t1), . . . , h(tn)) (by definition of fAh)

So h is a homomorphism. Claim 4.6
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Since (A, h) is an Eilenberg-Moore algebra over FV , we get that the following diagram commutes:

A FV (A)

A

ηA

idA
h

In particular, since idA is surjective, we get that h is as well. So Ah is a homomorphic image of FV (A) ∈ V ;
so Ah ∈ V , since V is a variety. We may thus set Ψ((A, h)) = Ah.

Claim 4.7. Given (A, h), (A′, h′) ∈ SetFV and a morphism ψ : (A, h) → (A′, h′), we have that ψ : Ψ((A, h)) →
Ψ((A′, h′)) is a homomorphism.

Proof. Suppose we have n-ary f ∈ F ; suppose a1, . . . , an ∈ A. Since ψ is a morphism of Eilenberg-Moore
algebras over FV , we have that the following diagram commutes:

FV (A) FV (A
′)

A A′

h

FV (ψ)

h′

ψ

Thus

ψ(fAh(a1, . . . , an)) = ψ(h((f, a1, . . . , an))) (by definition of fAh)
= h′(FV (ψ)((f, a1, . . . , an))) (by the above commuting diagram)
= h′((f, ψ(a1), . . . , ψ(an))) (by Proposition 4.2)
= fAh′ (ψ(a1), . . . , ψ(an)) (by definition of fAh′ )

and ψ : Ψ((A, h)) → Ψ((A′, h′)) is a homomorphism. Claim 4.7

Given (A, h), (A′, h′) ∈ SetFV and a morphism ψ : (A, h) → (A′, h′), we may then set Ψ(ψ) = ψ : Ψ((A, h)) →
Ψ((A′, h′)); it is again immediate that Ψ preserves compositions and identity morphisms, and is thus a func-
tor.

Claim 4.8. Φ and Ψ are mutually inverse.

Proof. We first note that both Φ and Ψ preserve the underlying set: the underlying set of Φ(A) is A, and the
underlying set of Ψ((A, h)) is A. We further observe that both Φ and Ψ preserve the underlying functions
of morphisms; since morphisms in SetFV and V are functions satisfying additional properties, it follows that
to show that Φ and Ψ are mutually inverse it suffices to check that they are mutually inverse on objects.

We now check that Φ ◦ Ψ = idSetFV . Suppose (A, h) ∈ Ob(SetFV ). Since Φ and Ψ preserve underlying
sets, we have that Φ(Ψ((A, h))) = (A, h′) for some map h′ : FV (A) → A; it remains to check that h = h′.
Recall by definition of Φ that h′ is the unique homomorphism FV (A) → Ψ((A, h)) = Ah extending the
identity map A → A. But Claim 4.6 tells us that h : FV (A) → Ah is a homomorphism. Furthermore, since
(A, h) is an Eilenberg-Moore algebra over FV we get that the following diagram commutes:

A FV (A)

A

ηA

idA
h

Since Proposition 4.2 tells us that ηA is just canonical map A → FV (A), we get that h extends idA. So
h is a homomorphism FV (A) → Ah extending the identity map A → A. But h′ was the unique such
homomorphism FV (A) → Ah; so h = h′. So Φ(Ψ((A, h))) = (A, h); so Φ ◦Ψ = idSetFV .

We now check that Ψ ◦ Φ = idV . Suppose A ∈ V . Since Φ and Ψ preserve underlying sets, we have that
Ψ(Φ(A)) = A′ where A and A′ both have A as their underlying set; it remains to check that they have the
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same fundamental operations. Suppose then that we have an n-ary f ∈ F ; suppose a1, . . . , an ∈ A. Then
by definitions of Φ and Ψ we get that

fA′
(a1, . . . , an) = hA((f, a1, . . . , an)) (by definition of fA′

; i.e. by definition of Ψ)
= hA(f

FV (A)(a1, . . . , an)) (by definition of fFV (A))
= fA(hA(a1), . . . , hA(an)) (since hA is a homomorphism)
= fA(a1, . . . , an) (since hA extends idA)

So fA′
= fA; so Ψ(Φ(A)) = A, and Ψ ◦ Φ = idV . Claim 4.8

So Φ is an isomorphism of categories; so V and SetFV are isomorphic categories. Theorem 4.3
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